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A b s t r a c t :  
We give a short report on work done in recent years on solvable models for quantum 

mechanical crystals (crystals with point interactions, thus three dimensional extensions of Kronig 
Penney's model). We discuss the mathematical definition of the Hamiltonian and its spectral 
properties in the case of perfect crystals, as well as in the case of crystals with deterministic or 
randomly distributed point defects. We also discuss the connection of such point interactions 
Hamiltonians with the study of scattering by a large number of small randomly placed scatterers. 

1. Introduction 

In this paper we shall report on some recent mathematical work on models describing crystals 
with defects which are randomly distributed. In the formulation of these quantum mechani- 
cal models so called point interactions arise; these are interactions localized at points of the 
perturbed crystal, and are felt by the particle (electron) moving in these crystals (in the usual 
one-electron approximation of the motions of electrons in a crystal). The crystals we discuss 
here are mainly three dimensional (but similar results are obtained for two and one dimensional 
crystals). Despite extensive and very interesting work developed in recent years on point inter- 
actions in three dimensions, described e.g. in monographs [AGHKH], [DO], it seems that quite a 
few physicists, mathematical physicists and mathematicians still believe that point interactions 
only are possible in one dimension--an immediate association being with the Kronig-Penney 
model (since it has entered standard text books in solid state physics). This entire workshop 
has been a proof Of how active is the research concerning three dimensional models with point 
interactions. We hope that the present contribution might also help eliminating eventually the 
above mentioned prejudice. In fact all is done in one dimension with point interactions can be 
done also in three dimensions, provided of course the point interactions are correctly defined. 
We shall report here mainly on work of the authors and their coworkers, in particular, as far 
as random perturbations are concerned, F. Martinelli. We refer to other contributions in this 
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volume for complementary topics, see also e.g. [Pa] (and references therein). Our basic reference 
for this paper is the monography [AGHKH], to which we also refer for more complete references. 
For the reader at  his first contact with point interactions let us start  by answering briefly the 
question: 

1 .1  W h a t  a r e  p o i n t  i n t e r a c t i o n s  ? 

A point interaction at the origin 0 in the d-dimensional Euclidean space ~ d  should be a pertur- 
bation ("potential") localized at 0 of the free Hamiltonian, thus the Hamiltonian (Schrbdinger 
operator) describing this interaction has the form (in suitable units) 

H = " -  & + AS(x)" (1.1) 

as an operator in L2(IRa, dx) (square integrable functions over ~d) .  Does H exist as a well 
defined self-adjoint operator, is it non trivial in the sense of being different from the free part 
- A ?  More generally point interactions at a subset Y of R d should be 

H = " -  A + E Ay~(x - y)" (1.2) 
yEY 

in L2(.~ d, dx ). 
Models of this type, with different choices of Y, occur in nuclear physics, solid state physics, 
electromagnetism, see [AGHKH] and references therein. It is well known that there is a "no go 
theorem" for Y discrete (without accumulation points) if d > 4, - A  being already essentially 
self-adjoint on C ~ ( ~  a - {0}) (C ~ functions of compact support in the complement of the 
origin) if d > 4. I). 

It is also well known that,  as an application of Krein's theory, as first discussed by Berezin 
and Faddeev, when d < 3 for Y consisting of only one point there exists a 1 parameter family 
indexed by ct E ~ ,  of different realizations - A a  # - A  of H. The parameter c~ determines for 
d = 2,3 a renormalized coupling constant. For d = 1, a is simply A. The way - A a  arises is 
perhaps best seen by an heuristic argument (justifiable by nonstandard analysis [AFHKL]): 

