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Abstract. Classical, i.e. deterministic theories underlying quantum mechanics are considered,
and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such
theories, being the operator that generates evolution in time. It includes various types of
interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian
is bounded from below. The mechanism that can produce exactly such a constraint is identified
in this paper. It is the fact that not all classical data are registered in the quantum description.
Large sets of values of these data are assumed to be indistinguishable, forming equivalence
classes. It is argued that this should be attributed to information loss, such as what one might
suspect to happen during the formation and annihilation of virtual black holes.

The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our
world is assumed to consist of a very large number of subsystems that may be regarded as
approximately independent, or weakly interacting with one another. As long as two (or more)
sectors of our world are treated as being independent, they all must be demanded to be restricted
to positive energy states only. What follows from these considerations is a unique definition of
energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic
model.

1. Introduction

A natural way to interpret Quantum Mechanics is the following assumption: There is some
set of deterministic equations of motion that lead to chaotic behavior, even in the state we
normally call the vacuum. At large scales, which here means any scale large compared to the
Planck length, the solutions of these equations can only be handled statistically. A scheme
to handle the statistical properties of these solutions might well be what is called Quantum
Mechanics today. To get some feeling of how such a scheme might work in practice, we have
to start with studying some simple models. Most of these are far too simple to necessitate a
statistical treatment, so that the apparatus of operators acting in a Hilbert space might seem
to be unnecessary. But one can see how a formalism could be set up, and this is the aim of the
present investigation.

We start with pre-quantization. The probability distribution W is then re-written as the
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absolute square of a wave function. The wave function obeys all the axioms of conventional
quantum mechanics, allowing us to perform all the mathematical tricks known from Quantum
Mechanics and Quantum Field Theory, such as group representation theory and renormalization
group transformations.

We suspect that our world can be understood by starting from a pre-quantized classical, or
‘ontological’, system. However, a serious difficulty is then encountered: one indeed gets Quantum
Mechanics, but the Hamiltonian is not naturally bounded from below. If time would be assumed
to be discrete, the Hamiltonian eigenvalues would turn out to be periodic, so one might limit
oneself to eigenvalues E with 0 < F' < 27/6t, where 6t is the duration of a fundamental time
step, but then the choice of a vacuum state is completely ambiguous, unlike the situation in the
real world that one might want to mimic. If time is continuous, the Hamiltonian eigenvalues
tend to spread over the real line, from —o0 to .

In realistic theories, one therefore must impose a “superselection rule”, projecting out a
subspace of Hilbert space where all energies are non-negative. How exactly to do this will be
described here. At first sight, the freedom to choose phase factors in wave functions allows one
to make such a selection without loss of generality. This observation, however, is not the solution
to the positivity problem of the Hamiltonian, since positivity must also be demanded to hold
for subsystems, and when such systems interact, the suppression of negative energy states might
cause the violation of unitarity, or locality, or both.

The work described in this paper was reported about earlier [1]. We derive the plausibility
of our assumptions from first principles. First, the formalism is displayed in Section 2.
Deterministic systems are shown to be accessible by quantum mechanical procedures, although
this does not turn them into acceptable quantum mechanical models just yet, because the
Hamiltonian is not bounded from below. Then, we briefly discuss how interactions can occur in a
quantum mechanical sense (Section 3). We use the empirically known fact that the Hamiltonians
are all bounded from below both before introducing the interaction and after having included
the interaction. This necessitates our introduction of equivalence classes (Section 4), such that
neither the quantum mechanical nor the macroscopic observer can distinguish the elements
within one equivalence class, but they can distinguish the equivalence classes.

This procedure is necessary in particular when two systems are considered together prior to
considering any interaction. We are led to the discovery that, besides the Hamiltonian, there
must be a classical quantity E that also corresponds to energy, and is absolutely conserved as
well as positive (Section 5). It allows us to define the equivalence classes. We end up discovering
a precise definition of the quantum wave function for a classical system (both amplitude and
phase), and continue our procedure from there.

