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Abstract

For centuries chaotic light sources were the only available objects for optical science. Study of
chaotic light led to the development of such important concepts as ensemble-average coherence.
However, the detailed temporal structure of the underlying optical field has never been fully
characterized. We report on a complete characterization of such a field from a high-gain, self-
amplified spontaneous-emission (SASE) free-electron laser (FEL). The temporal structure of the
amplitude and phase are measured for a single pulse and the statistics over multiple pulses is
determined.
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Almost all light sources encountered in our daily lives are chaotic, including the sun,
incandescent light bulbs, and neon lights. Such sources also enter the field of optical
communication providing unwanted white noise. Chaotic light is composed of multiple temporal
and spatial coherence regimes or modes, and its statistical properties have been investigated in a
time-integrated and ensemble-averaged fashion (1). One example is the famous Hanbury-Brown
and Twiss experiment, where the coherence of a mercury lamp was measured using an intensity
interferometer (2). Such experiments have been carried out by careful spatia and spectral
filtering of the light. However, due to the lack of a source with sufficient intensity and coherence
length, the temporal structure and phase evolution of the chaotic electromagnetic field has never
been fully characterized.

The development of the self-amplified spontaneous-emission free-electron laser (SASE
FEL) (3,4) has opened the door for afull characterization of a chaotic optical field. Starting from
the shot noise in the electron bunch (5,6), the SASE power increases exponentialy as the
electrons propagate down the undulator. The exponential gain results from a favorable
instability build-up between the electron density modulation at the resonant wavelength and the
emitted light. Longitudinally, the system behaves as a narrow-band amplifier with a broadband
Poisson seed. Before saturation, the output is a Gaussian random process and the radiated field is
chaotic, quasimonochromatic, polarized light (7-10), with relatively long coherence length.
Transversely, the output is dominated by an intense, single spatial mode. Demonstrations of such
intense SASE FEL s up to saturation (11-13) have now made it possible to study the evolution of
the chaotic optical field, e.g., by utilizing frequency-resolved optical gating (FROG) (14), a

technique widely applied in characterizing ultrafast laser pulses. In a previous paper, this



technigue was used to examine the frequency chirp of the SASE FEL output and to observe the
influence of the electron bunch energy chirp (15).

In this report, we characterize the 530-nm chaotic output from the SASE FEL at the Low-
Energy Undulator Test Line (LEUTL) (11) at the Advance Photon Source. The field strength
and phase evolution have been measured with a resolution well below the coherence length of
the radiation. Our work complements previous time-integrated studies (16-18) and provides the
basis for a better understanding of the physics of SASE, which will be important for applications
of future SASE x-ray FELs (19,20). The main parameters for the experiment are listed in TableI.
Only the first five of the eight undulators were used. The measured gain length was 0.68 m, and
the SASE output was just saturated at the end of the fifth undulator.

The evolution of the SASE FEL field was measured by guiding the output of the fifth

undulator to a frequency-resolved optical gating device in the second harmonic configuration
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(14). In this configuration, the FROG signal is | cpog (®@,7) o< fE(t)E(t—r) exp(—iwt)dt| from

which the amplitude and the phase of the input field E can be retrieved. There is an intrinsic
ambiguity in the direction of time, which can be removed by analyzing the phase evolution of the
field (15).

Representative examples of both the raw and reconstructed FROG traces, aong with the
field intensity and phase as a function of time and wavelength, are given in Figs. 1 (ac). As
expected, the behavior of the optical field is rather unpredictable from shot to shot, and no two
identical shots are measured. This can be clearly seen in the examplesin Figs. 1 (a-c), where (a)
is dominated by a single intensity spike with relatively smple phase evolution, and (b) and (c)

are composed of multiple intensity spikes. The intensity distribution among the spikes is random,



and the phase can be characterized by a smooth evolution within each spike and abrupt drifts at
the edges of the spikes. We note that the raw traces are drastically different from each other but
the reconstructed ones closely reproduce each of them.

