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Abstract

We give a pedagogical introduction into the approach to superbranes based on the
concept of partial breaking of global supersymmetry (PBGS). The main focus is
put on the universal methods of constructing manifestly worldvolume supersym-
metric Goldstone superfield actions of superbranes, proceeding from the general
relationship between linear and nonlinear realizations of global supersymmetries.
We illustrate this by a few simple examples of PBGS systems on a flat Minkowski
background: N = 1 supermembrane and space-filling D2- and D3-branes. As more
complicated examples, we present the PBGS superfield form of the worldvolume
actions of AdS4 supermembrane, as well as of 3-branes on the AdS5 and AdS5×S1

backgrounds related to each other by T -duality.

1. Introduction

One of the approaches to superbranes proceeds from the concept of partial
breaking of global supersymmetry (PBGS) [1], [2]-[25]. In such a descrip-
tion the objects representing the physical worldvolume superbrane degrees
of freedom are Goldstone superfields. The worldvolume supersymmetry
acts on them as linear transformations and so is manifest. The rest of the
full target supersymmetry is realized nonlinearly. After passing to compo-
nents in the Goldstone superfield action and eliminating auxiliary fields,
one recovers a “static-gauge” form of the appropriate Green-Schwarz-type
action (in general, after a field redefinition.
While for the ordinary p-branes the worldvolume multiplets are scalar,
analogous supermultiplets of Dp-branes are known to be vector, with the
Born-Infeld dynamics for gauge fields (see [26] and refs. therein). So the
corresponding PBGS actions should form a subclass of manifestly super-
symmetric extensions [27]-[29] of the Born-Infeld (BI) action. The actions
from this variety are characterized by the second nonlinearly realized hid-
den supersymmetry. The PBGS approach can be considered as an efficient
tool for deducing such superextensions of the BI action. Until now, only
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superextensions of abelian BI theory were derived in this way [5, 7, 12, 13].
However, this approach could be useful in the non-abelian case too. 1

In these lectures we explain, on a few instructive examples (N = 1 su-
permembrane, space-filling D2- and D3-branes), how the PBGS approach
augmented with the general methods of the theory of nonlinear realizations
[31] leads to a manifestly supersymmetric description of superbranes and
superextensions of the BI theory in terms of worldvolume superfields. The
superbrane or BI superfield Lagrangian density is identified with a proper
component of some linear supermultiplet of the full underlying supersym-
metry. This multiplet is subjected to covariant constraints which express
all its components in terms of the Goldstone multiplet of the unbroken
supersymmetry. The precise form of these constraints can be found us-
ing the general relationship between linear and nonlinear realizations of
supersymmetries [32] adapted to the PBGS case in [17, 18].
Besides discussing superbranes on flat Minkowski backgrounds, we also
describe three examples of applying the PBGS techniques to constructing
Goldstone superfield actions for superbranes on some AdS backgrounds
[22, 23].

2. N=1, D=4 supermembrane

2.1 N = 1, D = 4 supermembrane as a PBGS system. The supermembrane
in D = 4 spontaneously breaks half of the N = 1, D = 4 supersymmetry
and one translation. The set of generators of N = 1 D = 4 Poincaré super-
algebra in the d = 3 notation is naturally split into the unbroken {Qa, Pab}
and broken {Sa, Z} parts (a, b = 1, 2). The basic anti-commutation rela-
tions in this notation read

{Qa, Qb} = {Sa, Sb} = Pab, {Qa, Sb} = εabZ . (2.1)

As was argued in [11], for deriving manifestly covariant superfield equa-
tions describing the worldvolume dynamics of superbrane in the present
case (and some other ones), it suffices to deal with a nonlinear realization
of the superalgebra (2.1) itself, ignoring all generators of the automor-
phisms of (2.1). So we put all generators into the coset and associate the
N = 1 , d = 3 superspace coordinates

{
θa, xab

}
with Qa, Pab. The remain-

ing coset parameters are Goldstone superfields, ψa ≡ ψa(x, θ), q ≡ q(x, θ).
A coset element g is defined by 2

g = ex
abPabeθ

aQaeqZeψ
aSa . (2.2)

1 Its “inborn” feature (as distinct, e.g., from the approach proceeding from gauge-fixed
Green-Schwarz Dp-brane actions [30]) is the manifestly linear realization of unbroken
supersymmetry.

2 In our notation the coset parameters xab and q are imaginary, while θa and ψa are
real.
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Then one constructs the Cartan 1-forms

g−1dg = ωaQQa + ωabP Pab + ωZZ + ωaSSa, (2.3)

ωabP = dxab +
1
4
θ(adθb) +

1
4
ψ(adψb),

ωZ = dq + ψadθ
a, ωaQ = dθa, ωaS = dψa (2.4)

and the corresponding covariant derivatives

Dab = (E−1)cdab ∂cd , Da = Da +
1
2
ψbDaψ

cDbc , (2.5)

where

Ecdab =
1
2

(δcaδ
d
b + δdaδ

c
b) +

1
4

(ψc∂abψd + ψd∂abψ
c) ,

Da =
∂

∂θa
+

1
2
θb∂ab , {Da, Db} = ∂ab . (2.6)

The set of Goldstone superfields {q(x, θ), ψa(x, θ)} is reducible. Indeed, ψa
appears inside the form ωZ linearly and so it can be covariantly eliminated
by imposing the following manifestly covariant inverse Higgs [33] constraint

ωZ |dθ = 0 =⇒ ψa = Daq , (2.7)

where |dθ means the ordinary dθ-projection of the form. Thus q(x, θ) is
the only essential Goldstone superfield needed to describe the partial spon-
taneous breaking N = 1 , D = 4 ⇒ N = 1 , d = 3 within the coset
scheme.
In order to get dynamical equations, we put an additional, manifestly co-
variant constraint on the superfield q(x, θ). It is a direct covariantization
of the “flat” equation of motion:

DaDaq = 0 =⇒ DaDaq = 0 . (2.8)

Eq. (2.8) coincides with the dynamical equation of the supermembrane in
D = 4 as it was given in [7]. It was derived there from the coset approach
with the D = 4 Lorentz group generators included, so (2.8) actually pos-
sesses the hidden covariance under the full D = 4 Lorentz group SO(1, 3).
For the bosonic field q(x) ≡ q(x, θ)|θ=0 it yields the equation corresponding
to the static-gauge form of the Nambu-Goto action for membrane in D = 4.
Our next goal is to construct the corresponding invariant off-shell super-
field action. We apply the systematic approach based on the relationship
between linear and nonlinear realizations of supersymmetry [32]. The con-
struction is quite similar to the one exploited in [18] in application to d = 2
PBGS systems.
As a first step, we define a linear realization of the considered PBGS pattern
N = 1, D = 4 → N = 1, d = 3. From the d = 3 point of view, it amounts to
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N = 2 → N = 1, with the N = 2, d = 3 Poincaré superalgebra given by the
relations (2.1). The primary object of such a realization is the scalar chiral
N = 2, d = 3 superfield Φ(x, θ, ζ), where xab, θa, ζd are the N = 2, d = 3
superspace coordinates. It is assumed to have the following transformation
property under the central charge operator Z:

ZΦ = 1 . (2.9)

This means that the central charge generator acts as shifts of Φ. Such a
realization can be understood as the following specific coset realization of
N = 2, d = 3 supersymmetry (2.1): one treats Φ as the coset parameter
(Goldstone superfield) associated with Z, while the rest of coset parameters
as the coordinates of N = 2, d = 3 superspace on which Φ “lives” (cf.
similar d = 2 realizations considered in [18]). With respect to the N = 1
supersymmetry {Pab, Qa}, the superfield Φ is a collection of standardN = 1
superfields in the expansion of Φ in ζa, while under the S-supersymmetry
it transforms in the following way

