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The eigenstate thermalization hypothesis (ETH) is a successful theory that provides sufficient criteria for
ergodicity in quantum many-body systems. Most studies were carried out for Hamiltonians relevant for ultracold
quantum gases and single-component systems of spins, fermions, or bosons. The paradigmatic example for
thermalization in solid-state physics are phonons serving as a bath for electrons. This situation is often
viewed from an open-quantum-system perspective. Here, we ask whether a minimal microscopic model for
electron-phonon coupling is quantum chaotic and whether it obeys ETH, if viewed as a closed quantum system.
Using exact diagonalization, we address this question in the framework of the Holstein polaron model. Even
though the model describes only a single itinerant electron, whose coupling to dispersionless phonons is the
only integrability-breaking term, we find that the spectral statistics and the structure of Hamiltonian eigenstates
exhibit essential properties of the corresponding random-matrix ensemble. Moreover, we verify the ETH ansatz
both for diagonal and off-diagonal matrix elements of typical phonon and electron observables, and show that
the ratio of their variances equals the value predicted from random-matrix theory.
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I. INTRODUCTION

Understanding whether and how an isolated quantum
many-body system approaches thermal equilibrium after be-
ing driven far from equilibrium has been a tremendous theo-
retical challenge since the birth of quantum mechanics [1,2].
This topic became viral after quantum-gas experiments [3—5]
and other quantum simulators such as ion traps became
available that are, to a good approximation, closed quantum
systems. Using these platforms, a series of experiments on
nonequilibrium dynamics was conducted, focusing either on
the generic case of thermalizing systems [6-9] or the ex-
ceptions such as integrable models [10-12] or many-body
localization [13-15].

An additional impetus to the theoretical community was
given by the work of Rigol ez al. [16] who demonstrated that
the eigenstate thermalization hypothesis (ETH), pioneered
by Deutsch [17] and Srednicki [18], provides a relevant
framework to describe statistical properties of eigenstates of
lattice Hamiltonians, applicable to ongoing experiments with
ultracold atoms on optical lattices [7,13,14]. As a crucial
consequence, if the ETH is satisfied in a given quantum many-
body system, it implies thermalization of local observables
after a unitary time evolution [19-22].
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So far, the ETH has been verified for a wide number of
lattice models such as nonintegrable spin-1/2 chains [23-33],
ladders [26,34-36], and square lattices [37-39], interacting
spinless fermions [40,41], Bose-Hubbard [26,42], and Fermi-
Hubbard chains [43], dipolar hard-core bosons [44], quantum
dimer models [45], and Fibonacci anyons [46]. In these exam-
ples, mostly, direct two-body interactions in systems of either
spins, fermions, or bosons are responsible for rendering the
system ergodic. In condensed-matter systems, however, the
presence of phonons is ubiquitous. In fact, the textbook ex-
ample of thermalization in solid-state physics is the phonons
being a bath for the electrons. There, the distinction between
bath and system is not made by a real-space bipartition that is
often considered in ETH studies, but by tracing out one type
of physical degree of freedom, namely the phonons. More-
over, in metals, direct electron-electron interactions are often
irrelevant while the coupling to phonons leads to effective
interactions responsible for thermalization and transport.
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FIG. 1. Quantum chaos and thermalization (right panel) emerg-
ing from coupling of a single electron (upper left) to independent
local harmonic oscillators (lower left).
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A second timely motivation to study nonequilibrium prob-
lems in electron-phonon coupled systems stems from the
experimental advances with time-resolved spectroscopy [47].
Such experiments have stimulated an increased interest in ex-
ploring nonequilibrium dynamics of isolated electron-phonon
coupled systems theoretically [48—66]. Among them, systems
with a single excited electron coupled to phonons (the so-
called polaron case) provide a platform for accurate numerical
simulations [49,58,60,67,68], allowing us to demonstrate, for
certain nonequilibrium protocols, equilibration [52,58] and
indications for thermalization [61].

In this paper, we explore quantum ergodicity of a po-
laron system by studying indicators of quantum chaos and
the validity of the ETH, which implies thermalization for
generic far-from-equilibrium initial states. We focus on the
one-dimensional Holstein polaron model, which describes
properties of a single electron locally coupled to disper-
sionless phonons, as sketched in Fig. 1. Using an exact-
diagonalization analysis, we demonstrate that despite the ap-
parent simplicity of the model, it exhibits clear manifestations
of quantum chaos and the Hamiltonian eigenstates in the
bulk of the spectrum obey the ETH. Therefore, the model
appears to encompass minimal ingredients for thermalization
in condensed-matter systems including both electrons and
phonons. Note that dispersionless phonons do not match the
standard properties expected for a thermal reservoir [69] since
they exhibit, e.g., infinite autocorrelation times. The results
of the present study, however, suggest that the presence of
phonons with a dispersion is not a requirement for thermaliza-
tion and quantum ergodicity in many-body quantum systems.

We first verify that the statistics of neighboring energy-
level spacings is well described by the Wigner-Dyson distri-
bution, and that the averages of restricted gap ratios agree with
predictions of the Gaussian orthogonal ensemble (GOE). We
then study matrix elements of observables in both the electron
and phonon sector. For the diagonal matrix elements, we use
the most restrictive criterion to test the ETH [27,38], i.e., we
show that eigenstate-to-eigenstate fluctuations vanish for all
eigenstates in a finite energy-density window. We then present
an extensive analysis of the off-diagonal matrix elements and
extract the universal function at different energy densities.
Finally, we study variances of both diagonal and off-diagonal
matrix elements in narrow microcanonical windows and find
that their ratio approaches a universal number, which matches
predictions of the GOE.

