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Introduction

The exact solution of the radial Schrodinger
equation for anharmonic potentials is a key
topic in nuclear and particle physics, as it is es-
sential for fully describing the quantum states
of a system [1]. However, only a few anhar-
monic potentials allow for explicit solutions of
the radial Schrédinger equation for all quan-
tum numbers n and [.

The Nikiforov-Uvarov Functional Analysis
(NUFA) method has proven to be a useful tool
for solving the Schrodinger equation. Given
the broad use of screened potentials to de-
scribe bound and continuum states in inter-
acting systems, solving the non-relativistic ra-
dial Schrodinger equation for these potentials
is of significant importance.

Theoretical Background

We are going to consider the potential de-
scribing a system with screened interactions

+W (1)

The first term represents the attractive po-
tential that diminishes with distance and sec-
ond term represents an exponentially decreas-
ing interaction. «; is the strong coupling con-
stant. ¢ is the screening parameter and A the
scaling parameter. The final term, Vj shifts
the potential by a constant reference value.
This form is typical for models with both at-
tractive and screened repulsive interactions.
The equation (1) can be rewritten as:
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The higher terms of r areneglected as their
value have less significance in the potential [3].
This is in the in the form of the sextic and the
Coulomb perturbed potentials. We use the
NUFA method described in [2] to solve the
potential.

We here are only solving the Coulomb per-
turbed potentials part of the solution. The
N-dimensional radial Schrédinger equation for
the Coulomb perturbed potentials are written
as
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Now by using the coordinate transformation
s = e~ ", the Radial equation changes to,
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Comparing with the NU equation in [2] we
get the following parametric equations,
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By commparing (4) to (7) we can find the
following exponent.
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Energy eigen value is given by,
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Results and Discussions

Energy vs Screenig Parameter (5) for 1s, 2s, 2p, 3s, 3p, and 3d States
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In this work we have approximated the

Eneray E (2¥)

screened potential using Taylor series and

Energy vs Alpha for 2s State at Different & Values
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FIG. 1: Variation of Energy vs screening param-

eter 9.

TABLE I: Energy values for different states
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Scrzening Parameter(d)

State| « E (eV)
1s |0.025(-379.9985
0.075|-25.91327
2s 10.025| -371.99
0.075| -24.40
2p |0.025| -373.06
0.075| -25.47
3Js |0.025| -368.56
0.075] -23.74
3p |0.025| -369.70
0.075| -24.88
3d [0.025| -371.99
0.075| -27.16

FIG. 2: Variation of Energy vs « for various values
of §

formed upto a sextic potential term. We have
used a, A, § as the parameters. We have taken
the value A = 0.1. Fig. 1 shows the plot of
Energy F vs the screening parameter § for var-
ious [ values. Fig. 2 shows the plot of Energy
E vs a for various values of §. The above plots
gives the relation between the energy, screen-
ing parameter and « for a given value of A.

The results of the present work can be used
to evaluate mass spectra of hadrons using the
relation M = (}°, m;) + E where m; gives the
quark masses [1].
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