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Abstract

Direct photons are unique probes to study quark-gluon plasma (QGP) created in ultra-
relativistic heavy-ion collisions, as they are emitted from the whole stages of the space-
time evolution with negligible final state interaction. They carry undistorted medium
information such as thermodynamic properties.

Direct photon measurements in pp collisions serve as a vacuum baseline for the
studies in heavy-ion collisions and can be used as a test of perturbative QCD (pQCD)
calculation. On the other hand, recent measurements in pp collisions with high event
activity exhibit similarities to heavy-ion collisions, such as collective phenomena of
hadrons. This motivates a search for the thermal photons and the creation of the QGP
in small systems to better understand the underlying dynamics in such collisions. This
thesis presents direct photon production in pp collisions at

√
s = 13 TeV in minimum-

bias and high-multiplicity event multiplicity classes to test pQCD and search thermal
photons in small systems.

This work is performed via the internal conversion technique, the ratio of direct to
inclusive photons can be extracted from the dielectron continuum. Compared to the
previous study, the statistical and systematic uncertainties were significantly improved
and the direct-photon signal was extracted in the range 1 < pT < 6 GeV/c, for both
event multiplicity classes. It was found that direct photon yields in inelastic and high-
multiplicity pp collisions show clear multiplicity dependence.

The obtained results were compared with theoretical predictions. One is the next-
to-leading-order (NLO) pQCD calculation with two different parton distribution func-
tions and fragmentation functions and the other is the theoretical model assuming
thermal radiation from the QGP in small systems. The latter predicts thermal con-
tribution even in inelastic collisions and the model gave a better description of the
minimum-bias result at pT < 3 GeV/c, though both models are consistent with the
data within uncertainties. The minimum-bias result was found to be consistent with
both pQCD predictions but the QGP-like model gives a slightly better description.

For the comparison with the high-multiplicity result, theoretical prediction needs
to consider charged-particle multiplicity dependence. To this purpose, NLO pQCD
contribution was empirically scaled with the ratio of mean charged-particle multi-
plicity at mid-rapidity between inelastic and high-multiplicity events as there is no
theoretical prediction. The QGP-like model predicts thermal contribution increases
as charged-particle multiplicity goes higher. Compared with these predictions, it was
found that the high-multiplicity result was consistent with both standalone empirically
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scaled prompt photons and the sum of the thermal and prompt photons, similar to the
minimum-bias result.

The pT-integrated direct-photon yield as a function of charged-particle multiplicity
was reported. We integrated direct photon pT spectra in the range 1 < pT < 3 GeV/c,
where we expect the direct photons to be dominated by thermal photons. The data
shows multiplicity dependence and is consistent with the theoretical prediction within
uncertainty and favors the QGP-like model.

The results are compared with other results from LHC energies. A smooth evolution
of direct photon yields as a function of multiplicity was observed, which implies that
particle multiplicity is one of the key quantities of direct photon production. If we ex-
tend theoretical prediction in Pb–Pb collisions towards the lower charged-particle mul-
tiplicity, the lowest edge of the total contribution is very close to the high-multiplicity
data in pp collisions. At the same time, the line of prompt photons underestimates
the high-multiplicity data. These observations support the statement made in the
discussion about direct photon pT spectra.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 1
1.1 Quantum Chromodynamics (QCD) . . . . . . . . . . . . . . . . . . . . 1
1.2 Quark Gluon-Plasma (QGP) . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 High-Multiplicity Proton-Proton Collisions . . . . . . . . . . . . . . . . 4
1.4 Direct Photons in Small Systems . . . . . . . . . . . . . . . . . . . . . 5
1.5 Previous Experimental Result . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Basics of Direct Photon Measurement 13
2.1 Source of Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Prompt photon . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Thermal photon . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Photons from other sources . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Fraction of direct photons over decay photons . . . . . . . . . . 17

2.2 Techniques of Direct Photon Measurement . . . . . . . . . . . . . . . . 19
2.2.1 Subtarction method . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Internal conversion method . . . . . . . . . . . . . . . . . . . . 20

3 Experimental setup 25
3.1 The Large Hadron Collider (LHC) . . . . . . . . . . . . . . . . . . . . . 25
3.2 ALICE Detector Overview . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Inner Tracking System . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Transition Radiation Detector . . . . . . . . . . . . . . . . . . . 33
3.2.4 Time-of-Flight Detector . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 T0 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.6 V0 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Tracking and Vertexing . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 The High Level Trigger . . . . . . . . . . . . . . . . . . . . . . . 42

iii



3.4.3 Run Condition in Run 2 . . . . . . . . . . . . . . . . . . . . . . 44

4 Analysis 47
4.1 Datasets and Event Selection . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Event Classification . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Trigger Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.3 High-Multiplicity Trigger Selection . . . . . . . . . . . . . . . . 50
4.1.4 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Primary Track Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Electron Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 TPC and TOF Post-calibration . . . . . . . . . . . . . . . . . . 64
4.5.2 Cut Settings of Electron Identification . . . . . . . . . . . . . . 66

4.6 Pair Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.1 Conversion Rejection . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Efficiency Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7.1 Detector Response Matrices . . . . . . . . . . . . . . . . . . . . 76
4.7.2 Single Electron Efficiency . . . . . . . . . . . . . . . . . . . . . 78
4.7.3 Pair Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Hadronic Cokctail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8.1 Light-Flavour Hadrons and J/ψ . . . . . . . . . . . . . . . . . . 91
4.8.2 Open Charm and Open Beauty Hadrons . . . . . . . . . . . . . 97
4.8.3 Systematic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Systematic Uncertainty for the Data Analysis . . . . . . . . . . . . . . 104
4.9.1 Tracking and PID . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.9.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.9.3 φv rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.9.4 Total Systematic Uncertainty . . . . . . . . . . . . . . . . . . . 109

4.10 Charm and Beauty Production Cross Sections . . . . . . . . . . . . . . 110
4.11 Dielectron Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.12 Direct Photon Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.12.1 Direct-Photon Signal Extraction . . . . . . . . . . . . . . . . . . 117
4.12.2 Systematic Uncertainty of Direct Photon Extraction . . . . . . . 119
4.12.3 Significance of Direct Photon Signal . . . . . . . . . . . . . . . . 125
4.12.4 Decay Photon Simulation . . . . . . . . . . . . . . . . . . . . . 126

5 Results and Discussions 131
5.1 Direct Photon Cross Section . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Direct Photon Yield as a Function of Multiplicity . . . . . . . . . . . . 133

6 Conclusion and Outlook 141

A Kinematic Variables 145



B TPC and TOF post-calibration 147

C Dielectron mass spectra 163

D Test static t distributions for direct-photon fraction r 165





List of Figures

1.1 Summary of measurements of αs as a function of the energy scale Q. The
respective degree of QCD perturbation theory used in the extraction of
αs is indicated in brackets (NLO: next-to-leading order, NNLO: next-
to-next-to leading order, NNLO: NNLO matched with resumed next-to-
leading logs, N3LO:next-to-NNLO) [5]. . . . . . . . . . . . . . . . . . 2

1.2 Left: Sketch of the QCD phase diagram [17]. Right: Pressure, energy
density, and entropy density suitably normalized to the 4th (3rd for the
latter) power of the temperature, from the Lattice QCD calculations of
the HotQCD Collaboration [16]. The dark lines show the prediction of
the Hadron Resonance Gas model, the horizontal line corresponds to the
ideal gas limit for the energy density. The vertical band indicates the
cross-over transition region. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Evolution of the system created in high-energy heavy-ion collisions.
Time is advancing from the left to the right. (The sketch is based on
the simulations by the MADAI collaboration [19]) . . . . . . . . . . . . 3

1.4 Left: Invariant cross section (pp) and invariant differential yield (Au–
Au) of direct photons as a function of pT. The filled points and open
points are from two different analyses, [24] and [27,28], respectively. The
three curves on the pp data represent NLO pQCD calculations, and the
dashed curves show a modified power-law fit to the pp data, scaled by
TAA. The dashed (black) curves are exponential plus the TAA scaled pp
fit. The dotted (red) curve near the 0-20% centrality data is a theory
calculation [29]. Right: Direct photon spectra in Pb–Pb collisions at√
sNN = 2.76 TeV for the 0-20% (scaled by a factor 100), the 20-40%

(scaled by a factor 10) and 40-80% centrality classes compared to NLO
pQCD predictions for the direct photon yield in pp collisions at the
same energy, scaled by the number of binary nucleon collisions for each
centrality class [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Two-particle correlation functions for 7 TeV pp (a) [30], 5.02 TeV p-Pb
(b), and 2.76 TeV PbPb (c) collisions [31]. The arrow shows the long-
range correlations at small ∆ϕ. The structure called “ridge” in heavy-ion
collisions is interpreted as a consequence of the hydrodynamic flow of
the produced strongly interacting medium. The structure evolves from
pp to Pb–Pb collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

vii



1.6 pT-integrated yields of strange and multi-strange hadrons over π++π+ as
a function of dNch/dη, measured in high-multiplicity pp collisions at

√
s

= 7 TeV in |η| < 0.5. The error bars show the statistical uncertainty,
whereas the empty and dark-shaded boxes show the total systematic
uncertainty and the contribution uncorrelated across multiplicity bins,
respectively. The data are compared to Monte Carlo calculations [32–34]
and to results obtained in Pb-Pb and p-Pb collisions with ALICE [35–37]. 7

1.7 Preliminary result of integrated direct-photon yield (pT > 1 GeV/c) as
a function of charged particle multiplicity dNch/η at midrapidity [48] in
various collision systems. The data points from PHENIX [49], ALICE
[25] experiments are compared with Ncoll scaled pQCD calculations for
pp collisions at

√
s = 200 GeV [50]. . . . . . . . . . . . . . . . . . . . . 8

1.8 Fraction of direct photon as a function of pT in inelastic and high-
multiplicity event [51]. Statistical and systematic uncertainties are shown
in bars and boxes. The upper limits in shown in red arrow are extracted
at 90% confidence level (C.L.) using the Feldman-Cousins method [52].
The gray band shows NLO pQCD calculation taken from [53]. . . . . . 8

1.9 Invariant cross sections for neutral meson production at midrapidity in
pp collisions at

√
s = 13 TeV compared with theoretical predictions [54].

The neutral pion, η, and ω meson are measured at transverse momenta
pT in the range 0.2 < pT < 200 GeV/c, 0.4 < pT < 50 GeV/c and
2 < pT < 50 GeV/c, respectively. The red line shows the theoretical
prediction obtained using the PYTHIA8.2 [55] calculation with Monash
2013 tune [56]. The green (pink) band represents pQCD calculation at
NLO using CT18 [57] PDF and NNFF1.0 [58] (AESSS [59]) FF for π0

(η), and the purple band shows calculation at NLO using CT14 [60] PDF
and ω fragmentation based on a broken SU(3) model [61] for ω meson. 9

1.10 Invariant differential π0 (left) and η (right) yields for different multiplic-
ity classes in pp collisions at

√
s = 13 TeV. Statistical and systematic

uncertainties are shown in bars and boxes. The red square points indi-
cate π0 and η meson measured in the 0–0.1% multiplicity class, which
are used in this analysis. The neutral pion and η meson are measured
at transverse momenta pT in the range 0.4 < pT < 50 GeV/c, 0.4 < pT
< 25 GeV/c, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.11 Left: η/π0 ratio in pp collisions at
√
s= 13 TeV compared with PYTHIA8.2

calculation with Monash 2013 tune and mT scaling. The η/π0 is mea-
sured at transverse momenta pT in the range 0.4 < pT < 50 GeV/c.
Right: η/π0 ratio in high and low multiplicity classes in pp collisions at√
s = 13 TeV. The red square points indicate η/π0 ratio measured in

the 0–0.1% multiplicity class, which is used in this analysis. The η/π0 is
measured at transverse momenta pT in the range 0.4 < pT < 16 GeV/c. 10

2.1 Known and expected photon sources in heavy-ion collisions. . . . . . . 14



2.2 Theoretical prediction of direct photon production in pp collisions at
√
s

= 13 TeV [64]. The orange and red curves show thermal photon con-
tribution in minimum-bias and high-multiplicity events, respectively. In
the calculation, the charged-particle multiplicity is determined at for-
ward rapidity which is consistent with the ALICE acceptance of the V0
detector. The high-multiplicity thermal-photon contribution shows clear
enhancement compared to the one from minimum-bias events. This en-
hancement should be visible below pT = 3–4 GeV/c, where the thermal-
photon contribution is above the prompt-photon contribution as shown
in the green line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Leading Order (LO) and Next-to-Leading Order (NLO) diagrams of di-
rect photon production in the initial scatterings: (a) quark-gluon Comp-
ton scattering, (b) quark-antiquark annihilation and (c) bremsstrahlung
radiation from quark fragmentation [67]. . . . . . . . . . . . . . . . . . 16

2.4 Fractional contributions of direct (LO) and fragmentational processes
to inclusive photon production at RHIC [69] (left) and LHC [70] (right)
energies as a function of pT for the different choice of the photon fragmen-
tation scale µ. At the LHC, fragmentation photon dominates inclusive
photon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Theoretical prediction of direct-photon emission rate as a function of
transverse momentum qT, from various thermal sources in central Pb–
Pb collisions at

√
sNN = 5.5 TeV [29]. The blue and red dashed lines

show thermal-photon contribution from hot hadron gas (HG) and from
the QGP, while the green dashed line shows prompt photon contribution
from initial hard scatterings. Below qT = 1 GeV/c, thermal photons are
dominated by the HG, while above qT = 1 GeV/c, ones from QGP are
the largest source of thermal radiation. . . . . . . . . . . . . . . . . . . 18

2.6 Left: Direct photon excess ratio Rγ as function of pT in two different
centrality classes. Results are compared with theoretical predictions [76,
77, 83–85]. The significance of the direct photon are: 0-10%: 3.1σ (1.0
< pT < 1.8 GeV/c) and 20-40%: 3.4σ (1.0 < pT < 2.3 GeV/c). Right:
Direct photon excess ratios Rγ as a function of pT in pp collisions at 8
TeV. Results are compared with theoretical predictions with CT10 [86–
88] or CTEQ6.1M [89] proton PDF and GRV [90] or BFG2 [91] FF. In
addition, a JETPHOX calculation [92] based on NNPDF2.3QED [93]
proton PDF and BFG2 FF as well as a POWHEG calculation [92]. . . 19

2.7 The lowest order diagrams for (a) quark-antiquark annihilation and (b)
gluon Compton scattering with associated virtual photon decay into an
e+e− pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



2.8 Invariant mass distribution from virtual photon from π0, η and η′ Dalitz
decays and direct photon. The total contribution includes all Dalitz pairs
i.e., (π0, η, η′, ω, ϕ), the contribution from direct photon is normalized
to the total contribution below mee = 30 MeV/c2, to highlight difference
of mass dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Examples of heavy-flavor production diagrams. (a) and (b) Leading
order. (c) Pair creation (with gluon emission). (d) Flavor excitation.
(e) Gluon splitting. (f) Events classified as gluon splitting but of flavor-
excitation character [100] . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Skematic view of dilepton production from correlated semi-leptonic de-
cays of open heavy-flavor hadrons. . . . . . . . . . . . . . . . . . . . . . 23

3.1 Schematic view of the CERN accelerrator complex [102]. . . . . . . . . 27

3.2 ALICE detector complex in LHC Run 2 [109]. . . . . . . . . . . . . . . 28

3.3 Global coordinate of ALICE detectors [110]. . . . . . . . . . . . . . . . 28

3.4 Layout of ITS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Left: Integral of material thickness of the ITS as a function of radius.
Right: The total material encountered by a perpendicular track crossing
the ITS versus azimuthal angle. [108] . . . . . . . . . . . . . . . . . . . 31

3.6 The schematic view of ALICE TPC field cage. The field cage is a hollow
cylindrical structure with a diameter of 5 m and a length of 5 m. A
voltage of -100 kV is applied to the central electrode. The red arrows
indicate the direction of the electric field E. . . . . . . . . . . . . . . . 32

3.7 ALICE TPC working principle . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Ionization energy loss for positive muon in copper as function of βγ =
p/Mc [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Specific energy loss dE/dx in the TPC as a function of particle momen-
tum in pp collisions at

√
s = 13 TeV. The lines show the parameteriza-

tions of the expected mean energy loss. . . . . . . . . . . . . . . . . . . 35

3.10 Schematic cross-section of the ALICE detector perpendicular to the LHC
beam direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Schematic cross-section of a TRD chamber in the x-z plane (perpendic-
ular to the wires) with tracks of a pion and an electron to illustrate the
ionization energy deposition and the TR contribution. The large energy
deposition due to the TR photon absorption is indicated by the large
red circle in the drift region. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Schematic view of super module of Time-Of-Flight (TOF) detector. . . 37

3.13 TOF β as a function of particle momentum in pp collisions at
√
s = 13

TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 The layout of T0 detector arrays inside ALICE [108]. . . . . . . . . . . 38

3.15 Top: Front view of V0A (left) and V0C (right) arrays. Bottom: Schematic
design of the V0A (left) and V0C (right) detection elements [108]. . . . 39



3.16 Principles of tracking for an ALICE event, showing the three successive
paths allowing to build a track and refine its parameters [124]. . . . . . 40

3.17 Left: the pT resolution in p-Pb collisions for standalone TPC and ITS-
TPC matched tracks with and without constraint to the vertex. Right:
Improvement of the q/pT (inverse transverse momentum scaled with
particle charged) resolution in data in pp collisions when TRD infor-
mation is included in the tracking for various running scenarios. The
labels low and high IR indicate interaction rates (IR) of 12 and 230 kHz,
respectively. The left and right fugres are taken from [105] and [114]. 41

3.18 Block diagram of the Central Trigger Processor [126]. . . . . . . . . . . 43

3.19 Left: Processing time of the hardware cluster finder and the offline clus-
ter finder. Right: Speedup of HLT tracking algorithm executed on GPUs
and CPUs compared to the offline tracker normalized to a single core
and corrected for the serial processing part that the CPU contributes to
GPU tracking as a function of the input data size expressed in terms of
the number of TPC clusters. Figures are taken from Ref. [128]. . . . . 44

3.20 Integrated luminosity for various triggers in pp collisions at
√
s = 13

TeV during LHC Run 2 (2015-2018). . . . . . . . . . . . . . . . . . . . 45

4.1 Interaction rate (top), number of colliding bunches at LHC point 2 (mid-
dle), and average number of inelastic collisions per bunch crossing (bot-
tom). Period LHC16d, e, g, h, i, j, k, l, o, p (separated by dashed line)
are shown. Information is taken from aliqaevs and if the run has no
information, values are set -999. . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Interaction rate (top), number of colliding bunches at LHC point 2 (mid-
dle), and average number of inelastic collisions per bunch crossing (bot-
tom). Period LHC17c, e, f, h, i, j, k, l, m, o, r (separated by dashed
line) are shown. Information is taken from aliqaevs and if the run has
no information, values are set -999. . . . . . . . . . . . . . . . . . . . . 49

4.3 Interaction rate (top), number of colliding bunches at LHC point 2 (mid-
dle), and average number of inelastic collisions per bunch crossing (bot-
tom). Period LHC18b, d, e, f, g, h, i, j, k, l, m, n, o, p (separated by
dashed line) are shown. Information is taken from aliqaevs and if the
run has no information, values are set -999. . . . . . . . . . . . . . . . . 50

4.4 Correlation between V0M amplitude and reference multiplicity at mid-
rapidity in minimum-bias (left) and high-multiplicity (right) events. Black
points show mean values of reference multiplicity for each V0M ampli-
tude value, and the error bars correspond to the RMS of the distribution. 51

4.5 Example of V0 high-multiplicity trigger threshold (top) and the ratio
V0 high-multiplicity threshold over mean V0 multiplicity (bottom) as
a function of run number during 2016 pp data taking. All 2016 data
are shown including some periods which are not used for the analysis.
Figure was taken from [132]. . . . . . . . . . . . . . . . . . . . . . . . . 52



4.6 Number of event ratio, HM over MB vs run for respective data taking
year. From top to bottom 2016 (not used in HM analysis), 2017, and
2018 datasets are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Left: V0M amplitude distributions in minimum-bias (red) and high-
multiplicity events (blue). The red shaded area represents 0-0.1% of
V0M multiplicity class in pp collisions at

√
s = 13 TeV. Right: V0M

percentile distribution in high-multiplicity events (0-0.1% is selected). . 53

4.8 Correlation between the sum and difference of signal times in V0A and
V0C detectors. Three classes of event beam–beam interactions at (8.3
ns, 14.3 ns), background from beam 1 at (-14.3 ns, -8.3 ns), and back-
ground from beam 2 at (14.3 ns, 8.3 ns) can be clearly distinguished.
Figure taken from Ref. [105]. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Correlation between the number of SPD tracklets and the number of
SPD clusters in all triggered events (left) and events after the clean-
up by the online trigger based on the V0 time gate [133]. The top and
bottom rows show minimum-bias and high-multiplicity triggered events.
The red line indicates the cut based on the SPD clusters and the tracklets
correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Z vertex distribution in minimum-bias events (left) and high-multiplicity
events (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 Number of sum of electron and positron candidates per event as a func-
tion of time (run numbers) in minimum bias events. The blue dashed
lines stands for 3σ away from the mean value of the number of candi-
dates. All runs are accepted in this QA. . . . . . . . . . . . . . . . . . 59

4.12 Ratio between the data and the MC simulation of the trend of the num-
ber of electron candidates in minimum bias events. . . . . . . . . . . . 60

4.13 Number of sum of electron and positron candidates per event as a func-
tion of time (run numbers) in high-multiplicity events. The blue dashed
lines stands for 3σ away from the mean value of the number of candi-
dates. Only a run from 2018 was excluded. . . . . . . . . . . . . . . . . 61

4.14 Ratio of high-multiplicity over minimum-bias triggered events of the
number of electron candidates. Each dataset is normalised to the same
MC simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.15 η - ϕ distribution of primary tracks in data (left) and corresponding
active area of SPD 1st layer (right) taken from certain period of 2017
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 nσ distribution of TPC in the range −0.3 < η < −0.2 and 0.5 < p < 0.6
GeV/c and TOF in the range 0.0 < η < 0.1 and 0.5 < p < 0.6 GeV/c
fitted with a Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.17 Mean of nσTPC as a function of track momentum p versus pseudorapidity
η from all 2017 periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 65



4.18 Mean (left) and width (right) of TPC nσe as a function of track mo-
mentum p and pseudorapidity η obtained using 2017 periods after re-
calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.19 Mean (left) and width (right) of nσTPC as a function of track momentum
p versus pseudorapidity η obtained using a period from ’18spline’ (Top)
and from ’18 without spline’ (Bottom). . . . . . . . . . . . . . . . . . . 66

4.20 (From top to bottom) PID histograms for the respective cut setting: (a)
“TPCTOFreq”, (b)“TPCHadRej” and (c) combined sample, after the
post calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.21 Dielectron invariant mass distribution of unlike-sign pairs (blue square),
like-sign pairs with acceptance correction (black open circle), and signal
pairs (red full circle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.22 R-factor in the range 0 < pT,ee < 6 GeV/c. . . . . . . . . . . . . . . . . 70

4.23 Comparison of raw signal (left) and signal to background ratio (right)
in MB-triggered events showing the effect of no shared ITS clusters
requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.24 MC simulated φv distribution of e+e− from conversions (red) and from
other sources (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.25 MC simulated φv versus mee distributions of all dielectron signals. The
conversion peaks (a)–(d) are indicated by red arrows. A φv-flat bank
structure appeared below 40 MeV/c2 is due to e+e− from Dalitz decays
of π0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.26 The comparison of raw signal (left) and signal-to-background ratio (right)
in MB-triggered events showing the effect of φv rejection. . . . . . . . . 73

4.27 Left: Unlike-sign pairs N+−, combinatorial background B. Right: R-
factor in minimum-bias events (pT-integrated case) . . . . . . . . . . . 74

4.28 Left: Unlike-sign pairs N+−, combinatorial background B. Right: R-
factor in high-multiplicity events (pT-integrated case). . . . . . . . . . . 74

4.29 Signal-to-background ratio (left) and statistical significance (right) of
di-electron signal in minimum-bias events. . . . . . . . . . . . . . . . . 75

4.30 Signal-to-background ratio (left) and statistical significance (right) of
di-electron signal in high-multiplicity events. . . . . . . . . . . . . . . . 75

4.31 Raw dielectron signal normalized to the number of analyzed minimum-
bias events. Rejection of conversion electrons is applied as described in
the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.32 Raw dielectron signal normalized to the number of analyzed minimum-
bias events. Rejection of conversion electrons is applied as described in
the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.33 Raw dielectron signal normalized to the number of analyzed high-multiplicity
events. Rejection of conversion electrons is applied as described in the
text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



4.34 Raw dielectron signal normalised to the number of analysed high-multiplicity
events. Rejection of conversion electrons is applied as described in the
text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.35 Transverse momentum resolution in 0.50 < pgen
T < 0.60 GeV/c2. . . . . 80

4.36 Detector response matrices for generated electrons and positrons. . . . 81
4.37 Before (black) and after (red) smearing applied to the generated electron

pairs. Left: generated pairs from same-mother resonance and Dalitz
decays. Right: generated pairs from J/ψ. Both generated spectrum and
smeared spectrum are applied pT cut (pT > 200 MeV/c). . . . . . . . . 81

4.38 Left: The pT,e distribution of electrons. Generated, smeared and re-
constructed electrons are shown. Right: Single electron and positron
efficiency as a function of pT,e. . . . . . . . . . . . . . . . . . . . . . . . 82

4.39 Pair efficiency for respective e+e− sources . . . . . . . . . . . . . . . . . 85
4.40 Total efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.41 Total efficiencies in respective pT,ee slices. . . . . . . . . . . . . . . . . . 86
4.42 Efficiency corrected signal in minimum-bias events for pT,ee < 6 GeV/c. 87
4.43 Efficiency corrected signal in minimum-bias events for different pT,ee in-

tervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.44 Efficiency corrected signal in high-multiplicity events for pT,ee < 6 GeV/c. 89
4.45 Efficiency corrected signal in high-multiplicity events for different pT,ee