An interesting aspect of the Holstein polaron model is
that the electron-phonon coupling is the only mechanism that
breaks integrability of the uncoupled electronic and bosonic
subsystems and gives rise to quantum ergodicity. Since there
is only a single electron in the system, expectation values
of the electron-phonon coupling energy are not extensive
but of order O(1) in every Hamiltonian eigenstate. The ques-
tion of the minimal perturbation strength to render an inte-
grable system quantum chaotic is highly nontrivial and can be
traced back to the pioneering work on ETH by Deutsch [17].
Recently, a large number of studies addressed the influence of
integrability-breaking static impurities on quantum ergodicity
and thermalization (see, e.g., Refs. [70-74]), and showed
that an O(1) integrability-breaking term is enough to induce
quantum-chaotic statistics of energy levels [75-79]. Here,

we provide numerical evidence that an (O(1)-integrability-
breaking term, introduced by an itinerant electron coupled to
noninteracting phonons, is sufficient to observe perfect ETH
properties of all Hamiltonian eigenstates in the bulk of the
spectrum.

The paper is organized as follows. We introduce the Hol-
stein polaron model and its basic spectral properties in Sec. II.
In Sec. III, we study quantum-chaos indicators in the statistics
of the neighboring level spacings for different parameter
regimes of the model. We then focus on the analysis of the
ETH in Sec. IV and explore both diagonal and off-diagonal
matrix elements of observables. We conclude in Sec. V.

II. THE HOLSTEIN POLARON MODEL

The one-dimensional Holstein polaron model on a lattice
with L sites is described by the Hamiltonian

ﬂ = ﬂkin + ﬂph + ﬁeph . (1)

It consists of the electron kinetic energy operator

L
Hn = —t0 Y _(@le,, +2b,,¢)), )

j=1

where ¢; is the electron annihilation operator acting on site
Jj (in the Holstein model, a spin-polarized gas of electrons is
considered). Next, the phonon-energy operator reads

L
Ao = haxy Y blb,, 3)
j=1

where b ; is the phonon annihilation operator at site j and
h =1, and the local coupling of phonons to the electron
density i; = ¢1¢; is

L
Hen =y Y (B} +b))i; . (4)
j=1

We use periodic boundary conditions, ¢;4; = ¢; and we set
the lattice spacing to a = 1. Throughout the paper, we use
as the energy unit and set fp = 1 in numerical calculations.

We employ full exact diagonalization to numerically ob-
tain all eigenvalues and eigenstates of the Holstein polaron
model, denoted by {E,} and {|«)}, respectively. We truncate
the number of local bosonic degrees of freedom, with M
representing the maximal number of phonons per site. We
exploit translational invariance to split the Hamiltonian into
L distinct sectors with quasimomenta k. Each sector contains
one electron, i.e., (N) = (Zj 6;@,) = 1. The Hilbert-space
dimension of each k sector is D’ = (M + 1)*, and hence the
total Hilbert-space dimension is D = L(M + 1).

Since we use exact diagonalization, it is necessary to deal
with the finite cutoff M in the local phonon number. This in-
troduces a dependence on M in some quantities. The approach
taken in this paper is to establish, for a fixed M, quantum-
chaotic properties of the model and the validity of the ETH for
eigenstates that fall within a finite window of energy densities.
We will argue that the qualitative conclusions do not depend
on the choice of M.
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FIG. 2. The density of eigenstates W (E') of the Holstein polaron
model using a bin width AE = E,,/20. The system parameters are
wo/to = 1/2, y/to = 1/4/2, L =8, and M = 3, which correspond
to D=L(M 4+ 1)F~ 5 x 10> eigenstates. The smooth line is a
Gaussian function [see Eq. (6)], where I" is given by Eq. (8).

We define the distribution of the Hamiltonian eigenvalues
{E,}, i.e., the density of eigenstates, as

D
W(E)=D""> 8(E - E,). 5)
a=1
In Fig. 2, we plot W(E) for a system with L =8, M =3,
and the model parameters y /fo = 1/ V2, wy/to = 1/2. The
density of eigenstates is close to a Gaussian function,

9(E) = Ep /(v 21 T)e™ E-E)?/Q1) (6)

which is shown in the same figure (solid line). The average
energy E,, and the energy variance I'? are given by

En=(H) =D '"Tr{H} =L # %)

and

. . ZM(M + 2
0 = (@) - Ay = L D

The latter result is consistent with the expectation that the
relative standard deviation I'/L vanishes as 1/+/L when L —
00. On the other hand, if L is kept fixed and M — oo, the
relative standard deviation I'/M does not vanish but goes to
aconstant I' /M — wy+/L/12. We study finite-size dependen-
cies by fixing M and making L larger.

+22+y*M. (8)

III. QUANTUM-CHAOS INDICATORS

We first study statistical properties of the spectrum of the
Holstein polaron model. A standard approach is to compare
these properties with predictions of the random-matrix theory,
in particular, to the GOE, which represents the appropriate
symmetry class for the Holstein polaron model, i.e., mod-
els with time-reversal symmetry. Historically, random-matrix
theory was shown to provide a relevant framework to de-
scribe spectral properties of quantum systems whose classical
counterparts are chaotic [80]. As a consequence, all quantum
systems with spectral statistics identical to the ones in random
matrices are called quantum chaotic [81]. Since there is no
classical counterpart of the Holstein polaron model, we refer
to the model as being quantum chaotic if its spectral statis-
tics matches those of the GOE. Note that the level-spacing
statistics (to be studied below) cannot distinguish between

a completely ergodic system and a system with a nonzero
number of nonergodic eigenstates whose fraction vanishes in
the thermodynamic limit [§2-89]. In Sec. IV, we show that the
system under investigation here is indeed completely ergodic,
i.e., all eigenstates away from the edges of the spectrum
exhibit ETH properties [20].