Physical and intuitive arguments were displayed in Ref. [2]. In that paper, it was argued that
any system with information loss tends to show periodicity at small scales, and quantization of
orbits. It was also argued that some lock-in mechanism was needed to relate the Hamiltonian
with an ontologically observable quantity £ that is bounded from below. The lock-in mechanism
was still not understood; here however we present the exact mathematical treatment and its
relation to information loss. Interaction can be introduced in a rather direct manner (Section
3), by assuming energy not to be directly additive, but then it is difficult to understand how
different energy sectors of the theory can be related to one another.

A more satisfactory picture emerges if one realizes that energy is not directly locally
observable, but determined by the periods of the limit cycles. This is explained in Section 7.
We think that this interpretation is imperative, and it sheds an interesting new light on the
phenomenon we call quantum mechanics. After a discussion of our results (Section 8) an
appendix follows in which we discuss the ‘random automaton’. It allows us to estimate the
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distribution of its limit cycles, though we immediately observe that the quantum models it
generates are not realistic because the energy will not be an extensive quantity. The deterministic
models that might reproduce observed quantum field systems must be very special.

2. Variables, beables and changeables

Time might be defined as a discrete variable or a continuous one, but this distinction is not
essential for our present considerations.

The important thing is that, if in a deterministic theory, a tiny subsection of our universe is
considered in isolation, then it will necessarily go into a periodic orbit. By itself, this remark is
already non-trivial; one might have thought that, with only two or more continuous degrees of
freedom, non-periodic orbits could easily arise. We will argue below that, if quantum mechanical
behavior is desired, then the system will have to obey non-Newtonian equations of motion, and
thereby evolve towards stable attractors; these must be periodic.

In a periodic orbit, a variable ¢ can be found such that the equation is

de _

=w; 27| . 2.1
Low;  pelo 2 (21)

This evolution equation is associated to the quantum Hamiltonian

H=wp = —tw— =wly = wm, m=0,%£1,+2, ... . (2.2)

This is very similar to the Hamiltonian of the quantum harmonic oscillator,

H = wn, n=0,+1, 42, , (2.3)

where, momentarily, we ignore the immaterial additive constant %w. Of course, the quantum

harmonic oscillator has only non-negative eigenvalues for the energy. Quantum harmonic
oscillators seem to be characteristic for isolated sections of the universe in a quantum world.
If our philosophy is to make sense, we have to explain what happened to the negative energy
states.

One possibility is to interpret the negative energy states as the bra states. One can do this,
but it hardly affects our problem. We will need to explain why direct transitions between positive
and negative energy states cannot occur.

For the time being, we assume that the negative energy states are projected away somehow
(a more satisfactory explanation will follow later). At this point, we note that, in a deterministic
theory, there are two kinds of operators.

Assume that there are many periodic variables (%(t). Any observable quantity, being a
function of ¢*, not depending on operators such as p; = —i3/0¢", and therefore commuting
with all ¢’ will be called a beable. Through the time dependence of ¢, the beables will depend
on time as well. Any pair of beables, A and B, will commute with one another at all times:

[A(t1), B(t2)] =0, Vit 2. (2.4)

A changeable is an operator not commuting with at least one of the ¢ ’s. Thus, the operators
p; and the Hamiltonian H are changeables. Using beables and changeables as operators [2],
we can employ all standard rules of quantum mechanics to describe a classical system.
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3. Interactions

Interactions can be introduced in two distinct ways. Consider two (or more) periodic variables,

%

dy
dt

=wip' +efU@);  H™=e(f'pi+ig(d). (3.5)
Here, the function f(@) does not have to be conservative:

g fi#0, (3.6)

in which case we have to add the function g(@) = —%9;f% in Eq. (3.5). Perturbation theory
can now be applied in the usual fashion by expanding in ¢, and computing (n|H™|m).

The second way to introduce interactions is displayed in Fig. 1, for the two-variable case.
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Figure 1. Interaction of type 2. There are two ‘slits’ in the two-variable plane. If the system crosses
one slit, it hops to the same position at the other slit and vice versa. If the slit is small; this is a tiny
perturbation.

Consider a discrete variable s = 0, 1 indicating whether the system is at the top or at the
bottom of the figure. Write the hopping operator as

oy = (‘1) (1)) . (3.7)

There are two variables, ¢!(t) and ¢2(t). The first of these moves without perturbation:
@' (t) = ' (0) + wit . (3.8)

The other variable has angular velocity ws, but it hops whenever ¢!(t) takes the value a (see
Fig. 1) while ¢? happens to be within the range of the slits, indicated by a function 6(p?)
which is 1 if ¢? hits one of the slits, and 0 otherwise.