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.46 TCM fit to neutral pion [54]. The minimum-bias π0 (left) is measured at

transverse momenta pT in the range 0.2 < pT < 200 GeV/c and fitting is
performed at 0.2 < pT < 20 GeV/c. The high-multiplicity π0 (right) is
measured at transverse momenta pT in the range 0.4 < pT < 50 GeV/c
and fitting is performed at 0.4 < pT < 20 GeV/c. . . . . . . . . . . . . 93

4.47 Emprirical fit to η/π0 ratio [54]. The minimum-bias η/π0 (left) is mea-
sured at transverse momentum pT in the range 0.4 < pT < 50 GeV/c
and fitting is performed at 0.4 < pT < 20 GeV/c. The high-multiplicity
η/π0 (right) is measured at transverse momentum pT in the range 0.4 <
pT < 16 GeV/c and fitting is performed at the same pT range. . . . . . 94

4.48 Comparison between measured η and constructed η (= π0 × η/π0) pa-
rameterization for minimum-bias and high-multiplicity cocktails. . . . . 94

4.49 Modified Hagedorn fit to ϕmeson in minimum-bias and high-multiplicity
cocktails. The minimum-bias ϕ (left) is measured at transverse momen-
tum pT in the range 0.4 < pT < 11 GeV/c and the high-multiplicity
η/π0 (right) is measured at transverse momentum pT in the range 0.4 <
pT < 8 GeV/c. Both fits are performed at the same measured pT range. 95

4.50 Power law fit to J/ψ in minimum-bias events. . . . . . . . . . . . . . . 96
4.51 Left: normalized inclusive J/ψ yield at mid-rapidity as a function of

charged-particle multiplicity in pp collisions at
√
s= 13 TeV [43]. Right:

average of D0, D+ and D∗+ relative yields as a function of the relative
charged-particle multiplicity at central rapidity [44]. . . . . . . . . . . . 97



4.52 D meson enhancement factor as a function of pT for the high-multiplicity
heavy-flavour cocktail. Upper (red) and lower (blue) limits are taken to
estimate systematic uncertainty. . . . . . . . . . . . . . . . . . . . . . . 98

4.53 Systematic uncertainty of minimum-bias cocktail for each contribution
(a)-(e). Characteristic mass dependence (or peaks) corresponds to the
mass region of the particle considered. (f) shows total cocktail uncer-
tainty obtained by the quadratic sum of each contribution. . . . . . . . 100

4.54 Systematic uncertainty of high-multiplicty cocktail for respective sources
and total. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.55 Dielectron mass spectra of the hadronic cocktail in pp collisions at
√
s

= 13 TeV. The grey band is the sum of all contributions with total
systematic uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.56 Dielectron mass spectra of the hadronic cocktail in high-multiplicity pp
collisions at

√
s = 13 TeV. The grey band is the sum of all contributions

with total systematic uncertainty. . . . . . . . . . . . . . . . . . . . . . 103
4.57 Efficiency corrected signal for different track and PID cut variations in

minimum-bias events. Index 0 corresponds to the default cut setting
and other variations (index i with i = 1-19) are randomly selected track
and PID selections listed in Table 4.7 . . . . . . . . . . . . . . . . . . . 105

4.58 Efficiency corrected signal for different track and PID cut variations in
HM-triggered events. Index 0 corresponds to the default cut setting and
other variations (index i with i = 1–19) are randomly selected track and
PID selections listed in Table 4.7 . . . . . . . . . . . . . . . . . . . . . 106

4.59 Comparison of the efficiency of with and without hit on the first SPD
layer requirement in data and MC in minimum-bias (left) and high-
multiplicity (right) events, respectively. . . . . . . . . . . . . . . . . . . 107

4.60 Comparison of the efficiency of with and without no shared ITS cluster
requirement in data and MC in minimum-bias (left) and high-multiplicity
(right) events, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.61 Efficiency corrected signal in the range pT,ee < 6 GeV/c for differnt φv
rejection cut in minimum-bias events. . . . . . . . . . . . . . . . . . . . 108

4.62 Efficiency corrected signal in the range pT,ee < 6 GeV/c for differnt φv
rejection cut in high-multiplicity events. . . . . . . . . . . . . . . . . . 108

4.63 Scan of χ2-value within parameter space. The minimum χ2 of this map is
shown in the red point, where the red and green dotted lines are crossed.
Black lines show the error ellipse of the two parameters corresponding
to 1σ, 2σ, 3σ contours with respect to the minimum χ2, from inside out. 112

4.64 The dielectron cross section in inelastic pp collisions at
√
s = 13 TeV as

a function of invariant mass in the range pT,ee < 6 GeV/c. The global
scale uncertainty on the pp luminosity (2%) is not shown. Statistical
and systematic uncertainties of the data are displayed as vertical bars
and boxes. The expectation from the hadronic decay cocktail is shown
as a band, together with individual sources. . . . . . . . . . . . . . . . 114



4.65 The dielectron cross section in inelastic pp collisions at
√
s = 13 TeV as

a function of pair transverse momentum pT,ee. The global scale uncer-
tainty on the pp luminosity (2%) is not shown. Statistical and system-
atic uncertainties of the data are displayed as vertical bars and boxes.
Expectation from the hadronic decay cocktail is shown as a band. . . . 115

4.66 The dielectron cross section in inelastic pp collisions at
√
s = 13 TeV

as a function of invariant mass in different pT,ee bins: 0 < pT,ee < 1
GeV/c (top left), 1 < pT,ee < 2 GeV/c (top right), 2 < pT,ee < 3 GeV/c
(bottom left), and 3 < pT,ee < 6 GeV/c (bottom right), respectively.
The global scale uncertainty on the pp luminosity (2%) is not shown.
The statistical and systematic uncertainties of the data are displayed
as vertical bars and boxes. The expectation from the hadronic decay
cocktail is shown as a band, and the data-to-cocktail ratio is presented
below together with the cocktail uncertainty. . . . . . . . . . . . . . . . 116

4.67 The dielectron invariant yield in high-multiplicity pp collision as a func-
tion of invariant mass in the range pT,ee < 6 GeV/c. Statistical and
systematic uncertainties of the data are displayed as vertical bars and
boxes, respectively. Expectation from the hadronic decay cocktail is
shown as a band, together with individual sources. . . . . . . . . . . . . 117

4.68 The dielectron cross section in high-multiplicity pp collision as a function
of pair transverse momentum pT,ee. Statistical and systematic uncertain-
ties of the data are displayed as vertical bars and boxes, respectively.
Expectation from the hadronic decay cocktail is shown as a band. . . . 118

4.69 The invariant yield in high-multiplicity pp collisions at
√
s = 13 TeV

as a function of invariant mass in different pT,ee bins: 0 < pT,ee < 1
GeV/c (top left), 1 < pT,ee < 2 GeV/c (top right), 2 < pT,ee < 3 GeV/c
(bottom left), and 3 < pT,ee < 6 GeV/c (bottom right), respectively.
The statistical and systematic uncertainties of the data are displayed
as vertical bars and boxes. The expectation from the hadronic decay
cocktail is shown as a band, and the data-to-cocktail ratio is presented
below together with the cocktail uncertainty. . . . . . . . . . . . . . . . 119

4.70 Top: Fit to the mass spectra in different pT,ee intervals with a three-
component function to extract photon fraction r in minimum-bias event
analysis. Bottom: Residual distribution after the fitted function is sub-
tracted by the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.71 Top: Fit to the mass spectra in different pT,ee intervals with a three-
component function to extract photon fraction r in high-multiplicity
event analysis. Bottom: Residual distribution after the fitted function
is subtracted by the data. . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.72 Summary of total systematic uncertainty of virtual photon fraction as a
function of pT in minimum-bias events. . . . . . . . . . . . . . . . . . . 123

4.73 Summary of total systematic uncertainty of virtual photon fraction as a
function of pT in high-multiplicity events. . . . . . . . . . . . . . . . . . 123



4.74 Virtual photon fraction r as a function of pT in minimum-bias events. . 124

4.75 Virtual photon fraction r as a function of pT in high-multiplicity events. 124

4.76 Distribution of the test statistic t for the direct-photon fraction r in
different pT slices. Pseudo-experiments performed under the null hy-
pothesis H0 : r = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.77 Generated mother particle as a function of pT in minimum-bias event
analysis. Corresponding parameterizations are overlaid. . . . . . . . . . 127

4.78 Generated mother particle as a function of pT in high-multiplicity events.
Corresponding parameterizations are overlaid. . . . . . . . . . . . . . . 128

4.79 Decay photon yields as a function of pT from respective photon sources
in minimum-bias (left) and high-multiplicity (right) event analysis. . . . 129

4.80 Relative fraction with respect to the total contribution in minimum-bias
(left) and high-multiplicity (right) event analysis. . . . . . . . . . . . . 129

5.1 Direct photon yield γdir as a function of pt in minimum-bias pp collisions.
Statistical and systematic uncertainties of the data are displayed as ver-
tical bars and boxes, respectively. The result is compared to theoretical
calculations from [70] and [64]. . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Multiplicity dependence of pT differential direct photon yield γdir. The
bottom panel shows the ratio of high-multiplicity over minimum pho-
ton yields. The data points are calculated assuming spectra are fully
uncorrelated point-by-point. The blue band shown at the bottom indi-
cates the ratio of mean charged-particle multiplicity at mid-rapidity in
high-multiplicity over minimum-bias events. . . . . . . . . . . . . . . . 136

5.3 Direct photon yield γdir as a function of pt in high-multiplicity pp colli-
sions. Statistical and systematic uncertainties of the data are displayed
as vertical bars and boxes, respectively. The result is compared to the-
oretical calculations from [70] and [64]. . . . . . . . . . . . . . . . . . . 137

5.4 Integrated photon yield γdir as a function of charged particle multiplicity
at mid-rapidity. Statistical and systematic uncertainties of the data are
displayed as vertical bars and boxes, respectively. The result is compared
to theoretical calculations from [70] and [64]. . . . . . . . . . . . . . . . 138



5.5 Compilation of integrated photon yield γdir as a function of charged
particle multiplicity at mid-rapidity. The obtained results are com-
pared with results from RHIC and LHC energies. The blue star and
the magenta cross markers indicate results from Au–Au collisions at√
sNN = 200 GeV by STAR [174] and PHENIX [49,175] collaborations.

The gold four-triangles marker and band show the result from pp col-
lisions at

√
s = 200 GeV and Ncoll-based extrapolation of pQCD cal-

culations [50], respectively. The LHC results are all taken from the
ALICE collaboration. The data points in Pb–Pb collisions are taken
from ALICE published result [25] (dark cyan cross) and preliminary
results (violet diamond and orange square) measured at different col-
lision energies [176], respectively. The Pb–Pb results at

√
sNN = 2.76

TeV are compared with the theoretical prediction by Gale [77]. The
model includes prompt photons, pre-equilibrium photons, and thermal
photons. The prompt photon is computed with next-to-leading-order
pQCD using INCNLO [172], nCTEQ15-np PDF corrected for nuclear
matter effects [173] and BFG2 [91] fragmentation function. Statistical
and systematic uncertainties of the data are displayed as vertical bars
and boxes, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.1 mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2016 periods. . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2016 periods. . . . . . . . . . . . . . . . . . . . . . . . 148

B.3 mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2017 periods. Bottom right shows map created using
all periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.4 width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2017 periods. Bottom right shows map created using
all periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.5 mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18spline’. Bottom right shows a map
created using all periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.6 mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18nospline’. Bottom right shows map
created using all periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.7 width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18spline’. Bottom right shows map
created using all periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.8 width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18nospline’. Bottom right shows map
created using all periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 153



B.9 mean of nσTOF as a function of track momentum obtained using 2017
periods. Bottom right shows map created using all periods. . . . . . . . 154

B.10 width of nσTOF as a function of track momentum obtained using 2017
periods. Bottom right shows map created using all periods. . . . . . . . 155

B.11 mean of nσTOF as a function of track momentum obtained using 2018
periods. Bottom right shows map created using all periods. . . . . . . . 156

B.12 width of nσTOF as a function of track momentum obtained using 2018
periods. Bottom right shows map created using all periods. . . . . . . . 157

B.13 Mean and width of TPC nσe as a function of p and η obtained using
2016 sample before re-calibration. . . . . . . . . . . . . . . . . . . . . . 158

B.14 Mean and width of TPC nσe as a function of p and η obtained using
2016 sample after re-calibration. . . . . . . . . . . . . . . . . . . . . . . 158

B.15 Mean and width of TPC nσe as a function of p and η obtained using
2017 sample before re-calibration. . . . . . . . . . . . . . . . . . . . . . 158

B.16 Mean and width of TPC nσe as a function of p and η obtained using
2017 sample after re-calibration. . . . . . . . . . . . . . . . . . . . . . . 158

B.17 Mean and width of TPC nσe as a function of p and η obtained using
2018 sample before re-calibration. The data sample consists of samples
with TPC spline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.18 Mean and width of TPC nσe as a function of p and η obtained using
2018 sample after re-calibration. The data sample consists of samples
with TPC spline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.19 Mean and width of TPC nσe as a function of p and η obtained using
2018 sample after re-calibration. The data sample consists of samples
without TPC spline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.20 Mean and width of TPC nσe as a function of p and η obtained using
2018 sample after re-calibration. The data sample consists of samples
without TPC spline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B.21 Mean and width of TOF nσe as a function of p and η obtained using
2016 periods before re-calibration. . . . . . . . . . . . . . . . . . . . . . 160

B.22 Mean and width of TOF nσe as a function of p and η obtained using
2016 periods after re-calibration. . . . . . . . . . . . . . . . . . . . . . . 160

B.23 Mean and width of TOF nσe as a function of p and η obtained using
2017 periods before re-calibration. . . . . . . . . . . . . . . . . . . . . . 161

B.24 Mean and width of TOF nσe as a function of p and η obtained using
2017 periods after re-calibration. . . . . . . . . . . . . . . . . . . . . . . 161

B.25 Mean and width of TOF nσe as a function of p and η obtained using
2018 periods before re-calibration. . . . . . . . . . . . . . . . . . . . . . 161

B.26 Mean and width of TOF nσe as a function of p and η obtained using
2018 periods after re-calibration. . . . . . . . . . . . . . . . . . . . . . . 161

B.27 Mean and width of TOF nσe as a function of p and η obtained using
2018 periods without TPC splines before re-calibration. . . . . . . . . . 162



B.28 Mean and width of TOF nσe as a function of p and η obtained using
2018 periods without TPC splines after re-calibration. . . . . . . . . . . 162

C.1 The incariant mass spectra in minimum-bias pp collisions at
√
s = 13

TeV below 0.5 GeV/c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.2 The incariant mass spectra in high-multiplicty pp collisions at

√
s = 13

TeV below 0.5 GeV/c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.1 Distribution of the test statistic t for the direct-photon fraction r in
each pT interval in minimum-bias events. Pseudo-experiments performed
under the null hypothesis H0 : r = 0. . . . . . . . . . . . . . . . . . . . 165

D.2 Distribution of the test statistic t for the direct-photon fraction r in each
pT interval in high-multiplicity events. Pseudo-experiments performed
under the null hypothesis H0 : r = 0. . . . . . . . . . . . . . . . . . . . 166



List of Tables

3.1 Summary of beam and machine parameters during 2016-2018 in Run 2
compared to the LHC design values [104]. The β∗ (m) and half Crossing
angle (µrad) are at IP2 and the same as Run 1 [105]. The β∗ is described
in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Geometrical dimensions, active areas and number of channels of each
ITS layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Running conditions in pp, p–Pb and Pb–Pb collisions during Run 2 [129]. 44

4.1 The number of events after physics selection and event selection criteria
in minimum-bias and high-multiplicity triggered events. . . . . . . . . . 56

4.2 Primary track selection for the analysis. The selection criteria are com-
mon for MB- and HM-triggered data analysis. . . . . . . . . . . . . . . 62

4.3 PID selection of electrons for the analysis. Electron candidate is ac-
cepted if either of the two PID requirements is fulfilled. . . . . . . . . . 67

4.4 Possible combination of electron pairs from open heavy-flavor hadron
decays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Summary of light-flavour hadron and J/ψ meson decays contributing
to dielectron spectrum. Branching ratios are taken from [5]. (∗) ...
common mT scaling factors are used for MB and 0-0.1% multiplicity class. 92

4.6 Summary of systematic uncertainty of minimum-bias and high-multiplicity
cocktail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 Tracking and PID selection settings. Texts written in bold are standard. 104
4.8 Summary of total systematic uncertainty of minimum bias and high-

multiplicity data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9 Summary of total systematic uncertainty of virtual photon fraction r in

minimum bias analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.10 List of decay-photon sources and branching ratio [5]. . . . . . . . . . . 126

5.1 Bin-by-bin ratio of invariant yields between minimum-bias and high-
multiplicity events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

1





Chapter 1

Introduction

1.1 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is non-Abelian gauge theory of interactions be-
tween quarks and gluons [1]. The most outstanding feature of QCD is asymptotic
freedom, which causes interaction between quarks and gluons become weaker as mo-
mentum transfer increases [2]. Due to this nature, coupling constant αs of the strong
interaction depends on the momentum scale of the interaction (Fig. 1.1). The impor-
tant consequence of asymptotic freedom is that processes at large momentum transfer
can be computed in a perturbation expansion in αs [3], as only lower orders contribute
significantly. In contrast, for the calculations of processes at low momentum, per-
turbative QCD (pQCD) breaks down as higher orders become dominant [4]. At a
non-perturbative regime, where αs is large, very attractive phenomena which close to
the essence of strong interactions appear. One is color confinement [6], which leads
to the fact that quarks and gluons are not isolated and confined into hadrons, and
therefore not directly observed. Another feature is the spontaneous breaking of chiral
symmetry [7], responsible for the emergence of hadron mass, e.g. protons and neu-
trons have much larger mass (∼ 1 GeV) compared to the one from their constituent
quarks which have only few MeV. Therefore, to describe these phenomena, theoretical
approaches such as Lattice QCD (LQCD) [8–10] and Effective Field Theories [11–13]
are practical solutions. LQCD is a formalism of quantized gauge field theory on a
discrete lattice in four-dimensional Euclidean space-time, introduced by Wilson [14],
which serves first-principle results on QCD.

1.2 Quark Gluon-Plasma (QGP)

The states of matter can be illustrated in a phase diagram as a function of the tem-
perature T and the baryon chemical potential µB as shown in the left of Fig. 1.2. It
is predicted that under extremely high temperature and/or density, QCD matter can
undergo a phase transition from ordinary hadrons to a new state of matter, called
Quark Gluon-Plasma (QGP), where quarks and gluons are deconfined [15]. According

1
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Figure 1.1: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order, NNLO: next-to-next-to leading
order, NNLO: NNLO matched with resumed next-to-leading logs, N3LO:next-to-
NNLO) [5].

to LQCD simulation, QGP can be formed at extremely high temperatures (T = 150
∼ 160 MeV) [16]. This can be seen in Fig. 1.2 (right), the transition is a rapid but
smooth crossover around the critical temperature. It is conjectured that the QGP is a
matter that existed in the early universe in ∼ 10−6 seconds after the Big Bang. Hence,
if such matter can be created in a laboratory, space-time evolution and the emergence
of hadrons in the early universe can be studied in a laboratory.

In order to create extremely high temperature and density conditions, high-energy
heavy-ion collisions are considered as an ideal way. This is because the size of the
colliding nuclei is large, and many particles are being produced in a short time-scale
after the collisions. It is essential to undergo the multiple interactions among produced
partons and particles, and the system needs to reach a state of (local) thermal equilib-
rium, to define thermodynamic quantities like temperature, pressure, or energy density.
That means the system’s lifetime must be longer than the inverse rate of interactions,
which allows particles to interact and drive the system towards equilibrium [18].

Figure 1.3 is a sketch of the evolution of the system created in relativistic heavy-
ion collisions. Soon after the head-on collision, a huge amount of energy is released
in a tiny volume, and scattering between partons occurs. The stage is called pre-
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Figure 1.2: Left: Sketch of the QCD phase diagram [17]. Right: Pressure, energy
density, and entropy density suitably normalized to the 4th (3rd for the latter) power
of the temperature, from the Lattice QCD calculations of the HotQCD Collabora-
tion [16]. The dark lines show the prediction of the Hadron Resonance Gas model,
the horizontal line corresponds to the ideal gas limit for the energy density. The
vertical band indicates the cross-over transition region.

equilibrium. After the subsequent multiple scattering of partons, the system reaches
local equilibrium. The system consists of quark and gluon, is formed and the evolution
can be described by relativistic hydrodynamics. The system expands further and cools
down, when the temperature drops below the critical value, hadronization of partons
occurs. This phase is called chemical freeze-out with the system being transformed
into a hadron gas.

Figure 1.3: Evolution of the system created in high-energy heavy-ion collisions.
Time is advancing from the left to the right. (The sketch is based on the simulations
by the MADAI collaboration [19])

The picture of space-time evolution can be better interpreted by extensive studies
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that include proton-proton and proton-nucleus collision experiments as well as heavy-
ion collisions. Experiments in these smaller colliding systems are important as pp
collision serves as a vacuum baseline and cold nuclear matter effects can be studied via
proton-nucleus collisions. These studies help to distinguish between QGP-relevant and
irrelevant effects.

Numerous high-energy heavy-ion collision experiments were conducted at the Rel-
ativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) to create
and study the QGP. As a result, strong results indicating the creation of the QGP have
been obtained. To give some examples, this includes energy loss of color probes [20,21],
sequential suppression of quarkonium states [22,23], and electromagnetic radiation con-
sistent with high initial temperatures of several hundred MeV [24,25]. Also, it was very
surprising that the data shows anisotropic flow and this observation is well described
by relativistic hydrodynamics [26].

The most important and valuable observable for the study of the QGP is real or
virtual photons. This is because electromagnetic radiation of direct photons is direct
evidence of the creation of the thermalized system. Figure 1.4 shows direct photon pT
spectra in proton-proton and nucleus-nucleus collisions measured by PHENIX at RHIC
(left) and by ALICE at the LHC (right). Looking at the PHENIX result, the pQCD
calculation is consistent with the pp data within the theoretical uncertainties for pT
> 2 GeV/c. The Au–Au data are above the nuclear overlap function TAA scaled pp
fit which indicates the direct photon at low pT range increases faster than the binary
NN collision. The excess is evaluated with an exponential fit with the inverse slope
parameter T , which corresponds to the effective temperature of the medium. Extracted
T reaches Teff = 239±25stat±7syst MeV, which corresponds to 4 trillion degrees Celsius.
Similar direct photon excess was observed at the LHC by ALICE and the extracted
temperature was Teff = 304±11stat±40syst MeV. It turned out that the medium created
at LHC was hotter than at RHIC.

1.3 High-Multiplicity Proton-Proton Collisions

In recent years, collective phenomena [30, 38–41] in high-multiplicity proton–proton
and proton–ion collisions have been found and attracted great interest of the heavy-ion
community, as they exhibit surprising similarities with those found in heavy-ion colli-
sions (Fig. 1.5). Another important discovery is the strangeness enhancement [42], a
smooth evolution of strangeness particle production with event multiplicity, which is
originally considered as a signature of the formation of the QGP in nucleus-nucleus col-
lisions (Fig. 1.6). Moreover, not only light-flavour hadrons, heavy-flavor hadrons such
as D-meson and J/ψ production show multiplicity dependence [43,44]. Given that the
creation of the QGP is always discussed by assuming the absence of those phenomena
in proton-proton and proton-nucleus collisions, these discoveries is forcing a paradigm
shift in this field. They opened the big question: Is a QGP formed in small systems
?. To answer this question a number of measurements have been carried out: hadronic
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Figure 1.4: Left: Invariant cross section (pp) and invariant differential yield (Au–
Au) of direct photons as a function of pT. The filled points and open points are from
two different analyses, [24] and [27,28], respectively. The three curves on the pp data
represent NLO pQCD calculations, and the dashed curves show a modified power-
law fit to the pp data, scaled by TAA. The dashed (black) curves are exponential
plus the TAA scaled pp fit. The dotted (red) curve near the 0-20% centrality data is
a theory calculation [29]. Right: Direct photon spectra in Pb–Pb collisions at

√
sNN

= 2.76 TeV for the 0-20% (scaled by a factor 100), the 20-40% (scaled by a factor
10) and 40-80% centrality classes compared to NLO pQCD predictions for the direct
photon yield in pp collisions at the same energy, scaled by the number of binary
nucleon collisions for each centrality class [25].

anisotropic flow, the mass ordering of the identified particle v2, particle interferometry
in small systems, multiplicity dependence of charged-particle jet production and so on
(see Refs. [45–47]). Nevertheless, the situation is not conclusive and measurement of
electromagnetic radiation is being awaited.

1.4 Direct Photons in Small Systems

The most important but missing inputs are direct photons and dileptons. They are
unique probes as they are emitted without final state interactions and take over medium
properties. In heavy-ion collisions, the thermal radiation of direct photons which con-
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Figure 1.5: Two-particle correlation functions for 7 TeV pp (a) [30], 5.02 TeV p-
Pb (b), and 2.76 TeV PbPb (c) collisions [31]. The arrow shows the long-range
correlations at small ∆ϕ. The structure called “ridge” in heavy-ion collisions is
interpreted as a consequence of the hydrodynamic flow of the produced strongly
interacting medium. The structure evolves from pp to Pb–Pb collisions.

tributes to low transverse momentum1 was conceived as direct evidence of the creation
of hot QGP. If a thermalized system is created in small systems, it should give rise
to the thermal radiation of (virtual) direct photons as well. However, to single out
and quantify the thermal contribution, precise knowledge of other contributions such
as prompt photons is essential. Therefore, direct photon production is studied in both
minimum bias and high-multiplicity pp collisions. In this context, the former serves as
a vacuum baseline with respect to the latter.