In finite systems, quantum-chaotic properties are usu-
ally observed most unambiguously at intermediate parameter
regimes, i.e., when all parameters are of the same order. More-
over, the Holstein polaron model has two integrable limits
(the noninteracting limit y — 0 and the small-polaron limit
to — 0), where the quantum-chaotic properties are expected
to be absent. Exploring the parameter regimes in which the
model exhibits quantum-chaotic properties is one of the main
goals of this section.

In the parameter regime where the model is quantum
chaotic, this manifests itself for eigenstates at a nonzero
energy density above the ground state and below the highest
energy eigenstate [20]. In the Holstein polaron model, the
ground-state energy density in the limit L — 00 is Eyin/Eay =
0 and the highest-eigenstate energy density is Enyax/E. =
2. We introduce a control parameter n € [0, 1) to consider
eigenstates in a finite energy-density window, such that

Eay = Ea if E, <E, )
——— < i < E,
Eav - Emin " “ ¢
and
Ea - Eav .
———— < if Ey > E,. (10)
Emax - Eav

In our model, the corresponding set of eigenstates within the
target energy-density window is

ZW = {la) ; Eu/Ew € [1 =1, 1471},

1D
where {k} denotes the momentum sectors from which eigen-
states are selected. It is well known [20,90] that quantum-
chaos indicators can only be observed in statistics of Hamil-
tonian eigenvalues of a single symmetry sector. We therefore
limit our analysis in this section to the quasimomentum sector
k =27 /L in the set of eigenstates Z!' in Eq. (11) and fix
n=2/3.

We study quantum-chaos indicators by analyzing the statis-
tics of neighboring energy-level spacings 8, = Ey 1 — Ey.
We perform an unfolding of the energy levels in Z{* such
that the mean level spacing is one [81,91]. The unfolding
procedure is carried out by introducing a cumulative spec-
tral function G(E) =), O(E — E,), where © is the unit
step function. In the practical analysis, we find it useful to
smoothen it by fitting a polynomial of degree six g¢(E) to
G(E). The spectral analysis is then performed on the unfolded
neighboring level spacings s, = g¢(Ey+1) — 86(Ew). We ver-
ified that using polynomials g,(E) of different degrees has a
negligible influence on the results.

The distribution P(s) of the unfolded neighboring level
spacings s, for the Holstein polaron model at wy/fp = 1/2
and y /to = 1/+/2 is shown as a histogram in Fig. 3. We com-
pare the distribution P(s) to the Wigner-Dyson distribution
(smooth line in Fig. 3),

Ts
Pwp(s) = 7(’”2/4, (12)
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FIG. 3. Level-spacing statistics P(s) after the unfolding proce-
dure (see the text for details) for L =8, M = 3, wy/tp = 0.5, and
v /ty = 1/+/2. Numerical results are shown as a histogram for the
k = 2m /L momentum sector. We consider eigenstates within an
energy density window given by n = 2/3 in Eq. (11), which for the
particular model parameters corresponds to 90% of all eigenstates.
Smooth lines are the Wigner-Dyson distribution Pwp(s), given by
Eq. (12).

which was derived for an ensemble of 2 x 2 random matrices
and, despite not being exact, is now considered as a proto-
typical distribution of the neighboring level spacings in the
GOE [20]. We observe a reasonable agreement of P(s) with
Pwp(s). The agreement may appear surprising since the only
integrability-breaking term in the Holstein polaron model is
ﬂeph, see Eq. (4), which is intensive. Moreover, our observa-
tions are qualitatively consistent with previous studies of level
statistics in spin-1/2 chains with integrability-breaking terms
of the same order [75-79].

The numerical data shown in Fig. 3 are for the largest
numerically available system at M = 3, and in a regime where
the model parameters are of the same order. We now extend
our analysis to other parameter regimes and system sizes.
Instead of the full distribution P(s) we study a single number
(defined below) derived from the distribution.

The authors of Ref. [93] considered the ratio of two con-
secutive level spacings (shortly, the gap ratio),

8a
80{—1

, (13)

Ty =

and introduced the restricted gap ratio:

Fpo= B0 uctd i, 1y (14)
max{b‘u,, 80{71} *
A convenient property of 7, is that no unfolding is necessary
to eliminate the influence of a finite-size dependence through
the local density of states.

We study 7,y = (F),, which represents the average value
of the restricted gap ratio 7, within the set of eigenstates
Z,’; introduced in Eq. (11). A numerically accurate prediction
for the average of 7, in the GOE is 7gog ~ 0.5307 [92].
This value is different from the average value of uncorrelated
energy levels (relevant for spectra of integrable Hamiltoni-
ans with a Poisson distribution of nearest level spacings),
which is Fypeorr ~ 0.3863. The fact that Fgog > Funcorr Can
be understood from the level repulsion of the GOE, which
suppresses the presence of small values of 7, in the probability
distribution P(#) compared to the spectra with uncorrelated
level spacings (dashed line), as illustrated in Fig. 4(b) [20].