Now, take as our total Hamiltonian
H = HO + Hint ’ .
Hy = wip1 +wops , H™ = A (0, —1) §(p" —a)8(¢?) , (3.9)
where A is a constant, to be determined shortly.

Use the fact that the eigenvalues of o, are £1, and

lwiom

. 1.
e =+i; so e? =40y ; e3mioa=1) _ Oz , (3.10)
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to derive

exp (—i /:2 Hdt) = exp <—iA 9(902)(035 - 1)w_11)

A= l7'('(&)1
= T if 2 ’ 3.11
oy i {9(s02)=1 | (3.11)

where t; is chosen just before the slit is passed, and Z9 just after that moment. Thus, choosing
in Eq. (3.9), A= %mul gives us the correct hamiltonian to describe the slit.

Taking |ni, ne) to be the eigen modes of the unperturbed Hamiltonian Hy, one can now
compute the matrix elements

(n1,no| H™ [mq1, ma) (3.12)

which will be small if the slits are tiny.

However, these matrix elements will be unequal to zero for the entire range of values of n;
and m; , so that positive energy states and negative energy states will be mixed. This problem
also emerges in the interaction Hamiltonian (3.5). Is there no way out of this problem? Could
one choose the interactions in such a way that the positive and negative energy states do not
mix? At first sight, there might be a way. Suppose we have many slits. The function 6(p?)
then takes a complicated form, switching from zero or one and back many times. The matrix
elements (3.12) are obtained as Fourier transforms of 6(¢2). Could one perhaps choose @ such
that the unwanted Fourier coefficients cancel out to zero? Closer inspection of this question
yields a negative result. Suppose one would replace 6(p2) by a smeared function f(p?), whose
Fourier transform is constrained by demanding superselection rules for the sign of the energy.
We found that this smearing would not produce the desired amplitudes, but instead, give us
mixed states! Of course, the smearing is a classical smearing, and not a smearing of the quantum
amplitudes, so this would not give us an acceptable quantum theory.

Interaction must be introduced in a much more delicate way, and in any case, the
superselection of the positive energy sector must be attributed to some more fundamental
phenomenon in the theory.

4. Two (or more) harmonic oscillators; a relative-time
uncertainty relation

As was explained briefly at the beginning of Section 2, we expect that, when two periodic
variables interact, again periodic motion will result. What is needed for this is information loss.
Periodicity will then again result. We will then again work on the superselection problem. Thus,
our strategy will be now first to find the mechanism that selects out only the positive energy
states, and only then we switch on the interaction.

In Fig. 2, the states are listed for two harmonic oscillators combined. Let their frequencies
be w; and wsy. For later convenience, we re-inserted the ground state energies , so

E=F +F :wl(nl—l—%)-l—wg(nQ-l—%) . (413)

The kets |ni, no) = |n1)|ne) have ny > 0 and ne > 0, so they occupy the quadrant labelled
I in Fig. 2. The bra states, in view of their time dependence, occupy the quadrant labelled
IIT. The other two quadrants contain states with mixed positive and negative energies. Those
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must be projected away. If we would keep those states, then any interaction between the two
oscillators would result in inadmissible mixed states, in disagreement with what we know of
ordinary quantum mechanics. So, although keeping the bra states is harmless because total
energy is conserved anyway, the mixed states must be removed. This is very important, because
now we see that the joint system cannot be regarded as a direct product. Some of the states that
would be allowed classically, must be postulated to disappear. We now ask what this means in
terms of the two periodic systems that we thought were underlying the two quantum harmonic
oscillators.

i v

Figure 2. Combining two harmonic oscillators. Tilted lines show sequences of spectral states again
associated to harmonic oscillators. For further explanation, see text.