( - A + A V - k 2 )  - '  = a k - G k  A +VG} Vak ,  (1.3) 

with Gk - ( - -A -- k 2)-1, k 2 # 0, as computed rigorously for V say bounded and continuous. 
Setting then formally V(x) = $(x) in this formula one sees that, for d = 2, 3, one has to choose 
!.~___ -G0(0)  - ct to compensate the singularity of IGk(0)l (=  +eo for d = 2,3). By this choice 
of ~ we get [I  + VGk]  = ,k - a. As suggested by this (1.1) can then be defined using the final 

result of this formal computation, namely as the selfadjoint operator - -Aa in L2(~ d, dx), d < 3 
with resolvent kernel given by 

( - A .  - k') -~ (x,y) = a , ( ~  - ~1 - C~(~) ~ - ~ C~(~). 0 .4)  

1) It is a different story if instead of L2(.nrl d, dx) one considers some other spaces, as in some 
uses of point interactions in electromagnetic theory, see references to work by Grossman and 
Wu in [AGHKH]. For recent results on point interactions situated on non discrete subsets Y 
see in addition to [AGHKH] and contributions to these proceedings, [Sra], [ABrR], [AMaZ1-3], 
[AFHKL], [AFHKKL], [go], [HI, [Pan], [Te] and references therein. 
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Remark: The mentioned justification of the above formal computation by nonstandard analysis 
yields that,  for d = 3, and 6 infinitesimal, - &  + ~=(e)6,(x), with 8,(x) a nonstandard realization 
of the ~-funct ion (in standard terms, 8~(z) is a delta sequence for g ~ 0), is near s tandard and 

defines --A~, ¢ --A if ~,(¢)  = [_4%g + , r '  ~ a ]  ~ e  3, a E ~ .  A similar result holds also for d = 2. 

See [AFHKL] and references therein. (1.4) or the observation in the remark give a realization 
of - A o  as a ~ -  interaction or point interaction of strength a at the origin. 

Remarks 1) It is useful to remark that setting a = +co formally in (1.4) the r.h.s, reduces to 
Gk, so that  it is natural  to define - A + ~  ___- - A .  
2) Besides the mentioned two ways to define - A ~ ,  the one by the resolvent and the nonstandard 
analytic one, there exist other ways to define -A~,  e.g. 
a)"by boundary conditions": formulated for d = 3, - A ~  can be characterized as the extension 
of --A on G ~ ( ~  3 - {0}) functions with domain such that  if f = D( -A~, )  and f (x)  = ](r), 

b) "by resolvent limits": define for ~ > 0, H~ = - &  + $(¢)¢-2V(x/~), with V in Rollnik's 
class, (1 +1" I) V Z L1(~3), and $ E C ' ( ~ ) ,  $(0) = 1, $'(0) # 0 such that - 1  is an eigenvalue 
of vsignVGov, v = IVl~ with eigenfunctions 7~¢, j = 1 , . . . , N  in L2(~3,dx) such that the 
"resonance functions" Gov~j are not in L2(~i~ 3, dx) for some j .  Then H~ converges in norm 

resolvent sense as e ~ 0 to - A ~ ,  with a = - ~'(o) This is an approximation of -Am by 

local potentials, there are also approximations by non local potentials, see again [AGHKH]. 
c) Another useful construction of --A¢~, which provides probabilistic tools for the study 

of point interactions, has been first discussed in [AHKS]. Let, for d = 3, ~o(x) = a ~ - - ~ F '  

a E ~ .  Let Ho be the self-adjoint positive operator in L 2 ~ ,  3, I~J 2 dz), uniquely associated 
with the Dirichlet form E ( / , f )  = ~ f IV/12J~l~dz in L~(~, I~offd~) 

(in the sense that Hgf ,  H g f  = E( f , f ) ,  Vf e D(HJ)  = D(E) ). Then we can define 

