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Différents aspects de la physique nucléaire depuis les
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Résumé

Cette thèse porte sur l’étude de différents aspects de la physique nucléaire depuis les basses
énergies jusqu’aux énergies intermédiaires. Pour les basses énergies, où la matière nucléaire est
essentiellement constituée de nucléons en interaction, la partie I traite de la fusion-fission des
noyaux super-lourds, et la partie II des règles de somme associées aux interactions de type Skyrme.
Pour les énergies intermédiaires, la matière nucléaire étant alors considérée comme une phase
hadronique principalement constituée de pions, la partie III se focalise sur l’hydrodynamique
relativiste de la matière nucléaire avec brisure spontanée de symétrie chirale.

Dans la partie I, on s’intéresse à la formation puis à la désexcitation des noyaux super-lourds.
Les effets de mémoire doivent être pris en compte dans la dynamique de formation d’un noyau

super-lourd. On étudie donc la formation du noyau composé avec effets de mémoire. Pour des effets
de mémoire intermédiaires, des oscillations apparaissent, ce qui est très différent de la dynamique
d’un système markovien.

Pour la désexcitation d’un noyau super-lourd, l’existence d’un puits isomérique dans la barrière
de potentiel, même s’il change la dynamique de désexcitation et augmente les temps de fission, ne
permet pas d’expliquer les résultats des expériences menées au GANIL par blocage cristallin. En
revanche, cette étude pourrait être utile à l’étude de la dynamique de la fission des actinides.

Dans la partie II, les règles de somme M1 et M3 associées aux potentiels phénoménologiques
de type Skyrme sont calculées à partir de leurs définitions intrinsèques. On détermine alors M1

jusqu’au niveau tensoriel et M3 avec potentiel central.
Dans la partie III, pour le traitement hydrodynamique de la matière hadronique appliqué aux

collisions d’ions lourds on peut, en première approximation, écarter les modifications induites par
la brisure spontanée de symétrie chirale mais pas celles dues à l’aspect dissipatif.
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Abstract

This study focuses on different aspects of nuclear physics from low energies to intermediate
ones. For the low energies, the nuclear matter is essentially constituted from interacting nucleons.
Part I is on the fusion-fission of super-heavy elements, while Part II is on the Skyrme interactions-
associated sum rules. In the case of the intermediate energies, where the nuclear matter is con-
sidered as being an hadronic phase mainly constituted from pions, Part III is focused on nuclear
matter relativistic hydrodynamics with spontaneous chiral symmetry breaking.

In Part I, the formation and the desexcitation of super-heavy nuclei are being studied.
The memory effects must be taken into consideration within the super-heavy nuclei formation

dynamics. Therefore we analyzed the formation of compound nuclei including the memory effects.
As for the intermediate memory effects, some oscillations appear, which is very different from the
Markovian dynamics.

For super-heavy nuclei desexcitation, the existence of isomeric state within the potential barrier
cannot explain the results of experiments performed at GANIL with the crystal blocking technique,
and this despite of the fact that it modifies the desexcitation dynamics and increases the fission
time. However, this latter study could be useful for the study of the actinides fission.

In Part II, the phenomenological Skyrme effective interactions-associatedM1 andM3 sum rules
are being calculated based on their intrinsic definitions. We identify then M1 up to the tensorial
level and M3 with central potential.

In Part III, as for the hadronic matter hydrodynamics being applied to heavy ions collisions,
and as a first approach only, we can neglect spontaneous chiral symmetry but certainly not the
dissipative impact.
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Introduction générale

Depuis la découverte de la radioactivité par Henri Becquerel à la fin du XIXe siècle, les ap-
plications de la physique nucléaire sont multiples dans la société contemporaine [1, 2]. Avec main-
tenant plus d’un siècle d’existence, cette discipline a étendu son influence bien au-delà du simple
cadre scientifique, jusqu’aux domaines de la politique, de l’économie et de l’environnement. En
outre, les applications technologiques sont nombreuses, notamment en ce qui concerne la produc-
tion d’énergie par fission nucléaire. Dans le domaine scientifique à proprement parler, la physique
nucléaire est un domaine de recherche très actif, qui recouvre un grand nombre de thématiques,
des particules subnucléiques aux étoiles. Elle constitue donc un maillon pour l’exploration de l’in-
finiment grand et de l’infiniment petit [3]. La physique nucléaire permet par exemple d’apporter
des éclaircissements indispensables en astrophysique pour appréhender des phénomènes très variés
comme la nucléosynthèse primordiale dans le modèle du Big-Bang ou la nucléosynthèse stellaire
afin de décrire l’évolution des étoiles en supernovae et en étoiles à neutrons [4]. Elle permet aussi
de poser des pistes d’investigation sur des problèmes encore non résolus comme celui de la matière
noire qui correspond à la masse cachée de l’univers. L’apport de la physique nucléaire est donc
incontournable pour comprendre les origines, la structure et l’évolution de notre univers.

Sur Terre, dans les conditions standard de stabilité, la matière nucléaire est considérée comme
un système infini de nucléons en interaction. On peut accéder aux propriétés de cette matière
nucléaire en sondant le cœur des noyaux lourds. Ces noyaux étant stables, à l’exception des
noyaux radioactifs, il est donc nécessaire de les perturber fortement en réalisant des collisions.
Suivant l’énergie de faisceau voulue, on utilise différents types d’accélérateurs, voir figure 1. On
peut alors étudier la nature et le comportement de la matière nucléaire à différentes énergies en
explorant le diagramme de phase de la matière nucléaire depuis la zone stable des noyaux jusqu’à
des situations très éloignées de l’équilibre. En effet, une large gamme d’énergie est disponible
pour explorer les différentes régions du diagramme de phase comme la phase nucléonique avec des
énergies de faisceau jusqu’à 400-500 MeV/A, A étant le nombre de nucléons, la phase hadronique
au-delà de 500 MeV/A ou même le plasma de quarks-gluons à partir de 10 GeV/A. L’énergie de
faisceau par nucléon représente l’énergie cinétique communiquée dans le référentiel du laboratoire
à chaque nucléon de l’ion lourd projectile. D’un point de vue thermodynamique le diagramme
de phase de la figure 1 permet de visualiser différents états de la matière nucléaire comme la
phase nucléonique, la phase hadronique et le plasma de quarks-gluons. Lors du passage entre ces
différentes zones la matière nucléaire est de ce fait soumise à des transitions de phases.

