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Abstract

A class of Newtonian forces, determining the acceleration F(x, y) of particles
in the plane, is F=(Re F(z), Im F(z)), where z is the complex variable x + iy.
Curl F is non-zero, so these forces are nonconservative. These complex curl
forces correspond to completely integrable Hamiltonians that are anisotropic
in the momenta, separable in z and z* but not in x and y if the curl is nonzero.
The Hamiltonians can be quantised, leading to unfamiliar wavefunctions, even
for the (non-curl) isotropic harmonic oscillator. The formalism provides an
alternative interpretation of the analytic continuation of one-dimensional real
Hamiltonian particle dynamics, where trajectories are known to exhibit intricate
structure (though not chaos), and is a Hermitian alternative to non-Hermitian
quantisation.
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(Some figures may appear in colour only in the online journal)
1. Introduction

Curl forces [1] are Newtonian forces describing accelerations of particles. They depend on
position (but not velocity), and are not the gradient of a potential, so their curl is not zero:

F=F(), VxF#0. (1.1)

These forces are non-conservative, because the work § dr - F (r) done while transporting the
particle around a circuit is non-zero, and equal to the flux of V x F through the circuit; never-
theless, they are non-dissipative, because volume in the state space of position and velocity is
conserved. For most curl forces, there is no associated Hamiltonian or Lagrangian, and there-
fore no straightforward quantisation. But for a zero-measure subset of curl forces an underlying

Original content from this work may be used under the terms of the Creative Commons
8Y Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1751-8121/20/415201+21$33.00 © 2020 The Author(s). Published by IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1751-8121/abad77
https://orcid.org/0000-0001-7921-2468
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/abad77&domain=pdf&date_stamp=2020-9-10
https://creativecommons.org/licenses/by/4.0/

J. Phys. A: Math. Theor. 53 (2020) 415201 MV Berry

Hamiltonian does exist [2, 3] and can be quantised. In such Hamiltonians, which may or may
not be integrable [4], the kinetic energy is anisotropic in the canonical momenta.

My purpose here is to explore a subset of this Hamiltonian subset of curl forces, and their
quantisation. These forces are characterised by an underlying complex structure. They describe
a particle moving in the plane r = (x, y), and F(r) depends only on the complex variable z = x
+ iy through a scalar function F(z). For such ‘complex curl forces’, (1.1) reduces to dynamics
in the complex plane:

I=F(), (=x+1iy). (1.2)

The function F(z) is assumed to be analytic in the z plane, possibly with isolated pole or branch-
point singularities.

Complex classical dynamics of this type has been extensively studied from a different
viewpoint [5]. Starting from the one-dimensional Hamiltonian

1
H(x,p) = Epz + U (x), (1.3)

with real x, p, in which U(x, y) need not be real, the variable x has been extended to the complex
plane. A series of remarkable researches [6—11] has revealed that even for simple potentials
U(z) the solutions of (1.2) represent exquisitely intricate trajectories.

The additional perspectives provided here are that the complex dynamics (1.2) has the fol-
lowing features: it represents a special case of curl force dynamics; it is generated in the real
plane x, y by a real and completely integrable two-freedom real Hamiltonian; and it can be
quantised in the real plane. Section 2 describes the classical Hamiltonian, using two different
representations, one of which is separable for any curl force F(z). Section 3 describes the cor-
responding Hermitian quantisation. Section 4 explores some examples; although simple, these
possess unanticipated subtle features. This study raises questions that point to directions for
further study; some are listed in the concluding section 5.

We are here considering real x and y and also real #, but note that when # is complexified the
dynamics has additional richness. One motivation for this is the motion of electrons in crystals
when a magnetic field is applied [12]. Then the force depends on velocity as well as position,
but the dynamics (1.2) is still relevant because the velocity dependence can sometimes be
eliminated by transforming to a complex time variable that may be periodic [13] as a function
of physical (real) time. The associated return maps display intricate fractal structure [14].

To avoid possible confusions, I note that the class of curl forces (1.2) is different from
the curl force (a.k.a. ‘scattering force’) exerted on a small polarisable absorbing particle by
an optical field ¥ (r) [3, 15], even when this is has the form ¢ (x + iy). This optical force is
F (r) = Im[v¢* (r) V¥ (r)], which is different from (1.2) except for the case of a single optical
vortex, for which ¢ = x + iy and F(z) = iz in (1.2). Second, I will not discuss non-Hermitian
quantisation, with its focus on PT symmetry, about which great deal is already known [16].

2. Classical Hamiltonian curl force formalism
It is easy to check that for the complex dynamics (1.2) the curl vector in (1.1) is
(VxF), =Cr)=21Im F (2, 2.1

so all these complex forces have non-zero curl, except for the trivial case F(z) = +z + constant.
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To display the Hamiltonian structure underlying (1.2), the first step is to define the natural
‘potential’, satisfying Laplace’s equation,

F(z)=-U\(2), ielU(z)= —/ d¢F (€). (2.2)
0
Then (1.2) implies the complex conserved ‘energy’
1,
< +U(2) = E, (2.3)

which determines the velocity (up to a sign representing time-reversal); it follows that
trajectories with the same E. cannot cross [6].

The trajectories z(7) for any U(z) and specified E, are the integral curves of the velocity vector
v = {Re z,Im z}, and can be obtained formally by quadrature:

(1) dz

0w V2E-U@)

This conceals more than it reveals, because of the complications introduced by the Riemann
surface structure [14] associated with the branch cuts and inverse functions required to deter-
mine the trajectory. An important role is played by the stagnation points [6] defined by U(z) =
E., where the velocity vanishes.

The real and imaginary parts of E.. correspond to two real conserved quantities:

r—1 = 2.4)

| . . .. .