- A a  by -A~,  --" ~,~/~,~X1 _ (4~ra)~. /7/~, on C ~ ' ( ~  3 - {0}) is given by - A  - ~ .  V, with 
~a -= V In 7>a. /~a generates a diffusion Markov symmetric semigroup in L~(~3; ]7~a ]2dx), with 
invariant measure 17~ol2dx. 
Having solved the problem of the construction of self-adjoint realizations of the one source point 
interaction, by one of the above methods, it is not difficult to extend the solution to other cases, 
of the type (1.2.) with Y consisting e.g. of N points in ~3  or a discrete subset of ~3  (see 
below). One can also discuss the case where Y is'some other suitable geometrical measure zero 
subsets of ~t~ a like e.g. S ~ (see e.g. [AGS]) or the path of Brownian motion on ~d ,  d _< 5, run 
in [0,t] (see [AFHKL], [AFHKKL]). In this article we shall discuss some situations where the 
particle and the centers are in ~3 ,  for other cases in particular finite and infinitely many centers 
in ~d ,  d = 1, 2, see [AGHKH] and also e.g. [DO], as well as contributions to this conference, in 
particular by P. Exner and P. ~eba. 

1 . 2  N - c e n t e r s  p o i n t  i n t e r a c t i o n s  

Before going over to the ease of infinitely many centers, let us consider the N-centers ease, given 
heuristically by (1.2.) with Y consisting of N points ("sources") in ~3 .  We give strengths 
{au,y q Y} corresponding to the sources y E Y. The point interaction Hamiltonian for the 
sources y, with strengths my, denoted by -A~, ,y,  is given in terms of its resolvent by 

y,y' EY  

(1.5) 
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with 

= - a ,  - v ' )  + ¢ )  , v , y '  e Y (1 .6)  
y,ys 

where G/~(z) = G~(z) for z # 0 and Gk(z) = 0 for z = 0. 

Remark. Actually there exist N 2 self-adjoint extensions of - A  restricted to C ~ funtions of 
compact support outside the sources y E Y, only N of which are covered by above definition. 
However only the ones given above do correspond to separated boundary conditions at the 
sources, the others are "non local" involving non separated boundary conditions, see [DaGr], 
[Bra]. Having the above resolvent it is possible to discuss in details spectral properties and 
scattering for N centers, see [AGHKH]. 

1 .3 .  T h e  c a s e  o f  i n f i n i t e l y  m a n y  c e n t e r s  

We shall consider the case of Hamiltonians given formally by (1.2) with Y an infinite subset of 
m s, discrete in the sense that 

Y = {y~,i E z~V} with inf¢¢j, l y ¢ -  Yj'I > 0. 

We give sources a i ,  j E z~¢ and denote for any 12 C Y, 12 finite, by & the restriction of a to 12. 
One then defines the Harniltonians for point interactions with sources Y and strengths a by the ( )_1 
limit in the sense of strong resolvent convergence of --Ae,,f. -- k 2 as 12 1" Y. 

That this limit exists is easily seen by using monotonicity arguments, see [AGHKH]. Since by 
(1.2) we have good control on the approximants it is possible to get information on the limit, 
especially in the case where (a,  Y) have suitable symmetry properties, see [AGHKH]. Such a 
case is the one of crystals, which we shall handle in the next chapter. 

2 .  P e r i o d i c  u o i n t  i n t e r a c t i o n s  a n d  c r y s t a l s .  

We shall consider in the one electron model of a solid the case of a multiatomic crystal or a 
perfect alloy, with point sources located at the points of a subset Y of ~3  of the form 

a Bravais lattice and Yo a finite number of points o f /R  3. Let f" = ~ 3 / A  be the basic periodic 
or primitive cell or Wigner-Seitz cell, i.e. 

Let bj be dual basis vectors in the sense that 

aibj = 2rc~51j, i,j = 1,2,3. 

