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Abstract

Over the course of my career, I have had the opportunity to work on a wide
variety of problems in condensedmatter physics, benefiting from superb col-
laborators and environments full of inspiring colleagues. I review here some
highlights of my journey so far. Subjects include theories of dynamic criti-
cal phenomena, phase transitions in two-dimensional systems, systems with
strong disorder, quantum physics of mesoscopic systems, one-dimensional
quantum systems, and the quantum Hall effects.
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1. BEGINNINGS

There are many ways of doing physics, and there are many paths to becoming a physicist. My
particular path was not unusual. As a child, I developed an early interest in math and science. I
enjoyed solving math problems, and I had a great interest in understanding how things worked.
My interests were somewhat more theoretical than experimental; I was not particularly a tinkerer,
but I did like to read about science.

My interest in science and math was certainly influenced by my home life. My father had done
some graduate work inmathematics during the 1930s, and had hoped to pursue an academic career
in the field, but he had been forced by economic realities of the Great Depression to abandon this
goal in favor of a civil service job with the US Customs Service. Throughout his life, however, he
maintained an interest in math; he loved to solve problems and he very much enjoyed tutoring
the children of friends and relatives in all levels of the subject.

My schooling, prior to college, took place in the Brooklyn, New York, public school system.
Although I attended a magnet school in fifth and sixth grades, I did not attend one of the famous
New York selective high schools. Nevertheless, I benefited from the stimulation and encour-
agement of several outstanding teachers, and I was able to enter Harvard College, in 1958, with
sophomore standing. After receiving my undergraduate degree in 1961, I stayed at Harvard for
a fourth year as a graduate student, before transferring to the University of California, Berkeley,
for my Ph.D. studies.

By the end of my first year at Harvard, I knew that I wanted to study theoretical physics.
However, my fascination with condensed matter physics did not actually develop at Harvard but
rather at Los Alamos National Laboratory, where I was an intern during the summer of 1961. I
knew nothing about solid state physics at the time, but I was assigned to work with an experimental
group that was using inelastic neutron scattering to measure the phonon spectrum of aluminum.
As preparation, I was handed a copy of Brillouin’s book on phonons and electrons in periodic
structures, and I was struck by the beauty of the subject.

My thesis advisor at Berkeley was John Hopfield. The first project he gave me was to look
for an explanation for the empirical observation, known as Urbach’s rule, that in a wide variety
of materials, including alkali halides, the optical absorption coefficient falls off exponentially as a
function of frequency below the fundamental absorption edge, where the lowest energy exciton
can be produced. In the model we considered, the optical absorption would be proportional to the
spectral density for a tightly bound exciton interacting with a bath of thermally excited phonons.
For the regime in which we were interested, I concluded that the phonon energies could be ne-
glected, and the problem could be reduced to a calculation of the spectral density of a particle
interacting with a static Gaussian random potential.When I got stuck on this, Hopfield suggested
that if I could not solve the problem in three dimensions, perhaps I could solve it in one dimen-
sion. I think that the one-dimensional problem was actually more difficult than he suspected, but
I eventually succeeded in solving it, finding an exact solution for the spectral density, at arbitrary
energy and momentum. This led to my first published paper and gave me confidence that I could
succeed in research (1).

Aided by insights gained from my one-dimensional solution, I returned to three dimensions,
but now focused on just the low-energy tail of the spectral density. During the summer of 1964, I
was an intern at Bell Telephone Laboratories, where I found that Melvin Lax had been working
on the same problem. Each of us had partially solved the problem, from different points of view.
Combining forces, we were able to obtain a fairly complete solution, which eventually led to a
series of joint papers and the second half of my Ph.D. thesis (2, 3).

As it turned out,Hopfield was not a coauthor on any ofmy papers. I solved the one-dimensional
problem largely on my own, and my work on the low-energy tail was done more closely with Lax
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than with him. Nevertheless, Hopfield’s input was very important, as he suggested the problems
to me and pointed me to the literature, and he helped me over several obstacles in early stages of
the work. He certainly stimulated my interest in physics and he set a high intellectual standard,
which I have held as a model.

Hopfield moved from Berkeley to Princeton in the fall of 1964. I moved with him, and I spent
the academic year from 1964–65 as a visiting graduate student at Princeton while completing the
work for my Berkeley degree. Following that, I spent a year as a postdoctoral fellow in the group
of Philippe Nozières at the École Normale Supérieure in Paris. During that time, I met for the
first time a variety of European physicists, and I learned a good deal from them. I also had some
very stimulating interactions with Paul Martin, who was in Paris for a semester, on sabbatical from
Harvard. The year in Paris was also an opportunity for me to travel to other parts of Europe, to
see the great tourist sights as well as to visit laboratories.

