
The Pennsylvania State University

The Graduate School

Department of Physics

BAYESIAN ANALYSIS ON GRAVITATIONAL WAVES AND

EXOPLANETS

A Dissertation in

Physics

by

Xihao Deng

c© 2015 Xihao Deng

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2015



ii

The dissertation of Xihao Deng was read and approved
1
by the following:

Lee Samuel Finn
Professor of Physics
Dissertation Advisor
Chair of Committee

Chad Hanna
Assistant Professor of Physics

Stephane Coutu
Professor of Physics

Aleksander Wolszczan
Professor of Astronomy and Astrophysics

Nitin Samarth
Professor of Physics
Head of the Department of Physics

1
Signatures on file in the Graduate School.



iii

Abstract

Attempts to detect gravitational waves using a pulsar timing array (PTA), i.e., a collection of

pulsars in our Galaxy, have become more organized over the last several years. PTAs act to detect

gravitational waves generated from very distant sources by observing the small and correlated effect

the waves have on pulse arrival times at the Earth. In this thesis, I present advanced Bayesian

analysis methods that can be used to search for gravitational waves in pulsar timing data. These

methods were also applied to analyze a set of radial velocity (RV) data collected by the Hobby-

Eberly Telescope on observing a K0 giant star. They confirmed the presence of two Jupiter mass

planets around a K0 giant star and also characterized the stellar p-mode oscillation.

The first part of the thesis investigates the effect of wavefront curvature on a pulsar’s response

to a gravitational wave. In it we show that we can assume the gravitational wave phasefront is

planar across the array only if the source luminosity distance ≫ 2πL
2
/λ, where L is the pulsar

distance to the Earth (∼ kpc) and λ is the radiation wavelength (∼ pc) in the PTA waveband.

Correspondingly, for a point gravitational wave source closer than ∼ 100 Mpc, we should take into

account the effect of wavefront curvature across the pulsar-Earth line of sight, which depends on the

luminosity distance to the source, when evaluating the pulsar timing response. As a consequence,

if a PTA can detect a gravitational wave from a source closer than ∼ 100 Mpc, the effects of

wavefront curvature on the response allows us to determine the source luminosity distance. This

technique is very similar to the use of pulsar timing parallax to measure the distances to nearby

pulsars, because they both try to measure the phasefront curvature of a wave passing through a long

baseline (pulsar-Earth distance and Sun-Earth distance) to determine the wave source distance.



iv

The second and third parts of the thesis propose a new analysis method based on Bayesian

nonparametric regression to search for gravitational wave bursts and a gravitational wave back-

ground in PTA data. Unlike the conventional Bayesian analysis that introduces a signal model

with a fixed number of parameters, Bayesian nonparametric regression sets constraints on the

function space that may be reasonably thought to characterize the range of gravitational wave

signals. For example, focus attention on the detection of a gravitational wave burst, by which we

mean a signal that begins and ends over the course of an observational epoch. The burst may

result from a source that we know how to model - e.g., a near-unity mass ratio black hole binary

system - or it may be the result of a process, which we have not imagined and, so, have no model

for. Similarly, a gravitational wave background resulting from a superposition of a number of weak

sources may be difficult to characterize if the number of weak sources is sufficiently large that

none can be individually resolved, but not so large that their superposition leads to a reasonably

Gaussian distribution. Correspondingly, the Bayesian nonparametric regression method may be

very useful to help search for gravitational wave bursts and a gravitational wave background in the

pulsar timing data. By testing this new method on simulated data sets, it is found that we can

use it to detect gravitational wave bursts and a gravitational wave background, and we can also

characterize their important physical parameters such as the burst durations and the amplitude of

the background even if their signal-to-noise ratios are low.

The fourth part develops Bayesian analysis methods that can be used to detect gravitational

waves generated from circular-orbit supermassive black hole binaries with a pulsar timing array.

PTA response to such gravitational waves can be modeled as the difference between two sinusoidal

terms — the one with a coherent phase among different pulsars called “Earth term” and the other

one with incoherent phases among different pulsars called “pulsar term”. For gravitational waves

from slowly evolving binaries, the two terms in the PTA response model have the same frequency.
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Previous methods aimed at detecting gravitational waves from circular-orbit binaries ignored pulsar

terms in data analysis since those terms were considered to be negligible when averaging over all the

pulsars. However, it is found that we can incorporate the contributions of pulsar terms into data

analysis in the case of slowly evolving binaries by treating the incoherent phases in pulsar terms as

unknown parameters to be marginalized. By testing the new method on simulated data sets, the

improvement, compared to previous analyses, is equivalent to halving the strength of timing noise

associated with each pulsar.

The final part of this thesis applies Bayesian analysis to search for the evidence of a planetary

system around the K0 giant star HD 102103 detected by the Penn State-Torun planet group at the

Hobby Eberly Telescope. It analyzes 116 observations of the star’s radial velocity. However, the

stellar p-mode oscillation also contributes to the radial velocity data, challenging the search for the

planets around the star. The Bayesian method models the stellar oscillation effect and the potential

exoplanet signal together, simultaneously inferring their parameters from the data. Consequently,

the method removes the ambiguities of the presence of two Jupiter mass planets around the K0

giant and as a bonus, it also characterizes the strength and the frequency of the stellar oscillation.
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Chapter 1

Introduction

It has been 30 years since Sazhin and Detweiler showed how gravitational waves could be

directly detected by correlating the timing data of a collection of pulsars (Sazhin, 1978; Detweiler,

1979). Over the ensuing years, attempts to detect gravitational waves with a pulsar timing array,

i.e., a collection of pulsars, have developed rapidly as pulsar timing techniques have drastically

progressed. Such an “astronomical” detector is sensitive to gravitational waves with frequency in

the nHz range, the sources of which include supermassive black hole binaries or encounters resulting

from galaxy mergers (Sesana et al., 2008, 2009). Therefore, successful detections of gravitational

waves with a pulsar timing array can help study the processes of galaxy mergers and the evolutions

of double supermassive black hole systems. In this thesis, I mainly describe several data analysis

methods I have developed and tested in simulated pulsar timing data sets. I will also describe an

application of these methods to the radial velocity data collected by the Hobby Eberly Telescope

to confirm the evidence of two Jupiter mass exoplanets around a red giant star.

1.1 Overview of pulsar timing

Pulsars emit continuous beams of radiation. The beams rotate with the pulsar. We observe

a pulse of radiation when the beam intersects the pulsar-Earth line-of-sight. Pulsar timing array

techniques are measuring the arrival times of the radio pulses (TOAs) with large radio telescopes

such as Arecibo, Green Bank, Parkes, etc (Hobbs et al., 2010), because timing the radio pulses

obtains much better timing precision than timing pulses of other electromagnetic wavelengths.

These TOAs need adjustments so that they represent the arrival times in an inertial frame. This is



2

accomplished by transforming each measured TOA to an arrival time at the solar system barycenter

(SSB) and adding additional terms that can model the other physical effects influencing TOAs. Such

a pulsar timing model can be written as (Hobbs et al., 2006):

t = TOA+∆C +∆A +∆R +∆E +∆S −DM/f
2
+∆VP +∆B (1.1)

where ∆C contains various clock corrections (see 1.1.1); ∆A denotes the atmospheric propagation

delays (see 1.1.2); ∆R denotes the solar system Roemer delay (see 1.1.3); ∆E denotes the solar

system Einstein delay (see 1.1.4); ∆S denotes the solar system Shapiro delay (see 1.1.4); DM/f
2

models the dispersive component of the light travel time (see 1.1.5); ∆VP describes the excess

vacuum propagation delay due to secular motion (see 1.1.6); and ∆B denotes the effects induced

by the orbital motion of the pulsar if the pulsar is in a binary system (see 1.1.7). Table 1.1 lists

the typical magnitude of the primary timing corrections (Hobbs et al., 2006; Edwards et al., 2006).

Table 1.1 Typical magnitude of primary timing corrections

Timing corrections Typical magnitude

Observatory clock correction (∆C) ∼ 1 µs

Atmospheric propagation delays (∆A) ∼ 10 ns

Roemer delay (∆R) ∼ 500 s

Einstein delay (∆E) ∼ 1 ms

Shapiro delay (∆S) ∼ 100 µs

Interstellar medium dispersion delay (DM/f
2
) ∼ 1 s

Secular motion (∆VP) ∼ 1 ms

Orbital motion (∆B) ∼ 100 ns
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1.1.1 Observatory clock correction

The TOAs are recorded by the local observatory clocks, which are derived from a precision

frequency standard with good short term stability, such as a hydrogen maser. On longer time scales

(months to years) these clocks deviate significantly from uniformity and are therefore unsuitable

for long term precision pulsar timing. However, it is generally possible to remove these errors

down to the precision provided by the best available terrestrial time scale through the application

of corrections derived from monitoring the offsets between pairs of clocks. The ultimate aim of

the clock correction process is to transform the TOA measurements into the Geocentric Celestial

Reference System, and different observatories use different transformation methods. The typical

magnitude of the clock correction on TOAs is ∼ 1µs (Hobbs et al., 2006; Edwards et al., 2006).

1.1.2 Atmospheric propagation delay

The group velocity of radio waves in the atmosphere differs from the vacuum speed of light.

Refractivity is induced both by the ionized fraction of the atmosphere and the neutral fraction

(Hobbs et al., 2006). Pulsar timing uses atmospheric pressure data to calibrate the atmospheric

propagation delay which is of the order of 10 ns (Hobbs et al., 2006).

1.1.3 Roemer delay

The Roemer delay is the non-relativistic vacuum light travel time between the pulse arriving

at the observatory and the equivalent arrival time at the solar system barycenter. This is calculated

by determining the time delay between a pulse arriving at the observatory and the Earth center

and, with the aid of the solar system ephemeris, from the Earth center to the SSB (Edwards et al.,

2006).



4

Denoting the vector distance from the observatory to the SSB as ~rob, it can be expressed as

~rob = ~roe + ~res + ~rsb (1.2)

where ~roe denotes the vector from the observatory to the Earth center; ~res denotes the vector from

the Earth center to the center of the Sun; and ~rsb denotes the vector from the center of the Sun to

the SSB. The Roemer delay would be

∆R = −~rob · ŝ
c

(1.3)

where c is the speed of light and ŝ is the unit position vector of the pulsar that can be measured

either by telescope pointing or interferometry. The typical magnitude of the Roemer delay is

∼ 500s.

1.1.4 General relativistic corrections

General relativity primarily gives two correction terms in Eq. (1.2): the Einstein delay ∆E

that quantifies the change in arrival times due to variations in clocks at the observatory induced by

the gravitational potential of the Earth and Earth’s motion in the solar potential, and the Shapiro

delay ∆S that accounts for the time delay caused by the passage of the pulse through the large

gravitational field of the solar system (Hobbs et al., 2006).

The Einstein delay is expressed as (Lyne & Graham-Smith, 2006, chap. 5)

∆E =
~roe · ~̇res +W0tobs

c2
+ 1.6 ms

(
7

8
sinE⊕ +

1

2
e sin 2E⊕ +

3

8
e
2
sin 3E⊕

)
(1.4)
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where W0 = 6.97 × 10
−10

c
2
is the gravitational potential of the Earth; tobs is the measured TOA;

E⊕ and e are respectively the mean anomaly and the eccentricity of the Earth orbit.

The Shapiro delay of the solar system is the sum over the Shapiro delay of all the bodies in

the solar system (Edwards et al., 2006)

∆S =
∑

j

−
2GMj

c3
log |rj |(1− cos θj) (1.5)

where G is the gravitational constant, Mj is the mass of the jth solar system body, |rj | is the

distance from jth body to the Earth and θj is the angle between the Earth-pulsar line-of-sight and

the Earth-body line-of-sight.

1.1.5 Dispersion measure

When the pulse emitted from the pulsar propagates through the ionized interstellar medium,

it experiences frequency dispersion. For small electron densities, the group velocity at which the

pulse travels is (Lyne & Graham-Smith, 2006, chap. 5)

v = c


1−

neq
2

e

2πmef
2


 (1.6)

where ne, qe and me respectively denote the electron number density, electron charge in Gauss unit

and electron mass; and f denotes the radio wave frequency. Hence the travel time T during which

the pulse travels over distance L is

T =

∫
L

0

dl

v
=
L

c
+

q
2

e

2πmecf
2

∫
L

0

nedl (1.7)
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so the time delay caused by the frequency dispersion is

∆DM =
q
2

e

2πmec

DM

f2
(1.8)

where DM is the dispersion measure defined as
∫ L
0
nedl.

1.1.6 Excess vacuum propagation delay due to secular motion

Pulsar timing measurements are affected by the secular motion of the pulsar relative to the

SSB. The delay of the pulse arrival times caused by secular motion depends on the pulsar distance

to the Earth (Lyne & Graham-Smith, 2006, chap. 4):

∆VP =
v
2

T
T
2

obs

2Lc
(1.9)

where vT denotes the transverse velocity of the pulsar and Tobs denotes the observational duration.

For a pulsar at distance ∼ 1kpc with a transverse velocity of 100 km s
−1

, the time delay due to

pulsar secular motion is of the order of 1ms.

1.1.7 Orbital motion

If the pulsar is in a binary system, its orbital motion would also influence the TOAs. The

modulation of pulse arrival times by this effect is closely analogous to the cyclic variation of arrival

times due to the position of the observatory relative to the SSB described above. Like the Roemer

delay, we just need to transform the pulse emitting time at the pulsar to the equivalent emitting

time at the center of mass of the binary system. The typical magnitude of the correction induced

by pulsar orbital motion depends on the properties of the binary system and it is ∼ 100ns (Edwards

et al., 2006).
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1.1.8 Pulsar spin, spin down and timing residuals

The analysis of the timing model Eq. (1.2) helps transform the TOAs to the arrival times in

the reference frame of the SSB. Now we need to consider the effects of pulsar spin and spin down.

Assuming that the pulse phase at a reference time t0 is φ0, the pulse phase at an observed arrival

time ti is expressed as (Edwards et al., 2006):

φi = φ0 + ν(ti − t0) +
1

2
ν̇(ti − t0)

2
(1.10)

where ν denotes the pulsar spin frequency and ν̇ is the frequency derivative which represents the

spin slowing down due to the emission of energy by the pulsar. The weighted χ
2
of the timing

model is (Hobbs et al., 2006)

χ
2
=
∑

i

1

σ2
i

(
φi −Ni

ν

)
2

(1.11)

where Ni is the nearest integer to φi. We minimize the χ
2
to obtain the best-fit timing model.

The differences between the observed TOAs and the best-fit timing model are referred to as timing

residuals. The timing residuals include all other effects that are not included in Eq. (1.2) and

Eq. (1.10). We expect that they may contain stochastic timing noise and gravitational wave effects

that will be discussed in the next section. The rms of the current stochastic timing noise is

∼ 30ns − 1.5µs (Demorest et al., 2012) and the amplitude of gravitational waves in the PTA

waveband is ∼ 1− 10ns (Sesana et al., 2008, 2009).
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1.2 Overview of gravitational waves

1.2.1 Gravitational wave fundamentals

The presence of gravitational waves was predicted by Einstein’s general relativity and indi-

rect evidence for its existence has been confirmed by timing the binary pulsars (Taylor et al., 1979).

Here I summarize the fundamental characteristics of gravitational waves.

In general relativity, the spacetime metric gµν is the fundamental quantity representing the

gravitation field, which obeys Einstein field equation (Misner et al., 1973):

Rµν −
1

2
Rgµν =

16πG

c4
Tµν (1.12)

where Rµν is the Ricci tensor; R is the Ricci scalar; and Tµν is the energy momentum tensor of

matter. The metric is covariant under the general coordinate transformation x
µ → x

′µ
, i.e.,

g
′
µν
(x

′
) =

∂x
ρ

∂x′µ
∂x

σ

∂x′ν
gρσ(x) (1.13)

where I use the Einstein summation convention. This covariant transformation is referred to as

gauge transformation (Maggiore, 2007, chap. 1).

We can expand the metric around the Minkowski metric ηµν :

gµν = ηµν + hµν (1.14)

and we expand the equations of motion to linear order in hµν to study the linearized theory.

Consider a transformation of coordinates:

x
′µ

= x
µ
+ ξ

µ
(1.15)
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where the derivatives |∂µξ
ν | are at most of the same order as |hµν |. Using the gauge transformation

law Eq. (1.13), we obtain that the transformation of hµν , to lowest order, is

h
′
µν
(x

′
) = hµν(x)− (∂µξν + ∂νξµ). (1.16)

This transformation is referred to as gauge transformation of hµν (Maggiore, 2007, chap. 1).

We can fix a gauge to study the independent components of hµν . We define

h = η
µν
hµν (1.17)

h̄µν = hµν −
1

2
ηµνh (1.18)

and we use Eq. (1.16) to choose the Lorentz gauge

∂
ν
h̄µν = 0. (1.19)

Observing Eq. (1.19) does not fix the gauge completely. The Lorentz gauge in Eq. (1.19) is not

influenced by a further coordinate transformation x
′µ

= x
µ
+ ξ

µ
with (Maggiore, 2007, chap. 1)

�ξ
µ
= 0. (1.20)

The gauge conditions Eq. (1.19) and Eq. (1.20) fix 8 of the 10 components of h̄µν . Consequently,

there are only two degrees of freedom of h̄µν .

By using Eq. (1.12), (1.14), (1.18), (1.19) and Eq. (1.20), we can obtain a simple wave

equation for h̄µν :

�h̄µν = −16πG

c4
Tµν . (1.21)
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This equation is similar to Maxwell’s electromagnetic equation and so h̄µν represents “gravitational

waves”. The two degrees of freedom of h̄µν are referred to as the two polarization components of

the gravitational waves.

To explore the detection of gravitational waves, we are interested in the wave equation

Eq. (1.21) outside the gravitational wave source, i.e., where Tµν = 0,

�h̄µν = 0. (1.22)

We can further simplify the form of h̄µν in vacuum. We choose the zeroth component ξ
0
such that

the trace h̄ = 0. This gauge choice does not influence the wave equations of motion since we now

only consider the waves outside the source (see Eq. 1.22). Correspondingly, we have h̄µν = hµν

with the traceless condition on h̄µν (see Eq. 1.18). We then choose the three other components

of ξ
µ
so that h0i = 0, where the index i ranges from 1 to 3. Consequently, the Lorentz condition

Eq. (1.19) becomes

∂
0
h00 = 0

∂
j
hij = 0. (1.23)

We can see that h00 becomes a constant in time, which corresponds to the static gravitational po-

tential of the source. We can set h00 = 0 as far as we only concern the time-dependent gravitational

waves. Correspondingly, our gauge choice can be summarized as:

h
0µ

= 0, h
i

i
= 0, ∂

j
hij = 0. (1.24)
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This gauge condition is called the transverse-traceless (TT) gauge (Misner et al., 1973). The TT

gauge simplifies Eq. (1.22) as (Maggiore, 2007, chap. 1)

�h
TT

lm
= 0 (1.25)

where h
TT

lm
is the metric perturbation hµν in the TT gauge. The plane wave solution of Eq. (1.25)

with gauge condition Eq. (1.24) is (Misner et al., 1973)

h
TT

lm
(t, ~x) = h(+)(t− k̂ · ~x)e(+)

lm
(k̂) + h(×)(t− k̂ · ~x)e(×)

lm
(k̂) (1.26)

where k̂ is the unit vector representing the gravitational wave propagation direction; h(+,×) are re-

spectively “+” and “×” polarization components of gravitational waves; e
(+,×)

lm
are the polarization

tensors:

e
(+)

lm
= ûlûm − v̂lv̂m (1.27)

e
(×)

lm
= ûlv̂m + v̂lûm (1.28)

with û, v̂ unit vectors orthogonal to the propagation direction k̂ and to each other.

1.2.2 Gravitational wave detection with a pulsar timing array

Detecting gravitational waves requires being sensitive to the interactions between our detec-

tor and gravitational waves. For pulsar timing, the detector is the pulsar-Earth system and what we

try to measure are the interactions between gravitational waves and the pulses generated from the

pulsar. Following Finn & Lommen (2010), the jth pulsar timing response to a plane gravitational
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wave can be written as

τj(t) =
∑

A=+,×
F

(A)

j
(k̂)

[
τ(A)(t)− τ(A)(t− Lj(1 + k̂ · n̂j))

]
(1.29)

where τ(A) is the integral of h(A)

d τ(A)

du
= h(A)(u) (1.30)

and F
(A)

is the antenna pattern function of the pulsar-Earth system,

F
(A)

j
(k̂) = −

n̂
l

j
n̂
m

j
e
(A)

lm
(k̂)

2(1 + k̂ · n̂j)
(1.31)

where n̂
l

j
is the direction from Earth toward the jth pulsar, and Lj is the distance of the jth pulsar

to the Earth. We can see that the pulsar timing response to a plane gravitational wave is the

sum of two functionally identical terms, one time-shifted with respect to the other by an amount

proportional to the Earth-pulsar distance along the wave propagation direction. The first term is

referred to as the “Earth term”, while the second is referred to as the “pulsar term.”

Eq. (1.29) is the model for the pulse arrival time corrections induced by gravitational waves,

which will be used in pulsar timing data analysis to search for evidence of gravitational waves in

pulsar timing residuals. In order to reduce the false alarm probability and improve the detection

sensitivity, we use a pulsar timing array, i.e., a collection of pulsars, rather than one single pulsar

to detect gravitational waves, which can help search for the pattern in Eq. (1.31) that is uniquely

produced by gravitational waves (Hellings & Downs, 1983; Foster & Backer, 1990).
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1.2.3 Gravitational wave sources

Pulsar timing arrays are sensitive to gravitational waves of period ranging from months

(observation cadence) to years (observation duration). Sources that radiate gravitational waves in

this band include double black hole systems with total mass of ∼ 10
7 − 10

10
M⊙ (Sesana et al.,

2008, 2009).

Supermassive black holes are expected to be present at the centers of almost all massive

galaxies in the universe (Haiman et al., 2009). In the late stage of galaxy mergers, supermassive

black hole binaries will form or encounters between two supermassive black holes will take place

(Sesana et al., 2008, 2009; Haiman et al., 2009). These are the most anticipated gravitational

wave sources in the pulsar timing array waveband. For slowly evolving black hole binaries, their

gravitational wave signals are continuous waves. For black hole encounters, their gravitational wave

signals may appear as bursts. The following chapters describe data analysis methods for all of these

sources.

1.3 Data analysis

The magnitude of pulse arrival time corrections induced by gravitational waves in the PTA

waveband is ∼ 1 − 10ns (Sesana et al., 2008, 2009). However, the rms of the stochastic timing

noise contained in timing residuals for our current pulsar timing array is ∼ 30ns− 1.5µs (Demorest

et al., 2012). Therefore, the gravitational wave signals we try to detect by pulsar timing arrays are

extremely weak compared with the timing noise, and correspondingly we need to do careful data

analyses to achieve our goal. In this thesis, I mainly develope Bayesian analysis methods and apply

them to analyze simulated pulsar timing data sets. Here I give a brief overview of Bayesian data

analysis.
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1.3.1 Overview of Bayesian data analysis

We denote θ as the set of parameter values that characterizes the model of the pulse arrival

time corrections induced by gravitational waves. To infer θ is to estimate the probability density

of θ given the timing residuals d we have observed. This probability density is referred to as the

posterior probability density, denoted p(θ|d). Exploiting Bayes theorem, we can obtain:

p(θ|d) = Λ(d|θ)π(θ)
Z(d)

(1.32)

where Λ(d|θ) denotes the likelihood function representing the probability of observing timing resid-

uals d given that the gravitational wave signal is characterized by the particular parameter set θ;

π(θ) denotes our expectations, expressed as a probability density, of the values that θ may take

on prior to analyzing the data d; and Z(d) denotes normalization constant that makes p(θ|d) a

probability density.

The general framework for the Bayesian inference of θ is to

(1) assign probability density to express our a priori expectation of θ;

(2) model the likelihood function of the timing residuals d we have observed;

(3) compute the posterior probability density via Eq. (1.32).

In a Bayesian analysis the posterior probability density contains the full inference of the parameter

set θ.

1.3.2 Detection

To claim a detection of gravitational waves, we need to decide whether our observations do

in fact include a gravitational wave signal. We adopt an information-theoretic approach to the

problem of deciding whether we have detected the signal.
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1.3.2.1 Introduction

Two different approaches to the problem of detection are found in the gravitational wave

data analysis literature. The majority of the literature treats detection as a Neyman-Pearson

hypothesis testing problem (e.g. Jenet et al., 2005, 2006; van Haasteren et al., 2009, 2011; Ellis

et al., 2012b,c), while more recent work has approached the problem as one of Bayesian model

selection (e.g. Finn & Lommen, 2010; Arzoumanian et al., 2014), to be decided via the calculation

of the appropriate Bayes Factor (Kass & Raftery, 1995). Here we introduce a third approach,

motivated by information theory, that makes use of the so-called Deviance Information Criterion

(DIC, Spiegelhalter et al., 2002).

Why is a third approach needed? When we speak of detection the question we are interested

in is how likely it is that we have observed a gravitational wave source. Neyman-Pearson hypothesis

tests address a different question (Neyman & Pearson, 1933): assuming that a signal is absent, is the

calculated value of the test statistic unusual (i.e., occurs in less than a fraction α of observations)?