La première analyse correspondant à la représentation actuelle de la matière agencée comme des
systèmes de particules reliées par des interactions de portées et d’intensités différentes [5] est relatée
par Newton dans son traité d’optique [6]. Sans connâıtre le concept de champ d’interaction, il est
conscient à l’époque qu’une interaction immédiate à distance est impossible. De manière générale,
les interactions agissant à une certaine échelle sont les résultantes d’interactions plus intenses
agissant à une échelle inférieure. En outre, selon la relation de De Broglie, plus les quantités de
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Figure 1: Diagramme de phase de la matière nucléaire représentant la température T exprimée
en MeV en fonction de la densité réduite ρ/ρ0 de la matière nucléaire, avec ρ0 la densité de la
matière nucléaire stable. Par convention, la constante de Boltzmann kB est égale à 1. L’énergie
de faisceau détermine l’accès à différentes parties du diagramme de phase de la matière nucléaire.
Ce diagramme est issu de la référence [7].

mouvements et donc plus les énergies mises en jeu sont importantes et plus les échelles de distances
sondées sont petites. De ce fait, en fonction de l’énergie disponible, les � briques élémentaires �

de matière et les modélisations des interactions associées peuvent varier. Pour fixer les idées, on
peut se placer à l’échelle moléculaire où les forces de Van Der Walls intermoléculaires sont la
résultante de forces plus intenses entre les atomes d’une même molécule [8]. Ces constats généraux
s’appliquent en physique nucléaire. Par exemple, l’interaction nucléaire à l’échelle des nucléons est
la résultante d’une interaction plus intense entre les quarks à l’intérieur d’un nucléon.

Pour les collisions d’ions lourds à basses énergies, l’entité nucléon reste viable. On peut alors,
sous certaines conditions drastiques, former à partir d’un noyau cible et d’un noyau projec-
tile un noyau composé dont la dimension est plus importante. En revanche, pour des collisions
d’ions lourds correspondant aux énergies intermédiaires de la phase hadronique, les ions lourds se
transpersent mutuellement. Le noyau cible et le noyau projectile sont donc détruits. Les nucléons
eux-mêmes peuvent alors être annihilés et de nouvelles particules sont créées, principalement des
pions. L’étude dynamique des collisions d’ions lourds permet donc d’obtenir, à différentes échelles
de distance et d’énergie, des informations sur l’évolution, les structures et les interactions associées
de la matière nucléaire. Pendant les collisions d’ions lourds, les noyaux peuvent être fortement
écartés de leur état fondamental, il est donc important de bien faire la différence entre ce qui se
rapporte aux propriétés stucturelles de la matière nucléaire et ce qui est spécifique de la dynamique
de ces collisions. De manière générale, on peut alors accéder aux propriétés thermodynamiques de
la matière nucléaire et déterminer une équation d’état ou s’intéresser à des propriétés dynamiques
qui permettent d’accéder à des coefficients de transport comme par exemple la viscosité [9].

L’énergie transmise lors d’une collision est convertie en énergie d’excitation collective à l’ensem-
ble du noyau et (ou) en énergie d’excitation individuelle aux nucléons, ce qui génère des modes
collectifs et (ou) individuels. Les mouvements collectifs sont caractérisés par différentes échelles
d’amplitude et d’énergie en fonction desquelles les déformations et (ou) compressions subies par le
noyau sont variables. Par exemple, les résonances géantes sont des mouvements collectifs de faibles
amplitudes et la fission un mode collectif de forte amplitude. Au contraire, les états nucléoniques
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excités sont des excitations individuelles. Quand on communique l’énergie d’excitation E∗ au
noyau, celui-ci n’est alors plus dans son état fondamental mais dans un état excité. Si E∗ est trop
élevée le noyau n’est plus viable. Sur la figure 2, sont représentés différents types de modélisations
de la matière nucléaire en fonction de l’énergie d’excitation par nucléons E∗/A, depuis les basses
énergies d’excitation jusqu’aux hautes énergies d’excitation [9].

Figure 2: Modélisation du noyau à différentes échelles d’énergie en fonction de l’énergie d’exci-
tation par nucléon E∗/A. De bas en haut, on peut voir la modélisation du noyau et le type de
matière nucléaire associée depuis les basses énergies vers les hautes énergies et l’augmentation du
pouvoir de résolution associé. Figure adaptée de [7] et [10].

On observe dans la région des basses énergies nucléaires les résonances géantes du noyau puis sa
modélisation comme système à A corps de protons et de neutrons. Ces nucléons sont donc agencés
en noyaux très divers, stables ou instables, exotiques, chauds, légers ou lourds. Ensuite, dans la
région des énergies intermédiaires correspondant à la phase hadronique, le noyau est modélisé par
un ensemble d’états nucléoniques excités N∗ en interaction via les particules ∆ et les pions π.
Enfin, pour les hautes énergies, apparâıt le plasma de quarks-gluons. A l’heure actuelle aucune
sous-structure des quarks n’a été expérimentalement mise à jour.

Les noyaux et les particules sont de nature quantique mais aux températures envisagées et pen-
dant les collisions d’ions lourds, un traitement semi-classique n’est pas irréaliste. En outre, suivant
le domaine énergétique étudié, le cadre d’étude peut varier. Pour décrire les différents états de
la matière nucléaire on envisage alors, suivant les situations, des approches microscopiques ou
macroscopiques par rapport à l’échelle caractéristique des noyaux. Se pose alors la question du
passage entre le niveau microscopique et le niveau macroscopique ainsi que le lien avec les modèles
purement phénoménologiques.
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Dans cette thèse on aborde plus en détail trois thématiques en relation avec deux zones du
diagramme de phase T = T (ρ/ρ0) de la figure 1. Ce travail se découpe donc en trois parties. Les
parties I et II correspondent à la zone des basses énergies nucléaires de la matière nucléonique et
la partie III est associée à la zone des énergies intermédiaires de la phase hadronique. Dans les
parties I et III on adopte par rapport à la dimension caractéristique des noyaux des approches
macroscopiques purement phénoménologiques ou intégrant certains aspects issus d’une analyse
microscopique. Dans la partie II on considère un point de vue microscopique.

Partie I - Fusion-fission des éléments super-lourds

La partie I traite, pour les énergies proches de la barrière de Coulomb, de la dynamique de
fusion-fission d’une classe particulière de noyaux qualifiés de noyaux d’éléments super-lourds, les
SHE, acronyme signifiant � Super-Heavy Elements �. Les éléments super-lourds, qui n’existent
pas à l’état naturel, sont caractérisés par un numéro atomique Z ≥ 103, c’est-à-dire au delà des
actinides. Les masses de ces éléments super-lourds sont donc très grandes devant celles des autres
éléments existant sur Terre. De plus, pour comprendre le regain de stabilité des noyaux de cet
ı̂lot de stabilité, il faut développer des modèles nucléaires allant au-delà du modèle macroscopique
standard de la goutte liquide qui considère le noyau comme une goutte liquide incompressible. En
effet, la stabilité de ces noyaux vérifiant Z ≥ 110 est d’origine quantique et s’explique par l’ex-
istence de couches énergétiques de neutrons et de protons. La stabilité étant maximale pour des
couches de protons et de neutrons fermées, par analogie avec les couches électroniques fermées des
gaz nobles. Depuis les travaux pionniers de Mendelëıev en 1869 et la proposition due à Moseley de
classement des éléments chimiques par numéros atomiques Z croissants, la recherche de nouveaux
éléments chimiques est en perpétuelle évolution. A l’heure actuelle, c’est en 2009 que le dernier
élément chimique, l’élément Copernicium Z = 112, est ajouté à la classification périodique de
Mendelëıev. De plus, les éléments Z = 114 et Z = 116 sont en cours d’être ajoutés.