Let 

I ~  ~ n i b i ,  (nl ,n2,n3) E ~3  . 
i=l 
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r is called the dual lattice. 

i = l  

is the so called Wlgner-Seitz cell of the dual lattice I" or Brillouln zone. f" is the dual group 
of A and is the basic periodic cell or primitive cell of the dual lattice. One has the direct 
decomposition L 2 (/~,I2(F)) = f~12(r)dO. We c •  look upon e + 7 ,7  e r as coordinates 

corresponding to/3 E /R  3. Our periodic Hamiltonian/~r, describing crystals (in Fourier space), 
is unitarily equivalent to a direct integral: 

,,,/ae~(O)dO 

for some/ t (e )  acting in 12(r). 
The study of the spectrum of/~r is then reduced to the study of the spectrum of H(8). 
I f / t  is the momentum space realization of a Hamiltonian, then /~(e) is called the reduced 
Hamiltonian. E.g. if H is - A ,  then - ,~(e)  is the operator of multiplication by ]7 + 8[ 2 in/2(F) 
and the spectrum of - £ ( 8 )  is the discrete set IF+6[ 2, so that a ( - A )  = U a(-£(8))d~ consists 

eE£ 
of bands, the spectrum in each band being purely absolutely continuous. We shall now discuss 
the Hamiltonians corresponding to point interactions located at the points Y0 + A. Formally it 
is given by - A  + V(x), with 

v(~) = - ~ ~ ~6(~ - ~ - ~), (2.1) 
~j E ~'0 AEA 

jffil,...,N 

with (unrenormalized) strengths #1 e ~ ,  j = 1, ..., N (with N number of points in Y0). 
The following Theorem, proved in [AGHKH], shows how to construct the point interaction 
Hamiltonian corresponding to the interaction given by the above formal expression (2.1): 

T h e o r e m  2.1 Let 

N 
K 

1 
+ 

5 j=l 

with K > 0 a cut-off, (,) the scalar product on/2(F), and 

¢~(e, . )  --- x .  (~ + e)~ -~+~)yj , 

X/¢ being the characteristic functions of the closed ball of radius K centered at the origin. We 
have that 

D ( / tK(0))  = D (-/X(0)) = { g E/2(F)['  7er ~ 17 + 01'1g(7)12 < ~ }"  

K - 1  Choose pJ¢ = (aj  + ~-~2) , with a j  E ~ .  Then HK(e)  converges in norm resolvent sense as 

K ---* co to a self-adjoint operator -/~a,^,y0(6), the reduced Hamiltonian for point interactions 
on A + Y0. This operator is given by its resolvent through the formula 

N 

(-,L,^,y.(o) - k~)- '  a~(e) + If'l-' ~ h,e)l.,-' = [-ro,^,.o( (F_~,.,, (0, .), .) F~,,, (0, .), 
j,j'=l 
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[ ro ,^ , r0 (k ,  0)]i ,  i ,  - ~ z '  - gk(y j  - y i ' ,  0), 
with 

ei(7+0)~ ] 
7Er,[7+el_<gl7 + {~1 - -  

g k(x ,  0) = 

(2r)-ae-lO~lirao -47rK + E (]7 + 0[ 2 - k2) -1 b~l for x E A. 
7EPJT+0[<K 

e-i(7+o)y 
F ~ , y ( 0 , 7 )  - 17 + 012 - k 2 '  G k ( O )  - -  (17 + 0[ 2 - k2)  - 1 .  

The periodic point interaction Hamiltonian with sources on A + Yo and strengths ayj = c%+A 
(independent of A E A) is given by --A~,A+y o ~ f ~  (--Aa,A,Yo(0)) dO, hence determined by the 
above resolvent. • 
In the simplest case Y0 = {0), writing --/~o,A for --]X~,A+{0}, we have the following spectral 
results: 

T h e o r e m  2.2 a (--/~o,A(0)) is purely discrete consisting of isolated eigenvalues of finite 
oo 

multiplicity. We have ~ -  IF + 0[ 2 = U I,(O), with I0(6) = (-oo,02),  In(O) being bounded 

disjoint open intervals for n >__ 1, each containing exactly one eigenvalue E~,^(8) for -/~o,^(~). 
These eigenvalues are increasing in a. In addition a point EA(O) E IF + 012 is an eigenvalue 
of --Ao,A(8) of multiplicity m >_ 1 if and only if there exist 3' .... ,7-, E F such that EA(0) = 
17o + o1" . . . . .  I'~,.,, + ol ~. 
For the proof see [AGHKH]. Having this result one then gets information on the spectrum of 
the point interaction Hamiltonian for a crystal A: 

