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1 Introduction

The connection between Euclidean and Lorentzian black holes has been a source of both
insights and puzzles ever since the original work of Gibbons and Hawking [1]. The Euclidean
approach provides a natural path to the derivation of black hole thermodynamics, while
obscuring its statistical origins. The Euclidean gravity path integral is not well-defined
due to the conformal mode [2], but its saddles successfully capture the equilibrium physics
of quantum gravity.

One may hope that this puzzling situation has improved somewhat in the recent past,
thanks to the successful calculation of the unitary black hole Page curve using Euclidean
methods! [3-6]. Tt is to be noted however, that the Page curve can be correctly reproduced in
general quantum systems irrespective of various details, if the time evolution satisfies a local
equilibrium approximation. This fact was demonstrated in detail in [7, 8]. See appendix A of [9]
for a pedagogical presentation that makes a precise parallel between general quantum systems
and the calculation in [5]. Since we already knew [1] that Euclidean gravity can reproduce
equilibrium physics, this means that we have to be careful in deciding what exactly we have
learned regarding Euclidean gravity from the recent Page curve calculations.? In particular,
the factorization problem is only as much a problem in holography as it is in ordinary systems
and their Page curves, where replicas are useful due to approximate equilibrium.

In light of these observations, it may be worth taking a step back and remembering that
there is a manifest distinction between Euclidean and Lorentzian black holes in string theory.
This follows from the old work of Sathiapalan [11], Kogan [12] and Atick & Witten [13], and
it has been elaborated by many authors since (see in particular [14]). The key observation is
that the Euclidean black hole geometry has a shrinking time circle around which a closed
string can slip off. In terms of the spectrum of the string, this means that the winding

1 . .and (importantly!) the assumption of local equilibrium during each epoch of Hawking radiation.

2Perhaps the most important lesson we can learn is not about Euclidean path integrals, but via Euclidean
path integrals about the utility and interpretation of quantum extremal surfaces [10] in Lorentzian signature.



modes of a string can become light and may therefore condense. This picture is quite
intuitive in Euclidean signature, see e.g., [15-19] for various results in 1+1 dimensions. But
what it implies for Lorentzian signature has never been very clear. While intriguing ideas
exist [20-23], it is fair to say that the final implications (for physical, Lorentzian, higher
dimensional, ...black holes) are yet to be understood.

There are two reasons for our interest in the Euclidean 1+1 dimensional black hole [16, 24].
Firstly, it is an exact string theory background where the worldsheet CF'T can be described
using an SL(2,R);/U(1) coset WZW model [15], with the level k related to the radius of
the Euclidean time circle. The precise description of the coset changes somewhat depending
on signature and also upon whether we are working with the superstring or the bosonic
string. The Euclidean and Lorentzian geometries correspond to different cosets, but we will
not emphasize it. We will use results from the Euclidean superconformal coset and its FZZ
dual [25-27]. The 1+1 dimensional black hole background does not receive perturbative
corrections in 1/k (viewed as o/ corrections) in the superconformal case.

A second reason for interest in the 1+1 dimensional black hole is that it emerges (together
with an S3 x T®) in the near-horizon limit of a stack of k near-extremal NS5-branes [28]. It
is perhaps not too unreasonable to hope that the lessons one learns from this system may
translate to the case of the Schwarzschild black hole in 341 dimensions. Some of our results
in this paper will show that this hope is at least partially correct.

A key fact about the cigar coset is that it is conjecturally dual to the Sine-Liouville CFT.
This is called FZZ duality [29, 30]. One consequence of the duality will be important to us.
It has been argued [25, 27] that the winding mode and the zero mode of the metric-dilaton
system (which is responsible for shifting the tip of the cigar), are correlated. This lead the
authors of [27] to suggest that the Horowitz-Polchinski (HP) effective string equations of
motion for the 141 dimensional cigar, simplify. Usually, the HP system [14] is viewed as a
description of the Euclidean black hole that incorporates the winding string mode near the
Hagedorn temperature. The authors of [27] instead suggested, based on FZZ duality, that
the 141 dimensional HP system allows a re-writing in terms of a first order system of ODEs
and that this first order system is valid even when the temperature of the black hole is small.
Numerically solving these equations, a critical value of the winding condensate was identified
from a bulk HP calculation. At precisely the critical value, the numerical bulk result of the
winding condensate matched non-trivially with an analytic coset SCFT prediction from the
worldsheet theory. Furthermore, the cigar develops a puncture on the tip exactly at the
critical point. A final interesting observation was that the entropy of the 1+1 dimensional
black hole at this critical value, was precisely its Bekenstein-Hawking entropy.