δηΦ = −ηa
(

∂

∂ζa
− 1

2
ζb∂ab − θaZ

)
Φ . (2.10)

Respectively, the spinor covariant derivatives in this realization are given
by

D̂θ
a =

∂

∂θa
+

1
2
θb∂ab − ζaZ = Da − ζaZ , Dζ

a =
∂

∂ζa
+

1
2
ζb∂ab . (2.11)

The covariant chirality condition reads(
D̂θ
a − iDζ

a

)
Φ = 0 =⇒ Φ = φ− i ζaDaφ+

1
4
ζ2
[
D2 φ+ 2 i

]
,

φ ≡ φ(x, θ) , (2.12)

where (2.9) was taken into account. Thus the complex N = 1 superfield
φ(x, θ) accommodates the irreducible set of the (4 + 4) off-shell component
fields of Φ(x, θ, ζ). Its S-supersymmetry transformation directly stems from
(2.10) and (2.9):

δηφ = ηaθa + i ηaDaφ . (2.13)

For the real superfields ρ and φ0 defined by

φ = φ0 + i ρ

we obtain the following transformation laws

δηρ = −i ηaθa + ηaDaφ0 , δηφ0 = −ηaDaρ . (2.14)

The spinor superfield
ξa = iDaρ
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transforms under the S-supersymmetry with an inhomogeneous shift

δηξa = ηa

(
1 − i

2
D2φ0

)
− i

2
ηb∂abφ0 , (2.15)

and so can be viewed as the Goldstone fermion of linear realization of
the same PBGS pattern N = 2 → N = 1, d = 3. The field content of
ρ(x, θ) coincides with that of q(x, θ), so ρ can be regarded as the N = 1
Goldstone superfield for the spontaneously broken Z-transformations (it is
shifted under Z).
Besides the basic Goldstone superfield ρ, there still remains the superfield
φ0 possessing homogeneous transformation laws under both N = 1, d = 3
supersymmetries. Now we shall show that it can be eliminated in terms
of ρ by imposing a nonlinear constraint which brings the considered linear
realization into a nonlinear one related to the original nonlinear realization
by a field redefinition. To this end, we apply the method of refs. [32],
[17, 18] to the system of N = 1 superfields ξa, φ0. Construct their finite
S-supersymmetry transformation and replace, in the final expressions, the
parameters ηa by the Goldstone superfields ψa(x, θ) of the original nonlinear
realization (taken with the sign minus). The resulting objects

ξ̃a = ξa − ψa

(
1 − i

2
D2φ0

)
+
i

2
ψd∂adφ0 − 1

4
ψ2∂abξ

b ,

φ̃0 = φ0 − iψaξa +
i

2
ψ2

(
1 − i

2
D2φ0

)
(2.16)

are homogeneously transformed under the S-supersymmetry (and under
the Q one, of course). So it is the covariant condition to put them equal to
zero

ξ̃a = 0 , φ̃0 = 0 . (2.17)

Using the nilpotency property ψ3 = 0, it is easy to find that these equations
amount to

(a) ψa =
ξa

1 − i
2 D

2φ0

, (b) φ0 =
i

2
ξ2

1 − i
2 D

2φ0

. (2.18)

These relations coincide with those found in [7]. The first one is the equiv-
alence relation between the nonlinear and linear realizations Goldstone
fermions, while the second one expresses φ0 in terms of ψa or ξa:

φ0 =
i

2
ψ2

1 − 1
4 D

2ψ2
=

i ξ2

1 +
√

1 +D2ξ2
. (2.19)

In view of the transformation property (2.14) of φ0, the integral

S ∼
∫
d3xd2θ φ0 (2.20)
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is invariant under the whole N = 2, d = 3 supersymmetry, and so it is
the sought off-shell action of the Goldstone superfield ρ(x, θ). It describes,
in a manifestly worldvolume supersymmetric manner, the N = 1, D = 4
supermembrane in a flat background. It can equally be written through
the initial chiral N = 2 superfield Φ(x, θ, ζ), eq. (2.12), as an integral over
the full or chiral N = 2, d = 3 superspaces [19]. In such a representation
the full N = 2, d = 3 supersymmetry (2.1) is manifest.
It can be shown [19] that the dynamical equation (2.8) postulated on the
purely geometric grounds and the equation of motion following from the
off-shell action (2.20) are equivalent to each other.

3. Space-filling D2-brane

As the second instructive example, we consider the “space-filling” D2-brane
with the N = 1, d = 3 vector multiplet as the worldvolume one.

3.1 D2-brane dynamics from nonlinear realizations. Our starting point is
the superalgebra (2.1) with Z = 0. The coset element g contains only one
Goldstone superfield ψa, and the covariant derivatives are still given by
(2.5). In the flat case the d = 3 vector multiplet is described by a N = 1
spinor superfield strength μa subjected to the Bianchi identity:

Daμa = 0 =⇒
{
D2μa = −∂abμb ,
∂abD

aμb = 0 .

Its equation of motion reads

D2μa = 0 . (3.1)

It was shown in [11] that the following manifestly covariant generalization
of (3.1), (3.1) describes the D2-brane:

(a) Daψa = 0 , (b) D2ψa = 0 . (3.2)

The reasoning was mainly based on the observation that the purely bosonic
limit of (3.2) amounts to the following equation for the vector Vab ≡
Daψb|θ=0: (

∂ac + V d
a V

f
c ∂df

)
V c
b = 0 . (3.3)

This nonlinear but polynomial equation was shown to be a “disguised”
form of the equations of the non-polynomial d = 3 BI action which is just
the bosonic core of the superfield D2-brane PBGS action as was explic-
itly demonstrated in [7]. The passing to the standard form of the d = 3
BI equation is achieved by a field redefinition which is a bosonic limit
of the superfield equivalence redefinition relating the nonlinear realization
Goldstone fermion ψa to μa treated as the Goldstone fermion of a linear
realization of the same PBGS pattern (see next Subsection). Using this
equivalence, one may explicitly show, like in the supermembrane case, that
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the equations (3.2) are equivalent to the worldvolume superfield equation
following from the off-shell D2-brane action given in [7].

3.2 Off-shell superfield D2-brane action. Now we shall re-derive the off-shell
D2-action of ref. [7] by the same generic method which was applied above to
construct the Goldstone superfield action of N = 1, D = 4 supermembrane.
To define the appropriate linear realization of the considered PBGS pattern,
one needs to embed the N = 1, d = 3 Maxwell superfield strength μa into a
linear N = 2, d = 3 multiplet. The latter should have such a transformation
law under the S-supersymmetry that μa transform with an inhomogeneous
term ∼ ηa and so admit an interpretation as the Goldstone fermion of linear
realization.
The appropriate N = 2, d = 3 supermultiplet was proposed in [16] as a
deformation of the N = 2, d = 3 Maxwell multiplet (which is a dimensional
reduction of the N = 1, d = 4 tensor multiplet). This deformed multiplet
is described by a real N = 2, d = 3 superfield W (x, θ, ζ) subjected to the
following constraints

(a)
[
(D)2 − (Dζ)2

]
W = −2 i , (b) DaDζ

aW = 0 (3.4)

(this form of constraints can be obtained from the one given in [16] by choos-
ing a specific frame with respect to the explicitly broken U(1)-automorphism
symmetry and making an appropriate rescaling of W 3).
The standard S-supersymmetry transformation law of W