Notice that nothing about the signal that we are trying to detect enters into any calculations that

we perform in evaluting the test statistic or its threshold and, not surprisingly, neither does the

conclusion drawn address how much confidence we should ascribe to any claim of detection.

The Bayesian model comparison attempts to address the question of confidence by evaluating

the data-dependent contribution to the relative probability of the two hypotheses “signal present”

and “signal absent”. This ratio of probabilities separates neatly into two terms. One of these,

the so-called Bayes Factor, is strictly objective and depends only on the observations and the

characteristics of the measurement noise. The other, which is data independent, depends only upon

prior beliefs in the relative likelihood of the two hypotheses (Kass & Raftery, 1995). When there is

a generally agreed upon prior belief in the relative probability of the two alternative hypotheses all

observers will agree on exactly what an observation “says”; when there is disagreement it is always
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traceable to disagreement in prior beliefs. In either case the Bayes Factor is an objective measure

of what an observation contributes to the conclusion.

As appealing as the Bayes Factor is for assessing the data-derived evidence in favor of the

hypothesis that a signal has been detected, in real applications it may suffer from shortcomings that

render it useless or near useless. The Bayes Factor B associated with obserations d and the two

alternative models M0 and M1 is the ratio of the probabilities of observing d under the different

model assumptions (Kass & Raftery, 1995):

B =
ΛM1

(d|M1)

ΛM0
(d|M0)

. (1.33)

where Λ(d|M) is the probability of making the particular observation d under the hypothesis M.

Now suppose that M0 is the null hypothesis (i.e., d is noise only) and M1 is the hypothesis that a

signal from, e.g., a gravitational wave, is present. The probability ΛM1
(d|M1) then depdends on

the priors associated with the parameter vector θ that characterizes a binary system in model M1:

ΛM1
(d|M1) =

∫
Λ(d|θ,M1)π(θ|M1) dθ. (1.34)

For an improper prior π the marginalized likelihood ΛM1
(d|M1), and consequently the Bayes

Factor, may be indeterminate, even though the posterior probability density of the parameters

may itself be proper. This high sensitivity of the Bayes Factor to the choice of prior is an example

of the Lindley-Bartlett Paradox (Shafer, 1982).

We may try to transform the improper prior to a proper prior by imposing some upper or

lower bounds on parameters and making the Bayes factor well defined. However, this procedure will

not solve the problem either, because the consequent marginalized likelihood of M1, determined

by Eq. (1.34), will depend on the cut-offs. As a result, the Bayes factor will be strongly sensitive to
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the uncertain cut-offs and the evidence of gravitational waves will depend on the subjective choices

of the upper or lower bounds of the parameters.

1.3.2.2 Deviance Information Criterion

The Deviance Information Criterion judges how well the data favors a model by the sum of

two terms (Spiegelhalter et al., 2002) — one term represents “goodness of fitting”, which measures

how well the model fits the data and is the negative log likelihood of the model; the other term

represents “the penalty of complexity”, which measures the degree of overfitting or the effective

number of parameters of the model (Spiegelhalter et al., 2002). The data favors the model with

smaller DIC (Spiegelhalter et al., 2002).

To study the mathematical structure of DIC, we first review how the non-Bayesian analysis

uses the combination of “goodness of fitting” and “penalty of complexity” to judge how well the data

favors a model. In non-Bayesian analysis, people generally use the Akaike Information Criterion

(AIC) to do model comparison (Akaike, 1974). The proposal of this criterion is motivated by the

logic of Kullback-Leiber (KL) divergence (Kullback & Leibler, 1951). Suppose that the data set y

is driven by a unknown process S, and we use a model M to characterize S. The KL divergence

is defined as:

DKL(S|M) =

∫
S log

S
Mdy. (1.35)

This is basically the entropy difference of the process S and the model M. It characterizes the

information loss of using the model M to characterize the true process S, i.e., the deviation of

M from S (Kullback & Leibler, 1951). We would like to choose a model M that minimize the

information loss. Akaike (1974) showed that for a large sample of data, the quantity

AIC = 2k − 2 log(Λ̂) (1.36)
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characterizes how much information is lost by using the model M to characterize S, where k is

the number of parameters used in the model and Λ̂ is the maximum likelihood of the model. This

quantity is called the Akaike Information Criterion. The second term −2 log(Λ̂) shows how well

the model fits the data (“goodness of fitting”) and the parameter number k indicates the model

complexity.

DIC is a Bayesian version of AIC. We define the deviance of a model as −2 times the

log-likelihood (Kullback & Leibler, 1951):

D(d,θ) = −2 log Λ(d|θ) (1.37)

If we set the parameter as the maximum likelihood estimator, then the deviance is same as the

second term −2 log(Λ̂) in Eq. (1.36). Therefore, this quantity characterizes the model discrepancy

(Spiegelhalter et al., 2002) and so the average of the deviance on posterior probability distribution

provides a summary of the error of the model M (Spiegelhalter et al., 2002):

Davg(d,M) =

∫
D(d,θ)p(θ|d)dθ. (1.38)

With the deviance defined above, we can define the complexity of a model. In the model M,

the parameter set that represents the model is θ. In Bayesian analysis, we can use the mean value

θ̄ of θ under its posterior probability density to be the Bayesian estimator of θ (Gelman et al.,

2004, chap. 6),

θ̄ =

∫
θ p(θ|d) dθ. (1.39)
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We can use the Bayesian estimator to represent the estimation of the model M. Correspondingly,

the excess of the true uncertainty over the estimated uncertainty will be denoted:

∆D(d,θ, θ̄) = D(d,θ)−D(d, θ̄) (1.40)

which can be thought as the reduction in uncertainty due to Bayesian estimation, or alternatively

the degree of overfitting due to θ̄ adapting to the data set d (Spiegelhalter et al., 2002). Corre-

spondingly, the mean value of ∆D under the posterior probability density summarizes the model

complexity or the degree of overfitting due to the model M adapting to the data set (Spiegelhalter

et al., 2002; Meng & Rubin, 1992)

pD(d,M1) =

∫
∆D(d,θ, θ̄) p(θ|d) dθ

= Davg(d,M1)−D(d, θ̄). (1.41)

We can see that when the posterior probability density of θ is approximately a Gaussian dis-

tribution, pD is approximately the trace of the product of the Fisher information matrix and the

posterior covariance matrix, which is the effective number of parameters (Spiegelhalter et al., 2002).

Therefore, pD is similar to the model parameter number k in AIC (see Eq. 1.36). It is reasonable

that the model complexity pD depends on the observed data set because matching the data with the

model would induce a statistical correlation among parameters that is likely to reduce the effective

dimensionality of the model, and the degree of the reduction may depend on the specific data set

(Spiegelhalter et al., 2002). Correspondingly the degree of overfitting of the model may depend on

the data set.

In analogy to AIC in Eq. (1.36), evaluating the deviance Eq. (1.37) at the Bayesian estimator

θ characterizes the “goodness of fitting” (similar to the second term −2 log(Λ̂) in Eq. (1.36)), and
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pD characterizes the model complexity. Following Eq. (1.36), Spiegelhalter et al. (2002) proposed

a Bayesian version of AIC, i.e., Deviance Information Criterion:

DIC(d,M) = D(d, θ̄,M) + 2pD(d,M). (1.42)

This quantity is referred to as Deviance Information Criterion. The data would favor the model

with smaller DIC, since such a model has a smaller discrepancy with the data and is less complex.

The difference between the DICs of two models M1 and M0 ,

∆DIC = DIC(d,M1)−DIC(d,M0) (1.43)

characterizes how much the timing residual observations favor M1 over M0. It is similar to twice

the negative natural logarithm of the Bayes factor (Kass & Raftery, 1995). Correspondingly, it

implies that exp(−∆DIC/2) has the same scale as the Bayes factor (Spiegelhalter et al., 2002). If

∆DIC . −10, it implies that the equivalent Bayes factor between the two models is ∼ 150. So it is

safe to conclude that the data strongly favors M1 and there is strong evidence that a gravitational

wave is present in the data set (Spiegelhalter et al., 2002).

1.3.2.3 Comparison of DIC and Bayes factor

Unlike the Bayes factor, the DIC is sensitive to the posterior probability distribution, which

must be proper, but not the prior probability distribution, which could be improper. Follow-

ing Eq. (1.32), the posterior distribution is the product of the data-dependent likelihood function

and the data-independent prior distribution. A robust estimation of the gravitational wave pa-

rameter set should be achieved primarily by the data-dependent likelihood function but not the

data-independent prior expectation. Correspondingly, when the evidence for gravitational waves is
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strong, the posterior distribution is determined primarily by the likelihood function and is insen-

sitive to the prior distribution. Therefore, the DIC is insensitive to the prior distribution, even if

the prior distribution is improper or has highly uncertain cutoffs.

The main weakness of DIC is that it is a quantity motivated by the AIC and KL divergence,

but not a rigorously derived one from statistics principles. In particular, the definition of the model

complexity pD is ad hoc. However, given the premature status of the research on Bayesian model

comparison (Spiegelhalter et al., 2002), DIC may be one of the best choices.

1.3.3 Computational method

We need to robustly compute and sample the posterior probability distribution to estimate

the gravitational wave parameter set and infer whether the evidence for gravitational waves is

strong. When the gravitational wave parameter set is high dimensional, the simulation of the

posterior probability distribution requires a highly efficient computational method. Markov Chain

Monte Carlo (MCMC) is designed for this purpose (Robert & Casella, 2004) and I will give a brief

summary here.

1.3.3.1 Markov Chain Monte Carlo

The Markov Chain Monte Carlo method is a stochastic method to sample a high dimen-

sional probability distribution. The Metropolis-Hastings algorithm is one of the MCMC methods

(Metroplis et al., 1953; Hastings, 1970) that I primarily use to simulate the posterior probability

distribution in the case of gravitational wave simulated data analysis.

To simulate the posterior probability distribution p(θ|d), the Metropolis-Hastings algorithm

follows the following procedure:

(1) Choose an initial parameter set θ0;
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(2) Choose a proposal distribution q conditioned on θ0, and sample a parameter set θ̃ from the

conditional distribution q, i.e.,

θ̃ ∼ q(·|θ0) (1.44)

(3) Take the next step parameter set θ1 as

θ1 =





θ̃, with probability ρ(θ0, θ̃)

θ, with probability 1− ρ(θ0, θ̃)

(1.45)

where

ρ(θ0, θ̃) = min

{
p(θ̃|d)
p(θ0|d)

q(θ0|θ̃)
q(θ̃|θ0)

}
(1.46)

(4) repeat step (1) (2) (3) and generate a chain of parameter set θ. Such a chain of θ forms a

sample of the posterior distribution p(θ|d) (Robert & Casella, 2004, chap. 7).

1.3.3.2 Convergence diagnostics

We must obtain a convergent sample of the parameter set θ in order to robustly simulate

the posterior probability distribution p(θ|d). To achieve this goal, the sample we draw by the

Metropolis-Hastings algorithm must be of sufficient size with appropriate burning in and thinning

steps
1
. In order to improve the convergence of the MCMC sample, we usually draw several

chains independently with different initial conditions and then combine all the chains, which further

reduces the effect of initial values and autocorrelation (Robert & Casella, 2004, chap. 12).

1
Burning in M steps means throwing away the first M steps of the MCMC chain of θ to minimize the

effect of initial values. Thinning k steps means keeping only every kth step of the chain to reduce any
autocorrelation of the sample (Robert & Casella, 2004, chap. 12).
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There are several methods to check the convergence of the MCMC sample (Robert & Casella,

2004, chap. 12) and I use the spectral analysis proposed by Geweke (1992) in my thesis. The method

is to check the similarity between the first part and the last part of the MCMC sample. Assuming

that the MCMC sample contains N , Geweke (1992) proposes the Z-score of the sample as

Z =
µA − µB√
σ2
A

NA
+

σ2
B

NB

(1.47)

where µA and µB are respectively the mean values of the first NA and the last NB draws of the

sample; and σ
2

A
and σ

2

B
are respectively the variances of the first NA and the last NB draws of the

sample. The values of NA and NB suggested by Geweke (1992) are NA/N = 0.1 and NB/N = 0.5.

When the MCMC sample is multi-dimensional, we need to compute the Z-score for each of the

parameters.

In the following chapters, I use the Metropolis-Hastings algorithm to simulate posterior

probability distributions of all the parameters in all different simulated pulsar timing data sets.

For each simulated data set, I sample 20 chains with 5 million draws for each chain. I burn-in 1

million draws and thin every 100-step for each chain. I will show that the absolute values of the

Z-scores are all less than 1/3, which indicates the probability that the samples are convergent is

greater than 74%.
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1.4 Application of gravitational wave data analysis methods to detect exoplan-

etary systems

1.4.1 Overview of exoplanet detection

Over the last decade, improvements in astronomical instrumentation have led to rapid

progress in the detection and study of exoplanets and exoplanetery systems. There are primarily

two techniques that lead to the discovery of exoplanets (Roques et al., 2014):

(1) Radial velocity — use Doppler spectroscopy to measure the radial velocity variations
2
of the

stars that may be induced by the gravity of the orbiting planets (Lovis & Fischer, 2010). So

far there have been about 592 exoplanets detected by this method (Roques et al., 2014).

(2) Transit photometry — use a photometric method to measure the small drop of the brightness

of the stars due to the transits of surrounding planets in front of the stars (Winn, 2010). So

far there have been about 1189 exoplanets detected by this method thanks to the launch of

the Kepler Space Telescope (Roques et al., 2014).

There are also several other techniques that lead to the discovery of a small fraction of planets

such as gravitational microlensing, direct imaging, pulsar timing, astrometry, etc. (Seager, 2010;

Perryman, 2014).

1.4.2 Radial velocity planet detection

The radial velocity (RV) method detects planets indirectly, observing the velocity variations

of the host star along the line of sight that are induced by the motion of the host star about the star-

planet system’s center of mass. These radial velocity variations can be detected spectroscopically,

2
Radial velocity is the velocity of the star in the direction of the line of sight between the star and the

Earth
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observing the small Doppler shifts of the star’s spectral lines due to its motion about the system

barycenter (Lovis & Fischer, 2010).

Assuming that the orbit of a planet of mass m2 around a host star of mass m1 is a Keplerian

orbit with a period P and an eccentricity e, the radial velocity variation of the host star induced

by the surrounding planet is then (Lovis & Fischer, 2010)

Vr = K [cos(Θ + ω) + e cosω] (1.48a)

where ω is the longitude of periastron passage; Θ is the true anomaly of the elliptical Keplerian

orbit; and K is the semiamplitude of the RV variations.

The true anomaly Θ is the solution of Kepler’s equation,

tan

(
Θ

2

)
=

(
1 + e

1− e

)
1/2

tan

(
E

2

)
(1.48b)

E − e sin(E) =
2π

P
(t− t0) (1.48c)

where E mean anomaly and t0 is the time of periastron passage.

The semiamplitude of the RV variations K induced by the surrounding planet can be ex-

pressed as

K = 28.43m s
−1

(
1√

1− e2

)(
m2 sin ι

MJupiter

)(
m1 +m2

M⊙

)−2/3(
P

yr

)−1/3

(1.49)

where ι is the orbital inclination angle.

Therefore, based on Eq. (1.48), if we detect a planet in RV data, we can determine its five

Keplerian orbital parameters: semiamplitude K, orbital period P , orbital eccentricity e, longitude

of periastron passage ω and time of periastron passage t0.
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1.4.3 Detecting exoplanets around giant stars

Although the majority of planets detected to date have focused on dwarfs (Roques et al.,

2014), planets have also been found around giant stars (e.g. Sato et al., 2003; Gettel, 2012; Niedziel-

ski et al., 2015). It is important to study planetary systems around a broad range of evolutionary

states of host stars, to ensure that we have a complete picture of planet formation and evolution.

In main sequence A-F stars with masses & 1.5M⊙, the lower number of spectral features and their

rotational broadening make it difficult to reach a high RV precision of Doppler spectroscopy (Lovis

& Fischer, 2010; Gettel, 2012). As a result, we have little direct information about the formation

and evolution of planets around intermediate mass stars. As these stars evolve off the main se-

quence and into giant stars, their atmospheres cool and form many narrow spectral lines, making

them accessible to radial velocity planet searches (Gettel, 2012). Correspondingly, detecting planets

around giant stars is particularly valuable, as it allows us to study the planetary systems around

intermediate mass stars.

The first robust detection of a planet around a giant star involved HD 104985 (Sato et al.,

2003) from a survey of 300 stars at the Okayama Astrophysical Observatory. So far there have

been about 50 planets around giant stars detected (Niedzielski et al., 2015). The Penn State-Torun

Planet Search (PTPS), using the Hobby Eberly Telescope (HET), is currently the largest survey

of planets around giant stars with ∼ 1000 targets (Niedzielski et al., 2007; Zieliński et al., 2012;

Adamów et al., 2014). My work on detecting exoplanets around giant stars is in collaboration with

the PTPS group.

1.5 Outline

Chapter 2 proposes a method to determine the luminosity distances of nearby gravitational

wave sources by measuring the gravitational wave phasefront curvature via a pulsar timing array.
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This work was published in the Monthly Notices of Royal Astronomical Society 414, 58 (2011).

Chapter 3 proposes a Bayesian nonparametric method aimed at detecting gravitational wave bursts

from PTA data. This work was published in Physical Review D 90, 104029 (2014). Chapter

4 proposes a Bayesian nonparametric method aimed at detecting a generic gravitational wave

background via PTAs. This work was published in Physical Review D 90, 024020 (2014). Chapter

5 proposes a Bayesian parametric method aimed at detecting gravitational waves from slowly

evolving supermassive black hole binaries via PTAs. In Chapter 6, I describe the application of

Bayesian analysis to analyze a set of radial velocity data collected by the Hobby-Eberly Telescope

to detect an exoplanetary system around a K0 giant star.
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Chapter 2

Pulsar Timing Array Observations of

Gravitational Wave Source Timing Parallax

2.1 Introduction

As a gravitational wave detector a PTA is large: its size L (on order of kpc) is much

greater than the gravitational radiation wavelength scale λ (on order of pc) that we use to probe it.

The conventional approximation of gravitational waves as plane-fronted applies only for sources at

distances R≫ L
2
/λ. Correspondingly, for point gravitational wave sources closer than ∼ 100Mpc,

the curvature of the gravitational radiation phasefronts contributes significantly to the detector

response. Analyses focused on the discovery of such sources must take proper account of the

curvature of the radiation phasefront. In this chapter we evaluate the PTA response to gravitational

wave point sources including the important wavefront curvature effects. Taking the wavefront

curvature into account the relative amplitude and phase of the timing residuals associated with a

collection of pulsars allow us to measure the distance to, and sky position of, the source.

In §2.2 we evaluate the pulse arrival time disturbance associated with a spherically-fronted

gravitational wave traversing a pulsar-Earth line-of-sight and compare it with the response to the

same wave in the plane-wave approximation. In §2.3 we describe how, owing to their sensitivity

to gravitational radiation phasefront curvature, PTA observations of point sources can be used to

measure or place lower bounds on the distance to the source and, more surprisingly, the distance

to the array pulsars. Finally we summarize our conclusions in §2.4.

This work was published as X. Deng & L. S. Finn, 2011, Monthly Notices of Royal Astro-

nomical Society 414, 58.
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2.2 Pulsar timing residuals from spherically-fronted gravitational waves

2.2.1 Timing residuals

We focus our attention on the electromagnetic field associated with the pulsed emission

of a pulsar and denote the field phase, at the pulsar, as φ0(t). We are interested in the time-

dependent phase φ0(t) of the electromagnetic field associated with the pulsed emission measured

at an Earth-based radio telescope, which we write as

φ(t) = φ0[t− L− τ0(t)− τGW(t)] (2.1a)

where

τ0 =




Corrections owing exclusively to the spatial motion of the Earth

within the solar system, the solar system with respect to the pulsar,

and electromagnetic wave propagation the interstellar medium




(2.1b)

τGW =

(
Corrections owing exclusively to a gravitational wave

)
(2.1c)

L = (Earth-pulsar distance) . (2.1d)

(Note that we work in units where c = G = 1.)

In the absence of gravitational waves τGW vanishes and the phase front φ0(t) arrives at Earth

at time t⊕(t) = t+L+ τ0(t). In the presence of a gravitational wave signal the phase front arrives

at time t⊕(t) + τGW(t); thus, τGW is the gravitational wave timing residual. Following Finn (2009)

Eqs. (3.26) and (3.12e), the arrival time correction τGW(t) is

τGW(t) = −1

2
n̂
l
n̂
mHlm(t) (2.2a)
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where Hlm is the integral of the transverse-traceless metric perturbation over the null geodesic

ranging from the pulsar to Earth:

Hlm(t) = L

∫
0

−1

hlm (t+ Lξ,P − L(1 + ξ)n̂) dξ (2.2b)

P = (Pulsar location) (2.2c)

n̂ = (Unit vector pointing from Earth to pulsar) . (2.2d)

2.2.2 Gravitational waves from a compact source

At a point located at X in the perturbative regime far from the source the transverse-

traceless gauge gravitational wave metric perturbation associated with radiation from a compact

source may be written (Finn, 1985)

hlm(t,X ) =

∫ ∞

−∞
h̃lm(f, k̂)e

−2πift
df (2.3a)

=
1

|X − S|

∫ ∞

−∞

[
Ãlm(f, k̂)e

2πif |X−S|]
e
−2πift

df (2.3b)

where

S = (source location) (2.3c)

k̂ =
X − S
|X − S| = (unit vector in direction of wave propagation at X ) . (2.3d)

The Fourier coefficient functions Ãlm(f, k̂) are everywhere symmetric, traceless and transverse with

respect to X − S: i.e.,

Ãlm(f, k̂) = Ã+(f, k̂)e
(+)

lm
+ Ã×(f, k̂)e

(×)

lm
(2.4)
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where e
(+)

lm
(k̂) and e

(×)

lm
(k̂) are the usual transverse-traceless gravitational wave polarization tensors

for waves traveling in direction k̂.

2.2.3 Response function

With expression 2.3 for hlm we can evaluate Hlm in the Fourier domain:

H̃lm(f) = L

∫
0

−1

h̃lm (f,P − L(1 + ξ)n̂) e
−2πifLξ

dξ (2.5a)

= L

∫
0

−1

Ãlm

(
f, k̂(ξ)

)

|P − L(1 + ξ)n̂− S| exp [2πif (−Lξ + |P − L(1 + ξ)n̂− S|)] dξ (2.5b)

Figure 2.1 describes the Earth-pulsar-source geometry: note we define R to be the Earth-

source distance and θ the angle between the Earth-pulsar and Earth-source lines-of-sight. Along

the path traversed by the pulsar’s electromagnetic pulse phase fronts (P −Lξn̂ for −1 ≤ ξ ≤ 0) we

may write

k̂(ξ) =
P − L(1 + ξ)n̂− S
|P − L(1 + ξ)n̂− S| (2.6a)

r(ξ) = (distance between gravitational wave phase front and source)

= |P − L(1 + ξ)n̂− S| = R

[
1 + 2

Lξ

R
cos θ +

(
Lξ

R

)
2
]1/2

. (2.6b)

From Equations 2.5 and 2.6b we note that the time of arrival disturbance owing to a passing

gravitational wave depends on the dimensionless quantities πfL and L/R. PTA pulsar distances L

are all of order kpc. Gravitational waves detectable via pulsar timing observations have frequencies

greater than the inverse duration of the observational data set and less than the typical sampling

period: i.e., 10
−5

Hz & f & 10
−9

Hz. Strong sources of gravitational waves (e.g., supermassive

black hole binaries and triplets) in this band are all expected to be extragalactic, with significant



32

numbers within roughly 100 Mpc (Sesana & Vecchio, 2010). The scales of interest are thus either

very large or very small

ǫ = 10
−5
(

L

1 kpc

)(
100Mpc

R

)
(2.7a)

πfL = 10
4
(

f

1 yr−1

)(
L

1 kpc

)
(2.7b)

πfLǫ = 10
−1
(

f

1 yr−1

)(
L

1 kpc

)
2
(
100Mpc

R

)
, (2.7c)

where we have introduced ǫ to denote the dimensionless L/R. Taking advantage of these scales the

Fourier transform H̃lm(f) may be expressed

H̃lm(f) = L

∫
0

−1

h̃lm (f,P − L(1 + ξ)n̂) e
−2πifLξ

dξ (2.8a)

= L

∫
0

−1

Ãlm

(
f, k̂(ξ)

)

|P − L(1 + ξ)n̂− S|e
2πif(−Lξ+|P−L(1+ξ)n̂−S|)

dξ (2.8b)

= Ãlm(f, k̂0)
exp

[
πifR

(
2− 1−cos θ

1+cos θ

)]

√
fR sin θ

e
−iπ/4

2
erf
[
e
iπ/4

x
]∣∣∣

√
πfR

ǫ(1+cos θ)+1
1+cos θ

sin θ

x=
√
πfR sin θ
1+cos θ

×
[
1 +O(ǫ) +O

(
ǫ
∂ log Ã

∂k̂
· n̂
)]

. (2.8c)

Except when θ ≤ (πfR)
−1/2 ≪ 1 the error function arguments are always large in magnitude.