L=8 (C) M:LwO:tO/Q (d)
0.54
N iy ‘ V
0.52 | 052 R
o wy=1y/2 ° oa o [=,]6 %, s
o muw=t ° o L=14 ,» o
o wy =4ty a L=12
0'500 1 2 3 4 O'500 1 2 3 4
v/t v/t

FIG. 4. Statistics of the restricted gap ratio 7, introduced in
Eq. (14). Symbols in (a), (c), and (d) show the average 7,, as a
function of y /ty. We show results at wy/to = 1/2, M = 3 and three
different system sizes L in (a), results at L = 8, M = 3, and three
different values of wy/fy in (c), and results at wy/ty = 1/2, M =1,
and for three different system sizes L in (d). Solid lines in (a), (¢), and
(d) denote Fgor =~ 0.5307, which is obtained numerically for asymp-
totically large systems [92], while the dashed line in (a) denotes
the analytical result fol FPgoe(F)dir = 4 — 24/3 & 0.5359 obtained
from the GOE distribution Pgog (7) for 3 x 3 matrices, see Eq. (15).
(b) Histogram of the distribution P(7) at wy /1ty = 1/2,y [ty = 1/«/5,
L =8, and M = 3. The solid line is Pgog(7) and the dashed line is
the distribution 2/(1 + 7)? obtained using Poisson statistics [92].

Figure 4(a) shows 7y at wg/ty = 1/2 as a function of
y [ty for different system sizes L. When increasing L, the
fluctuations of the averages decrease, and at L = 8, the av-
erages approach the GOE prediction 7gog with high accuracy.
Deviations from 7gog are the largest in the limits y /tg — 0
and y /ty) — oo, which is in agreement with observations in
other quantum-chaotic Hamiltonians [39].

Before exploring the behavior of 7, in other parameter
regimes, we verify that 7,, does not only agree with pre-
dictions of the GOE, but that the entire distribution P(7)
of 7, does. We plot P(¥) in Fig. 4(b) at wy/ty = 1/2 and
¥ /to = 1/+/2. The data show an excellent agreement with the
analytical GOE prediction,

21 P47

Pcoe(F) = TATiLRR (15)

which is exact for 3 x 3 matrices and very accurate for
asymptotically large systems [92]. As a side remark, note
that 7gog = 0.5307 introduced above is a numerical result
for asymptotically large systems, which on the third digit
differs from the result for 3 x 3 matrices fol FPgog(F)dF =

4 —2./3 2~ 0.5359. Our numerical results in Fig. 4(a) are
accurate enough to resolve this difference.
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We next study the influence of the phonon energy wy/fy
on quantum-chaotic properties of the model. Figure 4(c) com-
pares results for 7,, versus y /tg at wy/tp = 1/2,1,and 4. As a
general trend, fluctuations of 7,, increase with wy/fy. This is,
in particular, evident for wy/ty = 4, where the agreement with
fcog is weaker. In the antiadiabatic regime of the Holstein
polaron model, wy > 4ty, the phonon energy becomes larger
than the electron bandwidth and gaps in the spectrum increase.
As a consequence, some values of 7, in Eq. (14) become very
small and the overall value of 7,, decreases. Since finite-size
effects are expected to increase with increasing gaps, we
do not study quantum-chaotic properties in the antiadiabatic
regime using the existing numerical method.

Finally, we study the influence of the local phonon cutoff
M on the restricted gap ratio. Figure 4(d) shows results for
M =1 (hard-core bosons) at L = 12, 14, and 16, which leads
to identical Hilbert-space dimensions as for the results for
M =3 and L = 6, 7, 8, respectively, shown in Fig. 4(a). We
observe increased fluctuations when M decreases. Still, fluc-
tuations decrease in both cases when fixing M and increasing
L, suggesting that in the limit L — oo, the model exhibits
quantum-chaotic properties even in the case of hard-core
bosons.

While strictly speaking, the thermodynamic limit corre-
sponds to sending both L, M — 0o, we observe the onset
of quantum chaos (Sec. III) and the validity of the ETH (to
be studied in Sec. IV) even when L — oo and M fixed. A
plausible conjecture, which remains to be verified in future
work, is that our key observations remain valid when M —
oo. In the following section, we study the ETH properties of
the Holstein polaron model using M = 3, which turned out to
be the best compromise between allowing for relatively large
local phonon fluctuations and still large enough lattice sizes.

IV. EIGENSTATE THERMALIZATION

The previous section studied quantum-chaos indicators and
showed that for a wide range of model parameters they agree
with predictions of the GOE. We now focus on a specific
set of model parameters given by wo/to = 1/2, y /to = 1/+/2,
M = 3, and test the validity of the ETH.

The ansatz for expectation values of observables in eigen-
states of the Hamiltonian, known also as the ETH ansatz [94],
can be written as

(@|O1B) = O(E)Sap + ¢ fo(E, 0)Rap,  (16)
where E = (E, + Eg)/2 is the average energy of the pair of
eigenstates |) and |B), w = E, — Eg is the corresponding
energy difference, and S(E) is the thermodynamic entropy
at energy E. The requirement for O(E) and fo(E, w) is
to be smooth functions of their arguments, while R, g are
random numbers with zero mean and unit variance. When
the ETH ansatz is applicable, O(E) from the diagonal part
is the microcanonical average of an observable O, while the
off-diagonal part can be used, e.g., to prove the fluctuation-
dissipation relation for a single eigenstate [20].