Les éléments super-lourds sont produits par collisions d’ions lourds. On a alors formation des
noyaux de ces éléments super-lourds, entourés de leur cortège électronique respectif. Cette synthèse
est difficile car la probabilité de leur formation par fusion est très faible. De plus, leur durée de
vie est limitée car ils se caractérisent par des périodes radioactives d’autant plus petites que les
éléments super-lourds sont instables [11, 12]. Par exemple, le Copernicium 277 est radioactif α avec
une période radioactive estimée à 280µs. Les avancées dans le domaine des éléments super-lourds
sont nombreuses depuis une vingtaine d’années, à la fois sur le plan expérimental, avec l’avènement
d’accélérateurs de plus en plus performants et sur le plan théorique avec le développement de
modèles dynamiques. Ces progrès permettent la production d’éléments super-lourds de numéros
atomiques de plus en plus élevés. Ce qui permet par la même occasion d’étudier la matière nucléaire
dans des situations extrêmes, les noyaux étant alors très exotiques, et de tester la validité des
modèles nucléaires. Différents laboratoires de physique nucléaire dans le monde comme le GSI, en
Allemagne, le RIKEN, au Japon, et le JINR, en Russie, synthétisent des éléments super-lourds
[13]. A ce jour la synthèse de l’élément super-lourd de numéro atomique le plus élevé Z = 118 est
effectuée en 2003 au JINR. Ce résultat est en attente de confirmation par les autres laboratoires.

En outre, dans ce domaine de recherche très actif, une étape supplémentaire est franchie avec
l’amélioration ou la construction de nouvelles installations, comme c’est le cas par exemple au GSI,
au JINR et au GANIL, permettant de produire des faisceaux de haute intensité afin d’accumuler
des statistiques plus rapidement. Ceci va de pair avec une amélioration de la précision associée
à l’estimation des probabilités des différents processus associés à la synthèse des éléments super-
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lourds. En pratique on accède à ces probabilités en estimant de manière de plus en plus précise
les sections efficaces correspondantes car on passe du picobarn au femtobarn. Par exemple, la
mise en service au GANIL de SPIRAL2, la deuxième génération de � Système de Production
d’Ions Radioactifs Accélérés en Ligne �, est fixée en 2013. La première phase de développement
du faisceau de haute intensité de SPIRAL2 est consacrée en partie à l’étude des éléments super-
lourds. Ces faisceaux de haute intensité ont pour but d’explorer les basses énergies nucléaires,
proches de la barrière de Coulomb, en accumulant des données statistiques plus rapidement.

D’autre part, indépendamment de SPIRAL2, des mesures récentes de temps de fission effectuées
au GANIL avec la technique du blocage cristallin [14, 15, 16] constituent une preuve expérimentale
étayant l’existence d’un ı̂lot d’éléments super-lourds survivant relativement longtemps. Selon cette
technique de mesure, les noyaux possédant des nombres de protons Z=120 ou Z=124 ont des temps
de fission relativement longs, ce qui est la signature d’une certaine stabilité. En effet, les queues de
distribution sont supérieures à 10−18s ce qui est, toutes proportions gardées, grand devant les temps
caractéristiques typiques de fission, de l’ordre de 10−20s par exemple. De plus, statistiquement 10%
des événements détectés possèdent des temps de fission supérieurs à 10−18s.

Dans le but d’obtenir des contraintes supplémentaires pour la localisation de l’̂ılot de stabilité
des éléments super-lourds, il est possible d’effectuer un traitement dynamique macroscopique de
la fusion-fission des noyaux super-lourds. Selon le modèle du noyau composé, on étudie donc le
processus complet de cette réaction en le séparant en deux phases successives et indépendantes : la
fusion et la fission. Pour être plus réaliste, ce traitement dynamique de la fusion-fission des noyaux
super-lourds doit tenir compte des aspects dont l’origine est microscopique par rapport à la taille
caractéristique de ces noyaux. Il faut alors incorporer des effets de mémoire dans la modélisation
de l’étape de fusion. De plus, l’instabilité des noyaux super-lourds par rapport à la fission doit être
prise en compte en intégrant l’existence d’une stucture en couches énergétiques des protons et des
neutrons. La fission est mieux connue que la fusion et de nombreuses questions restent ouvertes
sur le processus de fusion. Par exemple, la fusion est un processus qui est dépendant des effets de
couches, principalement au niveau de la barrière de Coulomb. Dans la suite de l’étude cet aspect
n’est pas envisagé.

Le temps caractéristique de formation d’un noyau composé à partir d’un noyau projectile et
d’un noyau cible est très rapide, de l’ordre 10−22s à 10−21s. De ce fait, le temps caractéristique
du processus de fusion, de l’ordre de 10−21s est comparable au temps caractéristique des effets de
mémoire. Par opposition le temps caractéristique de fission est de manière générale plus grand,
de l’ordre de 10−20s ou plus. De ce fait, contrairement à l’étape de fission, il est donc nécessaire
d’inclure des effets de mémoire dans un traitement dynamique réaliste de l’étape de fusion des
noyaux super-lourds. Pour étudier l’influence des effets de mémoire sur la dynamique de forma-
tion de ces noyaux lors de collisions d’ions lourds, il faut donc utiliser une équation de transport
dynamique avec extension stochastique de type Langevin comportant un noyau mémoire. Cepen-
dant, la majorité des études portant sur la fusion ne prennent pas en compte ces effets de mémoire
et s’appuient sur une équation de Langevin Markovienne, c’est-à-dire sans effets de mémoire.

Quelles sont les modifications induites par la prise en compte d’effets de mémoire sur l’étude
dynamique du processus de fusion d’un noyau super-lourd ?

Les noyaux super-lourds formés par la réaction de fusion sont des édifices métastables considérés
comme des noyaux composés qui se désexcitent. Ces noyaux sont considérés comme des noyaux
chauds car une grande partie de l’énergie d’excitation est stockée sous forme thermique, c’est-à-
dire de manière désordonnée sur un grand nombre de nucléons. Dans l’étape de désexcitation d’un
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noyau chaud super-lourd, on envisage alors la compétition entre les deux processus dominants qui
sont, pour des énergies d’excitation des noyaux super-lourds inférieures à 100 MeV, la fission et
l’évaporation de neutrons. En outre, pour des raisons pratiques, on modélise alors la dynamique
de désexcitation en utilisant des équations mâıtresses de type Bateman.

Une barrière de potentiel réaliste doit donc incorporer ces corrections microscopiques d’effets
de couches. La prise en compte de ces corrections d’effets de couches modifie la forme de la barrière
de potentiel par rapport à la barrière de potentiel associée au modèle de la goutte liquide. Dans
certains des modèles nucléaires un puits de potentiel secondaire s’ajoute au puits de potentiel de
l’état fondamental pour former une double barrière. Ce puits de potentiel secondaire est associé à
un isomère nucléaire, état excité du noyau, de forme très différente de celle du noyau à l’état fon-
damental. La durée de vie de cet état isomérique est d’autant plus grande que le puits isomérique
est profond, ce qui entrâıne une augmentation du temps de fission.