These observations are remarkable. They also give us a window to test whether the 1+1
black hole in string theory has lessons that generalize to higher dimensions. The HP system
is not limited to 1+1 dimensions, and so we can investigate whether the equations of motion
resulting from the higher dimensional HP action allow a re-writing of its dilaton-winding
sector in terms of first order ODEs. If this is true, it would be evidence that the physics of FZZ
duality has vestiges even in higher dimensions. In this paper, we will show that this is indeed
the case. We will furthermore find that the resulting equations have natural connections (in
the low temperature limit) to the 141 HP system. This allows us to make a precise connection
between higher dimensional black holes, and the critical winding condensate (and a puncture



at the tip) predicted by the 141 coset SCFT. A noteworthy feature of this calculation is that
the entropy carried by the winding condensate is that of the higher dimensional (and not 1+1)
black hole. This suggests that the cap-region physics, even in higher dimensions, is effectively
captured by the physics underlying FZZ duality. More broadly, these results provide some
evidence that the mechanism of winding string condensation may be of significance even in
higher dimensions in understanding the Euclidean horizon.

In the next section, we briefly review the 1+1 Horowitz-Polchinski action [27] and the
solution space of the first order system that emerges from it. We emphasize two points which
go somewhat beyond the discussion in [27]. Firstly, we solve the system at large but finite &
and demonstrate that the qualitative asymptotic behavior expected from the analytic solution
(where one treats the winding as a probe), emerges from the fully backreacted numerical
solutions. This includes the linear dilaton behavior at large distances. (The numerical
solutions in [27] were for k = oo and therefore only applied to the cap region.) We also
emphasize that at finite-k, the critical value of the winding condensate obtained from the
numerical solutions, matches with the string prediction only approximately. This mismatch
at finite k is an indication that one has to be more careful with finite o/-effects in the HP
system, if one is interested in “beyond-the-cap” physics.

In section 3 we present the higher dimensional (in general D > 3) action and equations of
motion of the HP effective string. We explicitly show that the 2-derivative equations of motion
allow a re-writing in which the equations for the winding mode, the dilaton and the temporal
component of the metric are first order. A new feature in higher dimensions is the presence
of the metric component on the sphere. We will see nonetheless that there is a natural
low-temperature limit where the dynamics of the cap simplifies and makes connections with
the 1+1 first order system. This enables us to identify the critical solution and condensate
and the puncture at the tip. The entropy carried by winding at the critical/punctured cigar
is precisely the Schwarzschild black hole entropy, as we show. We conclude with some open
questions in a final section, and relegate some technical details to the appendices.

2 Horowitz-Polchinski in 14+1 dimensions

In this section, we review and extend the Horowitz-Polchinski system [14] analyzed in 1+1
dimensions in [27]. We find numerical solutions of the first order HP system at infinite k,
and also large but finite k. These latter solutions start at the horizon and extend all the way
to the asymptotic region (the region beyond the cap). By carefully discussing the numerical
errors associated to these solutions, we argue that the match between the critical condensate
and the string calculation is a large-k phenomenon. At finite k, while critical solutions do
exist, the condensate value is lower than the string prediction, with the match becoming
increasingly tighter as k is increased. We speculate that this mismatch is a result of not
keeping track of the higher o'-effects in the HP effective string action.

2.1 The cap solution

The Euclidean version of the SL(2,R);/U(1) coset CFT describes string theory on the cigar
geometry [25] with metric and dilaton

ds? = <dp2 + k tanh? % d92> ® = g — Incosh %. (2.1)
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Figure 1. Geometry of equation (2.1) with &k = 100. Observe that the cap region of the cigar (i.e.,
where the metric function is growing linearly and @ is non-linear) extends up to p ~ Vk =10. When
k — o0, this cap region extends to infinity.

We have set o/ = 1. The angular coordinate 6 ~ 6 + 27 is a rescaled Euclidean time direction,
while p is the direction along the cigar, p = 0 being the tip. String coupling e® tends to zero
as a decreasing linear dilaton far from the tip, and reaches its maximum value e®0 at p = 0.
The mass of the black hole is determined by ®¢, while & is a free parameter that controls
the overall size of the cigar. If k is large, this is a weakly curved geometry. As mentioned
in the introduction, the worldsheet action with the above background fields (note that the
tachyon is zero, if one views this as a bosonic string background) can be written as a gauged
WZW model at level k [31], and therefore is manifestly a CFT.

We will be interested in studying the impact of winding mode physics on this Euclidean
black hole. Horowitz and Polchinski, following [11-13], wrote down an effective Euclidean
theory on the thermal manifold that incorporates the possibility of light winding modes at
the Hagedorn temperature. The idea is that once you are in Euclidean signature, nothing
prevents us from viewing the path integral /partition function with a Euclidean time circle
as a zero temperature partition function on a spatial manifold with a compact circle. The
Hagedorn divergence of the partition function can then be attributed to some fields becoming
massless in this revised interpretation of the theory when the compactification radius reaches
the Hagedorn temperature. A key observation is that because of the periodic (Ramond)
boundary conditions for fermions along the thermal circle, the zero energy is tachyonic even
in superstring theories. From the spectrum of the (type II) string, we have