T h e o r e m  2.3 The spectrum a( -Ao,^) ,  of a crystal with point interactions on a lattice A, 
with strengths a equal at each point of the lattice, is purely absolutely continuous and has the 
form of the union of two intervals 

with 
1 

00 - -~ (b l  + b2 + b3), 

E~'A =- min {E'~:a(o),l]b_12 } = mineeh [E~'a(O)] , 

with 
[b_ I < bi, j = 1,2,3, b_ E {bl,b2,b3}. 

We have E7 '^ > 0 for all c~ e ~ .  Moreover Eo'^(Oo) < 0 if a < r~0,A ~ g0(0, 00) (in this case we 
have thus effectively a gap!). The spectrum of a (-Ao,A) is monotone increasing in ~. One has 

and 

E~'^(O°) ---* l lO°~- as vt ---* a ---* +°° 

There exists an az,^ E ~ such that 

v.>_olA 
(i.e. for large enough strengths the gap doses). 
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Remark. a) There exist some extensions of this result to the case where the basic cell consists 
of more than one point i.e. IY01 > 1. E.g. in such a case a (-A~,,y0+^) n ( - c o ,  0) consists of at 
most ]YoI disjoint closed bands, see [AGHKH] and references therein. 
b) One can approximate --At,,r0+A in the norm resolvent sense by scaled short range Hamilto- 
nians, which can be exploited for obtaining information on crystals with interactions not of the 
point interaction type. 

3 .  R a n d o m  p o i n t  i n t e r a c t i o n s ,  d e f e c t  c r y s t a l s .  

We consider the models of Sect. 2 with the sources on Y0 + A replaced by random sources 
located at the random subset Y(w) of ~3 ,  with w a point in a probabili ty space f~, Y(w) being 
for each w a countable subset {yi(w),j  e ~W} of ~3  such that infij,  e]~iyi(w ) -y i , (w) l  > O. 
Let a(w) -- {ct~j (w),j e iN} be a Y-indexed family of random strengths (real valued variables). 
For each w, by the methods indicated in Sect. 1.3, we can define a point interaction Hamiltonian 

A particularly interesting case is the following. Let Xx, A E A be i.i.d. {0,1}-valued random 
variables associated with the points of a Bravais lattice A0. Set p = P(X~, = 1). Choose Y(w) 
to be the set of occupied sites in A i.e. Y(w) = {A E A,X~(w) = 1}. Assume {ax, A E Y} 
are i.i.d, random variables with supp P~,0 compact. Then H,~ has the interpretation of a point 
interaction Hamiltonian describing a crystal with randomly distributed defects. If A(w) = A 
then it is natural  to talk of a random alloy, with types of alloys described by the state space of 
a.  Using the fact that  both c~ and Y are i.i.d, we have the following theorem: 

Theorem 3.1 (//~,,w E f~) is an ergodic family of self adjoint operators in L2(~ri~ 3) (relative 
to the natural  shift operator in path space). The spectrum a(H,~) and its different parts like 
cr,ss(H,,,), and the closure %(H,~) of the point spectrum of H,,, are non random subsets of/R, 
almost surely. Moreover, the discrete spectrum ad(H,~) is void, almost surely. Finally, for any 
r E ~ there exists a subset £tr of f~ of probability 1 such that  r is not an eigenvalue of finite 
multiplicity of H~, for w E fl~. 

Remark. This result belongs to a type of results established in various contexts by Pastur, 
Kirsch-Martinelli, Englisch-Kfirsten, see e.g. [AGHKH], [Ki], [KiMa] and references therein. 