Quelle est l’influence d’une simple et d’une double barrière de potentiel sur la dynamique de
désexcitation d’un noyau super-lourd avec compétition entre fission et évaporation de neutrons ?

L’adjonction d’une barrière de potentiel isomérique à une barrière de potentiel simple permet-
elle d’expliquer les résultats obtenus au GANIL par blocage cristallin ?

Partie II - Règles de somme et interactions tensorielles de type Skyrme

La partie II est consacrée à la détermination de critères de stabilité, les règles de somme, à
partir de leurs définitions intrinsèques. Ces règles de somme sont des relations qui permettent de
déterminer le domaine de validité, la robustesse, d’une théorie. En effet, quand ces règles de somme
sont mises en défaut, la théorie n’est alors plus valide. Dans cette étude, pour accéder à ces règles
de somme, on s’appuie sur une classe de forces phénoménologiques : les forces de type Skyrme.
Ces forces de Skyrme permettent la description des interactions entre nucléons aux basses énergies.

Le cadre général de l’interaction nucléon-nucléon relève du problème à A corps. Le nombre de
nucléons A, entre 200 et 250 pour les noyaux lourds, de l’ordre de 300 ou plus pour les super-lourds
et infini dans le modèle de la matière nucléaire, interdit toute résolution exacte du problème à
A corps. Le traitement au niveau microscopique de l’interaction entre nucléons dans le milieu est
donc un problème particulièrement complexe. En effet, il est impossible à partir de l’interaction
libre nucléon-nucléon de retrouver directement les propriétés de l’interaction nucléon-nucléon dans
le milieu. Il faut donc prendre en compte les effets du milieu sur l’interaction nucléon-nucléon en
envisageant des interactions effectives qui possèdent des propriétés de symétrie similaires. A l’heure
actuelle, il n’existe pas de paramétrisation générale simple et réaliste pour l’interaction effective
nucléon-nucléon. On utilise alors des interactions effectives valides uniquement dans un domaine
d’énergie particulier.

Les méthodes de résolution générales envisagées en physique nucléaire sont des méthodes
numériques auto-cohérentes de type Hartree-Fock. A partir d’un certain nombre d’itérations et
quand on s’appuie sur des forces phénoménologiques stables, on obtient alors la convergence des
grandeurs physiques. Certaines forces que l’on pensait stables à un certain stade d’itérations
génèrent un phénomène de dérive quand on augmente encore le nombre d’itérations, ce qui peut
aboutir à des fluctuations ou des divergences des grandeurs physiques quand on réalise des calculs
de structures nucléaires de noyaux. Chose surprenante, ces divergences dans les structures des
noyaux peuvent a priori être reliées aux divergences de la matière nucléaire infinie. Les critères
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pour déceler les fluctuations ou les divergences de la matière nucléaire infinie sont donc � trans-
posables � aux fluctuations ou divergences dans les calculs de stuctures des noyaux. De ce constat,
on confirme tout l’intérêt de la détermination des règles de somme. En effet, le fait qu’une règle
de somme ne soit plus respectée représente la signature d’une fluctuation ou d’une divergence.

La majorité des études qui s’appuient sur les forces de Skyrme ne prennent pas en compte
l’aspect tensoriel et se limitent à un potentiel avec un terme central auquel on adjoint une partie
spin-orbite. En outre, l’intérêt de se placer au niveau tensoriel permet d’avoir une meilleure con-
naissance de la structure de ces interactions nucléaires. On en déduit des règles de somme comme
les moments M1 et M3.

Comment calculer les règles de somme à partir de leur définition intrinsèque avec un potentiel
phénoménologique de type Skyrme jusqu’au niveau tensoriel pour le moment M1 et avec potentiel
central pour le moment M3 ?

Partie III - Hydrodynamique nucléaire et brisure de symétrie chirale

La partie III concerne l’étude hydrodynamique relativiste de la matière nucléaire aux énergies
intermédiaires correspondant au domaine de la physique hadronique. La matière nucléaire est alors
soumise à une brisure spontanée de symétrie chirale qui se manifeste par l’apparition de pions.
L’intérêt de la prise en compte de ce type de brisure de symétrie est de disposer d’une approche
hydrodynamique plus réaliste. Ces considérations pourront être ensuite appliquées aux collisions
d’ions lourds relativistes car celles-ci produisent un grand nombre de particules qui sont en ma-
jorité des pions.

Dans le domaine de l’infiniment petit, la physique nucléaire est à l’origine de la physique
des particules, de l’étude des interactions élémentaires ainsi que celle des particules élémentaires
de la matière [5, 6]. Ce domaine d’investigation reste très actuel avec la recherche du boson de
Higgs grâce à la mise en service au CERN en 2008 du grand collisionneur de hadrons, le � Large
Hadrons Collider �. Dans le domaine � d’énergies intermédiaires � de la physique hadronique, le
déconfinement des quarks n’est pas observé. En pratique, la production d’un grand nombre de
pions lors de collisions ultrarelativistes observées au CERN rend donc indispensable une théorie
incorporant la brisure spontanée de symétrie chirale.

Dans cette partie III on abordera ainsi l’étude des propriétés de la matière dense et chaude
produite lors de collisions nucléaires ultrarelativistes, c’est-à-dire les propriétés d’un gaz de pions.
Les pions sont les particules les plus légères du monde hadronique, domaine où la symétrie chirale
est brisée spontanément. Plus précisément, les pions sont les modes de Goldstone associés à cette
brisure de symétrie, ce qui explique leur faible masse et entrâıne par conséquent leur production
en grand nombre pendant les collisions d’ions lourds ultrarelativistes. La description du gaz de
pions entre sa formation et la libération des particules se fera par un traitement hydrodynamique,
le but étant donc de développer une théorie hydrodynamique en présence de brisure spontanée de
symétrie chirale. On se placera alors dans la géométrie de Bjorken.

Pour des raisons de simplification, un grand nombre d’études hydrodynamiques de la matière
nucléaire lors des collisions d’ions lourds se limitent à assimiler cette matière nucléaire à un fluide
parfait relativiste. De ce fait, ces études ne prennent en considération ni la brisure spontanée
de symétrie chirale ni l’aspect dissipatif associé à la production d’entropie à cause du caractère
irréversible de ces collisions.
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Un traitement hydrodynamique réaliste de la matière nucléaire lors de collisions d’ions lourds
aux énergies intermédiaires de la phase hadronique peut-il s’affranchir de la prise en compte de la
brisure spontanée de symétrie chirale et (ou) de la dissipation ?

Dans ces différentes situations, quels sont les changements générés sur le profil de température
utilisé dans les collisions d’ions lourds ?

Envisageons donc maintenant ces différents thèmes d’étude.