Taking advantage of the asymptotic expansion of erf(z) about the point at infinity,

erf(z) ∼ 1−
exp

(
−z2

)

z
√
π

(2.9)
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we may thus write

τ̃gw = −1

2
n̂
l
n̂
mH̃lm(f) (2.10a)

= τ̃pw + τ̃cr (2.10b)

where

τ̃pw = (plane wave approximation timing residual)

= 2Ã(f, k̂0) exp

(
2πifL sin

2 θ

2

)
sinc

(
2πfL sin

2 θ

2

)
(2.10c)

τ̃cr = (phasefront curvature correction to plane wave timing residual)

= ǫ (1 + cos θ) Ã(f, k̂0) exp

[
πifL

(
4 sin

2 θ

2
+
ǫ

2
sin

2
θ

)]
sinc

[
πfLǫ

2
sin

2
θ

]
(2.10d)

Ã(f, k̂0) =
iǫ

4

[
n̂
l
n̂
m
Ãlm(f, k̂0)

]
exp [2πifR] (2.10e)

and

sinc(x) =




Unnormalized

sinc function


 =

sin(x)

x
. (2.10f)

These expressions are valid for all πfL≫ 1.

2.3 Discussion

The Fourier amplitude and phase of the gravitational wave timing residual τ̃GW for any par-

ticular pulsar depend on the pulsar’s position and distance relative to the position and distance of

the gravitational wave source, and the relative amplitude of the signal in the two gravitational wave
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λ

θ

P

S

R

Fig. 2.1 Gravitational wave source (depicted as a binary system), Earth and pulsar. The gravita-
tional wave phasefronts intersect the pulsar-Earth path, traveled by the electromagnetic pulses, in
a manner that depends on the distance to the source and the source-Earth-pulsar angle θ.
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polarizations. Correspondingly, observation in four or more pulsars of the gravitational wave timing

residuals associated with a single source can, in principle, be used to infer the three-dimensional

source position and location on the sky. In this section we discuss the conditions under which

sufficiently accurate measurements of the τ̃GW are possible and provide a proof-of-principle demon-

stration of how they may be combined to determine the sky location and distance to a gravitational

wave source.

2.3.1 Plane wave approximation timing residuals

We focus our attention first on τ̃pw: the plane-wave approximation to τ̃gw. In order to relate

the angular location of a gravitational wave source to the relative amplitude and phase of the τ̃pw

for two or more PTA pulsars the uncertainties σL in the Earth-pulsar distances, and σθ in pulsar

sky locations, must satisfy

σL . 2 pc

(
0.1 yr

−1

f

)(
1/2

sin2(θ/2)

)
(2.11a)

σθ . 2.5
′
(
0.1 yr

−1

f

)(
kpc

L

)(
π/4

| sin θ|

)
. (2.11b)

The constraint on pulsar angular position accuracy is not a severe one; however, the constraint

on pulsar distance accuracy is quite significant. For this reason previous pulsar timing searches

for periodic gravitational waves (Yardley et al., 2010; Jenet et al., 2004; Lommen & Backer, 2001;

Lommen, 2001) have sought only to identify an anomalous periodic contribution to pulse arrival

times, avoiding explicit use of the amplitude of τ̃gw.

Improvements in instrumentation and timing techniques are making possible pulsar distance

measurements of the accuracy and precision necessary to relate the τ̃pw to the gravitational wave

source angular location. For example, in recent years a succession of VLBI observations have
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established the distance to J0437− 4715 with an accuracy of ±1.3 pc (Verbiest et al., 2008; Deller

et al., 2008; Deller, 2009); correspondingly, for J0437−4715 predictions of the amplitude and phase

of τ̃pw can be made and take part in the analysis of timing data to search for gravitational waves

at frequencies f . 0.1 yr. Accurate pulsar distance measurements have been identified as a crucial

element of a continuing program to use precision pulsar timing and interferometry to test gravity

and measure neutron star properties; correspondingly, we can reasonably expect that the number

of pulsars with high-precision distances will increase rapidly over the next several years.

Looking toward the future, observations with the SKA (Smits et al., 2009) using existing

timing techniques are expected to be capable of measuring timing parallax distances to millisecond

pulsars at 20 kpc with an accuracy of 20% (Smits et al., 2011). When measured by VLBI or timing

parallax the fractional uncertainty in the pulsar distance is equal to the fractional uncertainty in

the semi-annual pulse arrival time variation owing to the curvature of the pulsar’s electromagnetic

phasefronts: i.e.,

σL
L

=
στ
∆τ

(2.12a)

where σ
2

τ
is the timing noise power in the bandwidth T

−1
(for T the observation duration) about

a frequency of 2/yr and

∆τ =
(au
2c

)(au
L

)
= 1.2µs

(
kpc

L

)
(2.12b)

is the peak-to-peak variation in the pulse arrival time residual owing to the curvature of the pulsar’s

electromagnetic phasefronts. Correspondingly, a 20% accuracy measurement of the distance to a

pulsar at 20 kpc corresponds to a 0.5% accuracy measurement of the distance to a pulsar of the στ

at 500 pc: i.e., 2.5 pc.
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This estimate of σL = 2.5 pc for a pulsar at 500 pc assumes constant signal-to-noise and,

correspondingly, constant timing precision στ . Closer pulsars will have greater fluxes and, corre-

spondingly, better timing precision; consequently we may regard this as an upper bound on the

distance measurement error σL. If we assume that σ
−2

τ
is proportional to the pulsar energy flux

then

στ = 0.6 ns

(
L

kpc

)
(2.13a)

σL = 0.5 pc

(
L

kpc

)
3

; (2.13b)

i.e., if the only barrier to improved timing precision is signal-to-noise then sub-parsec precision

distance measurements should be possible in the SKA era for pulsars within a kpc.
1

In practice other contributions to the noise budget will eventually limit the timing precision.

Among these the most important are intrinsic pulsar timing noise, pulse broadening owing to

scattering in the interstellar medium (ISM) and tropospheric scintillation. Recent improvements

in pulsar timing techniques (Lyne et al., 2010) suggest that intrinsic pulsar timing noise need

not limit timing precision measurements in either present or future instrumentation. Unresolved

pulse broadening owing to scattering in the ISM will limit the attainable στ and, thus, σL. For

nearby (L < 1 kpc) pulsars the measured pulse broadening at ν = 1 GHz is typically in the 1–

10 ns range (Manchester et al., 2005). Since pulse broadening scales with observation frequency as

ν
−4.4

(though observations suggest the index may be closer to −3.9 (Bhat et al., 2004)) scattering

in the ISM also need not limit our ability to measure the distance to nearby pulsars. Finally,

1
These estimates are confirmed by recent work of Lee et al. (2011), who consider the role played by pulsar

timing parallax in identifying gravitational waves from supermassive black hole binaries. Corbin & Cornish
(2010) have also looked at how well pulsar distances may be determined from gravitational wave observations
of “chirping” black hole binary systems, where the combination of period evolution, source location, and
signal amplitude in the gravitational wave polarizations is sufficient to determine the source distance. They
find modest improvements in array pulsar distance estimates over a priori estimates may be possible, but
are by no means certain.
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recent estimates by Jenet et al. (2011) indicate that, for gravitational wave frequencies . yr
−1

,

tropospheric scintillation will contribute to the noise budget at no more than the 0.03 ns rms level.

Consequently, over the next decade σL . 1 pc is thus a reasonable expectation for millisecond

pulsars at distances up to a kpc.

2.3.2 Correction to plane wave approximation

We turn now to the ratio of Fourier amplitudes

ρ(f, k̂0) =
τ̃cr
τ̃pw

= exp

[
πifL

(
2 sin

2 θ

2
+
ǫ

2
sin

2
θ

)]

×
sin
(
1
2πfLǫ sin

2
θ
)

sin
(
2πfL sin2 θ2

) . (2.14)

When πfLǫ sin
2
θ ≥ 1 each of the sin functions whose ratio determines the ratio |ρ| has order-unity

magnitude and |ρ| oscillates rapidly from 0 to ∞. For a typical PTA pulsar (distance L ≃ kpc) this

will be the case for source frequencies greater than or of order yr
−1

and distances R less than or of

order 100 Mpc (cf. Eqs. 2.7). In this regime the gravitational wave phasefront curvature plays an

essential role in determining the response of a pulsar timing array.

As an example consider the residuals in the pulse arrival times for PSR J1939 + 2134 owing

to gravitational waves from a supermassive black hole binary system like that proposed by Sudou

et al. (2003) in the radio galaxy 3C66B at RA 2h23m11.4s, Dec 42
o
59’31” and luminosity distance

R = 85.8 Mpc (Sudou et al., 2003). The binary, ruled-out by the subsequent analysis of Jenet

et al. (2004), was supposed to have a total mass of 5.4× 10
10
M⊙, a mass ratio of 0.1, and a period

of 1.05 yr, corresponding to a gravitational wave frequency of 1.9 yr
−1

. Assuming these binary

parameters to be exact and taking the distance and location of J1939 + 2134 as provided by the
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ATNF pulsar catalog (Manchester et al., 2005) yields ρ = 1.1 exp[−0.86πi]: i.e., the magnitude of

the “correction” τcr is greater than the “leading-order” plane-wave approximation contribution, the

magnitude of τgw is 46% of that predicted by the plane wave approximation, and the phase of τgw

is retarded by π/2 radians relative to τpw.
2

2.3.3 Gravitational wave source distance and location on sky

The magnitude and phase of the plane-wave approximation Fourier coefficient function τ̃pw

depends on the distance to the associated pulsar and the pulsar-Earth-source angle. The correction

depends on these and, in addition, the source distance. Measurements of τ̃gw in a collection of

pulsars whose angular location and distance are known sufficiently accurately can thus be used to

measure the curvature of the gravitational radiation phase-fronts and, thus, the luminosity distance

and direction to the gravitational wave source.

Consider a periodic source of gravitational waves observed in an array of pulsars whose

distances and relative locations are known to high precision. The gravitational wave contribution

to the pulse arrival times for array pulsar ℓ may be represented by an amplitude and phase, which

will depend on the different ǫℓ = Lℓ/R, πfLℓ and θ for each pulsar ℓ in the array. Requiring that

these phases and amplitudes all be consistent is a powerful constraint on the source distance and

location on the celestial sphere.

As a crude but effective proof-of-principle demonstration of distance measurement by grav-

itational wave timing parallax consider observations made with a selection of International Pulsar

Timing Array (IPTA) pulsars with distances whose precision has been projected, as described

above, into the SKA era. We focus our attention on the example source in 3C66B. For this source

2
This comparison is meant only to illustrate the importance of τ

cr
in estimating τ

gw
. In this case the

distance to J1939 + 2134 is not known accurately enough to allow a prediction for an accurate estimate of
either τ

pw
or τ

gw
.
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(πf)
−1

= 0.051 pc. Following Equation 2.13, four pulsars currently monitored as part of the Inter-

national Pulsar Timing Array are close enough that we may expect their distance to be measured

with a one-sigma uncertainty of less than 0.025 pc. Table 2.1 lists these pulsars and their currently

measured distances. For these four pulsars:

1. Calculate the four τ̃gw for the example source in 3C66B described above. These complex

amplitudes, corresponding to periodic timing residual amplitude and phase, are our “obser-

vations”. Denote the τ̃gw for pulsar k by τ̃k.

2. Adopt approximate distances to each of these four pulsars consistent with normally distributed

measurement error with standard deviation as given in Equation 2.13.

3. Using these approximate distances evaluate

ψ
2
(r) =

∑

k

∣∣∣∣∣log
(
τ̃
′
k
(r)

τ̃k

)∣∣∣∣∣

2

(2.15)

where τ̃
′
k
(r) is the expected τ̃gw for pulsar k assuming the source at distance r and pulsar k

at the approximate distance found in step 2.

The quantity ψ
2
(r) is a measure of the misfit between the observations τ̃k and the prediction τ̃

′
k

assuming pulsars at the approximate distances and source at distance r. The r that minimizes

ψ
2
(r) is thus an estimator for the distance to the source. Figure 2.2 shows a set of three scatter

plots of the estimated r, declination θ, and right ascension φ relative to their actual values over 10
4

realizations of pulsar distance errors, for this example. Table 2.2 provides quantitative descriptive

statistics for the distribution of errors. Clearly, if the pulsar distances can be sufficiently accurately

determined, the distance and location of a detected periodic gravitational wave source can be

accurately measured.
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Fig. 2.2 Scatter plots of the timing parallax estimates of the distance, declination and right ascension
of a simulated gravitational wave source in 3C66B (i.e., r = 87.8 Mpc, dec=2

o
59

′
31

′′
and right

ascension 2h23m11). The top, middle and bottom panel are respectively the distance-declination,
distance-right ascension and declination-right ascension plots. See §2.3.3 for details.
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Table 2.1 Four nearby millisecond pulsars monitored as part of the International Pulsar Timing
Array and their current estimated distances. These four pulsars are close enough that, in the
SKA era, their distances, or the distances to pulsars like them, may become known to better than
0.025 pc.

J-Name kpc

J0437− 4715 0.16
J1741 + 1300 0.19
J0030 + 0451 0.30
J2124− 3358 0.25

Table 2.2 Mean, median and standard deviation of the timing parallax estimated distance and
location on the sky of a simulated gravitational wave source in 3C66B. In this example the source
was actually located at r = 87.8 Mpc, dec=2

o
59

′
31

′′
and right ascension 2h23m11s. Only the four

pulsars described in Table 2.1 were used to make these estimates. See §2.3.3 for details.
mean median std. dev.

r 85.72 Mpc 85.79 Mpc 0.99 Mpc

θ 42
o
59

′
31

′′
42

o
59

′
31

′′
0
o
0
′
5.3

′′

φ 2h23m11.0s 2h23m11.0s 0h0m0.3s

We emphasize that this is no more than a proof-of-principle demonstration. It is naive in

its treatment of uncertainties in the Lk, ignores pulsar timing noise in the measured τ̃k, presumes

a sufficiently accurate knowledge of pulsar locations θk, and makes use of an ad hoc misfit statistic

ψ
2
(r). Nevertheless, taken as a proof-of-principle demonstration it shows that the potential exists

for pulsar timing array observations to determine the distance to periodic gravitational wave sources

if the pulse arrival time dependence on the passing waves is properly modeled.

2.4 Conclusion

Gravitational waves crossing the pulsar-Earth line-of-sight lead to a disturbance in the pulsar

pulse arrival time. All previous derivations of this disturbance have assumed planar gravitational

wave phasefronts. The gravitational wave phasefronts from point gravitational wave sources —

e.g., coalescing supermassive black hole binary systems — are curved, with curvature radius equal

to the source luminosity distance. The approximation of planar wavefronts is thus valid only at

distances R≫ 2πfL
2
/c, where R is the Earth-source distance, L the Earth-pulsar distance, and f
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the gravitational radiation frequency. For typical pulsars distances (kpc) and relevant gravitational

wave frequencies (f . yr
−1

) the correction to the disturbance magnitude and phase owing to

phasefront curvature is thus significant for sources within ∼ 100Mpc. Here we have derived the

curved wavefront corrections to the pulsar timing response for such “nearby” sources, described

when they are important, and shown that future gravitational wave observations using pulsar

timing arrays may be capable of measuring luminosity distances to supermassive black hole binary

systems, and other periodic gravitational wave sources, approaching or exceeding 100 Mpc.

The gravitational wave source distance measurement described here is properly considered a

parallax distance measurement. The baselines over which the parallax is measured are, in this case,

the timing array pulsar-Earth baselines. Crucial to the ability to observe the effects of gravitational

wave phasefront curvature is a knowledge of the pulsar-Earth distance L with an uncertainty

σL . (πf)
−1 ∼ 2 pc (0.1yr

−1
/f). We argue that pulsar distance measurements of this accuracy,

while beyond present capabilities (except in the case of J0437− 4715, which is exceptionally bright

and close), are within the capability of SKA-era observations for pulsars at distances L . kpc.

When considered against the cosmic distance ladder, the distance measurement described

here involves three rungs to reach distances greater than tens of Mpc: first, the determination of the

astronomical unit; second, the distance to the array pulsars; finally, the distance to the gravitational

wave source. Since the method described here also provides the precise source angular position the

likelihood of identifying an electromagnetic counterpart (e.g., host galaxy) to the gravitational wave

source is great, raising the possibility of a precise measurement of both the redshift and luminosity

distance to a single object at cosmological distances, with the obvious consequences for independent

verification of the parameters describing our expanding universe.

Even in the absence of an electromagnetic counterpart measurement of the luminosity dis-

tance and angular location of a supermassive black hole binary system — the most likely source
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of periodic gravitational waves — enables the determination of the system’s so-called “chirp mass”

(Peters & Mathews, 1963) without the need to observe the binary’s evolution.

We have only begun to plumb the potential of gravitational wave observations as a tool

of astronomical discovery. While this potential will not be realized until gravitational waves are

detected and observations become, if not routine, at least more than occasional, explorations like

these will position us to more readily exploit the opportunities that future observations present.
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Chapter 3

Searching for Gravitational Wave Bursts via

Bayesian Nonparametric Data Analysis

with Pulsar Timing Arrays

3.1 Introduction

Gravitational wave bursts are a catch-all category for signals whose durations are much

shorter than the observation period. Bayesian analysis of gravitational wave detector data for

gravitational wave bursts has generally modeled possible sources in terms of a finite set of parame-

ters and their prior distributions (Seto, 2009; Pshirkov et al., 2010; Cordes & Jenet, 2012; Damour

& Vilenkin, 2001; Siemens et al., 2007; Leblond et al., 2009). The posterior distribution of the pa-

rameters is then determined by the observations. From the posterior parameter distribution either

a Bayes factor or signal-to-noise ratio is estimated and used to decide whether a burst has been

detected (e.g. Finn & Lommen, 2010). The choice of a finite set of parameters to model the burst

may impose unnecessary constraints on the form of the burst as a function of time. Additionally,

the Bayes Factor may be ill-defined or overly sensitive to the parameters or their prior distribu-

tion (Gelman et al., 2004, chap. 6). Here we adopt a non-parametric approach to the problem of

burst detection: instead of adopting a parameterized model for the burst and identifying parameter

priors, we adopt a Gaussian process
1
prior for the burst function itself and use the observations

to constrain the burst as a function of time (Rasmussen & Williams, 2006). We demonstrate our

1
A Gaussian process is a distribution p(f) over functions f , such that, for any finite subset of points in

the domain of f (e.g., {x
1
, x

2
, . . . , x

n
}) the marginal density p(f |{x

1
, x

2
, ..., x

n
}) is a multivariate Gaussian

distribution over {f(x
1
), f(x

2
), . . . , f(x

n
)} (Rasmussen & Williams, 2006, chap. 1).
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analysis method by appying it to simulated pulsar timing array data including a gravitational wave

burst.

Nonparametric data analysis refers to techniques that do not assume the model used to fit

the data is fixed (Gibbons & Chakraborti, 2003). Bayesian nonparametrics stem from the seminal

work of Ferguson (1973) and Doksum (1974), which tried to incorporate nonparametric statistics

into Bayesian methodology. The advantage of Bayesian nonparametrics over other nonparametric

techniques is that it is able to incorporate our expectations regarding the characteristics of the sig-

nals into a prior distribution to set a constraint on the feasible signal patterns we try to search from

the data (Rasmussen & Williams, 2006). O’Hagan first proposed that the general prior distribution

for regression analysis is a Gaussian process (O’Hagan, 1978). He also proved that the expected

characteristics of the signal patterns can be encoded into the mean and covariance of the Gaussian

process (O’Hagan, 1978). This approach has then been applied to solve various regression prob-

lems in geostatistics, meteorology, computer science, machine learning, etc (Rasmussen & Williams,

2006, chap. 2). Here we apply Bayesian nonparametric regression to search for gravitational wave

bursts in the pulsar timing array data.

In Section 3.2, we describe the general principles and methodology of Bayesian nonparamet-

ric analysis. In Section 3.3 we apply this method to analyze simulated pulsar timing array data

including the contribution from a gravitational wave burst. In Section 3.4 we illustrate the effec-

tiveness of this analysis by applying it to several representative examples. Finally, we summarize

our conclusions in Section 3.5.

This work is published as X. Deng, 2014, Physical Review D 90, 024020.
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3.2 Bayesian nonparametric methodology

Bayesian nonparametric analysis is introduced to analyze the data when analysts cannot

model the data by a set of fixed number of parameters (Walker, 2010). Here we give a brief

description of the basic framework of this methodology, applied to the analysis of time series data

that may include a signal we are trying to detect. We refer readers to Ghosh & Ramamoorthi

(2003); Rasmussen & Williams (2006); Hjort et al. (2010) for details and other applications of

Bayesian nonparametrics.

3.2.1 Framework of Bayesian nonparametric analysis

When we cannot model the signal by a fixed number of parameters, the Bayesian nonpara-

metric approach assigns a prior distribution on an infinite dimensional space of signal functions

and assigns probabilities to the functions in that space (Rasmussen & Williams, 2006, chap. 2).

For example, suppose that a time series y = {y(tk) : k = 1..n} consists of a signal described by the

function f, whose values at the tk are f(tk), and additive zero mean noise. We can assign a prior

distribution q(f) on f (Finn & Lommen, 2010); then by Bayes’ theorem, the posterior probability

density of f would be:

p(f |y) ∝ Λ(y|f)q(f) (3.1)

where Λ(y|f) is the likelihood function, which will be a Gaussian distribution of y if the noise is

Gaussian distributed. In our approach to Bayesian nonparametric inference, we will first choose a

prior q based on our expectation of f , and then infer f by computing the posterior p.

3.2.1.1 Likelihood function Λ

Our data set, which we denote y = {y1, y2, ..., yN}, consists of N samples from the signal

f superposed with noise, which we denote n = {n1, n2, ..., nN}. The samples are taken at times
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t = {t1, t2, ..., tN}. The noise is generally modeled as a Gaussian process with covariance C, and

the corresponding likelihood function is (Finn & Lommen, 2010)

Λ(y|f) = N(y − f |C)

=
exp

[
−1

2(y − f)
T
C

−1
(y − f)

]

√
(2π)dim y det ||C||

(3.2a)

where C denotes the noise covariance

Clm = 〈nlnm〉 (3.2b)

where 〈〉 denotes the ensemble average.

3.2.1.2 Prior probability density q

The probability density q(f) describes our expectations of the signal before we analyze the

data set y. It plays the key role in Bayesian nonparametric analysis since it sets a constraint on

the feasible function forms we try to explore (Sudderth, 2006).

In general, we may write f as a discrete Fourier transform since the observation times are

discrete (Summerscales et al., 2008; Bretthorst, 1988),

fα =

N∑

k

[
Ak cos(ωktα) +Bk sin(ωktα)

]
(3.3)

for signal f beginning at time t0 and ending at some later time t0+T , and with tα the observation

times in the interval [t0, t0 + T ]. Under the minimal assumption that there is no preferred signal

starting time t0 or duration it is straightforward to find an “ignorance prior” for each of the
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coefficients Ak and Bk (Bretthorst, 1988; Summerscales et al., 2008):

Qk(Ak|σk) =
exp(−A2

k
/2σ

2

k
)

√
2πσk

Qk(Bk|σk) =
exp(−B2

k
/2σ

2

k
)

√
2πσk

(3.4)

with N and σk undetermined.

In a conventional regression problem we would fix N and choose some prior for the σk

(Bretthorst, 1988). Instead, however, let us take a different approach. Noting that the Ak and Bk

are Gaussian random variables we may regard f as a Gaussian process with correlation function

Kαβ = 〈fα fβ〉

=
∑

k

[
σ
2

k
cos(ωktα) cos(ωktβ) + σ

2

k
sin(ωktα) sin(ωktβ)

]

=
∑

k

σ
2

k
cos
[
ωk(tα − tβ)

]
(3.5a)

The covariance Kαβ is referred to as the kernel of the Gaussian process prior and it has to be positive

semidefinite (Rasmussen & Williams, 2006). Correspondingly, the prior of f can be written as

q(f |θ) = N(f |K)

=
exp

(
−1

2f
T
K

−1
f
)

√
(2π)dim f det ||K||

(3.5b)

where θ denotes the unknown parameters embedded in the kernel such as σk. Such parameters are

referred to as hyperparameters (Gelman et al., 2004). In full Bayesian inference, we also need to

choose a prior probability density qθ, i.e., hyperprior, for the hyperparameter set (Rasmussen &
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Williams, 2006; Gelman et al., 2004), and the joint prior of f and the hyperparameters would be

q0(f , θ) = q(f |θ)qθ(θ). (3.6)

We will infer the hyperparameters θ together with f . We can incorporate our expectations regarding

the possible signals f into our analysis via the prior probability density q by choosing a specific

kernel and a specific hyperprior.

To recap, our non-parametric analysis has characterized the signal by a function f drawn

from an infinite dimensional function space characterized by the Gaussian process prior with kernel

K(θ). Unlike conventional regression approaches there is no predetermined mathematical form of

f aside from those we impose via a prior on the kernel K. An appropriate choice of K can set a

strong constraint on the smoothness, the trend and the variations of the signal patterns (Rasmussen

& Williams, 2006). A similar approach has been introduced by Finn & Lommen (2010). However,

the prior q(f) they choose contains no prior information of the temporal correlation of the signal,

which ignores the imporant characteristics of the signal patterns.