The removal of the mixed energy states has one curious consequence. Let E = FE; + FEs.
Suppose we do admit the states where either both energies are positive or both energies are
negative. This gives us the constraint

E{ - Ey>0 — |E1 —|—E2‘ > |E1 — E2| . (414)

A simplified notation for the position-momentum uncertainty relation for these systems is the
time-energy uncertainty’

E-§t=3. (4.15)
Now rewriting
By -6t + By 0ty = 5 ((By + B)o(ts +12) + (B1 — Bo)o(t — 1)) (4.16)
and combining with (4.14), we get
St +t2) < 8(t — t2) . (4.17)

In conclusion: the average time (position) is always more precisely defined than the relative
time (position). Or, in other words, the positive energy superselection rule may come about
when the relative position of two variables is allowed to fluctuate due to some information-
destroying mechanism, while the average position, or time variable, is maintained to be more

! As is well-known, any time-energy uncertainty relation must be handled with care. Here, it should really be
interpreted as a position-momentum uncertainty, which is practically the same thing for systems with a constant
velocity.
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accurately defined. At the end of this section, we will see a more quantitative description of this
phenomenon.

It is surprising that the spectrum of combined states will still be discrete. The classical,
non interacting system would only be periodic if the two frequencies have a rational ratio:
pwi — qwy = 0, where p and ¢ are relative primes. The smallest period would be
T = 2mwq/w1 = 2mp/ws, so that we would expect equally spaced energy levels with spacings
w1/q = wy/p. Indeed, at high energies, we do get such spacings also in the quantum system,
with increasing degeneracies, but at lower energies many of these levels are missing. If the
frequencies have an irrational ratio, the period of the classical system is infinite, and so a
continuous spectrum would have to be expected.

When two quantum harmonic oscillators are considered together, this does not happen. The
spectrum is always discrete. In Fig. 2, it is indicated how to avoid having missing states and
variable degeneracies. We see that actually full series of equally spaced energy levels still exist:

At any given choice of a pair of odd relative primes p and g, we have a unique series
of bra- and ket states with energies wpq(n + %) , With wpg =pwi +quws.

It is easy to see that these sequences are not degenerate, that all odd relative prime pairs of
integers (p, q) occur exactly once, and that all states are represented this way:

Enyny = (n1 + %) w1 + (ng + %)wz =(n+ %)(pwl + quwo) ; (4.18)
2n1+1 p
—_— ==, 4.19
2n9 +1 q ( )

Some of these series are shown in the Figure.

We see that, in order to reproduce the quantum mechanical features, that is, to avoid the
unphysical states where one energy is positive and the other negative, we have to combine two
periodic systems in such a way that a new set of periodic systems arises, with frequencies wp, .
Only then can one safely introduce interactions of some form. Conservation of total energy
ensures that the bra and ket states cannot mix. States where one quantum oscillator would
have positive energy and one has negative energy, have been projected out.

But how can such a rearrangement of the frequencies come about in a pair of classical periodic
systems? Indeed, why are these frequencies (4.18) so large, and why are they labelled by odd
relative primes? In Fig. 3 the periodicities are displayed in configuration space, {¢!, ¢2}. The
combined system evolves as indicated by the arrows. The evolution might not be periodic at all.
Consider now the (5, 3) mode. We can explain its short period Ts3 = 27/ws3 only by assuming
that the points form equivalence classes, such that different points within one equivalence class
are regarded as forming the same ‘quantum’ state. If all points on the lines shown in Fig. 3 (the
ones slanting downwards) form one equivalence class, then this class evolves with exactly the
period of the oscillator whose frequency is wss .

In principle, this equivalence class can be formed in one of two ways: the information
concerning the location of a point on this line is lost, either because there is an inherent
information loss mechanism, implying that two different states may actually evolve to become the
same state, or it could simply be that this information cannot be transmitted to macroscopically
observable quantities. Omne could imagine a renormalization group technique that relates
microscopic states to states at much larger distance scales. Not all data are being faithfully
transmitted in the procedure. This latter option will later be dismissed as being impractical; it
is highly revealing to assume explicit information loss.

For the time being, imagine that information loss takes place by means of processes that are
random, uncontrollable or impossible to follow in detail, that cause our data point to fluctuate
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Figure 3. The equivalence class for oscillators in the case (p, q¢) = (5, 3). Lines with arrows
pointing right and up: time trajectories of individual points. Solid and broken lines going downwards:
(part of) the (5, 3) equivalence class at t = 0. For further explanation, see text.

along the line of its equivalence class. The line itself moves with the deterministic speed of the
original oscillators.

