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Abstract:

We give a short report on work done in recent years on solvable models for quantum
mechanical crystals (crystals with point interactions, thus three dimensional extensions of Kronig
Penney’s model). We discuss the mathematical definition of the Hamiltonian and its spectral
properties in the case of perfect crystals, as well as in the case of crystals with deterministic or
randomly distributed point defects. We also discuss the connection of such point interactions
Hamiltonians with the study of scattering by a large number of small randomly placed scatterers.

1. Introduction

In this paper we shall report on some recent mathematical work on models describing crystals
with defects which are randomly distributed. In the formulation of these quantum mechani-
cal models so called point interactions arise; these are interactions localized at points of the
perturbed crystal, and are felt by the particle (electron) moving in these crystals (in the usual
one-electron approximation of the motions of electrons in a crystal). The crystals we discuss
here are mainly three dimensional (but similar results are obtained for two and one dimensional
crystals). Despite extensive and very interesting work developed in recent years on point inter-
actions in three dimensions, described e.g. in monographs [AGHKH], [DO], it seems that quite a
few physicists, mathematical physicists and mathematicians still believe that point interactions
only are possible in one dimension—an immediate association being with the Kronig-Penney
model (since it has entered standard text books in solid state physics). This entire workshop
has been a proof of how active is the research concerning three dimensional models with point
interactions. We hope that the present contribution might also help eliminating eventually the
above mentioned prejudice. In fact all is done in one dimension with point interactions can be
done also in three dimensions, provided of course the point interactions are correctly defined.
We shall report here mainly on work of the authors and their coworkers, in particular, as far
as random perturbations are concerned, F. Martinelli. We refer to other contributions in this
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volume for complementary topics, see also e.g. [Pa] (and references therein). Our basic reference
for this paper is the monography [AGHKH], to which we also refer for more complete references.
For the reader at his first contact with point interactions let us start by answering briefly the
question:

1.1 What are point interactions ?

A point interaction at the origin 0 in the d-dimensional Euclidean space R? should be a pertur-
bation (“potential”) localized at 0 of the free Hamiltonian, thus the Hamiltonian (Schrédinger
operator) describing this interaction has the form (in suitable units)

H="%“=A+X8(z)" (1.1)

as an operator in L2(IR?,dz) (square integrable functions over IR?). Does H exist as a well
defined self-adjoint operator, is it non trivial in the sense of being different from the free part
—A? More generally point interactions at a subset ¥ of R? should be

H=“-A+) A6z —y)* (1.2)
yeY

in L2(IR4, dz).

Models of this type, with different choices of Y, occur in nuclear physics, solid state physics,
electromagnetism, see [AGHKH] and references therein. It is well known that there is a “no go
theorem” for Y discrete (without accumulation points) if d > 4, —A being already essentially
self-adjoint on Cg°(IR? — {0}) (C* functions of compact support in the complement of the
origin) if d > 4. 1).

It is also well known that, as an application of Krein’s theory, as first discussed by Berezin
and Faddeev, when d < 3 for Y consisting of only one point there exists a 1 parameter family
indexed by o € R, of different realizations —Ay # —A of H. The parameter a determines for
d = 2,3 a renormalized coupling constant. For d = 1, a is simply A\. The way —A, arises is
perhaps best seen by an heuristic argument (justifiable by nonstandard analysis [AFHKL]}):

-1
(A ) =G - Gy [% + vck] VG, (1.3)
with Gi = (-A - k"’)_l, k% # 0, as computed rigorously for V say bounded and continuous.
Setting then formally V(2) = é(z) in this formula one sees that, for d = 2,3, one has to choose
1 = —Go(0) — a to compensate the singularity of [Gx(0)| (= +oo for d = 2,3). By this choice

of A we get [1 + VG,,] = i—" — a. As suggested by this (1.1) can then be defined using the final

T
result of this formal computation, namely as the selfadjoint operator —A4 in L2(RR?, dz),d <3
with resolvent kernel given by

(~80= k) (29) = Gale = ) = Ga(a) (F - ) Ga). (14)