2. BELL LABORATORIES

In 1966, I returned to Bell Laboratories as a member of the technical staff. Bell Labs was a very
exciting place at the time, and I benefited from collaborations with a number of brilliant young
people as well as from interactions with outstanding senior theorists including Conyers Herring
and Phil Anderson, as well as Lax. My most important collaboration was with Pierre Hohenberg,
with whom I coauthored some 16 papers over a 12-year period, primarily related to the dy-
namic behavior of systems at, or close to, a critical-point phase transition. Other colleagues with
whom I collaborated on one or more projects included theorists Maurice (T. M.) Rice, Chandra
Varma, and Dean McCumber and experimenters Denis McWhan, Stan Barker, and Brage Gold-
ing. Many other theorists and experimenters contributed to the vibrant atmosphere, including
Gunter Ahlers, Phil Platzman, Don Hamann, and Patrick Lee, and they provided inspiration for
my work in many cases. In addition, there was a constant stream of visitors, which led to several
lasting collaborations.

2.1. Dynamic Critical Phenomena

The first of my joint publications with Hohenberg was a 1967 Physical Review Letters article, in
which we proposed a generalization of scaling laws to dynamic critical phenomena in a variety
of systems (4). Later papers, together with Shang-keng Ma and Eric Siggia, applied the newly
developed renormalization-group methods to compute dynamic properties and delineated a set of
universality classes for dynamic critical phenomena, determined by symmetries and conservation
laws (5, 6).Our understanding of the subject was summarized in 1977 in a Reviews of Modern Physics
article (7), largely written by Hohenberg, which has apparently become a basic reference for the
field. In a precursor to this work, we also developed a hydrodynamic theory of spin waves at finite
temperatures away from the critical point for magnets with O(2) or O(3) symmetry (8).

The object of all this effort was to understand behavior near a critical point at finite tempera-
ture. Because the singular behavior in such systems results from large fluctuations at frequencies
ω with �ω small compared to the temperature T, the problem is essentially governed by classi-
cal statistical mechanics, even if quantum mechanics may be important on the microscopic scale.
In classical mechanics, the critical behavior of static phenomena, such as equal-time correlation
functions and static response functions, can be understood without knowledge of the equations of
motion. However, two models, such as the classical Heisenberg ferromagnet and antiferromag-
net, that have equivalent energy functions and static properties can have very different dynamics.
Thus, there can be several dynamic universality classes for a given static class. In contrast to our
work, in the case of quantum critical points occurring at T= 0, which have been the focus of study
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in more recent years, static and dynamic properties are fundamentally linked and must be studied
together (9).

2.2. Fermi Surface Instabilities and the Excitonic Insulator State

Discussions with Maurice Rice led to collaborations on several problems related to Fermi sur-
face singularities and instabilities. The most important of these was an analysis of the so-called
excitonic insulator state, which had been proposed to form at low temperatures in a semiconduc-
tor or semimetal with a very small energy gap and was loosely described as a Bose condensate
of excitons. Our focus was in exploring the possible manifestations of broken crystal symmetry
that should arise in such a state (10, 11). Other joint work, together with Barker and McWhan,
concerned antiferromagnetism in chromium and its alloys.

2.3. Two-Level Systems in Glasses

In 1972, I collaboratedwith Phil Anderson andChandraVarma on a paper arguing that the anoma-
lous thermal conductivity, as well as the excess specific heat that had been observed in glasses at
low temperatures, by Robert Pohl and others, could be explained by a statistical distribution of
two-level systems associated with localized defects (12). An example of this might be an atom in a
double-well potential, where the energy splitting and coupling to phonons would be determined
by quantum tunneling through the barrier as well as asymmetry in the double well. It is now
widely accepted that two-level defects are present in many disordered systems and are responsible
for many anomalous phenomena in disordered systems at low temperatures. However, the precise
nature of the two-level systems remains a matter of debate.