5(x2—y2)+Re Ux+iy)=E, iy+Im Ux+iy)=K (2.5)
either can be defined as a Hamiltonian generating (1.2). We choose the Hamiltonian corre-
sponding to the first conservation law:

1 . . . .
H=E=3 (Pi—p) +Re U(x+1iy), ie.p.=x p =-J. (2.6)
The second conservation law then corresponds to the additional conserved phase-space
function

—pepy+1Im U(x +1iy) = K. 2.7

(The alternative Hamiltonian defined by the second conserved quantity in (2.5) is +pypy +
Im U (x +1iy), and the association between velocities and momenta is different: X = p,,y =
p...) The existence of a second integral of motion implies that the Hamiltonian (2.6) (or V(2.7))
is completely integrable (though usually nonseparable) [14]: therefore in the dynamics (1.2),
there is no chaos. (The anisotropic Kepler problem [17, 18], describing electrons in semicon-
ductors and familiar in quantum chaology, is an example of a Hamiltonian curl force [2]; but
it does not belong to the class (2.6) because its potential U(x, y) = —1/\/(x2 + y?) is not the
real part of a function of x + iy; moreover it is nonintegrable.)

To prepare for quantisation, it is convenient to express the Hamiltonian (2.6) in terms of new
phase space variables, with coordinates z and z*, regarded as independent coordinates, and the
convenient notation

X=z=@+iy, Y=7"=x—1y),
1

PXZE(px_ipy)aPY:

(2.8)
(px + ipy) .

| —
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Then (2.6) becomes the alternative Hamiltonian
1 1
H= <P§+EU(X)> + <P2Y+§U*(Y)) =E =Ex + Ey, 2.9)

which is obviously separable, with energies Ex, Ey corresponding to the two freedoms in this
representation. The second conserved quantity (2.7) transforms to

iK = <P§ + %U(X)) - (PZY + %U* (Y)) =+ (Ex — Ey), (2.10)

which is simply an awkward way of stating that the X and Y Hamiltonians are conserved sep-
arately. It is worth emphasising that this complexification is different from the more familiar
procedure in which coordinates and momenta are mixed [19].

3. Quantum complex curl force formalism

The Hamiltonian (2.6) can be quantised in the familiar way, using p, = —idy, p, = —id,
leading to a Schrodinger equation involving a Hermitian operator:

((—E)ﬁ + ;) + % Re U (x + iy)) P (r) = EY (r). (3.1)

The different signs in the x and y derivatives are a characteristic feature of complex curl force
quantisation, and will have unexpected consequences. With the exception of the free particle
and linear potential, to be considered in sections 4.1 and 4.2, the potential Re U (x + iy) is not
separable in x and y.

However, the form (2.9) is separable, and the substitution Py = —idx, Py = —idy leads to
the Schrodinger equation

(—3)2( — 0y + %U(X) + %U* (Y)) VX, Y)=(Ex+E)VX,Y)=EVY(X,Y), (32

whose solution is any superposition of the product wavefunctions
VX, Y) =V (x+1iy),(x —iy) = ¢hx X Py (), (3.3)

where ¢y and ¢y satisfy

1
(—8% + 5U(X)> Uy (X) = Extx (X).

| (3.4)
(—8% +5U° <Y)) Yy (Y) = Eyiby (Y).

It is easy to check directly that U(r) = U(X(x, y), Y(x, ¥)) is a solution of (3.1). Thus is estab-
lished the quantisation of the classical complex curl forces defined by (1.2). The energy is £
= Ex + Ey. We will mostly consider E real; Ex and Ey need not be real, and then Im Ex =
—Im Ey can be interpreted as ¢y describing gain or loss, with ¢y describing a compensating
loss or gain.

The complex-separated Hamiltonian in (3.2) is Hermitian, but the separate X and Y contri-
butions in (3.4) are non-Hermitian Hamiltonians. The separate Schrodinger equations in (3.4),
are the same as the analytically continued one-dimensional operators studied in non-Hermitian
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quantum mechanics [16]. These studies, particularly where U (X) is non-Hermitian and PT
symmetric, have led to ingenious interpretations, involving waves decaying in particular sec-
tors of the x, y plane, leading to a discrete spectrum of real energies. Here the different focus
is on dynamics and quantisation of curl forces in the full real x, y plane.

4. Simple examples

4.1. Free particle
When U(z) = 0, the solutions of (3.1) are

Yy =exp (i (kx +ky)), E= % (k= k7)., 4.1

which are propagating plane waves for k, and k, real. The solutions of (3.2) in the separated
form (3.3) are

P (X,Y) =exp((KxX + KyY)) = exp (i (Kx + Ky) x) exp (Ky — Kx) y),

(4.2)
E =K} +K;-

which are evanescent or growing waves for Ky and Ky real. To recapture the propagating plane
waves (4.1), it is necessary to choose separated momenta that are complex (cf (2.8)):

1 1
Ky =3 (ke —iky), Ky=3 (ke +ik). 4.3)

Perhaps surprisingly, evanescent plane waves (K, Kx real), can be expressed as superpositions
of propagating waves (ky, kx real) [20]; extensions of this idea will be used in the next two
sections.

4.2. Linear potential
This is
U(i)=az, (a=a +iay), i.e. Re U(x+1iy) =aix — ayy, “4.4)

which according to (1.2) and (2.2), corresponds to the constant force F' = —a, i.e. force vector
F = (—a,, —a,). For positive aj, a,, particles in the positive quadrant x > 0, y > 0 are attracted
to the x and y axes. This simple example is not a curl force (cf (2.1)), because the force is
constant; nevertheless it is instructive to examine it in some detail.