δηW = −ηa
(

∂

∂ζa
− 1

2
ζb∂ab

)
W (3.5)

implies the following transformation laws for the irreducible N = 1 super-
field components of W (x, θ, ζ), μa ≡ −iDζ

aW |ζ=0 and w ≡W |ζ=0,

(a) δημa = ηa

(
1 − i

2
D2w

)
+
i

2
ηb∂abw , (b) δηw = −i ηaμa . (3.6)

It is easy to check that eq. (3.6a) is consistent with the Bianchi identity
(3.1) (which is none other than eq. (3.4b)). Just due to the presence of
constant U(1)A breaking term in the r.h.s. of (3.4a), the N = 1 Maxwell
superfield μa transforms inhomogeneously under the S-supersymmetry, and
thus is recognized as the Goldstone fermion of the linear realization of the
considered N = 2 → N = 1, d = 3 PBGS pattern.
Like in the supermembrane case, the additional homogeneously transform-
ing N = 1 superfield w(x, θ) can be traded for the Goldstone-Maxwell one
μa by imposing nonlinear constraints the precise form of which is dictated
by our generic method applied to the given system. As the first step,

3 For the first time such a deformation of the N = 1, d = 4 tensor multiplet constraints
was considered in [34] in the context of N = 4 superconformal mechanics.
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one defines the superfields μ̃a and w̃ as finite S-supersymmetry transforms
of μa and w, with the supertranslations parameter ηa being replaced by
−ψa(x, θ)

μ̃a = μa − ψa

(
1 − i

2
D2w

)
− i

2
ψb∂abw − 1

4
ψ2∂abμ

b ,

w̃ = w + i ψaμa − i

2
ψ2

(
1 − i

2
D2w

)
. (3.7)

These quantities homogeneously transform under all N = 2, d = 3 trans-
formations and so one can covariantly equate them to zero

μ̃a = w̃ = 0 . (3.8)

From these covariant constraints one gets the equivalence relation between
ψa and μa

ψa =
μa

1 − i
2 D

2w
, (3.9)

as well as the relation

w = − i

2
μ2

1 − i
2 D

2w
. (3.10)

These are precisely the equations derived in [7] (up to a rescaling of w).
They can be used to express w in terms of either ψa, or μa

w = − i

2
ψ2

1 + 1
4 D

2ψ2
= − i μ2

1 +
√

1 −D2μ2
. (3.11)

This composite superfield is just the corresponding Goldstone superfield
Lagrangian density,

S ∼
∫
d3x d2θ w , (3.12)

since, in virtue of the Bianchi identity (3.1), the d3x d2θ integral of the
variation (3.6b) is vanishing, i.e. δηS = 0.
The same superfield D2-brane action can be written in a manifestly N = 2
supersymmetric form as an integral over the whole N = 2 superspace, with
either W 2 or the N = 2, d = 3 Fayet-Iliopoulos term as the Lagrangian
densities ( like in other PBGS cases, these two independent invariants are
reduced to each other after passing to the nonlinear realization).

4. Space-filling D3-brane

As the last example of PBGS approach to branes on the flat background we
consider the space-filling D3-brane in d = 4. This system amounts to the
PBGS pattern N = 2 → N = 1 in d = 4, with a nonlinear generalization
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of N = 1, d = 4 vector multiplet as the Goldstone multiplet [5, 6]. The off-
shell superfield action for this system was constructed in [27, 5]. Here we
explain, following ref. [11], how the corresponding dynamical equations can
be derived directly from the coset approach, like in other cases considered
in these lectures.

4.1 D3-brane superfield equations of motion from nonlinear realizations.
Our starting point is the N = 2, d = 4 Poincaré superalgebra without
central charges: {

Qα, Q̄α̇
}

= 2Pαα̇ ,
{
Sα, S̄α̇

}
= 2Pαα̇ . (4.1)

Assuming the Sα, S̄α̇ supersymmetries to be spontaneously broken, we in-
troduce the Goldstone superfields ψα(x, θ, θ̄), ψ̄α̇(x, θ, θ̄) as the correspond-
ing parameters of the following coset

g = ei x
αα̇Pαα̇ ei θ

αQα+i θ̄α̇Q̄
α̇
ei ψ

αSα+i ψ̄α̇S̄
α̇
. (4.2)

With the help of the corresponding Cartan forms one can define the covari-
ant derivatives

Dα = Dα − i
(
ψ̄β̇Dαψ

β + ψβDαψ̄
β̇
)
Dββ̇, Dαα̇ =

(
E−1

)ββ̇
αα̇
∂ββ̇ , (4.3)

where

Dα =
∂

∂θα
− i θ̄α̇∂αα̇ , D̄α̇ = − ∂

∂θ̄α̇
+ i θα∂αα̇ ,

Eββ̇αα̇ = δβαδ
β̇
α̇ − i ψβ∂αα̇ψ̄

β̇ − i ψ̄β̇∂αα̇ψ
β . (4.4)

Now we can write the covariant version of the constraints on ψα, ψ̄α̇ which
define the superbrane generalization of N = 1, d = 4 vector multiplet,
together with the covariant equations of motion for this system. They
are a direct covariantization of the free N = 1, d = 4 Maxwell superfield
strength constraints and equation of motion:

(a) Dα̇ψα = 0 , Dαψ̄α̇ = 0 , (b) Dαψα = 0 , Dα̇ψ
α̇ = 0 . (4.5)

Eqs. (4.5a) are a covariantization of the flat N = 1 chirality conditions
while (4.5b) generalizes at once the N = 1 superfield strength Bianchi
identity and equation of motion. As was argued in [11], this set of superfield
equations is self-consistent and compatible with the algebra of the covariant
derivatives (4.3). For the physical bosonic components of ψ, ψ̄,

V αβ ≡ Dαψβ |θ=0 , V̄ α̇β̇ ≡ Dα̇
ψ̄β̇ |θ=0, (4.6)

these superfield equations imply, in the purely bosonic limit, the following
equations

∂αα̇V
αβ − V γ

α V̄
γ̇
α̇ ∂γγ̇V

αβ = 0 , ∂αα̇V̄
α̇β̇ − V γ

α V̄
γ̇
α̇ ∂γγ̇ V̄

α̇β̇ = 0 . (4.7)
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It was shown in [11] that, like the analogous equations (3.3) in the D2-
brane case, these equations can be cast in the standard form of the d = 4
BI theory equations augmented with the Bianchi identity for the Maxwell
field strength.
Note that at the full superfield level the field redefinition which leads from
the disguised form of the BI equations (4.7) to their “canonical” form cor-
responds to passing from the Goldstone fermions ψα, ψ̄α̇ to the standard
Maxwell superfield strength Wα, W̄α̇. The nonlinear action of [27, 5, 6]
was written just in terms of this latter object. The equivalent form (4.5)
of the equations of motion and Bianchi identity is advantageous in that it
manifests the second (hidden) supersymmetry, being constructed out of the
covariant objects.