In addition, as shown in Fig. 1.7, there is an interesting result of the PHENIX
experiment. It is integrated photon yield (pT > 1 GeV/c) as a function of charged
particle multiplicity. Data points from pp and heavy-ion collisions in various collision
systems are shown. Whereas all the A+A points are on the dotted lines, pp and Ncoll

scaled pQCD calculations are on a different line which is parallel to the dotted line.
The data points from pAu and dAu collisions are plotted in the middle and seem
to fill the gap smoothly. If these results may indicate the onset of the QGP, it is
natural to study the thermal radiation in pp collisions at

√
s = 13 TeV, whose charged

particle-multiplicity covers from ∼ 7 to ∼ 30.

1.5 Previous Experimental Result

ALICE measured direct photon in pp collisions at
√
s = 13 TeV using the data from

the early year of Run 2. The analysis employed virtual photon method and extracted

1The defnitions of kinematic variables used in this thesis can be found in Appendix A.
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ALI-PREL-321075

Figure 1.6: pT-integrated yields of strange and multi-strange hadrons over π+ + π+

as a function of dNch/dη, measured in high-multiplicity pp collisions at
√
s = 7 TeV

in |η| < 0.5. The error bars show the statistical uncertainty, whereas the empty
and dark-shaded boxes show the total systematic uncertainty and the contribution
uncorrelated across multiplicity bins, respectively. The data are compared to Monte
Carlo calculations [32–34] and to results obtained in Pb-Pb and p-Pb collisions with
ALICE [35–37].

direct photon fraction r which defined as the ratio of direct photons γdir to inclusive
photons γincl which is sum of direct and decay photons (γincl = γdir + γdecay). Figure. 1.8
shows the fraction as a function of transverse momentum pT in inelastic (left) and high-
multiplicity (right) pp collisions. If r = 0, γincl = γdecay which indicates there are no
direct photons and all of them are from hadron decays such as π0 → γγ and η → γγ.
In that study, no significant direct-photon signals were observed due to large statis-
tical and systematic uncertainties in both minimum-bias and high-multiplicity event
analysis. Therefore, this study aims to extract direct-photon signals in pp collisions,
using increased statistics from whole Run 2 years (2016–2018) and better knowledge
of decay backgrounds.

Compared to the previous study, the following major improvements were utilized
in this study. First, the statistics of experimental datasets were increased, i.e., 4.4
(3.8) times larger event statistics were used in inelastic and high-multiplicity pp col-
lisions. Second, cocktail input spectra such as π0 and η meson are taken from mea-
surements [54]. Fig. 1.9 shows invariant cross sections for neutral meson production in
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Figure 1.7: Preliminary result of integrated direct-photon yield (pT > 1 GeV/c)
as a function of charged particle multiplicity dNch/η at midrapidity [48] in various
collision systems. The data points from PHENIX [49], ALICE [25] experiments are
compared with Ncoll scaled pQCD calculations for pp collisions at

√
s = 200 GeV [50].

Figure 1.8: Fraction of direct photon as a function of pT in inelastic and high-
multiplicity event [51]. Statistical and systematic uncertainties are shown in bars
and boxes. The upper limits in shown in red arrow are extracted at 90% confidence
level (C.L.) using the Feldman-Cousins method [52]. The gray band shows NLO
pQCD calculation taken from [53].

pp collisions at
√
s = 13 TeV. Third, as shown in Fig. 1.10, high-multiplicity neutral
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mesons were also measured, which are the same event multiplicity class (0–0.1%) as
used in this analysis. In addition, it is also important that the η/π0 ratios were studied
as well. These measurements were not available in the previous study and caused large
systematic uncertainties of direct photon signal.

ALI-DER-548858

Figure 1.9: Invariant cross sections for neutral meson production at midrapidity in
pp collisions at

√
s = 13 TeV compared with theoretical predictions [54]. The neutral

pion, η, and ω meson are measured at transverse momenta pT in the range 0.2 < pT
< 200 GeV/c, 0.4 < pT < 50 GeV/c and 2 < pT < 50 GeV/c, respectively. The red
line shows the theoretical prediction obtained using the PYTHIA8.2 [55] calculation
with Monash 2013 tune [56]. The green (pink) band represents pQCD calculation at
NLO using CT18 [57] PDF and NNFF1.0 [58] (AESSS [59]) FF for π0 (η), and the
purple band shows calculation at NLO using CT14 [60] PDF and ω fragmentation
based on a broken SU(3) model [61] for ω meson.
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Figure 1.10: Invariant differential π0 (left) and η (right) yields for different multiplic-
ity classes in pp collisions at

√
s = 13 TeV. Statistical and systematic uncertainties

are shown in bars and boxes. The red square points indicate π0 and η meson mea-
sured in the 0–0.1% multiplicity class, which are used in this analysis. The neutral
pion and η meson are measured at transverse momenta pT in the range 0.4 < pT <
50 GeV/c, 0.4 < pT < 25 GeV/c, respectively.
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Figure 1.11: Left: η/π0 ratio in pp collisions at
√
s = 13 TeV compared with

PYTHIA8.2 calculation with Monash 2013 tune and mT scaling. The η/π0 is mea-
sured at transverse momenta pT in the range 0.4 < pT < 50 GeV/c. Right: η/π0

ratio in high and low multiplicity classes in pp collisions at
√
s = 13 TeV. The red

square points indicate η/π0 ratio measured in the 0–0.1% multiplicity class, which is
used in this analysis. The η/π0 is measured at transverse momenta pT in the range
0.4 < pT < 16 GeV/c.
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1.6 Organization of This Thesis

This work presents the study of dielectron and direct photon production in proton-
proton collisions at

√
s = 13 TeV via an internal conversion technique (virtual photon

method). The thesis is organized as follows: Chapter 1 gives an introduction, physics
motivation, and previous experimental results. Chapter 2 describes the basics of photon
measurement, i.e., source of photons and experimental technique. Chapter 3 describes
the experimental setup including LHC and ALICE apparatus, and relevant detectors for
this analysis together. The details of analysis is presented in Chapter 4. In Chapter 5,
obtained results are discussed. Finally, Chapter 6 concludes the thesis.

1.7 Major Contributions

The major contributions of the author as an ALICE collaborator are as follows:

• Operation of data taking during LHC Run 2

• Quality Assurance of GEM foil for ALICE–TPC upgrade project for LHC Run
3 [62]

• Validation of material budget in ALICE detector using conversion photons to
precise determination of ALICE material budget [63]

• Paper committee chair of the paper (under preparation) ”Direct photon produc-
tion in inelastic and high-multiplicity proton-proton collisions at

√
s = 13 TeV”

on behalf of the ALICE Collaboration.





Chapter 2

Basics of Direct Photon
Measurement

This chapter introduces the sources of direct photons and their measurement methods.
In the field of heavy-ion physics, pp collisions were taken only as a vacuum baseline for
interpreting results from heavy-ion collisions. In the case of photon production in pp
collisions, the only possible contribution was prompt photons and no other contribution
was considered to exist. The recent observations of collectivity in small systems have
led to discussions on the production of thermal photons even in pp collisions [64]
Referring to this, Sec. 2.1 describes the basics of the photon production mechanisms
in high-energy hadron collisions. In Sec. 2.2, experimental techniques to measure low
pT direct photon are described.

2.1 Source of Photons

Photon is a powerful probe in heavy-ion collisions as they are produced at every stage
of the collisions and emitted from the strongly interacting medium almost unaffected by
final state interaction. This is due to the small coupling constant of the electromagnetic
interaction. Figure 2.1 shows various photon sources in heavy-ion collisions. Photons
of interest that do not originate from hadron decays are called direct photons. Direct
photons consist of two categories. Prompt photons are produced in the hard process
and used for testing pQCD calculations. Non-prompted photons are considered to
be photons from physical sources other than pQCD, rather than photons from hard
processes. Since photons are detected inclusively, it is not possible to distinguish
between the different sources in the experiment. Thus, with the help of theory, these
sources of direct photons are estimated and their relative contributions in the transverse
momentum spectrum are investigated.

Typically, interactions that can be calculated in QCD are referred to as hard pro-
cesses, which are characterized by either large momentum transfer or large transverse
momentum. The spectrum of hard processes follows a power-low shape. The mea-
surements of the direct photon at RHIC and the LHC are well described by pQCD
calculations at higher pT [65]. The expected behavior in heavy-ion collisions is a scal-

13
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ing from pp cross section proportional to the number of nucleon-nucleon collisions. On
the other hand, it is not clear how low transverse momentum pQCD is applicable since
theoretical uncertainties are large at low pT.

As mentioned above, the measurement of photons is a big experimental challenge as
most photons arise from decays of neutral mesons. If a QGP droplet is created in high-
multiplicity proton-proton collisions, analogously, one would assume direct photons in
high-multiplicity proton-proton collisions can be classified similarly. Theoretically, it is
predicted that thermal photons will increase in high-multiplicity pp collisions as shown
in Fig. 2.2. If such photons are emitted, a sizeable enhancement of the direct photon
signal should appear at pT < 3–4 GeV/c [64]. Major photon sources such as prompt,
thermal, and decay photons are described below.

Figure 2.1: Known and expected photon sources in heavy-ion collisions.

2.1.1 Prompt photon

Prompt photons are defined as photons created in initial hard scatterings of incoming
partons. The main production mechanisms are: (a) quark-gluon Compton scatter-
ing, (b) quark-antiquark annihilation and (c) bremsstrahlung from quark fragmenta-
tion [66]. Corresponding Feynman diagrams are illustrated in Figure 2.3. The pro-
duction rates of prompt photons can be calculated in pQCD, therefore prompt photon
is also called pQCD photon. The photon production cross section in proton-proton
collisions can be written as [65]

E
d3σpp
d3p

=
∑
a,b,c,d

fa/p(xa, Q
2)⊗ fb/p(xb, Q

2)

⊗ dσ̂(Q2)⊗Dγ/c(zc, Q
2),

(2.1)
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Figure 2.2: Theoretical prediction of direct photon production in pp collisions at√
s = 13 TeV [64]. The orange and red curves show thermal photon contribution

in minimum-bias and high-multiplicity events, respectively. In the calculation, the
charged-particle multiplicity is determined at forward rapidity which is consistent
with the ALICE acceptance of the V0 detector. The high-multiplicity thermal-
photon contribution shows clear enhancement compared to the one from minimum-
bias events. This enhancement should be visible below pT = 3–4 GeV/c, where the
thermal-photon contribution is above the prompt-photon contribution as shown in
the green line.

where fi/p(xi, Q) with i = a, b are parton distribution functions (PDF) of incoming
partons a and b. These PDFs depend on the momentum transfer Q2 and describe the
probability to find parton i with momentum fraction xi inside either of the colliding
hadrons. The scale is typically chosen on the order of the transverse momentum of final
state partons. The partonic cross-section dσ̂ is evaluated as a perturbative expansion
in the strong coupling constant αs(Q). The term Dγ/c(zc, Q

2) is the parton-to-photon
fragmentation function (FF) that governs the fragmentation of a scattered parton c to
a photon with momentum fraction z, which emerges from the collinear fragmentation
of a colored high pT parton accompanied by hadrons. Prompt photons from the LO
processes of (a) and (b) in Fig. 2.3 are final state objects and do not require the FF. In
that sense, these photons are also called “direct” photons. The process of (c) can be
interpreted as the NLO corrections to the LO in the perturbative expansion in powers
of the strong coupling αs. These photons behave as a high pT colorless parton, and it
is most likely to be well separated from hadrons.

With experimentally determined PDF and FF, pQCD calculations reproduce the
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Figure 2.3: Leading Order (LO) and Next-to-Leading Order (NLO) diagrams of
direct photon production in the initial scatterings: (a) quark-gluon Compton scat-
tering, (b) quark-antiquark annihilation and (c) bremsstrahlung radiation from quark
fragmentation [67].

measured direct photon spectra in proton-proton collisions by PHENIX at RHIC, and
in proton-antiproton collisions by D0 at Tevatron [68]. According to theoretical analy-
sis [69], at RHIC energy, direct (LO) photons are a dominant source of prompt photons
compared to fragmentation photons above pT ∼ 3 GeV/c, while at LHC energy, the
contribution from fragmentation processes dominates prompt photons (Fig. 2.4).

Figure 2.4: Fractional contributions of direct (LO) and fragmentational processes
to inclusive photon production at RHIC [69] (left) and LHC [70] (right) energies as
a function of pT for the different choice of the photon fragmentation scale µ. At the
LHC, fragmentation photon dominates inclusive photon.
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2.1.2 Thermal photon

In contrast to hard photons, photons from a thermalized system can be used to diagnose
the formation of a strongly interacting medium in heavy ion collisions. Soft photons
can be produced through the same processes as hard photons shown in Fig. 2.3, but
produced by the interactions of thermalized particles. They are emitted during the
entire QGP evolution and the following hot hadron gas phase. An introductory review
of thermal photon productions can be found in Ref. [71].

The thermal emission rate of photons with energy E and momentum p from the
QGP is expressed as

E
d3R

d3p
=

−2

(2π)3
ImΠR,µ

µ

1

eE/T − 1
, (2.2)

where ΠR,µ
µ is the retarded photon self-energy at a finite temperature T , R stands

for the transition rate between the initial and final state. This equation is valid in
the perturbative [72, 73] and non-perturbative [74] limits. According to the theoreti-
cal investigations, Eq.2.4 exhibits proportionality of the rate to the Boltzmann factor
exp(−E/T ). This means the transverse momentum spectrum of thermal photons has
a similar spectral shape that is realized in thermal equilibrium in the medium.

Hot hadronic matter (hadron gas, HG) produced after the hadronization of the
QGP, will also emit photons due to hadronic reactions. The most important hadronic
constituents for photon production are π and ρ mesons, and elementary processes are
π+ρ → π+γ, π+π− → ργ and ρ → π+π−γ [75]. Certain models also include meson
+ meson and meson + baryon interactions in the hadronic phase [76]. As shown in
Fig. 2.5, a theory predicts thermal photons from HG are dominant at pT < 1, while
a suitable window for the study of thermal radiation from the QGP is 1 < pT < 3
GeV/c [29].

2.1.3 Photons from other sources

In addition to prompt and thermal photons, for instance, emission of photons from pre-
equilibrium stage [77], magnetic field effects [78–80] and the jet-medium interactions
are expected. The pre-equilibrium phase is a phase created in an early stage soon
after the first impact and lasts until the system reaches local thermalization towards
the QGP, and photons can be produced in such a non-equilibrium phase. PHENIX
experiment reported a possible sensitivity of the measurement to photons from earlier
stages [81], but less conclusive compared to thermal photons. Photons induced from
jet-medium interactions [82] are expected to contribute relatively higher transverse
momentum region above 4 GeV/c.

2.1.4 Fraction of direct photons over decay photons

Theoretically expected fraction of direct photons over decay photons at below pT =
3 GeV/c is at most 10% in heavy-ion collisions. In pp collisions, the fraction is even
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Figure 2.5: Theoretical prediction of direct-photon emission rate as a function of
transverse momentum qT, from various thermal sources in central Pb–Pb collisions
at

√
sNN = 5.5 TeV [29]. The blue and red dashed lines show thermal-photon con-

tribution from hot hadron gas (HG) and from the QGP, while the green dashed
line shows prompt photon contribution from initial hard scatterings. Below qT = 1
GeV/c, thermal photons are dominated by the HG, while above qT = 1 GeV/c, ones
from QGP are the largest source of thermal radiation.

smaller. At the LHC energies, this ratio is very close to a few % at 1-3 GeV/c, which
shows how the measurements are difficult. Therefore, the direct-photon measurement
is a big challenge.

Experimentally, direct photon signal is extracted in terms of the ratio defined as
inclusive over decay photon as follows:

Rγ = γincl/γdecay, (2.3)

where γincl is sum of direct photon and decay photon, Rγ is called direct-photon excess
ratio. By definition, Rγ > 1 indicates the existence of a direct-photon signal. Direct
photon γdir is obtained from inclusive photon yield as

γdir = (1− 1

Rγ

)γincl. (2.4)

Figure 2.6 shows Rγ as a function of pT measured in Pb–Pb collisions at
√
sNN =

2.76 TeV (left) and in pp collisions
√
s = 8 TeV (right), respectively. The results from
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Figure 2.6: Left: Direct photon excess ratio Rγ as function of pT in two different
centrality classes. Results are compared with theoretical predictions [76, 77, 83–85].
The significance of the direct photon are: 0-10%: 3.1σ (1.0 < pT < 1.8 GeV/c) and
20-40%: 3.4σ (1.0 < pT < 2.3 GeV/c). Right: Direct photon excess ratios Rγ as a
function of pT in pp collisions at 8 TeV. Results are compared with theoretical predic-
tions with CT10 [86–88] or CTEQ6.1M [89] proton PDF and GRV [90] or BFG2 [91]
FF. In addition, a JETPHOX calculation [92] based on NNPDF2.3QED [93] proton
PDF and BFG2 FF as well as a POWHEG calculation [92].

Pb–Pb collisions are compared with various theoretical predictions including prompt
and thermal photons. The extracted Rγ in central Pb–Pb collisions is about 5% below
pT = 3 GeV/c, which is compatible with the theoretical predictions. On the other hand,
in pp collisions, expected Rγ at low pT is almost unity, and the direct photon excess is
covered by the large uncertainties. From the above, the extraction of the direct-photon
signal in pp collisions requires a very precise measurement of the background photons
to reduce systematic uncertainties.

2.2 Techniques of Direct Photon Measurement

Direct photons are measured in the form of real or virtual photons. In this study,
direct photons are measured by the latter. In the following, real and virtual photon
measurements are described together with their advantages and disadvantages.

2.2.1 Subtarction method

Real direct photons can be measured by statistically subtracting decay photon spectra
from inclusive photon spectra. This technique was developed by WA98 collabora-
tion [94] and PHENIX [27] and ALICE [25, 95] and was adopted in direct photon
measurements as described in the previous section. In this technique, photons are
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reconstructed using either electromagnetic calorimeters or electron pairs from photon
conversions in the material. The π0 and η mesons are measured in their two-photon de-
cay channels. Decay photon contributions are estimated via Monte Carlo simulations
and subtracted from the inclusive photon spectrum. As most of the decay photons
arise from π0 → γγ and η → γγ, precise measurement of neutral mesons is crucial to
extracting direct photon signals.

2.2.2 Internal conversion method

Direct photons can be measured via internal conversion technique, which was developed
by PHENIX experiment [96]. Any source of real photons can emit a virtual photon
which subsequently decays into low-mass e+e− pair, which is interpreted as a higher-
order correction to that of real photons. Figure 2.7 shows the lowest order diagrams
of the dielectron production via virtual-photon decays.

Figure 2.7: The lowest order diagrams for (a) quark-antiquark annihilation and (b)
gluon Compton scattering with associated virtual photon decay into an e+e− pair.

The relation between real photon and the e+e− production is given by Kroll-Wada
formulae [97, 98]:

d2Nee

dmeedpT,ee
=

2α

3π

1

mee

L(mee)S(mee, pT,ee)
dNγ

dpT
, (2.5)

L(mee) =

√
1− 4m2

e

m2
ee

(
1 +

2m2
e

m2
ee

)
, (2.6)

S(mee, pT,ee) = |Fh(m2
ee)|2(1−

m2
ee

m2
h

)3. (2.7)

Here, α ≈ 1/137 is the fine structure constant, mee is the invariant mass of e+e− pairs,
me and mh are the electron and hadron mass, respectively. The S(mee, pT,ee) denotes
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Figure 2.8: Invariant mass distribution from virtual photon from π0, η and η′ Dalitz
decays and direct photon. The total contribution includes all Dalitz pairs i.e., (π0, η,
η′, ω, ϕ), the contribution from direct photon is normalized to the total contribution
below mee = 30 MeV/c2, to highlight difference of mass dependence.

the process-dependent factor that accounts for the differences between real and virtual
photons such as form factors, phase space, and spectral functions. This equation holds
for any process of emitting real photons, i.e., Compton scattering (qg → qγ), Dalitz
decays (π0, η → e+e−γ) and 2-photon decays from other hadrons. For high pT (pT ≫
mee), the process dependence becomes negligible. The factor S(mee, pT,ee) becomes 1
as mee → 0 or mee/pT → 0. For (mee ≫ me), the factor L(mee) also becomes very close
to 1. Thus the relation is simplified and gives very characteristic 1/mee dependence as
follows

d2Nee

dmeedpT,ee
≃ 2α

3π

1

mee

dNγ

dpT
. (2.8)

On the other hand, for Dalitz decays, as S(mee, pT,ee) becomes 0 for mee → mh and
Dalitz pair do not carry whole invariant mass. This leads to a rapid-falling shoulder
shape and gives different mass dependence that of the virtual photon as shown in
Fig. 2.8. By making use of these differences, the direct-photon signal can be separated
from the background.

The signal extraction is performed assuming the equivalence between the fraction
of real direct photons and the fraction of virtual direct photons with zero mass

rdir =
Nγ

dir

Nγ
incl

≡ Nγ∗

dir

Nγ∗

incl

∣∣∣
m=0

, (2.9)
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the real direct photon fraction r can be extracted with a fit of the e+e− invariant mass
distribution above π0 mass with a virtual photon contribution plus hadron decays using
the following expression:

dσ/dmee = rfdir(mee) + (1− r)fLF(mee) + fHF(mee) (2.10)

where fLF(mee) and fHF(mee) are contributions from light-flavour and heavy-flavour
hadron decays, and the shape of the virtual direct photon fdir(mee) is described by
Eq. 2.8 in the range pT ≫ mee, where the quasi-real virtual photon region.

The advantage of this method is by selecting mass window above mee > mπ0 ≈ 135
GeV/c2, the signal-to-background ratio is significantly improved. The drawbacks of
this method are the small internal conversion probability (∼ α ≈ 1/137) and rapidly
decreasing cross section as a function of mee (∼ 1/mee).

This technique requires the knowledge of the backgrounds up to η mass region (∼
0.5 GeV/c2). Therefore, the pT and rapidity spectra of π0 and η mesons are essential
inputs. Moreover, at LHC energies the contribution from open heavy-flavor hadrons
cannot be ignored and needs to be evaluated precisely. Below sources of background
dielectrons are summarised.

Dalitz decays

Dalitz decays is a radiative leptonic decay of a neutral pseudo-scalar meson into a
dilepton pair and either a photon [99] or a vector meson. Pseudo-scalar (π0, η and
η′) and vector mesons (ω, ϕ, J/ψ) are prime examples of internal conversion. In these
processes, a virtual photon, instead of a real photon, is emitted in the decay of a hadron
and subsequently decays into an e+e− pair. In the case of Dalitz decays such as π0 → γ
e+e−, the relation between hadron production and the associated e+e− pair production
is given by Eq. 2.8.

Semileptonic decays of open heavy-flavor hadrons

Electrons from semi-leptonic decay open heavy-flavor hadrons are important contri-
butions to the dilepton production at LHC energies. Open-heavy flavor hadrons are
particles made of at least a heavy (charm or beauty) quark and other lighter quarks.
Below, a full process of heavy-quark production, hadronization, and semileptonic decay
is briefly summarised.

Charm and beauty quarks are referred to as heavy quarks (QQ̄). Due to their large
mass (mc ≈ 1.27 GeV/c2 and mb ≈ 4.18 GeV/c2), heavy-quark pairs (cc̄ and bb̄) are
produced by only initial hard scattering, and their production can be calculated using
pQCD even at low pT. At leading order (LO), heavy quarks are produced via gluon
fusion and quark-antiquark annihilation. At next-to-leading order (NLO), processes
such as flavor excitation and gluon splitting are important (Fig. 2.9). Once a heavy-
quark pair is produced, hadronization occurs and open-heavy flavor hadrons are created
e.g. DD̄0. Then they weakly decay semileptonically (D0 → K−l+νl), which leads to
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the creation of correlated l+l− pair (Figure 2.10). These dilepton pairs dominate the
intermediate-mass region between ϕ meson and J/ψ (1.1 < mee < 2.7 GeV/c2) as is
discussed in Sec. 4.10 of Chapter 4.

Figure 2.9: Examples of heavy-flavor production diagrams. (a) and (b) Leading
order. (c) Pair creation (with gluon emission). (d) Flavor excitation. (e) Gluon
splitting. (f) Events classified as gluon splitting but of flavor-excitation charac-
ter [100]

Figure 2.10: Skematic view of dilepton production from correlated semi-leptonic
decays of open heavy-flavor hadrons.
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Experimental Setup

3.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) [101] is the largest particle accelerator in the world,
built by the European Organization for Nuclear Research (CERN) beneath the French-
Swiss border near the city of Geneva. The LHC is a 27 km-long ring of superconducting
magnets, installed in a tunnel originally used for the Large Electron-Positron Collider
(LEP). It is designed to accelerate and collide proton beams at an energy of 7 TeV,
which gives a total center-of-mass energy of 14 TeV, while 2.75TeV/nucleon Pb beams
lead to a center-of-mass energy of 5.5 TeV. The proton and heavy-ion beams are divided
into thousands and hundreds of bunches, respectively. Each bunch contains more than
a hundred billion protons or tens of millions of lead nuclei. During Run 2 (2015 -
2018), the LHC increased the center-of-mass energy

√
s = 13 TeV in pp collisions and

achieved the design luminosity of 1034 cm−2 s−1. In Pb-ion collisions, the center-of-mass
energy was reached up to

√
sNN = 5.02 TeV per nucleon pair with a peak luminosity

of 1027 cm−2 s−1. Design and performance of LHC during 2016-2018 in Run 2 are
summarised in Table. 3.1. The LHC beams are produced and pre-accelerated in the
CERN accelerator chain, so-called LHC injectors. Figure 3.1 shows an overview of
CERN accelerator complex [102]. The injection chain for the protons starts at LINAC
2, where the H+ ions are produced and accelerated to 50 MeV. After the LINAC
2, the beams are injected into the PS Booster. The booster consists of four storage
rings, which make protons a single bunch. The bunches are accelerated to 1.4 GeV and
transferred into the Proton Synchrotron (PS). The PS has several RF systems that can
produce bunch structure via adiabatically switching frequencies among them. Then,
the beams are extracted to the Super Proton Synchrotron (SPS) and further accelerated
to 450 GeV, the injection energy of the LHC. The two beams are transported to the
LHC via injection systems which are located at TI 1 for beam 1 and TI 2 for beam
2. The bunches are injected every 25 ns for pp collisions, and make up bunch trains -
groups of bunches. In Run 2, the number of bunches reached ∼ 2500 bunches. When
the injection process is completed, the energy is increased by ramping up the LHC
magnets. Afterward, the beams are accelerated and squeezed to minimize β∗, which
is the value of the beta function β at an interaction point. Finally, collisions of two

25
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beams occur and experiment starts to data taking [103]. The two beams can collide
only in the regions containing the four major experiments in ALICE, ATLAS, CMS
and LHCb.