The Schrodinger equation (3.1) is

1

<2 (0 + ) + arx — a2y> W (r) = Ey(r). (4.5)

This special case is separable in x, y for all a, and general solutions with energy E involve
superpositions of linear combinations Ci;, Ci, of the Airy functions Ai and Bi [21]:

¥ (x,y) = Ciy (<2a1)'/3 (x - E—)) Ci, ((2@)1/3 (y - E—)) ,
a @ (4.6)

E=E.—E,
For fixed E, this is a one-parameter family of degenerate states, labelled by E, or E,.
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An unsurprising special case is the orthonormal eigenfunctions in the positive quadrant,
decaying at infinity and with Dirichlet boundary conditions on the axes, namely

4 \/SAi ((2a1)1/3x _ am) Ai ((2a2)1/3y - a,,)
ala2>

Y (¥) = ( Al (—a) AT (—ay) ’ 4.7)

1
{m,n} =1,2,3...,E,, = 517 (Oénaiﬁ _ ama?/_?,) ’

in which the positive numbers «, are the Airy zeros: Ai (—«,) = 0. The mode energies E,, ,
are negative as well as positive (because of the signs in the derivatives in (3.1)), and real and
nondegenerate for almost all a;, a, (if a; = a,, E = 0 is infinitely degenerate, and if a; and
a, are proportional to Airy zeros some levels are pairwise degenerate). Figure 1(a) illustrates
one of these modes. The corresponding classical trajectory (figure 1(b)) consists of segments
of parabolas with accelerations —a;, —a», specularly reflected from the axes, and bounded by
a rectangular caustic. This is standard torus quantisation of an integrable quantum system.
For the general complex-separated form (3.3), the functions vy and ¥y in the product wave-
function U (X, Y) can alternatively be expressed in terms of any linear combinations Ci of Ai

and Bi:
1/3 1/3
Wy (X) = Ciy (( - %) Ga> ) + Ciy ((x_ _2?) Ga> ) ,
A 3\ 48
om-a(-2) () )0 (02 3).

E=FEx+Ey

Here we encounter the first unfamiliar feature: these X, ¥ complex-separated states are very
different from those of the x, y real separation (4.6). This is illustrated in figure 1(c) for the
case where the Ci; and Ci; are Ai functions and Ci, = Ciy = 0 (i.e. V¥ is the product of two
Airy functions), for the same a and E and the same quadrant as v,,, in figure 1(a). The two
lines of isolated zeros correspond to points where the argument of each of the two Ai functions
is real and equal to any of the Airy zeros —q,,, contrasting with the intersecting line zeros of
the real modes v, ,. The asymptotics of Ai and Bi [21], in particular the Stokes phenomenon
[22], imply, in contrast to the exponential decay of the modes 1), ,, in the positive quadrant,
that for all choices of the Ci,... Ci4 there are sectors in each quadrant of the x, y plane where
U diverges exponentially [e.g. as O(exp(|r|*?))] (see figure 1(c) where the wave rises to ~e*
on the edge of the region shown).

The two separations must be related, because both families of states are solutions of (4.5).
To illustrate the relation, we choose superpositions of the standard Ai functions, and for
convenience write the wavefunctions using Dirac state-vector notation. For (4.6), this is

_2h 1/3 E, - 13 E,
(rl9 (EeB)) = (a102)1/6A1 ((Zal) (x - a_1>) Ab <(2a2) (y - a_z>> (4.9)

E=E, —E,
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Figure 1. (a) Mode 9510(r) in (4.7), for a = 1 4 2i. (b) The corresponding classical
trajectory, (c) complex-separated mode log |¥| in (4.8) with Ci = Ai, alsowitha =1 +
2i, and Ex = 15i, Ey = 5-15i.

States with different E,, E, are orthogonal, and the prefactor ensures the normalisation

(¢ (Erx, Ery) | (Exx. Eny)) = 8 (Ery — Ep) 6 (Ery — Eny) - (4.10)

This follows from [23]

/OodgAi(f—c)Ai(g—d):6(c—d). @.11)

o0
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The states (4.9) are not square-integrable in the full x, y plane, but they are bounded everywhere.
The unbounded corresponding complex-separated states (cf (4.8) are

(r| ¥ (Ex.Ey))

E = Ex + Ey-
4.12)

Note the different signs in the energies in (4.9) and (4.12).
The relation between the two separations is that each of the states |¥) in (4.12) can be
written as a superposition of the states [¢) in (4.9):

|V (Ex, Ey)) = //dEx dE, (¢ (Ev, Ey) |V (Ex,Ey)) [¢ (Ex.Ey)) . (4.13)

The overlap, derived in appendix A, is

(¢ (ExEy) | W (Ex.Ev)

1 ) 21/6 )
= A | - (BE, + dE, + ima; (Ex — Ey))
(ala2)l/6 (|a‘2611a2) o

X 0 (Ex +Ey — Ex + Ey) .
(4.14)

The § function confirms that any of the degenerate states | V) with energy E can be expressed
as a superposition of the degenerate states |¢)) with the same energy E.

The superposition relating the separations could equally be carried out in the positive quad-
rant rather than the full x, y plane, with W expressed as a sum over the discrete states 1, , in
(4.7). Although v, satisfies Dirichlet boundary conditions, U does not. At the classical level,
this corresponds to W being the quantisation of a collection of trajectories of the torus type in
figure 1(b), exploring rectangles of different side ratios.

It is worth remarking that for linear potentials the separations (4.9) and (4.12) are two
members of a more general family, all satisfying (4.5):

1/3
Z(Aa1+Ba2>>/ - (2(A2—Bz)>'/3
2@Aa +Bay) \ - (2(AT B

U (x,y;A,B)=Ai | (Ax+ B
.y ) ( y)( (Bz_Az)z (Aa, + Ban)*

1/3 1/3
. 2(Aas + Bay) ( 2 (A2 — Bz) >
X Al |((Bx +Ay) | ————— B —5 ,
( ”( (B2 — A2)? ) "\ (Aa; + Bay)?

(4.15)

with energy E = E|—E,. The separation (4.9) corresponds to A = 1, B = 0, and (4.12)
correspondstoA =1, B = 1.
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o
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-1.0 -05 00 05 1.0 -1.0 -05 00 05 1.0

>

Figure 2. Force vectors and their integral curves for the quadratic potential (linear force)
(4.16), for (a) a = 1 (not a curl force), (b) a = /i, (c) a = 1.