We study four different observables, two in the electron
sector and two in the phonon sector. In the electron sector, we
study the electron kinetic energy Hyiy, defined in Eq. (2), and

the quasimomentum occupation operator,

L

1 I
My = — § :e =pa gte,
L J
jil=1

a7

at ¢ = 0. Note that the expectation values of both electron
observables are intensive quantities, which is a consequence
of having only a single electron in the Holstein polaron model.
The kinetic energy Hyi, is the sum over all . Therefore, if
ETH behavior is observed for 71,— it will not immediately
imply ETH behavior for Hin (and vice versa). Nevertheless,
both quantities are related and it may not be surprising to see
ETH behavior in both cases.

In the phonon sector, we study the average phonon num-
ber per site ]Vph = ﬂph /(woL), where ﬂph was introduced in
Eq. (3), and the nearest-neighbor off-diagonal matrix element
of the phonon one-body correlation matrix, with the underly-
ing operator

L
! R
7 = . 2 (b;ij +H.c). (18)

J=1

The observables in both sectors are chosen sqch that one
observable is part of the Hamiltonian Eq. (1) [Hyin and Npp]

while the other one is not [z, and 7.

A. Diagonal matrix elements of observables

We first focus on the eigenstate-expectation values
(«|Ola), ie., on the diagonal part of the ETH ansatz in
Eq. (16). Figures 5(a)-5(d) show results for observables in the
k = 2m /L quasimomentum sector for three different system
sizes L = 6,7, 8, plotted versus the eigenstate energy density
E,/E,,. In all cases, we observe clear manifestations of ETH,
namely, eigenstate-expectation values are only functions of
the energy density. In particular, results for different L suggest
that the fluctuations decrease with L and as a consequence,
eigenstate-expectation values become smooth and sharp func-
tions of the energy density in the limit L — oo.

The key step in validating the ETH for the diagonal ma-
trix elements of observables is to quantify finite-size fluc-
tuations of the results in Fig. 5. We study whether (and
how) eigenstate-to-eigenstate fluctuations in the bulk of the
spectrum vanish when L — oo. To this end, we use the most
restrictive criterion [27] defined below.

The ETH is expected to be satisfied for the same set of
eigenstates in the bulk of the spectrum for which quantum-
chaos indicators were found to exhibit GOE behavior in
Sec. III. In Eq. (11), we defined these sets of eigenstates
Z!M, where 1 defines the interval of energy densities and {k}
denotes the set of quasimomentum sectors, from which eigen-
states are selected. For the analysis of eigenstate-expectation
values, we include eigenstates from quasimomentum sectors
0 < k < 7 and denote this set of eigenstates as

z,=J 2V.

0<k<

19)

Eigenstates from quasimomentum sectors k < 0 are excluded
from Z, since the eigenstate-expectation values at k and —k
are identical due to time-reversal symmetry. We introduce a
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FIG. 5. Diagonal matrix elements of observables («|O]a) for wo/to = 1/2, y/to = 1/+/2, and M = 3 in the quasimomentum sector
k =2 /L. Results are plotted as a function of E,/E,,, where the average energy E,, is defined in Eq. (7). Symbols from the back to the
front represent results for L = 6 (red), L = 7 (dark blue), and L = 8 (light blue), respectively. Arrows in (a) indicate the trend of the width of

the matrix-element distribution as L increases.

measure of eigenstate-to-eigenstate-fluctuations of diagonal
expectation values,
2(0) = (@ + 1|0l + 1) — (@[Ola), (20)

and study two statistical properties of z,(O), the mean and the
maximum. The mean is defined as

@0(0)=11Z,I7" D |z(O)],

la)eZ,

2n

where [|Z,]| is the number of eigenstates in Z,, and the
maximum is

Zmax(0) = max |z4(0)] . (22)
)2,

The statistics of eigenstate-to-eigenstate fluctuations,
Eq. (20), was first studied in Ref. [27]. The number of
eigenstates analyzed in that work was a finite fraction of the
total number of eigenstates, implying that those eigenstates
correspond to infinite temperature in the thermodynamic limit.
Here, in contrast, we study the statistics of fluctuations in
a window of finite energy densities (similar to Ref. [38]),
defined by the parameter n in Eq. (11). By fixing 7, the
fraction f of eigenstates involved in the statistics relative to
the total number of eigenstates increases with L and eventually
approaches 1 when L — oco. For example, at n =2/3 and

L = 8 the fraction f is around 0.9 (see the caption of Fig. 6
for details).

Figures 6(a)-6(d) show the finite-size scaling of zp,, and
(z), for the same observables as in Figs. 5(a)-5(d). We show
results for the set of eigenstates Z, using n = 1/3 and 2/3.
Remarkably, in all cases, we observe an exponential decay of
fluctuations with the system size L, while in fact the electronic
density decreases from 1/5 to 1/8. These results support the
validity of the ETH in the Holstein polaron model, i.e., they
suggest that all eigenstates in the bulk of the spectrum obey
the ETH.

B. Offdiagonal matrix elements of observables

We now turn our focus to off-diagonal matrix elements
(a|0|ﬁ ) of observables and test the second part of the ETH
ansatz in Eq. (16). We consider the symmetry sector k =
2w /L, which includes D' = (M + 1)* eigenstates. We focus
on matrix elements of pairs of eigenstates with a similar
average energy E. An example of the set of eigenstates for
which E ~ E,, is sketched as a shaded region in Fig. 7(a).