4.2 Linear and nonlinear realizations of the N = 2 → N = 1 PBGS. Now
we wish to establish the correspondence just mentioned and to reproduce
the off-shell BI action of [27, 5, 6] by applying the general techniques based
on the relationship between linear and nonlinear realizations of PBGS, like
in the previous Sections.
Our starting point is the N = 2, d = 4 Goldstone-Maxwell multiplet
[14, 5, 15]. In the N = 2 superspace (xαα̇, θαi , θ̄

α̇i) it is defined by the fol-
lowing deformation [15] of the standard N = 2 Maxwell superfield strength
constraints

(a) DikW − D̄ikW̄ = iM (ik) , (b) Di
αW̄ = D̄α̇iW = 0 . (4.8)

Here
Di
α =

∂

∂θαi
− i θ̄α̇i∂αα̇ , D̄α̇i = − ∂

∂θ̄α̇i
+ i θαi ∂αα̇ ,

Dik = DαiDk
α , D̄ik = D̄i

α̇ D̄
α̇k

and M ik = Mki is a triplet of constants which explicitly break the auto-
morphism SU(2)A of N = 2 supersymmetry down to U(1)A and satisfy the
pseudo-reality condition

(M ik) = εin εkmM
nm .

In components, the deformation (4.8a) amounts to the appearance of con-
stant imaginary part ∼ M ik in the isotriplet auxiliary field of N = 2
Maxwell multiplet.
Now we pass to the N = 1 superfield notation by relabelling the Grassmann
coordinates and spinor derivatives as

θα1 ≡ θα , θα2 ≡ ζα , D1
α ≡ Dα , D2

α ≡ Dζ
α .

In order to have the off-shell S-supersymmetry (acting as ζ-supertranslations)
spontaneously broken while the Q-supersymmetry unbroken, we are led to
choose the following frame with respect to the explicitly broken SU(2)A

M12 = 0 , M11 = M22 = m, (4.9)
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where m is a real constant. Like in the case of D2-brane it is fixed up to
rescaling of W . A convenient choice is

m = −2 .

It will be also convenient to choose the basis in N = 2 superspace where
the chirality with respect to the variable ζα is manifest

D̄ζ
α̇ = − ∂

∂ζ̄α̇
, Dζ

α =
∂

∂ζα
− 2 i ζ̄α̇∂αα̇ . (4.10)

In this basis, constraints (4.8) imply the following structure of the superfield
W (x, θ, ζ)

W = i φ+ i ζαWα − i
1
2
ζ2

(
1 +

1
2
D̄2φ̄

)
, (4.11)

where φ and Wα are chiral N = 1 superfields

D̄α̇φ = D̄α̇Wα = 0 , (4.12)

and the fermionic superfield Wα obeys the N = 1 Maxwell superfield
strength constraint

DαWα + D̄α̇W̄
α̇ = 0 . (4.13)

The S-supersymmetry transformation of the N = 2 superfield W

δηW = −
[
ηα

∂

∂ζα
+ η̄α̇

(
∂

∂ζ̄α̇
+ 2 i ζα∂αα̇

)]
W (4.14)

implies the following ones for its N = 1 superfield components φ and Wα

δηφ = −(ηW ) , δηφ̄ = −(W̄ η̄) ,

δηWα = ηα

(
1 +

1
2
D̄2φ̄

)
+ 2 i η̄α̇∂αα̇φ , δηW̄α̇ = (δηWα) . (4.15)

The superfield Wα shows up an inhomogeneous shift ∼ ηα (proportional to
the SU(2)A breaking parameters) in its transformation, so it is the Gold-
stone fermion of the linear realization of the considered N = 2 → N = 1,
d = 4 PBGS pattern (the Goldstone-Maxwell N = 1 superfield).
Now we are prepared to start the algorithmic procedure of passing to the
relevant nonlinear realization exemplified in the previous Sections. We con-
struct the finite η-transformations of the superfields φ and Wα proceeding
from the infinitesimal ones (4.15)

{φ(η) , Wα(η) } =
(

1 + δη +
1
2
δ2η +

1
3!
δ3η +

1
4!
δ4η

)
{φ , Wα } , (4.16)

then pull out the parameters ηα, η̄α̇ to the left and replace them by the
original nonlinear realization Goldstone fermions, ηα → −ψα, η̄α̇ → −ψ̄α̇.
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It is a matter of straightforward computation to check that the objects
φ̃ ≡ φ(−ψ) , W̃α ≡ Wα(−ψ) transform homogeneously (though nonlin-
early) with respect to the η-transformations

δη{ φ̃, W̃α } = i
(
ψαη̄α̇ − ηαψ̄α̇

)
∂αα̇{ φ̃, W̃α } , (4.17)

and behave as ordinary N = 1 superfields under the unbroken ε-supertrans-
lations acting in the N = 1 superspace (x, θ, θ̄). Hence, one can impose the
covariant constraints

φ̃ = W̃α = 0 . (4.18)

The leading terms of the relations between φ, Wα and ψα implied by these
constraints are as follows

φ = −1
2
ψ2

(
1 +

1
2
D̄2φ̄

)
− i ψαψ̄α̇∂αα̇φ+ . . . , (4.19)

Wα = ψα

(
1 +

1
2
D̄2φ̄

)
+ 2 i ψ̄α̇∂αα̇φ

+ i
(
ψαψ̄

α̇∂βα̇W
β + ψβψ̄

α̇∂αα̇W
β
)

+ . . . . (4.20)

These equations can be treated in the same way as their analogs in the
PBGS examples discussed above. One should firstly make use of the rela-
tion (4.20) (and its conjugate) to express ψα, ψ̄ in terms of Wα, W̄α̇ and
their x-derivatives, and then substitute these expressions into (4.19) and
its conjugate, thus obtaining covariant relations between φ, φ̄ and Wα, W̄α̇.
The latter should allow one to trade φ, φ̄ for Wα, W̄α̇. As the next step, one
substitutes ψ2 = W 2

(
1 + 1

2 D̄
2φ̄
)−2 + . . . into (4.19). One ends up with

the simple relations

φ = −1
2

W 2

1 + 1
2 D̄

2φ̄
, φ̄ = −1

2
W̄ 2

1 + 1
2 D

2φ
, (4.21)

which are just those postulated in [5] and derived from the nilpotency
condition in [6]. An advantage of the present derivation is that it sets the
direct relationship with the “canonical” nonlinear realization through the
equations (4.19), (4.20). More details of this derivation can be found in
[19].
As was shown in [5, 6] the chiral superfield φ is just the Goldstone superfield
Lagrangian density for theN = 2 → N = 1 PBGS (it is the Fayet-Iliopoulos
term from the N = 2 perspective). It describes a N = 1 superextension
of the d = 4 BI theory with the second hidden N = 1 supersymmetry, or,
equivalently, the gauge-fixed space-filling D3-brane in a flat background.
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For completeness, we quote here the solution of (4.21) [5]

φ = −1
2

⎧⎨
⎩W 2 +

1
2
D̄2 W 2W̄ 2

1 − 1
2 A+

√
1 −A+ 1

4 B
2

⎫⎬
⎭ , (4.22)

A ≡ 1
2
(
D2W 2 + D̄2W̄ 2

)
, B ≡ 1

2
(
D2W 2 − D̄2W̄ 2

)
. (4.23)

Having at our disposal the explicit relations (4.19), (4.20) we can prove the
equivalence between the equations of motion corresponding to the N = 2 →
N = 1 BI Lagrangian (4.22) and eqs. (4.5) proposed within the original
nonlinear realization setting.
In the rest of these lectures we shall consider a few examples of using
the PBGS approach for deriving manifestly worldvolume supersymmetric
actions of superbranes on curved AdS-type backgrounds.