From the discussion above, we can see that characterizing the signal by the parameter set f

and setting its prior distribution by a Gaussian process Eq. (3.5b) is equivalent to characterizing the

signal by the superposition of a flexible number of basis functions such as discrete Fourier transforms

and setting Gaussian prior distributions for the corresponding coefficients of those bases.

3.2.1.3 Bayesian nonparametric inference

Since we have chosen the appropriate priors, we can make the inference of f , i.e., the function

form of the signal. Assuming the noises are Gaussian distributed with zero mean, the joint posterior
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probability density of f and hyperparameters would be

p(f , θ|y) = 1

Z(y)
Λ(y|f)q(f |θ)qθ(θ)

=

√
det ||A||
(2π)dimA

exp

[
−1

2
(f − fm)

T
A(f − fm)

]

× 1

Z(y)
Λθ(y|θ)qθ(θ) (3.7a)

where Z(y) is the normalization constant; A is

A = K
−1

+C
−1

(3.7b)

with C denoting the noise covariance matrix; and fm satisfies

Afm = C
−1

y. (3.7c)

Λθ(y|θ) is the likelihood function of hyperparameters after marginalizing over f

Λθ(y|θ) =
∫

Λ(y|f)q(f |θ) df

=
exp

[
−1

2y
T
C

−1
y
]

√
(2π)dim y det ||C||

×
exp

[
1
2(C

−1
y)
T
A

−1
(C

−1
y)
]

√
det ||A||det ||K||

. (3.7d)

If we would like to infer f , we need to choose a hyperprior qθ and marginalize over hyperparameter

θ to obtain the marginalized posterior for f , i.e.,

pθ(f |y) =
∫
p(f , θ|y) dθ (3.7e)
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and if we are also interested in estimating hyperparameter θ, we need to marginalize over f and

obtain the posterior for θ, i.e.,

pθ(θ|y) =
∫
p(f , θ|y) df =

1

Z(y)
Λθ(y|θ)qθ(θ). (3.7f)

Eq. (3.7) summarizes Bayesian nonparametric inference, which gives estimates of the signal f and

hyperparameters.

3.2.2 Comparison with Bayesian parametric analysis

At this point, it is worth comparing the Bayesian nonparametric inference described above

and the conventional inference methods that try to fit the data by a model with a fixed number of

parameters.

The conventional inference methods assume that we know the analytical formulae of the

signals we try to detect and we can characterize them with a fixed number of parameters. For

example, to detect gravitational waves from a non-spinning binary black hole inspiral, we can char-

acterize the signal by a post-Newtonian formula with 8 parameters to characterize the signal —

chirp mass, mass ratio, coalescence time, strain amplitude, sky location of the source, polarization

and inclination angle of the orbital plane (Blanchet, 2006). In this way, we can obtain key charac-

teristics of the signals since the parameters we use to model the signal usually have explicit physical

meanings. However, this approach requires that we are able to determine the analytical formulae

of the signals.

When the analytical formulae of the signals are not available, the conventional approach

could model the signal by a linear superposition of a finite number of basis functions (Gelman
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et al., 2004, chap. 16), i.e.,

fα =
N∑

k

αkΦk(tα) (3.8)

where Φk is the basis function and αk is the corresponding coefficient that would be the unknown

parameters we try to infer; N is the number of the basis functions, which has to be fixed. For

example, we can choose Φk as the Fourier modes like Eq. (3.3). However, if we do not know much

information about the signals, we do not know how many basis functions we need to choose. A

model with too many basis functions would be so complex as to overfit the data while a model with

too few basis functions would be so simple as to underfit the data.

In contrast, Baysian nonparametric approach directly infers the signal pattern by assigning

Gaussian process prior distributions to set strong constraints on it, which would avoid using a

detailed physical model. However, since Bayesian nonparametrics do not use the parameters that

describe the physical characteristics of the signal like conventional methods, it would provide less

direct insight for the signal.

3.3 Bayesian nonparametric analysis on gravitational wave bursts with pulsar

timing arrays

To seek evidence of a gravitational wave burst, we need to match the timing residuals with

a model that characterizes the contribution of the burst. However in general cases, we do not have

physical models for the burst sources and so we are not able to characterize the gravitational wave

burst by some analytical formula or by a fixed number of basis functions. Therefore, we introduce

the Bayesian nonparametric analysis described in the previous section to detect and characterize

gravitational wave bursts with a pulsar timing array.
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3.3.1 Properties of the pulsar timing response to the passage of a gravitational wave

burst

When the duration of the gravitational wave bursts ∆T and the observational duration of

pulsar timing array data T are much less than L(1 + k̂ · n̂), it is most likely that only the Earth

term contributes to the correlated timing residuals (Finn & Lommen, 2010), unless (1) there are

fortuitous lines of sight of a pair or more of the pulsars where the time delay among those pulsar

terms is small enough to be within the observational duration (Pitkin, 2012); (2) there are a large

number of pulsars providing a long time baseline that might be able to detect more burst sources

(Cordes & Jenet, 2012). However, in the current IPTA, there are not so many pulsars whose timing

noises are low enough to be effective in gravitational wave detection (Hobbs et al., 2010; Demorest

et al., 2012; Manchester et al., 2013), and it is uncertain when we can have a pulsar timing array

with a large number of low timing noise pulsars. Therefore, in this chapter, we only consider the

effects of the Earth term on the detection of gravitational wave bursts, and the corresponding pulsar

timing response can be written as

τj(t) = F
(+)

j
τ(+)(t) + F

(×)

j
τ(×)(t) (3.9a)

where F
(A)

j
is the pattern function of the jth pulsar,

F
(A)

j
= −

n̂
l

j
n̂
m

j
e
(A)

lm

2(1 + k̂ · n̂j)
. (3.9b)

In the pulsar timing array waveband, the internal motion of the gravitational wave sources

is expected to be smooth with the evolution of time (Hobbs et al., 2010). Correspondingly, the
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waveform h(A)(t) of a gravitational wave burst is expected to be a smooth funtion of the observation

times (Misner et al., 1973) and thus τ(A)(t) should also be a smooth function of time.

Furthermore, for a detectable gravitational wave burst through pulsar timing arrays, the du-

ration of the burst should be shorter than the observation duration, or otherwise it is not considered

a “burst” signal.

These two properties of the timing residual are very important and they are considered as

our prior knowledge of the gravitational wave bursts. As we will see in the next subsection, we will

take advantage of this prior information to model the pulsar timing response to the passage of a

gravitational wave burst.

3.3.2 The choice of prior probability distribution

3.3.2.1 Priors of τ(+) and τ(×)

As described in Section 3.2, to apply Bayesian nonparametrics to detect gravitational wave

bursts, we need to choose an appropriate prior probability to constrain feasible function forms of

the signals. For τ(+) and τ(×), we have 3 expectations as discussed in the last subsection:

(1) They are the same for different pulsars.

(2) They are smooth on the timescales long compared to the inter-sample time.

(3) They have a characteristic time duration that is shorter than the observation time.

We need to choose their Gaussian process priors with appropriate kernels to fulfill these three

expectations.

We do not have any information on the arrival time of the gravitational wave burst, which

means that priors of τ(+) and τ(×) should hold the time translational symmetry (Summerscales

et al., 2008) and the kernels should only depend on the difference between observation times,
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i.e., stationary (Rasmussen & Williams, 2006). τ(+) and τ(×) are also expected to be infinitely

differentiable on time; correspondingly, their mean squares under their Gaussian process priors

have to be infinitely differentiable, which requires their stationary kernels K(A)(∆t) to be infinitely

differentiable at ∆t = 0 (Adler, 1981, chap. 2), where ∆t denotes the difference between any two

observation times. This is a very rigorous requirement since the stationary kernels have to be

both positive semidefinite and infinitely differentiable, and only a few kernels we know satisfy this

(Rasmussen & Williams, 2006, chap. 4). The one with the least number of hyperparameters is the

square exponential kernel (Rasmussen & Williams, 2006, chap. 4)

K(+)(∆t) = σ
2

+
exp(−∆t

2

2λ2
) (3.10)

K(×)(∆t) = σ
2

×
exp(−∆t

2

2λ2
), (3.11)

where σ+, σ× and λ are hyperparameters. We assign two different kernels to two polarization

components of the gravitational wave burst because the two components are independent of each

other (Finn & Lommen, 2010). The hyperparameters σ+ and σ× characterize the rms amplitudes

of the two polarization components. The hyperparameter λ is the characteristic time scale of the

burst, which characterizes temporal correlation of τ(+) and τ(×) along the observation times. When

∆t >
√
2λ, the values of the kernels would exponentially damp, and τ(A)(t) and τ(A)(t+∆t) would

be almost uncorrelated. Correspondingly,
√
2λ should be approximately the duration of the burst

and λ should be shorter than the observation duration. Here we assume that λ is the same for both

of the two polarization components because the duration of the burst scales with the ratio of the

typical radius to the internal velocity of the source (Finn & Lommen, 2010), which is the same for

the two components.
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To recap, the priors of τ(+) and τ(×) would be two zero mean Gaussian processes with kernels

in Eq. (3.10). They fulfill the three expectations stated above as:

(1) The priors of τ(+,×) are independent of pulsars.

(2) Kernels in Eq. (3.10) guarantee that τ(+,×) sampled from the Gaussian process priors are

most likely smooth functions of time since the kernels are infinitely differentiable at ∆t = 0.

(3) The hyperparameter λ in kernels of Eq. (3.10) characterizes the characteristic time-scale of

the burst.

A similar approach has been introduced by Finn & Lommen (2010). However, the prior q(f) they

choose contains no prior information of the temporal correlation of the signal, i.e., no parameter

characterizing the burst duration. Compared with Finn & Lommen (2010), our method can instead

infer the burst duration, one of the most important physical parameters of the burst, which shows

the key power of the Bayesian nonparametric methods.

3.3.2.2 Priors of timing residuals induced by a gravitational wave burst

Now we need to determine a prior probability density for the pulsar timing residuals induced

by a gravitational wave burst. We denote τ as the timing residuals for all the pulsars in a pulsar

timing array, i.e., τ = {τ1, τ2, ..., τj , ...}. Because τ is the linear superposition of τ(+) and τ(×) (see

Eq. (3.9)), whose priors are independent zero mean Gaussian process priors, the prior of τ should

also be a zero mean Gaussian process prior, and its kernel should be the linear superposition of the

two kernels of the Gaussian process priors of τ(+) and τ(×), i.e.,

q(τ |k̂) =
exp

[
−1

2τ
T
K

−1
τ
]

√
(2π)dimK det ||K||

(3.12a)
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where K is expressed as

Kj(α), k(β) =
(
σ
2

+
F

(+)

j
F

(+)

k
+ σ

2

×
F

(×)

j
F

(×)

k

)
exp

[
−
(tj(α) − tk(β))

2

2λ2

]
(3.12b)

where j, k are pulsar indices and α, β are the indices for the observation times of pulsar timing

measurements. Here we have used Eq. (3.9) and Eq. (3.10).

3.3.2.3 Prior of hyperparameters

The prior probability density of τ , i.e., Eq. (3.12), contains several hyperparameters. We

also need to choose appropriate prior probability densities for those hyperparameters. According

to Eq. (3.12), we have 5 hyperparameters — rms gravitational wave amplitudes σ+ and σ×, char-

acterisitic time-scale λ, and gravitational wave propagation direction k̂ which is embedded in the

pattern function F
(+)

and F
(×)

.

We first choose the hyperpriors for σ+ and σ×. The pulsar timing array data is assumed

to be normally distributed with the mean τ due to the assumption that the noises are normally

distributed, and the prior distribution of τ is also chosen to be a Gaussian process. This is a

two-level normal model and the choice of hyperprior on the rms amplitude is discussed in detail in

(Gelman, 2006). Both σ+ and σ× appear like scale parameters, suggesting the use of the Jeffreys

prior (Jeffreys, 1946); however, the Jeffreys prior leads to a non-normalizable posterior probability

density (Gelman, 2006), which means it is not an appropriate choice for hyperpriors of σ+ and

σ×. If the dimension of τ , which in our case equals the number of data points, is larger than 5, a

uniform hyperprior distribution of the rms amplitudes is recommended (Gelman, 2006), i.e.,

q+(σ+), q×(σ×) ∝ 1. (3.13a)
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We then choose the hyperprior for the characteristic time-scale λ. We expect λ should be

shorter than the observation duration T . As discussed before,
√
2λ characterizes the duration of

the burst, so if λ is much longer than T , the gravitational wave signal cannot be considered as a

“burst”. To make sure the posterior distribution is normalizable, we assume the hyperprior of λ is

a proper uniform distribution from 0 to T ,

qλ(λ) =
1

T
. (3.13b)

We finally set the hyperprior for the sky location of the source. We expect the sources of

gravitational wave bursts to be uniformly distributed across the sky, so the prior of the gravitational

wave propagation direction k̂ is

qk̂(k̂) =
1

4π
. (3.13c)

3.3.3 Inferring τ and hyperparameters

Having chosen the prior probability distribution of τ , we need to write down its probability

posterior density to make a Bayesian nonparametric inference, as described in Section 3.2.1. We

denote the observed timing residuals of the jth pulsar as dj and the contribution by gravitational

wave burst as τj, then the likelihood function of the jth pulsar is

Λ(dj|τj) = N(dj − τj|Cj)

=
exp

[
−1

2(dj − τj)
T
C
−1

j
(dj − τj)

]

√
(2π)dim dj det ||Cj ||

(3.14a)

where Cj is the noise covariance of the jth pulsar. We also assume that the timing noises are

uncorrelated among different pulsars. Correspondingly, for a pulsar timing array composed of Np
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pulsars, the likelihood function of its timing residuals d is

Λ(d|τ ) =
Np∏

j=1

Λ(dj |τj)

= N(d− τ |C). (3.14b)

Following the discussion in Section 3.2.1.3 with Eq. (3.14b), Eq. (3.12) and Eq. (3.13), we

can determine the joint posterior probability density of τ and hyperparameters,

p(τ , k̂, σ+, σ×, λ|d) =
1

Z(d)
Λ(d|τ )q(τ |k̂, σ+, σ×, λ)qk̂(k̂)q+(σ+)q×(σ×)qλ(λ)

=

√
det ||A||
(2π)dimA

exp

[
−1

2
(τ − τm)

T
A(τ − τm)

]

× 1

Z(d)
Λθ(d|k̂, σ+, σ×, λ)qk̂(k̂)q+(σ+)q×(σ×)qλ(λ) (3.15a)

where Z(d) is the normalization constant and A is

A = K
−1

+C
−1

(3.15b)

and τm satisfies

Aτm = C
−1

d. (3.15c)

Λθ(d|k̂, σ+, σ×, λ) is given by

Λθ(d|k̂, σ+, σ×, λ) =
∫

Λ(d|τ )q(τ |k̂, σ+, σ×, λ) dτ

=
exp

[
−1

2d
T
C

−1
d
]

√
(2π)dimd det ||C||

×
exp

[
1
2(C

−1
d)

T
A

−1
(C

−1
d)
]

√
det ||A||det ||K||

(3.15d)
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Eq. (3.15) summarizes the Bayesian nonparametric inference, which gives an estimate of the time

series function τ and hyperparameters. Compared with Eq. (23) in Finn & Lommen (2010), our

kernel K is a non-diagonal matrix rather than diagonal, which provides an important constraint

on the temporal correlation of the signal.

3.4 Examples

3.4.1 Overview

To illustrate the effectiveness of the analysis techniques just described, we apply them to

simulated observations of a gravitational wave burst generated by a periapsis passage of a long

period supermassive black hole binary in a highly eccentric orbit. We consider 3 cases:

(1) A strong signal, in which we can not only detect the signal, but also localize the source in

the sky.

(2) A weak signal, in which we are able to detect the signal, but not able to accurately localize

its source.

(3) No signal at all.

For these examples, we use 4 pulsars in the current IPTA (Hobbs et al., 2010; Demorest et al.,

2012; Manchester et al., 2013) which are the most accurately timed as described in Table 3.1. The

capability of detecting and characterizing gravitational waves is dominated by these best pulsars,

although they are the minority of the full IPTA set (Burt et al., 2011). I use this pulsar timing array

for all the simulated data sets in this thesis. The timing noises of those 4 pulsars are a superposition

of short-timescale white noise with rms timing residual given in Table 3.1 and long-timescale red

noise normalized to have the same spectral density as the white noise at a frequency of 0.2 yr
−1

.

The data sets we use for these examples are constructed by:
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Table 3.1 Four IPTA pulsars we use, their white timing noise rms and the telescopes from which
the timing residuals are measured (Hobbs et al., 2010; Demorest et al., 2012; Manchester et al.,
2013)

Pulsar rms Residual (ns) Telescope

J1713+0747 30 AO
J1909−3744 38 GBT
J0437−4715 75 Parkes
J1857+0943 111 AO

(1) Evaluating the pulsar timing response of each pulsar to a passage of a gravitational wave

generated by a periapsis passage of a long period supermassive black hole binary in highly

eccentric orbit (see Section 3.4.2.1).

(2) Adding the pulsar timing noise to the gravitational wave signals obtained by the first step

(see Section 3.4.2.2).

(3) Removing the best-fit linear trend from the noisy timing residuals obtained by the second step

because in reality, the linear trend in the data cannot be distinguished from the systematic

effects caused by pulsar spin and spin down (Hobbs et al., 2006; Edwards et al., 2006).

3.4.2 Construction of simulated data sets

3.4.2.1 Periapsis passage of a long period supermassive black hole binary in a highly

eccentric orbit

Our hypothetical gravitational wave burst source is the periapsis passage of a supermassive

black hole binary with a total mass of 2 × 10
9
M⊙, a symmetric mass ratio of 0.2, a period of 20

years, an eccentricity of 0.8, and an orbital inclination angle of 30
◦
. The duration of this burst is

0.42 yr, estimated as twice the ratio of the impact parameter to the velocity at periapsis (Finn &

Lommen, 2010). It is in the direction of the Virgo cluster (RA 12h27m, dec 12
◦
43

′
) and we change

the luminosity distance to obtain the strong and weak signals. We randomly sample 50 observation
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times that are uniformly distributed across the 5 year observations for each pulsar. Fig. 3.1 shows

the gravitational wave induced timing residuals of 4 pulsars when the source is at a distance of

16.5Mpc (in the Virgo cluster).

Fig. 3.1 Prefit and postfit pulsar timing residuals induced by a gravitational wave burst
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Notes. In this example, the gravitational wave burst is generated by the periapsis passage of a

supermassive black hole binary with a total mass of 2× 10
9
M⊙, a symmetric mass ratio of 0.2, a

period of 20 years, an eccentricity of 0.8, an orbital inclination angle of 30
◦
, and located in the

Virgo Cluster. The upper panel shows the timing residuals of the 4 IPTA pulsars induced by this

burst, and the lower panel shows the same timing residuals but after “fitting-out” the linear

trend. The “diamond” plots in the lower panel show the timing residuals only considering Earth

term contributions.
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3.4.2.2 Pulsar timing noise

The millisecond pulsars used in the current international pulsar timing array typically show

white noise on short timescales, and few of them turn to red noise on timescales & 5 years (Demorest

et al., 2012; Manchester et al., 2013). For demonstrations here, we model the timing noise as the

superposition of white noise and red noise, with the red noise contribution normalized to have the

same amplitude as the white noise contribution at the frequency fr = 0.2 yr
−1

. The power spectral

density is taken to be

Sn(f) = σ
2

n
+ σ

2

n



1 +

(
f
f0

)
2

1 +
(
fr
f0

)
2



−5/2

(3.16a)

where

σn = (white noise rms) (3.16b)

fr =
(
red-white noise crossover frequency, 0.2 yr

−1
)

(3.16c)

and f0 softens the noise spectrum at ultra-low frequency. As long as f0 is much less than the

pulsar timing array frequency band, its value does not matter. In the simulation we set f0 equal to

0.01nHz. We choose the power index of the red noise spectrum as −5 because the few millisecond

pulsars showing red noises have a noise spectrum with this feature (Shannon & Cordes, 2010).

The covariance matrix of the noise will be the Fourier transform of the noise spectrum

density Eq. (3.16a) to time domain, i.e.,

C(ti, tj) = σ
2

n

(
δij +

8π
2

3

[
1 +

(
fr
f0

)
2
]5/2

f
3

0
(ti − tj)

2
K2(2πf0|ti − tj |)

)
(3.17)

where ti,j are the “observation times” and K2 is the modified Bessel function of the second kind

with index 2. The pulsar timing noises for each pulsar are sampled from multivariate normal
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distribution with zero mean and covariance matrix Eq. (3.17). For the rest of this thesis, I use this

kind of pulsar timing noise for all the simulated pulsar timing data sets.

3.4.3 Analysis of simulated data sets

Our Bayesian nonparametric analysis is designed to investigate whether a gravitational wave

burst is present in the simulated dataset, and also to infer the source sky location, the burst duration

and other hyperparameters. We have found that for weak signals, it may be able to clearly detect

the gravitational wave but not to accurately localize the sources or infer τ ; but for strong signals,

it may be possible to both detect the gravitational wave and also precisely localize the sources and

infer τ . We illustrate this point in the following three subsections, first investigating the strong

signal example, then weak signal counterpart, and finally, we analyze the dataset consisting of

timing noises alone for comparative study. The results are summarized in Table 3.2. The signal-

to-noise ratio (SNR) is defined as that in Finn & Lommen (2010), i.e.,

SNR
2
= τ0C

−1
τ
0

(3.18)

where τ0 denotes the “actual” signal and C
−1

is the noise covariance matrix.

3.4.3.1 Strong signal

We simulate the strong signal by placing the source described in Section 3.4.2.1 at a distance

of 16.5Mpc (in the Virgo Cluster). The peak gravitational wave induced timing residuals of the

“+” and “×” polarization components are respectively 133 ns and 131 ns. The duration of this

burst, which may be estimated as twice the ratio of the impact parameter to the velocity at the

periapsis of the elliptical orbit (Finn & Lommen, 2010), is about 0.42 yr. We apply our Bayesian
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Table 3.2 Results for the Bayesian nonparametric analysis on 3 simulated data sets

SNR ∆DIC ∆Ωk (deg
2
) ǫσ+

ǫσ×
ǫλ max Z-score

30 -956 3600 23.6% 32.4% 11.4% 0.290
5 -14 27000 88.1% 112.4% 50.0% 0.294
0 5 40800 174.0% 232.0% 58.9% 0.332

Notes. In all cases, the signal corresponds to a gravitational wave burst generated from the

periapsis passage of a supermassive black hole binary with a total mass of 2× 10
9
M⊙, a

symmetric mass ratio of 0.2, period of 20 years, an eccentricity of 0.8, and an orbital inclination
angle of 30

◦
, propagating from the direction of the Virgo cluster. The source is placed at 16.5Mpc

for simulating a strong signal and at 100Mpc for simulating a weak signal. ∆Ωk denotes the
measured uncertainty of the sky location of the source, which takes 99% of the total probability;
ǫσ+

, ǫσ×
and ǫλ respectively denote the fractional uncertainty of σ+, σ× and λ (fractional

uncertainty being defined as the measured uncertainty that takes 68.5% of the total probability
over the mean value of the measured parameter). The last column “max Z-score” denotes the
maximum absolute value of the Z-score of the MCMC samples of the three hyperparameters for
each case, which implies that our MCMC samples are all reasonably convergent.

nonparametric analysis described in Section 3.2 to this “strong signal” data set (see Fig. 3.2), and

the first row of Table 3.2 and Fig. 3.3 and 3.4 summarize the results:

(1) From the first row of Table 3.2, we see that the difference between the DICs of the positive

hypothesis and null hypothesis is −956, corresponding to decisive evidence for the presence

of a gravitational wave burst in the data set.

(2) Having concluded that a signal is present, we use the Bayesian nonparametric inference de-

sccribed in Section 3.3.3 to infer the sky location of the gravitational wave source. Fig. 3.3

shows the posterior probability density of the sky location k̂ marginalizing over all possible

τ and all other hyperparameters. The area corresponding to 99% of the total probability is

3600 deg
2
, and the actual sky location of the source is within this area.

(3) We can also infer other hyperparameters such as rms gravitational wave amplitude σ+,×

and characteristic length-scale λ. Fig. 3.4 shows the posterior probability density of these

hyperparameters, marginalized over all possible τ and sky locations. The mean value of σ+
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Fig. 3.2 Simulated pulsar timing data set containing a strong burst.

is 114.5 ns and that of σ× is 119.8 ns. Their rms errors are respectively 27.1 ns and 38.8 ns.

Correspondingly, their fractional uncertainties are respectively 23.6% and 32.4%, and the

“actual” peak gravitational wave induced timing residuals of “+” polarization component

(133 ns) and “×” polarization component (131 ns) are both within the uncertainty interval.

For λ, the mean value and rms error are respectively 0.32 yr and 0.037 yr. Correspondingly the

fractional uncertainty is 11.4% and the actual duration of the burst divided by
√
2 (0.297 yr),

which is the characteristic length-scale (see discussion in Section 3.3.2.1), also lies within the

uncertainty interval.

Therefore, for this strong signal, we can find decisive evidence of its presence in the simulated data,

and also we can localize its source and estimate its burst duration well.
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Fig. 3.3 Posterior probability density that the source is found at location Ωk for the analysis of the
“strong signal” data set. The inferred sky location has a 99% of probability staying within the red
region, and the actual sky location is labelled as “Virgo”. The white squares show the locations of
the 4 IPTA pulsars used as our pulsar timing array. See main text for details.