Observe in Figure 3 that, in case (p, ¢) = (5, 3), due to these fluctuations, five points of
system 1 alone now form a single equivalence class, and three points in system 2. This is because
we have assigned 5 quanta of energy to system 1 for every three quanta of energy of system 2.
More generally, we could represent this situation with the wave function

g = € (F3) (P91 4007 —wnat) 3 i(61497) (4.20)

where both variables ¢12 were taken to be periodic with periods 27 . The (p, ¢) equivalence
classes appear to be defined by the condition

pd' +q4? = Constant, (4.21)

and this means that the n-dependent part of the wave function (4.20) has a the same phase all
over the entire equivalence class, if we may assume that the second term in Eq. (4.20), arising
from the vacuum fluctuations %wt , may be ignored.

To describe the equivalence classes it is helpful to introduce time variables %, for the
subsystems a = 1,2, -+ in terms of their unperturbed evolution law, g, = wyt, . Then, writing
Ei{ =pwi, F2 = quws, one can characterize the equivalence classes as

B\ 6ty + BEydty = 0, (4.22)

which means that the reactions that induce information loss cause g, to speed up or slow down
by an amount +§t, obeying this equation. One can easily generalize this result for many
coexisting oscillators. They must form equivalence classes such that fluctuating time differences
occur that are only constrained by

Y E bta=0, (4.23)
a

which also are the collections of points that have the same phase in their quantum wave functions.
We conclude that, in the ontological basis {|¢)}, all states |¢) which have the same phase
in the wave function <g_1§\¢) (apart from a fixed, time independent term), form one complete
equivalence class.
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5. Energy and Hamiltonian

In the previous section, it was derived that the energies of the various oscillators determine the
shape of the equivalence classes that are being formed. However, this would require energy to
be a beable, as defined in Section 2. Of course, the Hamiltonian, being the generator of time
evolution, cannot be a beable. It is important to notice here, that the parameters p and ¢
defining the equivalence classes as in Section 4, are not exactly the energies of ¢! and ¢?; the
Hamiltonian eigenvalues are

Hy=(n+3)pw: ; Hy=(n+ 3)quws , (5.24)

with a common integral multiplication factor n + % . This n indeed defines the Hamiltonian
of the orbit of the equivalence class. Generalizing this, the relation between the energies E; in
Egs. (4.22) and (4.23) and the Hamiltonian H , is

H=Mn+3)E, (5.25)

where n defines the evolution of a single clock that monitors the evolution of the entire universe.

Now that the relative primes p and g have become beables, we may allow for the fact that
the periods of ¢! and $2 depend on p and ¢ as a consequence of some non-trivial interaction.
But there is more. We read off from Fig. 3, that p points on the orbit of ¢! in fact belong to
the same equivalence class. Assuming that the systems 1 and 2 that we started off with, had
been obtained again by composing other systems, we must identify these points. But this forces
us to redefine the original periods by dividing these by p and ¢, respectively, and then we end
up with two redefined periodic systems that are combined in the one and only allowed way:

p=q=1. (5.26)

Only a single line in Fig. 2 survives: the diagonal.

The picture that emerges is the following. We are considering a collection of variables ¢¢,
each being periodic with different periods T, = 27/w, . They each are associated with a positive
beable E,, such that E, = w,. The interactions will be such that the total energy F =3, E,
is conserved. Now as soon as these variables are observed together (even if they do not interact),
an uncontrollable mixing mechanism takes place in such a way that the variables are sped up
or slowed down by time steps dt, obeying Eq. (4.23), so that, at any time ¢, all states obeying

> Eata = (Y Ea)t (5.27)

form one single equivalence class.

The evolution and the mixing mechanism described here are entirely classical, yet we
claim that such a system turns into an acceptable quantum mechanical theory when handled
probabilistically.

6. The total Hamiltonian

Consider two systems, labelled by an index ¢ = 1, 2. System a is characterized by a variable
$® € [0, 2m) and a discrete index ¢ = 1, ---, N, , which is a label for the spectrum of states
the system can be in.



