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Abstract

Direct photons are unique probes to study quark-gluon plasma (QGP) created in ultra-
relativistic heavy-ion collisions, as they are emitted from the whole stages of the space-
time evolution with negligible final state interaction. They carry undistorted medium
information such as thermodynamic properties.

Direct photon measurements in pp collisions serve as a vacuum baseline for the
studies in heavy-ion collisions and can be used as a test of perturbative QCD (pQCD)
calculation. On the other hand, recent measurements in pp collisions with high event
activity exhibit similarities to heavy-ion collisions, such as collective phenomena of
hadrons. This motivates a search for the thermal photons and the creation of the QGP
in small systems to better understand the underlying dynamics in such collisions. This
thesis presents direct photon production in pp collisions at /s = 13 TeV in minimum-
bias and high-multiplicity event multiplicity classes to test pQCD and search thermal
photons in small systems.

This work is performed via the internal conversion technique, the ratio of direct to
inclusive photons can be extracted from the dielectron continuum. Compared to the
previous study, the statistical and systematic uncertainties were significantly improved
and the direct-photon signal was extracted in the range 1 < pr < 6 GeV/¢, for both
event multiplicity classes. It was found that direct photon yields in inelastic and high-
multiplicity pp collisions show clear multiplicity dependence.

The obtained results were compared with theoretical predictions. One is the next-
to-leading-order (NLO) pQCD calculation with two different parton distribution func-
tions and fragmentation functions and the other is the theoretical model assuming
thermal radiation from the QGP in small systems. The latter predicts thermal con-
tribution even in inelastic collisions and the model gave a better description of the
minimum-bias result at pr < 3 GeV/¢, though both models are consistent with the
data within uncertainties. The minimum-bias result was found to be consistent with
both pQCD predictions but the QGP-like model gives a slightly better description.

For the comparison with the high-multiplicity result, theoretical prediction needs
to consider charged-particle multiplicity dependence. To this purpose, NLO pQCD
contribution was empirically scaled with the ratio of mean charged-particle multi-
plicity at mid-rapidity between inelastic and high-multiplicity events as there is no
theoretical prediction. The QGP-like model predicts thermal contribution increases
as charged-particle multiplicity goes higher. Compared with these predictions, it was
found that the high-multiplicity result was consistent with both standalone empirically



scaled prompt photons and the sum of the thermal and prompt photons, similar to the
minimum-bias result.

The pr-integrated direct-photon yield as a function of charged-particle multiplicity
was reported. We integrated direct photon pr spectra in the range 1 < pr < 3 GeV/c,
where we expect the direct photons to be dominated by thermal photons. The data
shows multiplicity dependence and is consistent with the theoretical prediction within
uncertainty and favors the QGP-like model.

The results are compared with other results from LHC energies. A smooth evolution
of direct photon yields as a function of multiplicity was observed, which implies that
particle multiplicity is one of the key quantities of direct photon production. If we ex-
tend theoretical prediction in Pb—Pb collisions towards the lower charged-particle mul-
tiplicity, the lowest edge of the total contribution is very close to the high-multiplicity
data in pp collisions. At the same time, the line of prompt photons underestimates
the high-multiplicity data. These observations support the statement made in the
discussion about direct photon pr spectra.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is non-Abelian gauge theory of interactions be-
tween quarks and gluons [1]. The most outstanding feature of QCD is asymptotic
freedom, which causes interaction between quarks and gluons become weaker as mo-
mentum transfer increases [2]. Due to this nature, coupling constant «; of the strong
interaction depends on the momentum scale of the interaction (Fig. 1.1). The impor-
tant consequence of asymptotic freedom is that processes at large momentum transfer
can be computed in a perturbation expansion in ay [3], as only lower orders contribute
significantly. In contrast, for the calculations of processes at low momentum, per-
turbative QCD (pQCD) breaks down as higher orders become dominant [4]. At a
non-perturbative regime, where «; is large, very attractive phenomena which close to
the essence of strong interactions appear. One is color confinement [6], which leads
to the fact that quarks and gluons are not isolated and confined into hadrons, and
therefore not directly observed. Another feature is the spontaneous breaking of chiral
symmetry [7], responsible for the emergence of hadron mass, e.g. protons and neu-
trons have much larger mass (~ 1 GeV) compared to the one from their constituent
quarks which have only few MeV. Therefore, to describe these phenomena, theoretical
approaches such as Lattice QCD (LQCD) [8-10] and Effective Field Theories [11-13]
are practical solutions. LQCD is a formalism of quantized gauge field theory on a
discrete lattice in four-dimensional Euclidean space-time, introduced by Wilson [14],
which serves first-principle results on QCD.

1.2 Quark Gluon-Plasma (QGP)

The states of matter can be illustrated in a phase diagram as a function of the tem-
perature T" and the baryon chemical potential up as shown in the left of Fig. 1.2. It
is predicted that under extremely high temperature and/or density, QCD matter can
undergo a phase transition from ordinary hadrons to a new state of matter, called
Quark Gluon-Plasma (QGP), where quarks and gluons are deconfined [15]. According

1
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Figure 1.1: Summary of measurements of o, as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of ay is
indicated in brackets (NLO: next-to-leading order, NNLO: next-to-next-to leading
order, NNLO: NNLO matched with resumed next-to-leading logs, N3LO:next-to-
NNLO) [5].

to LQCD simulation, QGP can be formed at extremely high temperatures (7' = 150
~ 160 MeV) [16]. This can be seen in Fig. 1.2 (right), the transition is a rapid but
smooth crossover around the critical temperature. It is conjectured that the QGP is a
matter that existed in the early universe in ~ 107% seconds after the Big Bang. Hence,
if such matter can be created in a laboratory, space-time evolution and the emergence
of hadrons in the early universe can be studied in a laboratory.

In order to create extremely high temperature and density conditions, high-energy
heavy-ion collisions are considered as an ideal way. This is because the size of the
colliding nuclei is large, and many particles are being produced in a short time-scale
after the collisions. It is essential to undergo the multiple interactions among produced
partons and particles, and the system needs to reach a state of (local) thermal equilib-
rium, to define thermodynamic quantities like temperature, pressure, or energy density.
That means the system’s lifetime must be longer than the inverse rate of interactions,
which allows particles to interact and drive the system towards equilibrium [18].

Figure 1.3 is a sketch of the evolution of the system created in relativistic heavy-
ion collisions. Soon after the head-on collision, a huge amount of energy is released
in a tiny volume, and scattering between partons occurs. The stage is called pre-
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Figure 1.2: Left: Sketch of the QCD phase diagram [17]. Right: Pressure, energy
density, and entropy density suitably normalized to the 4th (3rd for the latter) power
of the temperature, from the Lattice QCD calculations of the HotQCD Collabora-
tion [16]. The dark lines show the prediction of the Hadron Resonance Gas model,
the horizontal line corresponds to the ideal gas limit for the energy density. The
vertical band indicates the cross-over transition region.

equilibrium. After the subsequent multiple scattering of partons, the system reaches
local equilibrium. The system consists of quark and gluon, is formed and the evolution
can be described by relativistic hydrodynamics. The system expands further and cools
down, when the temperature drops below the critical value, hadronization of partons
occurs. This phase is called chemical freeze-out with the system being transformed
into a hadron gas.

i

0.1 fm/c ~1 fmlc ~10 fm/c ~ 20-50 fm/c

<t REFR) p
[ )

> t

Initial state Pre-equilibrium QGP Hadronization Hadronic phase and freeze-out

Figure 1.3: Evolution of the system created in high-energy heavy-ion collisions.
Time is advancing from the left to the right. (The sketch is based on the simulations
by the MADALI collaboration [19])

The picture of space-time evolution can be better interpreted by extensive studies
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that include proton-proton and proton-nucleus collision experiments as well as heavy-
ion collisions. Experiments in these smaller colliding systems are important as pp
collision serves as a vacuum baseline and cold nuclear matter effects can be studied via
proton-nucleus collisions. These studies help to distinguish between QGP-relevant and
irrelevant effects.

Numerous high-energy heavy-ion collision experiments were conducted at the Rel-
ativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) to create
and study the QGP. As a result, strong results indicating the creation of the QGP have
been obtained. To give some examples, this includes energy loss of color probes [20,21],
sequential suppression of quarkonium states [22,23], and electromagnetic radiation con-
sistent with high initial temperatures of several hundred MeV [24,25]. Also, it was very
surprising that the data shows anisotropic flow and this observation is well described
by relativistic hydrodynamics [26].

The most important and valuable observable for the study of the QGP is real or
virtual photons. This is because electromagnetic radiation of direct photons is direct
evidence of the creation of the thermalized system. Figure 1.4 shows direct photon pr
spectra in proton-proton and nucleus-nucleus collisions measured by PHENIX at RHIC
(left) and by ALICE at the LHC (right). Looking at the PHENIX result, the pQCD
calculation is consistent with the pp data within the theoretical uncertainties for pr
> 2 GeV/c. The Au-Au data are above the nuclear overlap function Taa scaled pp
fit which indicates the direct photon at low pr range increases faster than the binary
NN collision. The excess is evaluated with an exponential fit with the inverse slope
parameter 1', which corresponds to the effective temperature of the medium. Extracted
T reaches Tog = 2394255 £ 755t MeV, which corresponds to 4 trillion degrees Celsius.
Similar direct photon excess was observed at the LHC by ALICE and the extracted
temperature was Tog = 30411590 £40%5 MeV. It turned out that the medium created
at LHC was hotter than at RHIC.

1.3 High-Multiplicity Proton-Proton Collisions

In recent years, collective phenomena [30,38-41] in high-multiplicity proton—proton
and proton-ion collisions have been found and attracted great interest of the heavy-ion
community, as they exhibit surprising similarities with those found in heavy-ion colli-
sions (Fig. 1.5). Another important discovery is the strangeness enhancement [42], a
smooth evolution of strangeness particle production with event multiplicity, which is
originally considered as a signature of the formation of the QGP in nucleus-nucleus col-
lisions (Fig. 1.6). Moreover, not only light-flavour hadrons, heavy-flavor hadrons such
as D-meson and J/1 production show multiplicity dependence [43,44]. Given that the
creation of the QGP is always discussed by assuming the absence of those phenomena
in proton-proton and proton-nucleus collisions, these discoveries is forcing a paradigm
shift in this field. They opened the big question: Is a QGP formed in small systems
?. To answer this question a number of measurements have been carried out: hadronic
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Figure 1.4: Left: Invariant cross section (pp) and invariant differential yield (Au—
Au) of direct photons as a function of pr. The filled points and open points are from
two different analyses, [24] and [27,28], respectively. The three curves on the pp data
represent NLO pQCD calculations, and the dashed curves show a modified power-
law fit to the pp data, scaled by Taa. The dashed (black) curves are exponential
plus the Ty scaled pp fit. The dotted (red) curve near the 0-20% centrality data is
a theory calculation [29]. Right: Direct photon spectra in Pb-Pb collisions at /sxn
= 2.76 TeV for the 0-20% (scaled by a factor 100), the 20-40% (scaled by a factor
10) and 40-80% centrality classes compared to NLO pQCD predictions for the direct
photon yield in pp collisions at the same energy, scaled by the number of binary
nucleon collisions for each centrality class [25].

anisotropic flow, the mass ordering of the identified particle vy, particle interferometry
in small systems, multiplicity dependence of charged-particle jet production and so on
(see Refs. [45-47]). Nevertheless, the situation is not conclusive and measurement of
electromagnetic radiation is being awaited.

1.4 Direct Photons in Small Systems

The most important but missing inputs are direct photons and dileptons. They are
unique probes as they are emitted without final state interactions and take over medium
properties. In heavy-ion collisions, the thermal radiation of direct photons which con-
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Figure 1.5: Two-particle correlation functions for 7 TeV pp (a) [30], 5.02 TeV p-
Pb (b), and 2.76 TeV PbPb (c) collisions [31]. The arrow shows the long-range
correlations at small A¢. The structure called “ridge” in heavy-ion collisions is
interpreted as a consequence of the hydrodynamic flow of the produced strongly
interacting medium. The structure evolves from pp to Pb—Pb collisions.

tributes to low transverse momentum?! was conceived as direct evidence of the creation
of hot QGP. If a thermalized system is created in small systems, it should give rise
to the thermal radiation of (virtual) direct photons as well. However, to single out
and quantify the thermal contribution, precise knowledge of other contributions such
as prompt photons is essential. Therefore, direct photon production is studied in both
minimum bias and high-multiplicity pp collisions. In this context, the former serves as
a vacuum baseline with respect to the latter.

In addition, as shown in Fig. 1.7, there is an interesting result of the PHENIX
experiment. It is integrated photon yield (pr > 1 GeV/c) as a function of charged
particle multiplicity. Data points from pp and heavy-ion collisions in various collision
systems are shown. Whereas all the A4+A points are on the dotted lines, pp and Ny
scaled pQCD calculations are on a different line which is parallel to the dotted line.
The data points from pAu and dAu collisions are plotted in the middle and seem
to fill the gap smoothly. If these results may indicate the onset of the QGP, it is
natural to study the thermal radiation in pp collisions at /s = 13 TeV, whose charged
particle-multiplicity covers from ~ 7 to ~ 30.

1.5 Previous Experimental Result

ALICE measured direct photon in pp collisions at /s = 13 TeV using the data from
the early year of Run 2. The analysis employed virtual photon method and extracted

IThe defnitions of kinematic variables used in this thesis can be found in Appendix A.
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Figure 1.6: pr-integrated yields of strange and multi-strange hadrons over 7+ + 7+
as a function of dNg,/dn, measured in high-multiplicity pp collisions at /s = 7 TeV
in |n] < 0.5. The error bars show the statistical uncertainty, whereas the empty
and dark-shaded boxes show the total systematic uncertainty and the contribution
uncorrelated across multiplicity bins, respectively. The data are compared to Monte
Carlo calculations [32-34] and to results obtained in Pb-Pb and p-Pb collisions with
ALICE [35-37].

direct photon fraction r which defined as the ratio of direct photons 74 to inclusive
photons 7ine which is sum of direct and decay photons (Vinel = Vdir + Vdecay)- Figure. 1.8
shows the fraction as a function of transverse momentum pr in inelastic (left) and high-
multiplicity (right) pp collisions. If 7 = 0, Vina = Ydecay Which indicates there are no
direct photons and all of them are from hadron decays such as 7 — vy and n — 7.
In that study, no significant direct-photon signals were observed due to large statis-
tical and systematic uncertainties in both minimum-bias and high-multiplicity event
analysis. Therefore, this study aims to extract direct-photon signals in pp collisions,
using increased statistics from whole Run 2 years (2016-2018) and better knowledge
of decay backgrounds.

Compared to the previous study, the following major improvements were utilized
in this study. First, the statistics of experimental datasets were increased, i.e., 4.4
(3.8) times larger event statistics were used in inelastic and high-multiplicity pp col-
lisions. Second, cocktail input spectra such as 7 and 1 meson are taken from mea-
surements [54]. Fig. 1.9 shows invariant cross sections for neutral meson production in
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Figure 1.7: Preliminary result of integrated direct-photon yield (pr > 1 GeV/c¢)
as a function of charged particle multiplicity dNu,/n at midrapidity [48] in various
collision systems. The data points from PHENIX [49], ALICE [25] experiments are
compared with N,y scaled pQCD calculations for pp collisions at /s = 200 GeV [50].
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Figure 1.8: Fraction of direct photon as a function of pr in inelastic and high-
multiplicity event [51]. Statistical and systematic uncertainties are shown in bars
and boxes. The upper limits in shown in red arrow are extracted at 90% confidence
level (C.L.) using the Feldman-Cousins method [52]. The gray band shows NLO
pQCD calculation taken from [53].

pp collisions at /s = 13 TeV. Third, as shown in Fig. 1.10, high-multiplicity neutral
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mesons were also measured, which are the same event multiplicity class (0-0.1%) as
used in this analysis. In addition, it is also important that the /7 ratios were studied
as well. These measurements were not available in the previous study and caused large
systematic uncertainties of direct photon signal.
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Figure 1.9: Invariant cross sections for neutral meson production at midrapidity in
pp collisions at /s = 13 TeV compared with theoretical predictions [54]. The neutral
pion, n, and w meson are measured at transverse momenta pr in the range 0.2 < pr
< 200 GeV/c, 0.4 < pr < 50 GeV/c and 2 < pr < 50 GeV/¢, respectively. The red
line shows the theoretical prediction obtained using the PYTHIAS.2 [55] calculation
with Monash 2013 tune [56]. The green (pink) band represents pQCD calculation at
NLO using CT18 [57] PDF and NNFF1.0 [58] (AESSS [59]) FF for 7° (n), and the
purple band shows calculation at NLO using CT14 [60] PDF and w fragmentation
based on a broken SU(3) model [61] for w meson.
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Figure 1.10: Invariant differential 7% (left) and n (right) yields for different multiplic-
ity classes in pp collisions at /s = 13 TeV. Statistical and systematic uncertainties
are shown in bars and boxes. The red square points indicate 7° and 1 meson mea-
sured in the 0-0.1% multiplicity class, which are used in this analysis. The neutral
pion and 7 meson are measured at transverse momenta pr in the range 0.4 < pr <
50 GeV/e, 0.4 < pr < 25 GeV/¢, respectively.
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Figure 1.11: Left: n/a° ratio in pp collisions at /s = 13 TeV compared with
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1.6 Organization of This Thesis

This work presents the study of dielectron and direct photon production in proton-
proton collisions at /s = 13 TeV via an internal conversion technique (virtual photon
method). The thesis is organized as follows: Chapter 1 gives an introduction, physics
motivation, and previous experimental results. Chapter 2 describes the basics of photon
measurement, i.e., source of photons and experimental technique. Chapter 3 describes
the experimental setup including LHC and ALICE apparatus, and relevant detectors for
this analysis together. The details of analysis is presented in Chapter 4. In Chapter 5,
obtained results are discussed. Finally, Chapter 6 concludes the thesis.

1.7 Major Contributions

The major contributions of the author as an ALICE collaborator are as follows:

e Operation of data taking during LHC Run 2

e Quality Assurance of GEM foil for ALICE-TPC upgrade project for LHC Run
3 [62]

e Validation of material budget in ALICE detector using conversion photons to
precise determination of ALICE material budget [63]

e Paper committee chair of the paper (under preparation) ”Direct photon produc-
tion in inelastic and high-multiplicity proton-proton collisions at \/s = 13 TeV”
on behalf of the ALICE Collaboration.






Chapter 2

Basics of Direct Photon
Measurement

This chapter introduces the sources of direct photons and their measurement methods.
In the field of heavy-ion physics, pp collisions were taken only as a vacuum baseline for
interpreting results from heavy-ion collisions. In the case of photon production in pp
collisions, the only possible contribution was prompt photons and no other contribution
was considered to exist. The recent observations of collectivity in small systems have
led to discussions on the production of thermal photons even in pp collisions [64]
Referring to this, Sec. 2.1 describes the basics of the photon production mechanisms
in high-energy hadron collisions. In Sec. 2.2, experimental techniques to measure low
pr direct photon are described.

2.1 Source of Photons

Photon is a powerful probe in heavy-ion collisions as they are produced at every stage
of the collisions and emitted from the strongly interacting medium almost unaffected by
final state interaction. This is due to the small coupling constant of the electromagnetic
interaction. Figure 2.1 shows various photon sources in heavy-ion collisions. Photons
of interest that do not originate from hadron decays are called direct photons. Direct
photons consist of two categories. Prompt photons are produced in the hard process
and used for testing pQCD calculations. Non-prompted photons are considered to
be photons from physical sources other than pQCD), rather than photons from hard
processes. Since photons are detected inclusively, it is not possible to distinguish
between the different sources in the experiment. Thus, with the help of theory, these
sources of direct photons are estimated and their relative contributions in the transverse
momentum spectrum are investigated.

Typically, interactions that can be calculated in QCD are referred to as hard pro-
cesses, which are characterized by either large momentum transfer or large transverse
momentum. The spectrum of hard processes follows a power-low shape. The mea-
surements of the direct photon at RHIC and the LHC are well described by pQCD
calculations at higher pr [65]. The expected behavior in heavy-ion collisions is a scal-

13
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ing from pp cross section proportional to the number of nucleon-nucleon collisions. On
the other hand, it is not clear how low transverse momentum pQCD is applicable since
theoretical uncertainties are large at low pr.

As mentioned above, the measurement of photons is a big experimental challenge as
most photons arise from decays of neutral mesons. If a QGP droplet is created in high-
multiplicity proton-proton collisions, analogously, one would assume direct photons in
high-multiplicity proton-proton collisions can be classified similarly. Theoretically, it is
predicted that thermal photons will increase in high-multiplicity pp collisions as shown
in Fig. 2.2. If such photons are emitted, a sizeable enhancement of the direct photon
signal should appear at pr < 3-4 GeV/c [64]. Major photon sources such as prompt,
thermal, and decay photons are described below.

| Photons in A+A |

| Direct Photons | | Decay Photons |

| Non-prompt |

/N

| Pre-equilibrium | | Thermal | |Jet-medium interaction |
| QGP | | Hadron gas | Jet-y Medium induced y
conversion bremsstrahlung

Figure 2.1: Known and expected photon sources in heavy-ion collisions.