Partie I : Fusion-fission des noyaux
d’éléments super-lourds
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Introduction de la Partie I

Le nombre de protons et de neutrons composant les noyaux est limité. De ce fait, les noyaux
eux-mêmes ont donc une dimension limitée. Selon le modèle de la goutte liquide, dans la nature,
les noyaux d’éléments super-lourds de numéro atomique vérifiant Z ≥ 110 ne peuvent exister. Pour
ces noyaux, l’interaction coulombienne répulsive entre protons l’emporte sur l’interaction nucléaire
forte attractive entre nucléons et la barrière de fission issue du modèle de la goutte liquide est
alors quasi-nulle. Ce dernier point étant en contradiction avec l’existence de noyaux super-lourds,
pour obtenir des barrières de potentiel plus réalistes, il faut donc aller au-delà du modèle de la
goutte liquide.

De manière générale, on s’appuie donc sur la mécanique quantique pour établir des modèles
nucléaires plus élaborés. Ces modèles nucléaires prédisent l’existence d’un ı̂lot d’éléments super-
lourds relativement stables. La localisation de l’̂ılot de stabilité des éléments super-lourds grâce à
la théorie des couches est un sujet de recherche très actif. La stabilité de ces noyaux est assurée par
des fermetures de couches énergétiques de protons et de neutrons. Cependant, suivant le modèle
utilisé, différents nombres magiques correspondant aux fermetures de couches de protons et de
neutrons sont alors déterminés. C’est le cas du Plomb 208, le noyau doublement magique le plus
lourd existant sur Terre. A l’heure actuelle, il subsiste toujours des ambiguités sur la prédiction
du noyau doublement magique suivant. Ce noyau doublement magique est un noyau super-lourd.

Les différents modèles prédictifs aboutissent à des valeurs similaires pour la fermeture de la
couche de neutrons qui est estimée à N = 184. Par contre, il n’y a pas de concensus pour la
fermeture de la couche de protons car, suivant les modèles, les valeurs de Z varient de 114 à 126.
Les barrières de fission associées à ces différentes modélisations peuvent alors prendre des formes
variées et être par exemple simples, doubles ou encore triples. Une simple barrière de potentiel ne
présente pas de puits de potentiel secondaire, contrairement à une double ou une triple barrière
qui en possèdent respectivement un ou deux. Dans l’état fondamental, correspondant au puits
principal, le noyau super-lourd peut être déformé. Un isomère de forme est un état excité du
noyau, associé à un puits secondaire isomérique du potentiel, dont la durée de vie est longue
comparativement aux temps caractéristiques nucléaires. Cet isomère de forme peut être dans un
état de déformation très différent de celui du noyau dans l’état fondamental. Suivant le type
d’état isomérique, la stabilité du noyau super-lourd varie fortement car le temps de présence de
l’isomère de forme dans le puits isomérique est d’autant plus grand que le puits isomérique est
profond et donc que la barrière isomérique de fission associée est importante. Ces zones d’ombres
compliquent donc fortement la localisation de l’̂ılot de stabilité des éléments super-lourds. Une
description complète de la dynamique de fusion-fission de ces noyaux s’impose donc quand on
veut relier les prédictions théoriques et les résultats expérimentaux afin d’apporter des contraintes
supplémentaires sur la valeur de Z correspondant à la fermeture de couches de protons ainsi que
sur la forme de la barrière de fission et en particulier sur le regain de stabilité associé à la présence
d’un ou de deux puits isomériques.

11



12

Lors de l’étude du mécanisme de formation d’un noyau composé, la fusion et la fission sont
considérées comme indépendantes. En effet, après l’étape de fusion, il n’y a pas de trace de
la manière avec laquelle le noyau projectile et le noyau cible ont fusionné. De ce fait, le noyau
composé ne dépend que de ces propriétés intrinsèques comme par exemple l’énergie d’excitation. En
outre, pour la fusion et la fission, on observe une dissipation d’énergie et des fluctuations d’origine
statistique. En accord avec le théorème fluctuation-dissipation on utilise donc habituellement des
équations de transport avec extention stochastique de type Langevin par exemple. De plus, un
modèle dynamique réaliste doit incorporer des critères issus d’une analyse microscopique. Il faut
alors tenir compte pour l’étape de fusion des effets de mémoire et pour l’étape de fission des
corrections d’effets de couches qui modifient la forme de la barrière de potentiel correspondante.
Dans cette étude, on n’étudie pas l’influence des effets de couches dans l’étape de fusion.

La phase de fusion peut être décomposée en deux étapes, l’étape de capture où le noyau pro-
jectile et le noyau cible se rapprochent jusqu’à être en contact et l’étape de formation du noyau
composé. Dans cette étude, on s’intéresse plus particulièrement à cette étape de formation. Con-
trairement au cas des noyaux légers, où seule la barrière de potentiel coulombienne est à franchir,
pour les noyaux super-lourds la présence d’une barrière interne constitue une entrave à la fusion.
L’étude de cette entrave présente un grand intérêt car actuellement ce processus n’est pas compris
complètement. Au voisinage du maximum de potentiel de cette barrière interne, on peut approxi-
mer le potentiel par un potentiel osculateur parabolique afin d’estimer les tendances générales
d’évolution. On considère alors cette étape de formation comme une diffusion classique par-dessus
une barrière de potentiel parabolique avec effets de mémoire. De plus, pour le traitement dy-
namique on utilise une équation de Langevin généralisée avec un noyau mémoire. En effet, dans le
cas général, un processus aléatoire, c’est à dire stochastique, doit tenir compte de � l’historique �

de son évolution. Un des buts de cette partie consiste donc à établir une expression exacte con-
cernant la probabilité de formation du noyau composé en tenant compte de cet aspect.

Dans la phase de fission, le noyau composé super-lourd se comporte comme un noyau chaud car
une grande partie de l’énergie d’excitation est présente sous forme thermique. Les deux processus
principaux de désexcitation du noyau composé super-lourd sont pour des énergies d’excitation
inférieures à 100 MeV la fission thermique et l’évaporation de neutrons. La compétition entre
ces deux voies de désexcitation permet d’augmenter la durée de vie d’un noyau super-lourd car
l’évaporation de neutron permet d’évacuer une partie de l’énergie d’excitation du noyau chaud par
un autre moyen que la fission thermique. En particulier, il est intéressant d’étudier le temps de
fission afin d’avoir des informations sur la stabilité des noyaux. En effet, plus le temps de fission est
important, plus la barrière de fission est élevée, et plus le noyau est stable. La méthode habituelle
consiste à s’appuyer sur une équation de Langevin, cependant avec des temps de fission de l’ordre
de 10−18s cette approche n’est pas viable en pratique. On a donc recours à des équations mâıtresses
de type Bateman pour modéliser la compétition entre fission et évaporation de neutrons. Les études
réalisées avec une simple barrière de fission ne permettent pas d’expliquer les résultats obtenus au
GANIL par blocage cristallin. Afin de comprendre ces résultats, il faut donc examiner d’autres
effets comme l’existence d’un puits de potentiel isomérique qui induit forcément une augmentation
du temps de fission. Il est donc intéressant de comparer le cas de la simple et de la double barrière
de potentiel, sans et avec corrections d’effets de couches.