3. TWO-DIMENSIONAL MELTING

In 1976, I left Bell Laboratories to assume a faculty position at Harvard University. Soon after
moving to Harvard, I developed a close collaboration with David R. Nelson on problems related
to the theory of phase transitions in two-dimensional systems. It was David who first attracted
my attention to the problem of melting in two dimensions. Kosterlitz and Thouless (13, 14) had
earlier proposed that melting could occur by a mechanism similar to their model of the superfluid-
to-normal transition, with dislocations in the solid taking the place of vortices in the superfluid.
However, the interaction between dislocations has, in addition to a logarithmic term in the separa-
tion, an important anisotropic component,which is not present for the vortices.We found that this
anisotropy engenders a modification of the formula for the divergence of the correlation length
at the transition point, a fact that was noted independently by A. Peter Young (15). Nelson and I
also observed, however, that though a small number of unbound dislocations would be sufficient
to destroy the quasi-long-range translational order of a two-dimensional crystal, it would not de-
stroy completely the orientational order (16).We therefore proposed the existence of a new phase,
which we termed hexatic,with quasi-long-range six-fold orientational order. Specifically, if one de-
fines a local order parameter ψ (r) = e6iθ, where θ is the orientation of the bond between nearest
neighboring atoms closest to the point r, then the correlation function 〈ψ∗(r)ψ (r ′ )〉 should fall off
as a power law, ∝|r − r ′|−η, at large separations. The exponent η would be vanishingly small at a
temperature just above the transition from the crystal to the hexatic phase and would increase with
increasing temperature to a maximum value of 1/4, at which point there should be a transition of
the Kosterlitz–Thouless type caused by unbinding of disclinations, which interact logarithmically
in the hexatic phase. Above this second transition, the system would behave like an isotropic fluid,
with exponential falloff of both orientational and translational order.
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Of course, the two-stage melting scenario with a hexatic intermediate phase, predicted by a
renormalization-group analysis, could be preempted by a direct first-order transition between the
crystal and isotropic liquid phases. Numerical simulations and experiments with colloids suggest
that both possibilities can occur, depending on microscopic details, but the hexatic phase does
exist, in suitable cases, in a narrow range of density or temperature between the solid and liquid
phases (17, 18). Also, as noted by Robert Birgeneau and David Litster, a hexatic phase with true
long-range orientational order can occur in three-dimensional smectic liquid crystals (19, 20).

My collaboration with Nelson included research on dynamic properties of various two-
dimensional systems. In addition to properties of two-dimensional solids and liquid crystals, we
were interested in thin films of superfluids and superconductors (21).

4. QUANTUM HALL EFFECTS

4.1. The Integer Quantized Hall Effect

Beginning in 1981, a major part of my research has focused on quantum Hall effects, a large set
of remarkable phenomena that have been observed in two-dimensional electron systems at low
temperatures in strong magnetic fields. My interest in the subject, and indeed my awareness of
it, was engendered by a telephone call I received from Gloria Lubkin, who was then an editor at
Physics Today. She had heard about a theory of Bob Laughlin’s, who was then at Bell Laboratories,
purporting to explain some curious experimental results that had been published the previous
year by Klaus von Klitzing, Gerhard Dorda, and Michael Pepper (22). The experimental paper
reported the discovery of what is now called the integer quantized Hall effect, for which von
Klitzing was later awarded the Nobel Prize. Specifically, he found intervals of magnetic field in
which the inverse of theHall resistance of his sample was constant and equal to an integer multiple
of the quantity e2/h, within an experimental uncertainty of the order of one part in 106. I had to
confess to Gloria that I was not only ignorant of Laughlin’s explanation but also unaware of the
experimental paper. However, my interest was aroused.

When I had the opportunity to examine Laughlin’s argument (23), I understood that it was cor-
rect, and I considered it to be a brilliant contribution.However, it raised several puzzling questions
in my mind. I realized that Laughlin’s explanation only made sense if there were one-dimensional
electron states at the edge of the sample, which must remain extended even in the presence of
arbitrary disorder along the edge. This seemed surprising, because it was widely believed that in
a one-dimensional system, quantum states would necessarily be localized by even a small amount
of disorder. Upon deeper reflection, however, I realized that the quantum Hall edge states were
special, because they only carry current in one direction at a given edge, and they would therefore
be protected from localization by current conservation. In my paper about this, I also observed
that for the case of noninteracting electrons, one could have a quantized Hall current even in the
absence of an actual electric field: If there was a difference in the electron population at the two
edges of a ribbon-like sample, there would be a net current I along the sample that would be equal
to ne2V/h, where n is the number of bands at each edge and eV is the difference in electrochemical
potentials between the two edges. Of course, it is the electrochemical potential difference, not the
electrostatic potential, that is measured by an ideal voltmeter (24).

4.2. Fractional Quantized Hall Effects

Laughlin’s analysis had established that for a two-dimensional electron system, if there are no de-
localized states at the Fermi energy away from the sample edges, then the Hall conductance in the
limit of zero temperaturemust be precisely equal to νe2/h, where ν is an integer, possibly zero.The
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analysis was supposed to apply for interacting as well as noninteracting electrons, as long as states
close to the Fermi energy could be derived adiabatically from noninteracting states, in analogy to
Landau’s description of a Fermi liquid. The physics community was therefore stunned when, in
1982, Dan Tsui, Horst Stormer, and Art Gossard announced the discovery of new quantized Hall
plateaus with ν = 1/3 and 2/3, in high-quality samples based on GaAs (25).