2.1.1 Prompt photon

Prompt photons are defined as photons created in initial hard scatterings of incoming
partons. The main production mechanisms are: (a) quark-gluon Compton scatter-
ing, (b) quark-antiquark annihilation and (c) bremsstrahlung from quark fragmenta-
tion [66]. Corresponding Feynman diagrams are illustrated in Figure 2.3. The pro-
duction rates of prompt photons can be calculated in pQCD, therefore prompt photon
is also called pQCD photon. The photon production cross section in proton-proton
collisions can be written as [65]

3
d’opp

B —
d3p

a/p a’ 2 ® P I 2
a%;df/@: Q) @ fosp(wp, Q) o)

X d&(QQ) ® ny/c(zcy Q2)7
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Figure 2.2: Theoretical prediction of direct photon production in pp collisions at
Vs = 13 TeV [64]. The orange and red curves show thermal photon contribution
in minimum-bias and high-multiplicity events, respectively. In the calculation, the
charged-particle multiplicity is determined at forward rapidity which is consistent
with the ALICE acceptance of the VO detector. The high-multiplicity thermal-
photon contribution shows clear enhancement compared to the one from minimum-
bias events. This enhancement should be visible below pr = 3-4 GeV/¢, where the
thermal-photon contribution is above the prompt-photon contribution as shown in
the green line.

where f;/,(z;,Q) with i = a,b are parton distribution functions (PDF) of incoming
partons a and b. These PDFs depend on the momentum transfer Q? and describe the
probability to find parton ¢ with momentum fraction z; inside either of the colliding
hadrons. The scale is typically chosen on the order of the transverse momentum of final
state partons. The partonic cross-section do is evaluated as a perturbative expansion
in the strong coupling constant o,(Q). The term D, (2., Q?) is the parton-to-photon
fragmentation function (FF) that governs the fragmentation of a scattered parton ¢ to
a photon with momentum fraction z, which emerges from the collinear fragmentation
of a colored high pr parton accompanied by hadrons. Prompt photons from the LO
processes of (a) and (b) in Fig. 2.3 are final state objects and do not require the FF. In
that sense, these photons are also called “direct” photons. The process of (c¢) can be
interpreted as the NLO corrections to the LO in the perturbative expansion in powers
of the strong coupling as. These photons behave as a high pr colorless parton, and it
is most likely to be well separated from hadrons.

With experimentally determined PDF and FF, pQCD calculations reproduce the
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(a) (b) (c)

g q g q q

Q|

Figure 2.3: Leading Order (LO) and Next-to-Leading Order (NLO) diagrams of
direct photon production in the initial scatterings: (a) quark-gluon Compton scat-
tering, (b) quark-antiquark annihilation and (c) bremsstrahlung radiation from quark
fragmentation [67].

measured direct photon spectra in proton-proton collisions by PHENIX at RHIC, and
in proton-antiproton collisions by DO at Tevatron [68]. According to theoretical analy-
sis [69], at RHIC energy, direct (LO) photons are a dominant source of prompt photons
compared to fragmentation photons above pr ~ 3 GeV/¢, while at LHC energy, the
contribution from fragmentation processes dominates prompt photons (Fig. 2.4).
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Figure 2.4: Fractional contributions of direct (LO) and fragmentational processes
to inclusive photon production at RHIC [69] (left) and LHC [70] (right) energies as
a function of pr for the different choice of the photon fragmentation scale p. At the
LHC, fragmentation photon dominates inclusive photon.
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2.1.2 Thermal photon

In contrast to hard photons, photons from a thermalized system can be used to diagnose
the formation of a strongly interacting medium in heavy ion collisions. Soft photons
can be produced through the same processes as hard photons shown in Fig. 2.3, but
produced by the interactions of thermalized particles. They are emitted during the
entire QGP evolution and the following hot hadron gas phase. An introductory review
of thermal photon productions can be found in Ref. [71].
The thermal emission rate of photons with energy E and momentum p from the
QGP is expressed as
AR -2

1
- R,
&p (27T)3IH1HM CEIT _ 1’

(2.2)

where Hf’“ is the retarded photon self-energy at a finite temperature 7', R stands
for the transition rate between the initial and final state. This equation is valid in
the perturbative [72, 73] and non-perturbative [74] limits. According to the theoreti-
cal investigations, Eq.2.4 exhibits proportionality of the rate to the Boltzmann factor
exp(—FE/T). This means the transverse momentum spectrum of thermal photons has
a similar spectral shape that is realized in thermal equilibrium in the medium.

Hot hadronic matter (hadron gas, HG) produced after the hadronization of the
QGP, will also emit photons due to hadronic reactions. The most important hadronic
constituents for photon production are m and p mesons, and elementary processes are
7tp = 7y, 7t — py and p — 7wy [75]. Certain models also include meson
+ meson and meson + baryon interactions in the hadronic phase [76]. As shown in
Fig. 2.5, a theory predicts thermal photons from HG are dominant at pr < 1, while
a suitable window for the study of thermal radiation from the QGP is 1 < pr < 3
GeV/c [29].

2.1.3 Photons from other sources

In addition to prompt and thermal photons, for instance, emission of photons from pre-
equilibrium stage [77], magnetic field effects [78-80] and the jet-medium interactions
are expected. The pre-equilibrium phase is a phase created in an early stage soon
after the first impact and lasts until the system reaches local thermalization towards
the QGP, and photons can be produced in such a non-equilibrium phase. PHENIX
experiment reported a possible sensitivity of the measurement to photons from earlier
stages [81], but less conclusive compared to thermal photons. Photons induced from
jet-medium interactions [82] are expected to contribute relatively higher transverse
momentum region above 4 GeV/c.

2.1.4 Fraction of direct photons over decay photons

Theoretically expected fraction of direct photons over decay photons at below pr =
3 GeV/c is at most 10% in heavy-ion collisions. In pp collisions, the fraction is even
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Figure 2.5: Theoretical prediction of direct-photon emission rate as a function of
transverse momentum ¢, from various thermal sources in central Pb—Pb collisions
at /sy = 5.5 TeV [29]. The blue and red dashed lines show thermal-photon con-
tribution from hot hadron gas (HG) and from the QGP, while the green dashed
line shows prompt photon contribution from initial hard scatterings. Below gr = 1
GeV /¢, thermal photons are dominated by the HG, while above gy = 1 GeV /¢, ones
from QGP are the largest source of thermal radiation.

smaller. At the LHC energies, this ratio is very close to a few % at 1-3 GeV/¢, which
shows how the measurements are difficult. Therefore, the direct-photon measurement
is a big challenge.

Experimentally, direct photon signal is extracted in terms of the ratio defined as
inclusive over decay photon as follows:

R’y = 71ncl/7decay7 (23>

where 7ina is sum of direct photon and decay photon, R, is called direct-photon excess
ratio. By definition, R, > 1 indicates the existence of a direct-photon signal. Direct
photon vy;;: is obtained from inclusive photon yield as

1

ir — 1—— incl- 24
e = (1= - 2.4)

Figure 2.6 shows R, as a function of pr measured in Pb-Pb collisions at /syn =
2.76 TeV (left) and in pp collisions /s = 8 TeV (right), respectively. The results from
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Figure 2.6: Left: Direct photon excess ratio R, as function of pr in two different
centrality classes. Results are compared with theoretical predictions [76,77,83-85].
The significance of the direct photon are: 0-10%: 3.10 (1.0 < pr < 1.8 GeV/¢) and
20-40%: 3.40 (1.0 < pr < 2.3 GeV/c¢). Right: Direct photon excess ratios R, as a
function of pr in pp collisions at 8 TeV. Results are compared with theoretical predic-
tions with CT10 [86-88] or CTEQ6.1M [89] proton PDF and GRV [90] or BFG2 [91]
FF. In addition, a JETPHOX calculation [92] based on NNPDF2.3QED [93] proton
PDF and BFG2 FF as well as a POWHEG calculation [92].

Pb—Pb collisions are compared with various theoretical predictions including prompt
and thermal photons. The extracted R, in central Pb-Pb collisions is about 5% below
pr = 3 GeV /¢, which is compatible with the theoretical predictions. On the other hand,
in pp collisions, expected 2, at low pr is almost unity, and the direct photon excess is
covered by the large uncertainties. From the above, the extraction of the direct-photon
signal in pp collisions requires a very precise measurement of the background photons
to reduce systematic uncertainties.

2.2 Techniques of Direct Photon Measurement

Direct photons are measured in the form of real or virtual photons. In this study,
direct photons are measured by the latter. In the following, real and virtual photon
measurements are described together with their advantages and disadvantages.

2.2.1 Subtarction method

Real direct photons can be measured by statistically subtracting decay photon spectra
from inclusive photon spectra. This technique was developed by WA98 collabora-
tion [94] and PHENIX [27] and ALICE [25,95] and was adopted in direct photon
measurements as described in the previous section. In this technique, photons are
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reconstructed using either electromagnetic calorimeters or electron pairs from photon
conversions in the material. The 7% and 1 mesons are measured in their two-photon de-
cay channels. Decay photon contributions are estimated via Monte Carlo simulations
and subtracted from the inclusive photon spectrum. As most of the decay photons
arise from 7% — vy and 7 — ~, precise measurement of neutral mesons is crucial to
extracting direct photon signals.

2.2.2 Internal conversion method

Direct photons can be measured via internal conversion technique, which was developed
by PHENIX experiment [96]. Any source of real photons can emit a virtual photon
which subsequently decays into low-mass ete™ pair, which is interpreted as a higher-
order correction to that of real photons. Figure 2.7 shows the lowest order diagrams
of the dielectron production via virtual-photon decays.

(a) (b)

Figure 2.7: The lowest order diagrams for (a) quark-antiquark annihilation and (b)
gluon Compton scattering with associated virtual photon decay into an e*e™ pair.

The relation between real photon and the eTe™ production is given by Kroll-Wada
formulae [97,98]:

®N,e 20 1 dN,

9 1 — 5_ L ee S ees ee ) 2.5
dmeede,ee 3 Mee (m ) (m b )de ( )
4m? 2m?
ma) = 1= 225 (14 20, 2.6)
2\(2 Moo s
S (e, Prce) = [Fn(mee)["(1 — —5)°. (2.7)
my,

Here, oo & 1/137 is the fine structure constant, me. is the invariant mass of ete™ pairs,
me and my, are the electron and hadron mass, respectively. The S(mee, pree) denotes
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Figure 2.8: Invariant mass distribution from virtual photon from 7%, 7 and 1’ Dalitz

decays and direct photon. The total contribution includes all Dalitz pairs i.e., (7°, 7,

7', w, ¢), the contribution from direct photon is normalized to the total contribution
below me = 30 MeV/c?, to highlight difference of mass dependence.

the process-dependent factor that accounts for the differences between real and virtual
photons such as form factors, phase space, and spectral functions. This equation holds
for any process of emitting real photons, i.e., Compton scattering (qg — ¢7), Dalitz
decays (7%, n — ete™y) and 2-photon decays from other hadrons. For high pr (pr >
Mee), the process dependence becomes negligible. The factor S(Mee, pree) becomes 1
as Mee — 0 OF Mee/pr — 0. For (mee > me), the factor L(me.) also becomes very close
to 1. Thus the relation is simplified and gives very characteristic 1/me. dependence as
follows

d?Nee 20 1 dN,
dmeede,ee N 3m Mee de .

(2.8)

On the other hand, for Dalitz decays, as S(Mee, DT ce) becomes 0 for me, — my, and
Dalitz pair do not carry whole invariant mass. This leads to a rapid-falling shoulder
shape and gives different mass dependence that of the virtual photon as shown in
Fig. 2.8. By making use of these differences, the direct-photon signal can be separated
from the background.

The signal extraction is performed assuming the equivalence between the fraction
of real direct photons and the fraction of virtual direct photons with zero mass

Y v
Ndir — Ndir
]\[’y N.’y* m:O’

incl incl

Tdir = (29)
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the real direct photon fraction r can be extracted with a fit of the e™e™ invariant mass
distribution above 7° mass with a virtual photon contribution plus hadron decays using
the following expression:

dg/dmee = 74fdir(7nee) + (1 - T)fLF(mee) + fHF(mee) (210>

where frp(mee) and fur(mee) are contributions from light-flavour and heavy-flavour
hadron decays, and the shape of the virtual direct photon fg;(mee) is described by
Eq. 2.8 in the range pt > me., where the quasi-real virtual photon region.

The advantage of this method is by selecting mass window above mee > m o &~ 135
GeV/c?, the signal-to-background ratio is significantly improved. The drawbacks of
this method are the small internal conversion probability (~ « &~ 1/137) and rapidly
decreasing cross section as a function of mee (~ 1/mee).

This technique requires the knowledge of the backgrounds up to 1 mass region (~
0.5 GeV/c?). Therefore, the pr and rapidity spectra of 7 and 1 mesons are essential
inputs. Moreover, at LHC energies the contribution from open heavy-flavor hadrons
cannot be ignored and needs to be evaluated precisely. Below sources of background
dielectrons are summarised.

Dalitz decays

Dalitz decays is a radiative leptonic decay of a neutral pseudo-scalar meson into a
dilepton pair and either a photon [99] or a vector meson. Pseudo-scalar (7%, n and
n') and vector mesons (w, ¢, J/1) are prime examples of internal conversion. In these
processes, a virtual photon, instead of a real photon, is emitted in the decay of a hadron
and subsequently decays into an ete™ pair. In the case of Dalitz decays such as 70 — v
ete™, the relation between hadron production and the associated eTe™ pair production
is given by Eq. 2.8.

Semileptonic decays of open heavy-flavor hadrons

Electrons from semi-leptonic decay open heavy-flavor hadrons are important contri-
butions to the dilepton production at LHC energies. Open-heavy flavor hadrons are
particles made of at least a heavy (charm or beauty) quark and other lighter quarks.
Below, a full process of heavy-quark production, hadronization, and semileptonic decay
is briefly summarised.

Charm and beauty quarks are referred to as heavy quarks (QQ). Due to their large
mass (m. ~ 1.27 GeV/c? and my, ~ 4.18 GeV/c?), heavy-quark pairs (c¢ and bb) are
produced by only initial hard scattering, and their production can be calculated using
pQCD even at low pp. At leading order (LO), heavy quarks are produced via gluon
fusion and quark-antiquark annihilation. At next-to-leading order (NLO), processes
such as flavor excitation and gluon splitting are important (Fig. 2.9). Once a heavy-
quark pair is produced, hadronization occurs and open-heavy flavor hadrons are created
e.g. DDY. Then they weakly decay semileptonically (D° — K~1714), which leads to
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the creation of correlated 171~ pair (Figure 2.10). These dilepton pairs dominate the
intermediate-mass region between ¢ meson and J/v (1.1 < me < 2.7 GeV/c?) as is
discussed in Sec. 4.10 of Chapter 4.
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Figure 2.9: Examples of heavy-flavor production diagrams. (a) and (b) Leading
order. (c) Pair creation (with gluon emission). (d) Flavor excitation. (e) Gluon
splitting. (f) Events classified as gluon splitting but of flavor-excitation charac-
ter [100]

K- K+

|+ DO E

— e ‘A

Figure 2.10: Skematic view of dilepton production from correlated semi-leptonic
decays of open heavy-flavor hadrons.






Chapter 3

Experimental Setup

3.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) [101] is the largest particle accelerator in the world,
built by the European Organization for Nuclear Research (CERN) beneath the French-
Swiss border near the city of Geneva. The LHC is a 27 km-long ring of superconducting
magnets, installed in a tunnel originally used for the Large Electron-Positron Collider
(LEP). It is designed to accelerate and collide proton beams at an energy of 7 TeV,
which gives a total center-of-mass energy of 14 TeV, while 2.75TeV /nucleon Pb beams
lead to a center-of-mass energy of 5.5 TeV. The proton and heavy-ion beams are divided
into thousands and hundreds of bunches, respectively. Each bunch contains more than
a hundred billion protons or tens of millions of lead nuclei. During Run 2 (2015 -
2018), the LHC increased the center-of-mass energy /s = 13 TeV in pp collisions and
achieved the design luminosity of 103* cm=2 s~1. In Pb-ion collisions, the center-of-mass
energy was reached up to /syx = 5.02 TeV per nucleon pair with a peak luminosity
of 102" ecm=? s!. Design and performance of LHC during 2016-2018 in Run 2 are
summarised in Table. 3.1. The LHC beams are produced and pre-accelerated in the
CERN accelerator chain, so-called LHC injectors. Figure 3.1 shows an overview of
CERN accelerator complex [102]. The injection chain for the protons starts at LINAC
2, where the H™ ions are produced and accelerated to 50 MeV. After the LINAC
2, the beams are injected into the PS Booster. The booster consists of four storage
rings, which make protons a single bunch. The bunches are accelerated to 1.4 GeV and
transferred into the Proton Synchrotron (PS). The PS has several RF systems that can
produce bunch structure via adiabatically switching frequencies among them. Then,
the beams are extracted to the Super Proton Synchrotron (SPS) and further accelerated
to 450 GeV, the injection energy of the LHC. The two beams are transported to the
LHC via injection systems which are located at TI 1 for beam 1 and TT 2 for beam
2. The bunches are injected every 25 ns for pp collisions, and make up bunch trains -
groups of bunches. In Run 2, the number of bunches reached ~ 2500 bunches. When
the injection process is completed, the energy is increased by ramping up the LHC
magnets. Afterward, the beams are accelerated and squeezed to minimize §*, which
is the value of the beta function § at an interaction point. Finally, collisions of two

25
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beams occur and experiment starts to data taking [103]. The two beams can collide
only in the regions containing the four major experiments in ALICE, ATLAS, CMS
and LHCD.

Table 3.1: Summary of beam and machine parameters during 2016-2018 in Run
2 compared to the LHC design values [104]. The * (m) and half Crossing angle
(urad) are at IP2 and the same as Run 1 [105]. The 8* is described in the text.

Parameter Design | 2018 2017 2016
Energy (TeV) 70 | 65 6.5 6.5

Bunch spacing (ns) 25 25 25 25

Number of bunches 2808 2556 2556 - 1868 2220
g* (m) 0.55 10

Bunch intensity (10'! ppb) 1.15 1.1 1.25 1.25
Emittance (pum) 3.75 | 1.8-2.2 1.8-2.2 1.8-2
Peak luminosity (103 em™2s71) | 1.0 2.1 2.0 1.5

Harf Crossing angle (urad) 142.5 710

3.2 ALICE Detector Overview

ALICE (A Large Ion Collider Experiment) is one of the four major experiments at
the LHC. The spectrometer is designed to study the strong interaction sector of the
Standard Model and QGP, using the ultra-relativistic heavy-ion collisions.

Figure 3.2 shows the schematic view of ALICE apparatus during the LHC Run
2. In total, 19 detector systems are installed, each has its own different purposes
and technologies, driven by the physics requirements and the experimental conditions
expected at LHC. ALICE is optimized to have a good momentum resolution as well
as excellent particle identification (PID) capability over a wide pr range under very
high multiplicity conditions in central Pb—Pb collisions (dNa,/dn ~ 8000). A detailed
description of each detector and its performance is summarized in [105-108]. ALICE
consists of two main parts, i.e., central barrel part which is housed in the solenoid
magnet reused from L3 experiment, and the forward detector part. From the inside out,
the central barrel detector comprises Inner Tracking System (ITS), Time-Projection
Chamber (TPC), Transition Radiation (TRD), Time-of-Flight (TOF), Ring Imaging
Cherenkov (HMPID) detectors, and two electromagnetic calorimeters (PHOS, EMCal
and DCal). The forward detector includes the Photon Multiplicity Detector (PMD),
the silicon Forward Multiplicity Detector (FMD), and the Muon spectrometer. The
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Figure 3.1: Schematic view of the CERN accelerrator complex [102].

Muon spectrometer consists of Muon tracker (MTR), Muon Wall, and Muon Trigger.
In addition, small detectors (ZDC, PMD, FMD, T0, VO0) are located at small angles
for global event characterization and triggering. An array of scintillators (ACORDE)
on top of the L3 magnet is used to trigger cosmic rays.

ALICE coordinate system

The ALICE coordinate system is a right-handed orthogonal coordinate, the interaction
point 2 (IP2) is the origin of the coordinate system [109]. As shown in Fig. 3.3, the
z axis is parallel to the beam direction, the x axis is perpendicular to the z axis and
points to the accelerator center, the y axis is perpendicular to the beam axis and the
x axis, pointing vertically up. The azimuthal angle ¢, between the x- and y-axis,
counts clockwise with the observer facing the A-side. The polar angle 6 increases
from the positive part of the z-axis towards the y-axis. Here we introduce a variable
called rapidity, which is an essential quantity to characterize particle production. The
rapidity is used to express approximate angles with respect to the beam axis which is
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Figure 3.3: Global coordinate of ALICE detectors [110].

defined as

1. E+p,
= -In
y=ohg— -

(3.1)

where, F is the energy of the particle and p, is the particle longitudinal momentum
component, along with the z-axis. Since the rapidity requires knowledge of the mass of
the particle, another variable called pseudorapidity n = Inftan(6/2)], with polar angle
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0 is used. This quantity is equivalent to rapidity for massless particles.