Mots-clés :
Eléments Super-Lourds - Diffusion stochastique - Potentiel parabolique - Effets de mémoire -
Temps de fission - Evaporation de neutrons - Barrière de potentiel isomérique



Chapitre 1

Stabilité et synthèse des super-lourds

Le but de ce chapitre consiste à rappeler ce qui est à l’origine de la stabilité des noyaux
super-lourds ainsi que la manière de les synthétiser.

Dans un premier temps on aborde l’origine quantique de la stabilité de ces noyaux, que l’on
considère comme froids, grâce aux modèles en couches nucléaires et on rappelle les principales
informations concernant l’ilôt de stabilité des super-lourds.

Dans un second temps on aborde la dynamique de fusion-fission de ces noyaux en les considérant
comme des noyaux composés chauds, à cause de l’énergie d’excitation principalement sous forme
thermique, avant de préciser les axes d’étude de la partie I.

1.1 Stabilité et localisation de l’̂ılot des super-lourds

1.1.1 Potentiel nucléaire et barrière de fission

V(q)

q

Figure 1.1: Exemple de potentiel schématique V à une dimension avec simple barrière de poten-
tiel. La variable collective q est associée à la déformation jusqu’à la fission du noyau composé au
point de scission de coordonnée qs. Figure adaptée de [14].
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14 CHAPITRE 1. STABILITÉ ET SYNTHÈSE DES SUPER-LOURDS

De manière générale, le potentiel V est associé à la variation d’énergie de liaison du noyau
en fonction de la déformation. Pour décrire cette déformation, on introduit la variable collective
continue q. Le potentiel V est alors considéré comme une fonction continue de q.

De plus, le potentiel nucléaire peut se décomposer en un puits de potentiel et une barrière de
potentiel. La barrière de fission correspond alors à la différence de potentiel entre la déformation au
point selle et la déformation de l’état fondamental, voir figure 1.1. Quand la variable de déformation
q devient trop grande, c’est-à-dire quand la barrière de potentiel est franchie, alors le noyau devient
trop instable et fissionne. Le temps de vie de cet édifice est alors fortement augmenté [14]. La figure
1.1 est une représentation schématique du potentiel V (q) à une dimension car le potentiel réel est
multidimentionnel.

Selon le modèle de la goutte liquide LDM � Liquid Drop Model �, plus le nombre de nucléons
est grand et plus la barrière de fission BLDM

f s’abaisse. Pour un noyau moyen, avec A de l’ordre
de 100, l’ordre de grandeur de BLDM

f est d’environ 40 MeV [17]. Pour un noyau lourd, avec A
de l’ordre de 200, BLDM

f n’est plus que de 10 MeV . Enfin, dans le cas des noyaux super-lourds,
avec A de l’ordre de 300, BLDM

f devient nulle. Pour ces noyaux super-lourds, le numéro atomique
associé vérifie Z ≥ 110. La répulsion coulombienne déstabilisatrice est alors prépondérante [7, 16].

Si on envisage uniquement les critères du modèle de la goutte liquide [18], l’̂ılot de stabilité des
super-lourds ne peut exister car BLDM

f diminue progressivement avec l’augmentation de Z jusqu’à
devenir quasi nulle pour Z ≥ 110. Pour comprendre ce regain de stabilité, il faut donc étudier les
structures nucléaires de manière plus approfondie en utilisant les modèles en couches nucléaires.

1.1.2 Modèles en couches et barrières isomériques

Pour aller au-delà du modèle de la goutte liquide [18], il faut étudier le mouvement des nucléons
à l’intérieur du noyau. Le confinement de ces derniers est modélisé par un potentiel nucléaire V .
Ce potentiel est la résultante des interactions forte et coulombienne entre nucléons. De manière
générale, compte tenu des échelles d’énergies et de densités, le traitement de la stabilité des
noyaux relève de la description quantique. La nature quantique des noyaux découle du caractère
fermionique des nucléons, voir partie 6.1.1. En outre, pour prendre en compte la taille finie des
noyaux il faut aller plus loin et utiliser des modèles microscopiques en couches nucléaires [19, 20].
Les nucléons sont alors considérés comme des nucléons quasi-indépendants en interaction dans le
potentiel V .

On peut utiliser par exemple, le modèle macroscopique-microscopique de type Strutinsky avec
un potentiel de type Woods-Saxon ou de type Yukawa [21, 22], des méthodes autocohérentes
de type Hartree-Fock s’appuyant sur des potentiels phénoménologiques non relativistes de type
Skyrme ou de type Gogny ou encore des traitements relativistes [9, 23, 24, 25, 26]. Suivant ces
différents modèles théoriques, les conclusions sur les fermetures de couches diffèrent. Pour un noyau
sphérique ou déformé, les couches correspondent à un � gap � à l’intérieur de la distribution
inhomogène des niveaux d’énergie des états individuels du noyau. Les corrections de couches
représentent les écarts par rapport à la position moyenne d’une couche.

L’énergie d’excitation générée lors de collisions d’ions lourds peut se diviser en deux catégories,
une énergie macroscopique et une énergie microscopique : E = Emacro+Emicro. L’énergie à l’échelle
microscopique est intrinsèque à l’ensemble des nucléons. L’énergie à l’échelle macroscopique est
quant à elle associée aux mouvements collectifs du noyau comme par exemple la déformation. De
manière analogue, il y a deux contributions à la barrière de fission Bf :

Bf ' BLDM
f −∆Eshell = BLDM

f + |∆Eshell|. (1.1)
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La partie macroscopique de la barrière de fission BLDM
f est déterminée à partir du modèle de

la goutte liquide et la partie microscopique ∆Eshell négative, d’origine quantique, est issue des
corrections d’énergie de couches, de l’anglais � shell �. Par définition, la valeur absolue de la
correction de couche |∆Eshell| correspond à la différence entre l’énergie de liaison avec et sans
effets de couches. L’effet stabilisateur de ce dernier terme génère une élévation de la barrière de
fission Bf , principalement par un abaissement de l’énergie du niveau fondamental car l’abaissement
en énergie au niveau du point selle, plus ténu, peut être en première approximation négligé.

Certains modèles prédisent pour les noyaux super-lourds de simples barrières de fission, que
l’on peut déterminer grâce à l’équation 1.1, car les effets de couches n’induisent alors qu’un abaisse-
ment du niveau fondamental. Par opposition, d’autres modélisations indiquent que les corrections
d’effets de couches génèrent un abaissement du niveau fondamental ainsi que l’apparition d’un
ou de deux puits isomériques [27], voir figure 1.2. Une barrière de fission isomérique correspond
alors à la différence de potentiel entre la déformation du maximum secondaire et la déformation
du puits isomérique.

Figure 1.2: Potentiel V en fonction de la variable collective q selon le modèle de la goutte liquide
et selon le modèle de correction d’énergie de couches de type Strutinsky, avec un puits isomérique,
pour un noyau lourd de type actinide. Le numéro atomique est proche de Z = 100 car la barrière
de fission issue du modèle standard de la goutte liquide est encore conséquente. Figure adaptée
de [10].