It is useful to refer to the family q'(w) = {ax(w),Xx(w),A E A} as to a "stochastic poten- 
tiM". Let H(O(w)) = H,,, = --Aa(w),y(t¢) be the corresponding Hamiltonian. We call any 

- { (~ ,  T/A) E suppPt,0 x {0,1}, A E A} an admissible potential. The set of all admissible po- 
tentiais is denoted by .,4. Let us set A(¢) - {A E A, r/A = 1} and H(¢)  - -A~,(O),^(¢). We call 
¢ E .A ueriodic with periods Li, i = 1,2,3 if there exist linearly independent Li E A - {0} such 
that ~A+L~ = ~ and ~/a+L~ = T/a for all A E A and all i = 1,2,3. This means that the charges 
as well as the occupied sites are Li-invariant. We call 7 ~ the family of all periodic admissible 
potentials. We then have 

Theorem 3.2 The spectrum a(H(¢))  of the Hamiltonian H(¢)  for any admissible potential 

is contained in ~,, with ~ = a(H(q,(w))) for almost every w EfL Moreover ~ = U a (H(¢) )  = 
~qA 

U 
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Proof." This also follows from the references mentioned in the previous theorem, see e.g. 
[AGHKH]. 

Remark: One can show in addition that: 
a) Given p < 1 the set ~ depends only on suppP¢, 0 

b) E has a band structure, see [AGHKH]. 

It is possible to give a rather detailed study of the variation of the negative part  of the spectrum 
of H(¢(w)) as one removes some of the point interactions. In fact we have 

T h e o r e m  3.3 
Let p -= inf[suppP~,,], 

v -- sup[suppPa0]. 

Assume that either E~'^(0) < E0~'^(S0) or suppPa 0 = [#, v]. Then the assumption p = 0 implies 

= ~ ( - ~ . , ^ )  u ~ ( - ~ , ^ ) .  
(3.1) 

If v < a0,n we have 

( - ~ , 0 )  = [E~'^(0),E~'A(e0)] N 

and i f p  > a l ,^  we have E = a ( - A , , a ) .  

Remark. a) If 0 < p < 1 the same results hold, but (3.1) should be replaced by 

= [E0~'A(0), E;'^(00)] U [0, oo) = a(--A.,A) U a(--A~,A) U [0, oo). 

b)For p > al,A we have the result that a(H,~) = a(--A~,^)  almost surely, i.e. the spectrum 
does not change if starting from the random Harniltonian we create or switch off points with 
arbitrary strength. 
c) For results on random Hamiltonians formally given by 

H(w) = -A  + ~ ~(x -- b(s,w))ds 

with b : [0, t] ~ ~ a  a Brownian motion in ~ d ,  d < 5 see [AFHKL] [AFHKKL] and references 
therein. Such Hamiltonians arise in the description of the scattering of a quantum mechanical 
particle by a polymer. Moreover, via the Feynman-Kac formula, they also enter the construction 
of polymer measures of the heuristic form 

exp [-~ fot ~o t ,~(b(sl)-b(s2))dslds2] dP(b)dP(b), 

with (b, P),  (b, P )  two independent Brownian motions in ~'R d, d < 4. The densities of such mea- 
sures also occur in Symanzik's representations of self-interacting scalar quantum fields described 
by interaction densities v(s) which are functions of s 2, like e.g. in the (~04)a-model, see [AFHKL]. 



95 

4. Point interactions and scattering by a large number 
of small randomly placed scatterers 

In the definition of the N center point interaction (1.5.) all the physical constants characterizing 
the strength of the interaction, the energy of the quantum particle and the mutual  distances of 
the scatterers are contained in the matrix Fa,y(k).  