3.4.3.2 Weak signal

To simulate a weak signal, we place the gravitational wave source at a distance of 100Mpc

but still keep it in the direction of the Virgo Cluster. The peak gravitational wave induced timing

residuals of the two polarization components are respectively 21.8 ns and 21.6 ns. We apply the

Bayesian nonparametric analysis to this “weak signal” data set (see Fig. 3.5), and the second row

of Table 3.2 and Fig. 3.6 and 3.7 summarize the results:

(1) From the second row of Table. 3.2, we see that the difference between the DICs of the two

exclusive hypotheses is −14, which implies strong evidence of the presence of a gravitational

wave burst in the data set.
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Fig. 3.4 Posterior probability densities of 3 hyperparameters — σ+, σ× and λ, for analysis for
the “strong signal” data described in Section 3.4.3.1. The left panel shows that the fractional
uncertainty of σ+, i.e., its standard deviation over its mean value, is about 23.7%, and the red line
represents the peak gravitational wave induced timing residual of the “+” polarization component
of the simulated source. The middle panel shows that the fractional uncertainty of σ× is about

32.4%, and the red line represents the peak gravitational wave induced timing residual of the
“×” polarization component of the simulated source. The right panel shows that the fractional
uncertainty of λ is about 11.4%, and the red line represents the duration of the simulated burst
divided by

√
2.

(2) Having obtained strong evidence for the presence of a signal, we begin to infer the sky location

of the source. Fig. 3.6 shows the posterior probability density of the sky location. The area

that contains 99% of the total probability is about 27000 deg
2
.

(3) We also estimate other hyperparameters. Fig. 3.7 shows the posterior probability densities

of σ+,× and λ.

Therefore, for this weak signal, we can only marginally detect it and make crude inferences.

3.4.3.3 No signal

For comparative study, we also apply our Bayesian nonparametrics analysis to a data set

with timing noises only. The third row of Table 3.2 and Fig. 3.8 summarize the results. The

difference between the DICs of the two exclusive hypotheses is 5, which shows that the data favors

the null hypothesis.
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Fig. 3.5 Simulated data set containing a weak burst signal.

To compare the DIC analysis with the false alarm analysis in frequentist analysis, I repet-

itively compute the DIC differences (∆DICs) for 40 different “noise” alone data sets randomly

sampled from the noise distribution described in Section 3.4.2.2. The distribution of the ∆DICs

presented in Fig. 3.9 implies the false alarm rate of the burst. Most the ∆DICs & 5 and the tail of

the distribution extends to 18. There are about 10 ∆DICs < 5 and the smallest one is −3.2, which

is negative but not small enough to indicate the data favors the positive hypothesis. Therefore, no

∆DICs show that the data strongly favors the positive hypothesis. There are 75% of the ∆DICs

implying the data favors the null hypothesis and there are 25% of the ∆DICs implying the data

almost equally favors the positive and the null hypothesis.

3.5 Conclusions

In this chapter, we use a Bayesian nonparametric method to analyze the pulsar timing array

data set which may contain a contribution from a gravitational wave burst. We have investigated
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Fig. 3.6 Posterior probability density that the source is found at location Ωk for the analysis on
“weak signal” data set. The inferred sky location has a 99% probability of staying within the red
region, and the actual sky location is labelled as “Virgo”. The white squares show the locations of
the 4 IPTA pulsars used as our pulsar timing array. See main text for details.

how this technique can be used to determine whether a gravitational wave burst is present in the

data and, if so, to infer the sky location of the source and the duration of the burst.

Even though we may not know exactly the analytical formulae for the waveform of the

bursts, we still have some expectations of the properties of the burst: (1) it should be a smooth

function of time; (2) it should have a characteristic duration which should be shorter than the

observation duration. By using the Bayesian nonparametrics method, we characterize these two

important properties of the gravitational wave bursts into the Gaussian process prior of Eq. (3.12).

Correspondingly we are able to detect gravitational wave bursts which are too weak to allow their

sources to localized, and make accurate inferences on the sky location of the sources and the shape

of the signals when the sources are strong. Compared with the analysis in Finn & Lommen (2010),

we infer an important piece of information of the burst, i.e, burst duration. Finn & Lommen (2010)

ignored the temporal correlation of the gravitational waveform, and they cannot incorporate the
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Fig. 3.7 Posterior probability densities of 3 hyperparameters — σ+, σ× and λ, for the analysis
on the “weak signal” data described in Section 3.4.3.2. The left panel shows that the fractional
uncertainty of σ+ is about 88.1%, and the red line represents the peak gravitational wave induced
timing residual of the “+” polarization component of the simulated source. The middle panel
shows that the fractional uncertainty of σ× is beyond 100% and the red line represents the peak
gravitational wave induced timing residual of the “×” polarization component of the simulated
source. The right panel shows that the fractional uncertainty of λ is about 50%, and the red line
represents the duration of the simulated burst divided by

√
2.

important characteristics of the bursts described above into their analysis, which loses the key

power of the Bayesian nonparametric methods.

For the purpose of demonstration, we apply our Bayesian nonparametrics analysis to the

pulsar timing data of the 4 best millisecond pulsars in the current IPTA, as the capability of

detection and characterization of gravitational waves will be dominated by these pulsars (Burt

et al., 2011). However, our analysis can be straightforwardly applied to analyze the data of all

the pulsars in IPTA. In the future, the effective number of pulsars whose timing noises are low

enough to detect gravitational waves is expected to signicantly increase with the commissioning of

more sensitive radio telescopes such as the Five-hundred-meter Aperture Spherical Telescope (Nan

et al., 2011) and the Square Kilometer Array (SKA) (Dewdney et al., 2009). Applying our analysis

method to the pulsar timing data accumulated by these future telescopes will significantly improve

the detection sensitivity and inference of the sky location of the sources.
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Fig. 3.8 Posterior probability densities of 3 hyperparameters — σ+, σ× and λ, for the analysis on
the “noise only” data described in Section 3.4.3.3.

While the context of our discussion is gravitational wave burst detection via pulsar timing

arrays, following the discussion in Section 3.2 and choosing an appropriate Gaussian process priors

with an appropriate kernel, our analysis itself can be directly applied to detecting any kinds of

signals whose analytical formulae are unknown, such as in the detection of a binary merger by LIGO

(Aasi et al., 2013), the detection of dynamical chaos in exoplanetary systems by the Kepler Mission

(Deck et al., 2012), the detection of ultra-high energy gamma rays from gamma ray bursts driven

by magnetohydrodynamics by the Fermi satellite (Cenko et al., 2011), etc. In particular, most

of these processes can be simulated numerically, which provides ample physical information that

can help us choose appropriate kernels, either stationary or non-stationary, smooth or continuous,

periodic or chirping, etc. (Rasmussen & Williams, 2006), which makes Bayesian nonparametrics a

promising data analysis methodology in physics and astronomy.



74

−5 0 5 10 15 20
0

2

4

6

8

10

∆ DIC

Histogram of ∆ DIC

Fig. 3.9 Histogram of the 40 ∆DICs obtained by the Bayesian nonparametric analysis of the burst
source. Most the ∆DICs & 5 and the tail of the distribution extends to 18. There are about 10
∆DICs < 5 and the smallest one is −3.2. There are 75% of the ∆DICs implying the data favors
the null hypothesis and there are 25% of the ∆DICs implying the data almost equally favors the
positive and the null hypothesis.
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Chapter 4

Search for a Generic Gravitational Wave Background

with Bayesian Nonparametric Analysis

via Pulsar Timing Arrays

4.1 Introduction

The gravitational wave background results from the superposition of gravitational waves

generated from all sources across the universe. The background has been traditionally assumed

to be a stochastic Gaussian process with a power law spectrum due to the central limit theorem

(e.g., Hellings & Downs, 1983; Jenet et al., 2005, 2006; van Haasteren et al., 2009, 2011). This

approximation might break down because the gravitational wave contribution to the pulsar timing

signals may be dominated by the strongest sources, the number of which may not be sufficient

enough to fulfill the requirement of the central limit theorem (Ravi et al., 2012). Correspond-

ingly previous analyses (e.g., Jenet et al., 2005; van Haasteren et al., 2009) may not have worked

effectively. Here we propose a methodology — Bayesian nonparametric analysis (Ghosh & Ra-

mamoorthi, 2003; Hjort et al., 2010) — that can be used to analyze the pulsar timing array data

set that potentially includes a contribution from a generic gravitational wave background. This

method will set strong constraints on the feasible patterns of the background signals we try to

extract from the data. It would investigate whether the gravitational wave background is present

and also estimate the parameters that characterize the background. We will see that when the

non-Gaussianity of the background becomes non-negligible, our method is still efficacious while the

conventional methods become much less effective. Our Bayesian nonparametric analysis is able to
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infer whether a gravitational wave background is present in the data, and also estimate the pa-

rameters that characterize the background. While the context of our discussion focuses on pulsar

timing arrays, the analysis itself is directly applicable to detecting and characterizing any signals

that arise from the superposition of a large number of astrophysical events.

In Section 4.2, we discuss the characteristics of the gravitational wave background and its

non-Gaussianity. In Section 4.3, we describe a Bayesian nonparametric analysis of the pulsar timing

array data. In Section 4.4, we illustrate the effectiveness of this analysis by applying it to several

representative examples and compare the analysis with the conventional method assuming the

background is Gaussian. Finally, we summarize our conclusion in Section 4.5.

This work is published as X. Deng, 2014, Physical Review D, 90, 104029.

4.2 Characteristics of the gravitational wave background

4.2.1 Pulsar timing residuals induced by a gravitational wave background

The jth pulsar timing response to a gravitational wave background would be the sum of

Eq. (1.29),

τj(t) =
∑

a

∑

A

F
(A)

j
(k̂a)

[
τ
a

(A)
(t)− τ

a

(A)
(t− Lj(1 + k̂a · n̂j))

]
(4.1)

where a labels the contribution from the ath source. We may express the right hand side of Eq. (4.1)

in terms of its Fourier components:

τj(t) =
∑

a

∑

A

F
(A)

j
(k̂a)

∫
df

[
τ̃a
(A)

(f)e
i 2πft − τ̃a

(A)
(f)e

i 2πf
(
t−Lj(1+k̂a·n̂j)

)]

=
∑

A

∫
df

[
∑

a

F
(A)

j
(k̂a)τ̃

a

(A)
(f)e

i 2πft −
∑

a

F
(A)

j
(k̂a)τ̃

a

(A)
(f)e

−i 2πfLj(1+k̂a·n̂j)e
i 2πft

]
. (4.2)



77

We notice that compared with the Earth term, the pulsar term has an extra phase 2πfLj(1+k̂a ·n̂j).

In the pulsar timing array waveband, the pulsar distance is much longer than the gravitational

wavelength, i.e., 2πfLj ∼ 10
4
. Correspondingly, when summing over all the source across the sky,

the extra phase ranges from 0 to ∼ 10
4
. The pulsar term vanishes after summing over the timing

responses of all the sources with all different pulsar term phases, and the pulsar timing response to

a gravitational wave background, i.e., Eq. (4.1), can be simplified as

τj(t) =
∑

a

∑

A

F
(A)

j
(k̂a) τ

a

(A)
(t) (4.3)

4.2.2 Non-Gaussianity of the gravitational wave background

The assumption of Gaussianity of the gravitational wave background results from the central

limit theorem (Feller, 1945). However, the number of gravitational wave sources that can contribute

to the pulsar timing array waveband is limited, which may not be sufficient to fulfill the requirement

of the central limit theorem (Ravi et al., 2012). Here we use a toy model of gravitational wave source

population to illustrate how the degree of non-Gaussianity increases as the number of gravitational

wave sources decreases. We refer readers to Ravi et al. (2012) for details.

The degree of non-Gaussianity of a distribution is usually characterized by the skewness and

kurtosis (e.g., Joanes & Gill, 1998). The skewness ŜX and the kurtosis K̂X of a random variable

X are respectively defined as (Joanes & Gill, 1998)

ŜX =
〈(X − 〈X〉)3〉

(
〈(X − 〈X〉)2〉

)3/2 (4.4a)

K̂X =
〈(X − 〈X〉)4〉(
〈(X − 〈X〉)2〉

)2 − 3 (4.4b)
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where 〈〉 denotes the ensemble average. If X is Gaussian distributed, the skewness ŜX and the

kurtosis K̂X are both zero. Negative skewness indicates the left tail of the distribution is heavier

than the right one and positive skewness indicates the right tail is heavier than the left one (Joanes

& Gill, 1998); negative kurtosis indicates the distribution has lighter tails than a Gaussian distribu-

tion and positive kurtosis indicates the distribution has heavier tails than a Gaussian distribution

(Joanes & Gill, 1998). If X is the sum of n zero mean identically and independently distributed

random variables, i.e.,

X =

n∑

a

xa (4.5a)

with

〈x〉 = 0 (4.5b)

then we can obtain

〈X〉 = 0 (4.5c)

〈(X − 〈X〉)2〉 = n〈x2
a
〉 (4.5d)

〈(X − 〈X〉)3〉 = n〈x3
a
〉 (4.5e)

〈(X − 〈X〉)4〉 = n〈x4
a
〉+ 3n(n− 1)(〈x2

a
〉)2 (4.5f)

where we have used the fact that 〈xa〉 = 0. Correspondingly, when n is large, we can express the

skewness and kurtosis as

ŜX =
1√
n

〈x3
a
〉

(
〈x2
a
〉
)
3/2

(4.5g)

K̂X =
1

n

〈x4
a
〉

(
〈x2
a
〉
)
2 . (4.5h)
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We can see that as the number of the individual random variable xa goes to infinity, the skewness

and kurtosis approach zero and the distribution becomes Gaussian. This is what the central limit

theorem implies.

In the case of the gravitational wave background, X is the timing residual τj induced by

the background in Eq. (4.3), and the xa are the timing residuals induced by the ath single source.

For simplicity, we assume that the supermassive black hole binaries are the primary sources of

gravitational waves in the pulsar timing array waveband. They are homogeneously and isotropi-

cally distributed in the sky, and their orbital evolution is driven by gravitational wave emission;

correspondingly, the number of the binaries per frequency per comoving volume is (Sesana et al.,

2008)

d
2
N

df dVc
∝ f

−11/3
(4.6)

where N denotes the number of the binaries; f and Vc respectively denote gravitational wave

frequency and comoving volume of the universe. We also assume that the gravitational waves

generated by these sources are monochromatic waves. We only consider gravitational waves with

period . 5yr, of which the induced peak pulsar timing residuals are above 0.01 ns, since only these

waves will significantly contribute to the pulsar timing residuals across 5 years of observation as

in the current IPTA (Hobbs et al., 2010; Demorest et al., 2012; Manchester et al., 2013). The

gravitational waves with longer periods will be fitted out by the procedure in the standard pulsar

timing analysis that removes the linear and quadratic trends induced by pulsar spin and spin down.

In this range, the number of sources N should be ∼ 10
5 − 10

6
as expected from theoretical models

(Sesana et al., 2008, 2011).

To compute the skewness and kurtosis of timing residuals induced by a gravitational wave

background, we can directly follow Eq. (4.5g) and Eq. (4.5h). The timing residual τ
a

j
of the jth

pulsar induced by the sinusoidal gravitational waves generated from the ath individual source would
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be

τ
a

j
(t) = F

(+)

j
(k̂a)B

a

(+)
cos
(
2πf

a
t+ φ

a)
+ F

(×)

j
(k̂a)B

a

(×)
sin
(
2πf

a
t+ φ

a)

= B
a

j
cos
(
2πf

a
t+ φ

a
+ ψ

a

j

)
(4.7a)

where B
a

(A)
denotes the amplitudes of the timing residuals induced by the (A) polarization compo-

nent; f
a
and φ

a
are respectively the frequency and initial phase of the gravitational waves; B

a

j
and

ψ
a

j
are respectively

B
a

j
=

√
[F (+)

j
Ba

(+)
]2 + [F (×)

j
Ba

(×)
]2 (4.7b)

ψ
a

j
= arctan



F

(+)

j
B
a

(+)

F (×)

j
Ba

(×)


 . (4.7c)

Assuming that the initial phase φ
a
is uniformly distributed between 0 and 2π, we can obtain

〈τa
j
〉 = 〈Ba

j
〉 〈cos

(
2πf

a
t+ φ

a
+ ψ

a

j

)
〉 = 0 (4.8a)

〈
(
τ
a

j

)
2〉 = 〈

(
B
a

j

)
2〉 〈cos2

(
2πf

a
t+ φ

a
+ ψ

a

j

)
〉 = π 〈

(
B
a

j

)
2〉 (4.8b)

〈
(
τ
a

j

)
3〉 = 〈

(
B
a

j

)
3〉 〈cos3

(
2πf

a
t+ φ

a
+ ψ

a

j

)
〉 = 0 (4.8c)

〈
(
τ
a

j

)
4〉 = 〈

(
B
a

j

)
4〉 〈cos4

(
2πf

a
t+ φ

a
+ ψ

a

j

)
〉 = 3π

4
〈
(
B
a

j

)
4〉 (4.8d)
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and following Eq. (4.5g) and Eq. (4.5h), the skewness and kurtosis of timing residuals induced by

a gravitational wave background would be

Ŝτ = 0 (4.8e)

K̂τ =
1

n

3

4π

〈
(
B
a

j

)
4〉

[
〈(Ba

j
)2〉
]
2 . (4.8f)

The amplitude B
a

j
depends on the pattern function, gravitational wave amplitudes and frequency.

We can compute 〈
(
B
a

j

)
2〉 and 〈

(
B
a

j

)
4〉 by sampling an ensemble of the amplitude B

a

j
from the

distribution Eq. (4.6) and numerically computing the ensemble average. Table 4.1 presents the

skewness and kurtosis of timing residuals of PSR J1713+0747 induced by gravitational wave back-

grounds respectively generated from 10
6
, 5× 10

5
, 2× 10

5
and 10

5
sources. As we stated above, all

of these sources are generated in the pulsar timing array waveband, i.e., their gravitational wave

periods range from 3 months to 5 years. Their frequency distribution follows Eq. (4.6). For all of

these four gravitational wave backgrounds, about 0.1% of the sources are responsible for 95% of

the residual power.

Table 4.1 Skewness and kurtosis of timing residuals induced by gravitational wave backgrounds

respectively generated from 10
6
, 5× 10

5
, 2× 10

5
and 10

5
sources.

No. of Sources skewness kurtosis

10
6

0 0.01

5× 10
5

0 0.02

2× 10
5

0 0.05

10
5

0 0.1

Note. We can see that the kurtosis increases as the number of souces of the gravitational wave
background decreases. How large the kurtosis should be to make the non-Gaussianity significant
depends on the signal-to-noise ratio of the background, the source distribution of the background,
etc. In Section 4.4 we use detailed examples to show that for the source distribution described in
this section, when the degree of the non-Gaussianity implied by the kurtosis is significant.
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We can see that as the number of sources decreases, the degree of non-Gaussianity increases

as implied by the central limit theorem. Correspondingly, the power law spectrum of the gravita-

tional wave background as generally assumed would be effectively modified as it is derived based on

the assumption that the number of sources is approximately infinite (e.g., Flanagan, 1993; Jenet

et al., 2005; van Haasteren et al., 2009).

4.3 Bayesian nonparametric analysis

To search for evidence of a gravitational wave background in the data set, we need to model

its contribution to pulsar timing residuals. In order to avoid the strong assumption of Gaussianity,

we introduce a different method — Bayesian nonparametric analysis (Ghosh & Ramamoorthi,

2003; Rasmussen & Williams, 2006; Hjort et al., 2010). This method treats the gravitational wave

background as a deterministic process since it originates from the superposition of gravitational

waves from a finite number of sources, each of which is a deterministic process. However, we do not

try to write down the exact deterministic function form. Instead, we assign a prior distribution on

the function form of the signal, which will characterize the expected shape of the signal pattern,

such as its smoothness, variation, trend, etc. These characteristics are used to represent the function

form of the signal. Correspondingly, we are able to detect the signal whose deterministic function

form has the same characteristics as what our prior distribution characterizes. For discussion of

application of Bayesian nonparametrics in the gravitational wave context, see (Deng, 2014; Lentati

et al., 2014; Lee et al., 2014) for details.
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4.3.1 The choice of Gaussian process priors

4.3.1.1 Prior of τ

For the ath source, we choose the same kernel of the gaussian process prior as in Sec-

tion 3.3.2.1:

Ka(A)(∆t) = σ
2

a(A)
exp(−∆t

2

2λ2
a

) (4.9a)

and the corresponding Gaussian process prior of τ
a

(A)
would be

q(τ
a

(A)
) =

exp
[
−1

2

∫
dt dt

′
τ
a

(A)
(t)K

−1

a(A)
(∆t) τ

a

(A)
(t

′
)
]

√
(2π)dimK det ||K||

(4.9b)

where σa(A) represents the rms amplitude τ
a

(A)
from the ath source and λa is the characteristic

time-scale of the waveform. Within λa, τ
a

(A)
is expected to cross the zero level only once (Adler,

1981). Therefore, for gravitational wave burst sources such as encounters of two supermassive black

holes, λa characterizes the duration of the burst (Deng, 2014); and for gravitational waves from

gravity-bound binaries, λa characterizes periods of the binaries.

We denote the timing residuals induced by the superposition of gravitational waves from

the direction k̂ as τk̂. Eq. (4.3) shows that τk̂ is the linear superposition of τ
a

(A)
and we assume

that two polarization components of the gravitational wave from a single source are independent;

correspondingly, the kernel for the Gaussian process prior of τk̂ would be the linear superposition

of Eq. (4.9a),

Kk̂ (jk)(∆t) =
∑

A

F
(A)

j
(k̂)F

(A)

k
(k̂)

∑

a (k̂)

σ
2

a(A)
exp

(
−∆t

2

2λ2
a

)
(4.10a)
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where j, k denote pulsar indices and a (k̂) denotes that the sum is over all sources in sky location

k̂. If we assume that at the sky location k̂, the total square sum of all source rms amplitudes σa(A)

is σ
2

k̂(A)
and the density of the sources with square characteristic time-scale λ

2

k̂
is πk̂(A)

(
λ
2

k

)
, we

can approximate the second sum in Eq. (4.10a) as an integral over all possible λ
2

k̂
, i.e.,

∑

a (k̂)

σ
2

a(A)
exp

(
−∆t

2

2λ2
a

)
= σ

2

k̂(A)

∫
dλ

2

k̂
πk̂(A)(λ

2

k̂
) exp

(
−∆t

2

2λ2
k̂

)
. (4.10b)

Because the distribution of polarization angles is expected to be uniform (Misner et al., 1973;

Christensen, 1992; Flanagan, 1993), so σ
2

k̂(A)
and πk̂(A) are the same for the two GW polarization

components, i.e.,

σ
2

k̂(+)
= σ

2

k̂(×)
= σ

2

k̂
(4.10c)

πk̂(+) = πk̂(×) = πk̂. (4.10d)

As a result, the kernel of the Gaussian process prior of τk̂ becomes

Kk̂ (jk)(∆t) =

(
∑

A

F
(A)

j
(k̂)F

(A)

k
(k̂)

)
σ
2

k̂

∫
dλ

2

k̂
πk̂(λ

2

k̂
) exp

(
−∆t

2

2λ2
k̂

)
. (4.10e)

We choose πk̂ as an inverse gamma distribution of the square characteristic time-scale (Stein, 1999;

Rasmussen & Williams, 2006), which is conjugate to the square exponential exp

(
−∆t

2

2λ2
k̂

)
,

πk̂(λ
2

k̂
) =

β
α
k̂

k̂

Γ(αk̂)
λ
−2α

k̂
−2

k̂
exp

(
−βk̂
λ2
k̂

)
(4.11a)

or π
1/λ

k̂
(1/λ

2

k̂
) =

β
α
k̂

k̂

Γ(αk̂)
(1/λk̂)

2α
k̂
−2

exp

(
−βk̂
λ2
k̂

)
(4.11b)



85

where αk̂ and βk̂ are respectively referred to as the shape parameter and the scale parameter,

and they both have to be positive to guarantee that πk̂ is normalizable (Bernardo & Smith, 2003;

Gelman et al., 2004); Γ(αk̂) is the gamma function of αk̂ (Abramowitz & Stegun, 1964). Combining

Eq. (4.10e) and Eq. (4.11), we can obtain the kernel of the Gaussian process prior of τk̂

Kk̂ (jk)(∆t) = σ
2

k̂

(
1 +

∆t
2

2αk̂ξ
2

k̂

)−α
k̂ ∑

A

F
(A)

j
(k̂)F

(A)

k
(k̂) (4.12)

where ξk̂ =
√
βk̂, which is the characteristic time-scale of τk̂.