Pour prendre en compte la dynamique de déformation des noyaux on s’appuie donc sur l’étude
de formes caractéristiques. En outre, dans le cas d’un noyau instable il faut tenir compte en
particulier de l’évolution de la forme de ce dernier, voir figure 1.3.

Figure 1.3: Evolution de la forme du noyau pendant un processus de fission asymétrique. On
peut voir, de gauche à droite, le noyau sphérique dans l’état fondamental puis déformé. Ensuite la
déformation se poursuit jusqu’à la fission au point de scission en deux produits de fission. Figure
adaptée de [28].
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Les effets stabilisateurs de couches nucléaires s’amenuisent progressivement avec l’augmenta-
tion de la température. En effet, dans ce cas, les protons et les neutrons peuvent franchir plus
facilement le � gap � entre la couche occupée et la couche vide la plus proche. En effet, une couche
de protons ou de neutrons inaccessible à basse température peut le devenir quand la température
augmente. Pour les faibles énergies d’excitation autour de l’état fondamental, le noyau est peu
déformé et la barrière de potentiel assure la stabilité du système. Par contre, pour des énergies
d’excitation plus grandes, statistiquement la probabilité de franchissement de la barrière de fission
n’est plus négligeable. Le noyau composé peut alors devenir instable par déformation jusqu’au
point de scission où deux fragments de fission se séparent.

1.1.3 Consensus pour N mais pas pour Z

A l’heure actuelle le nombre de neutrons du noyau super-lourd doublement magique est estimé
à N = 184 mais il subsiste des zones d’ombres sur la détermination du nombre de protons Z. Les
différentes valeurs de Z issues des différents modèles prédictifs se répartissent sur une large gamme
de valeurs, entre 114 et 126.

Sur la figure 1.4 on visualise les structures particulièrement stables qualifiées de � noyaux
doublement magiques � existant sur Terre [21, 22].

?

Figure 1.4: Carte des noyaux dans le plan (N,Z), nombres magiques et noyaux doublement
magiques. En particulier, on remarque le noyau doublement magique le plus massif à l’état naturel
sur Terre : le plomb 208 avec Z=82 protons et N=126 neutrons. Figure adaptée de [3].

Les simulations numériques réalisées en prenant en compte les correction d’effets de couches
avec différents potentiels reproduisent les niveaux d’énergie des noyaux existant dans la nature. Par
extrapolation à partir de ces mêmes modèles on retrouve les nombres magiques pour les fermetures
de couches des protons et des neutrons correspondant à l’̂ılot de stabilité des super-lourds.

Pour des noyaux super-lourds vérifiant Z ≥ 110, la barrière de fission issue du modèle macro-
scopique de la goutte liquide BLDM

f est quasi nulle. Les effets stabilisateurs sont donc d’origine
purement quantique. On peut alors écrire

BSHE
f ' |∆Eshell|. (1.2)
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Ces noyaux super-lourds se caractérisent par de hautes barrières de fission, de l’ordre de
plusieurs MeV, voir l’exemple de la figure 1.5 où les barrières de fission peuvent s’élever jusqu’à
|∆Eshell| ' 10 MeV.

Suivant les modèles prédictifs pour ces noyaux super-lourds, les nombres magiques associés
aux fermetures de couches de protons et de neutrons changent et les ı̂lots de stabilité prédits
correspondent à des noyaux sphériques ou déformés [15, 23, 24, 25, 29, 30]. Par exemple, avec la
méthode auto-cohérente Hartree-Fock utilisant des potentiels de Skyrme SkP et SLy7 on trouve
Z=126 et N=184. De plus, avec la méthode des corrections de couches de type Strutinsky à
l’aide d’un potentiel de type Woods-Saxon on trouve Z=114 et N=178, N=182. En outre, avec un
traitement relativiste on trouve Z=120, Z=124 et N=178. [23, 24, 25, 26]. Il existe d’autres types
de potentiels qui aboutissent à d’autres valeurs de Z, cette liste de valeurs de Z n’est donc pas
exhaustive.

Figure 1.5: Trois exemples pour les énergies de correction de couches ∆Eshell en MeV dans
le plan (N,Z). Les différentes courbes de niveau sont obtenues par la méthode auto-cohérente
Hartree-Fock en utilisant des potentiels de Skyrme SkP et SLy7, voir les chapitres 6 et 7, ou avec
la méthode des corrections de couches de type Strutinsky à l’aide d’un potentiel de type Wood-
Saxon. Suivant la modélisation choisie, les valeurs de ∆Eshell changent et la localisation de l’ilôt
de stabilité diffère. Pour ces noyaux, la barrière de fission issue du modèle macroscopique de la
goutte liquide est quasi inexistante. Figure issue de [30].
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De plus, comme il n’y a pas de concensus pour Z, il n’y en a pas non plus pour le nombre de
masse A. Par exemple, pour Z=124 et N=184 on obtient un nombre de masse A=308.

Dans la suite de l’étude nous utilisons le plus souvent l’expression (1.2) quand on considère
les corrections d’effets de couches sur la barrière de fission pour les noyaux super-lourds vérifiant
Z ≥ 110. De plus, dans les différents graphiques et applications numériques concernant les noyaux
super-lourds, on envisage en général des corrections d’effets de couches se répartissant dans un
gamme de valeurs proches de |∆Eshell| ' 10 MeV et un nombre de masse A = 308.

1.1.4 Mesure de la stabilité des super-lourds par blocage cristallin

Une méthode expérimentale utilisée au GANIL [9, 14, 15, 16, 19] se base sur la technique de
blocage dans les monocristaux, � crystal blocking technique �. Cette technique permet d’étudier la
stabilité des noyaux super-lourds par mesure de temps de fission tfiss. Avec cette méthode, on peut
étudier les noyaux super-lourds formés par collisions entre un noyau lourd du faisceau incident et
le noyau cible d’un atome du monocristal. L’énergie d’excitation E∗

0 des noyaux super-lourds ainsi
formés est de l’ordre de 70 MeV ou 80 MeV . Quand les projectiles sont des noyaux de plomb et
les cibles des noyaux de germanium on synthétise des noyaux de numéro atomique Z = 114. Avec
un faisceau de noyaux d’uranium et des cibles de nickel ou de germanium, les numéros atomiques
des noyaux sont alors respectivement Z = 120 ou Z = 124. Ces noyaux étant métastables, les
produits de fission correspondants et les distributions angulaires associées sont déterminés par un
système de détection aligné avec un des axes principaux du monocristal, voir figure 1.6.

Figure 1.6: Schéma simplifié de la technique du blocage cristallin. Figure adaptée de [14, 31].