Table 3.1: Summary of beam and machine parameters during 2016-2018 in Run
2 compared to the LHC design values [104]. The β∗ (m) and half Crossing angle
(µrad) are at IP2 and the same as Run 1 [105]. The β∗ is described in the text.

Parameter Design 2018 2017 2016

Energy (TeV) 7.0 6.5 6.5 6.5

Bunch spacing (ns) 25 25 25 25

Number of bunches 2808 2556 2556 - 1868 2220

β∗ (m) 0.55 10

Bunch intensity (1011 ppb) 1.15 1.1 1.25 1.25

Emittance (µm) 3.75 1.8-2.2 1.8-2.2 1.8-2

Peak luminosity (1034 cm−2 s−1) 1.0 2.1 2.0 1.5

Harf Crossing angle (µrad) 142.5 710

3.2 ALICE Detector Overview

ALICE (A Large Ion Collider Experiment) is one of the four major experiments at
the LHC. The spectrometer is designed to study the strong interaction sector of the
Standard Model and QGP, using the ultra-relativistic heavy-ion collisions.

Figure 3.2 shows the schematic view of ALICE apparatus during the LHC Run
2. In total, 19 detector systems are installed, each has its own different purposes
and technologies, driven by the physics requirements and the experimental conditions
expected at LHC. ALICE is optimized to have a good momentum resolution as well
as excellent particle identification (PID) capability over a wide pT range under very
high multiplicity conditions in central Pb–Pb collisions (dNch/dη ∼ 8000). A detailed
description of each detector and its performance is summarized in [105–108]. ALICE
consists of two main parts, i.e., central barrel part which is housed in the solenoid
magnet reused from L3 experiment, and the forward detector part. From the inside out,
the central barrel detector comprises Inner Tracking System (ITS), Time-Projection
Chamber (TPC), Transition Radiation (TRD), Time-of-Flight (TOF), Ring Imaging
Cherenkov (HMPID) detectors, and two electromagnetic calorimeters (PHOS, EMCal
and DCal). The forward detector includes the Photon Multiplicity Detector (PMD),
the silicon Forward Multiplicity Detector (FMD), and the Muon spectrometer. The
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Figure 3.1: Schematic view of the CERN accelerrator complex [102].

Muon spectrometer consists of Muon tracker (MTR), Muon Wall, and Muon Trigger.
In addition, small detectors (ZDC, PMD, FMD, T0, V0) are located at small angles
for global event characterization and triggering. An array of scintillators (ACORDE)
on top of the L3 magnet is used to trigger cosmic rays.

ALICE coordinate system

The ALICE coordinate system is a right-handed orthogonal coordinate, the interaction
point 2 (IP2) is the origin of the coordinate system [109]. As shown in Fig. 3.3, the
z axis is parallel to the beam direction, the x axis is perpendicular to the z axis and
points to the accelerator center, the y axis is perpendicular to the beam axis and the
x axis, pointing vertically up. The azimuthal angle φ, between the x- and y-axis,
counts clockwise with the observer facing the A-side. The polar angle θ increases
from the positive part of the z-axis towards the y-axis. Here we introduce a variable
called rapidity, which is an essential quantity to characterize particle production. The
rapidity is used to express approximate angles with respect to the beam axis which is
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Figure 3.2: ALICE detector complex in LHC Run 2 [109].

Figure 3.3: Global coordinate of ALICE detectors [110].

defined as

y =
1

2
ln
E + pz
E − pz

, (3.1)

where, E is the energy of the particle and pz is the particle longitudinal momentum
component, along with the z-axis. Since the rapidity requires knowledge of the mass of
the particle, another variable called pseudorapidity η = ln[tan(θ/2)], with polar angle
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θ is used. This quantity is equivalent to rapidity for massless particles.
To represent the detector position, the positive (negative) z is labeled A (C), these

correspond to forward and backward rapidity, respectively. For example, Muon Tracker
is placed at backward rapidity (C-side). In the following sections, only relevant detec-
tors to this analysis: ITS, TPC, TRD, TOF, and V0 are explained.

3.2.1 Inner Tracking System

The Inner Tracking System (ITS) consists of six cylindrical layers of silicon detectors
with two layers of; Silicon Pixel Detector (SPD), Silicon Drift Detector (SDD), and
Silicon Strip Detector (SSD). It is located at radii between 4 and 43 cm, the outer
radius is determined to make track matching with the TPC, and the inner radius is the
minimum allowed by the beam pipe. All detectors cover the rapidity range of |η| < 0.9.
The main tasks of the ITS are:

• Localise the primary vertex with a resolution better than 100 µm, to reconstruct
the secondary vertices from the decays of hyperons and D and B mesons

• To track and identify particles with momentum below 200 MeV/c

• Improve the momentum and angular resolution for particles reconstructed by the
Time-Projection Chamber (TPC)

Therefore, the ITS information is used for practically all physics topics addressed by
the ALICE experiment. The geometrical dimensions and the technology used in the
various layers of the ITS are summarised in Table 3.2. The choice of innermost and
intermediate detectors which have different technologies are to achieve the required
impact parameter resolution under high particle density. The four outer layers have
analogue readout which can be used for particle identification via dE/dx measurement
in the non-relativistic region.

Another key component of the ITS detector is to keep minimize material budget
as the momentum and impact parameter resolution of low-momentum particles are
affected by multiple scattering in the detector material. From the point of view of
dielectron analysis, the smaller material budget is of importance as the electrons from
conversions are a source of the background. Figure 3.5 shows the thickness of material
as a function of radius and azimuthal angle, the total material budget in the ITS is ∼
8% of the radiation length X0.

3.2.2 Time Projection Chamber

The TPC [111] is the main tracking device in the central barrel detector which provides
charged particle momentum and particle identification. The choice of a TPC is suitable
to achieve efficient and robust tracking, under high particle density for central Pb–Pb
collision even after taking into consideration of the limitation of high rate capabilities.
The TPC covers full azimuth and a pseudorapidity interval |η| < 0.9, which can ensure
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Figure 3.4: Layout of ITS system

Table 3.2: Geometrical dimensions, active areas and number of channels of each
ITS layers.

Layer Type r (cm) ± z (cm) Area (m3) Channels
1 pixel 3.9 14.1 0.07 3276800
2 pixel 7.6 14.1 0.14 6553600
3 drift 15.0 22.2 0.42 43008
4 drift 23.9 29.7 0.89 90112
5 strip 38.0 43.1 2.20 1148928
6 strip 43.0 48.9 2.80 1459200

reliable performance at order of 10000 charged particles. Figure 3.6, shows a schematic
view of the ALICE TPC. The TPC is a cylinder gaseous chamber with radial and
longitudinal dimensions of 85 cm < r < 247 cm and −250 cm < z < 250 cm, whose
axis is aligned with the beam axis and is parallel to the solenoidal magnetic field. The
detector is filled with a counting gas which was Ar–CO2 gas mixture (with abundances
of 88%–12%) in 2016 and 2018, and Ne–CO2–N2 (90%–10%–5%) in 2017. The choice
of the gas and its mixture is made by considering diffusion characteristics, ion mobility,
drift velocity and operational stability. A central electrode in the middle of the detector
is charged to -100 kV, and electrons drift with a drift velocity of 2.7 cm/µs to both
end plates in a uniform electric field of 400 V/cm.

Figure 3.7 shows the working principle of a TPC around the end plate region for
position measurement. The TPC is equipped with Multi-Wire Proportional Chambers
(MWPCs) for the readout, located at its end plates. In a MWPC, different potentials
are applied to a set of wire planes (cathode plane and anode plane), resulting in a
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Figure 3.5: Left: Integral of material thickness of the ITS as a function of radius.
Right: The total material encountered by a perpendicular track crossing the ITS
versus azimuthal angle. [108]

high electric field. Charged particles traversing the TPC volume ionize the gas, which
produces electrons. They are accelerated in the electric field in the MWPC and further
ionize gas atoms and cause electron avalanches. The induced current on the pad plane
is read out and the precise position in the pad plane is measured. Together with an
accurate measurement of the arrival time relative to the collision time of the beams,
the z coordinate is calculated by the product of the drift time and drift velocity (z =
vdrift × tdrift). In this way, the complete trajectory in space of all charged particles
traversing the TPC can be determined.

During the electron amplification ions are produced as well, which drift in the
opposite direction with a small drift velocity. These ions accumulate in the gas volume
and distort the electric field, which affects the drift path of electrons. In order to avoid
this ion backflow, the gating grid is added to the MWPC. By changing the voltage
supply to the gating grid, it can collect electrons from the TPC volume and ions from
the readout chambers or, conversely, allow both to pass through. When TPC accepts
a trigger, the gating grid opens for a certain time corresponding to electron drift time
through the full TPC ∼ 100 µs. Then the grid is closed for the time needed to collect
all the ions produced during the gas amplification ∼ 200 µs. (for Ar mixture gas.)
This is an intrinsic dead time of the TPC, which limits the rate of a few kHz in Pb–Pb
collisions.

The simultaneous measurement of the momentum p of a particle and its specific
ionization loss dE/dx in the TPC gas provides PID information. The mean energy
loss dE/dx per unit path length can be described by the Bethe-Bloch formula:〈dE

dx

〉
=

4πNe4

mec2
Z2

β2

(
ln
2mec

2β2γ2

I
− β2 − δ(β)

2

)
(3.2)

where mec
2 is the rest energy of the electron, Z denotes the charge of the projectile, N

the number density of electrons in the traversed matter, e the elementary charge, β and
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Figure 3.6: The schematic view of ALICE TPC field cage. The field cage is a hollow
cylindrical structure with a diameter of 5 m and a length of 5 m. A voltage of -100
kV is applied to the central electrode. The red arrows indicate the direction of the
electric field E.

γ are velocity of the projectile β = v/c and Lorentz factor 1/
√
1− β2, respectively,

I is the mean excitation energy of the atom. Figure 3.8 shows an example of dE/dx
for the positive muons in copper over a wide range of muon’s kinetic energy. Eq.3.6 is
valid in the region 0.1 ≲ βγ ≲ 1000 with an accuracy of a few percent. In this region,
dE/dx depends only on the particle’s velocity β and not on the mass, therefore particles
with the same momenta but different mass can be characterized by their dE/dx. In the
analysis of experimental data, parameterization other than the Bethe-Bloch function is
often used. In ALICE, the form proposed by the ALEPH experiment [112] is adopted:

f(βγ) =
P1

βP4

(
P2 − βP4 − ln

(
P3 +

1

(βγ)P5

))
, (3.3)

where P1−5 are parameters determined by the fit to measured data.
Figure 3.9 shows dE/dx in the TPC measured in pp collisions at

√
s = 13 TeV as

a function of the particle momentum. It is clearly seen electrons and pions are nicely
separated over the wide momentum range. However, at 0.5 GeV/c and 1 GeV/c, as the
electron band crosses those of kaon and proton, electrons are inevitably contaminated.
Therefore, to suppress hadron contamination, complementary PID information from
the TOF detector is used in this thesis. The key quantity for particle identification is
the resolution σdE/dx of the dE/dx measurement. It depends on the number of TPC
track points measured with cosmic tracks, which is about 5.2% in pp collisions [105].
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Figure 3.7: ALICE TPC working principle

3.2.3 Transition Radiation Detector

The role of Transition Radiation Detector (TRD) [113] is to provide tracking, electron
identification, and triggering. The TRD is placed outside the TPC, from 2.9 m to 3.7
m from the beam axis, which covers the full azimuth and pseudorapidity range |η| <
0.84 (Fig. 3.10). The TRD consists of 522 chambers and each chamber comprises a
foam/fibre radiator followed by a Xe-CO2-filled MWPC preceded by a drift region of
3 cm.

The working principle of the TRD is based on the transition radiation (TR) occur-
ring when a charged particle crosses the boundary between two media with different
dielectric constants. For highly relativistic particles (γ ≳ 1000), the emitted photon is
in the X-ray range and absorbed in high-Z gas. The ejected electrons are detected by
multiwire proportional chambers (MWPC). Electrons can be distinguished from other
charged particles by measuring a characteristic signal of TR photon.

Fig. 3.11 shows a schematic cross-section of a chamber and its radiator. The local
coordinate system is similar to the global coordinate system, rotated such that the
x-axis is perpendicular to the chamber. Six layers of chambers are installed to enhance
the pion rejection powers.

The eID performance is expressed in terms of the electron efficiency and the cor-
responding pion efficiency. The electron identification performance is overall better
than the design value. At 90% electron efficiency, a pion rejection factor of about 70
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Figure 3.8: Ionization energy loss for positive muon in copper as function of βγ =
p/Mc [5].

is achieved at a momentum of 1 GeV/c for simple identification algorithms [114].

In this analysis, the TRD is not actually used for electron identification but con-
tributes to the track reconstruction. As described in Sec. 3.3, the TRD improves the
overall momentum resolution by providing additional space charge points at large radii.

3.2.4 Time-of-Flight Detector

Particle identification in the ALICE central barrel is complemented by the Time-of-
Flight (TOF) detector [115]. It is a large area array of Multi-gap Resistive Plate
Chambers (MRPC) [116], which is positioned at 370−399 cm from the beam axis and
covering the full azimuth and the pseudorapidity range |η| < 0.9. The chamber is
operated with a high and uniform electric field over the full sensitive gaseous volume.
The main characteristic is traversing particles ionized immediately and starting to gas
avalanche, which leads to quick time response. A schematic layout of one supermodule
inside the ALICE spectrometer in Fig. 3.12. The time-of-flight is measured as the dif-
ference between the particle arrival time and the event collision time, which is provided
by the T0 detector, as will be described in the following Sec. 3.2.5. The time resolution
of the detector ∼ 40 ps for pp collisions. A combinatorial algorithm based on a χ2

minimization between all the possible mass hypotheses is used in this case [117]. The
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Figure 3.9: Specific energy loss dE/dx in the TPC as a function of particle momen-
tum in pp collisions at

√
s = 13 TeV. The lines show the parameterizations of the

expected mean energy loss.

time-of-flight tTOF can be related to particle mass through velocity β:

β =
1

tTOFc
, (3.4)

m =
p

βγ
=
p

c

√
c2t2TOF

l2
− 1, (3.5)

where p is particle momentum, l is track length. Due to the curvature of the trajectory
in the magnetic field, tracks with pT < 0.3 GeV/c do not reach the TOF detector. For
pT > 0.3 GeV/c, the detector can provide a K/π separation up to 3 GeV/c and a K/p
separation up to 5 GeV/c with 3σ. Figure 3.13 shows the resulting β = v/c of charged
particle in pp collisions at

√
s = 13 TeV.
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Figure 3.10: Schematic cross-section of the ALICE detector perpendicular to the
LHC beam direction

3.2.5 T0 Detector

The T0 [118] detector consists of two arrays of Cherenkov counters with a quartz
radiator and photomultiplier tube, which is used to measure collision time with high
precision. The time resolution is 25 ps, and the collision time is used as the reference
time for the TOF detector. T0 is also used for the determination of the primary vertex,
and positioned at opposite sides of the interaction point (IP) at 4.61 < η < 4.92 (T0A)
and −3.28 < η < −2.97 (T0C), respectively (Fig. 3.14).

3.2.6 V0 Detector

The V0 detector [119] is made up of two arrays of 32 scintillators as shown in Fig. 3.15,
installed on both sides of the ALICE IP and located at small angles, covering forward
(V0A 2.8 < η < 5.1) and backward (V0C −3.7 < η < −1.7) pseudorapidity regions.
The V0A detector is located 340 cm from the interaction point on the side opposite to
the muon spectrometer, whereas V0C is fixed to the front face of the hadronic absorber,
90 cm from the interaction point. The material consists of BC4041 scintillating material
(2.5 and 2.0 cm in thickness for V0A and V0C, respectively) with 1 mm in diameter
Wave-Length Shifting (WLS) fibers. The light is guided to the photo-multiplier system.
The PMTs are fixed on the V0A disk holder in groups of 4 units and connected directly
to the WLS fibers. They are installed on the absorber in groups of 8 units for the
V0C and connected to counters through optical fibers 3.22 m long. The V0 detector
has several functions. First, it provides the minimum-bias trigger for inelastic pp
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Figure 3.11: Schematic cross-section of a TRD chamber in the x-z plane (perpen-
dicular to the wires) with tracks of a pion and an electron to illustrate the ionization
energy deposition and the TR contribution. The large energy deposition due to the
TR photon absorption is indicated by the large red circle in the drift region.

Figure 3.12: Schematic view of super module of Time-Of-Flight (TOF) detector.



38 Chapter 3 Experimental setup

)c (GeV/p

0.5 1 1.5 2 2.5 3 3.5 4

β
T

O
F

 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

e

π
K

p

d

ALICE performance

 = 13 TeVspp 

ALI−PERF−112141
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13 TeV.

Figure 3.14: The layout of T0 detector arrays inside ALICE [108].

collisions to ALICE detectors, which aims to acquire inelastic events with as little
bias as possible. This trigger requires a coincident signal on both sides of the V0
detector (“V0AND” trigger logic). This requirement reduces a substantial amount
of background events such as interactions of the beam with residual gas inside the
beam pipe or with mechanical structures of the beam line. As the number of measured
particles on the V0 arrays and the number of primary emitted particles are proportional
to each other, the V0 serves as an indicator of the centrality of the collision via the
multiplicity measured in V0 in the event. The V0 can provide multiplicity triggers by
requiring a coincident signal on both V0 sides, and a total measured V0 multiplicity
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Figure 3.15: Top: Front view of V0A (left) and V0C (right) arrays. Bottom:
Schematic design of the V0A (left) and V0C (right) detection elements [108].

(V0M) above a certain threshold. Finally, the V0 detector, as well as the T0 detector,
provide luminosity in pp collisions with a good precision of about 10% [120].

3.3 Tracking and Vertexing

This section describes track finding in the ALICE central barrel. The step begins
with clusterization, in which the detector data such as signal amplitudes, signal times
etc. and their associated errors are converted into “clusters”. The clusterization is
performed independently for each detector. The next step is to determine the prelim-
inary interaction vertex using the two innermost layers (SPD) of the ITS. The vertex
is defined as the space point where the maximum number of lines defined by pairs of
clusters among two SPD layers, called tracklets, converge at a point.

Subsequently, track finding and fitting are performed in three stages, following an
inward-outward-inward scheme [105, 121]. The track reconstruction is based on the
Kalman Filter approach [122, 123]. As illustrated in Fig. 3.16, the first step of track
finding is the track seeding in the outermost pad rows of the TPC (1st path). The
seed is propagated towards the primary vertex through the TPC volume and the ITS
layers. Then a second propagation step is performed in the outward direction from
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Figure 3.16: Principles of tracking for an ALICE event, showing the three successive
paths allowing to build a track and refine its parameters [124].

the innermost ITS layer to the outer detectors such as TRD and TOF (2nd path).
Finally, the primary tracks are refitted back to the primary vertex or as close to the
vertex as possible in the case of secondary tracks (3rd path). The improvement in pT
resolution after applying a vertex constraint and including the TRD in the track fitting
is shown in the left and right panels of Figure 3.17, respectively. The vertex constraint
significantly improves the resolution of TPC standalone tracks, while it has no effect
on ITS-TPC tracks (green and blue square overlap). Including TRD in the tracking
improves the resolution by about 40% at high pT for pp collisions recorded at both low
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Figure 3.17: Left: the pT resolution in p-Pb collisions for standalone TPC and ITS-
TPC matched tracks with and without constraint to the vertex. Right: Improvement
of the q/pT (inverse transverse momentum scaled with particle charged) resolution
in data in pp collisions when TRD information is included in the tracking for various
running scenarios. The labels low and high IR indicate interaction rates (IR) of 12
and 230 kHz, respectively. The left and right fugres are taken from [105] and [114].

and high interaction rates.
Once track is reconstructed, the bending radius r of the track is used to determine

its transverse momentum as follows:

pT [GeV] = 0.3qrB [T ·m], (3.6)

where q is the particle charge and B is the magnetic field.
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3.4 Data Taking

This section summarises ALICE data taking. The detail can be found in Refs. [105,
108]. The ALICE experiment has operated in several different running modes with
significantly different characteristics.

The principal design requirement is determined by the Pb–Pb collisions which are
characterized by a relatively low interaction rate and relatively short running time
(one month per year) but with a huge event size produced by the large number of
charged particles traversing the detectors. In proton-proton (pp) or proton-nucleus
(p–Pb) running modes, the interaction rates are much higher (up to hundreds of kHz),
whereas the event size is smaller and the running time is several (one) months per year
in pp (p–Pb).

3.4.1 Trigger System

The trigger decision is generated by the Central Trigger Processor (CTP) [125] based
on detector signals and information about the LHC bunch-filling scheme. The CTP
evaluates trigger inputs from the trigger detectors every machine clock cycle (∼ 25 ns).
The Level 0 trigger (L0) decision is made ∼ 0.9 µs after the collision using V0, T0,
EMCal, PHOS, and MTR. Information about the LHC bunch-filling scheme was used
by CTP to suppress the background. The bunch crossing mask (BCMask) provided the
information as to whether there are bunches coming from both A-side and C-side, or
one of them, or neither, at a resolution of 25 ns. The beam-gas interaction background
was studied by triggering bunches without a collision partner and subtracted from the
physics data taken with the requirement of the presence of both bunches.

The events accepted at L0 are further evaluated by the Level 1 (L1) trigger al-
gorithm in the CTP. The L1 trigger decision is made 260 LHC clock cycles (∼ 6.5
µs) after L0. The latency is caused by the computation time (TRD and EMCal) and
propagation times (ZDC, 113 m from IP2). The L0 and L1 decisions, delivered to the
detectors with a latency of about 900 ns, trigger the buffering of the event data in the
detector front-end electronics.

The Level 2 (L2) decision, taken after about 88 µs corresponding to the drift time
of the TPC, triggers the sending of the event data to DAQ and, in parallel, to the High
Level Trigger system (HLT). During Run 2, depending on the specific running scenarios
(e.g. when taking downscaled minimum bias events in parallel with rare triggers), L2
was used to reject events with multiple collisions from different bunch crossings pile up
in the TPC (past-future protection). The events with L2 were subsequently filtered in
the HLT.

3.4.2 The High Level Trigger

The role of the HLT is to reconstruct the charged-particle tracks by processing data
from all available ALICE detectors and to reduce the data volume that is stored per-
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Figure 3.18: Block diagram of the Central Trigger Processor [126].

manently to a reasonable size and to fit in the allocated tape space. The entire HLT
operation is based on full real-time event reconstruction.

After the LHC Run 1, there was an important upgrade of the TPC readout elec-
tronics, employing a new version of the Readout Control Unit (RCU2) [127] which uses
the updated optical link speed of 3.125 Gbps instead of the previous readout rate of
2.125 Gbps. The upgrades, along with an improved TPC readout scheme, doubled
the theoretical maximum TPC readout data rate to 48 GB/s, thus allowing ALICE to
record twice as many events. In addition, the HLT was updated to be able to cope
with the increased data rate of Run 2.

Since the TPC produces most of data volume (∼ 91% for Pb–Pb and ∼ 95% for
pp), event reconstruction is the most computationally intensive task for the HLT.
Therefore the HLT is mainly designed to process TPC data. In Run 2, cluster-finder
and track reconstruction algorithms are implemented in FPGA and GPU in the HLT
which allows us to reduce the data size in real time [128]. These performance can be
found in Fig. 3.19. The left of Fig. 3.19 shows processing time of the newly implemented
FPGA-based algorithm (blue), which significantly reduced processing time compared
to the offline cluster finding (red). The right of Fig. 3.19 shows the overall speedup
achieved by the HLT GPU tracking which is computed as the ratio of the processing
time of offline (CPU) tracking and the single-core processing time. Overall, the HLT
tracking algorithm executed on the CPU is 15-20 times faster than the offline tracking
algorithm used in Run 1.

The online data compression techniques developed and used in the ALICE HLT
have more than quadrupled the amount of data that can be stored for offline event
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processing.

Figure 3.19: Left: Processing time of the hardware cluster finder and the offline
cluster finder. Right: Speedup of HLT tracking algorithm executed on GPUs and
CPUs compared to the offline tracker normalized to a single core and corrected for
the serial processing part that the CPU contributes to GPU tracking as a function
of the input data size expressed in terms of the number of TPC clusters. Figures are
taken from Ref. [128].

3.4.3 Run Condition in Run 2

Table. 3.3 shows running condition during Run 2. The typical rate for pp and Pb–
Pb data-taking in Run 2 is hundreds of kHz and 8 kHz, respectively. Corresponding
data size per event is a few megabytes for pp collision and several gigabytes for Pb–
Pb collision. The ALICE data volume is dominated by the event size of the TPC,
which is scaled with the charged-particle multiplicity, including pileup tracks from
other interactions within the TPC drift time window of ∼ 100 µs. The maximum
TPC event size observed in central Pb–Pb collisions, reaches 70 MB. Figure 3.20 shows
integrated luminosity for various triggers in pp collisions at

√
s = 13 TeV during LHC

Run 2 (2015-2018), where some of the triggers relevant to this analysis will be explained
in Chapter 4.

Table 3.3: Running conditions in pp, p–Pb and Pb–Pb collisions during Run 2 [129].

pp p–Pb Pb–Pb

Luminosity (cm−2 s−1) < × 1031 (1-2)× 1026 1025−27

σINEL (mb) ∼ 70 2500 8000

Rate (Hz) 1× 106 (2-4)× 105 102−4
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ALI-PERF-313410

Figure 3.20: Integrated luminosity for various triggers in pp collisions at
√
s = 13

TeV during LHC Run 2 (2015-2018).