Needless to say, I was fascinated by this, and, along with many other theorists, I tried very hard
to find an explanation, but it was hard to know how to proceed. For noninteracting electrons,
the energy levels in a magnetic field are quantized in discrete Landau levels, each having a large
number of degenerate states.The plateau at ν = 1/3, for example, occurs when the electron density
is such that the lowest Landau level of electrons is 1/3 full. Thus, the many-body ground state
would be highly degenerate in the absence of interactions. Consequently, if one wants to treat
the electron–electron interaction using standard perturbation theory, one must first diagonalize
the Hamiltonian within a very large Hilbert space, which is in principle a formidable task. Based
on the Hartree–Fock approximation, it had previously been expected that the ground state in
a partially filled Landau level would be some kind of Wigner crystal with broken translational
symmetry. However, a Wigner crystal would not be tied to any particular filling factor and could
not explain the observed Hall plateau.

It was understood that if, for some reason, the ground-state energy of a system of interacting
electrons in the lowest Landau level in a fixed magnetic field had a discontinuity in its derivative
with respect to electron density at filling factor equal to 1/3, this would lead to a quantized Hall
state with ν = 1/3. In a pure system, if the chemical potential were fixed, rather than the density,
the system would exhibit a quantized Hall plateau over a range of magnetic fields, because the
density would adjust to keep the state at filling fraction 1/3 over that range. In a system with some
disorder present, localized states at the Fermi level would act as a reservoir, which would lead to
a plateau in the Hall conductance, even at fixed density. I tried to find an explanation for such
stability based on the ideas of a Wigner crystal melted by ring exchange, but I could not come
up with anything convincing. Daijiro Yoshioka and Patrick Lee and I then undertook to calculate
the ground-state energy, by exact diagonalization of the Hamiltonian, for up to six electrons in a
rectangular box with periodic boundary conditions, with filling factors between 1/4 and 1/2 (26).
We found that the actual ground-state energy at ν = 1/3 was significantly lower than that of the
Hartree–Fock Wigner crystal and that the electron pair-correlation function was very different
from what one would expect in a Wigner crystal. In addition, we did find evidence of a kink in
the ground-state energy at ν = 1/3, but we gained little insight from this calculation about the
physical origins of the effect.

Although our results were of sufficient interest to be published in Physical Review Letters, they
were dwarfed by the brilliant work of Bob Laughlin on this problem, which appeared in the same
issue (27). Laughlin introduced a many-electron wave function that satisfied the analyticity re-
quirements for electrons in the lowest Landau level and had the correct density for filling factor
ν = 1/3, and was the unique state satisfying these requirements for which the amplitude vanishes
as the cube of the separation, whenever two electrons come together. As a result, Laughlin’s wave
function is the exact ground state in the limit of short-range repulsive interactions, and numerical
calculations on finite systems show that it has a very high overlap with the exact ground state for
Coulomb interactions. Laughlin also argued that the elementary excitations from his ground state
would be quasiparticles with charge ±e/3 and that there would be an energy gap for deviations
from ν = 1/3, as required for a quantized Hall state.

In parallel with the development of Laughlin’s theory, new experimental results showed the
appearance of quantized Hall states at various additional fractional values of ν, including 2/5 and
3/5. Although Laughlin’s wave function for ν = 1/3 could be readily generalized to fractions
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such as ν = 1/5 and particle–hole conjugates such as ν = 2/3 and 4/5, it did not provide a ready
explanation for states such as 2/5 and 3/5.During the spring semester of 1983, I was on sabbatical
at the Institute for Theoretical Physics at theUniversity of California, Santa Barbara, and I worked
hard on this problem. The result was a paper that was presented at a meeting of the European
Physical Society and published in the conference proceedings in Helvetica Physica Acta (28). The
paper explored a variety of generalizations of Laughlin’s wave functions, which I argued might be
good representations of the ground state at certain filling fractions. Among other possibilities, I
considered states in which the partially filled Landau level contained electrons in both spin states,
which I argued might have lower energy than a fully spin-polarized state at certain fractions, given
the fact that g-factor for electrons in GaAs is anomalously small. Therefore, the cost in Zeeman
energy for partial polarization might be outweighed by a gain in correlation energy in these cases.
(Indeed, experiments have since shown that quantized Hall states of different polarization are
possible at certain fractions, and phase transitions have been observed between states with different
polarization.) I also argued that even-denominator fractional quantized Hall plateaus should be
possible in principle, and I proposed trial wave functions for some even-denominator states, but I
was not able to suggest any realistic situation in which this might occur.