To represent the detector position, the positive (negative) z is labeled A (C), these
correspond to forward and backward rapidity, respectively. For example, Muon Tracker
is placed at backward rapidity (C-side). In the following sections, only relevant detec-
tors to this analysis: ITS, TPC, TRD, TOF, and V0 are explained.

3.2.1 Inner Tracking System

The Inner Tracking System (ITS) consists of six cylindrical layers of silicon detectors
with two layers of; Silicon Pixel Detector (SPD), Silicon Drift Detector (SDD), and
Silicon Strip Detector (SSD). It is located at radii between 4 and 43 cm, the outer
radius is determined to make track matching with the TPC, and the inner radius is the
minimum allowed by the beam pipe. All detectors cover the rapidity range of |n| < 0.9.
The main tasks of the I'TS are:

e Localise the primary vertex with a resolution better than 100 pm, to reconstruct
the secondary vertices from the decays of hyperons and D and B mesons

e To track and identify particles with momentum below 200 MeV/c¢

e Improve the momentum and angular resolution for particles reconstructed by the
Time-Projection Chamber (TPC)

Therefore, the I'TS information is used for practically all physics topics addressed by
the ALICE experiment. The geometrical dimensions and the technology used in the
various layers of the ITS are summarised in Table 3.2. The choice of innermost and
intermediate detectors which have different technologies are to achieve the required
impact parameter resolution under high particle density. The four outer layers have
analogue readout which can be used for particle identification via d £'/dx measurement
in the non-relativistic region.

Another key component of the ITS detector is to keep minimize material budget
as the momentum and impact parameter resolution of low-momentum particles are
affected by multiple scattering in the detector material. From the point of view of
dielectron analysis, the smaller material budget is of importance as the electrons from
conversions are a source of the background. Figure 3.5 shows the thickness of material
as a function of radius and azimuthal angle, the total material budget in the ITS is ~
8% of the radiation length Xj.

3.2.2 Time Projection Chamber

The TPC [111] is the main tracking device in the central barrel detector which provides
charged particle momentum and particle identification. The choice of a TPC is suitable
to achieve efficient and robust tracking, under high particle density for central Pb-Pb
collision even after taking into consideration of the limitation of high rate capabilities.
The TPC covers full azimuth and a pseudorapidity interval || < 0.9, which can ensure



30 Chapter 3 Experimental setup

87.2 cm

Figure 3.4: Layout of ITS system

Table 3.2: Geometrical dimensions, active areas and number of channels of each
ITS layers.

Layer | Type | r (cm) | + z (cm) | Area (m®) | Channels
1 pixel 3.9 14.1 0.07 3276800
2 pixel 7.6 14.1 0.14 6553600
3 drift 15.0 22.2 0.42 43008
4 drift 23.9 29.7 0.89 90112
) strip 38.0 43.1 2.20 1148928
6 strip 43.0 48.9 2.80 1459200

reliable performance at order of 10000 charged particles. Figure 3.6, shows a schematic
view of the ALICE TPC. The TPC is a cylinder gaseous chamber with radial and
longitudinal dimensions of 85 cm < r < 247 cm and —250 cm < z < 250 cm, whose
axis is aligned with the beam axis and is parallel to the solenoidal magnetic field. The
detector is filled with a counting gas which was Ar—COs gas mixture (with abundances
of 88%-12%) in 2016 and 2018, and Ne—CO9—Ny (90%—-10%-5%) in 2017. The choice
of the gas and its mixture is made by considering diffusion characteristics, ion mobility,
drift velocity and operational stability. A central electrode in the middle of the detector
is charged to -100 kV, and electrons drift with a drift velocity of 2.7 ecm/us to both
end plates in a uniform electric field of 400 V/cm.

Figure 3.7 shows the working principle of a TPC around the end plate region for
position measurement. The TPC is equipped with Multi-Wire Proportional Chambers
(MWPCs) for the readout, located at its end plates. In a MWPC, different potentials
are applied to a set of wire planes (cathode plane and anode plane), resulting in a
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Figure 3.5: Left: Integral of material thickness of the I'TS as a function of radius.
Right: The total material encountered by a perpendicular track crossing the ITS
versus azimuthal angle. [108]

high electric field. Charged particles traversing the TPC volume ionize the gas, which
produces electrons. They are accelerated in the electric field in the MWPC and further
ionize gas atoms and cause electron avalanches. The induced current on the pad plane
is read out and the precise position in the pad plane is measured. Together with an
accurate measurement of the arrival time relative to the collision time of the beams,
the z coordinate is calculated by the product of the drift time and drift velocity (z =
Varite X tanige)- In this way, the complete trajectory in space of all charged particles
traversing the TPC can be determined.

During the electron amplification ions are produced as well, which drift in the
opposite direction with a small drift velocity. These ions accumulate in the gas volume
and distort the electric field, which affects the drift path of electrons. In order to avoid
this ion backflow, the gating grid is added to the MWPC. By changing the voltage
supply to the gating grid, it can collect electrons from the TPC volume and ions from
the readout chambers or, conversely, allow both to pass through. When TPC accepts
a trigger, the gating grid opens for a certain time corresponding to electron drift time
through the full TPC ~ 100 ps. Then the grid is closed for the time needed to collect
all the ions produced during the gas amplification ~ 200 ps. (for Ar mixture gas.)
This is an intrinsic dead time of the TPC, which limits the rate of a few kHz in Pb—Pb
collisions.

The simultaneous measurement of the momentum p of a particle and its specific
ionization loss dE/dz in the TPC gas provides PID information. The mean energy
loss dF/dz per unit path length can be described by the Bethe-Bloch formula:

dE\  4mNe'Z2 [ 2m,c?B?y? 3(5)
<%> B W?(lnf_52_7> (32)

where m.c? is the rest energy of the electron, Z denotes the charge of the projectile, N
the number density of electrons in the traversed matter, e the elementary charge, 5 and
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Figure 3.6: The schematic view of ALICE TPC field cage. The field cage is a hollow
cylindrical structure with a diameter of 5 m and a length of 5 m. A voltage of -100
kV is applied to the central electrode. The red arrows indicate the direction of the
electric field E.

~ are velocity of the projectile 8 = v/c and Lorentz factor 1/4/1 — 32, respectively,
I is the mean excitation energy of the atom. Figure 3.8 shows an example of dF/dz
for the positive muons in copper over a wide range of muon’s kinetic energy. Eq.3.6 is
valid in the region 0.1 < v < 1000 with an accuracy of a few percent. In this region,
dE/dx depends only on the particle’s velocity 5 and not on the mass, therefore particles
with the same momenta but different mass can be characterized by their dE'/dx. In the
analysis of experimental data, parameterization other than the Bethe-Bloch function is

often used. In ALICE, the form proposed by the ALEPH experiment [112] is adopted:

fBv) = H <P2 —p" —In (Pg + ;>> (3.3)

B (By)F

where P;_5 are parameters determined by the fit to measured data.

Figure 3.9 shows dF/dz in the TPC measured in pp collisions at /s = 13 TeV as
a function of the particle momentum. It is clearly seen electrons and pions are nicely
separated over the wide momentum range. However, at 0.5 GeV/c and 1 GeV/¢, as the
electron band crosses those of kaon and proton, electrons are inevitably contaminated.
Therefore, to suppress hadron contamination, complementary PID information from
the TOF detector is used in this thesis. The key quantity for particle identification is
the resolution 04p/q4, of the dE//dx measurement. It depends on the number of TPC
track points measured with cosmic tracks, which is about 5.2% in pp collisions [105].
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Figure 3.7: ALICE TPC working principle

3.2.3 Transition Radiation Detector

The role of Transition Radiation Detector (TRD) [113] is to provide tracking, electron
identification, and triggering. The TRD is placed outside the TPC, from 2.9 m to 3.7
m from the beam axis, which covers the full azimuth and pseudorapidity range |n| <
0.84 (Fig. 3.10). The TRD consists of 522 chambers and each chamber comprises a
foam/fibre radiator followed by a Xe-COs-filled MWPC preceded by a drift region of
3 cm.

The working principle of the TRD is based on the transition radiation (TR) occur-
ring when a charged particle crosses the boundary between two media with different
dielectric constants. For highly relativistic particles (v 2 1000), the emitted photon is
in the X-ray range and absorbed in high-Z gas. The ejected electrons are detected by
multiwire proportional chambers (MWPC). Electrons can be distinguished from other
charged particles by measuring a characteristic signal of TR photon.

Fig. 3.11 shows a schematic cross-section of a chamber and its radiator. The local
coordinate system is similar to the global coordinate system, rotated such that the
x-axis is perpendicular to the chamber. Six layers of chambers are installed to enhance
the pion rejection powers.

The eID performance is expressed in terms of the electron efficiency and the cor-
responding pion efficiency. The electron identification performance is overall better
than the design value. At 90% electron efficiency, a pion rejection factor of about 70
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Figure 3.8: Ionization energy loss for positive muon in copper as function of gy =
p/Mc [5].

is achieved at a momentum of 1 GeV/¢ for simple identification algorithms [114].

In this analysis, the TRD is not actually used for electron identification but con-
tributes to the track reconstruction. As described in Sec. 3.3, the TRD improves the
overall momentum resolution by providing additional space charge points at large radii.

3.2.4 Time-of-Flight Detector

Particle identification in the ALICE central barrel is complemented by the Time-of-
Flight (TOF) detector [115]. It is a large area array of Multi-gap Resistive Plate
Chambers (MRPC) [116], which is positioned at 370—399 cm from the beam axis and
covering the full azimuth and the pseudorapidity range |n| < 0.9. The chamber is
operated with a high and uniform electric field over the full sensitive gaseous volume.
The main characteristic is traversing particles ionized immediately and starting to gas
avalanche, which leads to quick time response. A schematic layout of one supermodule
inside the ALICE spectrometer in Fig. 3.12. The time-of-flight is measured as the dif-
ference between the particle arrival time and the event collision time, which is provided
by the T0 detector, as will be described in the following Sec. 3.2.5. The time resolution
of the detector ~ 40 ps for pp collisions. A combinatorial algorithm based on a )2
minimization between all the possible mass hypotheses is used in this case [117]. The
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time-of-flight ¢Tor can be related to particle mass through velocity f:

1
b=
TOFC
c2t?
o P _ P [Plop
py ¢

1

[2 ’

(3.4)

(3.5)

where p is particle momentum, [ is track length. Due to the curvature of the trajectory
in the magnetic field, tracks with pr < 0.3 GeV/¢ do not reach the TOF detector. For
pr > 0.3 GeV/c, the detector can provide a K/m separation up to 3 GeV/c and a K/p
separation up to 5 GeV/c¢ with 30. Figure 3.13 shows the resulting 5 = v/c of charged
particle in pp collisions at /s = 13 TeV.
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Figure 3.10: Schematic cross-section of the ALICE detector perpendicular to the
LHC beam direction

3.2.5 TO0 Detector

The TO [118] detector consists of two arrays of Cherenkov counters with a quartz
radiator and photomultiplier tube, which is used to measure collision time with high
precision. The time resolution is 25 ps, and the collision time is used as the reference
time for the TOF detector. TO is also used for the determination of the primary vertex,
and positioned at opposite sides of the interaction point (IP) at 4.61 < n < 4.92 (T0A)
and —3.28 < n < —2.97 (T0C), respectively (Fig. 3.14).

3.2.6 VO Detector

The VO detector [119] is made up of two arrays of 32 scintillators as shown in Fig. 3.15,
installed on both sides of the ALICE IP and located at small angles, covering forward
(VOA 2.8 < n < 5.1) and backward (VOC —3.7 < n < —1.7) pseudorapidity regions.
The VOA detector is located 340 cm from the interaction point on the side opposite to
the muon spectrometer, whereas VOC is fixed to the front face of the hadronic absorber,
90 cm from the interaction point. The material consists of BC4041 scintillating material
(2.5 and 2.0 cm in thickness for VOA and VOC, respectively) with 1 mm in diameter
Wave-Length Shifting (WLS) fibers. The light is guided to the photo-multiplier system.
The PMTs are fixed on the VOA disk holder in groups of 4 units and connected directly
to the WLS fibers. They are installed on the absorber in groups of 8 units for the
VOC and connected to counters through optical fibers 3.22 m long. The VO detector
has several functions. First, it provides the minimum-bias trigger for inelastic pp
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Figure 3.12: Schematic view of super module of Time-Of-Flight (TOF) detector.
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Figure 3.14: The layout of T0 detector arrays inside ALICE [108].

collisions to ALICE detectors, which aims to acquire inelastic events with as little
bias as possible. This trigger requires a coincident signal on both sides of the V0
detector (“VOAND” trigger logic). This requirement reduces a substantial amount
of background events such as interactions of the beam with residual gas inside the
beam pipe or with mechanical structures of the beam line. As the number of measured
particles on the VO arrays and the number of primary emitted particles are proportional
to each other, the VO serves as an indicator of the centrality of the collision via the
multiplicity measured in VO in the event. The VO can provide multiplicity triggers by
requiring a coincident signal on both VO sides, and a total measured VO multiplicity
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Figure 3.15: Top: Front view of VOA (left) and VOC (right) arrays. Bottom:
Schematic design of the VOA (left) and VOC (right) detection elements [108].

(VOM) above a certain threshold. Finally, the VO detector, as well as the TO detector,
provide luminosity in pp collisions with a good precision of about 10% [120].

3.3 Tracking and Vertexing

This section describes track finding in the ALICE central barrel. The step begins
with clusterization, in which the detector data such as signal amplitudes, signal times
etc. and their associated errors are converted into “clusters”. The clusterization is
performed independently for each detector. The next step is to determine the prelim-
inary interaction vertex using the two innermost layers (SPD) of the ITS. The vertex
is defined as the space point where the maximum number of lines defined by pairs of
clusters among two SPD layers, called tracklets, converge at a point.

Subsequently, track finding and fitting are performed in three stages, following an
inward-outward-inward scheme [105,121]. The track reconstruction is based on the
Kalman Filter approach [122,123]. As illustrated in Fig. 3.16, the first step of track
finding is the track seeding in the outermost pad rows of the TPC (1st path). The
seed is propagated towards the primary vertex through the TPC volume and the I'TS
layers. Then a second propagation step is performed in the outward direction from
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Figure 3.16: Principles of tracking for an ALICE event, showing the three successive
paths allowing to build a track and refine its parameters [124].

the innermost ITS layer to the outer detectors such as TRD and TOF (2nd path).
Finally, the primary tracks are refitted back to the primary vertex or as close to the
vertex as possible in the case of secondary tracks (3rd path). The improvement in pr
resolution after applying a vertex constraint and including the TRD in the track fitting
is shown in the left and right panels of Figure 3.17, respectively. The vertex constraint
significantly improves the resolution of TPC standalone tracks, while it has no effect
on ITS-TPC tracks (green and blue square overlap). Including TRD in the tracking
improves the resolution by about 40% at high pr for pp collisions recorded at both low
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Figure 3.17: Left: the pr resolution in p-Pb collisions for standalone TPC and ITS-
TPC matched tracks with and without constraint to the vertex. Right: Improvement
of the q/pr (inverse transverse momentum scaled with particle charged) resolution
in data in pp collisions when TRD information is included in the tracking for various
running scenarios. The labels low and high IR indicate interaction rates (IR) of 12
and 230 kHz, respectively. The left and right fugres are taken from [105] and [114].

and high interaction rates.
Once track is reconstructed, the bending radius r of the track is used to determine

its transverse momentum as follows:
pr [GeV] = 0.3¢rB [T - m], (3.6)

where ¢ is the particle charge and B is the magnetic field.



42 Chapter 3 Experimental setup

3.4 Data Taking

This section summarises ALICE data taking. The detail can be found in Refs. [105,
108]. The ALICE experiment has operated in several different running modes with
significantly different characteristics.

The principal design requirement is determined by the Pb—Pb collisions which are
characterized by a relatively low interaction rate and relatively short running time
(one month per year) but with a huge event size produced by the large number of
charged particles traversing the detectors. In proton-proton (pp) or proton-nucleus
(p—Pb) running modes, the interaction rates are much higher (up to hundreds of kHz),
whereas the event size is smaller and the running time is several (one) months per year

in pp (p-Pb).

3.4.1 Trigger System

The trigger decision is generated by the Central Trigger Processor (CTP) [125] based
on detector signals and information about the LHC bunch-filling scheme. The CTP
evaluates trigger inputs from the trigger detectors every machine clock cycle (~ 25 ns).
The Level 0 trigger (LO) decision is made ~ 0.9 us after the collision using V0, TO,
EMCal, PHOS, and MTR. Information about the LHC bunch-filling scheme was used
by CTP to suppress the background. The bunch crossing mask (BCMask) provided the
information as to whether there are bunches coming from both A-side and C-side, or
one of them, or neither, at a resolution of 25 ns. The beam-gas interaction background
was studied by triggering bunches without a collision partner and subtracted from the
physics data taken with the requirement of the presence of both bunches.

The events accepted at L0 are further evaluated by the Level 1 (L1) trigger al-
gorithm in the CTP. The L1 trigger decision is made 260 LHC clock cycles (~ 6.5
us) after LO. The latency is caused by the computation time (TRD and EMCal) and
propagation times (ZDC, 113 m from IP2). The L0 and L1 decisions, delivered to the
detectors with a latency of about 900 ns, trigger the buffering of the event data in the
detector front-end electronics.

The Level 2 (L2) decision, taken after about 88 us corresponding to the drift time
of the TPC, triggers the sending of the event data to DAQ and, in parallel, to the High
Level Trigger system (HLT'). During Run 2, depending on the specific running scenarios
(e.g. when taking downscaled minimum bias events in parallel with rare triggers), L2
was used to reject events with multiple collisions from different bunch crossings pile up
in the TPC (past-future protection). The events with L2 were subsequently filtered in
the HLT.

3.4.2 The High Level Trigger

The role of the HLT is to reconstruct the charged-particle tracks by processing data
from all available ALICE detectors and to reduce the data volume that is stored per-
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Figure 3.18: Block diagram of the Central Trigger Processor [126].

manently to a reasonable size and to fit in the allocated tape space. The entire HLT
operation is based on full real-time event reconstruction.

After the LHC Run 1, there was an important upgrade of the TPC readout elec-
tronics, employing a new version of the Readout Control Unit (RCU2) [127] which uses
the updated optical link speed of 3.125 Gbps instead of the previous readout rate of
2.125 Gbps. The upgrades, along with an improved TPC readout scheme, doubled
the theoretical maximum TPC readout data rate to 48 GB/s, thus allowing ALICE to
record twice as many events. In addition, the HLT was updated to be able to cope
with the increased data rate of Run 2.

Since the TPC produces most of data volume (~ 91% for Pb-Pb and ~ 95% for
pp), event reconstruction is the most computationally intensive task for the HLT.
Therefore the HLT is mainly designed to process TPC data. In Run 2, cluster-finder
and track reconstruction algorithms are implemented in FPGA and GPU in the HLT
which allows us to reduce the data size in real time [128]. These performance can be
found in Fig. 3.19. The left of Fig. 3.19 shows processing time of the newly implemented
FPGA-based algorithm (blue), which significantly reduced processing time compared
to the offline cluster finding (red). The right of Fig. 3.19 shows the overall speedup
achieved by the HLT GPU tracking which is computed as the ratio of the processing
time of offline (CPU) tracking and the single-core processing time. Overall, the HLT
tracking algorithm executed on the CPU is 15-20 times faster than the offline tracking
algorithm used in Run 1.

The online data compression techniques developed and used in the ALICE HLT
have more than quadrupled the amount of data that can be stored for offline event
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taken from Ref. [128].

3.4.3 Run Condition in Run 2

Table. 3.3 shows running condition during Run 2. The typical rate for pp and Pb-
Pb data-taking in Run 2 is hundreds of kHz and 8 kHz, respectively. Corresponding
data size per event is a few megabytes for pp collision and several gigabytes for Pb—
Pb collision. The ALICE data volume is dominated by the event size of the TPC,
which is scaled with the charged-particle multiplicity, including pileup tracks from
other interactions within the TPC drift time window of ~ 100 ws. The maximum
TPC event size observed in central Pb—Pb collisions, reaches 70 MB. Figure 3.20 shows
integrated luminosity for various triggers in pp collisions at /s = 13 TeV during LHC
Run 2 (2015-2018), where some of the triggers relevant to this analysis will be explained
in Chapter 4.

Table 3.3: Running conditions in pp, p—Pb and Pb—Pb collisions during Run 2 [129].