5. AdS4 membrane from the coset approach

We start with the case of bosonic AdS4 membrane. Whereas it was known
how to derive the static-gauge Nambu-Goto action for the branes in the
d-dimensional flat Minkowski background from the nonlinear realizations
(coset) approach applied to the relevant Poincaré group [10, 20], no such a
self-contained derivation existed for AdS branes. The algebra of the AdS4
group SO(2, 3) in the d = 3 spinor notation reads:

[Mab,Mcd] = εacMbd + εadMbc + εbcMad + εbdMac ≡ (M)ab,cd ,

[Kab,Kcd] = − (M)ab,cd , [Mab,Kcd] = (K)ab,cd , [Mab, Pcd] = (P )ab,cd ,

[Kab, D] = −2Pab + 2mKab , [Pab, D] = −2mPab , [Pab, Pcd] = 0 ,
[Kab, Pcd] = −2 (εacεbd + εbcεad)D −m (M)ab,cd , (a, b, c, d = 1, 2) . (5.1)

The contraction parameter m is proportional to the inverse AdS4 radius,
and

P †
ab = Pab , M †

ab = −Mab , K†
ab = −Kab , D† = D , m† = −m. (5.2)

The SO(1, 2) generatorsMab together withKab form the algebra of SO(1, 3).
As m → 0, (5.1) becomes the d + 1 = 4 Poincaré algebra. Another basis
may be defined as

K̃ab =
1
m
Kab − 1

2m2
Pab , D̃ =

1
m
D , (5.3)

which are the standard d = 3 special conformal and dilatation generators:[
K̃ab, K̃cd

]
= 0 ,

[
Mab, K̃cd

]
=
(
K̃
)
ab,cd

,[
K̃ab, D̃

]
= 2K̃ab ,

[
Pab, D̃

]
= −2Pab ,[

K̃ab, Pcd

]
= −2 (εac εbd + εbc εad) D̃ − (M)ab,cd . (5.4)
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In the basis (5.1) the d = 3 Poincaré subalgebra ∝ (Pab,Mab) is manifest
(together with the manifest so(1, 3)). The generators (Pab, D) form the
maximal solvable subalgebra of so(2, 3). Any AdSd+1 algebra so(2, d) can
be written in the basis where the d -dimensional Poincaré algebra is man-
ifest, the d-dimensional translation operator together with the dilatation
generator form a solvable subalgebra and the (d + 1)-dimensional Lorentz
algebra so(1, d) is manifest [35]. This basis, the particular case of which is
(5.1), is very advantageous for treating AdS branes in the nonlinear real-
ization approach.
Now we consider the coset SO(2, 3)/SO(1, 2) parametrized by:

g = ex
abPab eq(x)D eΛ

ab(x)Kab . (5.5)

The parameters xab = −(xab)† and q(x) = −q†(x) provide a specific
parametrization of the coset SO(2, 3)/SO(1, 3) ∼ AdS4, adapted to the
above solvable-subgroup basis of so(2, 3). The vector field Λab(x) = (Λab(x))†
parametrizes the coset SO(1, 3)/SO(1, 2). Its inclusion is necessary for de-
ducing the AdS4 membrane action from the coset approach. Taking into
account that the parameters associated with Pab are the d = 3 space-time
coordinates, the resulting nonlinear realization actually describes the spon-
taneous breaking of SO(2, 3) down to its d = 3 Poincaré subgroup as the
only linearly realized one.
The full set of the SO(2, 3) transformations of the coset parameters in (5.5)
can be found by acting on (5.5) from the left by various SO(2, 3) group
elements. The d = 3 conformal transformations of the AdS4 coordinates
(xab, q(x)) are generated by g0 = eb

abK̃ab :

δxab = 4
(
x2bab − 2xcdbcd xab

)
− 1

2m2
e4mqbab , δq = − 4

m
xabbab . (5.6)

These transformations provide a specific nonlinear realization of the d = 3
conformal group algebra, such that the Goldstone field q(x) is present in the
conformal transformation of xab. Just this realization underlies the AdS4
membrane. The building-blocks in constructing the action are left-invariant
Cartan one-forms:

g−1dg = ωP · P + ωDD + ωK ·K + ωM ·M . (5.7)

For our purposes it suffices to know the expressions for ωabP and ωD:

ωabP = e−2mq

(
dxab +

4λabλcd dxcd

1 − 2λ2

)
+

2λabdq
1 − 2λ2

≡ Eabcd(q, λ) dxcd, (5.8)

ωD =
1 + 2λ2

1 − 2λ2

(
dq +

4 e−2mqλab dx
ab

1 + 2λ2

)
, λab ≡ tanh

√
2Λ2

√
2Λ2

Λab , (5.9)

λ2 = λabλab .
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The field λab can be traded for q(x) by the covariant constraint [33]

ωD = 0 =⇒ λab = −1
2
e2mq

∂abq

1 +
√

1 − 1
2 e

4mq(∂q)2
=⇒ (5.10)

Eabcd(q) = e−2mqδ
(a
(c δ

b)
d) −

1
2
e2mq

1

1 +
√

1 − 1
2 e

4mq (∂q)2
∂abq∂cdq . (5.11)

The simplest invariant is the covariant volume of the d = 3 space,
∫
d3xdetE(q),

and the correct invariant action vanishing for a constant q reads (up to a
normalization factor)

S =
∫
d3x
[
e−6mq − detE(q)

]
=
∫
d3x e−6mq

(
1 −
√

1 − e4mq

2
∂abq ∂abq

)
. (5.12)

By construction, it possesses all symmetries of the AdS4 space and in the
limit m = 0 goes into the static-gauge Nambu-Goto action for a membrane
in d = 4 Minkowski space. The term ∼ ∫ d3xe−6mq is SO(2, 3) invariant
on its own right.
To see that the action (5.12) indeed describes a membrane embedded into
the AdS4 background, let us look at the induced distance defined as the
square of ωabP = Eabcd(q) dx

cd :

ds2 = ωabP ωP ab = e−4mq (dxab dxab) − 1
2
dq dq . (5.13)

Introducing U = e−2mq and rescaling xab = 1
2
√

2m
x̃ab, one can rewrite

(5.13) and (5.12), up to some overall constant factors, as

ds2 = U2 (dx̃ab dx̃ab) −
(
dU

U

)2

,

S =
∫
d3x̃ U3

⎛
⎝1 −

√
1 − (∂̃U · ∂̃U)

U4

⎞
⎠ . (5.14)

Thus ds2 is recognized as the standard invariant interval on AdS4, while
S as the d = 3 analog of the Maldacena scale-invariant brane action on
AdS5 [36] (actually, of the scalar fields piece of the D3-brane action). A
novel point as compared to the previous consideration [35, 37] is the explicit
derivation of the AdS4 membrane action from the coset approach. It can be
straightforwardly extended to the case of (d−1)-brane in AdSd+1 [38, 39].
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6. AdS4 supermembrane

Our starting point will be the N = 1 AdS4 superalgebra osp(1|4) in the
following basis

{Qa, Qb} = 2Pab , {Sa, Sb} = 2Pab − 4mKab ,

{Qa, Sb} = 2 εabD − 2mMab ,

[Mab, Qc] = εacQb + εbcQa ≡ (Q)ab,c ,

[Mab, Sc] = (S)ab,c ,

[Kab, Qc] = (S)ab,c , [Kab, Sc] = − (Q)ab,c , [Pab, Qc] = 0 ,

[Pab, Sc] = −2m (Q)ab,c , [D,Qa] = mQa , [D,Sa] = −mSa . (6.1)