In addition to proposals for microscopic electron wave functions to model ground states and
charged excitations at various filling fractions, theorists made various attempts to construct odd-
denominator fractions by a hierarchical procedure. In a hierarchy, states at one level would be
described in terms of effective wave functions for the fractionally charged quasiparticles at the
previous level. For example, one might try to construct the ν = 2/5 state by adding an appropri-
ate number of e/3 quasiparticles to the ν = 1/3 state. I realized that if one tried to describe the
quasiparticles by an effective wave function of the Laughlin analytic form, which would hopefully
minimize their interaction energy, one could obtain the correct filling factor only if one assumed
the quasiparticles obeyed fractional statistics. This means that one would have to employ a mul-
tivalued effective wave function, such that on interchanging the position of two quasiparticles,
the wave function would be multiplied by a phase factor eiθ , where θ is a generally noninteger
rational multiple of π , whose value would depend on the direction of the interchange and on the
number of other quasiparticles enclosed by the path. I presented these ideas in a Physical Review
Letters article that appeared in 1984, along with an explicit construction of microscopic trial wave
functions for the allowed quantum states of a collection of negatively charged quasiparticles at
ν = 1/3, which realized the predicted fractional statistics (29). The idea that charged excitations
in a fractional quantized Hall state should exhibit fractional statistics was also developed, inde-
pendently, by Dan Arovas, Bob Schrieffer, and Frank Wilczek (30), who computed explicitly the
Berry phase accumulated by the microscopic wave function for a Laughlin state with a pair of
quasiholes (positively charged quasiparticles) as one quasihole is moved adiabatically around the
other. Although the notion of fractional statistics in two dimensions had been proposed earlier as
an abstract idea, the demonstration that this phenomena could be realized in an actual physical
system was then a new development. More recently, ideas of fractional statistics, and the general-
ization to nonabelian statistics, have played a major conceptual role in the effort to characterize
the possible states of quantum matter that are topologically distinguishable at T = 0.

In my 1984 Physical Review Letters article, I argued that by repeating the hierarchical procedure,
one could construct, in principle, a quantized Hall state at every odd-denominator filling fraction,
with quasiparticles exhibiting fractional charge and fractional statistics in each case. (A similar hi-
erarchy had been proposed byHaldane; 31.) Of course, only a finite number of these could be seen
in any real sample, because high-order fractions with small energy gaps would be easily destroyed
by residual disorder. Even in an ideal sample without disorder, fractional quantized Hall states
very close to an integer filling would be preempted by a state of lower energy in which the extra
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electrons or holes relative to integer filling would form a Wigner crystal due to their Coulomb
interactions. Similarly, quantized states very close to a low-order odd-denominator fraction, such
as ν = 1/3, would be preempted by aWigner crystal of charged quasiparticles stemming from the
lower-order fraction. The stability of these Wigner crystals would then determine the width of
the Hall plateau at the integer or lower-order fraction.

In the 1984 article, assuming that quasiparticles could be treated as point particles interacting
with a simple Coulomb potential, I was able to obtain a curve of energy versus filling factor, which
predicted quantized Hall fractions, plateau widths, and energy gaps for an electron system without
disorder. It turns out, however, that treating the quasiparticles as point particles is generally a
poor approximation, and the relative stabilities of various quantized states predicted by this simple
model are typically far from the truth. A much better approach for understanding quantized Hall
states, at least in the lowest Landau level, is based on the composite fermion formalism, introduced
by Jainendra Jain in 1989 (32). Jain’s ideas, or more precisely a further development of these ideas
in which the electron problem is transformed into a system of composite fermions interacting
with an emergent Chern–Simons gauge field, became the basis for much of my own work in the
following decade.

4.3. The Unquantized Quantum Hall Effect

Although even-denominator fractional quantized Hall plateaus were observed in 1987 at ν = 5/2
and 7/2, corresponding to half-filling of one or the other spin state in the second Landau level, and
in a wide quantum well at ν = 1/2, no anomaly has ever been found in the electron transport near
ν = 1/2 in the narrow-well structures normally employed inGaAs.Nevertheless,measurements of
the propagation of surface acoustic waves by BobWillett and coworkers in 1990 found an anomaly
near ν = 1/2, which suggested that something interesting was actually going on (33). Patrick Lee,
Nick Read, and I set to work on this problem and came up with a detailed manuscript, which was
submitted to Physical Review in June 1992 and was eventually published in March 1993 (34). We
noted that at ν = 1/2, the average value of the Chern–Simons magnetic field felt by the composite
fermions cancels precisely the external magnetic field, so that themean-field ground state becomes
simply a filled Fermi sea of composite fermions. In order to calculate dynamic properties, such
as electrical transport or the response to a surface acoustic wave, however, one must take into
account self-consistently fluctuations in the Chern–Simons electric and magnetic fields produced
by density variations in the electron density and currents. Doing so, we were able to explain the
previously observed propagation anomaly and to further predict that there should be observable
oscillations in the behavior slightly away from ν = 1/2. The anomaly at ν = 1/2 reflects the fact
that at ν = 1/2, composite fermions in a clean system can travel in straight lines for distances
much greater than the cyclotron radius of an electron in the lowest Landau level, which can lead
to a nonlocal response to the electric field generated by a short-wavelength surface acoustic wave.
Slightly away from ν = 1/2, composite fermions travel in large circular orbits, whose diameter is
given by the cyclotron diameter of a particle in an effective magnetic field equal to the difference
between the applied field and the value at ν = 1/2. The oscillatory behavior seen in the acoustic
wave velocity, as a function of magnetic field, arises from a commensurability condition between
this diameter and the wavelength of the surface acoustic wave.