4.3. Quadratic potential

The classical trajectories for this simple case were understood in detail in the context of com-
plex dynamics [24] and also for curl forces [3, 15], so a brief description will suffice. The
potential and dynamics are

1
U(z) = Eaz2 = 7= —az, (4.16)

in which a = a; + ia, can be any complex number. Complex curl forces correspond to a, #
0,i.e. arg a # (0, 1), and, from (2.1), the curl of the force vector is constant:

C(r) = —2a,. 4.17)
The general solution is
2(1) = A4 exp (irv/a) + A_ exp (—irv/a) . (4.18)

with different orbits labelled by the complex numbers A and A_. Multiplying A; andA_ by a
common complex factor rotates and magnifies the trajectory, and changing |a| rescales ¢. The
complex conserved ‘energy’ (2.3) is

E.=2aA A_. (4.19)

As illustrated in figure 2, the force vectors depend qualitatively on arg a. The vectors spi-
ral into the origin (attracting) if —17 < arg a(mod 2m) < im, and spiral out (repelling)
otherwise.

Positive real a (figure 2(a)) is not a curl force, and corresponds to the equal-frequency har-
monic oscillator (SHO), all of whose orbits are periodic and elliptical. For all other values of a,
orbits are unbounded. For attracting a with a, # 0—that is, for curl forces—the orbits spiral
in from infinity, loop around the zero-velocity stagnation points while reversing their curva-
ture, and then spiral out to infinity. This influence of the stagnation points is a well-understood
general feature of complex dynamics [25]. For repelling a, the orbits curve in from infinity
and out to infinity without spiralling. Imaginary a (figure 2(c)) is the pure curl case, previously
considered [1] as a force with rotational symmetry. Angular momentum is not conserved for
these curl forces, because there is an angular torque; this does not violate Noether’s theorem
because the negative sign in the kinetic energy in (2.6) means that the Hamiltonian does not
possess rotational symmetry: angular momentum is not an invariant in this case. Figure 3 shows

9
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T -5 0 5 10
X

Figure 3. Complex orbit (4.18) under the linear curl force (4.16), fora =1 +1, A4 =
1/A_ = 0.5; the black dots are the stagnation points, around which the orbit winds after
approaching and before receding.

a typical example of a spiralling trajectory, driven by a force that spirals into the origin as in
figure 2(b).
The Schrodinger equation (3.1) is

1 1
(5 (-0; +07) + S (x* —y*) — apcy) (@) =E)(r). (4.20)

The potential possesses a saddle at r = 0, and two collinear valleys, orthogonal to which are
two barriers; changing a; and a, simply rotates this structure. This Schrodinger equation is
nonseparable in x and y for a, # 0, that is, for curl forces, because of the negative sign in the
kinetic energy. But from (3.3) and (3.4) it is separable in X and Y, with factor functions that
are general solutions of (3.4), expressible as parabolic cylinder functions D [21]:

Ux 00 = CiD_y sy (€19X) + CoD_yp gy (09X (4.21)

and similarly for yy. A convenient choice for the product solution is

U (r, Ex,Ey) = (r| U (Ex,Ey)) =D_y o5/ va (01/4 (x + i}’))
(4.22)

XD_y gy e (ia*l/4 (x — iY)) ,
with the sign of Ey chosen so that the energy is
E = Ex — Ey. (4.23)

For all non-real a, that is, for all curl forces, the Stokes phenomenon [22] controlling the
large-argument asymptotics of D [21] indicates that U(r, Ex, Ey) grows exponentially towards
infinity for some sectors in the x, y plane, for almost all Ex, Ey. The choice (4.22) ensures that
¥ does not diverge exponentially for x, y in the positive quadrant when 0 < arg a < 7/2. This
is because the product of the leading exponentials in the asymptotics of the two D factors has

10
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modulus unity for all a: the product is a pure phase factor, with phase —§ (x* — y*) Im \/a —

xy Re +/a.

However, for Ey, Ey for which the arguments of D are non-negative integers, the growth
is power-law, rather than exponential, in all sectors of the x, y plane and for all a. For these
particular solutions [21], D involves the Hermite polynomials H, and

Wy (1) = (1| U) = ﬁ exp (—i (% (x* =»*)Im+\/a + xy Re ﬁ))

a4 a4
xH, (W (x + iy)) H, (W (ix +y)> s

This satisfies (4.19) with energy (complex for curl forces, i.e. a; # 0)

(4.24)

1 1
Em,n=ﬁ<m+§> —W(nJrE) m=0,1,2...,n=0,1,2..). (4.25)

For a, # 0, the solutions (4.22), and the power-law growing modes (4.24), are quantum
states corresponding to classical curl forces. The special case of quadratic potentials that do
not generate curl forces, i.e. a positive real, corresponds to the isotropic SHO, with Schrodinger
equation (4.20) that is separable in x and y. The familiar orthonormal eigenstates, written
without loss of essential generality for a = 1, are

_1(,2 2

Hy, (x) Hy (y) (4.26)

with energies
Eypn=m—n. (4.27)

Note the sign, which follows from the signs in (4.20). As a consequence, these states are
infinitely degenerate in an unusual way:

Em,n = Lm+kn+k- (428)

But for this case a = 1 the complex-separated solutions (4.24) have exactly the same real
energies (4.27), so, as for the linear potential, the question arises of the relation between the two
sets of states. As figure 4 illustrates, the states look very different. The conventional SHO states
Umn in (4.26) (figures 4(a) and (b)) are real, and possess intersecting patterns of nodal lines
associated with the zeros of the two Hermite polynomials. By contrast, the complex-separated
states W, , (4.24) (figure 4(c)) possess isolated zeros along the x and y axes.

As with the linear potential, the relation is that any of the states |¥,,,) can be reproduced
by superposing the degenerate SHO states |, x,+4) With the same energy:

|\Ijm,n> - Z cm,n,k‘¢m+k,n+k>~ (429)
k=0
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Figure 4. Quantum modes for the SHO, i.e. solutions of (4.20) with a, = 0, with quan-
tum numbers m = 10, n = 5, so the energy is £ = 5. (a) The classical Hermite—Gauss
wave amplitude |1)10,5(r)| (equation (4.26)); (b) the same state, plotted as log |¢105(r)|;
(c) the complex-separated mode log | ¥ 5(r)| (equation (4.24)).