1) It is a different story if instead of L2(JR?, dz) one considers some other spaces, as in some
uses of point interactions in electromagnetic theory, see references to work by Grossman and
Wu in [AGHKH). For recent results on point interactions situated on non discrete subsets Y
see in addition to [AGHKH)] and contributions to these proceedings, [Bra}, [ABrR], [AMaZ1-3],
[AFHKL)], [AFHKKL], [Ko], [H], [Pan], [Te] and references therein.
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Remark: The mentioned justification of the above formal computation by nonstandard analysis
yields that, for d = 3, and ¢ infinitesimal, —A + Ao(€)8(z), with §.(x) a nonstandard realization
of the §—function (in standard terms, §;(z) is a delta sequence for € | 0), is near standard and
defines ~A, # —A if Ao(e) = [-—4—;- + 8 a] 4763, o € R. A similar result holds also for d = 2.

See [AFHKL] and references therein. (1.4) or the observation in the remark give a realization
of —A, as a §— interaction or point interaction of strength a at the origin.

Remarks 1) It is useful to remark that setting o = 400 formally in (1.4) the r.h.s. reduces to
G, so that it is natural to define ~A o = —A.

2) Besides the mentioned two ways to define —A,, the one by the resolvent and the nonstandard
analytic one, there exist other ways to define —A, e.g.

a)“by boundary conditions“: formulated for d = 3, —A, can be characterized as the extension
of —A on C§°(IR® — {0}) functions with domain such that if f = D(—A,) and f(z) = f(r),
r = |z|, then & (rf(r)) = 4ra (rf(r)) at r =0.

b) “by resolvent limits“: define for ¢ > 0, H, = —A + A(e)e"2V(z/¢e), with V in Rollnik’s
class, (1+]-[)V € LY(IR?*), and A € C}(IR), A(0) = 1, X'(0) # O such that —1 is an eigenvalue
of vsignV Gov, v = |V|} with eigenfunctions ¢j, § = 1,...,N in L*(IR? dz) such that the

“resonance functions* Govep; are not in L2(IR%,dz) for some j. Then H, converges in norm

resolvent sense as € | 0 to —A,, with a = E-NL;E—L—)I—; This is an approximation of —A, by
v, 5
local potentials, there are also approximations by non local potentials, see again [AGHKH].
¢) Another useful construction of —A,, which provides probabilistic tools for the study

1 e41|'¢:|:z|

of point interactions, has been first discussed in [AHKS]. Let, for d = 3, @a(z) = |a|7 37—,

@ € R. Let H, be the self—adjomt positive operator in Lz(3 3, |¢al® dz), uniquely associated
with the Dirichlet form E(f, f) = L [ |Vf[*|¢al?dz in L2(R ) lpol?dz)

(in the sense that (Hé IN:5 f) = E(f,f), Vf € D(A&) = D(E) ). Then we can define

—Ao by —Ag = paHap7! — (47a)?. H, on CP(R® — {0}) is given by —A — B4 - V, with
Ba = Vinp,. H, generates a diffusion Markov symmetric semigroup in L2(R?; |pq|2dz), with
invariant measure [pq|2dz.

Having solved the problem of the construction of self-adjoint realizations of the one source point
interaction, by one of the above methods, it is not difficult to extend the solution to other cases,
of the type (1.2.) with Y consisting e.g. of N points in IR® or a discrete subset of IR® (see
below). One can also discuss the case where Y is'some other suitable geometrical measure zero
subsets of R® like e.g. 5? (see e.g. [AGS]) or the path of Brownian motion on R%,d < 5, run
in [0,t] (see [AFHKL], [AFHKKLY]). In this article we shall discuss some mtuatlons where the
particle and the centers are in IR?, for other cases in particular finite and infinitely many centers
in R% d = 1,2, see [AGHKH] and also e.g. [DO), as well as contributions to this conference, in
particular by P. Exner and P. Seba.