Subsequent experiments, as well as calculations on finite systems, have supported these and a
variety of other predictions of the Halperin–Lee–Read (HLR) paper (35, 36). However, there are
many questions that the HLR theory cannot properly address. The effective mass for the compos-
ite fermions, which sets the overall energy scale for excitations at ν = 1/2 and which determines
the energy gaps for fractional quantized Hall states with ν near to 1/2, is a free parameter in the
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theory that can only be obtained from a different microscopic calculation or estimated from ex-
perimental observations. Furthermore, as noted in the original paper, the HLR theory predicts
infrared divergences close to the Fermi surface at ν = 1/2, which may have little effect in practice
but whose theoretical implications are only partially understood (37, 38).

The HLR theory has received renewed attention since 2015, when Dam T. Son published an
alternate description of the ν = 1/2 state, in which the composite fermions are treated as Dirac
fermions rather than nonrelativistic particles, and where the Lagrangian for the gauge field lacks
the HLR Chern–Simons term (39). It turns out that the predictions for physically observable
quantities are mostly the same in the two theories, but there are a few cases in which there seem
to be differences, where a simple calculation using the HLR theory appears to violate a require-
ment of particle–hole symmetry that should be present in the limit of no mixing between Landau
levels. The Son–Dirac theory, which was constructed to be manifestly particle–hole symmetric,
gets the correct answer in these cases (40, 41). It remains an open question whether higher-order
corrections to the HLR theory can correct these discrepancies.

4.4. Further Developments in Quantum Hall Physics

The wider field of quantum Hall physics has produced a number of surprising experimental and
theoretical developments over the past four decades, which have been a repeated source of interest
and inspiration for me. In my continuing work in this area, I have benefited from close collabora-
tions with several theorists, including particularly Ady Stern, Rudolf Morf, Steven Simon, Nigel
Cooper, and Bernd Rosenow.

Quantum Hall effects lead to some fascinating manifestations in systems with two parallel lay-
ers that are close enough so that Coulomb interactions between electrons in different layers are
comparable in strength to the interaction between a pair of neighboring electrons in the same
layer. For example, coherent states exist in which a current flowing in one layer can produce a
quantized Hall voltage in the second layer, which in various cases can be the same or different
from the Hall voltage in the first layer. In some cases, one can observe strongly enhanced tunnel-
ing at zero bias between the layers, which is analogous in some respects to Josephson tunneling
between superconductors. My interest in these problems was first stimulated by a set of beauti-
ful experiments on GaAs systems in the laboratory of Jim Eisenstein at the California Institute
of Technology (42), and, more recently, by experiments by groups based in the laboratories of
Philip Kim and Cory Dean at Harvard and Columbia, respectively, on Coulomb-coupled layers
of graphene separated by the insulator h-BN (43, 44).

Many fascinating quantumHall phenomena are also to be found in a single layer of graphene or
a Bernal-stacked bilayer, arising from their peculiar band structures, and these have also attracted
my attention.Much of my work here has resulted from collaborations with Amir Yacoby, inspired
by experiments in his group (45). In the most recent work, we studied the propagation of spin
waves in quantized Hall states of graphene as well as the electrical production of spin waves by
contacts biased at voltages larger than the Zeeman energy (46).

When electric current is carried in a quantized Hall state, there is a difference in the electro-
chemical potential between opposite edges of the device. If the current passes through a narrow
constriction, there can be tunneling of charged quasiparticles from one edge of the sample to
the other, resulting in dissipation. In small devices with two or more constrictions, there can be
quantum interference effects, as a quasiparticle can follow several possible paths from one end
of the sample to the other. Such experiments are interesting because in addition to the standard
Aharonov–Bohm effect, there should be additional phase factors arising from the fractional statis-
tics of quasiparticles in a fractional quantized state. Even more interesting effects are predicted
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in the case of special filling fractions, such as ν = 5/2, where quasiparticles are believed to obey
nonabelian statistics, reflecting the existence of hidden nonlocal degrees of freedom. In addition,
the Coulomb interaction between quasiparticles can lead to oscillations of the interferometer area
with varying magnetic field or gate voltage, which canmask the Aharonov–Bohm oscillations.The
analysis of phenomena associated with interference and edge-state propagation in quantized Hall
systems has remained an important part of my research in recent years (47–49).