Third International Workshop DICE2006 IOP Publishing
Journal of Physics: Conference Series 67 (2007) 012015 doi:10.1088/1742-6596/67/1/012015

The frequencies are characterized by the values E! = w' , so that the periods are T? = 27 /w? .
Originally, as in Section 4, we had w’ = p,w, , where p; = p and ps = q were relative primes
(and both odd), but the periods w, are allowed to depend on p, , so it makes more sense to
choose a general spectrum to start with.

The non-interacting parts of the Hamiltonians of the two systems, responsible for the
evolution of each, are described by

HQ|ng, i) = (ng + 3)EL|ng, 1) (6.28)

where the integer n, = —o0, - -+, 400 is the changeable generating the motion along the circle
with angular velocity w,. We have

g = —i0/0¢° . (6.29)

The total Hamiltonian describing the evolution of the combined, unperturbed, system is not
HY + HY , but
1 2

HL, = (ngop + 3)(BL + E) (6.30)

where 4, j characterize the states 1 and 2, but we have a single periodic variable ¢** € [0, 27),
and

Niot = —i0/0¢™" . (6.31)
In view of Eq. (4.21), which here holds for p = ¢ =1, we can define
Pt — gl 4 2 (6.32)
while ¢! — $2? has become invisible. We can also say,

N1 = N9 = Niot - (6.33)

An interacting system is expected to have perturbed energy levels, so that its Hamiltonian
should become

H® + H™ = (nioy + 5) (B} + B} + 6E7) (6.34)

where §EY are correction terms depending on both i and j. This is realized simply by
demanding that the beables E! and/or Ej get their correction terms straight from the other
system. This is an existence proof for interactions in this framework, but, at first sight, it appears
not to be very elegant. It means that the velocity wy’ of one variable ¢! depends on the state
j that the other variable is in, but no matrix diagonalization is required. Indeed, we still have
no transitions between the different energy states 7. It may seem that we have to search for a
more general interaction scheme. Instead, the scheme to be discussed next differs from the one
described in this section by the fact that the energies £ cannot be read off directly from the
state a system is in, even though they are beables. The indices %, 7 are locally unobservable,
and this is why we usually work with superimposed states.

1C
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7. Limit cycles

Consider the evolution following from a given initial configuration at ¢ = ¢y, having an energy
E. Let us denote the state at time ¢t by F(t). The equivalence classes |1(t)) defined in
Section 4 are such that the state F(t) is equivalent to the state F(¢t+ At), where

At=h/E , (7.35)

in which A is Planck’s constant, or:

() € {F(t+nAt), Valusn ), (7.36)

for some n . Let us now assume that the equivalence indeed is determined by information loss.
That the states in Eq. (7.36) are equivalent then means that there is a smallest time #; such
that

F(tl + ’l’LAt) = F(tl) ,Vn>0. (737)

Thus, the system ends in a limit cycle with period At.
) _)_C) e

% At
t0/>
X N\ L

boot-at

Figure 4. Configuration space showing the limit cycles of an evolving system, indicating the times
to, t1 and the period At of a limit cycle. The points at to and t; form one equivalence class.

One now may turn this observation around. A closed system that can only be in a finite
number of different states, making transitions at discrete time intervals, would necessarily evolve
back into itself after a certain amount of time, thus exhibiting what is called a Poincaré cycle.
If there were no information loss, these Poincaré cycles would tend to become very long, with a
periodicity that would increase exponentially with the size of the system. If there is information
loss, for instance in the form of some dissipation effect, a system may eventually end up in
Poincaré cycles with much shorter periodicities. Indeed, time does not have to be discrete in
that case, and the physical variables may form a continuum; there could be a finite set of stable
orbits such that, regardless the initial configuration, any orbit is attracted towards one of these
stable orbits; they are the limit cycles. The energy of a state is then simply defined to be given

by Eq. (7.35), or E def h/P , where P = At is the period of the limit cycle, and h is Planck’s

constant.

Since this period coincides with the period of the wave function, we now deduce a physical
interpretation of the phase of the wave function: The phase of a wave function (in the frame of
energy eigenstates) indicates where in the limit cycle the state will be.

In general, we will have a superposition of many possibilities, and so we add to this the
interpretation of the amplitude of the wave function: the absolute value of the amplitude in the
frame of energy eigenstates indicates the probability that a particular limit cycle will be reached.
Thus, we have reached the exact physical meaning of a quantum wave function.