198 p—Pb Pb-Pb

Luminosity (cm™2 s7') < x 1031 (1-2)x 10%¢ 10%-7
Rate (Hz) 1x 106  (2-4)x 10° 10>
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Chapter 4

Analysis

This chapter describes the details of the dielectron and direct-photon analysis. The
analysis begins with the event selection (Sec. 4.1), the primary track selection (Sec. 4.4),
and the electron identification (Sec. 4.5), followed by the pair analysis (Sec. 4.6). Ob-
tained raw dielectron spectra are corrected for the pair reconstruction efficiency using
the MC simulation (Sec. 4.7). In Sec. 4.8, dielectron yield from known hadronic decays
is estimated using MC simulation to compare the corrected dielectron signal. Obtained
dielectron cross section as a function of invariant mass me. and pair transverse momen-
tum pree are reported in Sec. 4.11. Afterward, the direct photon fraction is extracted
from the invariant mass spectra and the direct photon spectrum is constructed by using
the decay photon spectrum as described in Sec. 4.12.

4.1 Datasets and Event Selection

The data used for the analysis were collected in 2016-2018 during LHC proton-proton
run at /s = 13 TeV with a nominal magnetic field of B = 0.5 T in the ALICE central
barrel. Figure 4.1, 4.2 and 4.3, show interaction rate, number of colliding bunches ()
at LHC point 2 (IP2), and average number of inelastic collisions per bunch crossing as a
function of time (run number) with respective data-taking year. A run is the time from
the start to the end of the data acquisition. Vertical dashed lines indicate a change
of polarity, and a duration to have the same polarity settings of the magnet is called
“period”. The experimental data consists of a chunk of periods. The interaction rate
in pp collisions steadily increases every year, from 120 kHz to 260 kHz. The average
number of interactions per bunch crossing (u) varies from 0.01 to 0.06.

4.1.1 Event Classification

The events are characterized by charged-particle multiplicity and classified based on
the correlation between a total charge in the VO detectors (VOM amplitude) and the
total number of charged-particle multiplicity at mid-rapidity. The reason why we
use VOM amplitude which is determined at forward (backward) rapidity is to avoid

47
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Figure 4.1: Interaction rate (top), number of colliding bunches at LHC point 2 (mid-
dle), and average number of inelastic collisions per bunch crossing (bottom). Period
LHC16d, e, g, h, i, j, k, 1, 0, p (separated by dashed line) are shown. Information is
taken from aliqaevs and if the run has no information, values are set -999.

auto-correlation bias [130,131]. Figure 4.4 shows the correlation between minimum-
bias and high-multiplicity triggered events. The charged-particle multiplicity linearly
scales with VO amplitude for both event classes. The VO amplitude is divided into
multiplicity classes and expressed in percentile (VOM percentile) with respect to whole
VOM amplitude, where low values indicate collisions with larger multiplicity.
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Figure 4.2: Interaction rate (top), number of colliding bunches at LHC point 2
(middle), and average number of inelastic collisions per bunch crossing (bottom).
Period LHC17c, e, f, h, i, j, k, I, m, o, r (separated by dashed line) are shown.
Information is taken from aliqaevs and if the run has no information, values are set
-999.

4.1.2 Trigger Conditions

The data sample is selected by using minimum-bias (MB) trigger and high-multiplicity
(HM) triggers for the analysis of inelastic and high-multiplicity pp events. Both triggers
require a coincident signal in both VOA and VOC scintillators.
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Figure 4.3: Interaction rate (top), number of colliding bunches at LHC point 2
(middle), and average number of inelastic collisions per bunch crossing (bottom).
Period LHC18b, d, e, f, g, h, i, j, k, I, m, n, o, p (separated by dashed line) are
shown. Information is taken from aliqaevs and if the run has no information, values
are set -999.

4.1.3 High-Multiplicity Trigger Selection

The HM trigger is used to enhance the sample of events with high multiplicities, which
additionally requires VOM amplitude to exceed a certain threshold. Since VO photomul-
tipliers show a continuous aging effect, the HM trigger threshold needs to be adjusted
several times during data taking to keep the trigger selection factor constant as shown
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in the top of Fig. 4.5. As a result of these adjustments, the HM trigger threshold over
mean VO multiplicity is almost flat and kept ~ 5 for the 2016 sample as shown in the
bottom of Fig. 4.5. The 2017 and 2018 samples are also adjusted as well. The stability
of high-multiplicity trigger can be checked by the actual triggered event. Figure 4.6
shows the run-by-run trend of ratio HM over MB triggered event for 2016-2018 sam-
ples. Overall, most of the run the HM/MB ratio is constant and stable during data
taking. However, the HM/MB ratios from runs shaded in blue show significantly lower
compared to other runs. This is due to the adjustments of the downscaling factor of
the trigger, which usually occurs at the beginning of the year or period. Such runs are
removed from the analysis because the trigger performance is not stable.

With runs that guaranteed the stability of the triggers, we select the 0.1% of events
with the highest VOM amplitude as shown in the left of Fig. 4.7. The corresponding
percentile distribution is shown on the right of Fig. 4.7 and found to be flat. For the
2016 sample, as the VO multiplicity percentile is non-flat, the sample is not used in this
analysis.
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Figure 4.4: Correlation between VOM amplitude and reference multiplicity at mid-
rapidity in minimum-bias (left) and high-multiplicity (right) events. Black points
show mean values of reference multiplicity for each VOM amplitude value, and the
error bars correspond to the RMS of the distribution.

4.1.4 Event Selection

Physical collision events are selected as follows.

Machine Induced Background Rejection

Background events such as beam-gas interactions are rejected by using information
from the VO detectors placed at forward and backward rapidities [105]. The arrival
time of the VO signal is exploited to discriminate collision events from background
events caused by the LHC Beam 1 or Beam 2. Fig. 4.8, shows the correlation between
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Figure 4.5: Example of VO high-multiplicity trigger threshold (top) and the ratio
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periods which are not used for the analysis. Figure was taken from [132].
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multiplicity events (blue). The red shaded area represents 0-0.1% of VOM multiplicity
class in pp collisions at /s = 13 TeV. Right: VOM percentile distribution in high-
multiplicity events (0-0.1% is selected).

the sum tyoa + tvoc and difference tyga — tvoc, where tyoa and tygc are arrival time
measured by the two VO detectors. The main peak from beam-beam collision in the
nominal interaction point is tyvoa —tvoc = 8.3 ns, which is well separated from the Beam
1-induced and Beam 2-induced background interactions at tyoa — tvoc = -14.3 ns and
tvoa — tvoc = 14.3 ns, respectively. These background events can be rejected using the
VO time gate in the trigger. Residual backgrounds can be further removed using the
number of SPD clusters which will be described in the following. Since background
particles usually cross the pixel layers in a direction parallel to the beam axis, they
tend to leave a larger number of hits on SPD layers and give a smaller number of SPD
tracklets pointing to the vertex. As a result, background particles appear as outliers for
the main diagonal correlation from physical events. Figure 4.9 shows the correlation
in all triggered events (left) and after applying rejection of beam-gas event via online
trigger selection (right). All events above the red line are removed to reject residual
beam-gas and pile-up events in minimum-bias (top row) and high-multiplicity (bottom
row) events, respectively.
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Figure 4.8: Correlation between the sum and difference of signal times in VOA and
VOC detectors. Three classes of event beam-beam interactions at (8.3 ns, 14.3 ns),
background from beam 1 at (-14.3 ns, -8.3 ns), and background from beam 2 at (14.3
ns, 8.3 ns) can be clearly distinguished. Figure taken from Ref. [105].
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Pileup Rejection

Due to the high interaction rate and the high p value, additional pp collisions (pileup)
can be recorded within TPC readout time (~ 100 usec). The pileup collision has two
different distinctive natures: ”In-bunch pileup”, where two (or more) collisions occur
in the same-bunch crossing, and ” Out-of-bunch pileup”, where two (or more) collisions
occur before and after the collision of interest. These should be removed as they affect
the number of reconstructed tracks per event. The in-bunch pileup can be rejected
if multiple candidates of interaction vertices are reconstructed. The event from the
out-of-bunch pileup event can be removed either at the event selection level as same
as the in-bunch pileup or at the track selection level, i.e., requiring matching to fast
detectors: ITS or TOF, or pointing to the main vertex via DCA ..
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Figure 4.9: Correlation between the number of SPD tracklets and the number of
SPD clusters in all triggered events (left) and events after the clean-up by the online
trigger based on the VO time gate [133]. The top and bottom rows show minimum-
bias and high-multiplicity triggered events. The red line indicates the cut based on
the SPD clusters and the tracklets correlation.

In addition, the vertex position is restricted with |zyt| < 10 cm along the beam
axis (Fig.4.10), and the event is required to have at least one contributing track to
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Figure 4.10: 7 vertex distribution in minimum-bias events (left) and high-
multiplicity events (right).

the vertex. After these event selections, in total 1.73x 10 minimum-bias and 3.38x10%
high-multiplicity pp events are selected for the analysis. The breakdown by year is
shown in Table 4.1.

Table 4.1: The number of events after physics selection and event selection criteria
in minimum-bias and high-multiplicity triggered events.

Year Min.bias High-multiplicity
2016  415x10° -

2017  604x10° 195x10°
2018  710x10° 143x10°
Total 1730x10° 338x10°
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Integrated Luminosity

The trigger condition described in Sec. 4.1.2 is denoted “VOAND”, i.e., trigger fulfills
VOA and VOC condition. The integrated luminosity of the analyzed minimum-bias
data sample is calculated as:

£hp = S, (4.)
VOAND

where Nyoanp is the number of analyzed “VOAND” events, oi,np is Visible cross

section! observed under “VOAND” trigger condition, which is measured in a van der

Meer (vdM) scan [134]. The Nyoanp is calculated as the number of minimum-bias

events after passing the event selection criteria mentioned above (Nu¢ = 1.73x10?),

corrected for the vertex reconstruction efficiency el

Nyoanp = News/€rer (4.2)

evt*

While the efficiency to reconstruct the collision vertex is basically 100% when two
electrons are present in the event, this is not the case for overall VOAND-triggered
events. The study was performed in the previous study and found to be €/ = 97.0

0.5% [132]. The vdM scan was performed every data-taking year [135] and the following
values are obtained:

ooNND = 58.44 + 1.9 mb (4.3)
ooAND = 58.10 £ 2.7mb (4.4)
oupeNp = 57.52 4+ 2.1mb (4.5)

The integrated luminosities are calculated for each year, and total integrated luminos-
ity was £MB = 30.7 & 0.7 nb~!. For the high-multiplicity triggered events (Ney =
3.38x108), the vertex reconstruction efficiency is 100% with negligible uncertainties.
Offline information from the VO detector is used to select 0.1% of oi5 Anp CrOss section,
which result in an integrated luminosity of LIM = 5.8 4+ 0.2 pb~!. The source of global
uncertainty is thought to have originated from luminosity uncertainty, namely trigger
inefficiency. This inefficiency is estimated by independent 7% analysis, which gives 2%,
but does not enter the dielctron or direct-photon cross section. The high-multiplicity

trigger, efficiency is high enough so that uncertainty is not assigned.

4.2 Monte Carlo Simulation

In order to understand the detector response of the electrons and calculation of electron
reconstruction efficiency, Monte Carlo (MC) simulated data are used. The MC data
is produced on a run-by-run basis, to reproduce the same detector configuration ex-
tracted from the Offline Conditions DataBase (OCDB). The OCDB stores all detailed

1Visible cross section is given by oyis = € - orNEL, Where € is detector efficiency.
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information of detectors, i.e., geometry, calibration, and specific aspects such as ac-
tive ITS areas, dead pixels, voltage settings, noisy channels, etc. Proton-proton events
are generated with PYTHIA event generator with “Monash 2013” tune [55,136]. The
PYTHIA program is widely used for the generation of high-energy-physics ‘events’, i.e.,
sets of particles produced in high-energy collisions. It contains theory and models for a
number of physics aspects, including hard and soft interactions, parton distributions,
initial- and final-state parton showers, multiparton interactions (MPI), fragmentation,
and decay. The generated particles are propagated through the ALICE detector us-
ing GEANT3 package [137], which provides particle energy loss and deposition given
detector geometry and material properties.

4.3 Quality Assurance

A basic quality assurance (QA) of track matching and calibration is performed for all
detectors by the ALICE Quality Assurance group in a centralized way. The results
of checks are recorded in the Run Condition Table (RCT) together with quality flags
which indicates run is usable or not. Based on the RCT, only runs flagged as good
for ITS, TPC, TRD, TOF, and VO are selected. Since the scope of centralized QA is
rather global, even if the RCT flag is good, depending on the analysis, one needs to
check specific observables if they do not show significant deviation with respect to the
real data.

For the analysis-specific QA, the total number of electron and positron candidates
(electrons) per event is checked run-by-run, to see the stability of the dataset. To this
purpose, the electron candidates are selected by applying loose PID cuts. According to
the trending plot, the mean and RMS of all entries are determined. A run is excluded if
its point is out of 30. Figure 4.11 shows a trend of electrons per event in minimum-bias
events for different years. The blue solid line and the dashed lines indicate mean and
RMS, respectively. All runs are accepted in this QA. In addition, trends in minimum-
bias events are compared with MC-simulated data to see if the MC reproduces the
trend of the experimental data. Figure 4.12, shows the ratio of the trend of electron
candidates between the data and the MC in minimum-bias events. Since the absolute
value of each run is slightly different between the data and the MC, the ratio is not
necessarily consistent with unity. However, overall, the trend is flat and stable from
2016 to 2018 data samples.

A similar check has been done in high-multiplicity triggered events (Fig. 4.13) and
the same run selection criterium is applied. As for the high-multiplicity events, dedi-
cated MC simulations do not exist. Therefore we employed the same MC simulation
as minimum-bias event analysis. By choosing exactly the same run numbers as high-
multiplicity samples, we make a ratio between minimum-bias and high-multiplicity
events, of each normalized to the same MC simulation. As shown in Fig. 4.14, the
trend of double ratio are found to be quite stable.

More detailed QA was performed to see if the basic variables of the dielectron
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Figure 4.11: Number of sum of electron and positron candidates per event as a
function of time (run numbers) in minimum bias events. The blue dashed lines
stands for 30 away from the mean value of the number of candidates. All runs are
accepted in this QA.

analysis were properly reproduced in experimental data and MC simulation. We com-
pared the distributions such as the position of z-vertex, charged-particle multiplicity,
track variables such as the number of clusters in the TPC and the ITS, 1, ¢ and pr

distribution and so on. All these results are in good agreement between the and the
MC.
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4.4 Primary Track Selection

The main requirement of the track selection is to select well-reconstructed tracks that
originated from the primary interaction vertex and to eliminate secondary tracks from
real photon conversions and weak decays of strange hadrons. Several TPC track prop-
erties defined in Ref. [138] are used to ensure the track quality. Table 4.2 summarises
the track selection criteria that have been applied in this analysis. Below, the main
variables used in this analysis are listed with a short description and selection criteria.

Table 4.2: Primary track selection for the analysis. The selection criteria are com-
mon for MB- and HM-triggered data analysis.

Track Variable Requirement
Number of TPC clusters > 80
Number of TPC crossed rows >100

Ratio of TPC crossed rows / findable clusters > 0.8

x? per TPC cluster <4

TPC refit required
Number of ITS clusters >3

x?2 per ITS cluster < 4.5

ITS refit required

T > 0.2 GeV/c
u < 0.8

Hit in the first SPD layer required
Allowed number of shared ITS clusters 0

Reject kink daughters required
DCA,, < 1.0 cm
DCA, < 3.0 cm
Cut on DCA,, and DCA, independently yes

A charged particle passes through the TPC, it induces a signal on a given pad-row.
If a charge in a search window of 5 pads in the wire direction and 5 bins in the time
direction, exceeds a certain threshold and fulfills certain quality criteria, it is called
“cluster“. The maximum number of clusters per track is set to 159, corresponding to
the number of pad rows in a specific TPC sector. All reconstructed tracks need to
have at least 80 clusters in the TPC. A pr-resolution relevant quantity of a track is
the effectively sampled track length of a particle in the TPC. The number of effective
TPC clusters is called the number of crossed rows, which is roughly proportional to
the track length. The minimum number of crossed rows equal to 100 is required for
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all reconstructed tracks. The number of findable clusters is defined as the number of
geometrically possible clusters that can be assigned to a track. Dead zones due to
chamber boundaries or the limited n-acceptance are taken into account. A minimum
ratio of crossed rows over findable clusters of 80% is required. Track reconstruction
in the TPC gives x? per cluster for the quality of the fitting procedure. A maximum
number of x? per cluster equal to 4 is required.

Similar quality cuts are applied to the ITS. A maximum of six layers of hits (number
of clusters) are assigned per track, and at least 3 clusters are required. As well as the
TPC, the quality of the ITS track can be controlled by the x? per cluster, which is
required to a maximum of 4.5. In addition, a successful refit is required by the Kalman
filter, which is applied for both TPC and ITS tracks.

Afterward, charged particle tracks with |n| < 0.8 and a minimum transverse momen-
tum pp > 0.2 GeV/c are selected. In this kinematic range, reconstruction efficiency is
reasonably high and far from acceptance edge effects. Below pr = 0.2 GeV /¢, particles
are not well-defined as they are deflected by the magnetic field.

Tracks from real photon conversions in the detector material are rejected by im-
posing a hit on the first SPD layer. The cut can remove conversions from occurring
in the detector material beyond this layer though there is some inefficiency due to the
inactive area of the SPD as shown in Fig. 4.15. To suppress the remaining background
from real photon conversion on a single-track basis, the ITS cluster of candidates is
checked if each track shares clusters with others. If tracks with sharing clusters are
found, they are likely to originate from a photon as they have a small opening angle.
Such tracks can be removed from the requirement of no shared ITS clusters.

Additionally, tracks can be reconstructed by the weak decays of K* — u*v. Such
a particle is called “kink” and produces a neutral particle which cannot be directly
reconstructed in the ITS and TPC, whereas a charged particle carries away some part
of mother particle energy and is bent in the magnetic field in the same direction with a
smaller radius. Tracks that exhibit such kink topology are rejected from the analysis as
well. The contribution from secondary tracks is reduced by restricting the distance of
the closest approach (DCA) to the primary vertex. The cut on DCA in the transverse
plane and in the longitudinal direction, are applied DCA,, < 1.0 cm and DCA, < 3.0
cm, respectively. These cuts are optimized to keep dielectron pairs from the decays of
semileptonic open charm and beauty mesons, which have decay lengths of the order
of hundred micrometers (¢r ~ 150 pm for D and e ~ 470 pm for B mesons). The
same track selection criteria are adopted for the analysis of minimum-bias and high-
multiplicity data analysis.

4.5 Electron Identification

The identification of electrons is performed via specific energy loss dF/dz in the TPC
and information on the time-of-flight of the TOF detector. The detector PID response
is expressed in terms of deviations between measured and expected values for a given



64 Chapter 4 Analysis

sum Inner layer Active Modules Period:17k - Run:274690
Number of Active SPD modules (->Total): 68 (80) 0.850

)

¢ (rad)
>

o

3

IS

%)

n
ST TTT [T T[T [T T T[T I TI[TTTT[T

o

w
ST T[T T T

0.2 0.4 0.6 0.8 = nW -2 Z(m)
Figure 4.15: n - ¢ distribution of primary tracks in data (left) and corresponding
active area of SPD 1st layer (right) taken from certain period of 2017 data.

species hypothesis and particle momentum, normalized by detector dF/dx resolution
(0). For example, the TPC PID information for the electron hypothesis is given in
units of TPC no defined as follows:

dE/d measured __ dE/d expected for e
n(Ue):< /dx) (dE/dx) ’ (4.6)

Oe

where (dE/dx)ePectedfore denotes expected Bethe Bloch parametrization, called “spline”,
corrected for the low momentum effect. Applying cut on no band around 0 gives most
likely electron candidates.

4.5.1 TPC and TOF Post-calibration

Due to the imperfectness of PID calibration of TPC and TOF detectors, no distribution
for data shows some deviation and does not follow a single Gaussian in terms of yu # 0,
o # 1. This is corrected manually by applying the recalibration procedure described
below. First, the no distribution is projected in different momentum and pseudora-
pidity intervals and fitted with a single Gaussian. The initial fitting range is set to
+ 50, and by using the obtained new mean and width, Gaussian fitting is repeated
in + 1.50-20 around its mean. Figure 4.16 shows an example fit to no distribution.
The width o and the mean p values are extracted for each momentum and 7 interval.
Fig. 4.17 shows obtained two-dimensional correction maps for norpc created in data
taking all periods in 2017. The correction maps were produced for every period and
compared with each other. Since they were found to be similar for different periods,
data samples are merged and a single map is produced year-by-year using all good runs.
Correction of no, is performed track-by-track according to following transformation:

no, — mean
width

One can see that mean (width) is close to zero (unity) after the re-calibration (Fig. 4.18)
It is worth to mention that in 2018 datasets the splines are only available for limited

(4.7)

no, —
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Figure 4.17: Mean of no "¢ as a function of track momentum p versus pseudora-
pidity n from all 2017 periods.
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Figure 4.18: Mean (left) and width (right) of TPC no. as a function of track
momentum p and pseudorapidity 1 obtained using 2017 periods after re-calibration.

periods (Fig. 4.19 top), and the splines show a significant difference with respect to the
rest periods (Fig. 4.19 bottom). Therefore, each was recalibrated separately. Similar
procedure is performed for no TOF. All other period-wise correction maps are sum-
marised in Appendix B. As they do not show significant differences, maps created in
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Figure 4.19: Mean (left) and width (right) of no™"° as a function of track momentum
p versus pseudorapidity 7 obtained using a period from ’'18spline’ (Top) and from
’18 without spline’ (Bottom).