5. OTHER INTERESTS

5.1. Cuprates and Two-Dimensional Antiferromagnets

Following the discovery of high-temperature cuprate superconductors in 1986, there was an open
debate about whether long-range antiferromagnetic order could exist at zero temperature in a
two-dimensional spin-1/2 Heisenberg system or whether it would necessarily be destroyed by
quantum fluctuations. It was known from neutron studies that La2CuO4, the insulating parent
compound of the original cuprate superconductor, showed long-range antiferromagnetic order
at low temperatures, but that was presumably due to residual interactions between the copper-
oxygen layers or residual spin anisotropy within a layer, so it did not give a direct answer to the
question of what would happen at T = 0 in an isolated layer with full Heisenberg symmetry. In
a 1988 paper with David Nelson and Sudip Chakravarty, we investigated the possibility that as
a function of microscopic parameters there could be a zero-temperature quantum phase transi-
tion in a two-dimensional Heisenberg system between a state with antiferromagnetic order and a
state with no broken spin symmetry, and we asked what this would mean for the behavior at finite
temperatures and in the presence of weak interlayer coupling or spin anisotropy (50). The pa-
per introduced the notion of a quantum critical regime at finite temperatures, where scaling laws
for static and dynamical properties would be dominated by proximity to the zero-temperature
critical point. We also argued that the spin-1/2 Heisenberg model should be on the ordered
side of the transition at zero temperature and made some detailed predictions for its behavior
at finite temperatures in the presence of interlayer couplings and anisotropy. Dynamic properties
were discussed in follow-up papers with Chakravarty and my student Stephan Tyc (51). Subse-
quent neutron scattering measurements on La2CuO4 were in excellent agreement with our pre-
dictions (52).

In 1988, Laughlin proposed a theory of high-temperature superconductivity based on for-
mation of quasiparticles with half-fermi statistics, which I found to be very novel and elegant
but not necessarily convincing as the correct explanation for the actual systems (53). One feature
of the proposal was that it was necessarily accompanied by broken time-reversal symmetry, and
it seemed to me likely that this should have consequences that could be tested by experiments.
Together with various collaborators, I published several papers on implications of the Laughlin
model, including some size estimates for the effects of broken time-reversal symmetry (54, 55).
In the end, experiments looking for a large broken time-reversal symmetry in the cuprates pro-
duced negative results, and Laughlin’s theory fell into disfavor. I have not been actively involved
in high-temperature superconductivity since that time.

5.2. Systems with Strong Disorder

In 1971, while I was still at Bell Laboratories, I collaborated with Vinay Ambegaokar and James
Langer on an analysis of the low-temperature conductivity in an electron system that is sufficiently
disordered that electron states at the Fermi level are all localized (56). It had been argued by N. F.
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Mott that the conductivity in such a system should vanish at low temperatures T proportional to
exp [−(T0/T)x], where the exponent x depends on the dimensionality of the system. [It was later
shown by Efros & Shklovskii (57) that Mott’s exponent would be modified if effects of long-range
Coulomb interactions were properly considered.] Our contribution was to reformulate Mott’s
argument in terms of a peculiar percolation problem, neglecting the long-range interactions.

In the 1980s, I again became interested in percolation problems. Together with collaborators
Pabitra Sen, Shechao Feng, and Christopher Lobb, we analyzed the behavior of elastic networks
near a percolation threshold, and we demonstrated the differences between transport properties of
various continuum percolation problems, including viscous flow through a porous medium, from
those of previously studied discrete lattice models (58, 59).

The work on two-level systems in glasses, which I began at Bell Laboratories, continued
during my first few years at Harvard. Together with my student James Black, we explored
various implications of the two-level-system hypothesis for dynamic properties of glasses at low
temperatures (60).

5.3. One-Dimensional Systems

As mentioned above, my first published paper concerned properties of a single quantum mechan-
ical particle, or a set of noninteracting particles, in a one-dimensional system in the presence of
disorder. At the time, I did not think that one-dimensional systems were particularly interesting
in their own right; I worked on that problem in the hope that it would give me insight into the
behavior of a three-dimensional system that I did not know how to solve. I did not appreciate
that systems that are effectively one dimensional could actually be realized in the laboratory, and
that, furthermore, in the presence of interactions, the properties of such systems could be highly
nontrivial and different from those in higher dimension. I soon realized that my attitude was mis-
taken, however, and in later years I was drawn to study a number of fascinating phenomena in
one-dimensional systems.