11
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We identified any deterministic system having information loss, with a quantum mechanical
system evolving with a Hamiltonian defined by Eq. (5.25). However, in order to obtain a realistic
model, one has to search for a system where the energy is extrinsic. With this, we mean that
the universe consists of subsystems that are weakly coupled. Uncoupled systems are described
as in Section 4; weakly coupled systems must be such that the limit cycles of the combination
(12) of two systems (1) and (2) must have periods Pj2 obeying

1 1 1
PN 7.38
Py P * Py’ (7.38)
which approaches the exact identity in the limit of large systems being weakly coupled. This is
the energy conservation law.

8. Discussion

When we attempt to regard quantum mechanics as a deterministic system, we have to face the
problem of the positivity of the Hamiltonian, as was concluded earlier in Refs. [2],[3],[4]. There,
also, the suspicion was raised that information loss is essential for the resolution of this problem.
In this paper, the mathematical procedures have been worked out further, and we note that
the deterministic models that we seek must have short limit cycles, obeying Eq. (7.35). Short
limit cycles can easily be obtained in cellular automaton models with information loss, but the
problem is to establish the addition rule (7.38), which suggests the large equivalence classes
defined by Eq. (4.21). We think that the observations made in this paper are an important step
towards the demystification of quantum mechanics.

We found that the energy eigenstates of a quantum system correspond to the limit cycles of
the deterministic model. If P is the period of the limit cycle, then the energy FE of this state
is E=h/P (see Eq. 7.35).

In models with more or less random evolution laws, one can guess the distribution of
the periods of the limit cycles. In the Appendix of Ref.[1], the distribution of limit cycles
with periods At = P is derived for a “completely random” model, which we define to be a
model where the mapping F(t) — F(¢t + 1) is chosen completely randomly for every F(t),
independently of how many other states F’(t) might map into the same state F(t+1). It is
found that the distribution of the cycles may then be expected to be logarithmic, which leads to a
logarithmic energy spectrum: the energy eigenstates are a Poisson distribution on a logarithmic
scale:

o(E)dE =dE/E =dlogFE , (8.39)
with cutoffs at
Enin = O(h/V2N) , Enax = O(1/61) (8.40)

where N = O(e") is the total number of possible states and 6t is some cutoff in time that
our system may have. This is not a realistic energy spectrum for a quantum field theory, so we
must conclude that realistic models will have to be far from random.

Cellular automaton models can be written down that show a rapid convergence towards
small limit cycles, starting from any state F(0). Conway’s “game of life” [5] is an example,
although that also features ‘glider solutions’, which are structures that are periodic, but they
move forward when released in an empty region, so that they are not limit cycles in the strict
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sense. It must be emphasized, however, that Conway’s game of life will not serve as a model
generating quantum mechanics. In a model generating quantum mechanics, the vacuum state
is the state with the longest limit cycle, since it has the lowest energy. Thus, the empty state
in Conway’s game of life would carry more energy than its glider solutions.

The limit cycles of a random model are too long, those of cellular automata such as Conway’s
Game of Life are too short. In the real universe we have a small number of massless particle
species, and many more massive ones, generating a rich spectrum of energies all very low
compared to the Planck energy. If we assume that the Planck time would be Nature’s natural
time scale, then we observe that there must be many limit cycles whose periods are very long
compared to the Planck time. Our universe appears to be built in such a way that, as soon as
several of these cyclic limiting solutions are allowed to interact, new limit cycles will be reached
with shorter periods, due to information loss.

In cellular automaton models, one might be able to mimic such a situation best by introducing
a nearly conserved, positive quantity resembling energy, which can be seen statistically to
decrease slowly on the average, so that the most chaotic initial states relax into more organized
states that can easily end up in a limit cycle. The more chaotic the initial state, the smaller the
period of its eventual limit cycle is expected to be, but there are many special initial states with
very long limit cycles: the low energy states.