1.2 N-centers point interactions

Before going over to the case of infinitely many centers, let us consider the N-centers case, given
heuristically by (1.2.) with ¥ consisting of N points (“sources“) in IR®. We give strengths
{ay,y € Y} corresponding to the sources y € Y. The point interaction Hamiltonian for the
sources y, with strengths o, denoted by —A, y, is given in terms of its resolvent by

(~Bay =¥) " =6 = Y (Gl =9)-) Loy (Bl Guly' -, (15)

yy'eY
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with 4
i 5
Fair®lyy = [(F =) 6y =)+ Gatr=)| wve¥ (16)
vy

where Gi(2) = Gi(2) for z # 0 and G4(z) = 0 for 2 = 0.
Remark. Actually there exist N? self-adjoint extensions of —A restricted to C'* funtions of
compact support outside the sources y € Y, only N of which are covered by above definition.
However only the ones given above do correspond to separated boundary conditions at the
sources, the others are "non local” involving non separated boundary conditions, see [DaGr],
[Bra]. Having the above resolvent it is possible to discuss in details spectral properties and
scattering for N centers, see [AGHKH].

1.3. The case of infinitely many centers

We shall consider the case of Hamiltonians given formally by (1.2) with Y an infinite subset of
IR?, discrete in the sense that

Y= {y.',i € N} with infj¢j:|yj — yj’l > 0.

We give sources aj, j € IV and denote for any ¥ C Y, Y finite, by & the restriction of a to Y.

One then defines the Hamiltonians for point interactions with sources ¥ and strengths o by the
-1 .

limit in the sense of strong resolvent convergence of (-—A av — k"’) asY1Y.

That this limit exists is easily seen by using monotonicity arguments, see [AGHKH]. Since by
(1.2) we have good control on the approximants it is possible to get information on the limit,
especially in the case where (a,Y) have suitable symmetry properties, see [AGHKH]. Such a
case is the one of crystals, which we shall handle in the next chapter.

2. Periodic point interactions and crystals.

We shall consider in the one electron model of a solid the case of a multiatomic crystal or a
perfect alloy, with point sources located at the points of a subset Y of IR® of the form

3
Y=A4+Y,, withA= {Znia;,(nl,ng,na) € 23}
i=1

a Bravais lattice and Y, a finite number of points of IR®. Let I' = IR®/A be the basic periodic
or primitive cell or Wigner-Seitz cell, i.e.

. 2 11\
Fz{gsga;,sge [—5,5)}

Let b; be dual basis vectors in the sense that
aib; = 2n6;;, 4,7 =1,2,3.
Let

3
I'= {Zn;b;,(nl,ng,ng) € Za}.

i=1
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T is called the dual lattice.
2 11
A — 3 - He . —_—— =
A_R/I"_{éls.b.,s.e[ 2,2)}

is the so called Wigner-Seitz cell of the dual lattice T or Brillouin zone. I is the dual group
of A and is the basic periodic cell or primitive cell of the dual lattice. One has the direct
decomposition L? ([\, 12(r)) = [P1(T)ds. We can look upon 6 + 7,7 € T as coordinates

corresponding to p € IR®. Our periodic Hamiltonian B, describing crystals (in Fourier space),
is unitarily equivalent to a direct integral:

A $ A
j: g~ / H(68)d8,
A

for some H(6) acting in 12(T).

The study of the spectrum of H is then reduced to the study of the spectrum of H(6).

If H is the momentum space realization of a Hamiltonian, then H(6) is called the reduced
Hamiltonian. E.g. if H is —~A, then ~A(8) is the operator of multiplication by |y 4+ 6|2 in I*(T')
and the spectrum of —A(6) is the discrete set |+ 6|2, so that o(—A) = U o(—A(8))d8 consists

och
of bands, the spectrum in each band being purely absolutely continuous. We shall now discuss
the Hamiltonians corresponding to point interactions located at the points Yp + A. Formally it
is given by —A + V(z), with

Vie)== Y D pblz—y;—N), (2.1)

,,,,,

with (unrenormalized) strengths u; € R, j = 1,..., N (with N number of points in Yp).