Chapter 4

Analysis

This chapter describes the details of the dielectron and direct-photon analysis. The
analysis begins with the event selection (Sec. 4.1), the primary track selection (Sec. 4.4),
and the electron identification (Sec. 4.5), followed by the pair analysis (Sec. 4.6). Ob-
tained raw dielectron spectra are corrected for the pair reconstruction efficiency using
the MC simulation (Sec. 4.7). In Sec. 4.8, dielectron yield from known hadronic decays
is estimated using MC simulation to compare the corrected dielectron signal. Obtained
dielectron cross section as a function of invariant mass mee and pair transverse momen-
tum pT,ee are reported in Sec. 4.11. Afterward, the direct photon fraction is extracted
from the invariant mass spectra and the direct photon spectrum is constructed by using
the decay photon spectrum as described in Sec. 4.12.

4.1 Datasets and Event Selection

The data used for the analysis were collected in 2016–2018 during LHC proton-proton
run at

√
s = 13 TeV with a nominal magnetic field of B = 0.5 T in the ALICE central

barrel. Figure 4.1, 4.2 and 4.3, show interaction rate, number of colliding bunches (µ)
at LHC point 2 (IP2), and average number of inelastic collisions per bunch crossing as a
function of time (run number) with respective data-taking year. A run is the time from
the start to the end of the data acquisition. Vertical dashed lines indicate a change
of polarity, and a duration to have the same polarity settings of the magnet is called
“period”. The experimental data consists of a chunk of periods. The interaction rate
in pp collisions steadily increases every year, from 120 kHz to 260 kHz. The average
number of interactions per bunch crossing (µ) varies from 0.01 to 0.06.

4.1.1 Event Classification

The events are characterized by charged-particle multiplicity and classified based on
the correlation between a total charge in the V0 detectors (V0M amplitude) and the
total number of charged-particle multiplicity at mid-rapidity. The reason why we
use V0M amplitude which is determined at forward (backward) rapidity is to avoid

47
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Figure 4.1: Interaction rate (top), number of colliding bunches at LHC point 2 (mid-
dle), and average number of inelastic collisions per bunch crossing (bottom). Period
LHC16d, e, g, h, i, j, k, l, o, p (separated by dashed line) are shown. Information is
taken from aliqaevs and if the run has no information, values are set -999.

auto-correlation bias [130, 131]. Figure 4.4 shows the correlation between minimum-
bias and high-multiplicity triggered events. The charged-particle multiplicity linearly
scales with V0 amplitude for both event classes. The V0 amplitude is divided into
multiplicity classes and expressed in percentile (V0M percentile) with respect to whole
V0M amplitude, where low values indicate collisions with larger multiplicity.
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Figure 4.2: Interaction rate (top), number of colliding bunches at LHC point 2
(middle), and average number of inelastic collisions per bunch crossing (bottom).
Period LHC17c, e, f, h, i, j, k, l, m, o, r (separated by dashed line) are shown.
Information is taken from aliqaevs and if the run has no information, values are set
-999.

4.1.2 Trigger Conditions

The data sample is selected by using minimum-bias (MB) trigger and high-multiplicity
(HM) triggers for the analysis of inelastic and high-multiplicity pp events. Both triggers
require a coincident signal in both V0A and V0C scintillators.
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Figure 4.3: Interaction rate (top), number of colliding bunches at LHC point 2
(middle), and average number of inelastic collisions per bunch crossing (bottom).
Period LHC18b, d, e, f, g, h, i, j, k, l, m, n, o, p (separated by dashed line) are
shown. Information is taken from aliqaevs and if the run has no information, values
are set -999.

4.1.3 High-Multiplicity Trigger Selection

The HM trigger is used to enhance the sample of events with high multiplicities, which
additionally requires V0M amplitude to exceed a certain threshold. Since V0 photomul-
tipliers show a continuous aging effect, the HM trigger threshold needs to be adjusted
several times during data taking to keep the trigger selection factor constant as shown
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in the top of Fig. 4.5. As a result of these adjustments, the HM trigger threshold over
mean V0 multiplicity is almost flat and kept ∼ 5 for the 2016 sample as shown in the
bottom of Fig. 4.5. The 2017 and 2018 samples are also adjusted as well. The stability
of high-multiplicity trigger can be checked by the actual triggered event. Figure 4.6
shows the run-by-run trend of ratio HM over MB triggered event for 2016-2018 sam-
ples. Overall, most of the run the HM/MB ratio is constant and stable during data
taking. However, the HM/MB ratios from runs shaded in blue show significantly lower
compared to other runs. This is due to the adjustments of the downscaling factor of
the trigger, which usually occurs at the beginning of the year or period. Such runs are
removed from the analysis because the trigger performance is not stable.

With runs that guaranteed the stability of the triggers, we select the 0.1% of events
with the highest V0M amplitude as shown in the left of Fig. 4.7. The corresponding
percentile distribution is shown on the right of Fig. 4.7 and found to be flat. For the
2016 sample, as the V0 multiplicity percentile is non-flat, the sample is not used in this
analysis.
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Figure 4.4: Correlation between V0M amplitude and reference multiplicity at mid-
rapidity in minimum-bias (left) and high-multiplicity (right) events. Black points
show mean values of reference multiplicity for each V0M amplitude value, and the
error bars correspond to the RMS of the distribution.

4.1.4 Event Selection

Physical collision events are selected as follows.

Machine Induced Background Rejection

Background events such as beam-gas interactions are rejected by using information
from the V0 detectors placed at forward and backward rapidities [105]. The arrival
time of the V0 signal is exploited to discriminate collision events from background
events caused by the LHC Beam 1 or Beam 2. Fig. 4.8, shows the correlation between
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Figure 4.5: Example of V0 high-multiplicity trigger threshold (top) and the ratio
V0 high-multiplicity threshold over mean V0 multiplicity (bottom) as a function of
run number during 2016 pp data taking. All 2016 data are shown including some
periods which are not used for the analysis. Figure was taken from [132].

Figure 4.6: Number of event ratio, HM over MB vs run for respective data taking
year. From top to bottom 2016 (not used in HM analysis), 2017, and 2018 datasets
are shown.
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Figure 4.7: Left: V0M amplitude distributions in minimum-bias (red) and high-
multiplicity events (blue). The red shaded area represents 0-0.1% of V0Mmultiplicity
class in pp collisions at

√
s = 13 TeV. Right: V0M percentile distribution in high-

multiplicity events (0-0.1% is selected).

the sum tV0A + tV0C and difference tV0A − tV0C, where tV0A and tV0C are arrival time
measured by the two V0 detectors. The main peak from beam-beam collision in the
nominal interaction point is tV0A−tV0C = 8.3 ns, which is well separated from the Beam
1-induced and Beam 2-induced background interactions at tV0A − tV0C = -14.3 ns and
tV0A− tV0C = 14.3 ns, respectively. These background events can be rejected using the
V0 time gate in the trigger. Residual backgrounds can be further removed using the
number of SPD clusters which will be described in the following. Since background
particles usually cross the pixel layers in a direction parallel to the beam axis, they
tend to leave a larger number of hits on SPD layers and give a smaller number of SPD
tracklets pointing to the vertex. As a result, background particles appear as outliers for
the main diagonal correlation from physical events. Figure 4.9 shows the correlation
in all triggered events (left) and after applying rejection of beam-gas event via online
trigger selection (right). All events above the red line are removed to reject residual
beam-gas and pile-up events in minimum-bias (top row) and high-multiplicity (bottom
row) events, respectively.
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Figure 4.8: Correlation between the sum and difference of signal times in V0A and
V0C detectors. Three classes of event beam–beam interactions at (8.3 ns, 14.3 ns),
background from beam 1 at (-14.3 ns, -8.3 ns), and background from beam 2 at (14.3
ns, 8.3 ns) can be clearly distinguished. Figure taken from Ref. [105].
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Pileup Rejection

Due to the high interaction rate and the high µ value, additional pp collisions (pileup)
can be recorded within TPC readout time (∼ 100 µsec). The pileup collision has two
different distinctive natures: ”In-bunch pileup”, where two (or more) collisions occur
in the same-bunch crossing, and ”Out-of-bunch pileup”, where two (or more) collisions
occur before and after the collision of interest. These should be removed as they affect
the number of reconstructed tracks per event. The in-bunch pileup can be rejected
if multiple candidates of interaction vertices are reconstructed. The event from the
out-of-bunch pileup event can be removed either at the event selection level as same
as the in-bunch pileup or at the track selection level, i.e., requiring matching to fast
detectors: ITS or TOF, or pointing to the main vertex via DCAz.

Figure 4.9: Correlation between the number of SPD tracklets and the number of
SPD clusters in all triggered events (left) and events after the clean-up by the online
trigger based on the V0 time gate [133]. The top and bottom rows show minimum-
bias and high-multiplicity triggered events. The red line indicates the cut based on
the SPD clusters and the tracklets correlation.

In addition, the vertex position is restricted with |zvtx| < 10 cm along the beam
axis (Fig.4.10), and the event is required to have at least one contributing track to
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Figure 4.10: Z vertex distribution in minimum-bias events (left) and high-
multiplicity events (right).

the vertex. After these event selections, in total 1.73×109 minimum-bias and 3.38×108

high-multiplicity pp events are selected for the analysis. The breakdown by year is
shown in Table 4.1.

Table 4.1: The number of events after physics selection and event selection criteria
in minimum-bias and high-multiplicity triggered events.

Year Min.bias High-multiplicity

2016 415×106 -

2017 604×106 195×106

2018 710×106 143×106

Total 1730×106 338×106
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Integrated Luminosity

The trigger condition described in Sec. 4.1.2 is denoted “V0AND”, i.e., trigger fulfills
V0A and V0C condition. The integrated luminosity of the analyzed minimum-bias
data sample is calculated as:

LMB
int =

NV0AND

σppV0AND

, (4.1)

where NV0AND is the number of analyzed “V0AND” events, σppV0AND is visible cross
section1 observed under “V0AND” trigger condition, which is measured in a van der
Meer (vdM) scan [134]. The NV0AND is calculated as the number of minimum-bias
events after passing the event selection criteria mentioned above (Nevt = 1.73×109),
corrected for the vertex reconstruction efficiency ϵvtxevt :

NV0AND = Nevt/ϵ
vtx
evt . (4.2)

While the efficiency to reconstruct the collision vertex is basically 100% when two
electrons are present in the event, this is not the case for overall V0AND-triggered
events. The study was performed in the previous study and found to be ϵvtxevt = 97.0±
0.5% [132]. The vdM scan was performed every data-taking year [135] and the following
values are obtained:

σ2016
V0AND = 58.44± 1.9mb (4.3)

σ2017
V0AND = 58.10± 2.7mb (4.4)

σ2018
V0AND = 57.52± 2.1mb (4.5)

The integrated luminosities are calculated for each year, and total integrated luminos-
ity was LMB

int = 30.7 ± 0.7 nb−1. For the high-multiplicity triggered events (Nevt =
3.38×108), the vertex reconstruction efficiency is 100% with negligible uncertainties.
Offline information from the V0 detector is used to select 0.1% of σppV0AND cross section,
which result in an integrated luminosity of LHM

int = 5.8 ± 0.2 pb−1. The source of global
uncertainty is thought to have originated from luminosity uncertainty, namely trigger
inefficiency. This inefficiency is estimated by independent π0 analysis, which gives 2%,
but does not enter the dielctron or direct-photon cross section. The high-multiplicity
trigger, efficiency is high enough so that uncertainty is not assigned.

4.2 Monte Carlo Simulation

In order to understand the detector response of the electrons and calculation of electron
reconstruction efficiency, Monte Carlo (MC) simulated data are used. The MC data
is produced on a run-by-run basis, to reproduce the same detector configuration ex-
tracted from the Offline Conditions DataBase (OCDB). The OCDB stores all detailed

1Visible cross section is given by σvis = ϵ · σINEL, where ϵ is detector efficiency.
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information of detectors, i.e., geometry, calibration, and specific aspects such as ac-
tive ITS areas, dead pixels, voltage settings, noisy channels, etc. Proton-proton events
are generated with PYTHIA event generator with “Monash 2013” tune [55, 136]. The
PYTHIA program is widely used for the generation of high-energy-physics ‘events’, i.e.,
sets of particles produced in high-energy collisions. It contains theory and models for a
number of physics aspects, including hard and soft interactions, parton distributions,
initial- and final-state parton showers, multiparton interactions (MPI), fragmentation,
and decay. The generated particles are propagated through the ALICE detector us-
ing GEANT3 package [137], which provides particle energy loss and deposition given
detector geometry and material properties.

4.3 Quality Assurance

A basic quality assurance (QA) of track matching and calibration is performed for all
detectors by the ALICE Quality Assurance group in a centralized way. The results
of checks are recorded in the Run Condition Table (RCT) together with quality flags
which indicates run is usable or not. Based on the RCT, only runs flagged as good
for ITS, TPC, TRD, TOF, and V0 are selected. Since the scope of centralized QA is
rather global, even if the RCT flag is good, depending on the analysis, one needs to
check specific observables if they do not show significant deviation with respect to the
real data.

For the analysis-specific QA, the total number of electron and positron candidates
(electrons) per event is checked run-by-run, to see the stability of the dataset. To this
purpose, the electron candidates are selected by applying loose PID cuts. According to
the trending plot, the mean and RMS of all entries are determined. A run is excluded if
its point is out of 3σ. Figure 4.11 shows a trend of electrons per event in minimum-bias
events for different years. The blue solid line and the dashed lines indicate mean and
RMS, respectively. All runs are accepted in this QA. In addition, trends in minimum-
bias events are compared with MC-simulated data to see if the MC reproduces the
trend of the experimental data. Figure 4.12, shows the ratio of the trend of electron
candidates between the data and the MC in minimum-bias events. Since the absolute
value of each run is slightly different between the data and the MC, the ratio is not
necessarily consistent with unity. However, overall, the trend is flat and stable from
2016 to 2018 data samples.

A similar check has been done in high-multiplicity triggered events (Fig. 4.13) and
the same run selection criterium is applied. As for the high-multiplicity events, dedi-
cated MC simulations do not exist. Therefore we employed the same MC simulation
as minimum-bias event analysis. By choosing exactly the same run numbers as high-
multiplicity samples, we make a ratio between minimum-bias and high-multiplicity
events, of each normalized to the same MC simulation. As shown in Fig. 4.14, the
trend of double ratio are found to be quite stable.

More detailed QA was performed to see if the basic variables of the dielectron
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Figure 4.11: Number of sum of electron and positron candidates per event as a
function of time (run numbers) in minimum bias events. The blue dashed lines
stands for 3σ away from the mean value of the number of candidates. All runs are
accepted in this QA.

analysis were properly reproduced in experimental data and MC simulation. We com-
pared the distributions such as the position of z-vertex, charged-particle multiplicity,
track variables such as the number of clusters in the TPC and the ITS, η, ϕ and pT
distribution and so on. All these results are in good agreement between the and the
MC.
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Figure 4.12: Ratio between the data and the MC simulation of the trend of the
number of electron candidates in minimum bias events.
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Figure 4.13: Number of sum of electron and positron candidates per event as a
function of time (run numbers) in high-multiplicity events. The blue dashed lines
stands for 3σ away from the mean value of the number of candidates. Only a run
from 2018 was excluded.
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Figure 4.14: Ratio of high-multiplicity over minimum-bias triggered events of the
number of electron candidates. Each dataset is normalised to the same MC simula-
tion.
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4.4 Primary Track Selection

The main requirement of the track selection is to select well-reconstructed tracks that
originated from the primary interaction vertex and to eliminate secondary tracks from
real photon conversions and weak decays of strange hadrons. Several TPC track prop-
erties defined in Ref. [138] are used to ensure the track quality. Table 4.2 summarises
the track selection criteria that have been applied in this analysis. Below, the main
variables used in this analysis are listed with a short description and selection criteria.

Table 4.2: Primary track selection for the analysis. The selection criteria are com-
mon for MB- and HM-triggered data analysis.

Track Variable Requirement

Number of TPC clusters ≥ 80
Number of TPC crossed rows ≥100
Ratio of TPC crossed rows / findable clusters > 0.8
χ2 per TPC cluster < 4
TPC refit required

Number of ITS clusters ≥ 3
χ2 per ITS cluster < 4.5
ITS refit required

pT > 0.2 GeV/c
|η| < 0.8

Hit in the first SPD layer required
Allowed number of shared ITS clusters 0
Reject kink daughters required
DCAxy < 1.0 cm
DCAz < 3.0 cm
Cut on DCAxy and DCAz independently yes

A charged particle passes through the TPC, it induces a signal on a given pad-row.
If a charge in a search window of 5 pads in the wire direction and 5 bins in the time
direction, exceeds a certain threshold and fulfills certain quality criteria, it is called
“cluster“. The maximum number of clusters per track is set to 159, corresponding to
the number of pad rows in a specific TPC sector. All reconstructed tracks need to
have at least 80 clusters in the TPC. A pT-resolution relevant quantity of a track is
the effectively sampled track length of a particle in the TPC. The number of effective
TPC clusters is called the number of crossed rows, which is roughly proportional to
the track length. The minimum number of crossed rows equal to 100 is required for
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all reconstructed tracks. The number of findable clusters is defined as the number of
geometrically possible clusters that can be assigned to a track. Dead zones due to
chamber boundaries or the limited η-acceptance are taken into account. A minimum
ratio of crossed rows over findable clusters of 80% is required. Track reconstruction
in the TPC gives χ2 per cluster for the quality of the fitting procedure. A maximum
number of χ2 per cluster equal to 4 is required.

Similar quality cuts are applied to the ITS. A maximum of six layers of hits (number
of clusters) are assigned per track, and at least 3 clusters are required. As well as the
TPC, the quality of the ITS track can be controlled by the χ2 per cluster, which is
required to a maximum of 4.5. In addition, a successful refit is required by the Kalman
filter, which is applied for both TPC and ITS tracks.

Afterward, charged particle tracks with |η| < 0.8 and a minimum transverse momen-
tum pT > 0.2 GeV/c are selected. In this kinematic range, reconstruction efficiency is
reasonably high and far from acceptance edge effects. Below pT = 0.2 GeV/c, particles
are not well-defined as they are deflected by the magnetic field.

Tracks from real photon conversions in the detector material are rejected by im-
posing a hit on the first SPD layer. The cut can remove conversions from occurring
in the detector material beyond this layer though there is some inefficiency due to the
inactive area of the SPD as shown in Fig. 4.15. To suppress the remaining background
from real photon conversion on a single-track basis, the ITS cluster of candidates is
checked if each track shares clusters with others. If tracks with sharing clusters are
found, they are likely to originate from a photon as they have a small opening angle.
Such tracks can be removed from the requirement of no shared ITS clusters.

Additionally, tracks can be reconstructed by the weak decays of K± → µ±ν. Such
a particle is called “kink” and produces a neutral particle which cannot be directly
reconstructed in the ITS and TPC, whereas a charged particle carries away some part
of mother particle energy and is bent in the magnetic field in the same direction with a
smaller radius. Tracks that exhibit such kink topology are rejected from the analysis as
well. The contribution from secondary tracks is reduced by restricting the distance of
the closest approach (DCA) to the primary vertex. The cut on DCA in the transverse
plane and in the longitudinal direction, are applied DCAxy < 1.0 cm and DCAz < 3.0
cm, respectively. These cuts are optimized to keep dielectron pairs from the decays of
semileptonic open charm and beauty mesons, which have decay lengths of the order
of hundred micrometers (cτ ∼ 150 µm for D and cτ ∼ 470 µm for B mesons). The
same track selection criteria are adopted for the analysis of minimum-bias and high-
multiplicity data analysis.

4.5 Electron Identification

The identification of electrons is performed via specific energy loss dE/dx in the TPC
and information on the time-of-flight of the TOF detector. The detector PID response
is expressed in terms of deviations between measured and expected values for a given
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Figure 4.15: η - ϕ distribution of primary tracks in data (left) and corresponding
active area of SPD 1st layer (right) taken from certain period of 2017 data.

species hypothesis and particle momentum, normalized by detector dE/dx resolution
(σ). For example, the TPC PID information for the electron hypothesis is given in
units of TPC nσ defined as follows:

n(σe) =
⟨dE/dx⟩measured − ⟨dE/dx⟩expected for e

σe
, (4.6)

where ⟨dE/dx⟩expected for e denotes expected Bethe Bloch parametrization, called “spline”,
corrected for the low momentum effect. Applying cut on nσ band around 0 gives most
likely electron candidates.

4.5.1 TPC and TOF Post-calibration

Due to the imperfectness of PID calibration of TPC and TOF detectors, nσ distribution
for data shows some deviation and does not follow a single Gaussian in terms of µ ̸= 0,
σ ̸= 1. This is corrected manually by applying the recalibration procedure described
below. First, the nσ distribution is projected in different momentum and pseudora-
pidity intervals and fitted with a single Gaussian. The initial fitting range is set to
± 5σ, and by using the obtained new mean and width, Gaussian fitting is repeated
in ± 1.5σ-2σ around its mean. Figure 4.16 shows an example fit to nσ distribution.
The width σ and the mean µ values are extracted for each momentum and η interval.
Fig. 4.17 shows obtained two-dimensional correction maps for nσTPC created in data
taking all periods in 2017. The correction maps were produced for every period and
compared with each other. Since they were found to be similar for different periods,
data samples are merged and a single map is produced year-by-year using all good runs.
Correction of nσe is performed track-by-track according to following transformation:

nσe →
nσe −mean

width
. (4.7)

One can see that mean (width) is close to zero (unity) after the re-calibration (Fig. 4.18)
It is worth to mention that in 2018 datasets the splines are only available for limited



4.5. Electron Identification 65

10− 8− 6− 4− 2− 0 2 4 6 8 10
 TPC

e
σn

0

100

200

300

400

500

600

700

800

900

 Track_ev1+ yz projection
TPC_eta_7_p_4

Entries  21273

Mean  0.01667− 
Std Dev    0.9387

 / ndf 2χ  39.96 / 28

Prob   0.06673

Constant  8.8± 900.2 

Mean      0.00924±0.04176 − 
Sigma     0.010± 0.937 

 Track_ev1+ yz projection

10− 8− 6− 4− 2− 0 2 4 6 8 10
TOF

ele
σn

0

200

400

600

800

1000

TOF number of sigmas Electrons vs Eta and P Track_ev1+ yz projection

TOF_eta_9_p_2

Entries  26659

Mean   0.1183

Std Dev     1.104

 / ndf 2χ  37.54 / 27

Prob   0.08543

Constant  9.3± 994.6 

Mean      0.00942± 0.07056 
Sigma     0.01±  1.02 

TOF number of sigmas Electrons vs Eta and P Track_ev1+ yz projection
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Gaussian.
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Figure 4.17: Mean of nσTPC as a function of track momentum p versus pseudora-
pidity η from all 2017 periods.

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

mean 17all

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
)c(GeV/p

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8η

mean 17all

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

width 17all

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
)c(GeV/p

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8η

width 17all

Figure 4.18: Mean (left) and width (right) of TPC nσe as a function of track
momentum p and pseudorapidity η obtained using 2017 periods after re-calibration.

periods (Fig. 4.19 top), and the splines show a significant difference with respect to the
rest periods (Fig. 4.19 bottom). Therefore, each was recalibrated separately. Similar
procedure is performed for nσ TOF. All other period-wise correction maps are sum-
marised in Appendix B. As they do not show significant differences, maps created in
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Figure 4.19: Mean (left) and width (right) of nσTPC as a function of track momentum
p versus pseudorapidity η obtained using a period from ’18spline’ (Top) and from
’18 without spline’ (Bottom).

MB-triggered events are adapted to the HM-triggered data analysis.
PID response in MC simulations is also studied. For the TPC, there is an option to

make nσ distribution to follow a unit Gaussian, which is implemented in the ALICE
analysis framework. Therefore, the re-calibration procedure is not applied to the MC
simulated nσTPC. On the other hand, the mean and width of TOF nσ distribution
show non-uniformity, it is corrected as well as real data.

4.5.2 Cut Settings of Electron Identification

Electron candidates need to be selected with cuts to minimize the fraction of hadrons
in the electron samples while maintaining high electron identification efficiency. In
principle, electrons can be identified using both TPC and TOF information. However,
as the matching efficiency between the TPC and the TOF is low, the TPC standalone
PID selection is also considered. This analysis adopted the PID strategy which was
investigated in the previous study [132]. According to Ref. [132], electrons are cho-
sen by combining two independent PID schemas. The first PID scheme is named
“TPCTOFreq” which selects electrons based on both TPC and TOF signals, while the
second scheme is named “TPCHadRej” which requires pure TPC-based hadron rejec-
tion. Both settings are summarised in Table 4.3 and two subsamples are combined
with logical OR. Corresponding PID histograms can be found in Fig. 4.20.
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Table 4.3: PID selection of electrons for the analysis. Electron candidate is accepted
if either of the two PID requirements is fulfilled.

Cut setting Detector Particle nσ cut p range [GeV/c]

TPCTOFreq
TPC electron (accept) [ -3, 3] [0.2,∞]
TPC pion (reject) [-∞, 4] [0.2,∞]
TOF electron (accept) [ -3, 3] [0.4,∞]

TPCHadRej

TPC electron (accept) [ -3, 3] [0.2,∞]
TPC pion (reject) [-∞, 4] [0.2,∞]
TPC Kaon (reject) [ -4, 4] [0.2,∞]
TPC Proton (reject) [ -4, 4] [0.2,∞]
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Figure 4.20: (From top to bottom) PID histograms for the respective cut setting:
(a) “TPCTOFreq”, (b)“TPCHadRej” and (c) combined sample, after the post cali-
bration.
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The PID performance such as electron purity as a function of transverse momentum
was evaluated in a single track and pair level in Ref. [132]. The purity of a single track
in the data was well reproduced by the MC. At the single track level, the purity was
found to be 98% at 0.5 GeV/c and 94% at 1 GeV/c, which leads to negligible impact
on pair analysis.

