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Introduction

Study of Coulomb dissociation of weakly
bound nuclei has emerged as a powerful tool in
determining the cross-sections of astrophysi-
clly interesting radiative capture reactions and
hence their rates. Therefore, the motivation
arises in developing a fully quantum mechan-
ical theory which can be applied to cases in
which the valence nucleons are either neu-
tron(s) or proton(s).

Formalism

We consider the reaction a + t → b + c + t,
where the projectile a breaks up into frag-
ments b (charged) and c (charged/uncharged)
in the Coulomb field of a target t. The triple
differential cross section for the reaction is
given by
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=

2π
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Here va is the a-t relative velocity in the en-
trance channel and ρ(Eb,Ωb,Ωc) the phase
space factor appropriate to the three-body fi-
nal state. βlm is the reduced amplitude in
post form of finite range distorted wave Born
approximation, given by
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where, qb, qc and qa are the wave vectors of
b, c, and a corresponding to Jacobi vectors
r, rc and r1, respectively. Vbc is the interac-
tion between b and c. φlm

a (r1) is the ground
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state wave function of the projectile with rel-
ative orbital angular momentum state l and
projection m. χ(−)’s are the distorted waves
for relative motions of b and c with respect to
t and the center of mass(c.m.) of the b-t sys-
tem, respectively, with ingoing wave boundary
condition. χ(+)(qa, ri) is the distorted wave
for the scattering of the c.m. of projectile a
with respect to the target with outgoing wave
boundary condition.

The evaluation of βlm is quite complicated
as it involves a six-dimensional integral. Ear-
lier attempts were by using zero range ap-
proximation(ZRA) [1]. This approximation
reduces the six-dimensional integral to three
dimensional one, but this restricts the rela-
tive motion between b and c in the projecile
a to s - state only. Another effective approxi-
mation was the Local Momentum approxima-
tion [2], which reduces the six-dimensional βlm

into two three-dimensional integrals, one giv-
ing the structural inforamtion and the other
involving the dynamics of the reaction which
in turn can be analytically solved in terms of
the Bremsstrahlung integral.

However in all these previous attempts the
fragment ‘c’ was uncharged and that was cru-
cial in our analytical evaluation. In the next
section, we shall introduce the Lagrange-mesh
technique which can not only arrive at analyt-
ical results, but also at a faster pace.

Lagrange-mesh technique

This is an approximate variational calcula-
tion method, with the simplicity of a mesh
calculation [3] because of the use of a consis-
tent Gauss quadrature. Use of the Lagrange
orthonormal functions makes it very effective
because no analytical evaluation of matrix el-
ements is needed. One only need to evaluate
the potential at mesh points and this leads to
faster numerical convergence. The accuracy is



exponential in the number of mesh points.
In this method a variational approximation

of the wave function is given by an expansion
in the Lagrange basis,

ψ(x) =

N∑
i=1

cifi(x) (3)

In this basis, the coefficients ci have a simple
physical interpretation,

ci = λ
1/2
i ψ(xi), (4)

where the mesh points xi and weights λi define
an approximate quadrature rule of the Gauss
type

∫ b

a

g(x)dx ≈

N∑
i=1

λig(xi). (5)

Lagrange functions are infinitely differentiable
functions which satisfy the Lagrange condi-
tions,

fi(xj) = λ
1/2
i δij , (6)

for which the Gauss quadrature is exact for
products fi(x)fj(x). As a corollary of the
exactness of the Gauss quadrature, Lagrange
functions are orthonormal, since

∫ b

a

fi(x)fj(x)dx =
N∑

k=1

λkfi(xk)fj(xk)

= δij . (7)

Also one can regularize [4, 5] the Lagrange
basis, i.e. can multiply this by some conve-
nient factor, without losing their high accu-
racy. This feature is helpful when one faces
a singularity in potential, which is possible
in number of potentials. The singularities

destroy the accuracy of the Gauss quadra-
ture and hence the Lagrange-mesh method.
Another important property of the Lagrange
bases is “scaling”and “mapping”. Scaled func-
tions are defined as

f̂j(x) = h−1/2fj(x/h). (8)

They still verify the Lagrange condition
(6). The interval of definition becomes (ha,
hb).The scaling can be used to fit the mesh-
point distribution to the physical problem.
The scaling parameter h can be used as a vari-
ational parameter.

Mapping is a more general transformation,

f̂j(x) = [t′(x)]1/2fj [t(x/h)]. (9)

It leads to a change of interval but also to a
change of mesh.

Our plan is to expand the distorted waves
in Eq.(2) in the Lagrange basis and present
the first results in this context. We will try to
show, how by using the Lagrange-mesh tech-
nique one can actually arrive at analytical sim-
plifications of the problem and also as an up-
shot have much faster numerical convergences
than previous attempts.
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