The following Theorem, proved in [AGHKH], shows how to construct the point interaction
Hamiltonian corresponding to the interaction given by the above formal expression (2.1):

Theorem 2.1 Let
. 1 &
(B%@)0) ) = v+ 0Pa(n - 2 Y-t (¢550)9) 456),
=1
with K > 0 a cut-off, (,) the scalar product on I?(T'), and
¢§f(0, 7= X, (v + e)e—i(‘H*o)!li’

Xk being the characteristic functions of the closed ball of radius K centered at the origin. We
have that

D(A%(8) =D (-A@) = {g €M), 3 b +otle(nf? < oo} :
~er
Choose p}* = (a_,- + ;',f—,)-l, with a; € R. Then BK (8) converges in norm resolvent sense as

K — o0 to a self-adjoint operator —Aa, A,Y,(0), the reduced Hamiltonian for point interactions
on A 4 Y. This operator is given by its resolvent through the formula

-1 R N
(~Baan(® = F) " =@ +IE1™ Y [Tanvolh, 8153 (Fory,, (0),7) Fiogs (6,

Ji'=1
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[Can,vo (K, 0)]; 5 = b5 — gx(y; — 5, 0),
with
i(y+6)z
Llm Y forz € R — A
so 2 _ L2
WiK=co e irracr!Y HOF — %

gk(zae) =
-3 -3 . -1, A
(2m)-3%e '“Kll_x:noo —4xK + Z (v +61> —&*) " |A|l| forze€A.

YET|v+6{<K

e—i(r+0)y -1
= = 6> — &?
Fry(6,7) P 7 Gr(6) = (Iy + 0" — &)

The periodic point interaction Hamiltonian with sources on A + Yy and strengths ay; = ay; 44
(independent of A € A) is given by —Aq a1y, = [, l-? (—Aa,A,v,(0)) d6, hence determined by the

above resolvent. N

In the simplest case Y = {0}, writing —Aa,A for —AG'AHO), we have the following spectral
results:

Theorem 2.2 o (—AG,A(O)) is purely discrete consisting of isolated eigenvalues of finite

oo
multiplicity. We have R — T + 6|> = U I,.(8), with Iy(8) = (—00,6%), I,(8) being bounded
n=0
disjoint open intervals for n > 1, each containing exactly one eigenvalue E®A(8) for —Aq 2 (6).
These eigenvalues are increasing in o In addition a point EA(f) € |I' + 6|* is an eigenvalue
of —Ay A(6) of multiplicity m > 1 if and only if there exist 7, ..., ym € I' such that EA() =
[0 + 8% = ... = |ym + 6%
For the proof see [AGHKH]. Having this result one then gets information on the spectrum of
the point interaction Hamiltonian for a crystal A:

Theorem 2.3 The spectrum o(~Aq4 1), of a crystal with point interactions on a lattice A,
with strengths a equal at each point of the lattice, is purely absolutely continuous and has the
form of the union of two intervals

o (~Ban) = [ESH0), B (680)] U [B7A, o),
with .
6y = _E(bl + b + b3),

- . o 1 i o
E A = min {E,,_’A(O), —lb—lz} = mingg g [EblA(o)] y

with
Ib—lsbj1j=1)273’ b—e{b17b2yb3}~

We have E&A > 0 for all a € IR. Moreover ES"(8p) < 0if a < ag 4 = go(0,65) (in this case we
have thus effectively a gap!). The spectrum of o (—A4,4) is monotone increasing in a. One has
E(«)x,A(O) N {0 as a — +00
-0 as a —* —00
and

2
i e

There exists an a;,4 € IR such that
o (~Aqp) = [E(‘,"A(O),oo) Va > aa
(i.e. for large enough strengths the gap closes).
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Remark, a) There exist some extensions of this result to the case where the basic cell consists
of more than one point i.e. [Yp] > 1. E.g. in such a case 0 (—Aq,v,+4) N (—00,0) consists of at
most |Yp| disjoint closed bands, see [AGHKH)] and references therein.

b) One can approximate —Ag,y,+4 in the norm resolvent sense by scaled short range Hamilto-
nians, which can be exploited for obtaining information on crystals with interactions not of the
point interaction type.

3. Random point interactions, defect crystals.

We consider the models of Sect. 2 with the sources on Y5 + A replaced by random sources
located at the random subset Y(w) of IR, with w a point in a probability space 2, Y (w) being
for each w a countable subset {y;(w),j € IV} of R? such that inf; jren|y;(w) — yj (w)] > 0.