N 4xn?n? w? 32 2
mt = Gt (22)

where we use N to denote the collective oscillator contribution, n is the momentum quan-

tization on the circle, and w is the winding quantum number. Since we know that the
Hagedorn transition happens at By ~ o/Y/2, it follows that the natural candidate for the
massless fields are the w = £1 winding modes (the higher winding modes become massless at
super-Hagedorn temperatures where the partition function does not exist anyway). Writing
this pair of modes as a complex field x (sometimes called a thermal scalar), it is clear that
the partition function contains the piece Z, = [ Dx exp(—S,) with the “effective action” [14]

Sy =5 [ e (@0 +mA(E)) (2.3)



where

2y BBy N ,
m(p) = with By = 2v2rVo. (2.4)

Am2a?
We have temporarily re-instated the o for clarity. It is clear that this mode is exactly
massless at the Hagedorn temperature.

The above discussion applies to string theory in flat space. For the curved background
in (2.1) the natural generalization is of the form [14, 27]

_ 2 —2P 1 L m * BngT - 5%[ *

I= [ dz\/ge —@(R —2A + 40190, @) + 0 xOux" + 2 XX (2.5)
where we have incorporated all the (potentially) massless fields. Here x? = 87Gy, ® is the
dilaton, g, is the metric and x, x* are the £1 winding modes. We have again reverted
to the unit o/ = 1, with 8 = 27Vk, By = 271v2, A = —%. The cosmological constant is

necessary to admit the solution (2.1).
We will consider metrics of the form

ds* = h*(p)dr? + dp?, (2.6)

where p is the radial direction, 7 is the thermal circle, 7 ~ 7 4+ 8 and the dilaton and
winding mode are functions of only the radial coordinate, ®(p) and x(p), respectively. After
the rescaling

Vkh = h KX — X (2.7)

the equations of motion arising from (2.5) are [27]

AN
h <h> — (X/)2 + h2X2
hx" + h'x' — 2hX'® = (h? — 2)hy (2.8)

2
207 = 2(@)7 = (X')* + (3R — 2)x”

Superficially, our arguments motivating the HP action suggest that it should be reliable
only when the temperature ~ 1/v/k is close to the Hagedorn temperature ~ 1. When the
temperature is small (i.e., k large) it is not clear that the HP equations should apply. The
authors of [27] argue that the situation may in fact be better, because of FZZ duality. Since
the two sides of the duality relate the winding mode to the graviton-dilaton zero mode, they
argue that HP effective string description should retain both in order to be consistent. As
a result, the higher string modes and the higher derivative corrections to the action were
ignored in [27], while using the system at temperatures far below the Hagedorn temperature.
It was noted in [27] that the HP equations allows a re-writing in terms of a first order system
at arbitrary k, and it was used as an argument for neglecting the higher terms.

More concretely, the existence of FZZ duality was used as an indication that the dynamics
of the various HP modes should not truly be independent, at the level of the equations of
motion. It turns out that this is indeed the case. It was shown in [27] that there exists



a first order system of equations which can “solve” the second order equations that we
have written above:

h' = hd +1

1
' =—h <x2 + k) (2.9)
X' = —hx

We will call this the first order re-writing of (2.8). The claim then, is effectively that the
FZZ-compatible dynamics of the HP equations is captured by this first order system.

In [27] solutions of this system in the k& — oo limit were obtained. The idea is to treat the
winding mode as a probe at large enough p to obtain reasonable boundary conditions, and
numerically integrate towards the horizon using the full first order HP system. It is easy to
check that when y = 0, the system reproduces the 1+1 d black hole as the background solution:

h(p) = Vk tanh <p> R (2.10)
- - _P_ :
Vk cosh NG
Using (2.10) in the first order system (2.9) and solving for x yields
A
X(p) = —— 2.11)
p
ot (5)

This is the probe solution, which can be used to set boundary conditions for numerical
integration for the full backreacted system.

When k is sufficiently large, we can set boundary conditions at 1 < p = p < Vk. Note
that because k is taken to be sufficiently large, we can work with large p (in relation to
string length which is unity) while still being inside the cap. In this regime, (2.10) and (2.11)
can be approximated by

xX(p=p)=Ae 7, hp=p)=p  P(p=p) =0. (2.12)

This is 2-dimensional Euclidean flat space with a constant dilaton, and a Gaussian decaying
winding mode. Note that the scale of the Gaussian exponent is set by o/ which is our unit. We
have found that picking a location to start the integration from, is somewhat delicate. In order
to get the successful results of [27] we have to start at p ~ 5 which is a reasonable trade-off
between numerical errors in Mathematica and (expectations for) backreaction errors. Our
Mathematica errors in this case are of O(1071!), and from (2.5) we expect the backreaction
errors to be the of the order of x? ~ A2e="". For larger p the backreaction errors are smaller,
but the numerical errors are bigger than the backreaction errors and therefore the numerical
solution is unable to distinguish A as sharply as it can at g = 5.