MB-triggered events are adapted to the HM-triggered data analysis.

PID response in MC simulations is also studied. For the TPC, there is an option to
make no distribution to follow a unit Gaussian, which is implemented in the ALICE
analysis framework. Therefore, the re-calibration procedure is not applied to the MC
simulated noe™C. On the other hand, the mean and width of TOF no distribution
show non-uniformity, it is corrected as well as real data.

4.5.2 Cut Settings of Electron Identification

Electron candidates need to be selected with cuts to minimize the fraction of hadrons
in the electron samples while maintaining high electron identification efficiency. In
principle, electrons can be identified using both TPC and TOF information. However,
as the matching efficiency between the TPC and the TOF is low, the TPC standalone
PID selection is also considered. This analysis adopted the PID strategy which was
investigated in the previous study [132]. According to Ref. [132], electrons are cho-
sen by combining two independent PID schemas. The first PID scheme is named
“TPCTOFreq” which selects electrons based on both TPC and TOF signals, while the
second scheme is named “TPCHadRej” which requires pure TPC-based hadron rejec-
tion. Both settings are summarised in Table 4.3 and two subsamples are combined
with logical OR. Corresponding PID histograms can be found in Fig. 4.20.
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Table 4.3: PID selection of electrons for the analysis. Electron candidate is accepted
if either of the two PID requirements is fulfilled.

Cut setting  Detector

Particle

no cut p range [GeV/c]

TPC  electron (accept) |[-3, 3] [0.2,00]

TPCTOFreq  TPC pion (reject) [-00, 4] [0.2,00]
TOF  electron (accept) [ -3, 3] [0.4,00]

TPC  electron (accept) [-3, 3] [0.2,00]

. TPC pion (reject -00, 4 0.2,00
TPCHadRej TPC Kaon ((reject)) [[ -4, 4]] %0.2,00%
TPC Proton (reject) [ -4, 4] [0.2,00]

U
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The PID performance such as electron purity as a function of transverse momentum
was evaluated in a single track and pair level in Ref. [132]. The purity of a single track
in the data was well reproduced by the MC. At the single track level, the purity was
found to be 98% at 0.5 GeV/c and 94% at 1 GeV/c¢, which leads to negligible impact
on pair analysis.

4.6 Pair Analysis

Electron and positron candidates in an event are combined into pairs. By using single
track kinematic information, the invariant mass me. and transverse momentum pr ee
of the pair are calculated as:

mze = (p+ +p*)2 = (E+ + E*)Q - (ﬁJr +ﬁ*>27 (48)
p%,ee = (Dot + ﬁx,—)z + (Dy+ +ﬁy7—)27 (4.9)

where pi is 4-momentum, E. is calculated as Ex = /p2 + m2 |, m. = 511 keV/c?
and p denotes 3-momentum.

Electron pairs consist of correlated pairs from signals and uncorrelated combina-
torial pairs. Former are defined as pairs originating from ete™ from a vector meson
decays or semileptonic decay of cé and bb. These are what we would like to measure,
but in reality, the origin of electrons and positrons is unknown. Most of the unlike-
sign pairs N,_ are dominated by a random combination of electrons and positrons.
These pairs are uncorrelated and called combinatorial backgrounds. Besides, even if
the pairs have the same mother, there are correlated backgrounds that come from real
photon conversion in the detector material. To extract the signal, these backgrounds
need to be subtracted. The combinatorial background B is subtracted and conversion
backgrounds are further rejected by pair cuts. The background is estimated via the
geometric mean of like-sign pairs /N, N__ within the same event:

B — 2 N++N__. (410)
This background could contain correlated like-sign pairs such as 7° — ete ™y —
eteete™. B is corrected for the different detector acceptance of unlike-sign and like-

sign pairs by the following factor:

B Ni_ wvix
24/ Ny vx - No—aix

where, Ny_\ix, and Nig vrx denote unlike-sign pairs and like-sign pairs calculated
with mixed event techniques, respectively. Thus, the physical signal is obtained as

S=N,_ —R-B, (4.12)

(4.11)

The invariant mass distribution of unlike-sign, like-sign and signal pairs in 0 < ppee <
6 GeV/c for respective data-taking year and corresponding R-factor are shown below
(Fig. 4.21 and 4.22).
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like-sign pairs with acceptance correction (black open circle), and signal pairs (red

full circle).
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4.6.1 Conversion Rejection

As described in Sec. 4.4, eTe™ pairs originating from real photon conversions are re-
jected at the single track level by requiring a hit on the first SPD layer and zero
ITS shared cluster with other tracks. The latter requirement improves the signal-to-
background ratio of dielectron pairs as shown in Fig. 4.23.
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Figure 4.23: Comparison of raw signal (left) and signal to background ratio (right)
in MB-triggered events showing the effect of no shared ITS clusters requirement.

However, since the inactive area of the SPD increases as time passes, additional
conversion rejection is necessary. This can be done by exploiting the pair properties
of decay products, i.e., the correlation between the opening angle cut and invariant
mass. As photons do not have physical mass, the pair travels in the same direction as
the photon, resulting in their opening angle being very small. These particles are bent
only in the azimuthal direction with respect to the direction of the magnetic field. The
orientation of the ete™ pair plane with respect to the Z direction, i.e., the magnetic
field, the angle ¢, is calculated as

T St (4.13)
[Py + P |
T=p, X P, (4.14)
W= X T, (4.15)
U X Z
i, = - 4.16
Y = 17 < 4] (4.16)
Py = arccos ( rLﬁ iL“ , (4.17)
| @ || |
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where p_ (') is the 3-dimensional momentum vector of electron (positrons). The typ-
ical ¢, distribution of the conversion pair and from other sources are simulated with
MC as shown in Fig. 4.24. Due to the small opening angle, conversion pairs give clear
peaks at ¢, = m, while ones from other sources give a flat distribution. In addition,
as the ALICE tracking algorithm assumes the particle arises from the primary vertex,
pairs from off-vertex decay acquire fake invariant mass. With these characteristic ¢,
and m,, distributions, conversion signals can be visualized by using MC simulation as
shown in Fig. 4.25. The red arrows indicated peaks around 10 MeV/c? (a), 15 MeV/ ¢?
(b), 27 MeV/c? (c), and 42 MeV/c? (d) are from conversions that occurred in the beam
pipe and the ITS materials. In this mass region, another source of ee™ pair is from 7°
Dalitz decays (me. < 40 MeV/c?), conversions are separated from such pairs by making
use of a cut on the orientation of e*e™ pairs. Pairs whose ¢, is larger than > 2 and

25000 —————

Counts

r MC simulation 1
20000~ .- . B
+ e*e” from conversion B

e*e” from other sources

15000
10000~

5000

e e e ey
0 0.5 1 15 2 25 3
¢, (rad)

Figure 4.24: MC simulated ¢, distribution of ete™ from conversions (red) and from
other sources (blue).

below 100 MeV/c? are rejected in this analysis. Rejection is applied for the unlike-
sign and like-sign pairs in the same and mixed events and is consistently applied to
the analysis of HM-triggered data. Fig.4.26 shows raw signal and signal-to-background
ratio before and after ¢, rejection. The resulting unlike-sign pairs, combinatorial back-
ground and R-factor with applied ¢, rejection are shown in MB- and HM-triggered
events in Fig. 4.27 and 4.28, respectively. Corresponding signal-to-background and the
statistical significance for the dielectron signal are shown as well (Fig. 4.29 and 4.30).
The statistical significance is defined as S/v/S + 2B, where factor 2 accounts for the
subtraction of background using like-sign pairs [139]The signal-to-background ratio
around me, ~ 0.5 GeV/c?, where combinatorial background contribution is the largest,
is 0.04 and 0.02 for MB- and HM-triggered events, respectively. Although the signal-
to-background ratio is worse for HM events than for MB events by factor ~ 2, and the
number of HM-triggered events is 5 times smaller than one from MB-triggered events,
statistical significance is comparable due to the larger electron multiplicity.
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Figure 4.25: MC simulated ¢, versus me, distributions of all dielectron signals.
The conversion peaks (a)—(d) are indicated by red arrows. A p,-flat bank structure
appeared below 40 MeV/c? is due to ee™ from Dalitz decays of 7.
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Figure 4.26: The comparison of raw signal (left) and signal-to-background ratio
(right) in MB-triggered events showing the effect of ¢, rejection.

Finally, raw dielectron yields in MB-triggered events in the range me. < 4 GeV/c?
are shown in Fig. 4.31 and 4.32. The spectra are normalized to the number of analyzed
events and the real-photon conversion rejection is applied to the spectra. In any slice
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of pr ee intervals, p, ¢, and J/9 peaks are visible. Raw yields in HM-triggered data are
shown in Fig. 4.33 and 4.34.
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di-electron signal in minimum-bias events.
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The raw dielectron signal needs to be corrected for the reconstruction efficiency. To
this purpose, a detailed detector simulation using the Monte Carlo method is employed.
Proton-proton collisions are generated with the event generator PYTHIAS [55] with
”"Monash 2013” [56] (so-called tune) for light hadron decays and ”Perugia 2011”7 [140]
tune of PYTHIAG6.4 [136] for heavy-flavour decays. A choice of different PYTHIA ver-
sions is motivated by the fact that Monash 2013 tune reproduces many of the relevant
light hadron multiplicities. It used MB-, Drell-Yan, and underlying-event data from

the LHC to constrain the initial state radiation and multi-parton-interaction (MPI)

parameters, combined with data from SPS and the Tevatron to constrain the energy
scaling. Perugia 2011 tune of PYTHIAG6.4 uses the same value of Aqcp for all shower
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Figure 4.31: Raw dielectron signal normalized to the number of analyzed minimum-
bias events. Rejection of conversion electrons is applied as described in the text.

activity (initial-state and final-state radiation) to simplify matching applications and
was constrained by results from LEP, SPS and Tevatron experiments as well as by early
data from LHC for minimum-bias and underlying event activities in pp collisions at /s
= 0.9 and 7 TeV. As a result, it describes reasonably well the transverse momentum
spectra of heavy-flavor hadrons. The generated particles are propagated through the
ALICE detector using the GEANT3 package [137], which provides particle energy loss
in a given detector geometry and material properties. Afterward, the signal recon-
struction efficiency is studied as a function of me. and pre for the respective ete”
sources: resonance and Dalitz decays of light-flavor mesons, correlated semileptonic
decays of charm and beauty hadrons, and J/v decays. The total signal reconstruction
efficiency is obtained as a weighted average of these efficiencies, where the weights are
determined from the expected relative contributions to the yield.

4.7.1 Detector Response Matrices

High-energy electrons emit radiation and lose energy when they are accelerated by the
electromagnetic fields of nuclei or by an external magnetic field while traversing in the
ALICE detector. The reconstructed momentum of electrons is also affected by the
finite detector resolution.
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Figure 4.32: Raw dielectron signal normalized to the number of analyzed minimum-
bias events. Rejection of conversion electrons is applied as described in the text.

These effects can be seen in Fig. 4.35, where the difference between generated p5™

and reconstructed pif® momentum for electrons with generated transverse momentum
in the range 0.5 < p§™ < 0.6 GeV/c. The width of the distribution Apr/pr = (p§" —
i)/ pE™" around zero is due to the finite detector resolution, and the tail in Apy > 0
is due to the radiative energy loss of electrons.

Since invariant mass spectra shown in Sec. 4.6 use reconstructed momentum, effi-
ciency should be evaluated as a function of reconstructed momentum instead of gener-
ated momentum. One-dimensional unfolding is applied to the generated MC electrons,
as described in [141]. The smearing was performed based on the two-dimensional his-
tograms which contain the difference between generated and reconstructed variables
as a function of generated one (Fig. 4.36). The resolution map is produced using the
same track selection criteria as the main analysis but without pr cut to apply to smear
for generated low momentum tracks. Electrons are selected in the range |[no™¢| < 5.
The (c) and (d) of Fig. 4.36 show A¢r of electron and positron, respectively, and their
responses are flipped due to opposite polarity.

For a given p&", 8" and ¢#" range, the detector response matrices projected
and three smeared numbers (Apr, An and A¢) are extracted based on the projected
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Figure 4.33: Raw dielectron signal normalized to the number of analyzed high-
multiplicity events. Rejection of conversion electrons is applied as described in the
text.

distributions. Then the generated momentum vector of an electron is transformed into
the corresponding measurable momentum

Tmeas = Lgen + A(xgen)a (418)

where Tcas = pr, 7 and ¢. The transformation is performed before acceptance cuts.
Since detector response is different year by year due to different TPC gas composition,
maps are produced for each data-taking year.The smearing effect on generated pairs
from same-mother resonance and Dalitz decays and J/v can be seen in the left and
the right of Fig. 4.37, respectively.

4.7.2 Single Electron Efficiency

The single electron efficiency is defined as a function of x = pr, n and ¢,

dN
e(z) = (&% (4.19)

where (i—]j)meas is generated electrons which is applied smearing procedure and (%)m

stands for the reconstructed electrons, respectively.



4.7. FEfficiency Correction 79
= T S T
k) 1 o 3
S pp Vs = 13 TeV ] S pp Vs =13 TeV 2
& High-mult. 18 High-mult.

3 0<p_. <1(GeVic) - 3 1<p_. <2(GeVic) 4
g Tee E g Tee E
S ¢, <2for me <0.1Gev/c? ] 5 ¢, <2forme <0.1Gev/c? ]
g 10z

3 1 3 1
= = ""*.

—o— ° ] e, o 4

— D) 3 ——e o ® 3

—eo——o ¢ E ]

R —

e b b b e b b 1 1 1 P P | | 1

15 2 25 3 35 4 1 15 2 25 3 35 4

m. (GeVic?) M (GeVic?)

=~ 1 = 1
R 1 © ]
S ot pp Vs =13 TeV B S ot pp Vs =13 TeV 1
C')i High-mult. E & High-mult. E

2 1072 2<p. <3(GeVic) - 2 1072 3<p. <6(GeVic) .
E“" T.ee E E‘” Tee E
5 ¢, <2for me < 0.1 GeV/c? ] S ¢, <2forme <0.1 GeVv/c? ]
= 107 E Zz 10° E
° 3 ° 3

3 4 7 3 4 ]
Z 107 5 z 10° 3
S voe? ° E 3 ° o ° E

o ] o ]

107 _ e ’ E 107 - e . e E
e o ® e

107 ——— 107 —
107 3 107 :
1078 | | | | | | | ] 1078 | | | | | | | ]
0 0.5 1 15 2 25 3 3.5 4 0 0.5 1 15 2 25 3 35 4
m,, (GeVic?) m,, (GeVic?)

Figure 4.34: Raw dielectron signal normalised to the number of analysed high-
multiplicity events. Rejection of conversion electrons is applied as described in the

text.

The efficiency is calculated using primary electrons, i.e., not from secondary or
conversions. The left of Fig. 4.38 shows generated, smeared, and reconstructed electrons

as a function of pr.

The numerator and denominator of the efficiency are within

acceptance and passed the same track selection and PID requirements as described in
Sections 4.4 and 4.5. Corresponding single-track reconstruction efficiency for electrons
and positrons as a function of pr is shown in the right of Fig. 4.38. Significant drops
of efficiency around 0.5 GeV/c and 1 GeV /¢, reflect rejection of hadron contamination

from kaons and protons, respectively.
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Table 4.4: Possible combination of electron pairs from open heavy-flavor hadron
decays.

Process Effective BR

(i) pp — ¢ — eTe” BR(c — e) = 7.57022%

(ii) pp — bb — eTe R(b—e) =10.2%

(iii) pp = bb - c+e+b—efe” +b BR(b — c—e) = 8.1105%
(iv)pp = bb—c+e+c+e BR(b — c¢) = 5.6+ 0.73%
(v) pp = bb — c+e+b— c+e+e (like — sign)

4.7.3 Pair Efficiency

The pair reconstruction efficiency is defined as the ratio between reconstructed pairs
and generated pairs after the smearing procedure is applied. The definition is given as
a function of invariant mass and pair transverse momentum:

( d2 Nee

dmeede,cc

( gjrz_:)meas

)rec

G(meeapT,ee) == 5 (42())

ee .
where (—Zﬁ )rec 18 the number of reconstructed electrons, (ZZ Jmeas 1S one from gener-
ee ee

ated and smeared electrons for each leg. For the calculation of the pair reconstruction
efficiency, only correlated pairs are considered, which include pairs from the same moth-
ers, i.e., light-flavour and J /1) meson decays or from the decays of semi-leptonic decays
of charmed and bottom hadrons. The correlated light-flavor pairs are simulated by
PYTHIAS with Monash 2013 tune. The J/4 signal is generated by PYTHIA6.4 with
the Perugia 2011 tune. This MC production takes into account two body decay (J/¢ —
ete™) and radiative decay (J/1) — eTe™ ). These are simulated using PHOTOS [142],
which includes the radiative component of the J/v decay.

The calculation of dielectron efficiency from open heavy-flavour hadron decays is
studied in the previous studies [132, 143]. We consider the heavy-flavor dielectrons
derived from the combinations as summarised in Table 4.4. To this purpose, a heavy-
flavor enriched MC simulation is used to increase statistics. In this MC simulation,
dielectrons from different heavy-flavor sources are generated in each event with the
following probabilities:

1 cc— efe” + X (8%): a charm quark-antiquark pair is generated per event, and
charmed hadrons (D mesons or A. baryons) are forced decay semileptonically,
with a constraint on both produced electrons to be within |y.| < 1.2.

2 bb — ete™ + X (8%): a beauty quark-antiquark pair is generated per event, and
beauty hadrons (B mesons or Ay, baryons) are forced decay semileptonically, with
a constraint on both produced electrons to be within |y.| < 1.2.
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3 bb — e+ X (66%): a beauty quark-antiquark pair is generated per event, and
at least one electron in an event originating from open-heavy flavor decay should
be produced in |y.| < 1.2. Neither beauty nor charmed hadrons (if present) are
forced to decay semileptonically, also no rapidity constraint is applied for any
other electrons produced in an event.

For the study of (i) ¢¢ — ete™ pair efficiency, only events containing exactly one
charmed hadron and one charmed anti-hadron are selected, and no beauty quark
hadron should be present in the generated event. In this way, the pairing of cor-
related electrons and positrons from charmed hadrons becomes straightforward, and
only unlike-sign pairs from charmed hadrons are produced. These unlike-sign pairs are
used for the calculation of c¢ — eTe™ pair efficiency. For the study of pair efficiency
from open beauty decays, a similar way as open charme hadrons is adopted for the
process of (ii) bb — ete™. As for (iii) - (v), it is complicated due to the significant
probability of B® <+ B0 oscillations which create unlike-sign and like-sign dielectron
pairs at various rates. For these studies, the process of dielectron production 3. is used.
To simplify the pairing procedure, only events containing exactly one beauty hadron
and one beauty anti-hadron are selected requiring no charm quarks present in the event
and no oscillation of B mesons (B meson oscillation veto). The latter is implemented
in MC simulations as ”wrong-sign” decays, i.e., decays like B — e~ or B — e*, which
can be easily tagged. For consistency with the experimental data analysis, like-sign
contributions originating from decays like B — ¢~ and B — D — et are subtracted
both from generated and reconstructed unlike-sign pairs.

The electrons from real photon conversion are not taken into account in the cor-
related light-flavor pairs. These pairs are rejected in the experimental data via ¢,
rejection (Section 4.6.1), which might reject even good signal pairs. To compensate
for this effect, the same selection criteria were applied to the MC simulation. The ¢,
rejection applied efficiency for the respective sources are shown in Fig. 4.39.

The final signal efficiency is given by the combined form:

AN AN, LodNg dNgs
€cc dNee €bb dNee

where, dN{R/dN®, AN, /AN, AN /AN and dNye. /AN are relative fraction of

ete™ pairs from light-flavor, J /¢, open charm and open beauty hadrons, respectively.
The relative fraction is calculated based on the hadronic cocktail simulations which will
be described in Sec.4.8. The resulting total pair efficiency is shown in Fig. 4.40 and 4.41.
Afterward, the raw signal is corrected for the obtained total efficiency. Corrected signals
are shown in Fig. 4.42 and 4.43 for MB events, and Fig. 4.44 and 4.45 for HM events,
respectively.