Figure 8(b) shows results for the matrix elements
|(ct|Hiin| B)| Of the kinetic energy as a function of w/E,, (we
only plot results for w = E, — Eg > 0). We restrict the eigen-
states to a narrow energy window |(E, + Eg)/(2Ey,) — 1] <
A/2 using A = 1073, The results reveal strong fluctuations

(a) (b) (c) (d)
10° 10° 10° R 10°
. g ° _ e 6 8 . ©
E 7] i ° 2 ° =)
£ 107 <107 oo Nzt T T o NEdo! .
R on=1/32ms g = 8 o N 8 .
on=1/3,{), e u
10-2 © 1=2/3, Zyax 10-2 [5] 10-2 B 10-2
mn=2/3, <z>" =]
4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10
L L L L

FIG. 6. Statistics of eigenstate-to-eigenstate fluctuations z,(0), see Eq. (20), for the same observables and model parameters as in Fig. 5.
We show the mean (z),(0), see Eq. (21), and the maximum zn,.«(O), see Eq. (22). We include eigenstates from the quasimomentum sectors
with 0 < k < 7 that belong to the subspace Z,, defined in Eq. (19). At n = 1/3, the fraction of eigenstates included in Z, (out of the total
number of eigenstates from the quasimomentum sectors 0 < k < ) are 37%, 44%, 50%, and 55% for L = 5, 6, 7, 8, respectively, while at
n = 2/3 the fractions are 70%, 79%, 85%, and 90%, respectively. Solid lines are guides to the eyes, signaling an exponential decay with L.
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1 8) D'
1 9 9
Udiag Joffdiag
pl }
|a) =
D’ (b)™,

FIG. 7. Sketch of a matrix of size D’ with matrix elements
[{«|O|B)|. The shaded region in (a) represents the matrix elements
included in the sum in Eq. (23). In (b), each square contains u
eigenstates, for which we calculate the variance of diagonal matrix
elements adziag, Eq. (25), and the variance of off-diagonal matrix
elements 0 gyi,.» EQ. (26).

of |(a|Hin| B)|, Which is in agreement with the presence of the
random term R, g4 in the ETH ansatz, see Eq. (16). The moving
average shown in the same panel indicates that the averaged
function is almost flat at small w/E,, and then rapidly decays
at larger w/E,y, consistent with results observed in the two-
dimensional transverse field Ising model [39] and in the hard-
core boson model with dipolar interactions [44].

The overall prefactor of the matrix elements l{|O|B)]
depends on system size. To extract that prefactor we define
the average offdiagonal matrix element

[0a ] :/iv >

o, fia#p
[(Eq + Ep)/(QEw) —E| < A/2

(lOI1B),  (23)

where the normalization N equals the number of elements
included in the sum and & = E/E,, is the target average
energy density of the pair of eigenstates. The ETH ansatz
predicts the prefactor to be ~e~5#)/2_ for which the leading
term at £ = 1 scales as NI/«/ﬁ. Figure 8(a) shows our
numerical results for |O, g| at € = 1 as a function of D’'. We
use A = 1072 and 107! in Eq. (23) and show that results for
different A are almost identical. The data points can, for all
observables, accurately be fitted using the function a(D’)".
We find that b is very close to the predicted value b = 1/2
(see the caption of Fig. 8 for the actual numerical values of
b). However, if one also aims at resolving eventual subleading
corrections to the scaling controlled by Eq. (16), as discussed
in Ref. [29], more data points would be needed.

The universal properties of the off-diagonal matrix ele-
ments | («|O|B)| encoded in fy(E, w) can be studied after ran-
domness and system-size dependent prefactors are removed.
We define

(24)

FolB. o) — MA(I(aIOIﬁH) ’

|O0c. 1

which is a moving average of the renormalized off-diagonal
matrix elements of observables. The function Fo(E, w) is,
up to a constant prefactor, identical to the universal function
fo(E, ®) used in the ETH ansatz Eq. (16). We therefore plot
Fo(E, w)in Fig. 8(c) for different observables as a function of
w/E,y. The results reveal that the offdiagonal matrix elements

107"

@)

w/ Eay

FIG. 8. Off-diagonal matrix elements of observables l{x|0|B)]
for wo/tgy = 1/2, y /[ty = 1/\/§, and M = 3 in the quasimomentum
sector k = 27 /L with the Hilbert-space dimension D’ = (M + 1)-.
The target average energy of pairs of eigenstates is & = E/E,, = 1.
(a) Averages |O,gl|, defined in Eq. (23), for system sizes L =
5,6,7,8. Filled symbols are obtained using A = 1073 in Eq. (23)
while open circles behind the filled symbols are obtained using A =
107", Lines are fits to a(D’)™ for L > 6 and A = 1073, where the
exponent is b = 0.49 (Hyin), 0.53 (i1,=0), 0.58 (Nyy), and 0.58 (7).
(b) Matrix elements | (| Hiin | 8)| versus w/Ey = (E, — Eg)/E,. The
dashed line in (b) is a moving average in a window éw/E,, = 0.1.
Lines in (c) are functions Fo(E, w) defined in Eq. (24), which
are moving averages of renormalized off-diagonal matrix elements,
averaged in the same window as in (b). Results in (b) and (c) are for
L=8and A =1073.

of both electron and phonon observables exhibit a similar
scaling with w.