The generators Qa, Pab, Mab form N = 1, d = 3 super Poincaré algebra.
The passing to the conformal basis, besides the redefinitions (5.3), implies
the rescaling Sa = mS̃a, such that S̃a is the d = 3 conformal supersymmetry
generator. The advantage of the basis (6.1) is that it manifests the N = 1,
d = 3 super Poincaré subalgebra of osp(1|4) and still yields the N = 1,
d = 4 super Poincaré algebra in the contraction limit m = 0. The N = 1,
d = 3 Poincaré supertranslations ∝ (Qa, Pab) together with D form the
maximal solvable supersubalgebra of osp(1|4).
We wish to construct an OSp(1|4) extension of the AdS4 membrane action
(5.12), such that it possesses a manifest N = 1, d = 3 supersymmetry
extending the manifest d = 3 Poincaré worldvolume invariance of (5.12),
and reproduces the action of the flat N = 1, d = 4 supermembrane [7] in
the limit m = 0.
The construction of the AdS4 supermembrane action as a Goldstone super-
field action is not so straightforward as in the bosonic case. To construct
the PBGS action of the AdS4 supermembrane, we shall apply a curved-
space generalization of the techniques developed in [40, 17, 21, 19] and
exemplified in the previous lectures.
As a first step we need to define the appropriate analog of the PBGS lin-
ear realization. It turns out that in the AdS case it is already a sort of
nonlinear realization, but with weaker nonlinearities as compared to the fi-
nal nonlinear realization. As a natural superextension of the bosonic coset
element (5.5) we choose

g = ex
abPab eθ

aQa eψ
aSa eu(z)D eΛ

ab(z)Kab . (6.2)

Here, the parameters z ≡ (xab, θa, ψa) are N = 2, d = 3 superspace coor-
dinates, while u = u(z) and Λab(z) are Goldstone superfields given on this
superspace. The subspace spanned by the coordinate set ζ ≡ (xab, θa) is
the flat N = 1, d = 3 superspace in which N = 1, d = 3 Poincaré super-
translations ∝ (Qa, Pab) are realized in a standard way:

δxab = aab − 1
2

(
εaθb + εbθa

)
, δθa = εa . (6.3)
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These transformations correspond to the left shift of (6.2) by the element
g0 = ea

abPab eε
aQa . The rest of the OSp(1|4) transformations except for the

SO(1, 2) rotations is nonlinearly realized on the coset coordinates, mixing
the N = 2 superspace coordinates with the Goldstone superfield u(z). Act-
ing on (6.2) from the left by the element g0 = eη

aSa , we find the explicit
form of the broken supersymmetry transformations

δxab = 2m
(
θaxbc + θbxac

)
ηc +

1
2
e4mu

(
ψaηb + ψbηa

)
+

3
2
me4muψ2

(
θaηb + θbηa

)
,

δθa = 4mxac ηc +mθ2 ηa − 3me4muψ2ηa ,

δu = 2 θaηa , δψa = ηa − 2m
(
ηbθbψ

a − ηaθbψb − ηbθaψb

)
. (6.4)

As follows from (6.1), all bosonic transformations are actually contained in
the closure of the supersymmetry transformations.
What we have at this stage, is a nonlinear realization of the N = 1 AdS4
supergroup on the N = 2, d = 3 Goldstone superfield u(x, θ, ψ):

δ∗u(x, θ, ψ) = −
(
δxab∂ab + δθa∂θa + δψa∂ψa

)
u(x, θ, ψ) + 2 θaηa . (6.5)

The first component in the θ, ψ expansion of u can be regarded as the Gold-
stone dilaton field discussed in the previous Section. The spinor derivative
Dau, where

Da =
∂

∂θa
+ θb∂ab , {Da, Db} = 2∂ab , (6.6)

is shifted by ηa under the S -supersymmetry. This suggests that we actu-
ally face the 1/2 spontaneous breaking of the AdS4 supersymmetry, with
Dau|ψ=0 as the corresponding Goldstone fermionic N = 1 superfield. How-
ever, u contains extra component fields having no Goldstone interpretation.
To construct the minimal Goldstone multiplet, we resort to the method
which was applied in [21] to d = 2 PBGS systems and, in [19], to the flat-
space N = 1, d = 4 supermembrane. Following the reasonings of [19] and
keeping in mind that the scalar multiplets of N = 1 AdS4 supergroup are
represented by chiral N = 1, d = 4 (or N = 2, d = 3) superfields, we regard
the Goldstone superfield u(z) to be complex and subject it to the covariant
chirality constraint (∇Q

a − i∇S
a

)
u = 0 (6.7)

where ∇Q
a u and ∇S

au are the OSp(1|4) covariant spinor derivatives of u(z)
with respect to θa and ψa. For our purpose it is of no need to know their
precise structure, what actually matters is that all the coefficients in the
ψ expansion of u(z) can be expressed by (6.7) in terms of u(z)|ψa=0 and
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derivatives thereof. E.g., the ψa = 0 component of (6.7) expresses the first
coefficient as

∂u

∂ψa
|ψ=0 = −i e2muDau|ψ=0 . (6.8)

Thus the complex N = 1, d = 3 superfield

u0(x, θ) ≡ q(x, θ) + iΦ(x, θ) , q† = −q , Φ† = −Φ , (6.9)

incorporates the full irreducible field content of the N = 2, d = 3 Goldstone
chiral superfield u(x, θ, ψ). Its S-supersymmetry transformation reads

δq = Lq − e2mq ηa [sin(2mΦ)Daq + cos(2mΦ)DaΦ] + 2 ηaθa ,
δΦ = LΦ + e2mq ηa [cos(2mΦ)Daq − sin(2mΦ)DaΦ] . (6.10)

The nonlinear realization we are facing at this step is still non-minimal.
Besides the N = 1 superfield q(x, θ) which contains all Goldstone fields
required by the 1/2 breaking of OSp(1|4) down to its N = 1, d = 3 Poincaré
subgroup there is an extra non-Goldstone N = 1, d = 3 superfield Φ(x, θ).
The last step is to express the latter in terms of q and its derivatives by
imposing some nonlinear covariant constraint on u0(x, θ), analogous to the
constraints imposed in the flat case [7]. It reads

Φ =
e2mqDa qDaq

4 + e2mqD2Φ
⇐⇒ Φ =

e2mqDaq Daq

2 +
√

4 + e4mqD2(Dbq Dbq)
. (6.11)

It can be directly checked to be covariant with respect to the transforma-
tions (6.10). From our superfield u0 we can construct the invariant

S2 = − 1
2 im

∫
d3x d2θ

(
e−4mu0 − e4mu

†
0

)
. (6.12)

In view of the nilpotency of Φ defined by eq. (6.11), the final action takes
the form

S2 ∼
∫
d3x d2θ

e−2mqDa qDaq

2 +
√

4 + e4mqD2(Dbq Dbq)
. (6.13)

The action S2 contains the kinetic term of q(ζ) and, in the limit m → 0,
reduces to the flat N = 1, d = 4 supermembrane PBGS action of [7]. After
eliminating the auxiliary field B = D2q|θ=0, the bosonic part of S2 coincides
with (5.12).
We come to the conclusion that the Goldstone superfield action (6.13) is the
natural superextension of the conformally-invariant AdS4 membrane action
(5.12). Besides being manifestly invariant under N = 1, d = 3 Poincaré su-
persymmetry, it is invariant under the nonlinearly realized part of N = 1
AdS4 supersymmetry OSp(1|4) which acts on the N = 1, d = 3 super-
worldvolume as the Goldstone superfield-modified d = 3 superconformal
transformations. Thus it is a PBGS superfield form of the worldvolume
action of N = 1 AdS4 supermembrane.
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7. 3-branes in super AdS5 and AdS5 × S1 backgrounds