The coefficients are

Cmnk = <wm+k,n+k ’ \Ilm,n>

1
_ (x2 +y2) — ixy) (4.30)

[\S]

1
- Vam!lpl2mtn // dr exp (
1 1
X Hyppi () Hygor () Hyy (\/5 (x + iy)) H, (\/5 (ix +)’)> .

The double integral converges and can be evaluated explicitly for any values m, n, k. I do not
have a general form, but the first few coefficients, with the convenient scaling

Cmnk =V 27‘—(_i)kdm,n,ks kl =k + ls (431)

12
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are

0 T 2z 0 T 2r

0

Figure 5. Approximations Wg oo(r) in (4.34) for the complex mode W o(r) as a series
of the SHO eigenmodes ) x(r), around the circle r = (r cos 6, r sin ) with r = 2,
for (a) K = 2; (b) K = 5; (¢) K = 20; (d) K = 100. Full red curves: Re (¥ (1)) =
cos (112 sin 26); full black curves: Im (¥ (r)) = —sin (372 sin 26); dashed black
curves: approximation Re(W,, oo(r)); dashed red curves: approximation Im(W . oo(r))

6 a/
4
2
0
-2

¥ -4
bh

Figure 6. Families of classical trajectories with the same energy. (a) a = /(2i), E.
2v/(2i), A4 =0.1(0.1)1.0,A_ =1/Ay; (b)a=1/2, E=1,A; = 0.1(0.02)0.95, A_
1/A;.

doox =1, doix= 2\/]?, digg=2 (Zk/ + 1) ,

doss =4VK* +k, disy=38 (K+1)VK+2, dopx=38 (Zklz + 6k + 5) ,

(4.32)

K3+ 3K% + 2K, diag = SVAK* + 24K + 53k + 51K + 18,

dysp = 162 (k’2 8K+ 9) VE+2, dise=16 (41«’3 + 30K + 8K + 75) .
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Figure 7. Trajectories z,,,(f) (equation (4.37)) for c = —3.5(1)3.5, for (a) n = 3, (b) n
=4,(c)n=5,(d)n==6.

The limiting behaviour of the high coefficients in the superposition is
Coe —> 2z, (4.33)
k1

To illustrate the convergence of the series (4.29), we consider the simplest case m =n =0,
for which the sequence of approximants is

Wop (r) = exp (—ixy)
= limv2 L4y K(_i)kH Hi(y) = lim¥
= Jimv2 exp ( -3 +y) ) (O H () = lim Wk (r).

k|
par 2Kk!

(4.34)

Figure 5 shows how the approximants converge onto exp(—ixy) around a circle

r=+/(x2+y?).
Semiclassically, the relation between the states involves families of different trajectories
with the same energy. According to (4.19), the trajectories (4.18) with complex energy E. for
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b c
d e i f |
Figure 8. Log V¥, (x,y) (equation (4.38)) for (a)n =0, (b)n=1,(c)n =2, (d) n = 3,
(eyn=4,(f)n=>5.

given a must satisfy A_ = constant/A . for different values of A . For the complex modes (4.24)
for a curl force (a; # 0), the trajectories form a family, illustrated in figure 6(a), of the escaping
trajectories like that shown in figure 2. For a real, the trajectories are the familiar ellipses. A
family, all with the same energy, is shown in figure 6(b); the trajectories have different eccen-
tricities, with those more nearly circular being larger; this unfamiliar feature—contrasting with
the standard SHO where the larger ellipses have more energy—originates in the negative signs
of the y velocity and momentum in (2.4) and (2.5).

4.4. Power-law potential, zero energy

A general power-law potential is known to have intricate classical trajectories, and few exact
results are known for the quantum counterpart. But for zero energy the trajectories and the
quantum states can be described in some detail. A convenient form for this class of potentials
is

U(z) = —27". (4.35)
The curl of the force F (z) = —U’ (z) is, from (2.1),
Cr)y=4n(n—1)r""? sin((n —2)0), (4.36)

which is non-zero for n > 2, so these potentials describe complex curl forces.

In contrast to non-zero energies, for which almost all trajectories driven by curl forces
escape, the zero-energy Newtonian trajectories are bounded: between t = +oo, they trace
closed loops. The exact solutions of (1.2) consist of branches, labelled by m:

Ko _exp (2wim/ (n — 2))
(f _ ic)2/(n72) ’ n.m — (n _ 2)2/(n72)

Znm (t,0) = oO<m<n-3). 437
Equation (2.3) confirms that the solutions have E. = 0. The parameter ¢ labels the different
loops; areal parameter ic would simply correspond to changing the initial position on the loop.
For different c, the loops are nested; some are shown in figure 7. The totality of loops for all
real c fills the plane.

The quantum states can also be described analytically. The solutions of the complex-separated
Schrodinger equations (3.4) with Ex = Ey = 0 are Bessel functions [21], and the choice that
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is nonsingular at 7 = 0 and singlevalued under continuation is

2 L1, L1,
U, (r) = || J1/m42) (m(x +iy)? +l> J1jmt2) ( (x —1iy)? +1>

, (4.38)

n—+2

2 1
Jl/(n+2) (n T 2r%n+l exXp (1 (El’l + 1) 9))

These states are not square-integrable: they do not represent bound states. There are lines of
zeros in the n + 2 directions 6 = 2mn/(n + 2) (0 < m < n + 1). Between these directions,
W, (r) grows exponentially with r. Figure 8 shows the first few cases. For n = 0 (figure 8(a)),
U(z) is a constant potential, the Bessel functions J,, are sines [21], and (4.38) is a zero-energy
real superposition of complex plane waves (cf. section 4.1):

=r

1
Uy (r) = p (cosh 2y —cos 2x). (4.39)

For n = 1 (figure 8(b)), the Bessel functions J;3 can be expressed as a sum of the Airy
functions Ai and Bi [21], so the zero-energy solutions (4.38) fall into the class considered
in section 4.2, though different from the pure Ai states illustrated in figures 1(a) and 1(c). For
n =2 (figure 8(c)), the Bessel functions Jy,4 are superpositions of parabolic cylinder functions
D_yp (4.21) [21] with a = —4 (cf (4.16) and (4.35)) and Ex = Ey = 0, different from the
finite-energy solutions illustrated in figure 4.