Depending on the value of A, there are two classes of solutions. In one class, h(p) vanishes
at some pg. This can be viewed as the tip of the geometry. As the amplitude A approaches
a critical amplitude A, from below, pg becomes more and more negative, and a narrow
neck develops. Above the critical A. there is a second class of solutions, characterized by
a vanishing 1’ at some pg < 0 with h(pg) > 0, as well as h(p) diverging at a finite negative
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Figure 2. Both curves are for h(p), the blue one for A = 0.74 below A., and the orange one for
A =0.75 above A..

5]

— hle]

4
- — olp]
//’/ \\\\\\ : — X[P]

e S~ 2

~ ~ )
S

Figure 3. Solutions of h(p), ®(p) and x(p) near the horizon with the slightly sub-critical A = 0.749306.

p < po. We can view this as a puncture at the tip. Representative plots of both classes are
shown in figure 2, while a nearly critical sub-critical solution is shown in figure 3.

In [27], it was shown that the critical value of A for any k can be obtained from a
worldsheet calculation in the SCFT. The result was

M = lim A, = e ?/? = 0.749306001 . . . (2.13)
T (1 _ %) k—o0

k/4

Ac(k) =

In the £ — oo limit, this matches the critical value of A obtained from the HP solution on the
nose. While we will not directly use it here, it is worth noting that the analytic expression
for A.(k) has a perturbative expansion in 1/k around the k = oo value.

2.2 Beyond the cap: finite-k solutions

We find it noteworthy that such a simplification, motivated by FZZ duality, exists. As was
shown in [27] and we have partially reviewed, this simplified system has the striking feature
that it has a critical solution which precisely matches with the worldsheet CF'T prediction. It
also reproduces the correct 141 black hole entropy from the winding condensate. These in



our view are strong suggestions that the relevant metric-dilaton-winding system is indeed
aware of FZZ duality. We are also sympathetic to the possibility suggested in [27] that the
other modes of the string including the higher winding modes and higher derivative terms
may not play an important role in the HP dynamics, at least when k — oc.

While we find it plausible that the metric-dilaton-winding subsystem undergoes a sim-
plification at any k, it is not clear to us that all the details of the dynamics are unaffected
by the higher modes and higher derivative corrections when k is finite. The reason is that
1/k is ultimately a measure of o' effects and curvature corrections. In fact the calculation
of [27] is done in the strict k& — oo limit. We will show that when k is finite but large,
we can get numerically reliable solutions of the 141 dimensional HP system (2.9) whose
critical value of the condensate only approximately matches the string theory prediction.
The discrepancy becomes larger, as k decreases. This suggests that the HP system with the
first order re-writing can capture the physics of the cap region (i.e., k — o) but to fully
describe the asymptotic region of the black hole, we may need to retain more aspects of the
full dynamics. We will give more details of the 141 dimensional finite-k calculation below.
In later sections, we will also show that an analogous picture emerges in higher dimensions
as well. We will be able to obtain the physics of the cap region (in particular, the entropy)
from a winding condensate in the higher dimensional HP system as well.

Getting the full solution is conceptually straightforward, we just have to numerically
integrate (2.9) at finite k. Even thought k is not strictly infinity, we will again start our
integrations from around p = 5, and integrate both inward and outward. The reason we do not
start our integrations from farther out, is because the x solution is essentially indistinguishable
from zero at large p and this leads to numerical challenges to putting initial data there. We
will again use the probe solution® (2.10) and (2.11), to set the boundary conditions at p =

W)= —2  hp) = VEtah L @)=

a

vk
L 2.14)
k p (
cosh T N

and get figure 4 as the full solution for the 141 dimensional HP system, starting from the
horizon at p = 0 to asymptotic region with large p. It is important to note that this solution,
has the features we would like. In the asymptotic region, h saturates and @ is a linear dilaton
with a negative slope, whereas it behaves like the near-horizon solution we discussed in the
previous subsection [27] near the horizon. The linear dilaton behavior in the asymptotic
region is a signature of the SL(2,R);/U(1) coset CFT.

The numerical curves still exhibit the critical behavior, but the critical value of the
winding condensate decreases with k. This is qualitatively consistent with the SCF'T result
quoted earlier, but the precise numerical match emerges only as k£ — oo. This is shown in
figure 5(a). Figure 5(b) is the analytic behavior of A, as a function of k£ in (2.13). Even
though the qualitative nature of the curve matches pretty well, the values start deviating
at low values of k. In fact the HP result is systematically smaller than the SCFT result
at the same k for finite k, see figure 6.

3Note that this means that we are setting the boundary conditions at scales well-separated from the string
scale. This approach will not work, when k is O(1). This is the usual regime of the HP effective string.
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Figure 4. Solution of 1+1 d HP system over the range of p starting from horizon to asymptotic
region with k£ = 200, p =5, and A = 0.74.