Etotal = ELFdNee + €0/ e (4.21)
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4.8 Hadronic Cokctail

The dielectron spectrum is compared with the expected dielectron yield from known
hadron decays, i.e., the hadronic cocktail. This section describes the hadronic cocktail
simulations of light-flavor and heavy-flavor meson decays (7%, n, 1/, p, w, ¢, J/1),
and open heavy-flavor decays. The detailed procedure is described in [144]. Cocktail
calculations for the high-multiplicity pp collisions are discussed as well.

4.8.1 Light-Flavour Hadrons and J/v

The Dalitz decays of light neutral mesons (7%, 1, ') and the dielectron decays of vector
mesons (p, w, ¢) are considered. For J/¢ meson, two body decay (J/¢ — ete™) and
radiative decay (J/1¢ — ete™7) are taken into account. Table 4.5 summarises the
simulated particles, decay modes, and corresponding branching ratios and sources for
the inputs.

All mesons are assumed to be unpolarised, with flat rapidity distribution at mid-
rapidity. The mass distribution of dielectron Dalitz decays follows the Kroll-Wada
expression in Eq. 2.8 [97], with electromagnetic form factors measured by the NAG0
experiment [145,146]. The 2-body decays of w and ¢ mesons are generated using
Gounaris-Sakurai expression to describe their mass shape [147]. The p line shape
has been studied in detail by the NA60 experiment [145] who confirmed the need
for Boltzmann term beyond the standard description [148] and provided a precise
measurement.

These are simulated with phenomenological event generator EXODUS developed
by PHENIX collaboration [149]. EXODUS can simulate the phase-space distribution
of all relevant sources of electrons electron pairs and the decay of these sources. The
input particle spectrum is converted to have uniform quantity (1/Ng,)(d*N/dprdy)
(GeV/c)™!, where N, is supposed to consider MB-triggered events. In case the spec-
trum is normalized to inelastic events, additional correction is applied by multiplying
ovoanp /oL~ 0.75 [150]. to the number of MB-triggered events. Each particle spec-
trum is parameterized in the following way.

Parameterizations of 7° ¢, and J/1) meson are obtained by a fit to measured
spectra. The 7° [54], is parametrised using two-component model (TCM) function [151,
152] below

1 d®N — 24+ M2 - M A
= A.exp (Vpr + ) + 5
Nev dedy Te (1 + %)—n

where M equals to the produced hadron mass, (my = 0.135 GeV/c?), A., T., A, T, n
are free parameters. Figure. 4.46 shows the TCM fit to 7° in minimum-bias (left) and
high-multiplicity (right) events.
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Figure 4.46: TCM fit to neutral pion [54]. The minimum-bias 7° (left) is measured
at transverse momenta pr in the range 0.2 < pp < 200 GeV/ ¢ and fitting is performed
at 0.2 < pr < 20 GeV/c. The high-multiplicity 7° (right) is measured at transverse

momenta pr in the range 0.4 < pr < 50 GeV/c and fitting is performed at 0.4 < pr
< 20 GeV/e.

Following the approach outlined in [158], /7 ratio is parameterised as a function
of pr using empirical function [159]

T\2\—n
A+ N-B(1+(5)?%)
1+ B (1+ (BL)2) -

n/m°(pr) = (4.23)

where A, N, B, p,, n are free parameters. Fig. 4.47) shows the empirical fit to n/x°
measured in MB- (left) and HM-triggered (right) events, respectively. Then, the pr
differential yield of 7 is extracted by multiplying 7° yield and (n/7°) ratio. As the 7°
and 7 spectra have correlated systematic uncertainty when we make a ratio between
them, systematic uncertainty on n/7° ratio is partially canceled out. Therefore for the
systematic uncertainty of of 1 contribution, n/7° ratio is shifted by + 1o. Comparison
between constructed n and n pr distributions, in MB and HM events are shown in
Figure 4.48 (left) and (right), respectively.

Other particles such as 77/, p, and w mesons are generated assuming mt scaling [160],
replacing pr with \/m? — m2 + (p./c)?. For the mr scaling, particle yields are nor-
malised at high pr relative to the 7° yield as follows: 0.40 & 0.8 for 7’ (predicted by
PYTHIAG), 0.87 4+ 1.7 for p [153], and 0.57 &+ 0.11 for w [154]. For the systematic
uncertainty, the factor varied £ 20%. The same mr scaling factors are adopted for the
high-multiplicity 7/, p, and w mesons.
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Figure 4.47: Emprirical fit to /7% ratio [54]. The minimum-bias 7n/7° (left) is
measured at transverse momentum pr in the range 0.4 < pr < 50 GeV/c¢ and fitting is
performed at 0.4 < pp < 20 GeV/c. The high-multiplicity /7 (right) is measured at
transverse momentum pr in the range 0.4 < pr < 16 GeV/c¢ and fitting is performed
at the same pr range.
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Figure 4.48: Comparison between measured 1 and constructed n (= 7% x n/7°%)
parameterization for minimum-bias and high-multiplicity cocktails.
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For the ¢ meson [155], fitting was performed using the Modified Hagedorn [161]

1 d2N 2 pT
= pr x A x (elwrttrr) 4 Loy 4.24
NeV dedy * ( pO) ( )

where A, a, b, py, n are free parameters. As the ¢ spectrum is measured using data
sample collected in 2015, corresponding visible cross section oigonp = 57.8 £ 2.9
mb [162] is used to normalize the number of minimum-bias events. For the systematic
uncertainty, the fitting parameter A is scaled by 4+ 10%.

For the high-multiplicity ¢ cocktail, the input spectrum is taken from [156], where
the definition of multiplicity class is different from this analysis. The pr distribution
for multiplicity class I ((dNe,/dn) = 25.75 £ 0.40) used in the ¢ analysis [156] is close
to our multiplicity class (= 31.34 £+ 0.52). Assuming ¢ yield linearly increases with
multiplicity, the ¢ spectrum for high multiplicity is obtained by scaling with respect
to the class I spectrum. The scaling factor is calculated as

(AN/dn)o—0.1%
= (31.34 £0.52)/(25.75 £ 0.40
<dN/d77>MultClassI ( )/( ) (425)

= 1.22 £0.03.

Fitting examples of ¢ meson are shown in Fig. 4.49.
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Figure 4.49: Modified Hagedorn fit to ¢ meson in minimum-bias and high-
multiplicity cocktails. The minimum-bias ¢ (left) is measured at transverse mo-
mentum pr in the range 0.4 < pp < 11 GeV/c and the high-multiplicity n/7° (right)
is measured at transverse momentum pr in the range 0.4 < pr < 8 GeV/c. Both
fits are performed at the same measured pr range.
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Finally, J/4 [157] is parameterised by using the power law function (Fig. 4.50)

— (' x pr
L S Y SIS

where C, p,, n are free parameters. It is known that J/v yield increases faster than lin-
earity with respect to charge particle multiplicity [43]. The relative enhancement of J /v
production is shown in the left of Fig. 4.51 as a function of d Ny, /dn/(d Ney /dn(INEL > 0))
at mid-rapidity |n| < 1. The closest value of relative charged-particle multiplicity
between high-multiplicity events and minimum-bias events is ~ 4.5 and correspond-
ing scaling factors are 7 for 0 < pr < 4 GeV/e, 11 for 4 < pr < 10 GeV/c at
dNen/dn/{(dNg,/dn(INEL > 0)) = 4.33, respectively. For the systematic uncertainty
estimation, the factors were varied by £ 10%.

(4.26)
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Figure 4.50: Power law fit to J/¢ in minimum-bias events.

Particles are generated based on the parameterizations and acceptance cuts (|n| <
0.8) are applied to both legs, to be consistent with real data analysis. Generated tracks
are smeared using resolution maps prepared year-by-year as described in Sec.4.7.1.
Afterward, the cocktail is normalized to the integrated luminosity

N, gen

)
OVOAND

Lini = (4.27)
where Nge, denotes the number of generated events, oyoanp is the visible cross section
reported in Sec. 4.1.4. As the final cocktail needs to be normalized to the number of
inelastic pp events, the cocktail yields are divided by oytins/omNeL, where oNgr, is
total inelastic scattering cross section ongr, = 79.5 £ 1.8 mb measured by TOTEM
experiment [163]. Afterward, the obtained cocktail is combined via weighted average,

where the weights are given by the corresponding number of events [5].
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Figure 4.51: Left: normalized inclusive J/v yield at mid-rapidity as a function of
charged-particle multiplicity in pp collisions at /s= 13 TeV [43]. Right: average
of D° DT and D*" relative yields as a function of the relative charged-particle
multiplicity at central rapidity [44].

4.8.2 Open Charm and Open Beauty Hadrons

Electron pairs originate from correlated semileptonic decays of ¢ and bb are sim-
ulated with the leading order (LO) event generator PYTHIA6 with Perugia 2011
tune [136,140]. The PYTHIAG6 utilizes LO-pQCD matrix elements for 2 — 2 processes
together with a leading-logarithmic pr-ordered parton shower and an underlying-event
simulation including multi-parton interactions. The fragmentation and hadronization
of the charm and beauty quarks are based on the Lund string model. The Perugia 2011
tune considered the first LHC data, mainly from multiplicity and underlying-event re-
lated measurements. In this tune, the parton distribution functions are parametrized
with the CTEQSL functions [164]. The c¢ and bb pairs are produced one or event for
each in full phase space. The charm is forced to decay semileptonically, while the decay
of the beauty is not. They are normalised to the integrated luminosity of pythia events
L. as follows:

(Nq + Ncﬂlbar>y<|1|/2
2doggpar/dy

Liny = (4.28)

where Ny (Ngpar) is the number of generated quarks (anti quarks), doyqpar/dy indicates
cross section at mid-rapidity. For the c¢ contribution, the branching ratio (BR) of ¢ —
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e needs to be squared as they are forced to decay. The c¢ and bb cross sections are
o doe/dyl,—o = 1689 + 124 (stat.) + 152 (syst.) *290 (BR) ub
o doyg/dy|y—0 = 82 £ 7 (stat.) £ 5 (syst.) £ 5 (BR) pb

These cross sections are obtained by the re-extraction based on the updated BR(c — e)
= 7.3%5:51% (Fig. 4.63). The re-extraction procedure can be found in Sec. 4.10. Dielec-
trons from open charm decays in high-multiplicity events are simulated by following
the same procedure as J/1 cocktail. As shown in the right of Fig. 4.51, multiplicity
dependence of D meson production with pr > 1 GeV/c at /s = 7 TeV is studied [44].
The enhancement factor for each pr interval is taken from the closest value of relative
charged-particle multiplicity of our measurement ~ 4. Afterward, the enhancement
factor as a function of pr (Fig. 4.52) is used and open charm contribution in minimum-
bias events is scaled according to the factors. Due to the absence of the data below
pr = 1 GeV/c indicated in the dashed line, the same enhancement factor in 1 < pr <
2 GeV/c is assumed. Here red and blue lines show the upper and lower limits, deter-
mined according to the measured values in [44]. The study also reported no significant
difference between the production of D mesons and J/¢ from beauty hadron decays.
Therefore, the same weights are applied to the open beauty contribution.

E 5 T é T | T T T | T T T | T T T I T T T | T T T T T T T T T T T T T T T_]
° = 3
o 45F : Dmesonp_enhancement factor —
2 = —— JHEP09(2015)148 3
s 4= - =
o) - —— upper limit 3
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3F- o =
= =
25— -
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2F E
155 =
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~

D meson [ (GeVic

Figure 4.52: D meson enhancement factor as a function of pr for the high-multiplicity
heavy-flavour cocktail. Upper (red) and lower (blue) limits are taken to estimate
systematic uncertainty:.
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4.8.3 Systematic Uncertainty

Possible sources of systematic uncertainties for the hadronic cocktail are evaluated as
follows:

Branching ratio (BR)

Resolution

e Uncertainties of the input spectrum
e mt scaling factor

e Uncertainties of multiplicity dependence of charm and beauty production

The BR-derived systematic uncertainty takes into account the uncertainty of all BRs
in all decay modes listed in Table. 4.5. Uncertainties derived from resolution are taken
from those evaluated in the previous studies [132]. The uncertainty of the input particle
spectrum (7°, 0, ¢ and J/¢) also contributes to the uncertainty of the cocktail. Each
spectrum shifted +10 according to the systematic uncertainty and repeated fitting
procedure. The uncertainty on the mr scaling factor is relevant for p, w and 1’ meson
only, and those scaling factors vary 20%. For the HM heavy-flavor cocktail, uncertainty
on the multiplicity scaling factor is varied according to the upper and lower limit of
the enhancement factor shown in Fig. 4.52.

A cocktail is generated by varying each item one by one and the total cocktail is
compared to the standard one. The relative uncertainties at minimum-bias and high-
multiplicity analysis are shown in Fig.4.53 and 4.54, respectively. Since the m scaling
factor used in the minimum-bias cocktail is commonly used for the high-multiplicity
cocktail, the same uncertainty was assigned to the high-multiplicity cocktail. The
maximum deviation to the standard is taken as a systematic uncertainty. Each source is
added in quadrature. The uncertainty of resolution is taken from a published study [51].

Table 4.6: Summary of systematic uncertainty of minimum-bias and high-
multiplicity cocktail.

Source Uncertainty
Branching ratio (BR) 4%
Resolution 8%
Parameterization 5-10%
Heavy-flavor 8%

mr scaling factor 12% (p/w/n')

Multiplicity scaling (HM only) ~ 30%

Figure 4.55 and 4.56 show obtained dielectron mass spectra of hadronic cocktails
with acceptance cuts and smearing.
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4.9 Systematic Uncertainty for the Data Analysis

Systematic uncertainties are summarized in this section. Results from minimum bias
and high-multiplicity analysis are reported in parallel.

4.9.1 Tracking and PID

The stability of the track and PID selection criteria are a source of systematic uncer-
tainties, which are estimated via cut variations. Variables are changed at the same
time, by picking a tighter, standard, or looser value randomly, and extracted corrected
signals are compared to the one from a standard selection. The variations are shown in
Table 4.7. Those cut settings vary the pairing efficiency by 10%. The RMS of the rel-
ative difference with respect to the standard is assigned as systematic uncertainty. To
avoid statistical fluctuation, the check is performed using coarse mee and pr e binning:

e e binning: 0, 0.04, 0.08, 0.14, 0.35, 1.03, 2.80, 3.10, 4.00,
e pree binning: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 10.0.

The resulting systematic uncertainties for tracking and PID are 1-4.5% and 1-8% for
minimum-bias and high-multiplicity analysis, respectively.

Table 4.7: Tracking and PID selection settings. Texts written in bold are standard.

Requirements Variations

Max. x2 per ITS cluster 3.5, 4.5, 5.5

Min. number of ITS clusters 2,3,4

Min. number of TPC crossed rows 100, 120, 130
Min. number ratio of NTPC crossed rows /- prfindable clusters () 7 /0.8 0.9

Max. fraction of shared TPC clusters 0.4, 0.6, 0.8
Max. x? per TPC cluster 3,4, 5

TOF electron identification InolO¥| < 2,3
TPC electron identification InolPC| < 2.5, 3,35
TPC pion rejection nogoC < 3, 3.5, 4
TPC kaon rejection lno POl < 4,

0.5 shift to upper direction,
0.5 shift to lower direction
TPC proton rejection Inotbonl < 4,

0.5 shift to upper direction,
0.5 shift to lower direction
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Figure 4.57: Efficiency corrected signal for different track and PID cut variations
in minimum-bias events. Index 0 corresponds to the default cut setting and other
variations (index ¢ with ¢ = 1-19) are randomly selected track and PID selections

listed in Table 4.7

4.9.2 Tracking

ITS-TPC Track Matching

ITS-TPC track matching efficiency is defined as the ratio of tracks reconstructed with
clusters in the TPC and the ITS over the total number of TPC tracks. The systematic
uncertainty on the efficiency arises from discrepancies in efficiency between data and
MC. The uncertainty of the single track efficiency is calculated centrally by the Data
Processing Group in ALICE. The pp-dependent uncertainties are evaluated in respec-
tive data-taking years (2016, 2017, and 2018). A maximum uncertainty of 3% is taken
from the 2018 dataset, which is the largest of the three years, which leads to 6% on

the pair level.
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Figure 4.58: Efficiency corrected signal for different track and PID cut variations
in HM-triggered events. Index 0 corresponds to the default cut setting and other
variations (index ¢ with ¢ = 1-19) are randomly selected track and PID selections
listed in Table 4.7

A Hit on The First SPD Layer

A hit on the SPD first layer is required to suppress electrons from photon conversion at
the detector material. Unlike other track cuts investigated in the cut variations, this
requirement significantly suppresses conversions and change efficiency, therefore we
estimate it independently. Charged pions are selected in the TPC with |nagi§§] < 2,
requiring tighter DCA selections (DCA,, < 0.1 (cm) and DCA, < 0.1 (cm)) to suppress
secondary pion. The ratio of the number of 7% with a hit in the first SPD layer over
the number of 7% with a hit in any of two SPD layers are calculated in data and MC
and then, their relative difference is taken as a systematic uncertainty. As shown in
Fig.4.59, the results were found to be at most 1% for a single track level for both

minimum-bias and high-multiplicity events.
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No Shared ITS Cluster

The requirement of no shared ITS cluster is also studied, and the efficiency is defined as
the ratio of the number of electron candidates with and without no shared ITS cluster
requirement. As a result, it was found that the Monte Carlo simulation reproduces
experimental data well in minimum-bias events (Fig.4.60), whereas one from high-
multiplicity events is slightly worse. Uncertainty from the requirement of a hit in the
first SPD layer, and no shared ITS cluster are added in quadrature, and 2% (minimum-
bias) and 3% (high-multiplicity) uncertainties are assigned to the the pair.
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Figure 4.59: Comparison of the efficiency of with and without hit on the first
SPD layer requirement in data and MC in minimum-bias (left) and high-multiplicity
(right) events, respectively.

2017 MB
o C| <2 selected

2017 H
o77C| <2 selected

o =
5]

1.05

o
©
a
o4
©
a

o
©

HH‘H\\““H“—HH‘HH‘HH‘\ T ‘HH‘HH

—e— Data
—« MC

—e— Data
e MC

4
o ¢
@
4
o
@

o -
X

5
o
Data/MC  Shared ITS cluster efficiency

Data/MC  Shared ITS cluster efficiency
o
©

UL LALL LALL LAL HH‘HH‘HH‘\H ‘HH‘HH

0.95 0.95

sl bbtiedie e Wl b o

Shunbdwaiebnded bbb o

3 5 6 8

&
N

9
P, (GeV/

Koy
©
]
[o)
@
<
o

Figure 4.60: Comparison of the efficiency of with and without no shared I'TS cluster
requirement in data and MC in minimum-bias (left) and high-multiplicity (right)
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4.9.3 ¢, rejection

The systematic uncertainty of ¢, rejection is estimated as varying maximum ¢, rejec-
tion window. 7/2, 2 (standard), 2.3 rad are tested. In total, 0.9 - 2.2% (0.5 - 5.3%) is
assigned below 100 MeV/¢? in minimum bias (high-multiplicity) analysis.
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4.9.4 Total Systematic Uncertainty

The summary of each contribution for minimum bias and high-multiplicity analysis
are listed in the Table 4.8. The total systematic uncertainties are obtained by adding
individual contributions in quadrature.

Table 4.8: Summary of total systematic uncertainty of minimum bias and high-
multiplicity data analysis

Source MB HM
ITS-TPC track matching 6% 6%
Tracking + PID (mass dep.) 1-4.5%  1-8%
Shared ITS cluster & hit on first SPD cluster 2% 3%

@y cut (mee < 0.100 GeV/c?) 0.9-2.2% 0.5-5.3%
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4.10 Charm and Beauty Production Cross Sections

The charm and beauty cross sections are extracted from the dielectron mass spectrum
in the IMR (1.03 < me. < 2.86 GeV/c?), where the dominant contribution is electrons
from open heavy-flavour hadron decays. The detailed study performed in the previous
study [132,143] and results were reported in [51] as follows.

o dow/dyl,_o = 974 + 138 (stat.) + 140 (syst.) + 214 (BR) ub
o doyg/dy|y—0 = 79 £ 14 (stat.) £ 11 (syst.) £ 5 (BR) ub

At that time, the branching fraction of charm-hadron decays to electron BR(c — e)
was 9.6 = 0.4%. In this thesis, we re-extracted charm and beauty cross sections i.e., o
and oyf at mid-rapidity with 4 times larger statistics compared to the previous study.
In addition, with updated BR(c¢ — ¢), This re-evaluation will lead to the reduction
of systematic uncertainty of hadronic cocktail from heavy-flavour hadron decays. In
addition, recently ALICE reported measurement of the charm fragmentation function
in pp collisions at /s = 5.02 TeV [165]. According to this result the effective BR(c — e)
was evaluated to 7.37031% [166].