Semiclassically, the large r asymptotics of the states ¥,,(r) should be expressible as a density
p(z)of the family of trajectories z,, ,, (7, ¢) in (4.37) with a weight function w(z(t, ¢)). The relation,
involving the unexpectedly simple Jacobian, is

-1

9 (x,y)
a(t,c)

w2
= 4 (4.40)

p(z):w(z)‘

w(z) is fixed by the asymptotics of |W,(r)|*: narrow angular spikes in the growing sectors,
contrasting sharply with the densities on individual trajectories.

5. Concluding remarks

The real Hamiltonian classical complex curl force interpretation explored here, and its Her-
mitian quantisation, can be applied to all potentials previously studied in complex dynamics.
These include a range of potentials more sophisticated than linear and quadratic, where the clas-
sical trajectories have been understood in detail, including: cubic, quartic [26] and higher poly-
nomial potentials; periodic potentials [8, 10, 27]; potentials with poles as well as zeros [11];
and multivalued potentials [6] (where trajectories can wander between the different Riemann
sheets). In some cases [10], the classical dynamics can be described using elliptic functions,
whose arguments as a function of time can pass close to poles, leading to periodic trajectories
determined by arithmetic conditions, and wild excursions—erratic behaviour which although
not chaotic in the usual sense (exponential separation of trajectories in a bounded region) is nev-
ertheless sensitive to initial conditions. (Hamiltonians where the momentum p appears higher
than quadratically [11] also generate very interesting complex-plane dynamics, but do not cor-
respond to curl forces (1.1), because the resulting acceleration depends on velocity as well as
position.)

The real classical Hamiltonians representing complex curl forces can all be quantised
in the conventional way, using either of the Hermitian Hamiltonians in the Schrodinger
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equations (3.1) or (3.2). Although formally conventional, the quantisation described here
possesses unfamiliar features, raising a number of questions.

e Does nonconservativeness, implied by the nonzero curl (2.1), lead to characteristic
quantum behaviour?

e What are the quantum implications of the anisotropic kinetic energy in (3.1)?

e For general quantised curl forces, where almost all classical trajectories are unbounded, is
it possible to create solutions of (3.1) that for real energy grow slower than exponentially,
e.g. polynomially, everywhere in the x, y plane? These would represent quantum states
in the unbounded curl force potentials. They would be superpositions of the complex-
separated states (3.3) with different energies Ex, Ey, possibly complex but whose sum is
real—complex-curl analogues of the non-curl superpositions (4.13) and (4.29); in the X,
Y basis, they would be entangled.

e Can bound states exist, possibly associated with Bohr—Sommerfeld quantisation [26] of
the isolated periodic orbits in cubic and higher potentials, even though almost all classi-
cal trajectories are unbounded? (In other contexts, for example scattering by rotationally
symmetric potentials, isolated unstable closed orbits can exist; these are associated not
with bound states, but with the interesting scattering phenomenon of ‘orbiting’ [28-30].)

e Can some of the bound states studied in PT non-Hermitian quantum mechanics [16] be
alternatively understood as real-energy bound states of real Hamiltonians (3.1) in the full
X, y plane, rather than in particular sectors?

e Does this study suggest an approach to the open question of quantising general classical
curl forces, for which a Hamiltonian description seems unavailable [2]?

Although the emphasis of this paper has been mathematical—the exploration of some
unusual classical and quantal formalisms—it is natural to consider applications. One pos-
sibility is that the anisotropic momentum dependence of the Hamiltonians considered here
((2.6) and (3.1)) could model the effects of external fields, represented by potentials satisfying
Laplace’s equation, on electrons in solids where an effective mass is negative, with confining
walls modelled by boundary conditions (as in (4.7)).
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Appendix A. Overlap integral (4.14) and superposition (4.13)
It is convenient to use the momentum representation:
1
(¢ (Ex.Ey) | ¥ (Ex,Ey)) = 5 / / dk (¢ (Ey, Ey) | k) (k| ¥ (Ex, Ey)) . (A.1)

For |1) (cf (4.8)), this is derived from the integral representations of the two Ai functions, after
scaling the integration variables:

M E. kE
S5 B )) (A2)

1 .
<w (ExaEy) ’k> = W exp (1 <_6al - 6612 a [2%)
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The counterpart for | V) is, from (4.12),

1
(k| W (Ex,Ey)) = %// dr exp(—ik - r) (r| ¥ (Ey,Ey))

12 2/3
T 4r |al

X exp (i ((k" _ iky)3 + (ke +ik_v)3> _ Ex(x - iy)) B Ey(x+iy).

12a 12a* a a*

(A.3)

This also uses the integral representations of Ai, and transformations of the double integral,
using the convenient variables Ky = (k, — ik,)/2, Ky = (ky + ik,)/2 (cf (2.7)), satisfyingk - r =
KxX + KyY.

The overlap (A.1) now has the form

1 2 2/3 .

in which ®(k) is the sum of the two exponents in (A.2) and (A.3). After some algebra, and
transformation to the new variables

q = kear + kyay, 1=k — kya, (A.5)
with Jacobian ‘ %‘12—)) ‘ = |a\2, the phase transforms to the degenerate cubic form
7 q
P (k) = (a3E« + aiEy + iayaz (Ex — Ey))

_6|a\2a1a2 |a\2a1a2
(A.6)
r

+|a|2 (EX +EY - (EX - EY)) :

The formula (4.14) now follows directly, with the Airy function coming from the g integration
and the delta function from the r integration.