We complement our previous results by calculating the
off-diagonal matrix elements of the pairs of eigenstates at
average energy densities £ < 1. In Fig. 9, we show results for
two observables (the electron kinetic energy and the phonon
correlator), while results for the other two observables studied
in Fig. 8(c) exhibit a similar behavior (not shown here).
According to the ETH ansatz, see Eq. (16), the scaling of
l{«|O|B)| with the system size is governed by e5*)/2_In the
context of Eq. (23), S(E) is the logarithm of the number of
microstates N; in the energy density window [ — A/2, & +
A/2]. In Fig. 9(a), we plot |(«|O|B)| versus N; and observe a
reasonably good collapse of the data for different £. We fit the
results to a(N;)~” and obtain b close to 0.5, as predicted by
the ETH ansatz.

On the other hand, the dependence of fo(E, w) on the
average energy E is not described by the ETH ansatz and
rarely studied in the literature (see Ref. [20] for a discussion
on how fo(E, ) is related to the fluctuation-dissipation rela-
tion). Our results in Fig. 9(b) suggest that Fo(E, w) in the
Holstein polaron model is roughly independent of the pair
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FIG. 9. Off-diagonal matrix elements of observables |{c|O] ﬂ)|
for the electron kinetic energy Hy, and the phonon correlator T,
using identical system parameters as in Fig. 8. Here, we vary target
average energies of pairs of eigenstates £ = E/E,, = 1, 0.8, 0.6, 0.4.
(a) Averages |O, gl, defined in Eq. (23), using A = 10~!. Results
are plotted versus the number of eigenstates N; within a given mi-
crocanonical window. Lines are fits to a(N;)~? for L > 6 and & = 1,
where the exponent is b = 0.45 (Biin) and 0.53 (T}). (b) The function
Fo(E, w), defined in Eq. (24), versus w/E,, = (E, — Eg)/E,. We
use A = 1073, L = 8 and calculate the moving average in a window
Sw/E, =0.1.

energy average £ = E /E,,. We note that a recent study ad hoc
assumed a slowly varying fo(E, w) with E in a nonintegrable
spin chain [31]. Our results lend numerical support to this
assumption. The study of fo(E, ) and its £-dependence in
other models remains an open problem.

C. Variances of matrix elements of observables

Finally, we study fluctuations of both diagonal and off-
diagonal matrix elements of observables, focusing on the
quasimomentum sector k = 2w /L. We define the variance of
a set of consecutive diagonal matrix elements

[Gdla M)(O)] <(0a,a)2>p,

where o determines the first matrix element and u deter-
mines the number of matrix elements in the set. The aver-
age (Ogo)y = ™! Z‘H“ Yp|O|p) is defined in a micro-
canonical Wmdow i.e., it is an equal-weight average over u

— (Oy.)?

ne

(25)

10 107
L=38
10
5‘8 ?05 =115 °
S £ 6
14 T4l
C\lch N::
21y 2
0 0
1 30000 60000 30000 60000
6] 6]

consecutive eigenstates, starting at the index «. Similarly, the
variance of the submatrix of off-diagonal matrix elements is
defined as

[0 (O] = (10010 — 1O ).

where (0y.p), = (n2 — )~ Y0 p/|Olp) and p # p'.
Note that the off-diagonal matrix elements can be complex
as a consequence of diagonalizing the Hamiltonian in the
translationally invariant basis. Both variances are sketched in
Fig. 7(b) for a given « and p. We associate the mean energy
ey, to every microcanonical window defined by («, ), where
Co,u = (Ha,(x)//,-

In our calculations, we fix u and calculate the variances for
every « in the interval [1, D’ — w]. Our main focus is on the
ratio of variances defined as

(26)

[og5a O]
[ (E?fdl:d)g(o)]
Within random-matrix theory one can show [20] that the ratio
of variances takes a universal value £2,;(0) = 2 for generic
local observables in the GOE. Since the ETH generalizes
random-matrix theory to Hamiltonians of real physical sys-
tems, one may ask whether the same result can be obtained
for matrix elements of Hamiltonian eigenstates [95] and if the
answer is affirmative, at which energy densities this behavior
is found.

The numerical extraction of Ei .. obeying predictions from
the random-matrix theory is a nontrivial task, and the results
depend on the parameters « and p as well as on the Hilbert-
space dimension D’. In the main panels of Figs. 10(a)-10(d),
we fix u =100 and set L =8, M = 3, which yields D' =
65536 and hence u <« D’. Our choice of w is consistent
with the one used in a recent study of a two-dimensional
spin-1/2 system [39]. We compute 3 u=100(0) for four
different observables as a function of the eigenstate index o
and observe Ei’ u=100(0) ~ 2 for the majority of eigenstates
for all observables.

We quantify the excellent agreement with predictions of
random-matrix theory, observed in Figs. 10(a)-10(d), by
computing the averages over those ratios of variances for

$2,(0) = 27)

10, . 10
g 1.0 ; ql
2 | Eos5 = |
g, 6} | \&g 6f
g i oo A =k
L4 = 4
~ & ALy K H
24 21
0 0
1 30000 60000 1 30000 60000
(6% (6%

FIG. 10. Variances of matrix elements of observables for wy/fo = 1/2, y /ty = 1/+/2 and M = 3 in the quasimomentum sector k = 27 /L.