In particular they appear in r as the inverses of three lengths: the ay , y  E Y = {Y1, . . . ,YN} 
represent the inverses of an "effective linear size " of the scatterers, (see [AGHKH]), k is propor- 
tional to the inverse of the wave length associated with the quantum particle and the Gk(y - y') 
are proportional to the inverses of the distances between the scatterers. In this section we shall 
study some limits N ---* 0% different from those studied in Sect. 2,3, but  also of physical 
relevance cfr e.g. [Lo]. We report here on work in [FHT] - [FOWl. 

In the following the orders of magnitude of the above lengths will be expressed as powers of 
the number N of the scatterers and the volume of the system will be considered fixed and 
finite (of course only the dimensionless ratios of the lengths are to be considered as meaningful 
parameters). We shall consider separately three situations, which we shall denote by cases 1), 
2), 3). 

Case 1: 
inf v,v'eY]Y - Y ' ]  = 0 ( N - i ) ,  ]c - 1  ---- 0 ( 1 ) ,  O~y 1 ~-~ 0 ( g  - 1  ) 

. In this case there is a large number N of scatterers in a finite volume, each one of strength being 
of order N -1. The wavelength of the quantum particle is large with respect to the scatterers 
effective length and to the interparticle distance. 

Physically, in this case one expects a finite effective potential depending only on the local 
strength per unit volume of the scatterers. 

Case 2: 

In this case the wavelength is of the same order as the interparticle distance. Each scatterer has 
infinitesimal strength but the "surface per unit volume" is kept constant. 

The limit problem is expected to contain information about the local statistics of the interparticle 
distances. It is the relevant limit, for example, in modelling scattering of neutrons by liquids 
(scattering due only to the nuclei of the atoms in the liquid). In fact this kind of scattering 
experiments are often performed to investigate the range of solid-like order in the interparticle 
distances in fluids. 

(~ase 3: All the lengths are of order N - i .  This case is in fact a genuine infinite volume limit 
case. There are no negligible terms in the F matrix. 

This case is the relevant one for modelling amorphous or perfect crystalline solids, as discussed 
in Sect. 2,3. In what follows we give results for cases 1) and 2), for dimension d = 3 ( the ease 
d = 2 can be worked out as the d = 3 case, whereas the case d = 1 is much simpler). 

(~ase 1 Let Y(/~)= ~y!N) , . . . , y ( ,N)~beasequence  of N-tuples of points in K/3 such that k " - - )  

N 

~ N) .__. 
'= NToo 

with p(=) _> 0, p(.) C L l (~3)NL2(~3) ,  f~s  p(x)dx = 1, the convergence being weak convergence 
of probability measures on ~3 .  
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Some technical assumptions on the distribution of the y~N) will be needed; e.g. 

inf i,/ y~N) y~N) > c N - a f o r s o m e a E ( 1 , l )  

1 x--', 1 

N "---i ~ N) N) ~ 
<_ C, VN 

If, for example, the y~N) are chosen to be N independent, identically distributed (i.i.d.) random 
points of ~3 with common distribution density p, the above stated assumptions are satisfied by 
any configuration of a set of measure increasing to 1 when N goes to infinity. 

Let or(N) = {oty, y E y(N)}. We are looking for the existence of a limit operator for the sequence 

--ANa¢~),V(N ) and for an explicit characterization of the limit. If all the a~ N) are bounded away 

from 0 and inf 1~i,o~ N y~g) _ y~N) >> 1, as a first order in a perturbation expansion, we get, 

as N -----~ oo: 

and 
(-t ,N~(~) ,v(~)  - k~) -~ (~,y) ~ a ~ ( ~ , ~ ) +  

N 

- k N ~ G k ( x , y ~ N ) ) G k ( y ~ N ) , y )  (w~N')-'  (4.1) 
jml 

If the a~ h') are chosen to be the values a (y~N)) in y~N) of a function which is continuous 

(outside a set of p(x)dx measure 0 ) and 0 < a < [a[ < b < co, the right hand side of (4.1) 
converges to 

Gk(x,y) + kl. , )~(z) kl. ,y)dz = 

= ( - ~  - k~)(x,y) + [ ( - ~  - k~)-'  ~ ( - a  - ks) - ' ]  (x,y) (4.2) 

(4.2) is the first term of a perturbation expansion of ( - A  + ~ - k2); up to the first order 
--ANo,(~),y(n ) behaves for large N like ( - A  - ~). 