We start with recalling how the PBGS N = 1 L3-brane action and related
to it via T-duality N = 1 scalar 3-brane action in the flat Minkowski
backgrounds can be deduced as the Goldstone superfield actions describing
the one-half partial breaking of global N = 2 Poincaré supersymmetry in
d = 4.
The first option corresponds to N = 1 tensor multiplet as the Goldstone
one [5, 6, 24]. The starting point is the N = 2, d = 4 Poincaré superalgebra
with a real central charge D{

Qα, Q̄α̇
}

= 2Pαα̇ ,
{
Sα, S̄α̇

}
= 2Pαα̇ , {Qα, Sβ} = −εαβ D ,{

Q̄α̇, S̄β̇

}
= −εα̇β̇ D . (7.1)

Here Qα, Q̄α̇ and Sα, S̄α̇ are generators of the unbroken and broken
N = 1 supersymmetries, respectively. These generators and the 4-translation
generator Pαα̇ possess the standard commutation relations with the Lorentz
so(1, 3) generators (Mαβ , M̄α̇β̇):

i
[
Mαβ ,Mρσ

]
= εαρMβσ + εασMβρ + εβρMασ + εβσMαρ ≡

(
M
)
αβ,ρσ

,

i
[
M̄α̇β̇, M̄ρ̇σ̇

]
=
(
M̄
)
α̇β̇,ρ̇σ̇

, i
[
Mαβ , Pρρ̇

]
= εαρ Pβρ̇ + εβρ Pαρ̇ ,

i
[
M̄α̇β̇ , Pρρ̇

]
= εα̇ρ̇ Pρβ̇ + εβ̇ρ̇ Pρα̇ ,

i
[
Mαβ , Qγ

]
= εαγ Qβ + εβγ Qα ≡ (Q)

αβ,γ
,

i
[
Mαβ , Sγ

]
=
(
S
)
αβ,γ

, i
[
M̄α̇β̇ , Q̄γ̇

]
=
(
Q̄
)
α̇β̇,γ̇

,

i
[
M̄α̇β̇, S̄γ̇

]
=
(
S̄
)
α̇β̇,γ̇

. (7.2)

Then one introduces two N = 1 superfields: a real one L(x, θ) subjected to
the constraint

D2L = D̄2L = 0 , (7.3)

and so describing a tensor N = 1 supermultiplet, and a complex chiral
superfield F, F̄ ,

DαF = D̄α̇F̄ = 0 . (7.4)

Here

Dα =
∂

∂θα
+ i θ̄α̇∂αα̇ , D̄α̇ = − ∂

∂θ̄α̇
− i θα∂αα̇ . (7.5)

On these N = 1 superfields one implements [5] the following off-shell rep-
resentation of the full N = 2 supersymmetry (7.1):

δL = −i (ηαθα − η̄α̇θ̄
α̇
)

+ ηαDαF̄ − η̄α̇D̄α̇F , δF = −ηαDαL ,

δF̄ = η̄α̇D̄α̇L (7.6)
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where ηα, η̄α̇ are the infinitesimal transformation parameters associated
with the generators Sα, S̄α̇. It is a modification of the transformation
law of N = 2 tensor multiplet [41] written in terms of its N = 1 superfield
components.
One can construct the simplest invariant ‘action’ as follows

S =
1
4

∫
d4x d2θ̄F +

1
4

∫
d4x d2θF̄ . (7.7)

To make it meaningful one should express the chiral supermultiplet F, F̄
in terms of the Goldstone tensor multiplet L by imposing proper covariant
constraints [5, 6]

F = −D
αL DαL

2 −D2F̄
F̄ = −D̄α̇L D̄

α̇L

2 − D̄2F
=⇒ (7.8)

F = −ψ2 +
1
2
D2

⎡
⎣ ψ2ψ̄2

1 + 1
2 A+ +

√
1 +A+ + 1

4 (A−)2

⎤
⎦ , (7.9)

ψα ≡ DαL , ψ̄α̇ ≡ D̄α̇L , A± =
1
2
(
D2ψ̄2 ± D̄2ψ2

)
. (7.10)

Finally, the action (7.7) becomes

S = −1
4

∫
d4x d2θ ψ̄2 − 1

4

∫
d4x d2θ̄ ψ2

+
1
4

∫
d4x d4θ

ψ2ψ̄2

1 + 1
2 A+ +

√
1 +A+ + 1

4 (A−)2
. (7.11)

It is a nonlinear extension of the standard N = 1 tensor multiplet action.
In the bosonic sector it gives rise to the static-gauge Nambu-Goto action
for L3-brane in d = 5 Minkowski space, with one physical scalar of L
being the transverse brane coordinate and another one represented by the
notoph field strength. After dualizing L into a pair of conjugated chiral
and antichiral N = 1 superfields (the notoph strength is dualized into a
scalar field) the PBGS form of the worldvolume action of super 3-brane in
d = 6 is reproduced [4].
Let us point out that the constraints (7.8) which play the central role in
deriving the action (7.11) guarantee 5-dimensional Lorentz covariance [23].
Now we wish to generalize this flat superspace construction to the case of
partial spontaneous breaking of the simplest AdS5 supersymmetry SU(2, 2|1),
that is N = 1 superconformal group in d = 4.
The superalgebra su(2, 2|1) contains so(2, 4)⊕u(1) bosonic subalgebra with
the generators

{
Pαα̇,Mαβ , M̄α̇β̇ ,Kαα̇, D

}
and {J} and eight supercharges{

Qα, Q̄α̇, Sα, S̄α̇
}
. We choose the basis in a such way, that the generators
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Kαα̇ form so(1, 4) subalgebra together with the d = 4 Lorentz generators{
Mαβ , M̄α̇β̇

}
. The rest of non-trivial (anti)commutators reads

i
[
D,Pαα̇

]
= mPαα̇ , i

[
D,Kαα̇

]
= 2Pαα̇ −mKαα̇ ,

i
[
Pαα̇,Kββ̇

]
= εαβ εα̇β̇ D − m

2

(
εαβ M̄α̇β̇ + εα̇β̇Mαβ

)
,

{Qα, Sβ} = −εαβ (D + imJ) +mMαβ ,
{
Qα, Q̄α̇

}
= 2Pαα̇ ,{

Sα, S̄α̇
}

= 2Pαα̇ − 2mKαα̇ ,

i [D,Qα] =
m

2
Qα , i [D,Sα] = −m

2
Sα ,

[J,Qα] =
3
2
Qα , [J, Sα] = −3

2
Sα ,

i [Kαα̇, Qβ ] = − εαβS̄α̇ , i [Kαα̇, Sβ ] = εαβQ̄α̇ ,

i [Pαα̇, Sβ] = mεαβQ̄α̇ . (7.12)

This basis is another example of the ‘AdS basis’ of conformal superalgebras
[35, 37, 22, 42]. The parameter m has the meaning of the inverse AdS5

radius, m = R−1. In the limit m = 0 (R = ∞) one recovers from (7.12) the
N = 1, d = 5 Poincaré superalgebra, with D becoming the 5th component
of momenta. The generators J and Kαα̇,Mαβ , M̄α̇β̇ decouple and generate
outer u(1) ⊕ so(1, 4) automorphisms.
Our goal is to construct an AdS5 version of the nonlinear realization (7.6),
(7.8). The main hints which allowed us to do this are as follows. Firstly,
we assert that this realization involves some modification of N = 1 tensor
multiplet L and, as before, a pair of mutually conjugated N = 1 chiral
and anti-chiral superfields F, F̄ subjected to some generalization of (7.8).
Second, in a close analogy with the flat case we require that the following
‘action’