Because the gravitational wave background is the superposition of the gravitational waves

from all directions in the sky, the kernel of the Gaussian process prior of the timing residuals induced

by the background should be the sum of Eq. (4.12) across the whole sky. In general, the gravitational

wave sources may not be isotropically distributed and the anisotropy of the background can be

characterized by decomposing the angular distribution of the gravitational wave energy density

on the sky into multipole moments (Mingarelli et al., 2013; Taylor & Gair, 2013). However, for

the purpose of demonstration, in this chapter we only focus on the isotropic gravitational wave

background and it is straightforward to generalize our method to anisotropic cases by combining

the techniques presented in (Mingarelli et al., 2013; Taylor & Gair, 2013). By assuming isotropy, τk̂

in all directions will have the same σk̂, αk̂ and ξk̂. Correspondingly, the kernel of the gravitational

wave background induced timing residuals τ is

Kjk(∆t) = σ
2

(
1 +

∆t
2

2αξ2

)−α
γjk (4.13a)



86

where γjk is the Hellings-Downs curve (Hellings & Downs, 1983).

γjk =

∫
d
2
Ωk̂

∑

A

F
(A)

j
(k̂)F

(A)

k
(k̂)

=
3

2

1− n̂j · n̂k
2

log

(
1− n̂j · n̂k

2

)
− 1

4

1− n̂j · n̂k
2

+
1

2
+

1

2
δjk. (4.13b)

Using Eq. (4.13), we can obtain the Gaussian process prior of τ

q(τ |σ, ξ, α) =
exp

[
−1

2τ
T
K

−1
τ
]

√
(2π)dimK det ||K||

(4.14)

where K is expressed by Eq. (4.13).

4.3.1.2 Prior of hyperparameters

The prior probability density of τ Eq. (4.14) includes three undetermined hyperparameters

— σ, ξ and α, and we need to choose their prior probability density to make a full Bayesian

inference.

For σ, this is a scale factor and we can choose the Jeffreys prior (Jeffreys, 1946). How-

ever, the Jeffreys prior will make the posterior probability density improper (Gelman, 2006) and

correspondingly such an uninformative prior is not an appropriate one. In this case, a uniform dis-

tribution from 0 to +∞, which will make the posterior distribution normalizable, is recommended

(Gelman, 2006), i.e.,

qσ(σ) ∝ 1. (4.15a)

For ξ, this is a time-scale factor and we choose the Jeffreys prior

qξ(ξ) ∝ 1/ξ. (4.15b)
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The hyperparameter α is the shape parameter of the inverse gamma distribution Eq. (4.11),

which represents the number density of the sources. We expect that the number of sources should

monotonically decrease with their periods or durations (Sesana et al., 2008), and correspondingly,

πk̂ in Eq. (4.11) should be a monotonically increasing function of λk̂. To satisfy this requirement,

α should be between 0 and 1 (see Eq. (4.11)). We choose the prior distribution for α as a uniform

distribution from 0 to 1, i.e.,

qα(α) = 1. (4.15c)

Since the characteristic timescale λ represents the period or duration of the individual source, so

1/λ represents the characteristic frequency of the source. Given the prior for α in Eq. (4.15c), we

can obtain the prior distribution for the characteristic frequency of the single source marginalizing

over α by following Eq. (4.11b):

q(1/λ
2|β) =

∫
π
λ
(1/λ

2|α, β)q(α)dα (4.16)

where β represents the average square period of the sources over the sky as discussed above. Fig. 4.1

plots q with different βs.

4.3.2 Discussion of deterministic and stochastic modeling

At this point, it is worth comparing the deterministic modeling by Bayesian nonparametrics

discussed above and the stochastic modeling used by previous methods.

In general, when we detect a signal across a finite time duration, we have two ways to model

the signal:
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Fig. 4.1 Marginal prior disribution for the individual source’s square characteristic frequency 1/λ

with different averaging square period β, where β is in the units of yr
2
. The prior sets a constraint

that the number of sources monotonically declines with the source frequencies.

(1) Assume the signal is generated by a deterministic process. However, we do not know the

function form of the signal, on which we need to assign a prior distribution. This is what we

did in this chapter.

(2) Assume the signal is a random sample (one single realization) generated from a stochastic

process, and what we need to do is to model the distribution function of the stochastic process.

This is what previous methods did.

Because we do not have an ensemble of the signals, both of these modeling methods may lead to

reasonable characterizations of the signal. Which is more effective depends on which model fits the

data better, i.e., which method leads to a larger likelihood or a smaller DIC.

In the case of detecting a gravitational wave background, both of these methods would result

in the same marginal likelihood function Eq. (3.15d), because in the first method, we assume that

the prior distribution of the signal form is a Gaussian distribution, and in the second method,
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we assume that the distribution function of the gravitational wave background is also a Gaussian

distribution. This means that both of these two methods may lead to the same inference of the

signal. So in practice, the method we present above may be considered as the same method as

previous ones in (van Haasteren et al., 2009; Lentati et al., 2013) except for the difference choices

of the kernel K. However, the choices of the kernels strongly depend on what logic we follow, which

will lead to different values of likelihood functions. This is the key difference between the method

presented here and the previous methods.

When we follow the first approach, as described in Section 4.3.1.1, the kernel K, which

originally appears in the prior distribution, is chosen to characterize the expected shape of the signal,

such as its smoothness, its variation, its trend, etc. We use these characteristics to represent the

underlying unknown deterministic function form of the signal. Following this logic, we finally obtain

the appropriate kernel Eq. (4.13). Meanwhile, if we follow the second approach, K characterizes

the covariance of the Gaussian distribution, which is assumed to be the underlying distribution

function of the gravitational wave background. Following this logic, K would have to be the

Fourier transform of a frequency power law, because the frequency distribution of the gravitational

wave sources follows a power law (van Haasteren et al., 2009; Lentati et al., 2013). Using the first

method cannot lead to the choice of a power law spectrum while using the second method cannot

lead to the choice of Eq. (4.13). The two different choices of K would lead to different values of

the likelihood functions.

If the non-Gaussian part of the gravitational wave background is significant, the second

method will be ineffective because it only characterizes the covariance of the distribution but

ignores the skewness, kurtosis and other parts of the distribution. The first method, however,

assumes the signal is just a representation of some deterministic function but not a random sample

drawn from some underlying distribution. We assign a prior distribution with a specific kernel to
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characterize the expected shape of the signal. Correspondingly, no matter whether the signal is

sampled from some distribution or what the distribution is, as long as our Gaussian prior with a

kernel correctly characterizes the shape of the signal pattern, such as its smoothness, variation,

trend, etc., our method will lead to a good inference of the signal.

To recap, although the deterministic modeling by our Bayesian nonparametrics and the

previous stochastic modeling will both lead to likelihood functions with the same form, our method

only tries to characterize the signal itself and the kernel in the Gaussian prior distribution represents

our expectation of the shape of the signal pattern. Previous methods, on the other hand, assume

that the signal is sampled from some underlying distribution and try to use a Gaussian model with

a power-law spectrum to characterize the distribution. These two approaches will lead to different

choices of the kernels, which correspondingly results in different values of likelihood functions.

4.4 Examples

4.4.1 Overview

To illustrate the effectiveness of the analysis techniques described above, we apply them to

simulated data sets of the pulsar timing array described in Table 3.1.

We uniformly sample 50 observation times across 5 years of observation, and the correspond-

ing pulsar timing data sets are constructed by

(1) Evaluating the pulsar timing residuals induced by a simulated gravitational wave background

that will be described in Section 4.4.2.

(2) Adding pulsar timing noise described in Section 3.4.2.2 to the timing residuals obtained by

the first step.
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(3) Removing the linear trend of the timing residuals obtained above to simulate the procedure

in the standard pulsar timing analysis that removes the effects of pulsar spin and spin down.

When we analyze the data, we add a linear model in the pulsar timing response function to account

for the linear trend, the same as the analysis in van Haasteren et al. (2009). We will also apply our

analysis methods to a data set composed of timing noise alone for comparative study.

4.4.2 Construction of simulated signals of the gravitational wave background

We construct the simulated observations of two isotropic gravitational wave backgrounds

respectively generated from 10
6
and 10

5
supermassive black hole binaries. Both of these sources

are generated in the same way as we did in Section 4.2.2:

(1) The frequency distribution of these sources follows Eq. (4.6) with lower bound of 0.2 yr
−1

and

upper bound of 4 yr
−1

.

(2) All of these sources are uniformly distributed across the sky with their gravitational wave

peak timing residuals ranging from 0.01ns to 100ns.

(3) The orbital orientations and initial phases of all these sources are uniformly distributed.

(4) The timing residuals induced by the gravitational wave background are the sum of all the

gravitational wave signals generated from the sources sampled from the distribution described

in the above three steps. The rms values of the gravitational wave amplitudes of the two

gravitational wave backgrounds are both about 22ns.

The degrees of non-Gaussianity of these two backgrounds are presented in Table 4.1, and

we can see that the background with 10
5
sources is more non-Gaussian than that with 10

6
sources.

For these two cases of simulated backgrounds, we will compare the results of our method and the
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conventional one proposed by van Haasteren et al. (2009) and we will see that our method is much

more effective in the case of the background with 10
5
sources.

4.4.3 Analysis of simulated data sets

Our Bayesian nonparametric analysis is designed to investigate whether a gravitational wave

background is present in the dataset, and also infer the hyperparameters.

We apply both our method and the conventional Gaussian method on the two data sets

— one contains the contribution of the gravitational wave background with 10
6
sources and the

other contains the contribution of the background with 10
5
sources. We also analyze the data set

consisting of timing noise alone by our method for comparative study. Table 4.2 lists the results

of the analysis. The parentheses in the second column contain the DIC differences obtained by

applying the conventional Gaussian method in van Haasteren et al. (2009).

Table 4.2 Summary statistics of the gravitational wave background analysis. The symbol ǫσ, ǫξ
and ǫα respectively denote the fractional uncertainties of σ, ξ and α. The parentheses contain
the DIC differences by applying the conventional Gaussian method on the same data sets. The
convergence diagnostics show our MCMC samples are convergent.

No. of Sources ∆DIC (Gaussian) ǫσ ǫξ ǫα max Z-score

10
6

-15 (-12) 27.4% 96.8% 32.0% 0.210

10
5

-14 (-3) 29.2% 71.9% 34.2% 0.308
Absent 5 (5) 92.5% 63.5% 54.6% 0.218

4.4.3.1 Signal of an Isotropic Gravitational Wave Background with 10
6
Sources

We simulate an isotropic gravitational wave background by sampling 10
6
sources from a

homogeneous and isotropic distribution Eq. (4.6) and computing the superposition of the timing

residuals induced by the gravitational waves from them, as described in Section 4.4.2. The first

row of Table. 4.2 and Fig. 4.2 summarize the results of our Bayesian nonparametric analysis:
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(1) From the first row of Table 4.2, we see that the difference between the DICs of the positive

hypothesis and null hypothesis is −15, corresponding to a strong evidence for the presence of

a gravitational wave background in the data set. We apply the conventional Gaussian method

in van Haasteren et al. (2009) on the same data set and the DIC difference is −12, which also

indicates a strong evidence of the presence of a gravitational wave background. Therefore,

the non-Gaussianity of this background is not large enough to distinguish the effectiveness of

the two analysis methods.

(2) We also infer the hyperparameters and Fig. 4.2 shows their posterior probability density. The

mean value of σ is 22.5 ns (consistent with the simulated signal of rms amplitude 22ns) and

its rms uncertainty is 6.2 ns. Correspondingly, its fractional uncertainty is 27.4%. For ξ, the

mean value is 0.25 yr and the rms uncertainty is 0.24 yr, and the corresponding fractional

uncertainty is 96.8%. We cannot measure the shape parameter α very well and it tends

to be 1. The mean and rms uncertainty are respectively 0.69 and 0.22, and the fractional

uncertainty is 32.0%. Fig. 4.3 shows the posterior probability density of the strain amplitude

σGW and the spectrum power index αGW of the gravitational wave background, obtained

by assuming that the background is Gaussian and applying the conventional method in van

Haasteren et al. (2009).
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Fig. 4.2 Posterior probability densities of 3 hyperparameters — σ, ξ and α, for analysis on the data
described in Section 4.4.3.1. Their fractional uncertainties are respectively 27.4%, 96.8%, 32.0%.
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Fig. 4.3 Posterior probability densities of the strain amplitude σGW and the spectrum power in-

dex αGW of the gravitational wave background with 10
6
sources obtained by assuming that the

background is Gaussian and applying the conventional method in van Haasteren et al. (2009).
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4.4.3.2 Signal of an Isotropic Gravitational Wave Background with 10
5
Sources

We simulate an isotropic gravitational wave background by sampling 10
5
sources from a

homogeneous and isotropic distribution Eq. (4.6) and computing the superposition of the timing

residuals induced by the gravitational waves from them, as described in Section 4.4.2. The de-

gree of non-Gaussianity of this background is greater than the one with 10
6
sources as illustrated

in Table 4.1. The second row of Table 4.2 and Fig. 4.4 summarize the results of our Bayesian

nonparametric analysis on such “anisotropic signal” data:

(1) From the second row of Table 4.2, we see that the difference between the DICs of the positive

hypothesis and null hypothesis is −14, corresponding to strong evidence for the presence of

a gravitational wave background in the data set. When we apply the conventional Gaussian

method in van Haasteren et al. (2009) on the data set, we obtain a DIC difference of only −3,

which indicates no strong evidence of a gravitational wave background. Therefore, the non-

Gaussianity of this background is non-negligible, and our method shows a strong advantage

over the conventional one in this case.

(2) We also infer the hyperparameters and Fig. 4.4 shows their posterior probability densities.

The mean value of σ is 22.4 ns (consistent with the simulated signal of rms amplitude 22ns)

and its rms uncertainty is 6.5 ns. Correspondingly, its fractional uncertainty is 30.0%. For ξ,

the mean value is 0.36 yr and the rms uncertainty is 0.26 yr, and the corresponding fractional

uncertainty is 71.9%. We cannot measure the shape parameter α very well either and it

also tends to be 1. The mean and rms uncertainty are respectively 0.67 and 0.23, and the

fractional uncertainty is 34.2%. Fig. 4.5 shows the posterior probability density of the strain

amplitude σGW and the spectrum power index αGW of the gravitational wave background
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obtained by assuming that the background is Gaussian and applying the conventional method

in van Haasteren et al. (2009).
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Fig. 4.4 Posterior probability densities of 3 hyperparameters — σ, ξ and α, for analysis on the data
described in Section 4.4.3.2. Their fractional uncertainties are respectively 30.0%, 71.9%, 34.2%.

4.4.3.3 No Signal

For comparative study, we also apply our Bayesian nonparametric analysis to a data set with

timing noise alone. The third row of Table 4.2 and Fig. 4.6 summarize the results. The difference

between the DICs of the two repulsive hypotheses is 5, which shows that the data favors the null

hypothesis. All the hyperparameters are imprecisely determined. The Gaussian method in van

Haasteren et al. (2009) also offers a DIC difference of 5.

4.4.4 Analysis of IPTA mock data challenge

I test the Bayesian nonparametric method on the closed data set 2 in the IPTA mock data

challenge
1
and compare the result with the previous work (e.g., Ellis et al., 2012a). The noise

1
url: http://www.ipta4gw.org/page id=116
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Fig. 4.5 Posterior probability densities of the strain amplitude σGW and the spectrum power in-

dex αGW of the gravitational wave background with 10
5
sources obtained by assuming that the

background is Gaussian and applying the conventional method in van Haasteren et al. (2009).

in the data is white noise with different rms errors for different pulsars. The signal is a random

sample generated from a Gaussian process with a strain amplitude of 6 × 10
−14

at a frequency of

1 yr
−1

and a power law spectrum with index of −2/3. The observation times are unifomly sampled

across 5 years with an averaged observational interval of two weeks. The amplitude signal-to-noise

ratio for this source is ∼ 100.

The DIC difference of this data set obtained by the Bayesian nonparametric method is −600

(approximately a log Bayes factor of 300), which is consistent with the log Bayes factor of 153

obtained by Ellis et al. (2012a). The difference may be caused by the artificially chosen cut-offs of

the prior distributions of the strain amplitude and power index, which may make the Bayes factor

uncertain (see Section 1.3.2.1).

The posterior probability distributions of the three hyperparameters obtained by applying

the Bayesian nonparametric method to the IPTA mock data challenge are presented in Fig. 4.7.
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Fig. 4.6 Posterior probability densities of 3 hyperparameters — σ, ξ and α, for analysis on the
noise alone data described in Section 4.4.3.3. Their fractional uncertainties are respectively 92.5%,
63.5%, 54.6%.

The previous work (e.g., Ellis et al., 2012a; van Haasteren et al., 2013) characterizes the back-

ground by its gravitational wave strain amplitude and the spectrum index. However, the Bayesian

nonparametric method characterizes the background by the rms uncertainty of its pulsar timing

signal σ, the characteristic timescale of the signal ξ and the shape parameter α. The parameters

in the previous work and the hyperparameters in the Bayesian nonparametric method characterize

different properties of the background. They may be related but we may not be able to characterize

their relationship. Correspondingly, it is difficult to compare the parameter estimations of the two

kinds of methods.

4.5 Conclusion

In this chapter, we use a Bayesian nonparametric method to analyze the pulsar timing

array data set which may contain a contribution from a gravitational wave background originating
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Fig. 4.7 Posterior proability distributions of the three hyperparameters obtained by applying the
Bayesian nonparametric method to the closed data set 2 of the IPTA mock data challenge.

from the superposition of gravitational waves generated by supermassive black hole binaries in the

universe.

When the number of the gravitational wave sources that significantly contribute to pulsar

timing signals is small, the previous methods based on the assumption that the background spec-

trum is a power law may be restrictive. In order to detect a generic gravitational wave background,

we treat it as a deterministic process rather than a stochastic one as before, since each gravitational

wave from a single source is a deterministic process. Instead of parameterizing gravitational wave

from each single source, we use a different method — Bayesian nonparametrics — to avoid the

over-parameterization. In this way, we set strong constraints on the feasible shapes of the pulsar

timing residuals induced by the background. We have found that our method works efficiently for

theoretically expected signals. When the number of gravitational wave sources becomes small and

the assumption of a power law spectrum becomes ineffective, our method is still able to detect and

characterize the signal while the conventional method becomes less effective.

For the purpose of demonstration, we apply our Bayesian nonparametric analysis to the

pulsar timing data of the 4 best millisecond pulsars in current IPTA, as the capability of detection

and characterization of gravitational waves will be dominated by these pulsars (Burt et al., 2011).

However, our analysis can be straightforwardly applied to analyze the data of all the pulsars in
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the IPTA. In the future, the effective number of pulsars whose timing noises are low enough to

detect gravitational waves is expected to significantly increase with the commissioning of more

sensitive radio telescopes such as the Five-hundred-meter Aperture Spherical Telescope (Nan et al.,

2011) and the Square Kilometer Array (Dewdney et al., 2009). Applying our analysis method to

the pulsar timing data collected by these future telescopes will significantly improve the detection

sensitivity and interpretation of the signals.

While the context of our discussion focuses on pulsar timing arrays, the analysis itself is

directly applicable to detect and characterize any signals that arise from the superposition of

a large number of astrophysical events, such as detecting the high frequency gravitational wave

background by LIGO (Abadie et al., 2012).
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Chapter 5

Searching for Periodic Gravitational Waves

with Pulsar Timing Arrays

5.1 Introduction

Gravitational waves in the∼ 3– 30 nHz band generated from supermassive black hole binaries

are widely anticipated to produce periodic signals that pulsar timing arrays will investigate. Most

previous analyses aimed at detecting such gravitational waves using pulsar timing have argued that,

because the contribution to the response from the different pulsar terms is uncorrelated, the “mean”

contribution vanishes and the pulsar term contribution to the PTA’s overall response can be ignored

(Sesana et al., 2009; Yardley et al., 2010; Babak & Sesana, 2012; Ellis et al., 2012b,c). Recent work

(e.g., Lee et al., 2011; Ellis, 2013; Arzoumanian et al., 2014) has incorporated the pulsar term into

an analysis by treating the pulsar distances as the parameters to be determined. If we can measure

the pulsar distances by other techniques such as parallax, such information may help improve the

gravitational wave detection. Here we show that the pulsar term contribution to the response

need not and should not be ignored: i.e., that, even though it is unknown, it can be included in a

Bayesian analysis of PTA data. Doing so leads to a more sensitive analysis and a more accurate

estimation of the source parameters than if the contribution is ignored. Furthermore, we will show

that we should treat the pulsar term phases but not pulsar distances as the unknown parameters

to be determined or marginalized. Pulsar distance measurements will influence gravitational wave

analysis only if we can obtain a parsec level precision, which is very difficult to achieve even with

our next generation radio telescopes such as the Square Kilometer Array.
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In Sections 5.2 and 5.3, we investigate when gravitational wave signals can be treated as

periodic in the pulsar timing array waveband. In Section 5.4 we describe our Bayesian analysis

methodology. We also show that we should treat the pulsar term phase but not the pulsar dis-

tances as the parameters to be determined or marginalized, unless we can achieve parsec distance

measurements. In Section 5.5 we illustrate the effectiveness of this analysis by applying it to several

representative examples. Finally, we summarize our conclusion in Section 5.6.

5.2 Pulsar timing response to gravitational waves

In this section we review in detail the response of an Earth-pulsar system to gravitational

waves generated from circular orbit binaries. Previous calculations of the pulsar timing response to

such waves have made numerous approximations or otherwise neglected terms without justification;

here we attempt to be more complete. We apply the response to the radiation from evolving

circular orbit binary systems, identifying when these may be treated as strictly periodic. Finally,

we show how the Earth-pulsar distance that appears in the response may, for the response to plane

gravitational waves, be replaced by a phase.

5.2.1 Earth term, pulsar term and pulsar response

Eq. (1.29) gives the gravitational wave induced timing residual τGW for the pulse arriving

at Earth at time t. The H(A) in Eq. (1.29) may be written as the sum of three integrals:

H(A)(t) =

∫
L

0

h(A)(t− (L− λ)(1 + k̂ · n̂))dλ (5.1a)

= −
∫ −L+t

−L

h(A)(λ
′ − Lk̂ · n̂)

1 + k̂ · n̂
dλ

′
+

∫
Lk̂·n̂

−L

h(A)(λ
′ − Lk̂ · n̂)

1 + k̂ · n̂
dλ

′
+

∫
t

0

h(A)(λ
′
)

1 + k̂ · n̂
dλ

′
(5.1b)
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Even though it is only the sum of these three integrals that has a physical meaning, it has been

conventional to give each of these three integrals a specific interpretation:

• The first integral’s integrand may be regarded as the wave strain at the location of the pulsar

and at the time of pulse emission (pulsar term).

• The second integral is independent of time (though it does depend on the gravitational wave

propagation direction, the direction and distance to the pulsar from Earth). Since it does not

contribute to the time dependent response it is generally ignored.

• The third integral’s integrand may be regarded as the wave strain at Earth (Earth term).

Though it is conventional, the separation of the pulsar timing response to gravitational waves

into an “Earth term” and a “pulsar term” contribution is misleading. Only the sum of these three

terms — i.e., the total response — is physical.

5.3 Gravitational waves from supermassive black-hole binary systems

5.3.1 Introduction

There is general agreement on the scenario by which the supermassive black hole binaries

(Sesana et al., 2008, 2009; Haiman et al., 2009) that PTA observations hope to observe are formed.

In this scenario galaxies are built up by mergers between lower mass progenitors, each of which

hosts a supermassive black hole progenitor. During the major merger of two such progenitors,

dynamical friction drives the two supermassive black holes toward the merged galaxy’s nucleus,

where they form a bound pair. Dynamical friction, gravitational “slingshot” ejection of stars whose

orbits intersect the binary, and gas accretion continue to tighten the binary until the mass enclosed

in the orbit is a small fraction of the binary’s mass. Gas accretion and the slingshot ejection of

stars on centrophilic orbits continue to tighten the binary until gravitational wave radiation reaction
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become the dominant dissipation mechanism, at which point merger becomes inevitable (Begelman

et al., 1980).

The transition to a gravitational wave driven orbit is expected to take place when the binary

separation is in the range 10
2
–10

3
RS, where RS = 2GM/c

2
is the binary’s Schwarzschild radius

(Milosavljević & Merritt, 2003; Armitage & Natarajan, 2005). For supermassive black holes with

masses in the range 10
8
– 10

11
M⊙ this corresponds to orbital periods ranging from months to

centuries: i.e., the binary systems that PTA observations seek to observe to may be evolving owing

to the ejection of stars on centrophilic orbits, gas accretion, gravitational wave radiation reaction,

or some combination of these three mechanisms. Additionally, while orbits driven by gravitational

wave radiation reaction rapidly circularize (Peters & Mathews, 1963), gas accretion or gravitational

slingshot recoil drive the orbits to high (e & 0.6–0.8) eccentricity (Sesana, 2010; Preto et al., 2011;

Roedig et al., 2011; Khan et al., 2011, 2012b,a).

The binaries that we search for with PTA observations may thus be circular or highly

eccentric, evolving at a rate determined by gravitational wave radiation reaction or much more

rapidly. Absent a consensus it is necessary to consider all cases; here we focus on the simplest case

— circular binary systems driven by gravitational wave radiation reaction — leaving eccentric and

evolving binary systems for later study.

