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Introduction
The exact solution of the radial Schrödinger

equation for anharmonic potentials is a key
topic in nuclear and particle physics, as it is es-
sential for fully describing the quantum states
of a system [1]. However, only a few anhar-
monic potentials allow for explicit solutions of
the radial Schrödinger equation for all quan-
tum numbers n and l.

The Nikiforov-Uvarov Functional Analysis
(NUFA) method has proven to be a useful tool
for solving the Schrödinger equation. Given
the broad use of screened potentials to de-
scribe bound and continuum states in inter-
acting systems, solving the non-relativistic ra-
dial Schrödinger equation for these potentials
is of significant importance.

Theoretical Background
We are going to consider the potential de-

scribing a system with screened interactions

V (r) = −4

3

αs
r

+ λ
(1 − e−δr)

δ
+ V0 (1)

The first term represents the attractive po-
tential that diminishes with distance and sec-
ond term represents an exponentially decreas-
ing interaction. αs is the strong coupling con-
stant. δ is the screening parameter and λ the
scaling parameter. The final term, V0 shifts
the potential by a constant reference value.
This form is typical for models with both at-
tractive and screened repulsive interactions.
The equation (1) can be rewritten as:

V (r) = −4
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2
] (2)
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The higher terms of r areneglected as their
value have less significance in the potential [3].
This is in the in the form of the sextic and the
Coulomb perturbed potentials. We use the
NUFA method described in [2] to solve the
potential.

We here are only solving the Coulomb per-
turbed potentials part of the solution. The
N-dimensional radial Schrödinger equation for
the Coulomb perturbed potentials are written
as
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Now by using the coordinate transformation
s = e−αr, the Radial equation changes to,
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Comparing with the NU equation in [2] we
get the following parametric equations,

ε = − 2µE

~2α2
(4)
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(5)
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+ l(l +N − 2) (7)
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By commparing (4) to (7) we can find the
following exponent.

γ =
1

2
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+ 4l(l +N − 2)

Energy eigen value is given by,

E =
−~2α2

2µ
[
−(γ + n)2 + τ1 − τ3

2(γ + n)
]2 +

~2α2τ3
2µ

(8)

Results and Discussions

FIG. 1: Variation of Energy vs screening param-
eter δ.

TABLE I: Energy values for different states

State α E (eV)
1s 0.025 -379.9985

0.075 -25.91327
2s 0.025 -371.99

0.075 -24.40
2p 0.025 -373.06

0.075 -25.47
3s 0.025 -368.56

0.075 -23.74
3p 0.025 -369.70

0.075 -24.88
3d 0.025 -371.99

0.075 -27.16

In this work we have approximated the
screened potential using Taylor series and

FIG. 2: Variation of Energy vs α for various values
of δ

formed upto a sextic potential term. We have
used α, λ, δ as the parameters. We have taken
the value λ = 0.1. Fig. 1 shows the plot of
Energy E vs the screening parameter δ for var-
ious l values. Fig. 2 shows the plot of Energy
E vs α for various values of δ. The above plots
gives the relation between the energy, screen-
ing parameter and α for a given value of λ.

The results of the present work can be used
to evaluate mass spectra of hadrons using the
relation M = (

∑
imi) +E where mi gives the

quark masses [1].
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