S ∼
∫
d4x d2θ̄F +

∫
d4x d2θF̄ (7.13)

is an invariant of the AdS5 supersymmetry. Third, in the limit m = 0 our
construction should reproduce the flat case outlined above. At last, it is suf-
ficient to find the realization of conformal S supersymmetry, since the rest
of SU(2, 2|1) transformations appears in the closure of S transformations
with themselves and N = 1 Poincaré supersymmetry.
It turns out that this reasoning almost uniquely fixes the sought transfor-
mation laws and constraints (more details of the derivation are given in
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[23]). These are

δ∗F̄ = 6 imθαηαF̄ − Δxαα̇∂αα̇F̄ + ΔθαDαF̄ + i e−2mLη̄α̇D̄α̇L ,

δ∗F = −6 imθ̄α̇η̄α̇F − Δxαα̇∂αα̇F − Δθ̄α̇D̄α̇F + i e−2mLηαDαL ,

δ∗L = − i(θαηα − θ̄α̇η̄
α̇) − Δxαα̇∂αα̇L+ ΔθαDαL− Δθ̄α̇D̄α̇L

− i e2mL
[
ηαDα

(
e2mLF̄

)
+ η̄α̇D̄α̇

(
e2mLF

)]
, (7.14)

1
m
D2e−2mL =

1
m
D̄2e−2mL = 0 , DαF = D̄α̇F̄ = 0 , (7.15)

F = −e
−2mLDαLDαL

2 − e4mLD2F̄
, F̄ = −e

−2mLD̄α̇L D̄
α̇L

2 − e4mLD̄2F
. (7.16)

Here

Δxαα̇ = 2 im
(
ηβx

βα̇θα + η̄β̇x
αβ̇ θ̄α̇

)
−m

(
θ2ηαθ̄α̇ − θ̄2η̄α̇θα

)
,

Δθα = mη̄α̇x
αα̇ + im

(
θ2ηα − θ̄α̇η̄

α̇θα
)
,

Δθ̄α̇ = mηαx
αα̇ − im

(
θ̄2η̄α̇ − θαηαθ̄

α̇
)
, (7.17)

are the standard transformations of the N = 1 superspace coordinates with
respect to the conformal supersymmetry.

In the limit m = 0 eqs. (7.14), (7.15) and (7.16) go, respectively, into
(7.6), (7.3), (7.4) and (7.8). It can be checked that, on the surface of the
nonlinear constraints (7.16), the off-shell transformations (7.14) are, first,
compatible with the differential constraints (7.15) and, second, produce the
whole SU(2, 2|1) symmetry when commuted among themselves and with
N = 1 Poincaré supersymmetry. It is just due to the presence of the non-
linear mixed terms the transformations (7.14) constitute a realization of
SU(2, 2|1) as the superisometry group of super AdS5 background and cor-
rectly generalize the flat superspace realization (7.6). A striking difference
between (7.6) and (7.14) lies in the fact that (7.6) close on N = 2 Poincaré
superalgebra before imposing the constraints (7.8), while (7.14) define a
closed supergroup structure only provided the constraints (7.16) are im-
posed from the very beginning. It is easy to check that (7.16) are covariant
under (7.14).

Inspecting (7.14), one can be convinced that this realization corresponds to
a half-breaking of the SU(2, 2|1) supersymmetry: the spinor derivatives of
L are shifted by spinor parameters under the action of S supersymmetry,
thus signaling that the latter is spontaneously broken. Broken are also D
transformations (with L| as the Goldstone field) and the SO(1, 4)/SO(1, 3)
transformations (with ∂αα̇L| as the relevant ‘Goldstone field’).
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Like their flat counterparts, the constraint (7.16) can be easily solved

F = −e−2mLψ2 +
1
2
D2

⎡
⎣ ψ2ψ̄2

1 + 1
2 A+ +

√
1 +A+ + 1

4 (A−)2

⎤
⎦ , (7.18)

ψα ≡ DαL , ψ̄α̇ ≡ D̄α̇L , A± =
1
2
e2mL

(
D2ψ̄2 ± D̄2ψ2

)
. (7.19)

Finally, the action (7.13) can be written in the form

S = −1
4

∫
d4x d2θ e−2mLψ̄2 − 1

4

∫
d4x d2θ̄ e−2mLψ2

+
1
4

∫
d4xd4 θ

ψ2ψ̄2

1 + 1
2 A+ +

√
1 +A+ + 1

4 (A−)2
. (7.20)

The first two terms in (7.20) are recognized as the action of the improved
tensor N = 1 superfield [43]. In the limit m = 0 (7.20) converts into the
flat superspace action (7.11).
Defining the bosonic components as

φ = L|θ=0 ,
[
Dα, D̄α̇

]
e−2mL|θ=0 = −2mVαα̇ , (7.21)

where in virtue of (7.16)
∂αα̇V

αα̇ = 0 , (7.22)

the bosonic part of (7.20) proves to be

SB =
∫
d4xe−4mφ (7.23)

×
[
1 −
√

1 +
1
2
e6mφV 2 − 2 e2mφ(∂φ)2 − e8mφ(V αα̇∂αα̇φ)2

]
.

It is a conformally-invariant extension of the static gauge Nambu-Goto ac-
tion for L3-brane in d = 5: the dilaton φ can be interpreted as a radial brane
coordinate, while V αα̇ is the field strength of notoph which contributes one
more scalar degree of freedom on shell. As is well known, V αα̇ can be du-
alized into an off-shell scalar by introducing the constraint (7.22) into the
action with a Lagrange scalar multiplier and then eliminating V αα̇ by its
algebraic equation of motion. Extending (7.23) as

SB =⇒ SdualB = SB +
∫
d4xλ ∂αα̇V

αα̇ (7.24)
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and eliminating V αα̇, after some algebra we get

SdualB =
∫
d4x |Z|4

[
1 −
√
−det

(
ημν − 2

m2

∂μZn ∂νZn

|Z|4
)]

, (7.25)

where

Z1 = r cosϑ , Z2 = r sinϑ , r ≡ e−mφ , ϑ ≡ mλ ,

ημν = diag (+ −−−) .

The action (7.25) is recognized as the S5 → S1 reduction of the scalar part
of the D3-brane action on AdS5 × S5 [36], that is the static-gauge Nambu-
Goto action of scalar 3-brane on AdS5 × S1. The field ϑ can be shown to
undergo a shift under the action of the U(1) generator J , which justifies its
interpretation as the S1 angular variable.
The above duality transformation can be performed at the full superfield
level. This results in SU(2, 2|1) invariant action of Goldstone chiral N = 1
superfield which generalizes the action of [4, 6, 24] and describes a super
3-brane on AdS5 × S1 superbackground. 4 This dualization procedure is
similar to the flat superspace one of [24]. Its details can be found in [23].

8. Outlook

In these lectures we overviewed, on a few simple instructive examples, basic
features of the PBGS approach to superbranes, both for the flat and simple
curved backgrounds. In particular, we demonstrated a universality of the
method of constructing Goldstone superfield actions based on the general
relationship between linear and nonlinear realizations of PBGS [32, 17, 18].
We left aside such interesting examples of PBGS as the N = 4 → N = 2
and N = 8 → N = 4 BI theories (super D3- and D6-branes in D = 6
and D = 10) [12, 13] which certainly offer new domains for applying the
machinery expounded here.
A further work is also required in order to understand in full the links be-
tween the PBGS and superembedding [44] approaches. It would be tempt-
ing to understand linear realizations of the PBGS theories on the flat and
curved superbackgrounds and their relationship to nonlinear realizations
from the superembedding point of view.
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