Ag(Numerical) A (Analytical)
0.74930 - . . . . . . .
g ° °
e 0.749306 |
B
0.74928 |- .
L4 0.749306 |-
0.74926 .
. 0.749306 [
0.74924
0.749306
0.74922 - .
0749306 [
074920 . . . . . . I I L I LK
“Tio000 20000 a0000 o000 soooo " L 10000 20000 30000 40000 50000 60000
(a) A. from HP system. (b) A, from SCFT description.

Figure 5. A, values obtained from the numerics of the HP system and the SCFT for various k.
The qualitative characteristics of both curves match, but it should be noted that the values are
systematically smaller in the HP plot. This is more clear in figure 6. The numerical values in the HP
plots should not be taken too seriously due to precision issues in the final decimal in some cases.
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Figure 6. Comparison of A, values obtained from HP and SCFT. The blue curve looks essentially
like a constant, because the decrease in the red curve for the same range of k is hierarchically larger.
The numerical values in the red scatter plot should not be taken too seriously, the qualitative features
are our emphasis here.



(a) F(p) for h-equation. (b) F(p) for ®-equation. (¢c) F(p) for x-equation.

Figure 7. Error plots for the k£ = 200 case.

As we mentioned previously, one has to be careful with errors in the numerical integration.
So we conclude this section by demonstrating that the numerical errors are well under control
in one of the cases.* We will present the details for the case k = 200. The numerical HP
value for the critical condensate in this case is AZP = 0.7477, while the result from the
SCFT is ASCFT = 0.7493. The mismatch is therefore in the 3rd decimal. But the errors
in the numerical solutions are in the 6th decimal or later, as can be checked by comparing
the left and right hand sides of the HP equations, after computing them numerically from
our (numerical) solutions. We define

L.h.s. — r.h.s.

2.1
Lh.s. (2.15)

F(p) =logy

and plot this quantity for all three of the equations in (2.9) with k£ = 200 in figure 7. It is
clear that the errors are less than O(107°) at every value of p for each of the functions. This
shows that the HP plots are reliable for the comparison we are making.

These observations suggests that at finite k, while the duality between the winding and
the metric-dilaton modes allow a simplification of the HP system, the detailed dynamics may
require inclusion of other finite-o effects. Since large k corresponds to large 3, we can expect
that understanding the cap region may be possible, even in higher dimensions, using the
HP system. We will demonstrate this in the following sections, by first showing that a first
order re-writing exists for HP systems even in higher dimensions.

3 Horowitz-Polchinski in higher dimensions

In this section, we first write down the action and equations of motion associated to the
D-dimensional Horowitz-Polchinski system. It will be shown that these second order equations
allow a first order reduction in the relevant sector, analogous to the 1+1 d case. We will
view this as a hint of FZZ duality in higher dimensions. We will present the solution for
the near-horizon HP solution with A = 0 in 4-dimensions. This is the analogue of the cap
region solution in 141 dimensions. We will be able to build a precise relation with the 141 d
equations and identify the critical solution and a puncture at the tip of the cigar. We will show
that the higher dimensional black hole entropy is the winding entropy of this critical solution.

“We have not done an exhaustive error analysis of all the cases (the numerical errors in Mathematica
depend in a non-trivial way on the choice of k), but the statement is quite robust and can be checked for
many cases.
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3.1 Vestige of FZZ duality in D dimensions

We will be working with the D-dimensional metric of the form

Ghry deMdz™ = h2(p) dr + dp® + glp) A%,

(3.1)

where M and N take values from 0 to D — 1, with the 0" dimension being the compact

time dimension 7. The Horowitz-Polchinski action in D spacetime dimensions can be written

in the form

1
I= / dPz \/Gpe 2® (—QHQ (Bp = 28 + 4G V@V N D) +
0

Jee)

MN °GD - /3%{
+ G VuxVNx" + 4;a@
The equations of motion are
* BQG - /B2
R —2A — AVF'OV,® + 4V2P = 2k} (v*‘xvux + #
5 2G2
_ TT *
RTT + 2vTqu) - _2’{0 471'2(1/2 XX s

Ry +2V,V,® = 263V, XV, X",

62@ -2 v /32G7'7' — /812'{
el (VGpeGma,x) = o

Setting the ansatz

d=2(p) x=x(p)

these become (3 = %)

2@ — ) L= 2(D=3) <g> (D203,

8 g 29
D—-2\ (JW 2
_A i 2 2(33252
(22) (22) v s
D=3 _1gi ¢ g¥ D-d4(d\"_|
g 2gh 29 g 4 g ’
e*® 20 5272 2
< ap(thx'e >=<Bh ﬁH)x,
92

— 11 —

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.11)



The claim is that the equations for the dilaton-winding-h subsystem can the re-written in a
first order form. The manipulations are somewhat more involved due to the presence of the
extra field g(p) arising from the compact sphere, so we place some comments in appendix A.
The first-order system in D dimensions after the rescaling Sh — h is

D-2¢ i
Wo=h (cp’— 4“;> +%, (3.12)
X' = —hx, (3.13)
2 ~ 2
o/ , 1 D-2{(¢g D—-28g’gd (D-2)(D-3)
— = =< . Al 3.14
h X+ }{2 ( 8 (g) + 4 h g 2g + ( )

To complete the system, we should also include (A.2) for g(p). The system still has the
property that the winding-dilaton-h equations are first order. Note also that the winding
does not couple directly to g(p) in (A.2). We will call these equations the first order system
— even though the g-equation is second order — because the fields relevant to the FZZ
duality are first order. Note in particular that this re-writing is possible before we take
any near-cap approximation.