5.3.2 Radiation from circular-orbit binary systems

We focus our attention on a supermassive black hole binary with total mass M and symmetric

mass ratio η = m1m2/M
2
for component masses m1 and m2. In TT-gauge and sufficiently far from

the source that the waves may be considered planar over the pulsar-Earth baseline (Deng & Finn,

2011) the quadrupole approximation contribution to the wave propagating in the k̂ direction takes
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the form

h+(u) = ℜ
[
e
2iψ

h(u)
]

(5.2a)

h×(u) = ℑ
[
e
2iψ

h(u)
]

(5.2b)

where

h(u) = h+(u) + ih×(u) (5.2c)

h+(u) =
1

2

M
dL

(
1 + cos

2
ι
)
[πf(u)M]

2/3
cos(Φ(u)− φ0) (5.2d)

h×(u) =
M
dL

[πf(u)M]
2/3

cos ι sin(Φ(u)− φ0) (5.2e)

f =
1

2π

dΦ

du
, (5.2f)

M =Mη
3/5

(5.2g)

u = t− k̂ · ~x, (5.2h)

M is the chirp mass (M = m
5/3

1
m

5/3

2
/M

1/5
), dL is the source luminosity distance, Φ(u) is the

strain phase, cos ι describes the inclination between the orbital angular momentum and radiation

propagation direction k̂, and ψ describes the orientation of the polarization plane coordinate system.

The phase Φ is determined by the evolution of the binary system, which depends in turn

on the mechanism driving the evolution. While uncertainty exists over the dominant evolutionary

driver for binaries radiating in the > 1 nHz waveband relevant for pulsar timing observations,

gravitational wave radiation reaction sets the floor for the evolution rate. Thus, while we cannot

say for certain when binary evolution is unimportant, we can say when binary evolution (driven by

gravitational wave radiation reaction) is important and cannot be ignored in the evaluation of the
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pulsar timing response. For quasi-circular orbits the evolution of the gravitational wave angular

frequency dΦ/dt in the pulsar timing band is dominated by the quadrupole radiation contribution

to the evolution:

Φ(u) = −
[
16η (πfM)

5/3
]−1

. (5.3)

Combining Eq. (5.1) and Eq. (5.2), we note that gravitational wave radiation reaction will be

important when

2π .
Φ(u)|t

t−L
LdΦ(t)/dt

=
48

5
π
8/3
ηL

2
M

5/3
f
11/3

(5.4a)

or

1 . 0.3

(
η

1/10

)(
M

109 M⊙

)
5/3(

L

kpc

)
2
(

f

3 yr−1

)
11/3

. (5.4b)

Henceforth we confine our attention to binary systems for which binary evolution is unimportant,

meaning at least that inequality Eq. (5.4) is not satisfied.

5.3.3 Pulsar timing response to radiation from circular orbit binary systems

Following Eq. (5.2), for circular orbit binary systems whose evolution, over the several thou-

sand year pulsar-Earth light travel time, may be ignored, we write

H(+)(t) = J(+)(t)− J(+)(t− L(1 + k̂ · n̂)) (5.5a)

H(×)(t) = J(×)(t)− J(×)(t− L(1 + k̂ · n̂)) (5.5b)
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with

J(+)(u) =
hI+

1 + k̂ · n̂
cos
(
2πfu− (φ0 − φ+)

)
(5.5c)

J(×)(u) =
hI×

1 + k̂ · n̂
sin
(
2πfu− (φ0 − φ×)

)
(5.5d)

h =
h0
2

√(
1 + cos2 ι

)2 + 4cos2 ι (5.5e)

tanφh =
2cos ι

1 + cos2 ι
(5.5f)

I
2

+
= cos

2
φh cos

2
2ψ + sin

2
φh sin

2
2ψ (5.5g)

I
2

×
= sin

2
φh cos

2
2ψ + cos

2
φh sin

2
2ψ (5.5h)

tan φ+ = tan φh tan 2ψ (5.5i)

tan φ× =
tan 2ψ

tan φh
. (5.5j)

Referring to Eq. (5.5a)–Eq. (5.5d) the pulsar distance contributes to the response through a phase

φL = 2πfL(1 + k̂ · n̂) (5.6)

that may be reduced modulo 2π. Except when 2πfL(1+ k̂ · n̂) ≪ 1 or the particular pulsar distance

is known to much better than the gravitational radiation wavelength we are generally completely

ignorant of the value of this phase and may regard it as yet another unknown parameter in our

analysis.
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5.4 Prior probability distribution

5.4.1 Prior distribution for gravitational wave parameters

Gravitational wave parameters are those characterizing the gravitational waves and are the

same for different pulsars. These include 5 parameters — gravitational wave frequency f , amplitude

h0 and its initial phase φ0; its source sky location k̂ and the source orbital orientation δ̂.

Expectations regarding the distribution of f , h0 and φ0 are difficult to quantify. We may

invoke a model for the source distribution to determine their prior distribution, such as suggested

by the theoretical studies of Sesana et al. (2008, 2009). However we proceed, it is helpful to keep in

mind that when the observations are conclusive the data dependent term Λ(d|θ) is exponentially

sharply peaked. Consequently, as long as the prior probabilities qh(h0), qf (f) and qφ0
(φ0) viewed

by themselves do not reflect an overly strong set of expectations it will not matter what particular

form they take except at the margins where the observations are suggestive but not conclusive. For

the demonstration analysis presented here we choose

qf (f) ∼ f
−1
, (5.7)

to represents how the number of sources declines with the increase of the source frequency, and set

qh(h0) as a uniform distribution between 0 and +∞.

For qφ0
(φ0), we choose a uniform distribution between 0 and 2π, since we do not have any

information on the initial phase of the binary system prior to analyzing our observations.

We expect sources to be uniformly distributed across the sky and the source orbital orien-

tation to be uniformly distributed about the circle, so the prior distributions for k̂ and δ̂ would
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be

qk̂ = qδ̂ = (4π)
−1
. (5.8)

5.4.2 Prior distribution for the pulsar term phases

Now we need to determine the prior distribution on the pulsar term phases φj = 2πfLj(1+

k̂ · n̂j). As we discussed, we could treat this phase as an unknown parameter to be determined,

and we would marginalize it to obtain the estimation for other gravitational wave parameters. At

a first glance, we might expect that the prior distribution on this phase should depend on our

knowledge on the pulsar distance Lj . However, we show here that without a parsec level pulsar

distance measurement, 2πfσLj
(1+ k̂ · n̂j) ≫ 1, where σLj

is the uncertainty of Lj, the prior on the

pulsar term phase φj will be uniform between 0 and 2π.

With a distance measurement uncertainty σLj
, the prior for Lj is a Gaussian distribution

qLj
=

1√
2πσLj

exp


−

(Lj − L0j)
2

2σ2
Lj


 (5.9)

where L0j is the expection value of the jth pulsar distance. Correspondingly, the prior distribution

on the pulsar term phase φj can be written as

qφj
=

1√
2πσj

exp


−

(φj − φ0j)
2

2σ2
j


 (5.10a)
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where φ0j and σj respectively denote

φ0j = 2πfL0j(1 + k̂ · n̂j) (5.10b)

σj = 2πfσLj
(1 + k̂ · n̂j). (5.10c)

However, if we would like to estimate other gravitational wave parameters, we need to marginalize

the posterior probability density over all of these pulsar term phases. The likelihood function

depends on the pulsar term phases modulo 2π. Correspondingly, the marginalization of the posterior

probability density over the pulsar term phases can be written as

∫
Pθ(θ|d)d

j
φj ∼

Np∏

j

∫
Λj(d|φj ,θ)qθGW

qφj
dφj

∼
Np∏

j

+∞∑

mj=−∞

∫
2π

0

Λj(d|ϕj ,θGW)qθGW

1√
2πσj

exp


−

(ϕj + 2mπ − φ0j)
2

2σ2
j


dϕj

∼
Np∏

j

∫
2π

0

Λj(d|ϕj ,θGW)qθGW
ϑ3

(
ϕj − φ0j

2
, exp(−σ2

j
/2)

)
dϕj (5.11a)

where θGW denotes the gravitational wave parameters described in the last subsection, ϕj denotes

ϕj = φj − 2mjπ, (5.11b)

and mj is an integer which reduces the pulsar term phase φj within 0 to 2π. We use the property

of the parameter likelihood function

Λj(d|φj ,θGW) = Λj(d|φj − 2mjπ,θGW) (5.11c)
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and ϑ3 is the Jacobi Theta function

ϑ3(u, q) = 1 + 2

+∞∑

m=1

q
n
2

cos(2mu). (5.11d)

Therefore, the prior distribution on the pulsar term phases φj is reduced to the prior on ϕj

qϕ ∼ ϑ3

(
ϕj − φ0j

2
, exp(−σ2

j
/2)

)
. (5.12)
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Fig. 5.1 Jacobi Theta function that characterizes the prior distribution of the pulsar term phase, i.e.,
Eq. (5.12). The prior changes with the different σj. It is an approximately uniformly distribution

unless σj . 1.

Figure 5.1 plots the Jacobi Theta function with different σj , which characterizes the prior

distributions of the pulsar term phase. We can see that unless σj . 1, this function is approximately

a constant. This means unless we can measure the pulsar distance within

σLj
=

σj

2πf(1 + k̂ · n̂)
.

1

2πf(1 + k̂ · n̂)
. lyr (5.13)
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where the last inequality results from the fact that the source frequency f & 0.1yr
−1

in the PTA

waveband, our knowledge of a pulsar’s distance does not affect our knowledge of the pulsar term’s

phase parameter. For our examples we thus take qφj
= (2π)

−1
for each pulsar.

Previous studies state that we can improve the measurement of gravitational wave param-

eters if we have an independent measurement of pulsar distances and the precision of the pulsar

distances do not need to be at the parsec level (Lee et al., 2011; Ellis, 2013). At first glance,

this statement sounds correct because additional information of the pulsar distances will help con-

strain the phases in pulsar terms, which will correspondingly improve the detection sensitivity and

estimations of other parameters. However, as we have shown above, without a parsec level pul-

sar distance measurement, we cannot have an informative prior of the pulsar term phases. This

conclusion corrects those previous statements.

5.4.3 Pulsar term is important

Most previous analyses have ignored the pulsar term. The argument for ignoring the pulsar

term begins with the observation that the uncertainty in 2πfL(1 + k̂ · n̂) is usually much greater

than 2π, because in the pulsar timing array waveband, the gravitational wavelength (∼ pc) is much

less than the pulsar distance L (∼ kpc). Correspondingly, averaging over all the pulsar terms in a

pulsar timing array would make their contribution effectively zero. Thus, the argument goes, the

pulsar term can be ignored in the data analysis.

This argument is flawed. We need not and should never average over all the pulsar terms.

To search for the evidence of a gravitational wave, we fit a gravitational wave model to all pulsar

timing array data but never average the data or the model. The pulsar term contains important

information. From Eq. (5.5), we can see that ignoring the pulsar term will lead to a different am-

plitude and a different phase of the pulsar timing response function. Correspondingly ignoring the
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pulsar term would lead to an incorrect timing response function used for matching the gravitational

wave signals. The unknown pulsar term phases can be treated as independent parameters to be

marginalized or determined.

5.5 Examples

To demonstrate, we apply the analysis method describe above to simulated observations of

a monochromatic gravitational wave in the pulsar timing array used in (Demorest et al., 2012).

We carry-out two analyses for each data set and compare their results. The first analysis includes

marginalizing the pulsar term phases. The other includes only the Earth terms.

5.5.1 Data simulation

We analyze the simulated data containing gravitational wave contributions from three kinds

of sources:

(1) A strong source with gravitational wave amplitude signal-to-noise ratio of 20.

(2) A weak source with gravitational wave signal-to-noise ratio of 7.

(3) No signal at all.

For these 3 cases, we will compare the results of including and ignoring pulsar terms. All of the

sources are located in the center of the Virgo Cluster, and their gravitational wave frequencies are

all 10 nHz. The pulsar timing array we use is listed in Table 3.1. The timing noise we use is

described in Section 3.4.2.2.

We uniformly sample 50 observation times across a 5-year duration. The data sets we use

are constructed by:
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(1) Evaluating the pulsar timing response of each pulsar to the passage of gravitational waves

described in the above 3 cases.

(2) Adding the pulsar timing noise to the timing residuals obtained by the first step.

(3) Removing the best-fit linear trend from the noisy timing residuals obtained by the second step

because in reality, the linear trend in the data cannot be distinguished from the systematic

effects caused by pulsar spin and spin down (Hobbs et al., 2006; Edwards et al., 2006).

This step will significantly reduce the noise with long timescale autocorrelation. It will also

significantly reduce the likelihood that the timing response model may fit a long period signal.

5.5.2 Results

In the following three subsections, we present the analysis of the three cases above. We

investigate whether the gravitational waves are present in the data sets and infer the gravitational

wave parameters.

Table 5.1 DIC differences of the method including pulsar term and the one ignoring the pulsar
term. “PT” and “no-PT” respectively denote the model including pulsar terms and that ignoring
pulsar terms.

Source SNR ∆DIC (PT) ∆DIC (no-PT) max Z-score (PT) max Z-score (no-PT)

strong 20 -123 -20 0.289 0.249
weak 7 -11 -3 0.222 0.254
None 0 7 5 0.288 0.289

5.5.2.1 A strong signal

The results of the analysis on gravitational waves from the strong source described above

is presented in Fig. 5.2, Fig. 5.3 and the first row in Table 5.1. The evidence for the presence of

the signal is much greater when we include the pulsar term phase in the analysis than when it is
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ignored. Referring to Fig. 5.2 it is clear that including the pulsar term phase in the analysis leads to

significantly better estimation of the gravitational wave parameters: the modes of the distributions

for h0 and f are more accurate for the analysis that includes the pulsar terms than for the analysis

that ignores them; and the parameter estimation precision, as measured by the fractional standard

deviation in the estimated h0 and f is 40% better for the analysis that includes the pulsar terms.

Referring to Fig. 5.3 we can see that neither of the methods can localize the source within 100deg
2
,

although the analysis including the pulsar terms offers a better precision than that ignoring the

pulsar terms.
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Fig. 5.2 Posterior probability distribution of gravitational wave strain amplitude h0 and frequency
f for the strong source. When including pulsar terms in the analysis, the fractional uncertainty
of h0 and that of f are respectively 20% and 0.5%. However when ignoring pulsar terms, the
counterparts of the two fractional uncertainties respectively increase to 35% and 0.8%. The red
line denotes the parameters we use to simulate the signal.
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(a) Inference of the source sky location by the
method including the pulsar terms for the strong
source.

(b) Inference of the source sky location by the
method ignoring the pulsar terms for the strong
source.

Fig. 5.3 Posterior probability distribution of the sky location of the strong source. The inferred
sky location has a 99% probability of staying within the red region, and the actual sky location

is labelled “Virgo”. Including pulsar terms in the analysis localizes the source within ∼ 200deg
2
.

However, ignoring pulsar terms only localizes the source within ∼ 10
4
deg. The white squares show

the locations of the pulsars used as our pulsar timing array.

5.5.2.2 A weak signal

The results of the analysis on gravitational waves from the weak source described above

is presented in Fig. 5.4 and the second row in Table 5.1. In this case the contrast between the

two analyses is more stark: there is no significant evidence for the presence of a gravitational wave

signal, but conclusive evidence when the pulsar term is included in the analysis; and, for the analysis

including the pulsar term, the estimated gravitational wave strain amplitude is determined to better

than 60% and the signal frequency is determined to better than 3%, but the analysis ignoring the

pulsar term cannot accurately determine the gravitational wave parameters.

5.5.2.3 No Signals

The results of the analysis on “no signal” data described above is presented in Fig. 5.5 and

the third row in Table 5.1. In this case, neither of the methods shows evidence of gravitational

waves.
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Fig. 5.4 Posterior probability distribution of gravitational wave strain amplitude h0 and frequency
f for the weak source. When including pulsar terms in the analysis, the fractional uncertainty of h0
and that of f are respectively 60% and 3%. However when ignoring pulsar terms, the counterparts
of the two fractional uncertainties both & 100%. The red line denotes the parameters we use to
simulate the signal.

5.6 Conclusion

In this chapter, we performed a careful Bayesian analysis and showed that pulsar terms

should not be ignored in the analysis of searching for periodic gravitational waves in pulsar timing

array data. We need not and should never average different pulsar timing response functions over

pulsar terms. Instead, we must fit the data collected by all the pulsars in the array together with

gravitational wave models, i.e., pulsar timing response functions. Pulsar timing response functions

with pulsar terms have different amplitudes and phases than those without pulsar terms. We have

found that even for the data containing a weak gravitational wave signal, the method including

pulsar terms still offers much better inference than the one ignoring pulsar terms.
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Fig. 5.5 Posterior probability distribution of the gravitational wave strain amplitude h0 and fre-
quency f .

Furthermore, we have shown that the pulsar distance arises in the response as a phase that,

unless the distance is known to parsec scales or better, should be treated as an unknown parameter

and marginalized over in the analysis.
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Chapter 6

A Planetary System Around the K0 Giant HD 102103

6.1 Introduction

The majority of planet searches to date have focused on FGKM dwarfs (Roques et al., 2014).

Given the diversity of planets we have found around these stars, it is important to study planets in

a broad range of evolutionary states, to ensure that we have a complete picture of planet formation

and evolution. Detecting exoplanets around giant stars via radial velocity observations can increase

the population of planets around intermediate mass stars, as the cool atmospheres of the giant stars

form narrow spectral lines, making them accessible to radial velocity planet searches, which cannot

be achieved by observing the main sequence intermediate mass stars (Gettel, 2012). This chapter

describes the analysis of 116 radial velocity (RV) observations of the target HD 102103, a K0 giant

star, collected by the Hobby-Eberly telescope (HET). A least squares analysis shows that the data

might contain a signal owing to the presence of two exoplanets. However, the existence of the smaller

planet is ambiguous because the least squares estimate of its contribution to the RV amplitude is

of the same order as the RV residuals
1
, which are primarily induced by the p-mode oscillations of

the giant star (Lovis & Fischer, 2010). In addition, the least squares estimate of the orbital period

of the larger planet turns out to be longer than the observation duration, which makes it difficult

to obtain a robust estimate of its orbital eccentricity (Gettel, 2012, Section 2.9). In order to obtain

a robust inference from the data, we perform a Bayesian analysis that confirms the presence of

two sub-stellar companions and also characterizes the stellar p-mode oscillations. This work is

1
RV residuals are referred to as the difference between the RV data and the least squares fit of the RV

model for all companion objects.
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my collaboration with the Penn State-Torun Planet group including S. Gettel, A. Wolszczan, A.

Niedzielski, G. Nowak, M. Adamow, P. Zielinski, G. Maciejewski, etc. My contribution is mainly

Section 6.4.

6.2 Radial velocity observations of HD 102103

The radial velocity (RV) observations of the target HD 102103 (BD +15 2374, HIP 57320)

were made with the Hobby-Eberly Telescope (HET) equipped with the High-Resolution Spectro-

graph (HRS; Tull, 1998). The observing strategy for the target is to begin with 2 or 3 exposures

about 1-2 months apart, and to check for RV variability of greater than 30-50 m s
−1

and less than

∼ 1 km s
−1

. The RVs were measured at 116 epochs over a period of 2931 days from February 2004

to February 2012. The exposure times ranged between 58 and 240 seconds depending on observing

conditions. The signal-to-noise ratio (SNR) values were consistently about 250. The estimated

median RV uncertainty for this star was 5 m s
−1

. The procedure of observing and measurement is

described in Gettel et al. (2012a). Fig. 6.2 plots the RVs across the observation period.

6.3 Stellar parameters

The parameters of HD 102013 are summarized in Table 6.1. The detailed procedure of

estimating the stellar parameters from spectroscopic data is presented in Gettel (2012, Section 2.9).

6.4 Analysis of radial velocity variations

6.4.1 The difficulty of least squares fit

The RV variations contain the contributions of stellar variability and orbiting stellar or

sub-stellar companions. To investigate the stellar and sub-stellar companions, we first remove the
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Table 6.1 Stellar Parameters of HD 102103

Parameter Value

Sp Type K0 III
Teff 4489 ± 25

log(L⋆/L⊙) 2.13 ± 0.21

M⋆/M⊙ 1.7 ± 0.3

R⋆/R⊙ 15.3 ± 1.1

Note. “Sp Type” denotes the spectral type of the star; Teff denotes effective temperature; L⋆
denotes the stellar luminosity; M⋆ denotes the stellar mass; and R⋆ denotes the stellar radius.

best-fit linear trend, which corresponds to a long period stellar companion, and then perform a

least squares fit of several Keplerian orbits (Gettel, 2012, Section 2.9). It turns out that there are

multiple best-fit solutions with period of ∼ 490 days, ∼ 670 days, ∼ 3800 days, etc. (Gettel, 2012,

Section 2.9). The rms error of the RV post-fit residuals is ∼ 15 m s
−1

. One or several of the best-fit

solutions may fit to the residual noise, which makes the evidence for the existence of the planets

ambiguous. This system has been analyzed repeatedly over the course of the observations; however,

acquiring further RV measurements has not led to much improvement of the result obtained by the

least squares fit (Gettel, 2012, Section 2.9).

6.4.2 Stellar activity

Many stars undergo instrinsic radial velocity variations due to stellar activity. For giant stars,

the dominant effects are starspots and non-radial pressure mode (p-mode) oscillations (Gettel, 2012;

Niedzielski et al., 2015).

6.4.2.1 Starspots

Stellar rotational modulation due to starspots can mimic radial velocity variations. As a

star rotates, a spot on the approaching (blueshifted) side of the star causes less light to be detected

from this region, generating a net redshift as we measure the integrated spectrum of the entire
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stellar disk. When the spot crosses to the receding (redshifted) side with the stellar rotation, a net

blueshift will be generated. Correspondingly, the starspots lead to alternations of the apparent red

and blue shifts with the same period as that of the stellar rotation, which confuses the inference of

the RV variations. The rotation periods of giant stars can reach several hundreds of days, similar

to the typical periods of their planets (Lovis & Fischer, 2010; Gettel, 2012). Therefore, the radial

velocity signal induced by a starspot is similar to that of a planet. A representative example of

the false detection of a planet is the planet detected around HD 166435 that was later shown to be

caused by a starspot (Queloz et al., 2001).

The key difference between the RV variations induced by a starspot and a planet is that

unlike the starspot, the planet’s orbital motion does not alter the spectral line profiles of the host

star. We usually measure the bisector of the line profile at several depths to monitor changes in the

line profile. If changes in the line bisector are correlated with radial velocity variations, the signal

is likely due to starspots rather than the planet’s orbital motion. There are several quasi-periodic

models that can be used to fit the starspots variability and minimize the false alarms of planets

(Hatzes, 2002; Kipping, 2012).

6.4.2.2 Stellar p-mode oscillations

The stellar p-mode oscillations are excited by turbulent convection near the stellar surface

(Christensen-Dalsgaard, 2004). Correspondingly, the excited fluid velocity near the stellar surface

will cause a net redshift or blueshift and thus mimic the radial velocity variations (Kjeldsen &

Bedding, 1995). For giant stars, the oscillation period of the mode with the maximum power

is of the order of hours − days and the mode lifetime is of the order of tens of days (Kjeldsen

& Bedding, 1995). The amplitudes of the RV variations induced by the p-mode oscillations are

∼ 10− 10
2
ms

−1
(Kjeldsen & Bedding, 1995). The p-mode oscillations are stochastic processes; so
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they produce excess stochastic noise in the inferred radial velocity variations (Kjeldsen & Bedding,

1995; Christensen-Dalsgaard, 2004). If we have high precision asteroseismological observations of

the stars, we can determine the amplitude and the period of the p-mode oscillations to reduce the

false alarms of planets. However, without such information, we are not able to identify which RV

variations are due to the p-mode oscillations. Absent this information, previous work has either

ignored p-mode oscillations in searching for planetary signals in RV data analysis or just added a

simple quadratic term to the RV observations to account for the p-mode oscillations (e.g. Gettel

et al., 2012a,b). For planetary RV signals with low amplitudes, however, the p-mode oscillation

noise will either hide the signals and raise the false dismissal, or mimic the signals and raise the

false alarms. A notable example is the K0 giant HD 102103.

6.4.3 Bayesian analysis

Due to the indefinite conclusion drawn by the least squares fit, we perform a careful Bayesian

analysis on the RVs of HD 1020103 in an attempt to determine what contributes to the RVs.

6.4.3.1 Modeling stellar variability

We first model the stellar variability that contributes to the post-fit residuals of the RVs. The

dominant contributions to the apparent RV residual for giant stars are stellar p-mode oscillations

(Lovis & Fischer, 2010). The radial velocity rms amplitude σ induced by stellar oscillation linearly

scales with the luminosity-to-mass ratio (Kjeldsen & Bedding, 1995):

σ ∼ 0.23

(
L⋆
L⊙

)(
M⋆

M⊙

)−1

ms
−1
. (6.1)

Based on Table 6.1, the RV rms amplitude of the red giant HD 102103 is ∼ 18m s
−1

, which is

consistent with the rms error of the RV residuals. The maximum power of the stellar p-mode
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oscillation is at a frequency of (Kjeldsen & Bedding, 1995)

f0 ∼ 3

(
M⋆

M⊙

)(
R⋆
R⊙

)−2(
Teff

5777K

)−1/2

mHz. (6.2)

Correspondingly, according to Table 6.1, the peak oscillation frequency and peak oscillation period

of the giant HD 102103 are respectively ∼ 30µHz and ∼ 8hr.