4.6 Pair Analysis

Electron and positron candidates in an event are combined into pairs. By using single
track kinematic information, the invariant mass mee and transverse momentum pT,ee
of the pair are calculated as:

m2
ee = (p+ + p−)

2 = (E+ + E−)
2 − (p⃗+ + p⃗−)

2, (4.8)

p2T,ee = (p⃗x,+ + p⃗x,−)
2 + (p⃗y,+ + p⃗y,−)

2, (4.9)

where p± is 4-momentum, E± is calculated as E± =
√
p⃗2± +m2

e , me = 511 keV/c2

and p⃗ denotes 3-momentum.
Electron pairs consist of correlated pairs from signals and uncorrelated combina-

torial pairs. Former are defined as pairs originating from e+e− from a vector meson
decays or semileptonic decay of cc̄ and bb̄. These are what we would like to measure,
but in reality, the origin of electrons and positrons is unknown. Most of the unlike-
sign pairs N+− are dominated by a random combination of electrons and positrons.
These pairs are uncorrelated and called combinatorial backgrounds. Besides, even if
the pairs have the same mother, there are correlated backgrounds that come from real
photon conversion in the detector material. To extract the signal, these backgrounds
need to be subtracted. The combinatorial background B is subtracted and conversion
backgrounds are further rejected by pair cuts. The background is estimated via the
geometric mean of like-sign pairs

√
N++N−− within the same event:

B = 2
√
N++N−−. (4.10)

This background could contain correlated like-sign pairs such as π0 → e+e−γ →
e+e−e+e−. B is corrected for the different detector acceptance of unlike-sign and like-
sign pairs by the following factor:

R =
N+−,MIX

2
√
N++,MIX ·N−−,MIX

(4.11)

where, N+−,MIX, and N±±,MIX denote unlike-sign pairs and like-sign pairs calculated
with mixed event techniques, respectively. Thus, the physical signal is obtained as

S = N+− −R · B, (4.12)

The invariant mass distribution of unlike-sign, like-sign and signal pairs in 0 < pT,ee <
6 GeV/c for respective data-taking year and corresponding R-factor are shown below
(Fig. 4.21 and 4.22).
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4.6.1 Conversion Rejection

As described in Sec. 4.4, e+e− pairs originating from real photon conversions are re-
jected at the single track level by requiring a hit on the first SPD layer and zero
ITS shared cluster with other tracks. The latter requirement improves the signal-to-
background ratio of dielectron pairs as shown in Fig. 4.23.
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Figure 4.23: Comparison of raw signal (left) and signal to background ratio (right)
in MB-triggered events showing the effect of no shared ITS clusters requirement.

However, since the inactive area of the SPD increases as time passes, additional
conversion rejection is necessary. This can be done by exploiting the pair properties
of decay products, i.e., the correlation between the opening angle cut and invariant
mass. As photons do not have physical mass, the pair travels in the same direction as
the photon, resulting in their opening angle being very small. These particles are bent
only in the azimuthal direction with respect to the direction of the magnetic field. The
orientation of the e+e− pair plane with respect to the ẑ direction, i.e., the magnetic
field, the angle φv is calculated as

u⃗ =
p⃗+ + p⃗−
|p⃗+ + p⃗−|

, (4.13)

v⃗ = p⃗+ × p⃗−, (4.14)

w⃗ = u⃗× v⃗, (4.15)

u⃗a =
u⃗× ẑ

|u⃗× ẑ|
, (4.16)

φv = arccos

(
w⃗ · u⃗a
|w⃗ ||u⃗a|

)
, (4.17)
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where p⃗− (p⃗+) is the 3-dimensional momentum vector of electron (positrons). The typ-
ical φv distribution of the conversion pair and from other sources are simulated with
MC as shown in Fig. 4.24. Due to the small opening angle, conversion pairs give clear
peaks at φv = π, while ones from other sources give a flat distribution. In addition,
as the ALICE tracking algorithm assumes the particle arises from the primary vertex,
pairs from off-vertex decay acquire fake invariant mass. With these characteristic φv

and mee distributions, conversion signals can be visualized by using MC simulation as
shown in Fig. 4.25. The red arrows indicated peaks around 10 MeV/c2 (a), 15 MeV/c2

(b), 27 MeV/c2 (c), and 42 MeV/c2 (d) are from conversions that occurred in the beam
pipe and the ITS materials. In this mass region, another source of e+e− pair is from π0

Dalitz decays (mee < 40 MeV/c2), conversions are separated from such pairs by making
use of a cut on the orientation of e+e− pairs. Pairs whose φv is larger than > 2 and
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Figure 4.24: MC simulated φv distribution of e+e− from conversions (red) and from
other sources (blue).

below 100 MeV/c2 are rejected in this analysis. Rejection is applied for the unlike-
sign and like-sign pairs in the same and mixed events and is consistently applied to
the analysis of HM-triggered data. Fig.4.26 shows raw signal and signal-to-background
ratio before and after φv rejection. The resulting unlike-sign pairs, combinatorial back-
ground and R-factor with applied φv rejection are shown in MB- and HM-triggered
events in Fig. 4.27 and 4.28, respectively. Corresponding signal-to-background and the
statistical significance for the dielectron signal are shown as well (Fig. 4.29 and 4.30).
The statistical significance is defined as S/

√
S + 2B, where factor 2 accounts for the

subtraction of background using like-sign pairs [139]The signal-to-background ratio
around mee ∼ 0.5 GeV/c2, where combinatorial background contribution is the largest,
is 0.04 and 0.02 for MB- and HM-triggered events, respectively. Although the signal-
to-background ratio is worse for HM events than for MB events by factor ∼ 2, and the
number of HM-triggered events is 5 times smaller than one from MB-triggered events,
statistical significance is comparable due to the larger electron multiplicity.
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Figure 4.25: MC simulated φv versus mee distributions of all dielectron signals.
The conversion peaks (a)–(d) are indicated by red arrows. A φv-flat bank structure
appeared below 40 MeV/c2 is due to e+e− from Dalitz decays of π0.
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Figure 4.26: The comparison of raw signal (left) and signal-to-background ratio
(right) in MB-triggered events showing the effect of φv rejection.

Finally, raw dielectron yields in MB-triggered events in the range mee < 4 GeV/c2

are shown in Fig. 4.31 and 4.32. The spectra are normalized to the number of analyzed
events and the real-photon conversion rejection is applied to the spectra. In any slice
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Figure 4.27: Left: Unlike-sign pairs N+−, combinatorial background B. Right: R-
factor in minimum-bias events (pT-integrated case)
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Figure 4.28: Left: Unlike-sign pairs N+−, combinatorial background B. Right: R-
factor in high-multiplicity events (pT-integrated case).

of pT,ee intervals, ρ, ϕ, and J/ψ peaks are visible. Raw yields in HM-triggered data are
shown in Fig. 4.33 and 4.34.
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Figure 4.29: Signal-to-background ratio (left) and statistical significance (right) of
di-electron signal in minimum-bias events.
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Figure 4.30: Signal-to-background ratio (left) and statistical significance (right) of
di-electron signal in high-multiplicity events.

4.7 Efficiency Correction

The raw dielectron signal needs to be corrected for the reconstruction efficiency. To
this purpose, a detailed detector simulation using the Monte Carlo method is employed.
Proton-proton collisions are generated with the event generator PYTHIA8 [55] with
”Monash 2013” [56] (so-called tune) for light hadron decays and ”Perugia 2011” [140]
tune of PYTHIA6.4 [136] for heavy-flavour decays. A choice of different PYTHIA ver-
sions is motivated by the fact that Monash 2013 tune reproduces many of the relevant
light hadron multiplicities. It used MB-, Drell-Yan, and underlying-event data from
the LHC to constrain the initial state radiation and multi-parton-interaction (MPI)
parameters, combined with data from SPS and the Tevatron to constrain the energy
scaling. Perugia 2011 tune of PYTHIA6.4 uses the same value of λQCD for all shower
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Figure 4.31: Raw dielectron signal normalized to the number of analyzed minimum-
bias events. Rejection of conversion electrons is applied as described in the text.

activity (initial-state and final-state radiation) to simplify matching applications and
was constrained by results from LEP, SPS and Tevatron experiments as well as by early
data from LHC for minimum-bias and underlying event activities in pp collisions at

√
s

= 0.9 and 7 TeV. As a result, it describes reasonably well the transverse momentum
spectra of heavy-flavor hadrons. The generated particles are propagated through the
ALICE detector using the GEANT3 package [137], which provides particle energy loss
in a given detector geometry and material properties. Afterward, the signal recon-
struction efficiency is studied as a function of mee and pT,ee for the respective e+e−

sources: resonance and Dalitz decays of light-flavor mesons, correlated semileptonic
decays of charm and beauty hadrons, and J/ψ decays. The total signal reconstruction
efficiency is obtained as a weighted average of these efficiencies, where the weights are
determined from the expected relative contributions to the yield.

4.7.1 Detector Response Matrices

High-energy electrons emit radiation and lose energy when they are accelerated by the
electromagnetic fields of nuclei or by an external magnetic field while traversing in the
ALICE detector. The reconstructed momentum of electrons is also affected by the
finite detector resolution.
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Figure 4.32: Raw dielectron signal normalized to the number of analyzed minimum-
bias events. Rejection of conversion electrons is applied as described in the text.

These effects can be seen in Fig. 4.35, where the difference between generated pgen
T

and reconstructed prec
T momentum for electrons with generated transverse momentum

in the range 0.5 < pgen
T < 0.6 GeV/c. The width of the distribution ∆pT/pT = (pgen

T −
prec
T )/pgen

T around zero is due to the finite detector resolution, and the tail in ∆pT > 0
is due to the radiative energy loss of electrons.

Since invariant mass spectra shown in Sec. 4.6 use reconstructed momentum, effi-
ciency should be evaluated as a function of reconstructed momentum instead of gener-
ated momentum. One-dimensional unfolding is applied to the generated MC electrons,
as described in [141]. The smearing was performed based on the two-dimensional his-
tograms which contain the difference between generated and reconstructed variables
as a function of generated one (Fig. 4.36). The resolution map is produced using the
same track selection criteria as the main analysis but without pT cut to apply to smear
for generated low momentum tracks. Electrons are selected in the range |nσTPC| < 5.
The (c) and (d) of Fig. 4.36 show ∆ϕT of electron and positron, respectively, and their
responses are flipped due to opposite polarity.

For a given pgenT , ηgen and ϕgen range, the detector response matrices projected
and three smeared numbers (∆pT, ∆η and ∆ϕ) are extracted based on the projected
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Figure 4.33: Raw dielectron signal normalized to the number of analyzed high-
multiplicity events. Rejection of conversion electrons is applied as described in the
text.

distributions. Then the generated momentum vector of an electron is transformed into
the corresponding measurable momentum

xmeas = xgen +∆(xgen), (4.18)

where xmeas = pT, η and ϕ. The transformation is performed before acceptance cuts.
Since detector response is different year by year due to different TPC gas composition,
maps are produced for each data-taking year.The smearing effect on generated pairs
from same-mother resonance and Dalitz decays and J/ψ can be seen in the left and
the right of Fig. 4.37, respectively.

4.7.2 Single Electron Efficiency

The single electron efficiency is defined as a function of x = pT, η and ϕ,

ϵ(x) =
(dN
dx

)rec

(dN
dx

)meas

, (4.19)

where (dN
dx

)meas is generated electrons which is applied smearing procedure and ( dN
dx

)rec
stands for the reconstructed electrons, respectively.



4.7. Efficiency Correction 79

0 0.5 1 1.5 2 2.5 3 3.5 4
)2c (GeV/eem

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1-1 )2
c

 (
G

eV
/

ee
m

/d
N

 d
ev

N
1/

 = 13 TeVspp 
High-mult.

)c < 1 (GeV/
T,ee

p0 < 
2c < 0.1 GeV/eem < 2 for 

v
ϕ

0 0.5 1 1.5 2 2.5 3 3.5 4
)2c (GeV/eem

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1-1 )2
c

 (
G

eV
/

ee
m

/d
N

 d
ev

N
1/

 = 13 TeVspp 
High-mult.

)c < 2 (GeV/
T,ee

p1 < 
2c < 0.1 GeV/eem < 2 for 

v
ϕ

0 0.5 1 1.5 2 2.5 3 3.5 4
)2c (GeV/eem

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1-1 )2
c

 (
G

eV
/

ee
m

/d
N

 d
ev

N
1/

 = 13 TeVspp 
High-mult.

)c < 3 (GeV/
T,ee

p2 < 
2c < 0.1 GeV/eem < 2 for 

v
ϕ

0 0.5 1 1.5 2 2.5 3 3.5 4
)2c (GeV/eem

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1-1 )2
c

 (
G

eV
/

ee
m

/d
N

 d
ev

N
1/

 = 13 TeVspp 
High-mult.

)c < 6 (GeV/
T,ee

p3 < 
2c < 0.1 GeV/eem < 2 for 

v
ϕ

Figure 4.34: Raw dielectron signal normalised to the number of analysed high-
multiplicity events. Rejection of conversion electrons is applied as described in the
text.

The efficiency is calculated using primary electrons, i.e., not from secondary or
conversions. The left of Fig. 4.38 shows generated, smeared, and reconstructed electrons
as a function of pT. The numerator and denominator of the efficiency are within
acceptance and passed the same track selection and PID requirements as described in
Sections 4.4 and 4.5. Corresponding single-track reconstruction efficiency for electrons
and positrons as a function of pT is shown in the right of Fig. 4.38. Significant drops
of efficiency around 0.5 GeV/c and 1 GeV/c, reflect rejection of hadron contamination
from kaons and protons, respectively.
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Figure 4.36: Detector response matrices for generated electrons and positrons.
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Table 4.4: Possible combination of electron pairs from open heavy-flavor hadron
decays.

Process Effective BR

(i) pp→ cc̄→ e+e− BR(c→ e) = 7.5+0.59
−0.65%

(ii) pp→ bb̄→ e+e− BR(b→ e) = 10.2%

(iii) pp→ bb̄→ c+ e + b→ e+e− + b BR(b→ c→ e) = 8.1+0.69
−0.94%

(iv) pp→ bb̄→ c+ e + c̄+ e BR(b→ cc̄) = 5.6± 0.73%

(v) pp→ bb̄→ c+ e + b→ c+ e + e (like− sign)

4.7.3 Pair Efficiency

The pair reconstruction efficiency is defined as the ratio between reconstructed pairs
and generated pairs after the smearing procedure is applied. The definition is given as
a function of invariant mass and pair transverse momentum:

ϵ(mee, pT,ee) =
( d2Nee

dmeedpT,ee
)rec

(dN
ee

dmee
)meas

, (4.20)

where (dN
ee

dmee
)rec is the number of reconstructed electrons, ( dN

ee

dmee
)meas is one from gener-

ated and smeared electrons for each leg. For the calculation of the pair reconstruction
efficiency, only correlated pairs are considered, which include pairs from the same moth-
ers, i.e., light-flavour and J/ψ meson decays or from the decays of semi-leptonic decays
of charmed and bottom hadrons. The correlated light-flavor pairs are simulated by
PYTHIA8 with Monash 2013 tune. The J/ψ signal is generated by PYTHIA6.4 with
the Perugia 2011 tune. This MC production takes into account two body decay (J/ψ →
e+e−) and radiative decay (J/ψ → e+e−γ). These are simulated using PHOTOS [142],
which includes the radiative component of the J/ψ decay.

The calculation of dielectron efficiency from open heavy-flavour hadron decays is
studied in the previous studies [132, 143]. We consider the heavy-flavor dielectrons
derived from the combinations as summarised in Table 4.4. To this purpose, a heavy-
flavor enriched MC simulation is used to increase statistics. In this MC simulation,
dielectrons from different heavy-flavor sources are generated in each event with the
following probabilities:

1 cc̄→ e+e− + X (8%): a charm quark-antiquark pair is generated per event, and
charmed hadrons (D mesons or Λc baryons) are forced decay semileptonically,
with a constraint on both produced electrons to be within |ye| < 1.2.

2 bb̄→ e+e− + X (8%): a beauty quark-antiquark pair is generated per event, and
beauty hadrons (B mesons or Λb baryons) are forced decay semileptonically, with
a constraint on both produced electrons to be within |ye| < 1.2.
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3 bb̄ → e + X (66%): a beauty quark-antiquark pair is generated per event, and
at least one electron in an event originating from open-heavy flavor decay should
be produced in |ye| < 1.2. Neither beauty nor charmed hadrons (if present) are
forced to decay semileptonically, also no rapidity constraint is applied for any
other electrons produced in an event.

For the study of (i) cc̄ → e+e− pair efficiency, only events containing exactly one
charmed hadron and one charmed anti-hadron are selected, and no beauty quark
hadron should be present in the generated event. In this way, the pairing of cor-
related electrons and positrons from charmed hadrons becomes straightforward, and
only unlike-sign pairs from charmed hadrons are produced. These unlike-sign pairs are
used for the calculation of cc̄ → e+e− pair efficiency. For the study of pair efficiency
from open beauty decays, a similar way as open charme hadrons is adopted for the
process of (ii) bb̄ → e+e−. As for (iii) - (v), it is complicated due to the significant
probability of B0 ↔ B̄0 oscillations which create unlike-sign and like-sign dielectron
pairs at various rates. For these studies, the process of dielectron production 3. is used.
To simplify the pairing procedure, only events containing exactly one beauty hadron
and one beauty anti-hadron are selected requiring no charm quarks present in the event
and no oscillation of B mesons (B meson oscillation veto). The latter is implemented
in MC simulations as ”wrong-sign” decays, i.e., decays like B → e− or B̄ → e+, which
can be easily tagged. For consistency with the experimental data analysis, like-sign
contributions originating from decays like B → e− and B̄ → D → e+ are subtracted
both from generated and reconstructed unlike-sign pairs.

The electrons from real photon conversion are not taken into account in the cor-
related light-flavor pairs. These pairs are rejected in the experimental data via φv
rejection (Section 4.6.1), which might reject even good signal pairs. To compensate
for this effect, the same selection criteria were applied to the MC simulation. The φv
rejection applied efficiency for the respective sources are shown in Fig. 4.39.

The final signal efficiency is given by the combined form:

ϵtotal = ϵLF
dN ee

LF

dN ee
+ ϵJ/ψ

dN ee
J/ψ

dN ee
+ ϵcc̄

dN ee
cc̄

dN ee
+ ϵbb̄

dN ee
bb̄

dN ee
(4.21)

where, dN ee
LF/dN

ee, dN ee
J/ψ/dN

ee, dN ee
cc̄ /dN

ee and dNbb̄ee/dN
ee are relative fraction of

e+e− pairs from light-flavor, J/ψ, open charm and open beauty hadrons, respectively.
The relative fraction is calculated based on the hadronic cocktail simulations which will
be described in Sec.4.8. The resulting total pair efficiency is shown in Fig. 4.40 and 4.41.
Afterward, the raw signal is corrected for the obtained total efficiency. Corrected signals
are shown in Fig. 4.42 and 4.43 for MB events, and Fig. 4.44 and 4.45 for HM events,
respectively.
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Figure 4.39: Pair efficiency for respective e+e− sources
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Figure 4.40: Total efficiency
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Figure 4.41: Total efficiencies in respective pT,ee slices.
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Figure 4.42: Efficiency corrected signal in minimum-bias events for pT,ee < 6 GeV/c.
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Figure 4.43: Efficiency corrected signal in minimum-bias events for different pT,ee
intervals.
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Figure 4.44: Efficiency corrected signal in high-multiplicity events for pT,ee < 6
GeV/c.
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Figure 4.45: Efficiency corrected signal in high-multiplicity events for different pT,ee
intervals.
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4.8 Hadronic Cokctail

The dielectron spectrum is compared with the expected dielectron yield from known
hadron decays, i.e., the hadronic cocktail. This section describes the hadronic cocktail
simulations of light-flavor and heavy-flavor meson decays (π0, η, η′, ρ, ω, ϕ, J/ψ),
and open heavy-flavor decays. The detailed procedure is described in [144]. Cocktail
calculations for the high-multiplicity pp collisions are discussed as well.

4.8.1 Light-Flavour Hadrons and J/ψ

The Dalitz decays of light neutral mesons (π0, η, η′) and the dielectron decays of vector
mesons (ρ, ω, ϕ) are considered. For J/ψ meson, two body decay (J/ψ → e+e−) and
radiative decay (J/ψ → e+e−γ) are taken into account. Table 4.5 summarises the
simulated particles, decay modes, and corresponding branching ratios and sources for
the inputs.

All mesons are assumed to be unpolarised, with flat rapidity distribution at mid-
rapidity. The mass distribution of dielectron Dalitz decays follows the Kroll-Wada
expression in Eq. 2.8 [97], with electromagnetic form factors measured by the NA60
experiment [145, 146]. The 2-body decays of ω and ϕ mesons are generated using
Gounaris-Sakurai expression to describe their mass shape [147]. The ρ line shape
has been studied in detail by the NA60 experiment [145] who confirmed the need
for Boltzmann term beyond the standard description [148] and provided a precise
measurement.

These are simulated with phenomenological event generator EXODUS developed
by PHENIX collaboration [149]. EXODUS can simulate the phase-space distribution
of all relevant sources of electrons electron pairs and the decay of these sources. The
input particle spectrum is converted to have uniform quantity (1/Nev)(d

2N/dpTdy)
(GeV/c)−1, where Nev is supposed to consider MB-triggered events. In case the spec-
trum is normalized to inelastic events, additional correction is applied by multiplying
σV0AND/σINEL∼ 0.75 [150]. to the number of MB-triggered events. Each particle spec-
trum is parameterized in the following way.

Parameterizations of π0, ϕ, and J/ψ meson are obtained by a fit to measured
spectra. The π0 [54], is parametrised using two-component model (TCM) function [151,
152] below

1

Nev

d2N

dpTdy
= Ae exp

−(
√
p2T +M2 −M)

Te
+

A

(1 +
p2T
T 2n

)−n
× pT (4.22)

where M equals to the produced hadron mass, (mπ0 = 0.135 GeV/c2), Ae, Te, A, T , n
are free parameters. Figure. 4.46 shows the TCM fit to π0 in minimum-bias (left) and
high-multiplicity (right) events.
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Figure 4.46: TCM fit to neutral pion [54]. The minimum-bias π0 (left) is measured
at transverse momenta pT in the range 0.2 < pT < 200 GeV/c and fitting is performed
at 0.2 < pT < 20 GeV/c. The high-multiplicity π0 (right) is measured at transverse
momenta pT in the range 0.4 < pT < 50 GeV/c and fitting is performed at 0.4 < pT
< 20 GeV/c.

Following the approach outlined in [158], η/π0 ratio is parameterised as a function
of pT using empirical function [159]

η/π0(pT) =
A+N · B(1 + (pT

p0
)2)−n

1 + B · (1 + (pT
p0
)2)−n

, (4.23)

where A, N , B, p0, n are free parameters. Fig. 4.47) shows the empirical fit to η/π0

measured in MB- (left) and HM-triggered (right) events, respectively. Then, the pT
differential yield of η is extracted by multiplying π0 yield and (η/π0) ratio. As the π0

and η spectra have correlated systematic uncertainty when we make a ratio between
them, systematic uncertainty on η/π0 ratio is partially canceled out. Therefore for the
systematic uncertainty of of η contribution, η/π0 ratio is shifted by ± 1σ. Comparison
between constructed η and η pT distributions, in MB and HM events are shown in
Figure 4.48 (left) and (right), respectively.

Other particles such as η′, ρ, and ω mesons are generated assumingmT scaling [160],
replacing pT with

√
m2 −m2

T + (pπ/c)2. For the mT scaling, particle yields are nor-
malised at high pT relative to the π0 yield as follows: 0.40 ± 0.8 for η′ (predicted by
PYTHIA6), 0.87 ± 1.7 for ρ [153], and 0.57 ± 0.11 for ω [154]. For the systematic
uncertainty, the factor varied ± 20%. The same mT scaling factors are adopted for the
high-multiplicity η′, ρ, and ω mesons.
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Figure 4.47: Emprirical fit to η/π0 ratio [54]. The minimum-bias η/π0 (left) is
measured at transverse momentum pT in the range 0.4 < pT < 50 GeV/c and fitting is
performed at 0.4 < pT < 20 GeV/c. The high-multiplicity η/π0 (right) is measured at
transverse momentum pT in the range 0.4 < pT < 16 GeV/c and fitting is performed
at the same pT range.
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Figure 4.48: Comparison between measured η and constructed η (= π0 × η/π0)
parameterization for minimum-bias and high-multiplicity cocktails.
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For the ϕ meson [155], fitting was performed using the Modified Hagedorn [161]

1

Nev

d2N

dpTdy
= pT × A× (e(apT+bp

2
T) +

pT
p0

)−n, (4.24)

where A, a, b, p0, n are free parameters. As the ϕ spectrum is measured using data
sample collected in 2015, corresponding visible cross section σ2015

V0AND = 57.8 ± 2.9
mb [162] is used to normalize the number of minimum-bias events. For the systematic
uncertainty, the fitting parameter A is scaled by ± 10%.

For the high-multiplicity ϕ cocktail, the input spectrum is taken from [156], where
the definition of multiplicity class is different from this analysis. The pT distribution
for multiplicity class I (⟨dNch/dη⟩ = 25.75 ± 0.40) used in the ϕ analysis [156] is close
to our multiplicity class (= 31.34 ± 0.52). Assuming ϕ yield linearly increases with
multiplicity, the ϕ spectrum for high multiplicity is obtained by scaling with respect
to the class I spectrum. The scaling factor is calculated as

⟨dN/dη⟩0−0.1%

⟨dN/dη⟩MultClassI

= (31.34± 0.52)/(25.75± 0.40)

= 1.22± 0.03.