3.2 The cap solution in 341 dimensions

The first order equations of motion (with A = 0) in 4 dimensions are

~ 2
lg Bu
W=h|d--L )+ 1
( 2g>+ / (3.15)
Y = —hx (3.16)
2 ~ 2
o/ s 1 1(g 18”9 1
7:_X + — - — —_ —i—fif—* 3.17
h mﬁ( 4(9) 2hg g o
1 1 /h/ ! /q)/
L_ogr 9 9% (3.18)

Based on our previous discussion, we expect that we may be able to find a reliable
solution for this system in the cap region. This means that we should choose the boundary
conditions from the near-horizon region for the Schwarzschild metric. In the standard
Schwarzschild metric,

1/2
h(p) = (1 — m) 9(p) = 7*(p) (3.19)

where the usual Schwarzschild coordinate r and our p coordinate are related via

r om\ ~1/2 , 1 T
p—/2 (1—10/> dr’ = y\/r(r — 2m) 4+ 2msinh ,/%—1 (3.20)

m
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Figure 8. Near-horizon solution of the 4-dimensional HP system for the metric with p =5, A = 0.7,
and 3 = 107. Note that log g is roughly constant, the vertical axis is chosen to emphasize the relatively
small variation.

To avoid the conical singularity at the tip, the periodicity of the imaginary time direction
2

is fixed by the mass of the black hole to be 8 = 8mm. When r 2 2m, r = 2m + £-. In

this near-horizon limit, we find

3 2 2
p P B p
hp)=5 - ... S T T 21
(p) 5 glp)="p+5+ (3:21)
Using (3.21) in (3.15) and (3.18) gives a boundary condition for ® in the large § limit

of our interest:
®'(p) =0 (3.22)

We can now solve for the winding mode by solving (3.16). The result is

2

x(p)=Ae 7. (3.23)
Here, we have found a unique solution from the first-order system. There is also a second-order
path to getting this solution. Plugging the leading order terms from (3.21) along with (3.22)
into (A.3) with D = 4 gives an equation that can be solved for x. The equation is second
order, but by retaining only the normalizable mode, we get the same equation above. A
related approach to determining the near-horizon winding mode was taken in [32].
These calculations allow us to set the boundary conditions for our first-order system
in the cap region (note that g = §/27):

N

BQ
WP =5 =" @ =0, () =Ae

wfRy

(3.24)

We have re-scaled Sk — h to be consistent with our previous conventions. The analogue of the
cap region in 1+1 dimensions here, is the large- regime. We can evolve (3.15)—(3.18) with
the boundary conditions (3.24). The solution is plotted in figures 8(a), 8(b), 9(a) and 9(b).
A crucial observation is that g(p) is roughly constant, and when it is large, equations (3.15)—
(3.18) reduce to the 1+1 first order form. This is a very useful simplification. We find that
the cap region solutions for h, ® and x in 3+1 dimensions can be understood via the cap

,13,



Figure 9. Near-horizon solution of the 4-dimensional HP system for the winding tachyon and dilaton
with p =5, A =0.74, and 5 = 107.

— L2110
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Figure 10. The dilaton solution of the 4-dimensional HP system for different values of 3. The left
hand side of the plot shifts upwards and reaches the same level as the right hand side with increase in

B. The latter is a feature of the 141 dimensional solution.

solutions in 141 dimensions because of the relative constancy of g at large § (which leads
to large g). It can also be seen that just like the 2-dimensional case, there is a critical A,
corresponding to a given value of 3 (which is the analogue of given value of k). With the
increase in 3, A, increases and approaches precisely the critical value for A, that was found
in [27] in the k = oo case. This means that there is a direct connection between the large-3
limit of the 4-dimensional case and the results in [27]. This is intuitive — we expect that
in the large-# limit, the higher dimensional geometry reduces to the 1+1 dimensional cap
region times a flat geometry because the curvature of the compact sphere becomes negligible.
What is interesting here is that this is realized in the emergence and structure of the first
order system, thereby giving us a precise way in which the 141 dimensional FZZ duality
can make statements about the higher dimensional case.
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3.3 Winding entropy as black hole entropy in 3+1 dimensions

The entropy carried by the winding modes can be calculated using
Sw = (B0 —1)I (3.25)

where I is given by (3.2) when there is a puncture at the cigar’s tip.
Direct calculation of the action for our ansatz for the fields yields,

283 _ _
Sw = @ral)? /dD Levge 2 grrx|? (3.26)
In the D = 4 case, it becomes
833
Sw = 2ra)? /dp e 2R3 g\? (3.27)

We impose the G, equation of motion (3.2)

2k332
(2ma)?