The power in the stellar p-mode oscillation is concentrated at frequencies close to the peak

oscillation frequency f0 (i.e., near resonance) due to the long damping time of the oscillation

(Anderson et al., 1990). The power spectral density of the stellar p-mode oscillation near the

resonance is approximately modeled as a displaced Cauchy distribution (Anderson et al., 1990),

i.e.,

S(f) =
σ
2

1 +Q2(f − f0)
2/f2

0

with f > 0. (6.3)

This is derived from the stochastic damped oscillator model (Christensen-Dalsgaard, 2004), where

σ is the rms amplitude, f0 is the peak oscillation frequency and Q is the quality factor that

characterizes the number of oscillation cycles before it is significantly damped.

The corresponding covariance matrix for this power spectral density is its cosine transfor-

mation:

Cij = σ
2
exp

(
−
2πf0|ti − tj|

Q

)
cos(2πf0|ti − tj|). (6.4)

Correspondingly, we model the stellar p-mode oscillation as a Gaussian process with zero mean and

covariance matrix Eq. (6.4). The model has three parameters — rms amplitude σ, quality factor

Q and peak oscillation frequency f0.
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6.4.3.2 Bayesian inference

We use Bayesian analysis to estimate the p-model oscillation parameters and the Kepler

orbital parameters. We choose diffuse prior distributions for all parameters as we do not know

much information about the target. All the prior distributions are listed in Table 6.2.

Table 6.2 Prior distributions of the parameters characterizing the stellar p-mode oscillation and
the two Kepler orbits. The U[a,b] denotes the uniform distribution on the interval of lower bound a

and upper bound b.

Parameter Prior distribution

rms p-mode amplitude (m s
−1

) U[0,+∞]

quality factor U[50,500]

peak p-mode period (hr) U[0.5,15]

orbital semi-amplitudes (m s
−1

) U[0,500]

orbital periods (yr) U[0.1,40]

eccentricities U[0,1)

arguments of periapse (rad) U[0,2π)

phases of periastron passage (rad) U[0,2π)

To investigate the astrophysical contribution to the RV variations, we compare three models

of the RV variations and check which one is favored by the data:

1. RV variations are induced by a linear trend, a longer period Keplerian orbit, a shorter period

Keplerian orbit, the stellar p-mode oscillation and measurement errors.

2. RV variations are induced by a linear trend, a longer period Keplerian orbit, the stellar p-

mode oscillation and measurement errors. The prior distribution of the orbital period in this

model is chosen to be U[5,40] with the unit of years.

3. RV variations are induced by a quadratic trend, a shorter period Keplerian orbit, the stellar

p-mode oscillation and measurement errors. The prior distribution of the orbital period in

this model is chosen to be U[0.1,5] with the unit of years.
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Model 2 is intended to check for the presence of the shorter period orbit and Model 3 is intended to

check for the presence of the longer period orbit. We do not need to check the null hypothesis that

the RV variations are induced by a quadratic trend, the stellar p-mode oscillation and measurement

errors. This is because the post-fit residuals after removing the best-fit quadratic trend are not

a zero mean stationary process, which indicates there are other effects contributing to the RV

variations (Gettel, 2012, Section 2.9).

6.4.3.3 Results

In this subsection, we present our results on detecting evidence of exoplanets in the RV data

and estimating their parameters.

Table 6.3 summarizes the DICs of the three models listed above, and Fig. 6.1 presents the

normalized posterior probability distributions of semi-amplitudes, orbital periods and eccentricities

for the two Keplerian orbits, and the rms, quality factor and oscillation period of the stellar p-mode

oscillation in the three models.

Table 6.3 DICs of the three models and the maximum absolute value of the Z-score of the con-
vergence diagnostics of the MCMC samples. We have found all the DICs change by less than 4
when we change the prior distributions of the quality factor and the peak oscillation period listed in
Table 6.2 respectively to U[10,800] and U[0.1,25]. This is because the DICs only explicitly depend on

the posterior distributions but not the priors. The posterior distributions presented in Fig. 6.1 are
significantly different from the uniform priors we assigned, which means it is the likelihood functions
but not the priors that primarily determine the outcomes of DICs and parameter estimations.

Model DIC max Z-score

1 740 0.208
2 772 0.250
3 760 0.294

We can see that the RV data strongly favors the first model, i.e., the RV variations are

induced by a linear trend, a longer period Keplerian orbit, a shorter period Keplerian orbit, the

stellar p-mode oscillation and measurement errors. The maximum a posteriori probability estimates
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Fig. 6.1 Posterior probability distributions of parameters used in the three models. The K1, P1, e1
and K2, P2, e2 are respectively the semi-amplitude, orbital period and eccentricity of the shorter
period orbit and those of the longer period orbit. The σ, Q and 1/f0 are respectively rms am-
plitude, quality factor and peak period of the stellar p-mode oscillation. The solid line refers to
model 1, the dash line refers to model 2 and the dash-dot line refers to model 3. At the MAPs,
the parameters of the two Keplerian orbital parameters and those of the p-mode oscillation are
statistically independent.

(MAPs) and the standard deviations of the Keplerian orbital parameters and the p-mode oscillation

parameters are presented in Table 6.4. Best fit models based on MAPs and the RV residuals are

presented in Fig. 6.3. The MAPs of the p-mode oscillation parameters are consistent with the order-

of-magnitude estimates by using stellar parameters discussed in Section 6.4.3.1. This means that the

information of the stellar properties obtained by our Bayesian analysis on the RV observations of the

HD 102103 is consistent with that obtained by stellar photometric and spectroscopic observations.

6.4.3.4 Summary

By performing a careful Bayesian analysis, we simultaneously find robust evidence of two

planets and characterize the p-mode oscillation of the giant HD 102103. Therefore, it is now very

clear that besides a linear trend, there are two sub-stellar companions and a p-mode oscillation
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Table 6.4 MAPs and uncertainties of the Keplerian orbital parameters and stellar p-mode oscillation
parameters

Orbital Parameters Short Period Orbit Long Period Orbit

semi-amplitude (m s
−1

) 23 ± 4 69 ± 12
period (days) 493 ± 4 3833 ± 620
eccentricity 0.46 ± 0.15 0.18 ± 0.11

argument of periastron (deg) 326 ± 25 88 ± 45
initial epoch (MJD) 53200 ± 60 55900 ± 700
minimum mass (MJ) 0.8 5.0

P-mode Parameters

rms of p-mode (m s
−1

) 15 ± 2
quality factor 200 ± 100

peak p-mode period (hr) 3.5 ± 0.4

that contribute to the RV variations. The linear trend in the RVs is induced by a long-period

stellar companion and we can constrain its mass by examining the stellar spectra (Gettel, 2012).

The stellar template of the HD 102103 star does not show lines from a companion. Given a S/N

of 420, the luminosity ratio of the two objects is of order 8 magnitude and the maximum mass of

a M-dwarf companion is 0.5M⊙ (Gettel, 2012, Section 2.9).

We also test whether this two-planet system is dynamically stable to further check if the

planetary system is physical, since planets in an unstable gravitational system should not follow

stable Keplerian orbits. We use the Mercury code
2
, which is a Fortran program that performs

N-body integration of the gravitational system, to test the stability of the system. Prof. Aleksander

Wolszczan has run the code and found that this planetary system is stable for & 1 million years,

which is long enough to sustain the stable Keplerian orbits of the two planets.

6.5 Conclusion

Radial velocity observations of HD 102103 lead to a discovery of two sub-stellar companions

and a stellar companion around the host K0 giant star. There are seven (including HD 102103)

2
url: http://www.arm.ac.uk/∼jec/home.html
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Fig. 6.2 Radial velocity data of HD 102103 and the best fit linear trend that characterizes the RV
induced by the Keplerian orbit of the long period stellar companion.

known multiple planetary systems around giants (Niedzielski et al., 2015) and HD 102103 is the

only one that contains a stellar companion. The two planets orbiting HD 102103 have orbital

periods of 493 and 3833 days and minimum masses of 0.8 MJ and 5.0 MJ , respectively. The planet

with the shorter orbital period is one of the least massive planets and also with one of the most

eccentric orbits around giant stars (Roques et al., 2014; Niedzielski et al., 2015).

For giant stars, the RV residuals are primarily induced by stellar oscillation (Lovis & Fis-

cher, 2010). However, in the absence of accurate asteroseismology data such as those collected

by precision photometry, we do not have a predetermined amplitude or a predetermined period of

the stellar oscillation. Correspondingly, it is difficult to confirm the presence of the planets whose

signals are masked by the undetermined stellar p-mode oscillation. In order to obtain a robust

inference, we model the RV data as the sum of contributions induced by the companion objects

and the stellar p-mode oscillation. We then use a Bayesian analysis method to simultaneously infer

all the unknown parameters including those characterizing the Keplerian orbits of the companions

and those characterizing the stellar p-mode oscillation. Consequently, we confirm the presence of

the two planets and accurately estimate their Keplerian parameters. As a bonus, we also estimate



130

Fig. 6.3 Top: RV measurements and the best-fit two-orbit model after removing the linear trend.
Bottom: post-fit residuals.
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the amplitude, peak period and quality factor of the stellar oscillation with reasonable precision.

Although this information may not be precise enough to study stellar asteroseismology, it can help

to check the consistency of the stellar parameters measured by stellar photometry and spectroscopy.
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Chapter 7

Conclusions and Prospects

This thesis contains five projects — one on measuring gravitational wave timing parallax

via pulsar timing arrays to determine the source luminosity distance; four on developing Bayesian

analysis methods to search for gravitational waves in the pulsar timing array data and also search

for exoplanets around giant stars in radial velocity observations. I have presented two Bayesian

nonparametric methods that can be used to search for gravitational wave bursts and the gravi-

tational wave background from the pulsar timing array data. I have also presented a Bayesian

parametric method that can be used to search for gravitational waves generated from a slowly

evolving supermassive black hole binary. I have applied the methods of gravitational wave data

analysis to search for exoplanets around a K0 giant HD 102013 from radial velocity data collected

by the Hobby-Eberly Telescope. Consequently, I have confirmed the presence of two Jupiter mass

planets around the giant, which cannot be achieved by the conventional least squares analysis.

7.1 Bayesian analysis on searching for gravitational waves in the pulsar timing

array data

Direct detection of gravitational waves will open a new window of our universe comple-

mentary to the conventional electromagnetic observations. Looking through this window requires

advanced data analysis methodology and techniques. In Chapter 2, I describe a technique that

uses the pulsar timing array to measure the phasefront curvature of a gravitational wave generated

from a nearby source, which can help to determine the luminosity distance of the source. This is

an example of how detecting gravitational waves can be used as a tool to study our universe. From
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Chapter 3-5, I describe Bayesian data analysis methods that can be used to search for gravitational

waves from different kinds of sources in the pulsar timing array data.

In Chapter 3, I propose a new method of Bayesian nonparametric analysis, aimed at detecting

gravitational wave bursts in the pulsar timing array waveband. Instead of fitting the data with

some specific physical model, the method tries to set constraints on the features of the pulsar timing

response to a gravitational wave burst by a Gaussian process prior and search for the feasible signal

patterns in the data. I apply the method to the simulated pulsar timing array data to show that

the Bayesian nonparametric analysis can investigate whether a gravitational wave burst is present

in the data and also estimate the important source parameters such as burst duration, even though

we may not be able to model the source dynamics with some specific physical process.

In Chapter 4, I propose another Bayesian nonparametric method aimed at searching for a

generic gravitational wave background in the pulsar timing array band. Unlike previous methods

all assuming that the background is a Gaussian distributed stochastic process (e.g., Jenet et al.,

2005; van Haasteren et al., 2009), I treat it as a deterministic process and assign a Gaussian process

prior to constrain the shape of the pulsar timing signal produced by the background. In this way,

my method can search for the only feasible patterns of the signal in the data but not make any

assumptions of the distribution of the background. I apply this method to the simulated pulsar

timing array data and demonstrate that my method is more effective than the previous methods

when the non-Gaussianity of the gravitational wave background is significant.

In Chapter 5, I propose a Bayesian parametric method aimed at detecting gravitational

waves from a slowly evolving supermassive black hole binary. The pulsar timing response to such

gravitational waves is the difference of two sinusoidal functions with the same frequency. The

two functions are referred to as the Earth term and the pulsar term. Most previous methods

(e.g., Sesana et al., 2009; Yardley et al., 2010; Babak & Sesana, 2012; Ellis et al., 2012b,c) ignore
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the pulsar terms in the analysis by claiming that they will be effectively zero when averaging over

all pulsars in the array. Recent work (e.g., Lee et al., 2011; Ellis, 2013; Arzoumanian et al.,

2014) has included the pulsar terms in the analysis by treating the pulsar distances to the Earth

as the parameters to be determined, because in this way we may improve the inference of the

gravitational waves by constraining the pulsar distances with other independent measurements. I

show that the pulsar terms are important to the gravitational wave data analysis and including

them will improve the detection sensitivity and also the estimation precision of gravitational wave

parameters. Furthermore, I demonstrate that we should use the pulsar term phases but not pulsar

distances as the unknown parameters to be determined, unless we can measure the distance at the

parsec level precision. Without such high precision distance measurements, we have to face the

difficulty of computing a multi-mode posterior probability distribution if we use pulsar distances

as the unknown parameters but will not improve the inference compared with that of treating the

pulsar term phases as parameters to be determined.

All the methods I have developed in this thesis can be used to search for gravitational waves

in the IPTA data. In particular, the Bayesian nonparametric method to detect the gravitational

wave background drives interest in the IPTA data analysis group. They now start to use it to

search for an isotropic gravitational wave background in the current pulsar timing data collected

by the Arecibo telescope, the Greenbank telescope and the Parkes telescope.

7.2 Bayesian analysis on searching for exoplanets around giant stars

There is a small but growing number of planet detections around giant stars. Studying this

population will complement our knowledge of the planets around FGKM dwarfs and ensure a com-

plete picture of planet formation and evolution. Giant stars experience strong p-mode oscillations

that will produce stochastic noise in the radial velocity data. The stellar noise may be so strong
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that it can mask the signals induced by the surrounding planetary orbits in the radial velocity data.

HD 102103 is one of the giant stars whose radial velocity observations contain the contribution of

their p-mode oscillation. This makes it difficult to search for the planets around the giant in the

radial velocity data and the least squares analysis is not able to confirm the existence of the planets.

I have developed a Bayesian analysis method that helps to provide a robust inference of the

radial velocity observations of HD 102103. I model the stellar p-mode oscillation as a Gaussian

stochastic process, and model the data as the sum of the p-mode oscillation and planetary signals.

As a consequence, I confirm the existence of two planets — one with a minimum mass of 0.8MJ ,

an orbital period of 493 days and an orbital eccentricity of 0.46; the other one with a minimum

mass of 5.0MJ , an orbital period of 3833 days and an orbital eccentricity of 0.18. There is also a

M dwarf companion in the system with a maximum mass of 0.5M⊙ and an orbital period much

longer than the observation duration. This is the first discovered planetary system around a giant

star with a stellar companion.

As a bonus, my method also provides a reasonable inference of the parameters characterizing

the stellar p-mode oscillation, i.e., the rms amplitude, the quality factor and the peak period of

the oscillation. Although the estimation is not so precise as other techniques such as high precision

photometry, in the case of a lack of precise asteroseismological observations of HD 102103, it can

help check the consistency of the information on the stellar properties obtained by the stellar

photometry and spectroscopy.

So far a lot of giant star targets observed by the Penn State-Torun Planet Search group have

not been analyzed in detail because the least squares analysis failed to distinguish the planetary

signals from the stellar p-mode oscillations. However, the successful confirmation of planets around

HD 102103 demonstrates the effectiveness of the Bayesian analysis to provide robust inferences

of the radial velocity observations of such targets. Correspondingly, it is worthwhile to apply the
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Bayesian analysis method I developed to re-analyze those data in detail, and it is possible that my

method may significantly enlarge the sample of planets around giant stars. Therefore, in the future

I will develop my Bayesian method into a general pipeline to search for exoplanets around giant

stars in the radial velocity data.



137

Bibliography

Aasi, J. et al. 2013, Phys. Rev. D, 87, 022002

Abadie, J. et al. 2012, Phys. Rev. D, 85, 122001

Abramowitz, M. & Stegun, I. A., eds. 1964, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables (Mineola, NY: Dover)

Adamów, M., Niedzielski, A., Villaver, E., Wolszczan, A., & Nowak, G. 2014, Astron. & Astrophys.,

569, A55

Adler, R. J. 1981, The Geometry of Random Fields, Wiley Series in Probability and Mathematical

Statistics (Chichester, UK: John Wiley & Sons)

Akaike, H. 1974, IEEE Transactions on Automatic Control, 19, 716

Anderson, E. R., Duvall, T. L., & Jefferies, S. M. 1990, Astrophys. J, 364, 699

Armitage, P. J. & Natarajan, P. 2005, Astrophys. J, 634, 921

Arzoumanian, Z. et al. 2014, Astrophys. J, 794, 141

Babak, S. & Sesana, A. 2012, Phys. Rev. D, 85, 044034

Begelman, M. C., Blanford, R. D., & Rees, M. J. 1980, Nature, 287, 307

Bernardo, J. M. & Smith, A. F. M. 2003, Bayesian Theory, Wiley Series in Probability and Math-

ematical Statistics (Chichester, UK: John Wiley & Sons)

Bhat, N. D. R., Cordes, J. M., Camilo, F., Nice, D. J., & Lorimer, D. R. 2004, Astrophys. J, 605,

759



138

Blanchet, L. 2006, Living. Rev. Relativity, 9, 4

Bretthorst, G. L. 1988, Bayesian Spectrum Analysis and Parameter Estimation, Springer Series in

Statistics (New York, NY: Springer)

Burt, B. J., Lommen, A. N., & Finn, L. S. 2011, Astrophys. J, 730, 17

Cenko, S. B. et al. 2011, Astrophys. J, 732, 29

Christensen, N. 1992, Phys. Rev. D, 46, 5250

Christensen-Dalsgaard, J. 2004, Solar. Phys, 220, 137

Corbin, V. & Cornish, N. J. 2010, Pulsar Timing Array Observations of Massive Black Hole Binaries,

arXiv: 1008.1782

Cordes, J. M. & Jenet, F. A. 2012, Astrophys. J, 752, 54

Damour, T. & Vilenkin, A. 2001, Phys. Rev. D, 64, 064008

Deck, K. M. et al. 2012, Astrophys. J, 755, L21

Deller, A. T. 2009, PhD thesis, Swinburne University of Technology, Melbourne, Victoria

Deller, A. T., Verbiest, J. P. W., Tingay, S. J., & Bailes, M. 2008, Astrophys. J, 685, L67

Demorest, P. B. et al. 2012, Astrophys. J, 762, 94

Deng, X. 2014, Phys. Rev. D, 90, 024020

Deng, X. & Finn, L. S. 2011, Mon. Not. R. Astron. Soc., 414, 50

Detweiler, S. 1979, Astrophys. J, 234, 1100

Dewdney, P. E., Hall, P. J., Schilizzi, R. T., & Lazio, T. J. L. W. 2009, Proc. IEEE, 97, 1482



139

Doksum, K. A. 1974, The Annals of Statistics, 2, 183

Edwards, R. T., Hobbs, G. B., & Manchester, R. T. 2006, Mon. Not. R. Astron. Soc., 372, 1549

Ellis, J. 2013, Class. Quant. Grav, 30, 224004

Ellis, J., Siemens, X., & Chamberlin, S. 2012a, Results of the First IPTA Closed Mock Data

Challenge, arXiv: 1210.5274

Ellis, J. A., Jenet, F. A., & McLaughlin, M. A. 2012b, Astrophys. J, 753, 96

Ellis, J. A., Siemens, X., & Creighton, J. D. E. 2012c, Astrophys. J, 756, 175

Feller, W. 1945, Bull. Amer. Math. Soc., 51, 800

Ferguson, T. S. 1973, The Annals of Statistics, 1, 209

Finn, L. S. 1985, Class. Quant. Grav, 2, 381

—. 2009, Phys. Rev. D, 79, 022002

Finn, L. S. & Lommen, A. N. 2010, Astrophys. J, 718, 1400

Flanagan, E. E. 1993, Phys. Rev. D, 48, 2389

Foster, R. S. & Backer, D. C. 1990, Astrophys. J, 361, 300

Gelman, A. 2006, Bayesian. Anal., 1, 515

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. 2004, Bayesian Data Analysis, 2nd edn.,

Texts in Statistical Science (Boca Raton, FL: Chapman & Hall/CRC)

Gettel, S. 2012, PhD thesis, The Pennsylvania State University, University Park, PA

Gettel, S., Wolszczan, A., Niedzielski, A., Nowak, G., Adamow, M., Zielinski, P., & Maciejewski,

G. 2012a, Astrophys. J, 756, 53



140

—. 2012b, Astrophys. J, 756, 53

Geweke, J. 1992, in Bayesian statistics, ed. J. Bernardo, J. Berger, A. Dawid, & A. Smith (Oxford,

United Kingdom: Oxford University Press)

Ghosh, J. K. & Ramamoorthi, R. V. 2003, Bayesian Nonparametrics, Springer Series in Statistics

(New York, NY: Springer-Verlag)

Gibbons, J. D. & Chakraborti, S. 2003, Nonparametric Statistical Inference, 4th edn. (Boca Raton,

FL: Chapman & Hall/CRC)

Haiman, Z., Kocsis, B., & Menou, K. 2009, Astrophys. J, 700, 1952

Hastings, W. K. 1970, Biometrika, 57, 97

Hatzes, A. P. 2002, Astronomische Nachrichten, 323, 392

Hellings, R. W. & Downs, G. S. 1983, Astrophys. J, 265, L39

Hjort, N. L., Holmes, C., Müller, P., & Walker, S. G., eds. 2010, Bayesian Nonparametrics, Cam-

bridge Series in Statistical and Probabilistic Mathematics (Cambridge, UK: Cambridge Univer-

sity Press)

Hobbs, G. B., Edwards, R. T., & Manchester, R. T. 2006, Mon. Not. R. Astron. Soc., 369, 655

Hobbs, G. B. et al. 2010, Class. Quant. Grav, 27, 084043

Jeffreys, H. 1946, Proc. R. Soc. London., Ser. A, 186, 453

Jenet, F. A., Armstrong, J. W., & Tinto, M. 2011, Phys. Rev. D, 83, 081301

Jenet, F. A., Hobbs, G. B., Lee, K. J., & Manchester, R. N. 2005, Astrophys. J, 625, L123

Jenet, F. A., Lommen, A. N., Larson, S. L., & Wen, L. 2004, Astrophys. J, 606, 799



141

Jenet, F. A. et al. 2006, Astrophys. J, 653, 1571

Joanes, D. N. & Gill, C. A. 1998, J. R. Stat. Soc. D., 47, 183

Kass, R. E. & Raftery, A. E. 1995, J. Am. Stat. Assoc., 90, 773

Khan, F. M., Berentzen, I., Berczik, P., Just, A., Mayer, L., Nitadori, K., & Callegari, S. 2012a,

Astrophys. J, 756, 30

Khan, F. M., Just, A., & Merritt, D. 2011, Astrophys. J, 732, 89

Khan, F. M., Preto, M., Berczik, P., Berentzen, I., Just, A., & Spurzem, R. 2012b, Astrophys. J,

749, 147

Kipping, D. 2012, Mon. Not. R. Astron. Soc., 427, 2487

Kjeldsen, H. & Bedding, T. R. 1995, Astron. & Astrophys., 293, 87

Kullback, S. & Leibler, R. A. 1951, Ann. Math. Stat., 22, 79

Leblond, L., Shlaer, B., & Siemens, X. 2009, Phys. Rev. D, 64, 064008

Lee, K. J., Bassa, C. G., Janssen, G. H., Karuppusamy, R., Kramer, M., Liu, K., Perrodin, D.,

Smits, R., & Stappers, B. W. 2014, Mon. Not. R. Astron. Soc., 441, 2831

Lee, K. J., Wex, N., Kramer, M., Stappers, B. W., Bassa, C. G., Janssen, G. H., Karuppusamy,

R., & Smits, R. 2011, Mon. Not. R. Astron. Soc., 414, 3251

Lentati, L., Alexander, P., Hobson, M. P., Taylor, S., Gair, J., Balan, S. T., & van Haasteren, R.

2013, Phys. Rev. D, 87, 104021

Lentati, L., Hobson, M. P., & Alexander, P. 2014, Mon. Not. R. Astron. Soc., 444, 3863

Lommen, A. N. 2001, PhD thesis, University of California, Berkeley, Berkeley, CA



142

Lommen, A. N. & Backer, D. C. 2001, Astrophys. J, 562, 297

Lovis, C. & Fischer, D. 2010, in Exoplanets, ed. S. Seager (Tucson, AZ: the University of Arizona

Press)

Lyne, A., Hobbs, G., Kramer, M., Stairs, I., & Stappers, B. 2010, Science, 329, 408

Lyne, A. G. & Graham-Smith, F., eds. 2006, Pulsar Astronomy, 3rd edn. (Cambridge, UK: Cam-

bridge University Press)

Maggiore, M. 2007, Gravitational Waves (Oxford, UK: Oxford University Press)

Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, Astron. J., 125, 1993

Manchester, R. N. et al. 2013, PASA, 30, e017

Meng, X. & Rubin, D. B. 1992, Biometrika, 79, 103

Metroplis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953,

J. Chem. Phys., 21, 1087
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