As a check on the formal manipulations leading to the overlap (4.14), we now con-
firm that the superposition (4.13) reproduces the complex-separated state (4.12) in position
representation. After transforming the integration variables in (4.13) to

1 1
Ec=2E+v, E=-3E+v (A7)

and the destination variables to

1 1
Ex=3E+u Ey=:E-u, (A.8)
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and evaluating the E integration using the delta-function in (4.14), we need to show that

4 1/3
(r| ¥ (Ex,Ey)) = <—>

ayay
0 E+2 —E+2
x / dv Ai ((2a1)1/3 <x _ BT V)) Ai ((2a2)1/3 (y - (+V)>)
— 00 2611 as
) 21/3 1 )
x Al AP (2 (a% - a%) E + |a\2v + 21a1a2u)
(\a| alaz)
(A.9)
The integral has the form
L:/ dE A (a + b) Ai (c€ + d) Ai (e€ + f) (A.10)

Its evaluation follows the treatment in section (3.6.3) of [26], but with a correction and slight
modification suggested by Abramochkin (private communication); therefore it is worth stating
the result explicitly.

L ‘_ Ai((b—af/e)é— (c—af/e)v)Ai<(c—af/e)a— (b—af/e)5>’

f1/6 K1/6 K1/6
(A.11)
involving the following quantities:

1

K=—(a®+ "+ —2d°F —2d°¢ —207¢%),
e

a a’c ac? a3

Azl_Z, B:_eT’ C:_eT’ DZI—Z,

o=1(ay L (A’D — 3ABC + 2B°)
2 VK ’

; 1 1 5 R (A.12)

=—-|C—— (AD" —3BCD+2C’) |,

=3 (e ! #20Y)
1 1

3 2 3

=—-(A—— (A"D—-3ABC +2B") |,

=3 (4 g )
1 1

8 =-(C+—= (AD* —=3BCD +2C%) | .
2 ( VK ( )
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Explicitly, these quantities are

2173 E .
2 B /3
== b-(x 2al><2a1) :

21/3| 41?3
(araz)
2/3 4/3
a4 ala
jaf? jaf?

aj
2a*

ap
2a*

o= ()" =i

a

21/3

CcC = —%,
a,

E
d= (y + ) Qa)'3,
2612

13 (3 (a3 — a}) E + 2iayazu)
(ma)*? |a4/3|

)

T/3a§/3 a% 2a1a; 2
— D=—5 K=-{—5
|al |al |al
)1/3 (al)l/3 5 ,(02)1/3
= (— = —i .
v 2a 2a

(A.13)

Substitution into (A.11) leads to the expression (4.12) for (r| V¥ (Ex,Ey)), confirming the

superposition.

ORCID iDs

MV Berry

References

https://orcid.org/0000-0001-7921-2468

[1] Berry M V and Shukla P 2012 Classical dynamics with curl forces, and motion driven by time-
dependent flux J. Phys. A: Math. Theor. 45 305201
[2] Berry M V and Shukla P 2015 Hamiltonian curl forces Proc. R. Soc. A 471 20150002

[3] Guha P 2020 Curl forces and their role in optics

and ion trapping Eur. Phys. J. D 74 99

[4] Berry M V and Shukla P 2016 Curl force dynamics: symmetries, chaos, and constants of motion

New J. Phys. 18 063018

[5] Bender C M and Boettcher S 1998 Real spectra in non-Hermitian Hamiltonians having PT symmetry

Phys. Rev. Lett. 80 5243-6

[6] Bender C M et al 2006 Classical trajectories for complex Hamiltonians J. Phys. A: Math. Gen. 39

4219-38

[7] Bender C M, Holm D D and Hook D W 2007 Complexified dynamical systems J. Phys. A: Math.

Theor. 40 F793-804

[8] Bender C M, Holm D D and Hook D W 2007 Complex trajectories of a simple pendulum J. Phys.

A: Math. Theor. 40 F81-9

[9] Bender C M, Hook D W and Kooner K S 2010 Classical particle in a complex elliptic potential J.

Phys. A: Math. Theor. 43 165201

[10] Anderson A G and Bender C M 2012 Complex trajectories in a classical periodic potential J. Phys.

A: Math. Theor. 45 455101

[11] Bender C M and Hook D W 2014 Complex classical motion in potentials with poles and turning

points Stud. Appl. Math. 133 318-36

[12] Dynnikov I A and Novikov S P 2005 Topology of quasi-periodic functions on the plane Russ. Math.

Surv. 60 1-26

[13] Calogero F 1997 A class of integrable Hamiltonian systems whose solutions are (perhaps) all
completely periodic J. Math. Phys. 38 5711-9

[14] Grinevich P G and Santini P M 2007 Newtonian dynamics in the plane corresponding to straight
and cyclic motions on the hyperelliptic curve u*2 = v"*n — 1, n = Z: ergodicity, isochrony and

fractals Physica D 232 22-32

[15] Berry M V and Shukla P 2013 Physical curl forces: dipole dynamics near optical vortices J. Phys.