AN,
'+ ggh — P = (3.28)

n (3.27) to bring things on-shell

_ 4B /d,o B ge 2% (3.29)

This is a key step, and the correct power of 8 here is crucial for us to get the correct higher-
dimensional black hole entropy. But note that so far we have not used anything specific
to the first order system, and these steps were also taken in [27, 33].° In the former, the
entropy was obtained directly in the second order system and in the latter, the subsequent
calculations were in the first order system in 1+1 dimensions. We will follow the latter, but
in the context of the 34+1 dimensional first order system. We will contrast these calculations
in the concluding section.

The integral depends only on the boundary values of the integrand since it is a total
derivative. Note that we expect the first order system to be most directly useful in the cap
region, which corresponds to large 5. In this regime, the outer (upper) boundary conditions
are at p — 0, and can be found from (3.21):

62
1672

W(p— 0) = 25”, 9(p—0) = (3.30)
At the other end of the integral (i.e., p — —oo limit), the series expansions for h, ® and
X are the same as in the 141 dimensional case (see eqgs. (3.4-3.6) of [27]). This can be
directly checked using a systematic series expansion, but it is also easy to see — in this limit,
the g(p) — large constant, and therefore the system reduces to the 1+1 form. Seeing this
numerically in the h-plots is harder, because the dependence on  is quite slow — we present

some plots in figure 11. In any event, h’ — 0 as p — —oo.

5Let us emphasize however that since the first order system implies the second order system, (3.29) is a
consequence of (3.27) even if we were to exclusively work with the 1st order system.
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Figure 11. With increase in 3, the transition from A < A, to A > A, becomes less abrupt. Note that
the dependence on 3 is very weak, even though the trend that the trough of h is getting pushed out
to more negative p should be clear. For doing numerics, log g and log 3 are better suited as variables.

The final expression for the entropy of the winding condensate becomes

4B 27 B2 32
Sy = —= X — x 2P0 = Z_72% 3.31
W K2 B 162 23 (3.31)
where ®( is the value to which the dilaton saturates at the cap. Newton’s constant in
Einstein’s frame Gy is related to kg and the constant dilaton ®( as

SnG N = Kkge*?0, (3.32)
resulting in
62
Sw = . 3.33
w 167G N ( )

This is precisely the Bekenstein-Hawking entropy of a 3+1 black hole with mass m such that
B = 8rGym, but here we obtained it from the winding condensate entropy.

4 A “Decoupling” of the cap region?

Our modest goal in this paper was to see how much of the discussion in [27] generalizes to
general dimensions. We found that essentially all of it does, if we are working in the “cap
ltmit”. There were two key technical ingredients that enabled this. The first, was that the
Horowitz-Polchinski equations allowed a re-writing in terms of a first order system for the
metric-dilaton-winding sector in general dimensions, despite the complications introduced by
the sphere. Secondly, the resulting equations have a universal structure in the “cap limit”
which can be viewed as a large-mass approximation near the horizon. In this limit, the
equations reduced in a precise sense to the first order HP system in 141 dimensions. These
two facts were sufficient for us to generalize all of the successes of [27] to higher dimensions.
These results suggest that the cap region physics of the 141 black hole, is a universal lesson
from 1+1 dimensions to more general black holes.

As always, these results raise new questions and puzzles. We list some of them below
and make some related comments and speculations.
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o It will be interesting to understand the precise connection between the entropy calcula-
tion here (also [27]) and that in [33]. The latter calculation managed to reproduce the
entropy, but it was done in the second-order HP system and did not rely on the critical
solution. Also, the entropy there came from the asymptotic region of the black hole. It
is interesting to note that in our case, the argument for dropping the contribution from
the lower end of the winding integral relied on the details of the boundary conditions
at the puncture, while it was a trivial consequence of the smoothness of the horizon
in [33]. It is tempting to think that this is an Euclidean manifestation of the “smooth
horizon without a smooth horizon” suggestion in [9, 34] for Lorentzian black holes. The
observation there was that a UV-complete bulk description without a manifest interior
can approximate (exponentially well!) the smooth horizon correlation functions, thanks
to crucial properties of black hole normal modes.°

o It was noted in [27] that the puncture at the tip may be used to evade the Witten index
obstruction noted in [45] when connecting black holes to strings. Our calculation in
higher dimensions is consistent with this.