States of interest, with which we might attempt to describe the universe as we know it, must
be very far away from any limit cycle. They are also far away from the strictly stationary
eigenstates of the Hamiltonian. This means that we do not yet know which of the numerous
possible limit cycles our universe will land into. This is why we normally use wave functions
that have a distribution of amplitudes in the basis of the Hamiltonian eigenmodes. The squares
of these amplitudes indicate the probability that any particular limit cycle will be reached. Also
note that, according to General Relativity, taking into account the negative energies in the
gravitational potentials, the total energy of the universe should vanish, which means that the
entire universe might never settle for any limit cycle, as is indeed suggested by what we know
of cosmology today: the universe continues to expand. The limit cycles mentioned in this paper
refer to idealized situations where small sections of the universe are isolated from the rest, so as
to be able to define their energies exactly. Only when a small part of the universe is sealed off
from the rest, it is destined to end up in a limit cycle.

It may be of importance to note that our definition of energy, as being the inverse of the
period of the limit cycle, supplies us with an absolute scale of energy: it is not allowed to add
a constant to it. Moreover, the energy E in Eq. (5.25), as opposed to the Hamiltonian H ,
is a beable. Thus it is allowed to couple it to gravity by imposing Einstein’s equations. If
indeed the vacuum has a limit cycle with a large period, it carries a very low energy, and this
is why we suspect that the true resolution of the cosmological constant problem [6] will come
from deterministic quantum mechanics rather than some symmetry principle [7]. Earlier, the
cosmological constant has been considered in connection with deterministic quantum mechanics
by Elze [8]. The fact that the observed cosmological constant appears to be non-vanishing
implies that a finite volume V' of space will have a largest limit cycle with period

87hG
P =
AV

(8.41)

which is of the order of a microsecond for a volume of a cubic micron. If A were negative we
would have had to assume that gravity does not exactly couple to energy.

Lorentz transformations and general coordinate transformations have not been considered
in this paper. Before doing that, we must find models in which the Hamiltonian is indeed
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extensive, that is, it can be described as the integral of an Hamiltonian density Too(Z,t) over
3-space, as soon as the integration volume element d3# is taken to be large compared to the
‘Planck volume’. When that is achieved, we will be only one step away from generating locally
deterministic quantum field theories.

What can be said from what we know presently, is that a particle with 4-momentum p, must
represent an equivalence class that contains all translations z# — z#+ Az with p, Az# =nh,
where n is an integer. Note that a limit cycle having this large transformation group as an
invariance group is hard to imagine, which probably implies that this particular limit cycle will
take an infinite time to be established. Indeed, a particle in a fixed momentum state occupies
the entire universe, and we already observed that the entire universe will never reach a limit
cycle.

In the real world, we have only identified the observable quantum states, which we now
identify with the equivalence classes of ontological states. We note that the physical states
of the Standard Model in fact are also known to be gauge equivalence classes, Local gauge
transformations modify our description of the dynamical variables, but not the physical
observations. It is tempting to speculate that these gauge equivalence classes (partly) coincide
with the equivalence discussed in this paper, although our equivalence classes are probably a lot
larger, which may mean that many more local gauge symmetries are still to be expected.

It is even more tempting to include here the gauge equivalence classes of General Relativity:
perhaps local coordinate transformations are among the dissipative transitions. In this case, the
underlying deterministic theory might not be invariant under local coordinate transformations,
and here also one may find novel approaches towards the cosmological constant problem and
the apparent flatness of our universe.

Our reason for mentioning virtual black holes being sources of information loss might require
further explanation. Indeed, the quantum mechanical description of a black hole is not expected
to require information loss (in the form of quantum decoherence); it is the corresponding classical
black hole that we might expect to play a role in the ontological theory, and that is where
information loss is to be expected, since classical black holes do not emit Hawking radiation. As
soon as we turn to the quantum mechanical description in accordance to the theory explained
in this paper, a conventional, fully coherent quantum description of the black hole is expected.

Although we do feel that this paper is bringing forward an important new approach towards
the interpretation of Quantum Mechanics, there are many questions that have not yet been
answered. One urgent question is how to construct explicit models in which energy can be seen
as extrinsic, that is, an integral of an energy density over space. A related problem is how to
introduce weak interactions between two nearly independent systems. Next, one would like to
gain more understanding of the phenomenon of (destructive) interference, a feature typical for
Quantum Mechanics while absent in other statistical theories.
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