We write the radiated electric field asE(z,t) = A(z,t) exp(ik, z—ia,t) , where z represents
the location aong the undulator at which the SASE is observed, and t represents the temporal

position in the radiation pulse. In the case of an undulator with period 4, = 2z /k, and magnetic
field strength parameter K, the resonant frequency is w, =k c=4zcy*/[A,(1+K?/2)]. For a

cold electron beam (zero energy spread) with a long, flat-top electron bunch profile, the SASE-
radiated field before saturation can be approximated as the superposition of many
electromagnetic wave packets emitted from randomly distributed, individual electrons (7-10).

The slowly varying envel ope can be approximated by

~ N _ _(t—tj—z/vg)z i
At,z) = Ao(z)éexp ot = (1+ @J] (1)

where N is the total number of electrons in the bunch, A,(z) contains the exponential growth
factor, 0<t; <T, isthe random arrival time of the j™ electron, CT, isthe electron bunch length,

and v, is the group velocity of each wave packet. The characteristic wave-packet

widtho, =1/(v30,), where &, = m,/3J3p/k,z is the SASE bandwidth and p is the FEL
parameter (7-10).

Equation (1) represents the sum of a set of random phasors and requires statistical
analysis and numerical evaluation. A section from a typical smulation (21) is shown in Fig. 2.
The intensity and the phase evolution closely resemble those measured in the experiment in Fig.

1. Remarkably, the superposition of many wave packets results in just a few coherent regions,



represented by the intensity spikes. In SASE, this can be viewed as the result of the
communication buildup that lengthens the coherence time T, = Jrl o, (3,4,7-10) due to the
dlippage between the electrons and the optical wave. In photon statistics, this is described by
photon bunching in a chaotic light. The fluctuation of energy per pulse is given by

Ow /<W> =1/+/M , where M =T, /T, isthe number of degrees of freedom or coherent modes

coh

(1,7-10). The theoretical average temporal spacing of the intensity spikes is (At) =T, /0.711

(10), and an estimate of therms spikewidthis Az =T, /v 27 = (At>/3.5(7-10).

For each individual shot, the FROG trace gives a full description of the measured optical
field. Study of the shot-to-shot variation (22) provides information on the statistics of the chaotic
field. We first look at the properties of the intensity spikes. Figure 3 (@) gives the measured
distribution (symbols) of the normalized rms spike width &=A7 /{A1), where (A7) = 52 fsis the
average value of At, the rms spike width. The distribution peaks at a value dightly smaller than
the average. It has along tail extending to larger spike width and an abrupt drop at smaller spike
width. The distribution for the spacing between the intensity maxima (At) has also been
measured and is shown in Fig. 3 (b) (symbols) as a function of (=At/{A7). The peak of the
histogram is at ¢= 3.3, and its average is at 3.5, in close agreement with theoretical expectation
for a totally chaotic optical field mentioned above. In Fig. 3, we also show the comparison
between the results of experiment and a numerical simulation (dashed lines) performed using the
simple model of Eq. (1) (21). InFig. 3 (a), we also present the result of an analytic calculation
(solid line) by applying the analysis of random noise developed by Rice (23) to Eq. (1), which

gives the distribution of the spike width normalized to its average as



dp(&) _ an 7 dv
dé  (ad)® s [3-2/(ad)* + (L(@d) +v?)I 7

)

where £ =A7/(A7), a=08685, and 7=9510. This distribution is normalized and its
average value is unity. Note that for the analytical theory, the rms width of an intensity spike has

been approximated by J=1171", where the intensity | and its second time-derivative 1” are
evaluated at the intensity maximum. For the experimental data and simulation, the rms width is
estimated by measuring the full-width a half-maximum (FWHM) of those spikes with
measurable FWHM and dividing by 2.35. In al cases, the spikes are assumed to have a
Gaussian shape.

Since an individual intensity spike corresponds to a coherent region, the phase within the
spike is correlated. On the other hand, due to the lack of communication between different
coherence regions, there can be a phase jump in the transition region between two spikes. This
can be seen qualitatively in Figs. 1 and 2, and is quantified by measuring the time derivative of

the phase (¢') of the dlowly varying envelope at the intensity maxima and minima. The

distribution of the measurements (symbols) presented in Figs. 4 (a) and (b) show that indeed the
phase drift rate is small at the intensity maxima but may be much larger at the intensity minima.
Alsoin Fig. 4 are the results of simulation (dashed lines) and analytic theory (solid lines), which
are seen to be in good agreement with the experimental results. The theoretical calculation is

again based on the analysis of random noise developed by Rice (23). It yields

dp.(v) _ 2 o
dv VB4 B+t £ (-1

where v=0'/c,, ¥ = 0.7925 is anormalizing factor, and the + and — signs mark the distributions

at the intensity maxima and minima, respectively.