Measured dielectron cross section in the intermediated mass region (1.03 < mee <
2.86 GeV/c?) below pre. = 6 GeV/c are selected and projected over two-dimensional
invariant mass me. and pair transverse momentum pr e distributions. A simultaneous
fit to the mass and pair transverse momentum is performed with the least square
method by using the following function

J(Mee, Prce) = StrNLr + S/ Ny + SceNew + Spp Nops (4.29)

where, N; with i = LF, J/1, c¢, bb stand for the dielectron contribution from light-
flavour and J /1, charm and beauty hadron decays, and S; with i = LF, J /1, c¢, bb are
corresponding free parameters. Each contribution is normalised to the MC template
from the hadronic cocktail simulation described in Sec. 4.8. The S; of light-flavour
and J/v contribution is fixed to 1, while Sz and Syj; are kept free. Ng and Nyj are
normalised to the integrated luminosity Li,:

(Vg + Ng)y<i1/2

Ling = : 4.30
¢ 2doyq/dy ( )

where N, (Ng) is the number of generated quarks (antiquarks), doqq/dy indicates the
cross section at mid-rapidity. The two fit parameters are the scaling factors with respect
to the reference charm and beauty cross sections

dacé/dy|y:0 = Sce X dacé/dy|2’3:fo (431)
dops/dyly=0 = Spp, X dUbB/d?J‘Zifw (4.32)

where does/dy[, and doyg/dy[i?y are normalised to the published values mentioned

above. For each combination of scaling scaling factors S and Sy the x? value is
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calculated as

2 = Ti — i 2‘ |
' Z (\/(a;iat)Q + (Uztiat)2> (4.33)

The values of the data points and MC simulations in bin ¢ are given by z; and u;, and
ot and o3/ are their statistical uncertainties. The result of the fit is determined
by the minimum of the y? value. Figure.4.63 shows the scan of the x? value within
parameter space. The magenta and cyan dashed lines show statistical uncertainty of
See and Sy, respectively. The point where the two lines intersect gives minimum 2.
The obtained scaling factors are

See = 1.735 £ 0.13 (stat.),
Spp = 1.038 £ 0.09 (stat.).

The fit quality is very good (¥ = 59.94/66) and it was found that these factors
are highly anti-correlated (-0.67), which was confirmed in the previous analysis. The
systematic uncertainty is estimated as follows:

e Data points are shifted & 1o coherently in each pr e slice assuming data points
are correlated point by point.

e BR of charm and beauty are varied + 1o.

Then fitting is repeated and relative uncertainty with respect to default is considered
as systematic uncertainty. In this way, extracted heavy-flavor cross sections are

o doe/dyl,—o = 1689 + 124 (stat.) + 152 (syst.) *290 (BR) ub
o doyg/dy|,—0 = 82 £ 7 (stat.) £ 5 (syst.) £ 5 (BR) ub.

Compared to the previous study [51], the statistical and systematic uncertainty of these
cross sections are reduced by half. With this update of BR, the central value of the
charm and beauty cross sections in pp collisions at /s = 5.02 TeV [167] and at /s =7
TeV [144] are also changed accordingly. All these values are monotonically increased.
Furthermore, the obtained charm production cross section was found to be consistent
with fixed order plus next-to-leading logarithms (FONLL) calculations [168].
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Figure 4.63: Scan of y2-value within parameter space. The minimum y? of this
map is shown in the red point, where the red and green dotted lines are crossed.
Black lines show the error ellipse of the two parameters corresponding to 1o, 20, 30
contours with respect to the minimum x?2, from inside out.
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4.11 Dielectron Cross Section

The dielectron mass me. and transverse momentum pr .. spectra are presented. The
differential dielectron cross section is given by

2
d Oce o 1 S (mee7pT,ee) (434)

— -
dmeedpree  Lint AMigeEee SEXXE (Mo, DT co)
where

® S(Mee, Pree) is measured dielectron signal extracted in Sec. 4.6,

Ling is integrated luminosity reported in Sec. 4.1,

Amee and Apr e is the bin width in GeV,

eine = (.99 + 0.01 is taken from the previous study [132],

vtx

o ¢ =1 is vertex efficiency described in Sec. 4.1.4

rec

¢ (Mees PTee) 18 the pair reconstruction efficiency studied in Sec. 4.7,

e c

The results are shown as either do/dme. or do/dpr e presented in the ALICE cen-
tral barrel acceptance |n| < 0.8 and pr. > 0.2 GeV/c. The choice of mass binning
in each pre. bin was defined to be consistent with previous study [132]. The dielec-
tron invariant mass spectrum integrated over pr. < 6 GeV/c? is shown in Fig. 4.64.
The experimental data is compared with the expected contribution of dielectrons from
known hadron decays. Thanks to the measured input spectra (7%, 7, ¢ and J/v), and
re-extracted heavy-flavor cross sections at IMR, the data and the hadronic cocktail
are in good agreement within uncertainties over the whole mass range. This can be
verified by looking at the dielectron pr e spectrum in different me, intervals as shown
in Fig. 4.65. Figure 4.66 shows mass spectra in the respective pr . intervals. The pr ce
spectra are well described by the hadronic cocktail for all me. slices.

Similar studies are performed for the high-multiplicity data analysis as a function
of invariant mass (Fig. 4.67). The high-multiplicity 7° spectrum was measured above
pr = 0.4 GeV/c (right of Fig. 4.46), while one from minimum-bias starts at pr =
0.2 GeV/c (left of Fig. 4.46). Due to this limited pr range, the constraint on the
70 parameterization is not enough and the resulting 7 cocktail tends to overestimate
data, although being compatible with data within uncertainties. This overestimation is
propagated to the cocktail contributions from decays of n and other mr-scaled particles
such as w meson as they are related to the 7° cocktail. This can be visible in Fig. 4.68
and 4.69 (top left). Note that the impact on the direct-photon analysis is limited
because overestimation appears below 1 GeV/c. Above pre. = 1 GeV/c, where we
extract photon yield, it is verified that the data and the cocktail are consistent. Note
that the largest source of the uncertainty of the hadronic cocktail comes from pp-
dependent multiplicity scaling factor of heavy-flavor hadrons. The high-multiplicity
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data and the cocktail are consistent with uncertainty. One can see that the hadronic
cocktail describes the data for all pr e slices over the whole investigated mass range is
under control. Enlarged figures of the low-mass region above pre > 1 GeV/c can be
found in Appendix. C.
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Figure 4.64: The dielectron cross section in inelastic pp collisions at /s = 13 TeV
as a function of invariant mass in the range pre. < 6 GeV/c. The global scale
uncertainty on the pp luminosity (2%) is not shown. Statistical and systematic
uncertainties of the data are displayed as vertical bars and boxes. The expectation
from the hadronic decay cocktail is shown as a band, together with individual sources.
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Figure 4.65: The dielectron cross section in inelastic pp collisions at /s = 13 TeV
as a function of pair transverse momentum pre. The global scale uncertainty on
the pp luminosity (2%) is not shown. Statistical and systematic uncertainties of the
data are displayed as vertical bars and boxes. Expectation from the hadronic decay
cocktail is shown as a band.

4.12 Direct Photon Analysis

In the previous sections, we measured the dielectron continuum in minimum-bias and
high-multiplicity events. In virtual photon analysis, a low invariant mass region is
relevant for the extraction of direct-photon signals. Direct-photon fraction r is defined
as

= Jdir _ dir (4.35)

- )

Yincl rYi*ncl m=0
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Figure 4.66: The dielectron cross section in inelastic pp collisions at /s = 13 TeV
as a function of invariant mass in different pre. bins: 0 < pre. < 1 GeV/c (top
left), 1 < pree < 2 GeV/c (top right), 2 < pre < 3 GeV/c (bottom left), and 3 <
Pree < 6 GeV/c (bottom right), respectively. The global scale uncertainty on the
pp luminosity (2%) is not shown. The statistical and systematic uncertainties of the
data are displayed as vertical bars and boxes. The expectation from the hadronic
decay cocktail is shown as a band, and the data-to-cocktail ratio is presented below
together with the cocktail uncertainty.

where Yina and Ygecay stands for inclusive and decay photon. With the direct-photon
fraction r and relation Ydqir = Yincl - Vdecay, direct photon is calculated

Ydir =

X Ydeca

(4.36)
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Figure 4.67: The dielectron invariant yield in high-multiplicity pp collision as a
function of invariant mass in the range pre. < 6 GeV/c. Statistical and system-
atic uncertainties of the data are displayed as vertical bars and boxes, respectively.
Expectation from the hadronic decay cocktail is shown as a band, together with
individual sources.

4.12.1 Direct-Photon Signal Extraction

The r is extracted by a fit to the ete™ invariant mass distribution above 7° mass with
virtual photon contribution plus other contributions from hadron decay:

do/dmee = deir(mee) + (1 - T)fLF(mee) + fHF(mee)7 (437)

where frr(mee) and fur(mee) are contributions from light-flavour and heavy-flavour
decays respectively, fqir(mee) is the shape of direct photon contribution. The frg(mee)
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Figure 4.68: The dielectron cross section in high-multiplicity pp collision as a func-
tion of pair transverse momentum pre.. Statistical and systematic uncertainties of
the data are displayed as vertical bars and boxes, respectively. Expectation from the
hadronic decay cocktail is shown as a band.

is fixed to produce open charm and beauty cross sections at mid-rapidity, frr(mee)
and fg;;(Mee) are normalized independently to the data below 40 MeV /¢?, where eTe™
from Dalitz decay and from direct photons have the same mass dependence. Note
that thanks to the nice agreement with data and cocktail, in dielectron spectra, the
normalization factor for fip(me.) is almost consistent with unity within 2% uncertainty.
The direct photon fraction r is the only fit parameter, determined by the fitting to the
data in 0.14 < mee < 0.32 GeV/c% Fig.4.70 and 4.71 show examples of 7 extraction
in respective pr e intervals for minimum-bias and high-multiplicity event analysis.
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Figure 4.69: The invariant yield in high-multiplicity pp collisions at /s = 13 TeV as
a function of invariant mass in different pree bins: 0 < pre. < 1 GeV/c (top left), 1
< Pree < 2 GeV/c (top right), 2 < pre. < 3 GeV/c (bottom left), and 3 < pre. < 6
GeV/c (bottom right), respectively. The statistical and systematic uncertainties of
the data are displayed as vertical bars and boxes. The expectation from the hadronic
decay cocktail is shown as a band, and the data-to-cocktail ratio is presented below

together with the cocktail uncertainty.

4.12.2 Systematic Uncertainty of Direct Photon Extraction

Possible sources of systematic uncertainty on r, are as follows

1 Data points

2 Normalization range
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Figure 4.70: Top: Fit to the mass spectra in different pr . intervals with a three-
component function to extract photon fraction r in minimum-bias event analysis.
Bottom: Residual distribution after the fitted function is subtracted by the data.
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Figure 4.71: Top: Fit to the mass spectra in different pr . intervals with a three-
component function to extract photon fraction r in high-multiplicity event analysis.
Bottom: Residual distribution after the fitted function is subtracted by the data.
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3 Fitting range

4 n cocktail (n/7° parameterization)

5 HF cocktail

6 Scaling factor for high-multiplicity HF cocktail.

Direct-photon signal extracted repeatedly varying each item. As for 7 cocktail, since 7
parameterization is built by the product of 7% and n/7%, where correlated uncertainty
between 7 and 7 are already cancel. Therefore, we consider uncertainty of n/7° ra-
tio instead of varying 7¥ and 7 independently. The way of uncertainty estimation is
different from source by source, i.e., for data, fitting, and n cocktail, The maximum
difference with respect to the standard one is determined for each variation, and the
largest of them is taken as a systematic uncertainty. For the case of fitting range,
the weighted standard deviation is adopted, while RMS is used for heavy-flavor cock-
tail and its scaling. In order to calculate significance, we classified these systematic
uncertainties according to their nature: point-to-point uncorrelated (Type A) or point-
to-point correlated (Type B), which will be necessary for the significance calculation.
Most of the sources are found to be pr-correlated uncertainties except the normaliza-
tion range. Total systematic uncertainty is calculated by adding them in quadrature.
Table4.9 shows a summary of tested variations together with a type of uncertainty for
each contribution. Visualization of breakdown can be found in Fig.4.72 and 4.73. The
dominant contribution below pr = 3 GeV/c is from 71 cocktail uncertainties for both
event multiplicity classes, whereas uncertainty comes data is the largest above pr = 3
GeV/c.

Table 4.9: Summary of total systematic uncertainty of virtual photon fraction r in
minimum bias analysis

Source Variations Type
Di-electron spectrum data points shifted 1 o up/down B
Normalization range 20,30,40] MeV /¢? A
Fitting range [120,130,140,150] x [280,320,340] MeV/c? B
Light-flavor cocktail (n/7°)  n/m° cocktail shifted 1 o up/down B
Heavy-flavor cocktail ce and bb cross sections shifted 1 o up/down B
Mult. scaling of HF cocktail upper and lower limit of scaling factor B

Figure 4.74 and 4.75, show extracted r as a function of pr in the range 1 < pr < 6
GeV/c. Results compared with the published result are shown in the grey arrow. One
can see that they are consistent within uncertainty, and now systematic uncertainty
is significantly reduced for both minimum-bias and high-multiplicity events, thanks to
the improved statistics and better knowledge of the 1 cocktail uncertainty.
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4.12.3 Significance of Direct Photon Signal

Pseudo-experiments under the null hypothesis assuming r is zero for all points were
performed to calculate the significance of the direct-photon signal. The detailed proce-
dure can be found in Ref. [25,169]. The model of the measurement of the direct-photon
fraction r is based on the point-to-point uncorrelated (Type A) or point-to-point cor-
related (Type B) systematic uncertainties. It is assumed that the actual measurement
can be described by certain values of nuisance parameter eg. Our limited knowledge
of the actual values of the parameter is parameterized by Gaussian distributions with
mean 4 = 0 and standard deviation ¢ = 1. ep is a deviation from a central value
in units of the standard deviation. We now perform pseudo-experiments by randomly
drawing ep from Ny ;. Suppose that 7 is the true value of the photon fraction. The
actual measurement in the pr interval ¢ will now fluctuate around rmeqi = 70 €O B, rei
as given by the statistical and type A systematic uncertainties added in quadrature.
The uncertainties o ; -.; are the relative systematic type B uncertainty. A given pseudo
data point in the pr interval ¢ is denoted by r,4,;. The test statistic is defined by the
following sum over pseudo-measurements in the different pr intervals i: ¢ = 4% poins
where 19 = 1, 00 = Tmod,i * Tistat+Arei- Lhe line indicates the value fgata of the test
statistic for the real data. The p-values (number of pseudo-experiments with ¢ > 4444
divided by the total number of pseudo-experiments) is indicated in the plot. The p-
value is expressed in terms of the significance in units of the standard deviation of
a Gaussian (a - o) by solving 2 [° No1(x)dz = p-value for a (two-tailed test). The
resulting significance of the fraction r in the range 1 < pr < 6 GeV/c, are about 3.20
and 1.90 for minimum-bias and high-multiplicity, respectively.
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Figure 4.76: Distribution of the test statistic ¢ for the direct-photon fraction r in
different pr slices. Pseudo-experiments performed under the null hypothesis Hj :
r=0.
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4.12.4 Decay Photon Simulation

In order to extract direct photon spectrum, decay photon is simulated. We take into
account 7, 0, 7', p, w and ¢ mesons as the sources of decay photons. Parameterizations
described in Section. 4.8, are also used in this simulation. All particles are generated
in the kinematic region of |y| < 1.0 and 0 <pp < 50 GeV/c¢ in full azimuth, and
decay into photons. Figure 4.77 and 4.78 show examples of generated mother particle
distributions in minimum-bias events and high-multiplicity events. These particles are
decayed into photons using PYTHIAG6 decayer. The decay modes and corresponding
branching ratios are summarized in Table 4.10.

Table 4.10: List of decay-photon sources and branching ratio [5].

Source Decay mode BR (%)
70 Yy 98.8
ete ™y 1.17
n Yy 39.4
Ty 4.22
ete 6.9%x103
n 70y 29.1
wry 2.62
Yy 2.21
w 70y 8.28
ny 4.6x1074
p° Tty 9.9x1073
70y 6.0x1073
¢ m 1.3
70y 1.27x10%
wy <5 (C.L. = 84%)

Photons are selected in |y| < 0.8 to be consistent with dielectron analysis. Decay
photon invariant yield as a function of pt and relative contribution with respect to the
total yield is shown in Fig. 4.79. The yield is dominated by 7% in the full pr range, and
the second largest contribution comes from 7 meson. For the systematic uncertainty
estimation, all parameterization shifted +10 and repeat cocktail generation. Relative
uncertainty with respect to the standard one is taken as systematic uncertainty, which
is about ~ 4%. The high-multiplicity decay photon is also generated in the same way,
and systematic uncertainty of ~ 4% is assigned.
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Chapter 5

Results and Discussions

5.1 Direct Photon Cross Section

Direct photon spectrum is constructed using the direct-photon fraction r and the decay
photon cocktail obtained in the previous Chapter. Since an assumption that the mean
pr of the spectrum is the center of the bin is not correct for the steeply falling spectrum,
it is necessary to shift the spectrum either in x- or y-directions according to the Lafferty-
Wyatt method [170]. In this analysis, y-shifted was applied to make a ratio between
results from two event multiplicity classes.

Figure 5.1 shows the direct photon invariant cross section at mid-rapidity |n| < 0.8
in the momentum range of 1 < pr < 6 GeV/c. The results from minimum-bias data
analysis are compared with prompt photon productions of two different NLO pQCD
calculations from Vogelsang [53] and Shen [64] shown in a blue band and green line,
respectively. These calculations employ CT10 [86-88] or CTEQ6.1M [89] proton PDFs
and GRV [90] or BFG-II [91] fragmentation functions. The former is calculated in the
range 2 < pr < 6 GeV/c and the uncertainty band of the calculation is given by the
simultaneous variation of the factorization, renormalization, and fragmentation scale
values, p (0.5 pr < p < 2 pr). The latter is calculated with p = pr, and extrapolated
down to 0.5 GeV /¢, where theoretical uncertainty is large. The questionable reliability
of pQCD at low pr further increases the uncertainty in this region of momentum. To
constrain the scale dependence of the calculation, the factorization, renormalization,
and fragmentation scales are taken to be proportional to the photon transverse mo-
mentum, and the proportionality constant is fixed using proton-proton measurements.

The experimental results on direct photon yield are also compared to the model
which successfully describes collectivity in small collision systems with hydro-dynamical
approach [64] and can predict thermal photon yield in high-multiplicity pp collisions.
The model includes thermal contribution calculated based on the viscous hydrody-
namical calculation with a lattice-QCD based equation of state, on top of the prompt
photons.

Both prompt photon calculations from [53] and [64] are consistent with the data
within uncertainty but tend to underestimate below pr = 3 GeV/c. The thermal
contribution (orange dashed line), can be seen just below the prompt photons, and the
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sum of these contributions (red dashed line) gives a slightly better description of the
data. Looking at the theory over data ratio shown at the bottom, both prompt photon
alone and total (prompt plus thermal) contribution are consistent within uncertainty
with the data.

Direct photon spectrum in high-multiplicity events is calculated as in minimum-bias
event analysis. As shown in Sec. 4.12, the extracted direct photon fraction r is similar
to the one from the minimum-bias events. However, as reported in [54], the multiplicity
dependent 7° and 7 meson production leads to the multiplicity dependence of decay
photon production. Taking into account the increased charged particle multiplicity
and the decay photon yield in high-multiplicity events, the observed excess of direct
photons implies a much higher total yield of direct photons in this event class. This
can be seen in a comparison of the invariant yield between minimum-bias and high-
multiplicity events as shown in Fig. 5.2. As shown in the bottom of Fig. 5.2, one can
see that the high-multiplicity result gives a larger yield with respect to the one from
minimum-bias. To compare the speed of increase with respect to minimum-bias events,
we calculate the ratio of mean charged-particle multiplicity in high-multiplicity events
and in minimum-bias events,

(dNep/dn(HM)) /(dNep/dn(MB)) = 4.43 4 0.10, (5.1)

which gives a similar value to the bin-by-bin ratio. If anything, the results tend to be
larger for all pr bins. These bin-by-bin values can be found in Table 5.1.

Table 5.1: Bin-by-bin ratio of invariant yields between minimum-bias and high-
multiplicity events.

pr (GeV/e) Ratio

1 <ppr<2 6.17 £ 2.30 (stat.) £+ 3.37 (syst.)
2 <pr<3 494+ 259 (stat.) + 2.27 (syst.)
3<pr<6 8.04+580 (stat.) £ 4.74 (syst.)

Figure 5.3 shows the direct photon spectrum in the high-multiplicity event class
at mid-rapidity || < 0.8, in the range 1 < pr < 6 GeV/c. The result is compared
with the theoretical predictions. As introduced in Sec. 1.3, multiple analyses reported
multiplicity dependence of particle production in high-multiplicity pp collisions [42-44].
Similarly, direct-photon production could comply with some multiplicity dependence.
However, as for high-multiplicity prompt photons, there is no theoretical prediction.
From the private communication with W. Vogelsang and C. Shen, prompt photon
calculations in high-multiplicity pp collisions seem to be challenging, if not impossible,
in the context of ordinary pQCD calculations.