Main panels: Ratio of variances 25 w

defined in Eq. (27), for four different observables at L = 8. We fix u =

100 and plot X7, _o, for

every o € [1, D’ — u]. Horizontal dashed lines are averages over those ratios of variances for which ey ,—100/Ea € [1 — 1, 1 +1]. We use
n = 2/3 such that the set of eigenstates included in the average roughly corresponds to the set of eigenstates analyzed in Fig. 6 (i.e., 90% of
all eigenstates). We get 2.05, 2.04, 2.07, 2.03 in panels (a)—(d), respectively. Insets: Histograms of $2 u=100 for lattice sizes L = 7 and 8, using
the same set of « as the one that was used to obtain the horizontal lines in the main panel.
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FIG. 11. (a) Ratio of variances X _,, defined in Eq. (27), for
the phonon one-body correlation operator T} at L = 8 and M = 3.
The data are identical to the ones in Fig. 10(d), but plotted versus
the mean energy density e, ,—100/Eav. (b) Average ratio of variances
275, defined in Eq. (28), as a function of w for the same model
parameters as in Fig. 10. The average is taken over the shaded
region in panel (a). The numbers of ratios of variances included
in the average are roughly 7.4 x 10%, 3.0 x 10°, and 1.2 x 10* for
L =6,7,8, respectively.

which ey ,—100/Ea € [1 — 1, 1 + n] and n = 2/3. The result-
ing averages are shown as horizontal dashed lines in Fig. 10
and yield, for all four observables, almost perfect agreement
with 2%o:(0). The insets of Figs. 10(a)-10(d) show the
distributions of Ei, u=100(0) for the same set of « as the
one that was used to obtain the horizontal lines in the main
panel, and two system sizes L = 7 and 8. They reveal that, by
increasing the system size, the distributions become narrower
and their means approach the random-matrix theory result.

It is remarkable that the agreement of the ratio of variances
for Hamiltonian eigenstates with the GOE predictions carries
over to eigenstates away from the middle of the spectrum.
Namely, in contrast to eigenstates in the middle of the spec-
trum, which can be well approximated by pure states that
are random superpositions of base kets in some simple basis
[96], eigenstates away from the middle of the spectrum are
no longer entirely random. Figure 11(a) shows the same data
for Ei u=100 as in Fig. 10(d), but plotted versus the mean
energy density e, ,—=100/Eav. It reveals a broad region away
from ey ,—100/Eav = 1, where 25.#:100 ~ 2.

Finally, we study the dependence of Eé. . on pu and the
system size, and we only consider eigenstates « away from
the middle of the spectrum. To this end, we consider a subset
of ratios of variances S, = {me i equ/Eay € [1/3,2/3]},
which corresponds to a shaded region in Fig. 11(a). The
average X , in this region is defined as

22O =ISlIT" Y] %2 ,.(0) (28)

%2 “ €S,
and plotted in Fig. 11(b). The results reveal that when L
increases, a larger number of eigenstates i can be included in
the variances to observe Zg’ P EéOE. Remarkably, this sug-
gests that Zg’ u= EéOE in the limit L — oo, for eigenstates
both in the middle and away from the center of the spectrum.

V. CONCLUSIONS

In this paper, we addressed the question whether the hall-
mark features of the ETH can be observed in a paradig-

matic condensed matter model that includes both electron and
phonon degrees of freedom. We studied the Holstein polaron
model, which is a minimal model describing a single electron
that locally couples to dispersionless phonons. In spite of the
apparent simplicity of the model, we showed that it represents
an example where ETH is very well fulfilled, to a quantita-
tive degree that is observed in single-component models as
well [39]. In particular, we showed that (i) the statistics of
neighboring energy-level spacings agree with predictions of
the GOE; (ii) the eigenstate-to-eigenstate fluctuations of the
diagonal matrix elements of observables decay exponentially
for all eigenstates in the bulk of the spectrum; (iii) the “uni-
versal” part of the off-diagonal matrix elements of all four
observables under investigation exhibits a similar decay as
a function of the energy difference of pairs of eigenstates,
and exhibits an almost negligible dependence on the average
energy of the pair of eigenstates; and (iv) the ratio of variances
of fluctuations of diagonal to off-diagonal matrix elements of
observables fulfills predictions of the random-matrix theory.
The latter is a robust feature of Hamiltonian eigenstates also
away from the middle of the spectrum.

Our results establish two important aspects of quantum
many-body systems: The first is to demonstrate that quantum
ergodicity and thermalization in a many-body system of elec-
trons and phonons does not require phonons to exhibit prop-
erties of a bath in isolation, as usually assumed in studies of
open quantum systems [69]. The second is to demonstrate that
an integrability breaking term of the order O(1) is sufficient
to induce perfect ETH behavior. (In our case, the eigenstate
expectation value of the electron-phonon coupling operator
is O(1) in every eigenstate.) This extends previous studies
[75-79] that showed that an O(1) integrability breaking term
renders the spectral level statistics to be quantum chaotic.

There are several interesting extensions to our paper.
First, one may study generic conditions for an integrability
breaking term of the order (1) to induce ETH behavior.
Of particular interest may be systems where the uncoupled
electron-phonon system is not as highly degenerate as in
the Holstein model. This can be achieved, e.g., by consid-
ering dispersive or disordered phonons. Second, extending
the analysis to finite electronic densities would be interest-
ing, but also numerically much more challenging. Third,
exact diagonalization studies are obviously limited to small
systems. Therefore, complementary analytical insights into
the problem of ETH in electron-phonon models would be
desirable. Finally, concrete studies of quench problems in the
polaron case with an extensive quench energy are lacking.
This could be carried out by using, e.g., matrix-product-state
(MPS) methods [97-99] (see Refs. [100—103] for examples of
recent developments). References [60,104—-106] discuss MPS
methods that are specifically designed for electron-phonon
coupled systems. These questions are left for future work.
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