(4.25)

Fitting examples of ϕ meson are shown in Fig. 4.49.
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Figure 4.49: Modified Hagedorn fit to ϕ meson in minimum-bias and high-
multiplicity cocktails. The minimum-bias ϕ (left) is measured at transverse mo-
mentum pT in the range 0.4 < pT < 11 GeV/c and the high-multiplicity η/π0 (right)
is measured at transverse momentum pT in the range 0.4 < pT < 8 GeV/c. Both
fits are performed at the same measured pT range.
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Finally, J/ψ [157] is parameterised by using the power law function (Fig. 4.50)

f(pT) = C × pT
{1 + (pT/p0)

2}n
, (4.26)

where C, p0, n are free parameters. It is known that J/ψ yield increases faster than lin-
earity with respect to charge particle multiplicity [43]. The relative enhancement of J/ψ
production is shown in the left of Fig. 4.51 as a function of dNch/dη/⟨dNch/dη(INEL > 0)⟩
at mid-rapidity |η| < 1. The closest value of relative charged-particle multiplicity
between high-multiplicity events and minimum-bias events is ≈ 4.5 and correspond-
ing scaling factors are 7 for 0 < pT < 4 GeV/c, 11 for 4 < pT < 10 GeV/c at
dNch/dη/⟨dNch/dη(INEL > 0)⟩ = 4.33, respectively. For the systematic uncertainty
estimation, the factors were varied by ± 10%.
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Figure 4.50: Power law fit to J/ψ in minimum-bias events.

Particles are generated based on the parameterizations and acceptance cuts (|η| <
0.8) are applied to both legs, to be consistent with real data analysis. Generated tracks
are smeared using resolution maps prepared year-by-year as described in Sec.4.7.1.
Afterward, the cocktail is normalized to the integrated luminosity

Lint =
Ngen

σV0AND

, (4.27)

where Ngen denotes the number of generated events, σV0AND is the visible cross section
reported in Sec. 4.1.4. As the final cocktail needs to be normalized to the number of
inelastic pp events, the cocktail yields are divided by σYEAR

V0AND/σINEL, where σINEL is
total inelastic scattering cross section σINEL = 79.5 ± 1.8 mb measured by TOTEM
experiment [163]. Afterward, the obtained cocktail is combined via weighted average,
where the weights are given by the corresponding number of events [5].
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Figure 4.51: Left: normalized inclusive J/ψ yield at mid-rapidity as a function of
charged-particle multiplicity in pp collisions at

√
s= 13 TeV [43]. Right: average

of D0, D+ and D∗+ relative yields as a function of the relative charged-particle
multiplicity at central rapidity [44].

4.8.2 Open Charm and Open Beauty Hadrons

Electron pairs originate from correlated semileptonic decays of cc̄ and bb̄ are sim-
ulated with the leading order (LO) event generator PYTHIA6 with Perugia 2011
tune [136,140]. The PYTHIA6 utilizes LO-pQCD matrix elements for 2 → 2 processes
together with a leading-logarithmic pT-ordered parton shower and an underlying-event
simulation including multi-parton interactions. The fragmentation and hadronization
of the charm and beauty quarks are based on the Lund string model. The Perugia 2011
tune considered the first LHC data, mainly from multiplicity and underlying-event re-
lated measurements. In this tune, the parton distribution functions are parametrized
with the CTEQ5L functions [164]. The cc̄ and bb̄ pairs are produced one or event for
each in full phase space. The charm is forced to decay semileptonically, while the decay
of the beauty is not. They are normalised to the integrated luminosity of pythia events
Lint as follows:

Lint =
(Nq +Nqbar)y<|1|/2

2dσqqbar/dy
, (4.28)

where Nq (Nqbar) is the number of generated quarks (anti quarks), dσqqbar/dy indicates
cross section at mid-rapidity. For the cc̄ contribution, the branching ratio (BR) of c →
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e needs to be squared as they are forced to decay. The cc̄ and bb̄ cross sections are

• dσcc̄/dy|y=0 = 1689 ± 124 (stat.) ± 152 (syst.) +299
−296 (BR) µb

• dσbb̄/dy|y=0 = 82 ± 7 (stat.) ± 5 (syst.) ± 5 (BR) µb

These cross sections are obtained by the re-extraction based on the updated BR(c→ e)
= 7.3+0.61

−0.84% (Fig. 4.63). The re-extraction procedure can be found in Sec. 4.10. Dielec-
trons from open charm decays in high-multiplicity events are simulated by following
the same procedure as J/ψ cocktail. As shown in the right of Fig. 4.51, multiplicity
dependence of D meson production with pT > 1 GeV/c at

√
s = 7 TeV is studied [44].

The enhancement factor for each pT interval is taken from the closest value of relative
charged-particle multiplicity of our measurement ≈ 4. Afterward, the enhancement
factor as a function of pT (Fig. 4.52) is used and open charm contribution in minimum-
bias events is scaled according to the factors. Due to the absence of the data below
pT = 1 GeV/c indicated in the dashed line, the same enhancement factor in 1 < pT <
2 GeV/c is assumed. Here red and blue lines show the upper and lower limits, deter-
mined according to the measured values in [44]. The study also reported no significant
difference between the production of D mesons and J/ψ from beauty hadron decays.
Therefore, the same weights are applied to the open beauty contribution.

Figure 4.52: D meson enhancement factor as a function of pT for the high-multiplicity
heavy-flavour cocktail. Upper (red) and lower (blue) limits are taken to estimate
systematic uncertainty.
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4.8.3 Systematic Uncertainty

Possible sources of systematic uncertainties for the hadronic cocktail are evaluated as
follows:

• Branching ratio (BR)

• Resolution

• Uncertainties of the input spectrum

• mT scaling factor

• Uncertainties of multiplicity dependence of charm and beauty production

The BR-derived systematic uncertainty takes into account the uncertainty of all BRs
in all decay modes listed in Table. 4.5. Uncertainties derived from resolution are taken
from those evaluated in the previous studies [132]. The uncertainty of the input particle
spectrum (π0, η, ϕ and J/ψ) also contributes to the uncertainty of the cocktail. Each
spectrum shifted ±1σ according to the systematic uncertainty and repeated fitting
procedure. The uncertainty on the mT scaling factor is relevant for ρ, ω and η′ meson
only, and those scaling factors vary 20%. For the HM heavy-flavor cocktail, uncertainty
on the multiplicity scaling factor is varied according to the upper and lower limit of
the enhancement factor shown in Fig. 4.52.

A cocktail is generated by varying each item one by one and the total cocktail is
compared to the standard one. The relative uncertainties at minimum-bias and high-
multiplicity analysis are shown in Fig.4.53 and 4.54, respectively. Since the mT scaling
factor used in the minimum-bias cocktail is commonly used for the high-multiplicity
cocktail, the same uncertainty was assigned to the high-multiplicity cocktail. The
maximum deviation to the standard is taken as a systematic uncertainty. Each source is
added in quadrature. The uncertainty of resolution is taken from a published study [51].

Table 4.6: Summary of systematic uncertainty of minimum-bias and high-
multiplicity cocktail.

Source Uncertainty

Branching ratio (BR) 4%
Resolution 8%
Parameterization 5-10%
Heavy-flavor 8%
mT scaling factor 12% (ρ/ω/η′)
Multiplicity scaling (HM only) ∼ 30%

Figure 4.55 and 4.56 show obtained dielectron mass spectra of hadronic cocktails
with acceptance cuts and smearing.
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Figure 4.53: Systematic uncertainty of minimum-bias cocktail for each contribution
(a)-(e). Characteristic mass dependence (or peaks) corresponds to the mass region
of the particle considered. (f) shows total cocktail uncertainty obtained by the
quadratic sum of each contribution.
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(a) Parameterization of input spectra (b) Light-flavor Mult. scaling

(c) Heavy-flavor Mult. scaling (d) Total

Figure 4.54: Systematic uncertainty of high-multiplicty cocktail for respective
sources and total.
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4.9 Systematic Uncertainty for the Data Analysis

Systematic uncertainties are summarized in this section. Results from minimum bias
and high-multiplicity analysis are reported in parallel.

4.9.1 Tracking and PID

The stability of the track and PID selection criteria are a source of systematic uncer-
tainties, which are estimated via cut variations. Variables are changed at the same
time, by picking a tighter, standard, or looser value randomly, and extracted corrected
signals are compared to the one from a standard selection. The variations are shown in
Table 4.7. Those cut settings vary the pairing efficiency by 10%. The RMS of the rel-
ative difference with respect to the standard is assigned as systematic uncertainty. To
avoid statistical fluctuation, the check is performed using coarse mee and pT,ee binning:

• mee binning: 0, 0.04, 0.08, 0.14, 0.35, 1.03, 2.80, 3.10, 4.00,

• pT,ee binning: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 10.0.

The resulting systematic uncertainties for tracking and PID are 1-4.5% and 1-8% for
minimum-bias and high-multiplicity analysis, respectively.

Table 4.7: Tracking and PID selection settings. Texts written in bold are standard.

Requirements Variations

Max. χ2 per ITS cluster 3.5, 4.5, 5.5
Min. number of ITS clusters 2, 3, 4
Min. number of TPC crossed rows 100, 120, 130
Min. number ratio of NTPC crossed rows / Nfindable clusters 0.7, 0.8, 0.9
Max. fraction of shared TPC clusters 0.4, 0.6, 0.8
Max. χ2 per TPC cluster 3, 4, 5

TOF electron identification |nσTOF
ele | < 2, 3

TPC electron identification |nσTPC
ele | < 2.5, 3, 3.5

TPC pion rejection nσTPC
pion < 3, 3.5, 4

TPC kaon rejection |nσTPC
kaon | < 4,

0.5 shift to upper direction,
0.5 shift to lower direction

TPC proton rejection |nσTPC
proton| < 4,

0.5 shift to upper direction,
0.5 shift to lower direction
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Figure 4.57: Efficiency corrected signal for different track and PID cut variations
in minimum-bias events. Index 0 corresponds to the default cut setting and other
variations (index i with i = 1-19) are randomly selected track and PID selections
listed in Table 4.7

4.9.2 Tracking

ITS-TPC Track Matching

ITS-TPC track matching efficiency is defined as the ratio of tracks reconstructed with
clusters in the TPC and the ITS over the total number of TPC tracks. The systematic
uncertainty on the efficiency arises from discrepancies in efficiency between data and
MC. The uncertainty of the single track efficiency is calculated centrally by the Data
Processing Group in ALICE. The pT-dependent uncertainties are evaluated in respec-
tive data-taking years (2016, 2017, and 2018). A maximum uncertainty of 3% is taken
from the 2018 dataset, which is the largest of the three years, which leads to 6% on
the pair level.
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Figure 4.58: Efficiency corrected signal for different track and PID cut variations
in HM-triggered events. Index 0 corresponds to the default cut setting and other
variations (index i with i = 1–19) are randomly selected track and PID selections
listed in Table 4.7

A Hit on The First SPD Layer

A hit on the SPD first layer is required to suppress electrons from photon conversion at
the detector material. Unlike other track cuts investigated in the cut variations, this
requirement significantly suppresses conversions and change efficiency, therefore we
estimate it independently. Charged pions are selected in the TPC with |nσTPC

pion | < 2,
requiring tighter DCA selections (DCAxy < 0.1 (cm) and DCAz < 0.1 (cm)) to suppress
secondary pion. The ratio of the number of π± with a hit in the first SPD layer over
the number of π± with a hit in any of two SPD layers are calculated in data and MC
and then, their relative difference is taken as a systematic uncertainty. As shown in
Fig.4.59, the results were found to be at most 1% for a single track level for both
minimum-bias and high-multiplicity events.
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No Shared ITS Cluster

The requirement of no shared ITS cluster is also studied, and the efficiency is defined as
the ratio of the number of electron candidates with and without no shared ITS cluster
requirement. As a result, it was found that the Monte Carlo simulation reproduces
experimental data well in minimum-bias events (Fig.4.60), whereas one from high-
multiplicity events is slightly worse. Uncertainty from the requirement of a hit in the
first SPD layer, and no shared ITS cluster are added in quadrature, and 2% (minimum-
bias) and 3% (high-multiplicity) uncertainties are assigned to the the pair.
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Figure 4.59: Comparison of the efficiency of with and without hit on the first
SPD layer requirement in data and MC in minimum-bias (left) and high-multiplicity
(right) events, respectively.
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Figure 4.60: Comparison of the efficiency of with and without no shared ITS cluster
requirement in data and MC in minimum-bias (left) and high-multiplicity (right)
events, respectively.

4.9.3 φv rejection

The systematic uncertainty of ϕv rejection is estimated as varying maximum φv rejec-
tion window. π/2, 2 (standard), 2.3 rad are tested. In total, 0.9 - 2.2% (0.5 - 5.3%) is
assigned below 100 MeV/c2 in minimum bias (high-multiplicity) analysis.
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Figure 4.61: Efficiency corrected signal in the range pT,ee < 6 GeV/c for differnt φv
rejection cut in minimum-bias events.
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Figure 4.62: Efficiency corrected signal in the range pT,ee < 6 GeV/c for differnt φv
rejection cut in high-multiplicity events.
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4.9.4 Total Systematic Uncertainty

The summary of each contribution for minimum bias and high-multiplicity analysis
are listed in the Table 4.8. The total systematic uncertainties are obtained by adding
individual contributions in quadrature.

Table 4.8: Summary of total systematic uncertainty of minimum bias and high-
multiplicity data analysis

Source MB HM

ITS-TPC track matching 6% 6%
Tracking + PID (mass dep.) 1-4.5% 1-8%
Shared ITS cluster & hit on first SPD cluster 2% 3%
φv cut (mee < 0.100 GeV/c2) 0.9-2.2% 0.5-5.3%
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4.10 Charm and Beauty Production Cross Sections

The charm and beauty cross sections are extracted from the dielectron mass spectrum
in the IMR (1.03 < mee < 2.86 GeV/c2), where the dominant contribution is electrons
from open heavy-flavour hadron decays. The detailed study performed in the previous
study [132,143] and results were reported in [51] as follows.

• dσcc̄/dy|y=0 = 974 ± 138 (stat.) ± 140 (syst.) ± 214 (BR) µb

• dσbb̄/dy|y=0 = 79 ± 14 (stat.) ± 11 (syst.) ± 5 (BR) µb

At that time, the branching fraction of charm-hadron decays to electron BR(c → e)
was 9.6 ± 0.4%. In this thesis, we re-extracted charm and beauty cross sections i.e., σcc̄
and σbb̄ at mid-rapidity with 4 times larger statistics compared to the previous study.
In addition, with updated BR(c → e), This re-evaluation will lead to the reduction
of systematic uncertainty of hadronic cocktail from heavy-flavour hadron decays. In
addition, recently ALICE reported measurement of the charm fragmentation function
in pp collisions at

√
s = 5.02 TeV [165]. According to this result the effective BR(c→ e)

was evaluated to 7.3+0.61
−0.84% [166].

Measured dielectron cross section in the intermediated mass region (1.03 < mee <
2.86 GeV/c2) below pT,ee = 6 GeV/c are selected and projected over two-dimensional
invariant mass mee and pair transverse momentum pT,ee distributions. A simultaneous
fit to the mass and pair transverse momentum is performed with the least square
method by using the following function

f(mee, pT,ee) = SLFNLF + SJ/ψNJ/ψ + Scc̄Ncc̄ + Sbb̄Nbb̄, (4.29)

where, Ni with i = LF, J/ψ, cc̄, bb̄ stand for the dielectron contribution from light-
flavour and J/ψ, charm and beauty hadron decays, and Si with i = LF, J/ψ, cc̄, bb̄ are
corresponding free parameters. Each contribution is normalised to the MC template
from the hadronic cocktail simulation described in Sec. 4.8. The Si of light-flavour
and J/ψ contribution is fixed to 1, while Scc̄ and Sbb̄ are kept free. Ncc̄ and Nbb̄ are
normalised to the integrated luminosity Lint:

Lint =
(Nq +Nq̄)y<|1|/2

2dσqq̄/dy
, (4.30)

where Nq (Nq̄) is the number of generated quarks (antiquarks), dσqq̄/dy indicates the
cross section at mid-rapidity. The two fit parameters are the scaling factors with respect
to the reference charm and beauty cross sections

dσcc̄/dy|y=0 = Scc̄ × dσcc̄/dy|refy=0 (4.31)

dσbb̄/dy|y=0 = Sbb̄ × dσbb̄/dy|refy=0, (4.32)

where dσcc̄/dy|refy=0 and dσbb̄/dy|refy=0 are normalised to the published values mentioned
above. For each combination of scaling scaling factors Scc̄ and Sbb̄ the χ2 value is
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calculated as

χ2 =
n∑
i

( xi − µi√
(σstatxi

)2 + (σstatµi
)2

)2
. (4.33)

The values of the data points and MC simulations in bin i are given by xi and µi, and
σstatxi

and σstatµi
are their statistical uncertainties. The result of the fit is determined

by the minimum of the χ2 value. Figure.4.63 shows the scan of the χ2 value within
parameter space. The magenta and cyan dashed lines show statistical uncertainty of
Scc̄ and Sbb̄, respectively. The point where the two lines intersect gives minimum χ2.
The obtained scaling factors are

Scc̄ = 1.735± 0.13 (stat.),

Sbb̄ = 1.038± 0.09 (stat.).

The fit quality is very good (χ2/ndf = 59.94/66) and it was found that these factors
are highly anti-correlated (-0.67), which was confirmed in the previous analysis. The
systematic uncertainty is estimated as follows:

• Data points are shifted ± 1σ coherently in each pT,ee slice assuming data points
are correlated point by point.

• BR of charm and beauty are varied ± 1σ.

Then fitting is repeated and relative uncertainty with respect to default is considered
as systematic uncertainty. In this way, extracted heavy-flavor cross sections are

• dσcc̄/dy|y=0 = 1689 ± 124 (stat.) ± 152 (syst.) +299
−296 (BR) µb

• dσbb̄/dy|y=0 = 82 ± 7 (stat.) ± 5 (syst.) ± 5 (BR) µb.

Compared to the previous study [51], the statistical and systematic uncertainty of these
cross sections are reduced by half. With this update of BR, the central value of the
charm and beauty cross sections in pp collisions at

√
s = 5.02 TeV [167] and at

√
s = 7

TeV [144] are also changed accordingly. All these values are monotonically increased.
Furthermore, the obtained charm production cross section was found to be consistent
with fixed order plus next-to-leading logarithms (FONLL) calculations [168].
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4.11 Dielectron Cross Section

The dielectron mass mee and transverse momentum pT,ee spectra are presented. The
differential dielectron cross section is given by

d2σee
dmeedpT,ee

=
1

Lint

S (mee, pT,ee)

∆meeε
trig
ee εvtxee ε

rec
ee (mee, pT,ee)

(4.34)

where

• S(mee, pT,ee) is measured dielectron signal extracted in Sec. 4.6,

• Lint is integrated luminosity reported in Sec. 4.1,

• ∆mee and ∆pT,ee is the bin width in GeV,

• εtrigee = 0.99 ± 0.01 is taken from the previous study [132],

• εvtxee = 1 is vertex efficiency described in Sec. 4.1.4

• εrecee (mee, pT,ee) is the pair reconstruction efficiency studied in Sec. 4.7,

The results are shown as either dσ/dmee or dσ/dpT,ee presented in the ALICE cen-
tral barrel acceptance |η| < 0.8 and pT,e > 0.2 GeV/c. The choice of mass binning
in each pT,ee bin was defined to be consistent with previous study [132]. The dielec-
tron invariant mass spectrum integrated over pT,e < 6 GeV/c2 is shown in Fig. 4.64.
The experimental data is compared with the expected contribution of dielectrons from
known hadron decays. Thanks to the measured input spectra (π0, η, ϕ and J/ψ), and
re-extracted heavy-flavor cross sections at IMR, the data and the hadronic cocktail
are in good agreement within uncertainties over the whole mass range. This can be
verified by looking at the dielectron pT,ee spectrum in different mee intervals as shown
in Fig. 4.65. Figure 4.66 shows mass spectra in the respective pT,ee intervals. The pT,ee
spectra are well described by the hadronic cocktail for all mee slices.

Similar studies are performed for the high-multiplicity data analysis as a function
of invariant mass (Fig. 4.67). The high-multiplicity π0 spectrum was measured above
pT = 0.4 GeV/c (right of Fig. 4.46), while one from minimum-bias starts at pT =
0.2 GeV/c (left of Fig. 4.46). Due to this limited pT range, the constraint on the
π0 parameterization is not enough and the resulting π0 cocktail tends to overestimate
data, although being compatible with data within uncertainties. This overestimation is
propagated to the cocktail contributions from decays of η and other mT-scaled particles
such as ω meson as they are related to the π0 cocktail. This can be visible in Fig. 4.68
and 4.69 (top left). Note that the impact on the direct-photon analysis is limited
because overestimation appears below 1 GeV/c. Above pT,ee = 1 GeV/c, where we
extract photon yield, it is verified that the data and the cocktail are consistent. Note
that the largest source of the uncertainty of the hadronic cocktail comes from pT-
dependent multiplicity scaling factor of heavy-flavor hadrons. The high-multiplicity
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data and the cocktail are consistent with uncertainty. One can see that the hadronic
cocktail describes the data for all pT,ee slices over the whole investigated mass range is
under control. Enlarged figures of the low-mass region above pT,ee > 1 GeV/c can be
found in Appendix. C.
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Figure 4.64: The dielectron cross section in inelastic pp collisions at
√
s = 13 TeV

as a function of invariant mass in the range pT,ee < 6 GeV/c. The global scale
uncertainty on the pp luminosity (2%) is not shown. Statistical and systematic
uncertainties of the data are displayed as vertical bars and boxes. The expectation
from the hadronic decay cocktail is shown as a band, together with individual sources.
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Figure 4.65: The dielectron cross section in inelastic pp collisions at
√
s = 13 TeV

as a function of pair transverse momentum pT,ee. The global scale uncertainty on
the pp luminosity (2%) is not shown. Statistical and systematic uncertainties of the
data are displayed as vertical bars and boxes. Expectation from the hadronic decay
cocktail is shown as a band.

4.12 Direct Photon Analysis

In the previous sections, we measured the dielectron continuum in minimum-bias and
high-multiplicity events. In virtual photon analysis, a low invariant mass region is
relevant for the extraction of direct-photon signals. Direct-photon fraction r is defined
as

r =
γdir
γincl

=
γ∗dir
γ∗incl

∣∣∣
m=0

, (4.35)
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Figure 4.66: The dielectron cross section in inelastic pp collisions at
√
s = 13 TeV

as a function of invariant mass in different pT,ee bins: 0 < pT,ee < 1 GeV/c (top
left), 1 < pT,ee < 2 GeV/c (top right), 2 < pT,ee < 3 GeV/c (bottom left), and 3 <
pT,ee < 6 GeV/c (bottom right), respectively. The global scale uncertainty on the
pp luminosity (2%) is not shown. The statistical and systematic uncertainties of the
data are displayed as vertical bars and boxes. The expectation from the hadronic
decay cocktail is shown as a band, and the data-to-cocktail ratio is presented below
together with the cocktail uncertainty.

where γincl and γdecay stands for inclusive and decay photon. With the direct-photon
fraction r and relation γdir = γincl - γdecay, direct photon is calculated

γdir =
r

1− r
× γdecay (4.36)
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Figure 4.67: The dielectron invariant yield in high-multiplicity pp collision as a
function of invariant mass in the range pT,ee < 6 GeV/c. Statistical and system-
atic uncertainties of the data are displayed as vertical bars and boxes, respectively.
Expectation from the hadronic decay cocktail is shown as a band, together with
individual sources.

4.12.1 Direct-Photon Signal Extraction

The r is extracted by a fit to the e+e− invariant mass distribution above π0 mass with
virtual photon contribution plus other contributions from hadron decay:

dσ/dmee = rfdir(mee) + (1− r)fLF(mee) + fHF(mee), (4.37)

where fLF(mee) and fHF(mee) are contributions from light-flavour and heavy-flavour
decays respectively, fdir(mee) is the shape of direct photon contribution. The fHF(mee)
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Figure 4.68: The dielectron cross section in high-multiplicity pp collision as a func-
tion of pair transverse momentum pT,ee. Statistical and systematic uncertainties of
the data are displayed as vertical bars and boxes, respectively. Expectation from the
hadronic decay cocktail is shown as a band.

is fixed to produce open charm and beauty cross sections at mid-rapidity, fLF(mee)
and fdir(mee) are normalized independently to the data below 40 MeV/c2, where e+e−

from Dalitz decay and from direct photons have the same mass dependence. Note
that thanks to the nice agreement with data and cocktail, in dielectron spectra, the
normalization factor for fLF(mee) is almost consistent with unity within 2% uncertainty.
The direct photon fraction r is the only fit parameter, determined by the fitting to the
data in 0.14 < mee < 0.32 GeV/c2. Fig.4.70 and 4.71 show examples of r extraction
in respective pT,ee intervals for minimum-bias and high-multiplicity event analysis.
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Figure 4.69: The invariant yield in high-multiplicity pp collisions at
√
s = 13 TeV as

a function of invariant mass in different pT,ee bins: 0 < pT,ee < 1 GeV/c (top left), 1
< pT,ee < 2 GeV/c (top right), 2 < pT,ee < 3 GeV/c (bottom left), and 3 < pT,ee < 6
GeV/c (bottom right), respectively. The statistical and systematic uncertainties of
the data are displayed as vertical bars and boxes. The expectation from the hadronic
decay cocktail is shown as a band, and the data-to-cocktail ratio is presented below
together with the cocktail uncertainty.

4.12.2 Systematic Uncertainty of Direct Photon Extraction

Possible sources of systematic uncertainty on r, are as follows

1 Data points

2 Normalization range
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Figure 4.70: Top: Fit to the mass spectra in different pT,ee intervals with a three-
component function to extract photon fraction r in minimum-bias event analysis.
Bottom: Residual distribution after the fitted function is subtracted by the data.
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Figure 4.71: Top: Fit to the mass spectra in different pT,ee intervals with a three-
component function to extract photon fraction r in high-multiplicity event analysis.
Bottom: Residual distribution after the fitted function is subtracted by the data.
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3 Fitting range

4 η cocktail (η/π0 parameterization)

5 HF cocktail

6 Scaling factor for high-multiplicity HF cocktail.

Direct-photon signal extracted repeatedly varying each item. As for η cocktail, since η
parameterization is built by the product of π0 and η/π0, where correlated uncertainty
between η and π0 are already cancel. Therefore, we consider uncertainty of η/π0 ra-
tio instead of varying π0 and η independently. The way of uncertainty estimation is
different from source by source, i.e., for data, fitting, and η cocktail, The maximum
difference with respect to the standard one is determined for each variation, and the
largest of them is taken as a systematic uncertainty. For the case of fitting range,
the weighted standard deviation is adopted, while RMS is used for heavy-flavor cock-
tail and its scaling. In order to calculate significance, we classified these systematic
uncertainties according to their nature: point-to-point uncorrelated (Type A) or point-
to-point correlated (Type B), which will be necessary for the significance calculation.
Most of the sources are found to be pT-correlated uncertainties except the normaliza-
tion range. Total systematic uncertainty is calculated by adding them in quadrature.
Table4.9 shows a summary of tested variations together with a type of uncertainty for
each contribution. Visualization of breakdown can be found in Fig.4.72 and 4.73. The
dominant contribution below pT = 3 GeV/c is from η cocktail uncertainties for both
event multiplicity classes, whereas uncertainty comes data is the largest above pT = 3
GeV/c.