In 1990, Ian Affleck drewmy attention to experiments, conducted by Koji Katsumata’s group in
Japan, on a molecular material NENP containing well-separated chains of antiferromagnetically
coupled spin-1 nickel ions. In earlier theoretical work, Duncan Haldane, and Ian Affleck, Tom
Kennedy, Elliot Lieb, and Hal Tasaki, had predicted that chains of this type should have an energy
gap for spin excitations in the bulk of the chain but should have a zero-energy mode, essentially a
decoupled emergent spin-1/2 degree of freedom, at each end (61, 62). The experimental observa-
tions could be explained if one assumed there was a small concentration of defects in the bulk of
the crystal, which effectively split the chains into segments of finite length. Each defect would then
be accompanied by a pair of weakly coupled spin-1/2 modes arising from the adjacent chain ends.
The experiment was therefore the first experimental demonstration of the production of S = 1/2
excitations in a system whose constituents had only integer spins. In the end, I coauthored several
papers with Affleck and Katsumata and others, including M. Hagiwara, Jean-Pierre Renard, and
later, my student Partha Mitra, on various phenomena related to these systems (63, 64).

In 2002, I was approached by Amir Yacoby with some puzzling experimental results obtained
in his laboratory. Amir and his students had developed a beautiful way to perform momentum-
conserved tunneling between parallel one-dimensional wires on the cleaved edge of a GaAs het-
erostructure. An applied magnetic field perpendicular to the plane containing the wires was used
to control the momentum boost acquired by the tunneling electrons while gate voltages could be
used to control the electron density in the wires.The puzzles concerned several features in plots of
the tunneling conductance as a function of these parameters. After considerable thought, together
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with my graduate student Yaroslav Tserkovnyak and Ophir M. Auslaender in Amir’s laboratory,
we were able to explain the data in terms of subtle effects arising from the confining potential at
the ends of the wire segments, together with the phenomenon of spin-charge separation predicted
for a one-dimensional electron system (65).

In 2008, I again teamed up with Amir on a problem concerning one-dimensional wires, this
time together with Karyn LeHur. Our project, in this case, was to explore the meaning and con-
sequences of charge fractionalization in a one-dimensional wire (66).

5.4. Mesoscopic Systems

Some of my earliest work on mesoscopic systems was inspired by experiments in the laboratories
of Robert Westervelt and of Charlie Marcus, who was originally at Stanford University but later
became a close colleague at Harvard for a period of a dozen years. In 1999, I collaborated with Piet
Brouwer and Yuval Oreg, who were then postdoctoral fellows at Harvard, on a theory of grain-to-
grain fluctuations in the ground-state spin of small metallic particles (67). In 2001, I collaborated
with Ady Stern, Jan-Hein Cremers, Josh Folk, Oreg, and Marcus on an analysis of spin-orbit
effects in a planar quantum dot in a parallel magnetic field (68). Subsequently, in collaboration
with the Marcus and Yacoby groups, I was involved in projects related to an attempt to develop
spin qubits in GaAs. A part of this research led to my involvement in a successful effort to explain
puzzling observations related to the production of dynamic nuclear polarization in a process in
which a single electron is shuttled between two connected GaAs quantum dots (69).

Another portion of my work has concerned spin transport in electronic conductors. Together
with Hans-Andreas Engel, Emmanuel Rashba, Eugene Mishshchenko, and Andrey Shytov, I in-
vestigated problems related to the production of spin currents and spin polarization by charge
currents in conductors with spin-orbit coupling (70). Discussions with my student Tserkovnyak
and postdoctoral fellow Arne Brataas led to work on spintronic effects in hybrid systems contain-
ing metals and ferromagnets (71). I have also been involved in analyses of problems related to
the Kondo effect in mesoscopic systems, viz., problems in which a quantum dot with one or two
low-energy degrees of freedom is coupled to leads with a continuum of low-energy excitations.

I have also been involved in the study of mesoscopic effects that were not directly related to
spins or spin-orbit coupling. Examples were problems concerning effects of inhomogeneities in
quantumHall systems, splittings of Coulomb blockade peaks in transport through a quantum dot,
and properties of small superconducting particles.

6. CLOSING REMARKS

Viewed from afar, it seems that my career has taken the form of a random walk through problems
in condensed matter physics. For better or for worse, I have been largely motivated by a desire
to understand specific phenomena that puzzled me at the time, rather than by a systematic goal
to attack a singular overarching problem. Typically, I have tried to understand a problem from
many points of view and have been driven to understand details at a quantitative level. Especially
in recent years, I have enjoyed trying to solve puzzles posed by experiments in the laboratories of
my colleagues. I would not argue that my approach is necessarily the best way to do science, and I
would certainly not advocate this as an example for everyone to follow. However, I do believe it is
important that researchers should enjoy their work and should conduct their careers in a way that
gives them a high degree of personal satisfaction. In this regard, at least, my approach has worked
for me.
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