Let a(w) = {ay,(w),j € IN} be a Y-indexed family of random strengths (real valued variables).
For each w, by the methods indicated in Sect. 1.3, we can define a point interaction Hamiltonian

Ho=~Ba@),yw), weL

A particularly interesting case is the following. Let X, A € A be i.i.d. {0,1}-valued random
variables associated with the points of a Bravais lattice Ag. Set p = P(X) = 1). Choose Y(w)
to be the set of occupied sites in A i.e. Y(w) = {X € A, Xa(w) = 1}. Assume {ay, A € Y}
are i.i.d. random variables with supp P,, compact. Then H, has the interpretation of a point
interaction Hamiltonian describing a crystal with randomly distributed defects. If A(w) = A
then it is natural to talk of a random alloy, with types of alloys described by the state space of
a. Using the fact that both @ and Y are i.i.d. we have the following theorem:

Theorem 3.1 (H,,w € Q) is an ergodic family of self adjoint operators in L"’(Ra) (relative
to the natural shift operator in path space). The spectrum o(H,,) and its different parts like
Gess(Ho), and the closure o,(H,,) of the point spectrum of H,,, are non random subsets of IR,
almost surely. Moreover, the discrete spectrum o4(H,,) is void, almost surely. Finally, for any
T € IR there exists a subset 2, of §2 of probability 1 such that 7 is not an eigenvalue of finite
multiplicity of H,, for w € Q.

Remark. This result belongs to a type of results established in various contexts by Pastur,
Kirsch-Martinelli, Englisch-Kursten, see e.g. [AGHKH)], [Ki], [KiMa] and references therein.

It is useful to refer to the family ®(w) = {ar(w), Xr(w), A € A} as to a ”stochastic poten-
tial”. Let H(®(w)) = Ho = —Ayw),y(w) be the corresponding Hamiltonian. We call any
@ = {(€x,m2) € suppPa, % {0,1},A € A} an admissible potential. The set of all admissible po-
tentials is denoted by A. Let us set A(¢) = {A € A,nx =1} and H($) = —Aag),a(9)- We call
¢ € A periodic with periods L;,7 = 1,2, 3 if there exist linearly independent L; € A — {0} such
that éxyr;, = €x and a4, = na for all A € A and all ¢ = 1,2,3. This means that the charges
as well as the occupied sites are L;-invariant. We call P the family of all periodic admissible
potentials. We then have

Theorem 3.2 The spectrum o(H(¢)) of the Hamiltonian H(¢) for any admissible potential
¢ is contained in T with ¥ = o(H(®(w))) for almost every w € 2. Moreover I = U o(H(¢)) =
p€A

U o(H ().

$EP
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Prooft This also follows from the references mentioned in the previous theorem, see e.g.
[AGHKH].

Remark: One can show in addition that:
a) Given p <1 the set T depends only on suppPh,

b) I has a band structure, see [AGHKH].

It is possible to give a rather detailed study of the variation of the negative part of the spectrum
of H(¢(w)) as one removes some of the point interactions. In fact we have

Theorem 3.3
Let p = inf{suppPy,],
v = sup[suppPy,].

Assume that either Eg**(0) < E!**(8,) or suppPa, = [, v]. Then the assumption p = 0 implies

5 = [B40), By (80)] U [Et*, o]
=o(=Aua)Ua(—=A,0).

(3.1)

If v < ag,a we have
£0(=00,0) = [ELA(0), By (80)]

and if 4 > ay A we have £ = o{—A, 5).
Remark., 2)If0 < p <1 the same results hold, but (3.1) should be replaced by

£ = [ (0), B3 (80)] U0, 00) = o(~Aun) Us(=Bu,a) U [0,00).

b)For 4 > a;,4 we have the result that o(H,) = o(—A,r) almost surely, i.e. the spectrum
does not change if starting from the random Hamiltonian we create or switch off points with
arbitrary strength.