Table 4.9: Summary of total systematic uncertainty of virtual photon fraction r in
minimum bias analysis

Source Variations Type

Di-electron spectrum data points shifted 1 σ up/down B
Normalization range [20,30,40] MeV/c2 A
Fitting range [120,130,140,150] × [280,320,340] MeV/c2 B
Light-flavor cocktail (η/π0) η/π0 cocktail shifted 1 σ up/down B
Heavy-flavor cocktail cc̄ and bb̄ cross sections shifted 1 σ up/down B
Mult. scaling of HF cocktail upper and lower limit of scaling factor B

Figure 4.74 and 4.75, show extracted r as a function of pT in the range 1 < pT < 6
GeV/c. Results compared with the published result are shown in the grey arrow. One
can see that they are consistent within uncertainty, and now systematic uncertainty
is significantly reduced for both minimum-bias and high-multiplicity events, thanks to
the improved statistics and better knowledge of the η cocktail uncertainty.
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Figure 4.72: Summary of total systematic uncertainty of virtual photon fraction as
a function of pT in minimum-bias events.
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Figure 4.73: Summary of total systematic uncertainty of virtual photon fraction as
a function of pT in high-multiplicity events.
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Figure 4.74: Virtual photon fraction r as a function of pT in minimum-bias events.
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4.12.3 Significance of Direct Photon Signal

Pseudo-experiments under the null hypothesis assuming r is zero for all points were
performed to calculate the significance of the direct-photon signal. The detailed proce-
dure can be found in Ref. [25,169]. The model of the measurement of the direct-photon
fraction r is based on the point-to-point uncorrelated (Type A) or point-to-point cor-
related (Type B) systematic uncertainties. It is assumed that the actual measurement
can be described by certain values of nuisance parameter εB. Our limited knowledge
of the actual values of the parameter is parameterized by Gaussian distributions with
mean µ = 0 and standard deviation σ = 1. εB is a deviation from a central value
in units of the standard deviation. We now perform pseudo-experiments by randomly
drawing εB from N0,1. Suppose that r0 is the true value of the photon fraction. The
actual measurement in the pT interval i will now fluctuate around rmod,i = r0 ·εBσB,i,rel
as given by the statistical and type A systematic uncertainties added in quadrature.
The uncertainties σB,i,rel are the relative systematic type B uncertainty. A given pseudo
data point in the pT interval i is denoted by rpd,i. The test statistic is defined by the
following sum over pseudo-measurements in the different pT intervals i: t =

∑ndata points

i=1

where r0 = 1, σ0,i = rmod,i · σi,stat+A,rel. The line indicates the value tdata of the test
statistic for the real data. The p-values (number of pseudo-experiments with t > tdata
divided by the total number of pseudo-experiments) is indicated in the plot. The p-
value is expressed in terms of the significance in units of the standard deviation of
a Gaussian (a · σ) by solving 2

∫∞
0
N0,1(x)dx = p-value for a (two-tailed test). The

resulting significance of the fraction r in the range 1 < pT < 6 GeV/c, are about 3.2σ
and 1.9σ for minimum-bias and high-multiplicity, respectively.
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Figure 4.76: Distribution of the test statistic t for the direct-photon fraction r in
different pT slices. Pseudo-experiments performed under the null hypothesis H0 :
r = 0.
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4.12.4 Decay Photon Simulation

In order to extract direct photon spectrum, decay photon is simulated. We take into
account π0, η, η′, ρ, ω and ϕ mesons as the sources of decay photons. Parameterizations
described in Section. 4.8, are also used in this simulation. All particles are generated
in the kinematic region of |y| < 1.0 and 0 <pT < 50 GeV/c in full azimuth, and
decay into photons. Figure 4.77 and 4.78 show examples of generated mother particle
distributions in minimum-bias events and high-multiplicity events. These particles are
decayed into photons using PYTHIA6 decayer. The decay modes and corresponding
branching ratios are summarized in Table 4.10.

Table 4.10: List of decay-photon sources and branching ratio [5].

Source Decay mode BR (%)

π0 γγ 98.8
e+e−γ 1.17

η γγ 39.4
π+π−γ 4.22
e+e−γ 6.9×10−3

η′ π0γ 29.1
ωγ 2.62
γγ 2.21

ω π0γ 8.28
ηγ 4.6×10−4

ρ0 π+π−γ 9.9×10−3

π0γ 6.0×10−3

ϕ ηγ 1.3
π0γ 1.27×10−3

ωγ < 5 (C.L. = 84%)

Photons are selected in |y| < 0.8 to be consistent with dielectron analysis. Decay
photon invariant yield as a function of pT and relative contribution with respect to the
total yield is shown in Fig. 4.79. The yield is dominated by π0 in the full pT range, and
the second largest contribution comes from η meson. For the systematic uncertainty
estimation, all parameterization shifted ±1σ and repeat cocktail generation. Relative
uncertainty with respect to the standard one is taken as systematic uncertainty, which
is about ∼ 4%. The high-multiplicity decay photon is also generated in the same way,
and systematic uncertainty of ∼ 4% is assigned.
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Figure 4.77: Generated mother particle as a function of pT in minimum-bias event
analysis. Corresponding parameterizations are overlaid.
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Figure 4.79: Decay photon yields as a function of pT from respective photon sources
in minimum-bias (left) and high-multiplicity (right) event analysis.
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Chapter 5

Results and Discussions

5.1 Direct Photon Cross Section

Direct photon spectrum is constructed using the direct-photon fraction r and the decay
photon cocktail obtained in the previous Chapter. Since an assumption that the mean
pT of the spectrum is the center of the bin is not correct for the steeply falling spectrum,
it is necessary to shift the spectrum either in x- or y-directions according to the Lafferty-
Wyatt method [170]. In this analysis, y-shifted was applied to make a ratio between
results from two event multiplicity classes.

Figure 5.1 shows the direct photon invariant cross section at mid-rapidity |η| < 0.8
in the momentum range of 1 < pT < 6 GeV/c. The results from minimum-bias data
analysis are compared with prompt photon productions of two different NLO pQCD
calculations from Vogelsang [53] and Shen [64] shown in a blue band and green line,
respectively. These calculations employ CT10 [86–88] or CTEQ6.1M [89] proton PDFs
and GRV [90] or BFG-II [91] fragmentation functions. The former is calculated in the
range 2 < pT < 6 GeV/c and the uncertainty band of the calculation is given by the
simultaneous variation of the factorization, renormalization, and fragmentation scale
values, µ (0.5 pT < µ < 2 pT). The latter is calculated with µ = pT, and extrapolated
down to 0.5 GeV/c, where theoretical uncertainty is large. The questionable reliability
of pQCD at low pT further increases the uncertainty in this region of momentum. To
constrain the scale dependence of the calculation, the factorization, renormalization,
and fragmentation scales are taken to be proportional to the photon transverse mo-
mentum, and the proportionality constant is fixed using proton-proton measurements.

The experimental results on direct photon yield are also compared to the model
which successfully describes collectivity in small collision systems with hydro-dynamical
approach [64] and can predict thermal photon yield in high-multiplicity pp collisions.
The model includes thermal contribution calculated based on the viscous hydrody-
namical calculation with a lattice-QCD based equation of state, on top of the prompt
photons.

Both prompt photon calculations from [53] and [64] are consistent with the data
within uncertainty but tend to underestimate below pT = 3 GeV/c. The thermal
contribution (orange dashed line), can be seen just below the prompt photons, and the

131



132 Chapter 5 Results and Discussions

sum of these contributions (red dashed line) gives a slightly better description of the
data. Looking at the theory over data ratio shown at the bottom, both prompt photon
alone and total (prompt plus thermal) contribution are consistent within uncertainty
with the data.

Direct photon spectrum in high-multiplicity events is calculated as in minimum-bias
event analysis. As shown in Sec. 4.12, the extracted direct photon fraction r is similar
to the one from the minimum-bias events. However, as reported in [54], the multiplicity
dependent π0 and η meson production leads to the multiplicity dependence of decay
photon production. Taking into account the increased charged particle multiplicity
and the decay photon yield in high-multiplicity events, the observed excess of direct
photons implies a much higher total yield of direct photons in this event class. This
can be seen in a comparison of the invariant yield between minimum-bias and high-
multiplicity events as shown in Fig. 5.2. As shown in the bottom of Fig. 5.2, one can
see that the high-multiplicity result gives a larger yield with respect to the one from
minimum-bias. To compare the speed of increase with respect to minimum-bias events,
we calculate the ratio of mean charged-particle multiplicity in high-multiplicity events
and in minimum-bias events,

⟨dNch/dη(HM)⟩/⟨dNch/dη(MB)⟩ = 4.43± 0.10, (5.1)

which gives a similar value to the bin-by-bin ratio. If anything, the results tend to be
larger for all pT bins. These bin-by-bin values can be found in Table 5.1.

Table 5.1: Bin-by-bin ratio of invariant yields between minimum-bias and high-
multiplicity events.

pT (GeV/c) Ratio

1 < pT < 2 6.17 ± 2.30 (stat.) ± 3.37 (syst.)
2 < pT < 3 4.94 ± 2.59 (stat.) ± 2.27 (syst.)
3 < pT < 6 8.04 ± 5.80 (stat.) ± 4.74 (syst.)

Figure 5.3 shows the direct photon spectrum in the high-multiplicity event class
at mid-rapidity |η| < 0.8, in the range 1 < pT < 6 GeV/c. The result is compared
with the theoretical predictions. As introduced in Sec. 1.3, multiple analyses reported
multiplicity dependence of particle production in high-multiplicity pp collisions [42–44].
Similarly, direct-photon production could comply with some multiplicity dependence.
However, as for high-multiplicity prompt photons, there is no theoretical prediction.
From the private communication with W. Vogelsang and C. Shen, prompt photon
calculations in high-multiplicity pp collisions seem to be challenging, if not impossible,
in the context of ordinary pQCD calculations.

Therefore, the multiplicity dependence of prompt photons is estimated in several
ways. One way to estimate is that the ratio of photon productions in high-multiplicity
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events and inelastic events as we did in Eq. 5.1, which is taken to be the same as the
ratio of charged particle productions in high-multiplicity events and inelastic events.
The scaling factor is calculated as

⟨dNch/dη(HM)⟩/⟨dNch/dη(INEL)⟩ = 5.90± 0.22, (5.2)

where ⟨dNch/dη(HM)⟩ = 31.34 ± 0.52 and ⟨dNch/dη(INEL)⟩ = 5.31 ± 0.18 are the
charged-particle multiplicities in |ηch| < 0.5 measured in high-multiplicity and inelastic
pp collisions, respectively [171].

Other ways were tested as follows:

1. The scaling factor extracted from measured neutral pion yields at sufficiently
high pT in the same pp event classes.

2. The scaling factor determined by using prompt-photon yield calculated in PYTHIA
between two event multiplicity classes by making ratio of the pT spectra at high
pT.

For each case, p-value was investigated to see if the data description is improved by the
extracted factor. As a result, it was turned out that the best description of the HM
results has been achieved by manually scaling pQCD calculations for pp collisions from
Shen by a factor of 4.5 − 7.5 and by adding on top the thermal-photon contribution
calculated for HM events as described in Ref. [64]. These factor corresponds to ∼ 25%
uncertainty of the scaling factor determined in Eq. 5.2.

In Ref. [64], the thermal contribution is expected to depend on the charged-particle
multiplicity. The data and theory comparison tells us that with the current preci-
sion, the data is consistent with both models, i.e., prompt photons from NLO pQCD
calculation with multiplicity scaling alone (green) or the sum of the prompt and the
thermal contributions within uncertainty. However, one could argue that the situa-
tion is the same as the minimum-bias event analysis and the QGP-like model gives a
slightly better description than prompt photon alone. Moreover, it should be noted
that the prompt photon without scaling can not account for the data at all, therefore
a more sophisticated theoretical pQCD calculation as a function of charged-particle
multiplicity is needed.

5.2 Direct Photon Yield as a Function of Multiplic-

ity

Finally, pT-integrated direct photon yields are studied as a function of charged-particle
multiplicity in the range 1 < pT,ee < 3 GeV/c. In this pT range, one would expect
that direct photons are dominated by thermal photons. Figure. 5.4 shows the data
compared with the theoretical model by Shen. The point of the prompt photon in high-
multiplicity events is scaled by 5.90 with respect to the one in minimum-bias events.
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The data shows clear multiplicity dependence and is consistent with the theoretical
prediction within uncertainty and supports the QGP-like model.

The result is also compared with other direct photon measurements at LHC en-
ergies. Figure 5.5 shows pT-integrated direct photon yields from this study and mea-
surements in Pb–Pb collisions at

√
sNN = 2.76 TeV. For the Pb–Pb data points, pT

spectra are integrated over 1 < pT < 5 GeV/c. The statistical and systematic uncer-
tainties are shown in the bar and box, respectively. Although the integration range
is different, each point is dominated by the photon yield at the lowest pT and can be
discussed thermal-photon contribution. From the data, one would see a smooth evolu-
tion of direct photon production with event multiplicity. A smooth evolution of direct
photon yields as a function of multiplicity was observed, which implies that particle
multiplicity is one of the key quantities of direct photon production.

The Pb–Pb results are compared with a theoretical prediction by Gale [77] which
includes photons from several sources such as prompt photons, pre-equilibrium photons,
and thermal photons. The dashed orange and blue lines show the total contributions
and prompt photons, respectively. The prompt photon is computed with next-to-
leading-order pQCD using INCNLO [172], nCTEQ15-np PDF corrected for nuclear
matter effects [173] and BFG2 [91] fragmentation function.

The Pb–Pb data points significantly above prompt photons and is consistent with
the total photons. If we extend these theoretical lines towards the lower charged-
particle multiplicity, the high-multiplicity data is better described by the total photons
which includes thermal photons rather than the prompt photons alone. Taking into
account this observation and consideration made in Fig. 5.4, the results support the
similar conclusion in the previous section.

Of course, theoretical predictions for heavy-ion collisions may not be directly linked
to pp collisions. Still, future theoretical work should provide us with a uniform frame-
work that would be able to describe the direct photon yield across all collision systems
as a function of multiplicity. This would help us to understand the possible onset of
thermal radiation in small collision systems and the physics of pp collisions with a large
number of produced particles.
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Figure 5.1: Direct photon yield γdir as a function of pt in minimum-bias pp collisions.
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and [64].
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Chapter 6

Conclusion and Outlook

This work presents the study of low transverse momentum direct photon production
at mid-rapidity in proton-proton collisions for the first time at

√
s = 13 TeV. For

the first time at the LHC energies, a significant yield of direct photons is observed at
low transverse momentum in both inelastic and high-multiplicity classes. One of the
purposes of this study is to search for thermal photon production in high-multiplicity
pp collisions. Another motivation is to constrain pQCD at low pT as the production
of prompt photons is dominated by higher-order processes at LHC energies. Direct
photon was measured via the internal conversion technique, which is expected to have
a better signal-to-background ratio than the measurements of real direct photons with
calorimeters or via the reconstruction of external conversions. In this technique, the dif-
ferent shape of the dielectron continuum is exploited to separate direct-photon signals
and electrons from hadronic decays of Dalitz decays.

In the previous study [132], only upper limits were given for both event multiplicity
classes due to the large systematic uncertainties. This analysis used about 4 times larger
statistics with respect to the previous study. This study adopted the high precision π0

and η measurements in the same event multiplicity classes, which were not available
before. Also, based on the updated BR of c→ e decay, cc̄ and bb̄ cross sections are re-
extracted using simultaneous fit to two-dimensional mee versus pT,ee distribution with
a significantly better precision.

Dielectron production was reported in pp collisions at mid-rapidity |ηe| < 0.8 in the
kinematic range of mee < 4 GeV/c2 and pT,ee > 0 GeV/c in the minimum-bias and the
high-multiplicity events. The results are compared with expected contributions from
known hadron decays. As for the minimum-bias analysis, the data and the cocktail
show nice agreement, and the validity of the cocktail was verified. As well as the
minimum-bias analysis, in the high-multiplicity analysis, the data and cocktail are in
good agreement above pT = 1 GeV/c, where we extract photon signal.

Direct photon signal was extracted from dielectron mass spectra at mee ≪ pT,ee, in
the range 1 < pT < 6 GeV/c with the significance of 3.2σ in minimum-bias pp colli-
sions. Systematic uncertainties on direct photon fraction r were significantly reduced
compared to the previously published study. Thanks to the precise measurements of
π0 and η in the same multiplicity class as studied in this work, it was also possible to
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extract the direct photon excess in high-multiplicity pp collisions with the significance
of 1.9σ. These results are the first measurement of low pT direct photons in pp colli-
sions at the LHC energies. With the direct-photon fraction r and cocktail simulation
of decay photons, the direct photon pT spectrum is constructed.

Direct photon spectrum in inelastic events was compared with theoretical predic-
tions by Vogelsang [53] and Shen [64]. Prompt photons are calculated by the NLO
pQCD calculation with different PDFs and FFs, i.e., CT10 or CTEQ6.1M proton
PDFs and GRV or BFG-II fragmentation functions. The result was found to be consis-
tent with both calculations within uncertainties, but the theory tends to underestimate
the data down to 2 GeV/c. The model also includes thermal photons on top of the
NLO pQCD calculation. The thermal contribution is calculated based on the model
which describes collectivity in small systems with the hydro-dynamical approach. This
QGP-like model gave a slightly better description at pT < 3 GeV/c, however, both
models are consistent with the data within uncertainties.

As for the high-multiplicity event analysis, no reliable theoretical prediction of the
prompt photon exists at the time of writing this thesis. Therefore, empirical scaling
based on the measured charged particle multiplicities in between inelastic and high-
multiplicity events was applied to the NLO pQCD calculations and compared with
the high-multiplicity result. As a result, the data was found to be consistent with
both standalone empirically scaled prompt photons and the sum of the thermal and
prompt photons. Again it was found that the QGP-like model gives a slightly better
description of the high-multiplicity data as well as minimum-bias data.

We also investigated pT-integrated direct-photon yield as a function of charged-
particle multiplicity. Since the photon yield is dominated by the low pT point below
pT = 3 GeV/c, photons that contribute to such regions should be sensitive to thermal-
photon production. It was also found that the result showed clear multiplicity de-
pendence, and the photon yield at high multiplicity increased by about factor 5 with
respect to the one from the minimum-bias event. From the comparison between data
and theoretical prediction, it was found that the data supports both a hydro-dynamical
approach and a standalone prompt photon calculation.

Finally, the compilation of photon yields from LHC energies was presented. The pT-
integrated photon yields in the range 1 < pT < 5 GeV/c were calculated from the direct-
photon measurements in Pb–Pb collisions at

√
sNN = 2.76 TeV. A smooth evolution

of direct photon yields as a function of multiplicity was observed, which implies that
particle multiplicity is one of the key quantities of direct-photon production.

Theoretical prediction in heavy ion collisions was also discussed, which includes
prompt, pre-equilibrium, and thermal photons. The Pb–Pb data points significantly
above prompt photons and is consistent with the total photons. If we extend these
theoretical lines towards the lower charged-particle multiplicity, the high-multiplicity
data is better described by the total photons which includes thermal photons rather
than the prompt photons alone. These observations support the statement made in
the discussion about direct photon pT spectra.

In summary, in this study, we measured low-pT direct photon spectra with unprece-
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dented precision for two different event multiplicity classes which are compatible with
theoretical calculations. We observed clear multiplicity dependence of direct photon,
which is compatible with an assumption of thermal photon presence in high-multiplicity
pp collisions. A comparison with theoretical prediction has been made. With the cur-
rent precision, we are not able to conclude which model can give a better description.
However, for both direct photon pT spectra and pT-integrated photon yields, the QGP-
like model consistently gives a better description of the results.

This study indicates the need for further theoretical efforts in particular for precise
pQCD calculations in high-multiplicity pp collisions and more generally, for a uniform
framework that would allow for a consistent description of direct photon production
across various collisions systems. Future analysis of the experimental data collected
during Run 3 and Run 4 periods of LHC operation, including more precise charm and
beauty production as a function of multiplicity, will help to further reduce the exper-
imental uncertainties and to pin down possible thermal contribution in pp collisions.
These studies will form a crucial baseline for direct photon and dielectron measurement
in heavy-ion collisions with Run 3 and Run 4 data.





Appendix A

Kinematic Variables

This appendix introduces useful variables used in this thesis. The z-axis is chosen as
the beam going direction. The transverse momentum pT and the transverse mass mT

are defined in terms of two momentum components of a particle:

pT =
√
p2x + p2y, (A.1)

mT =
√
m2 + p2T =

√
E2 − p2z, (A.2)

where E, px, py, pz and m are the energy, x, y, and z component of the momentum
and the mass of the particle, respectively. The rapidity y of the particle is defined as

y ≡ 1

2
ln
(E + pz
E − pz

)
. (A.3)

The rapidity is transformed under the Lorentz boost in the z direction with the velocity
β as follows

y → y + tanh−1β, (A.4)

The particle energy and z component of the momentum (pz) can be written in terms
of the rapidity (y) and transverse mass (mT) as follows

E = mT cosh y, (A.5)

pz = mT sinh y. (A.6)

The pseudorapidity η, can be expressed in terms of the angle, θ, between the particle
momentum, p⃗, and z axis as follows

η =
1

2
ln
( |p⃗|+ pz
|p⃗| − pz

)
= −ln

(
tan

θ

2

)
, (A.7)
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Appendix B

TPC and TOF post-calibration
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Figure B.1: mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2016 periods.
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Figure B.2: width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2016 periods.
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Figure B.3: mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2017 periods. Bottom right shows map created using all periods.
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Figure B.4: width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using 2017 periods. Bottom right shows map created using all periods.
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Figure B.5: mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18spline’. Bottom right shows a map created using
all periods.
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Figure B.6: mean of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18nospline’. Bottom right shows map created using
all periods.
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Figure B.7: width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18spline’. Bottom right shows map created using all
periods.
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Figure B.8: width of nσTPC as a function of track momentum p versus pseudorapidity
η obtained using a period from ’18nospline’. Bottom right shows map created using
all periods.
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Figure B.9: mean of nσTOF as a function of track momentum obtained using 2017
periods. Bottom right shows map created using all periods.
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Figure B.10: width of nσTOF as a function of track momentum obtained using 2017
periods. Bottom right shows map created using all periods.
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Figure B.11: mean of nσTOF as a function of track momentum obtained using 2018
periods. Bottom right shows map created using all periods.
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Figure B.12: width of nσTOF as a function of track momentum obtained using 2018
periods. Bottom right shows map created using all periods.
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Figure B.13: Mean and width of TPC nσe as a function of p and η obtained using
2016 sample before re-calibration.
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Figure B.14: Mean and width of TPC nσe as a function of p and η obtained using
2016 sample after re-calibration.
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Figure B.15: Mean and width of TPC nσe as a function of p and η obtained using
2017 sample before re-calibration.
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Figure B.16: Mean and width of TPC nσe as a function of p and η obtained using
2017 sample after re-calibration.
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Figure B.17: Mean and width of TPC nσe as a function of p and η obtained using
2018 sample before re-calibration. The data sample consists of samples with TPC
spline.
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Figure B.18: Mean and width of TPC nσe as a function of p and η obtained using
2018 sample after re-calibration. The data sample consists of samples with TPC
spline.
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Figure B.19: Mean and width of TPC nσe as a function of p and η obtained using
2018 sample after re-calibration. The data sample consists of samples without TPC
spline.
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Figure B.20: Mean and width of TPC nσe as a function of p and η obtained using
2018 sample after re-calibration. The data sample consists of samples without TPC
spline.
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Figure B.21: Mean and width of TOF nσe as a function of p and η obtained using
2016 periods before re-calibration.
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Figure B.22: Mean and width of TOF nσe as a function of p and η obtained using
2016 periods after re-calibration.
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Figure B.23: Mean and width of TOF nσe as a function of p and η obtained using
2017 periods before re-calibration.
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Figure B.24: Mean and width of TOF nσe as a function of p and η obtained using
2017 periods after re-calibration.
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Figure B.25: Mean and width of TOF nσe as a function of p and η obtained using
2018 periods before re-calibration.
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Figure B.26: Mean and width of TOF nσe as a function of p and η obtained using
2018 periods after re-calibration.
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Figure B.27: Mean and width of TOF nσe as a function of p and η obtained using
2018 periods without TPC splines before re-calibration.
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Figure B.28: Mean and width of TOF nσe as a function of p and η obtained using
2018 periods without TPC splines after re-calibration.
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Figure C.1: The incariant mass spectra in minimum-bias pp collisions at
√
s = 13

TeV below 0.5 GeV/c2.
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Figure C.2: The incariant mass spectra in high-multiplicty pp collisions at
√
s = 13

TeV below 0.5 GeV/c2.
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Test static t distributions for
direct-photon fraction r
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Figure D.1: Distribution of the test statistic t for the direct-photon fraction r in
each pT interval in minimum-bias events. Pseudo-experiments performed under the
null hypothesis H0 : r = 0.
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Figure D.2: Distribution of the test statistic t for the direct-photon fraction r in
each pT interval in high-multiplicity events. Pseudo-experiments performed under
the null hypothesis H0 : r = 0.
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