A: Math. Theor. 46 422001

20


https://orcid.org/0000-0001-7921-2468
https://orcid.org/0000-0001-7921-2468
https://doi.org/10.1088/1751-8113/45/30/305201
https://doi.org/10.1088/1751-8113/45/30/305201
https://doi.org/10.1098/rspa.2015.0002
https://doi.org/10.1098/rspa.2015.0002
https://doi.org/10.1140/epjd/e2020-100462-6
https://doi.org/10.1140/epjd/e2020-100462-6
https://doi.org/10.1088/1367-2630/18/6/063018
https://doi.org/10.1088/1367-2630/18/6/063018
https://doi.org/10.1103/physrevlett.80.5243
https://doi.org/10.1103/physrevlett.80.5243
https://doi.org/10.1103/physrevlett.80.5243
https://doi.org/10.1103/physrevlett.80.5243
https://doi.org/10.1088/0305-4470/39/16/009
https://doi.org/10.1088/0305-4470/39/16/009
https://doi.org/10.1088/0305-4470/39/16/009
https://doi.org/10.1088/0305-4470/39/16/009
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/40/3/f01
https://doi.org/10.1088/1751-8113/43/16/165201
https://doi.org/10.1088/1751-8113/43/16/165201
https://doi.org/10.1088/1751-8113/45/45/455101
https://doi.org/10.1088/1751-8113/45/45/455101
https://doi.org/10.1111/sapm.12059
https://doi.org/10.1111/sapm.12059
https://doi.org/10.1111/sapm.12059
https://doi.org/10.1111/sapm.12059
https://doi.org/10.1070/rm2005v060n01abeh000806
https://doi.org/10.1070/rm2005v060n01abeh000806
https://doi.org/10.1070/rm2005v060n01abeh000806
https://doi.org/10.1070/rm2005v060n01abeh000806
https://doi.org/10.1063/1.532182
https://doi.org/10.1063/1.532182
https://doi.org/10.1063/1.532182
https://doi.org/10.1063/1.532182
https://doi.org/10.1016/j.physd.2007.05.002
https://doi.org/10.1016/j.physd.2007.05.002
https://doi.org/10.1016/j.physd.2007.05.002
https://doi.org/10.1016/j.physd.2007.05.002
https://doi.org/10.1088/1751-8113/46/42/422001
https://doi.org/10.1088/1751-8113/46/42/422001

J. Phys. A: Math. Theor. 53 (2020) 415201 MV Berry

[16] Bender C M 2007 Making sense of non-Hermitian Hamiltonians Rep. Prog. Phys. 70 947-1018

[17] Gutzwiller M C 1973 The anistropic Kepler problem in two dimensions J. Math. Phys. 14 139-52

[18] Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (Berlin: Springer)

[19] Strocchi F 1966 Complex coordinates and quantum mechanics Rev. Mod. Phys. 38 36—40

[20] Berry M V 1994 Evanescent and real waves in quantum billiards, and Gaussian beams J. Phys. A:
Math. Gen. 27 L391-8

[21] Olver F W ] et al (ed) 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge
University Press)

[22] Dingle R B 1973 Asymptotic Expansions: Their Derivation and Interpretation (New York:
Academic)

[23] Vallée O and Soares M 2010 Airy Functions and Applications to Physics 2nd edn (London: Imperial
College Press)

[24] Nanayakkara A 2004 Classical trajectories of 1D complex non-Hermitian Hamiltonian systems J.
Phys. A: Math. Gen. 37 4321-44

[25] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (Washington, DC:
National Bureau of Standards)

[26] Anderson A G, Bender C M and Morone U I 2011 Periodic orbits for classical particles having
complex energy Phys. Lett. A 375 3399-404

[27] Arpornthip T and Bender C M 2009 Conduction bands in classical periodic potentials Pramana 73
259-67

[28] Ford K W and Wheeler J A 1959 Semiclassical description of scattering Ann. Phys., NY 7 259-86

[29] Ford K W and Wheeler J A 1959 Application of semiclassical scattering analysis Ann. Phys., NY 7
287-322

[30] Tabor M 1977 Fast oscillations in the semiclassical limit of the total cross section J. Phys. B: At.
Mol. Phys. 10 2649-62

21


https://doi.org/10.1088/0034-4885/70/6/r03
https://doi.org/10.1088/0034-4885/70/6/r03
https://doi.org/10.1088/0034-4885/70/6/r03
https://doi.org/10.1088/0034-4885/70/6/r03
https://doi.org/10.1063/1.1666164
https://doi.org/10.1063/1.1666164
https://doi.org/10.1063/1.1666164
https://doi.org/10.1063/1.1666164
https://doi.org/10.1103/revmodphys.38.36
https://doi.org/10.1103/revmodphys.38.36
https://doi.org/10.1103/revmodphys.38.36
https://doi.org/10.1103/revmodphys.38.36
https://doi.org/10.1088/0305-4470/27/11/008
https://doi.org/10.1088/0305-4470/27/11/008
https://doi.org/10.1088/0305-4470/27/11/008
https://doi.org/10.1088/0305-4470/27/11/008
https://doi.org/10.1088/0305-4470/37/15/002
https://doi.org/10.1088/0305-4470/37/15/002
https://doi.org/10.1088/0305-4470/37/15/002
https://doi.org/10.1088/0305-4470/37/15/002
https://doi.org/10.1016/j.physleta.2011.07.051
https://doi.org/10.1016/j.physleta.2011.07.051
https://doi.org/10.1016/j.physleta.2011.07.051
https://doi.org/10.1016/j.physleta.2011.07.051
https://doi.org/10.1007/s12043-009-0117-5
https://doi.org/10.1007/s12043-009-0117-5
https://doi.org/10.1007/s12043-009-0117-5
https://doi.org/10.1007/s12043-009-0117-5
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90027-2
https://doi.org/10.1016/0003-4916(59)90027-2
https://doi.org/10.1016/0003-4916(59)90027-2
https://doi.org/10.1016/0003-4916(59)90027-2
https://doi.org/10.1088/0022-3700/10/13/018
https://doi.org/10.1088/0022-3700/10/13/018
https://doi.org/10.1088/0022-3700/10/13/018
https://doi.org/10.1088/0022-3700/10/13/018

	Classical and quantum complex Hamiltonian curl forces
	1.  Introduction
	2.  Classical Hamiltonian curl force formalism
	3.  Quantum complex curl force formalism
	4.  Simple examples
	4.1.  Free particle
	4.2.  Linear potential
	4.3.  Quadratic potential
	4.4.  Power-law potential, zero energy

	5.  Concluding remarks
	Acknowledgments
	Appendix A.  Overlap integral (4.14) and superposition (4.13)
	ORCID iDs
	References