¢) For results on random Hamiltonians formally given by

H(w)= A+ /0 8z — bs,w))ds

with b: [0,¢] — R? a Brownian motion in IR?,d < 5 see [AFHKL] [AFHKKL] and references
therein. Such Hamiltonians arise in the description of the scattering of a quantum mechanical
particle by a polymer. Moreover, via the Feynman-Kac formula, they also enter the construction
of polymer measures of the heuristic form

exp [*,\ /o t /o ' 6(b(s1) — b(s2))ds1ds, | dP(b)dP(D),

with (b, P), (5, 13) two independent Brownian motions in JR?,d < 4. The densities of such mea-
sures also occur in Symanzik’s representations of self-interacting scalar quantum fields described
by interaction densities v(s) which are functions of 52, like e.g. in the (¢*)s-model, see [AFHKL).
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4. Point interactions and scattering by a large number
of small randomly placed scatterers

In the definition of the NV center point interaction (1.5.) all the physical constants characterizing
the strength of the interaction, the energy of the quantum particle and the mutual distances of
the scatterers are contained in' the matrix 'y, y (k).

In particular they appear in I' as the inverses of three lengths: the a,,y € Y = {¥;,...,Yn}
represent the inverses of an "effective linear size " of the scatterers, (see [AGHKH]), k is propor-
tional to the inverse of the wave length associated with the quantum particle and the Gx(y —y')
are proportional to the inverses of the distances between the scatterers. In this section we shall
study some limits N — oo, different from those studied in Sect. 2,3, but also of physical
relevance cfr e.g. [Lo]. We report here on work in [FHT] - [FOT].

In the following the orders of magnitude of the above lengths will be expressed as powers of
the number N of the scatterers and the volume of the system will be considered fixed and
finite (of course only the dimensionless ratios of the lengths are to be considered as meaningful
parameters). We shall consider separately three situations, which we shall denote by cases 1),
2), 3).
Case 1:

inf yyevly —y'| = 0(N~"32),k™! =0(1),0;" = O(N )

. In this case there is a large number NV of scatterers in a finite volume, each one of strength being
of order N=1. The wavelength of the quantum particle is large with respect to the scatterers
effective length and to the interparticle distance.

Physically, in this case one expects a finite effective potential depending only on the local
strength per unit volume of the scatterers.

Case 2;
inf ,peyly—y'| =0 (N"é) 1 =0 (N-%) Niag!=0(N-%)

In this case the wavelength is of the same order as the interparticle distance. Each scatterer has
infinitesimal strength but the ”surface per unit volume” is kept constant.

The limit problem is expected to contain information about the local statistics of the interparticle
distances. It is the relevant limit, for example, in modelling scattering of neutrons by liquids
(scattering due only to the nuclei of the atoms in the liquid). In fact this kind of scattering
experiments are often performed to investigate the range of solid-like order in the interparticle
distances in fluids.

Case 3: All the lengths are of order N=%. This case is in fact a genuine infinite volume limit
case. There are no negligible terms in the I' matrix.

This case is the relevant one for modelling amorphous or perfect crystalline solids, as discussed
in Sect. 2,3. In what follows we give results for cases 1) and 2), for dimension d = 3 ( the case
d = 2 can be worked out as the d = 3 case, whereas the case d = 1 is much simpler).

Casel Let V(M= {yim, ...,y}VN)} be a sequence of N-tuples of points in IR* such that

N
1 w
=Y 6 —, p(z)dz
Ni=1 v Nfoo

with p(z) 2 0, p(-) € L}(IR*)NL*(IR®), [ s p(z)dz = 1, the convergence being weak convergence
of probability measures on IR3.
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Some technical assumptions on the distribution of the y§N) will be needed; e.g.

inf ¢

y'(N) (.N)\ > ¢N™* for some a € (%,l)

VN
-#J y

If, for example, the ygN) are chosen to be N independent, identically distributed (i.i.d.) random
points of IR® with common distribution density p, the above stated assumptions are satisfied by
any configuration of a set of measure increasing to 1 when N goes to infinity.