In fact the result is true up to any order in the expansion. One has in particular the following 

T h e o r e m  4.1.: Under the assumptions made before 

( )'  s - lim (--AN~,(N),y(N) + ~)--1 = - A  - /9 + ,~ = Ap 
NTe~ a 

for ,k > 0 sufficiently large. 

For a detailed proof and further comments see [FHT]. If the y~N) are i.i.d, random points with 
common distribution density p the above stated theorem can be looked upon as an operational 
law of large number. The corresponding central limit theorem can also be proved: 

T h e o r e m  4.2.: For any f, g E L2(~  3) the random variable 

N½(f,[(-AN~(~, , ,y(~,)+)~)-I-AXp]g)=~(N)(Y (N)) 

converges in distribution when N goes to +co to the gaussian random variable ~x with mean 0 
and variance. 

E ( ~ X )  x x - ~  x x =(ApfApg,  a ApfApg)L ~ ~ -1 x 2 - ( A J , ~  A~9)L, 

(here L~ = L2(1Fl 3, pdx ) ). 
For the proof and further comments see [FHT] and [FOT]. 
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Remark: If V is any function in L I ( ~  3) n L2(~t 3) and we take p, cx as 

p(~) = IV(:~)l//,,, IY(~)ldx 

= (sign V)(~)//~ Iv(~)ldx O/(X) 

so that  ~ = V, then Theorems 4.1, 4.2 express the fact that any one particle Hamiltonian with 
a potential V of class L 1 N L 2 can be arbitrarily well approximated by a Hamiltonian with zero 
range potential on an increasing number of points. 

(~ase 2: In experiments of neutron scattering, neutrons with a wavelength of a few/~ngstrCms 
are used to investigate samples of condensed matter.  The average interparticle distances are of 
the same order of the wavelength, while the range of the interaction of the neutrons with the 
nuclei of the atoms is of the order 
10 -13 cm. 

N 
A first order expansion for the differential cross section da/d~ for a formal potential 27rb~'~(x - 

i=l 
y~N)) (in the usual units such that h = m = 1) gives 

(dd__~) N ,~ ,,,~ c,,~ (x)=b ~ (', -'J ) 
i,1 

where z is the transferred momentum and y~N) are the positions of the scatterers. 

Notice that  the formal expansion cannot be continued beyond the first order term since infinities 
due to the singularity of the Gk at coinciding points would appear in each higher order term. 
For the N-centers point interaction the above mentioned result is exact for N large in the 
scaling described above as pertaining to case 2 (which in a box of volume proportional to N 

can be redefined as ly, - yJl = 0(1), k-g = 0(1),N½a~-' = 0(1)). In fact let ~ NJ be 
,y(N) 

the differential cross section corresponding to N-center zero range interactions, all of the same 
strength N-½ a - I ,  placed at the points {y~N), ..., y(NN)}. Under some technical assumptions on 

the distribution of the y~N), it is possible to prove that 

lim (~--~) 1 x- ,  ,k(y!~)-y~N)'~ - - - 2 . . . i e  x ,  ' , ----0 (4 .3 )  
N / " o o  N½a'y(N) Na2 i,j 

For this see [DFZ]. 

Notice that if the y~N) are distributed according to an homogeneous point process in ~t 3 of 
density p and if the static pair correlation function given by 

d r - -  
4 r r  2 

is decaying fast enough to p for large r, the common limit of the two quantities appearing in 
(4.3) is ~ + a-~-~(x) (~ denotes the Fourier transform of g). 

It should be stressed that for the N-centers point interaction the terms of the perturbation ex- 
pansion, disappearing in the limit N ~ oo, are explicitly known. 
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