o The cap region (in a language adapted to 141 dimensions) is defined by
p S Vkd (4.1)

after re-instating string length. In particular, this includes the region p ~ v/o/. The
original BPS D-brane decoupling limit of Maldacena zoomed in on this latter region, and
it was formulated in Lorentzian signature. The Euclidean cap region on the other hand
is aware of the stack size of the NS5-branes (note that k is the number of NS5-branes
in this language). This and the finite temperature of the system are reminiscent of a
deconfined version of the decoupling limit — it will, of course, be interesting to make
this speculation precise.

e It can be checked that the 3+1 first-order HP system does not have a solution that goes
over to conventional Schwarzschild in the asymptotic region, with an asymptotically
constant dilaton. This is again a suggestion that the significance of FZZ duality is in the
cap region. It will be very interesting to understand what extra ingredient is provided
by the orthogonal complement of the first order system, within the solution space of
the second order system, that allows extrapolation to the asymptotic region. This
complement seems to be an important ingredient in gluing the cap to the asymptotic
region. We suspect that the first order system is a rough analogue of the normalizable
mode in the context of AdS/CFT. A hint of this is provided by the observation made
below (3.23) that the first order system retains the normalizable mode of the second
order system. Understanding this better, may shed light on the construction of the
Euclidean (and perhaps Lorentzian) Schwarzschild solutions in string theory. These
ideas are likely to be of significance in understanding the first bullet point in this section
as well.

6Key features of these modes that enable this, were first noted numerically (in a different context) in [35].
See various follow-up works in [36-44].
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o It was observed in [46-48] that the large-D limit of the Schwarzschild black hole
naturally leads to the 141 dimensional black hole. The discussion there (see eq. (6)
of [48]) is naturally in the 8 >> 1 limit, which corresponds to our cap region.

e A natural expectation from the winding condensate picture around the shrinking
Euclidean circle is that the wave function of the winding mode goes as

X(p) ~ eI (4.2)

where Sy¢g is the Nambu-Goto action associated to a string worldsheet wrapping the
tip of the cigar up to the radius p. It turns out that this is precisely reproduced by
(say) our (3.16). Upon integrating, (3.16) leads to x(p) = Ae =)o WP where we
have re-instated the § that was scaled out from the 1st order system. This expression is
reproduced by Syg = % foﬁ e dza\ﬁ where g = guy%%, with g, the spacetime
metric (3.1) and 0% = (0!, 0?), the worldsheet coordinates. The natural worldsheet
embedding in target space is (X? =7 = 0!, X! = p = ¢?) and the rest of X’ = const.,
so that v, = diag(h?(p),1). Here X' are the coordinates on the spacetime sphere.
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A Derivation of first order system in D dimensions

We repeat the second-order system here for convenience:

(D —2)(D —3) <g’>2_ (D-2)(D-3),

2(@// _ @/2) +

8 g 29
D—2 'h’ ~ ~ 2
A [ ) B ) = X2 3B - B, (A1)
2 gh
2
_D _ 1 lhl 2 l@/ D _ 4 /
73_7L_97+9 229 o, (A.2)
g 2 gh 29 g 4 g
e2® D-2 _ ~ ~ 9
0 (o7 e = (302 = 6 ) . (A.3)
g 2

o\ D-2D-3)(¢\° [(D-2\[gW
() ) () ) e
(D-2)(D-3) D-2g%

12 22122
— — = h
% > g X+ B°hx
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We will look for a subsystem where

X = —Bhx. (A.5)
Plugging this in (A.3) immediately gives
D-2g\  f?
Woenle— 2229, Bi (A.6)
4 g 2

Use the following ansatz (we will determine A in what follows):

h/ =B’ + A (A.7)

Take derivative of (A.7), use (A.6) to get

D-240" p3

" &2 MH — AR32p2,2 /
2(9" — 9"%) + 5 p 5 h 46°h"x* + 2A'h (A.8)
Subtracting it from (A.1) we find
_ '&/! 32 _ _ N\ 2 _ _ _ 1/
D—-249" {{A_(D 2)(D - 3) g +(D 2)(D 3)+A—D 2 (dgh oA
2 g B 8 g 29 2 gh
(A.9)

To get an expression for A’h, take derivative of (A.7), use (A.5), and subtract from (A.4).
The result is:

2
, D-2[4% D-3 g D-3(g
A'h=— Tt e . (A.10)

Plugging this in (A.9) yields

2  gh 8

A:ﬁ<D—2g’h’+(D—2)(D—3) (g'>2_D—zg’q>/_(D—2)(D—3)+A)
3% g 2 g 29
(A.11)

which finally gives, after using (A.6) once

@:_sz+ﬁ(0—25%19'_M<a>2_<D—2;<D—3>+A). (a12)

h gr\ 4 pgh 8 \y g

Together (A.5), (A.6), and (A.12) are the first order system for the winding mode, metric
component h and the dilaton. The calculations here were more involved than in [27] due to
the presence of g, but gratifyingly, the key structures are preserved and all the complications
could be separated into the metric function g.
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