Let oM = {ay,y € Y (M}, We are looking for the existence of a limit 6perator for the sequence

(N)

—ApNqen,yen and for an exphc1t characterization of the limit. If all the &}’ are bounded away

from 0 and inf #JraN ly(N) yJ, ){ > 1, as a first order in a perturbation expansion, we get,
as N — oo:

[Cnatn,ym]; ) ~ No{Ms; ;
and

-1
(*ANQ(N) vy — k) (z,y) ~ Gr(z,y)+

o)) (M) )™
NZG" (=255) 6 (5™3) (=5) (1)
If the ag-N) are chosen to be the values a (y§ )) in y;N) of a function which is continuous

(outside a set of p(z)dz measure 0 ) and 0 < @ < ja| < b < oo, the right hand side of (4.1)
converges to

Gi(z,y) + /}m Gk(m,z)zgz; Gi(z,y)dz =

=(-A-B)@y + o - 2o @) (4.2)

(4.2) is the first term of a perturbation expansion of (—=A 4 £ — k?); up to the first order
~ApNav,yn) behaves for large N like (—A — £).
In fact the result is true up to any order in the expansion. One has in particular the following

Theorem 4.1.: Under the assumptions made before

_ -1
8 — }]lg,lo (_ANO,(N)'Y(N) + /\) 1= (——A - 5 + /\) = A;}

for A > 0 sufficiently large.

For a detailed proof and further comments see [FHT]. If the y(N) are i.i.d. random points with
common distribution density p the above stated theorem can be looked upon as an operational
law of large number. The corresponding central limit theorem can also be proved:

Theorem 4.2.: For any f,g € L2(IR?) the random variable
} (f, [(—ANaw),y(N) + r\)h1 - A:] 9) = (MY ()

converges in distribution when N goes to 400 to the gaussian random variable £* with mean 0
and variance.

E(¢)) = (431 439,072 A5 f Ag) |, — (43,07  A39)
(here L2 = L*(IR?, pdz)).
For the proof and further comments see [FHT] and [FOT].
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Remark: If V is any function in L'(IR*) N L2(IR®) and we take p,a as
o) = Ve [ IV @ds
a(a) = (sign VYo [ | W(alds

go that £ =V, then Theorems 4.1, 4.2 express the fact that any one particle Hamiltonian with
a potentlal V of class L' N L? can be arbitrarily well approximated by a Hamiltonian with zero
range potential on an increasing number of points.

Case 2: In experiments of neutron scattering, neutrons with a wavelength of a few Angstrgms
are used to investigate samples of condensed matter. The average interparticle distances are of
the same order of the wavelength, while the range of the interaction of the neutrons with the
nuclei of the atoms is of the order

10-13 em.
N

A first order expansion for the differential cross section do /dS2 for a formal potential 27rb25(x -
=1

y'(N)) (in the usual units such that i = m = 1) gives

do 2N iz (o™ —yf™)

ij

where z is the transferred momentum and ygN) are the positions of the scatterers.

Notice that the formal expansion cannot be continued beyond the first order term since infinities
due to the singularity of the G at coinciding points would appear in each higher order term.
For the N-centers point interaction the above mentioned result is exact for N large in the
scaling described above as pertaining to case 2 (which in a box of volume proportional to N
1
2

can be redefined as |y; — y;| = 0(1),k~! = 0(1), Nia _l = 0(1)). In fact let (:Q) 4 be

Ng ,Y(N)
the differential cross section correspondmg to N- center zero range interactions, all of the same
strength N=%a~1, placed at the points {yl ) - ,yN )} Under some technical assumptions on

the distribution of the y( )it is possible to prove that

. do 1 ik (M) -yi™)
! i - W) = 3
N o (dQ)Nh,Y(N) Na? ,Z_,:e ° (“3)

For this see [DFZ].

Notice that if the yEN) are distributed according to an homogeneous point process in IR® of
density p and if the static pair correlation function given by
(N )}

is decaying fast enough to p for large r, the common limit of the two quantities appearing in
(4.3) is % + %§(z) (§ denotes the Fourier transform of g).

It should be stressed that for the N-centers point interaction the terms of the perturbation ex-
pansion, disappearing in the limit N — oo, are explicitly known.

51((7‘)2 dr = Pr { Iy(N) (N)I € (r,r+dr)|y,
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