It is worth noting that although the simulation and theoretical work are for a long, flat

bunch while the experiment data are for a relatively short bunch (in comparison with the
coherence length), there is an overall good agreement between them. However, in our theoretical
and numerical analysis of the distribution of the second derivative of the phase (frequency chirp)
at intensity maxima (not shown in detail in this report), we do observe a difference between the
long bunch and short bunch cases: while in the long bunch case the distribution is symmetric
around zero, the distribution is shifted toward a positive value, as expected from Eg. (1), for the
short bunches. This intrinsic positive chirp was measured in a previous paper for short bunches
(15).
In previous work (17), it has been established that the SASE pulse energy is described by the
gamma distribution (1,7-10,23). This type of measurement is an example of the conventional
photon counting statistics. In this report, Figs. 1, 3, and 4 present a new class of experimental
data on the temporal behavior of the chaotic optical field that underlies the SASE FEL output
and isthe first such complete characterization of the dynamic properties of a chaotic light source.
Our measurements were made possible by the high intensity and relatively long coherence length
of the SASE FEL and they provide information important for time-resolved experiments with
future X-ray FELs, which may involve manipulating the temporal structure of the pulses (24).

The authors thank Z. Huang for helpful discussions. This work is supported by the U. S.
Department of Energy under contracts Nos. W-31-109-ENG-38, DE-AC02-98CH10886 and

DE-ACO03-76SF00515.
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Tablel. Main experimental parameters

Peak current
Effective FWHM bunch length (Tp)
rms normalized emittance
Undulator period (Ay)
Undulator length (each)
Undulator strength parameter (K)
Beam energy (ymc?)
Nominal radiation wavelength (1)
FWHM SASE bandwidth (A1)
Gain length (Lg)

850 A
1.2 ps
9 mm mrad
3.3cm
24 m
3.1
217 MeV

530 nm
~3nm
0.68 m

10



Figure captions

Fig. 1 (a-c) Examples of the raw and the reconstructed FROG traces, along with the field

intensity and phase as a function of time and wavelength. Red: Intensity; Blue: Phase.

Fig. 2 Field intensity (solid) and phase (dashed) as a function of time from a simulation with an

electron bunch that is long compared to the coherence length using Eq. (1).

Fig. 3 Distribution of (a) the spike width Az and (b) the peak-to-peak spacing At between the
intensity spikes normalized to the average spike width(A7). Experimental data (symbols),

theoretical calculation (solid line) and simulation results (dashed lines) are all presented when

possible.

Fig. 4 Distribution of phase derivative at the intensity maxima (a) and minima (b) normalized to
the rms SASE FEL bandwidth. Experimental data (symbols), theoretical calculation (solid lines),
and simulation results (dashed lines) are al presented. Note the different horizontal scales for (a)

and the (b).
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Fig. 1 (a-c) Examples of the raw and the reconstructed FROG traces, along with the field

intensity and phase as a function of time and wavelength. Red: Intensity; Blue: Phase.
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Fig. 2 Field intensity (solid) and phase (dashed) as a function of time from a simulation with an

electron bunch that is long compared to the coherence length using Eqg. (1).
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Fig. 3 Distribution of (a) the spike width Az and (b) the peak-to-peak spacing At between the
intensity spikes normalized to the average spike width <Ar>. Experimental data (symbols),

theoretical calculation (solid line) and simulation results (dashed lines) are all presented when

possible.
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Fig. 4 Distribution of phase derivative at the intensity maxima (a) and minima (b) normalized to
the rms SASE FEL bandwidth. Experimental data (symbols), theoretical calculation (solid lines),
and simulation results (dashed lines) are all presented. Note the different horizontal scales for (a)

and the (b).
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