Therefore, the multiplicity dependence of prompt photons is estimated in several
ways. One way to estimate is that the ratio of photon productions in high-multiplicity
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events and inelastic events as we did in Eq. 5.1, which is taken to be the same as the
ratio of charged particle productions in high-multiplicity events and inelastic events.
The scaling factor is calculated as

(dNey/dn(HM)) /(dNe/dn(INEL)) = 5.90 & 0.22, (5.2)

where (dNg/dn(HM)) = 31.34 & 0.52 and (dNg/dn(INEL)) = 5.31 £ 0.18 are the
charged-particle multiplicities in |ne,| < 0.5 measured in high-multiplicity and inelastic
pp collisions, respectively [171].

Other ways were tested as follows:

1. The scaling factor extracted from measured neutral pion yields at sufficiently
high pr in the same pp event classes.

2. The scaling factor determined by using prompt-photon yield calculated in PYTHIA
between two event multiplicity classes by making ratio of the pr spectra at high

pr.

For each case, p-value was investigated to see if the data description is improved by the
extracted factor. As a result, it was turned out that the best description of the HM
results has been achieved by manually scaling pQCD calculations for pp collisions from
Shen by a factor of 4.5 — 7.5 and by adding on top the thermal-photon contribution
calculated for HM events as described in Ref. [64]. These factor corresponds to ~ 25%
uncertainty of the scaling factor determined in Eq. 5.2.

In Ref. [64], the thermal contribution is expected to depend on the charged-particle
multiplicity. The data and theory comparison tells us that with the current preci-
sion, the data is consistent with both models, i.e., prompt photons from NLO pQCD
calculation with multiplicity scaling alone (green) or the sum of the prompt and the
thermal contributions within uncertainty. However, one could argue that the situa-
tion is the same as the minimum-bias event analysis and the QGP-like model gives a
slightly better description than prompt photon alone. Moreover, it should be noted
that the prompt photon without scaling can not account for the data at all, therefore
a more sophisticated theoretical pQCD calculation as a function of charged-particle
multiplicity is needed.

5.2 Direct Photon Yield as a Function of Multiplic-
ity

Finally, pr-integrated direct photon yields are studied as a function of charged-particle

multiplicity in the range 1 < pre. < 3 GeV/c. In this pr range, one would expect

that direct photons are dominated by thermal photons. Figure. 5.4 shows the data

compared with the theoretical model by Shen. The point of the prompt photon in high-
multiplicity events is scaled by 5.90 with respect to the one in minimum-bias events.
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The data shows clear multiplicity dependence and is consistent with the theoretical
prediction within uncertainty and supports the QGP-like model.

The result is also compared with other direct photon measurements at LHC en-
ergies. Figure 5.5 shows pr-integrated direct photon yields from this study and mea-
surements in Pb-Pb collisions at /syy = 2.76 TeV. For the Pb-Pb data points, pr
spectra are integrated over 1 < pr < 5 GeV/c. The statistical and systematic uncer-
tainties are shown in the bar and box, respectively. Although the integration range
is different, each point is dominated by the photon yield at the lowest pr and can be
discussed thermal-photon contribution. From the data, one would see a smooth evolu-
tion of direct photon production with event multiplicity. A smooth evolution of direct
photon yields as a function of multiplicity was observed, which implies that particle
multiplicity is one of the key quantities of direct photon production.

The Pb—Pb results are compared with a theoretical prediction by Gale [77] which
includes photons from several sources such as prompt photons, pre-equilibrium photons,
and thermal photons. The dashed orange and blue lines show the total contributions
and prompt photons, respectively. The prompt photon is computed with next-to-
leading-order pQCD using INCNLO [172], nCTEQ15-np PDF corrected for nuclear
matter effects [173] and BFG2 [91] fragmentation function.

The Pb—Pb data points significantly above prompt photons and is consistent with
the total photons. If we extend these theoretical lines towards the lower charged-
particle multiplicity, the high-multiplicity data is better described by the total photons
which includes thermal photons rather than the prompt photons alone. Taking into
account this observation and consideration made in Fig. 5.4, the results support the
similar conclusion in the previous section.

Of course, theoretical predictions for heavy-ion collisions may not be directly linked
to pp collisions. Still, future theoretical work should provide us with a uniform frame-
work that would be able to describe the direct photon yield across all collision systems
as a function of multiplicity. This would help us to understand the possible onset of
thermal radiation in small collision systems and the physics of pp collisions with a large
number of produced particles.
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Figure 5.1: Direct photon yield 743 as a function of p; in minimum-bias pp collisions.
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Figure 5.3: Direct photon yield 74, as a function of p; in high-multiplicity pp
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tical bars and boxes, respectively. The result is compared to theoretical calculations
from [70] and [64].
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Figure 5.5: Compilation of integrated photon yield 74, as a function of charged
particle multiplicity at mid-rapidity. The obtained results are compared with results
from RHIC and LHC energies. The blue star and the magenta cross markers indicate
results from Au—Au collisions at /sy = 200 GeV by STAR [174] and PHENIX [49,
175] collaborations. The gold four-triangles marker and band show the result from pp
collisions at /s = 200 GeV and Ny -based extrapolation of pQCD calculations [50],
respectively. The LHC results are all taken from the ALICE collaboration. The
data points in Pb-Pb collisions are taken from ALICE published result [25] (dark
cyan cross) and preliminary results (violet diamond and orange square) measured
at different collision energies [176], respectively. The Pb-Pb results at /sy = 2.76
TeV are compared with the theoretical prediction by Gale [77]. The model includes
prompt photons, pre-equilibrium photons, and thermal photons. The prompt photon
is computed with next-to-leading-order pQCD using INCNLO [172], nCTEQ15-np
PDF corrected for nuclear matter effects [173] and BFG2 [91] fragmentation function.
Statistical and systematic uncertainties of the data are displayed as vertical bars and
boxes, respectively.






Chapter 6

Conclusion and Outlook

This work presents the study of low transverse momentum direct photon production
at mid-rapidity in proton-proton collisions for the first time at /s = 13 TeV. For
the first time at the LHC energies, a significant yield of direct photons is observed at
low transverse momentum in both inelastic and high-multiplicity classes. One of the
purposes of this study is to search for thermal photon production in high-multiplicity
pp collisions. Another motivation is to constrain pQCD at low pr as the production
of prompt photons is dominated by higher-order processes at LHC energies. Direct
photon was measured via the internal conversion technique, which is expected to have
a better signal-to-background ratio than the measurements of real direct photons with
calorimeters or via the reconstruction of external conversions. In this technique, the dif-
ferent shape of the dielectron continuum is exploited to separate direct-photon signals
and electrons from hadronic decays of Dalitz decays.

In the previous study [132], only upper limits were given for both event multiplicity
classes due to the large systematic uncertainties. This analysis used about 4 times larger
statistics with respect to the previous study. This study adopted the high precision 7°
and 77 measurements in the same event multiplicity classes, which were not available
before. Also, based on the updated BR of ¢ — e decay, c¢ and bb cross sections are re-
extracted using simultaneous fit to two-dimensional M. versus pr e distribution with
a significantly better precision.

Dielectron production was reported in pp collisions at mid-rapidity |n.| < 0.8 in the
kinematic range of me, < 4 GeV/c? and Pree > 0 GeV/c in the minimum-bias and the
high-multiplicity events. The results are compared with expected contributions from
known hadron decays. As for the minimum-bias analysis, the data and the cocktail
show nice agreement, and the validity of the cocktail was verified. As well as the
minimum-bias analysis, in the high-multiplicity analysis, the data and cocktail are in
good agreement above pr = 1 GeV/¢, where we extract photon signal.

Direct photon signal was extracted from dielectron mass spectra at mee < P ce, i
the range 1 < pr < 6 GeV/c with the significance of 3.2¢ in minimum-bias pp colli-
sions. Systematic uncertainties on direct photon fraction r were significantly reduced
compared to the previously published study. Thanks to the precise measurements of
70 and 7 in the same multiplicity class as studied in this work, it was also possible to
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extract the direct photon excess in high-multiplicity pp collisions with the significance
of 1.90. These results are the first measurement of low pr direct photons in pp colli-
sions at the LHC energies. With the direct-photon fraction r and cocktail simulation
of decay photons, the direct photon pr spectrum is constructed.

Direct photon spectrum in inelastic events was compared with theoretical predic-
tions by Vogelsang [53] and Shen [64]. Prompt photons are calculated by the NLO
pQCD calculation with different PDFs and FFs, i.e., CT10 or CTEQ6.1M proton
PDFs and GRV or BFG-II fragmentation functions. The result was found to be consis-
tent with both calculations within uncertainties, but the theory tends to underestimate
the data down to 2 GeV/c. The model also includes thermal photons on top of the
NLO pQCD calculation. The thermal contribution is calculated based on the model
which describes collectivity in small systems with the hydro-dynamical approach. This
QGP-like model gave a slightly better description at pr < 3 GeV/¢, however, both
models are consistent with the data within uncertainties.

As for the high-multiplicity event analysis, no reliable theoretical prediction of the
prompt photon exists at the time of writing this thesis. Therefore, empirical scaling
based on the measured charged particle multiplicities in between inelastic and high-
multiplicity events was applied to the NLO pQCD calculations and compared with
the high-multiplicity result. As a result, the data was found to be consistent with
both standalone empirically scaled prompt photons and the sum of the thermal and
prompt photons. Again it was found that the QGP-like model gives a slightly better
description of the high-multiplicity data as well as minimum-bias data.

We also investigated pr-integrated direct-photon yield as a function of charged-
particle multiplicity. Since the photon yield is dominated by the low pr point below
pr = 3 GeV/¢, photons that contribute to such regions should be sensitive to thermal-
photon production. It was also found that the result showed clear multiplicity de-
pendence, and the photon yield at high multiplicity increased by about factor 5 with
respect to the one from the minimum-bias event. From the comparison between data
and theoretical prediction, it was found that the data supports both a hydro-dynamical
approach and a standalone prompt photon calculation.

Finally, the compilation of photon yields from LHC energies was presented. The pr-
integrated photon yields in the range 1 < pr < 5 GeV /¢ were calculated from the direct-
photon measurements in Pb-Pb collisions at /sy = 2.76 TeV. A smooth evolution
of direct photon yields as a function of multiplicity was observed, which implies that
particle multiplicity is one of the key quantities of direct-photon production.

Theoretical prediction in heavy ion collisions was also discussed, which includes
prompt, pre-equilibrium, and thermal photons. The Pb—Pb data points significantly
above prompt photons and is consistent with the total photons. If we extend these
theoretical lines towards the lower charged-particle multiplicity, the high-multiplicity
data is better described by the total photons which includes thermal photons rather
than the prompt photons alone. These observations support the statement made in
the discussion about direct photon pr spectra.

In summary, in this study, we measured low-pr direct photon spectra with unprece-
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dented precision for two different event multiplicity classes which are compatible with
theoretical calculations. We observed clear multiplicity dependence of direct photon,
which is compatible with an assumption of thermal photon presence in high-multiplicity
pp collisions. A comparison with theoretical prediction has been made. With the cur-
rent precision, we are not able to conclude which model can give a better description.
However, for both direct photon pr spectra and pr-integrated photon yields, the QGP-
like model consistently gives a better description of the results.

This study indicates the need for further theoretical efforts in particular for precise
pQCD calculations in high-multiplicity pp collisions and more generally, for a uniform
framework that would allow for a consistent description of direct photon production
across various collisions systems. Future analysis of the experimental data collected
during Run 3 and Run 4 periods of LHC operation, including more precise charm and
beauty production as a function of multiplicity, will help to further reduce the exper-
imental uncertainties and to pin down possible thermal contribution in pp collisions.
These studies will form a crucial baseline for direct photon and dielectron measurement
in heavy-ion collisions with Run 3 and Run 4 data.






Appendix A

Kinematic Variables

This appendix introduces useful variables used in this thesis. The z-axis is chosen as
the beam going direction. The transverse momentum pr and the transverse mass my
are defined in terms of two momentum components of a particle:

pr = /P2 + P2, (A1)
mr = y/m?+ p2 = \/E? — p?, (A.2)

where F, p,, py, p. and m are the energy, x, y, and z component of the momentum
and the mass of the particle, respectively. The rapidity y of the particle is defined as

Y= %111(51_;2) (A.3)

The rapidity is transformed under the Lorentz boost in the z direction with the velocity
B as follows

y =y + tanh ™', (A.4)

The particle energy and z component of the momentum (p,) can be written in terms
of the rapidity (y) and transverse mass (mr) as follows

E = mqr cosh v, (A.5)
p, = mr sinh y. (A.6)

The pseudorapidity 7, can be expressed in terms of the angle, 8, between the particle
momentum, p, and z axis as follows

n= %m(g%zj) = —ln(tang)7 (A7)
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Appendix B

TPC and TOF post-calibration
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Figure B.1: mean of no ™" as a function of track momentum p versus pseudorapidity

71 obtained using 2016 periods.
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Figure B.2: width of no ¢ as a function of track momentum p versus pseudorapidity
71 obtained using 2016 periods.
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71 obtained using 2017 periods. Bottom right shows map created using all periods.
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Figure B.4: width of no ¢ as a function of track momentum p versus pseudorapidity
71 obtained using 2017 periods. Bottom right shows map created using all periods.
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Figure B.5: mean of no ™% as a function of track momentum p versus pseudorapidity
71 obtained using a period from ’18spline’. Bottom right shows a map created using
all periods.
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Figure B.6: mean of no™¢ as a function of track momentum p versus pseudorapidity

71 obtained using a period from ’18nospline’. Bottom right shows map created using
all periods.
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Figure B.7: width of no ¢ as a function of track momentum p versus pseudorapidity
71 obtained using a period from "18spline’. Bottom right shows map created using all
periods.
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Figure B.8: width of no ¢ as a function of track momentum p versus pseudorapidity
71 obtained using a period from ’18nospline’. Bottom right shows map created using
all periods.



154

Appendix B TPC and TOF post-calibration

mean 17c

g 1
Pp(GeVic)

-04

08

084 05 06 07 08 s 1
p(GeVic)

= o8

05 1
p(GeVic)
mean 170

02 o2
~0.4]
~0.6]
-0gs

p(GeVic)

Figure B.9: mean of no™OF

mean 17e
-02) -02
-04 04
08
-06
084 09 1
Ppl(GeVic)
mean 17i

084 05 06 07 08 09 K
p(Gevie)

e 1
Ppl(GeVic)

pl(GeVic)

mean 17t

s 1
p(@evic)
mean 17}

-04

08

084 05 06 07 08 s 1
plGeVic)

mean 17m
08,

s 1
p(GeVic)
mean 17all

p(GeVic)

as a function of track momentum obtained using 2017
periods. Bottom right shows map created using all periods.



155

width 17¢

g 1
Pp(GeVic)

-04

08

8%

05 s 1
p(GeVic)

= o8 2

s 1
p(GeVic)
width 170

-02)
-04
08|

087 X ¥ 05 1
p(GeVic)

Figure B.10: width of noTOF

width 17e.

09 1
p(Gevic)

087 05 06 08 i
p(GeVic)

1
p(Gevic)

1
pl(GeVic)

width 17

s 1
p(@evic)
width 17]

-04

08

8%

05 9 1
p(GeVic)

08, 2

s 1
p(GeVic)

1
p(GeVic)

as a function of track momentum obtained using 2017
periods. Bottom right shows map created using all periods.



156 Appendix B TPC and TOF post-calibration

mean 18b mean 18d mean 18e

07 X 05 1 X X X X 05 i 07 X
P(GeVic) p(Gevic) p(GeVic)

mean 18i mean 18m mean 18spline
= o8 = = o

09 1 g 1
p(Gevic) p(Gevic)

mean 18g mean 16n

g 1
Pp(GeVic)

04 -04

o 08

084 05 06 07 08 084 05 05 07 08

09 1 s 1
p(Gevic) p(GeVic)

mean 18k mean 181

s 1
p(GeVic)

) 1
Ppl(GeVic)
mean 18p

p(GeVic) " plGevi) p(Gevic)
mean 18nospline

p(Gevie)

Figure B.11: mean of no™°F as a function of track momentum obtained using 2018

periods. Bottom right shows map created using all periods.
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Figure B.12: width of noT°F as a function of track momentum obtained using 2018
periods. Bottom right shows map created using all periods.
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Figure B.13: Mean and width of TPC no, as a function of p and n obtained using
2016 sample before re-calibration.
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Figure B.14: Mean and width of TPC no, as a function of p and n obtained using
2016 sample after re-calibration.
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Figure B.15: Mean and width of TPC no, as a function of p and n obtained using
2017 sample before re-calibration.
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Figure B.16: Mean and width of TPC no, as a function of p and n obtained using
2017 sample after re-calibration.
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Figure B.17: Mean and width of TPC no, as a function of p and n obtained using

2018 sample before re-calibration. The data sample consists of samples with TPC
spline.
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Figure B.18: Mean and width of TPC no, as a function of p and n obtained using

2018 sample after re-calibration. The data sample consists of samples with TPC
spline.
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Figure B.19: Mean and width of TPC no, as a function of p and n obtained using

2018 sample after re-calibration. The data sample consists of samples without TPC
spline.
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Figure B.20: Mean and width of TPC no, as a function of p and n obtained using
2018 sample after re-calibration. The data sample consists of samples without TPC
spline.
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Figure B.21: Mean and width of TOF no, as a function of p and n obtained using
2016 periods before re-calibration.
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Figure B.22: Mean and width of TOF no, as a function of p and n obtained using
2016 periods after re-calibration.
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Figure B.23: Mean and width of TOF no, as a function of p and n obtained using
2017 periods before re-calibration.
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Figure B.24: Mean and width of TOF no, as a function of p and n obtained using
2017 periods after re-calibration.
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Figure B.25: Mean and width of TOF no, as a function of p and n obtained using
2018 periods before re-calibration.
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Figure B.26: Mean and width of TOF no, as a function of p and n obtained using
2018 periods after re-calibration.
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Figure B.27: Mean and width of TOF no, as a function of p and n obtained using
2018 periods without TPC splines before re-calibration.
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Figure B.28: Mean and width of TOF no, as a function of p and n obtained using
2018 periods without TPC splines after re-calibration.



Appendix C

Dielectron mass spectra
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Figure C.1: The incariant mass spectra in minimum-bias pp collisions at /s = 13
TeV below 0.5 GeV/c2.

163



164 Appendix C Dielectron mass spectra

‘\‘Q 107! £ . T E ;,210’2 g T T E
§ E This Work q § £ This Work e Data 1
) B high-mult. pp Vs = 13 TeV 1 o Iy high-mult. pp s = 13 TeV ]
Q107 E (0 - 0.072% INEL) E 910_3 (0-0.072% INEL) B
= F p. >0.2GeVic, |7, <08 — P~ €€ E p. >0.2GeVic, |7 <0.8 — P ~ €€ 3
c F Te e —-w - TPe'e, w - e'e” 4 c Te e —- - TPe'e, w - e'e” 3
= 3 1< P, < 2 GeVic Sp-nee, o e, g ee] = 2< P < 3GeVic g nee, o e, g ee]
8 = JIY — ye'e, Y - e'e” = 8 = JIY — ye'e, Y - e'e” q
1S — - CC - e'e” (PYTHIA) 3 E 10- — - CC - e'e” (PYTHIA)
R — bb - e'e” (PYTHIA) 1 B — bb - e*e” (PYTHIA)
% [ Cocktail sum B % [ Cocktail sum

._\
Q
1

10°

15

Data/Cocktail
Data/Cocktail

0.5F
3 |
0 01 02 03 0.4 05
Mg, (GeV/c?)
6 F T T E|
§ F This Work . Epata . ]
@) [ high-mult. pp Vs =13 Tev n ayyee,:, )
3 - -
Q10 (0-0.072% INEL) ~ =vein N - yee,n - we'e E
= p,,>0.2Gevic, || <08 — P~ enoe } . 3
S 3<p. < 6GeVic e ??'w}e?, .
~ Tee ---@-one‘e, 9o e, Q- e'e
3 = Y - ye'e, Y - e'e” _
1= — T ~ e'e” (PYTHIA) 3
9 — bb - e'e” (PYTHIA) 1
.8 [ Cocktail sum T

H
S
&

>
1
&>

Data/Cocktail
T H|

=
13
BmEeni

o
&)

)
0.5
Mg (GeVic?)

O
o
[N
o
N
o
w
o
ES

Figure C.2: The incariant mass spectra in high-multiplicty pp collisions at /s = 13
TeV below 0.5 GeV/c?.



Appendix D

Test static t distributions for
direct-photon fraction r
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Figure D.1: Distribution of the test statistic ¢ for the direct-photon fraction r in
each pr interval in minimum-bias events. Pseudo-experiments performed under the
null hypothesis Hy : r = 0.
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Figure D.2: Distribution of the test statistic ¢ for the direct-photon fraction r in
each pr interval in high-multiplicity events. Pseudo-experiments performed under
the null hypothesis Hy : 7 = 0.
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