Les observables, grandeurs mesurables, sont dans ce cadre P (tfiss ≥ 10−18s), la probabilité
d’existence de fragments de fission au-delà de 10−18s et la multiplicité de neutrons de préscission,
correspondant au nombre de neutrons émis avant le point de scission. En effet, par cinématique
inverse, les projectiles étant plus massifs que les cibles, ce temps caractéristique est directement
relié aux limitations inférieures de sensibilité dues aux vibrations thermiques du cristal cible. Avec
ces cristaux et les vitesses associés aux différentes réactions étudiées, les résidus de temps de vie
caractéristiques inférieurs à cette limite de 10−18s ne sont pas mesurables [15]. Comme le temps
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de fission moyen τfiss n’est pas une observable, l’estimation de cette grandeur physique modèle-
dépendante est indirecte. Dans ce cas, si le modèle sur lequel s’appuie l’estimation d’une telle
grandeur est trop simpliste, il y a alors des imprécisions sur la valeur obtenue. Un avantage de la
technique du blocage cristallin réside dans le fait qu’elle n’est pas reliée à un modèle nucléaire.
D’une part, le temps de fission est une grandeur physique indépendante des modèles de fusion, ce
qui est intéressant car les sections efficaces de fusion sont mal connues. D’autre part, le temps de
fission est indépendant des modèles nucléaires décrivant la fission. Le modèle utilisé ici est bien
connu car il s’appuie sur les interactions atomiques dans les monocristaux qui génèrent des effets
de canalisation et d’ombre en fonction du temps caractéristique du processus envisagé.

Un fragment de fission émis suivant une direction principale du cristal subit l’interaction des
atomes du plan cristallin associé au noyau cible. Le type de propagation ultérieure des fragments
de fission par rapport à une direction principale du monocristal est relié à l’échelle de temps du
processus. Une estimation quantitative du temps de fission associé est alors possible.

Les fragments de fission sortent du cristal mais à des angles ψ différents. En effet, quand
la fission est rapide, les fragments sont produits dans le voisinage du site cible. Si l’interaction
électromagnétique entre le fragment et les atomes du cristal est intense, les angles ψ sont grands car
il y a une déflection importante de la trajectoire. Au-delà du domaine des vibrations thermiques,
pour des temps caractéristiques supérieurs à 10−18s, l’interaction entre le noyau cible et le plan
cristallin est de ce fait moins importante et les angles ψ sont petits.

Pour Z = 114 aucun événement supérieur à 10−18s n’est détecté. Au contraire, pour Z = 120
et Z = 124, respectivement 10% et 12% des événements de capture possèdent un temps de vie
supérieur à 10−18s [14, 15, 16].

1.2 Etapes de synthèse des super-lourds et axes d’étude

1.2.1 Fusion-fission des noyaux super-lourds et processus associés

Figure 1.7: Etapes de la fusion-fission des noyaux super-lourds et processus en compétition.
Figure issue de la référence [19].

Pour réaliser la synthèse de noyaux super-lourds, de numéro atomique Z > 100, les techniques
actuelles consistent à réaliser des collisions entre ions lourds. Lors de telles collisions, l’influence
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du paramètre d’impact est primordiale car suivant sa valeur différentes situations sont possibles,
voir figure 1.7. Cette synthèse est favorisée pour les faibles paramètres d’impact associés aux
collisions centrales. Il y a alors optimisation de la phase d’approche vers le point de contact entre
les noyaux cible et projectile au détriment de leur diffusion élastique. Ensuite, pendant la phase
de formation, le noyau composé commence à se former par apparition d’un col d’interpénétration
entre le projectile et la cible. Pendant cette étape cruciale, il y a alors compétition entre la quasi-
fission et la formation du noyau composé métastable. Enfin, une fois le noyau composé formé, la
désexcitation associée s’effectue soit par formation de deux fragments de fission, soit par formation
d’un noyau résiduel après évaporation d’une particule légère.

Expérimentalement, il n’est pas facile de différencier les fragments issus de la fission de ceux
provenant de la quasi-fission. Cependant, les différences entre les échelles de temps caractéristiques
associées à ces différents processus servent de signatures pour leur discrimination. Par exemple le
temps caractéristique de la quasi-fission, inférieur à 10−20 s, n’est pas détectable avec la technique
du blocage cristallin contrairement au temps caractéristique de désexcitation du noyau composé
avec compétition entre fission et évaporation de particules légères ici supérieur à 10−18 s.

Dans la figure 1.7 on remarque que le processus de fusion s’effectue en deux étapes, la phase de
capture et la phase de formation, voir partie 1.2.2. Lors de la fusion, une seule tentative est pos-
sible, il n’y a pas de deuxième chance. Pour la phase d’approche, la condition initiale est située à
l’infini et la condition asymptotique au point de contact unique entre les noyaux qui collisionnent.
Pour la phase de formation, la condition initiale est située à ce même point de contact. Le noyau
composé formé se trouvant dans un état excité, il peut être considéré comme un noyau chaud. Ce
noyau composé étant métastable, statistiquement la fission autorise de multiples tentatives pour
le franchissement de la barrière de fission. Pour la fission la condition initiale se situe alors dans le
puits thermalisé correspondant à l’état fondamental du noyau composé. La compétition entre la
fission et l’évaporation de particules légères conditionne la désexcitation du noyau composé, voir
partie 1.2.3.

Il est donc très difficile d’explorer le domaine où doivent se situer les noyaux d’éléments super-
lourds car les deux principaux critères mis en jeu, la fusion et la fission sont antagonistes. En
pratique, le principal problème réside dans la détermination du � juste équilibre � afin de les
optimiser conjointement.

1.2.2 Fusion des noyaux d’éléments super-lourds

Les noyaux super-lourds se caractérisent par de très faibles sections efficaces de fusion, de l’ordre
du picobarn ou même encore plus petites [13, 15, 19, 32]. De manière générale, la section efficace
de fusion peut s’écrire en fonction des différentes valeurs du moment angulaire total J ≤ Jmax :

σfus(Ec.m.) =
λ2

4π

∑
J≤Jmax

(2J + 1)Pfus(Ec.m.), (1.3)

où λ représente la longueur d’onde de De Broglie et Ec.m. l’énergie de faisceau dans le centre
de masse. La probabilité de fusion Pfus(Ec.m.) dépend également de J . Dans le cas des noyaux
super-lourds, la valeur J = 0 du moment angulaire constitue la contribution principale à la section
efficace de fusion.

Figure 1.8 on visualise la schématisation du potentiel V (q) lors de la fusion d’un noyau cible,
de numéro atomique Zc, et d’un noyau projectile, de numéro atomique Zp, pour former un noyau
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composé de numéro atomique Z = Zc+Zp. Les nombres de masse associés sont alors A = Ac+Ap.
Pour tout type de noyau, il existe une barrière associée à la forte répulsion coulombienne entre les
noyaux projectile et cible. De plus, contrairement aux noyaux légers, pour les noyaux super-lourds
tels que Zc.Zp ≥ 1600 il existe une barrière interne après le point de contact. Cette seconde barrière
est associée au processus de formation du noyau composé proprement dit et génère un phénomène
d’entrave à la fusion. A l’heure actuelle, il n’existe pas de théorie pour considérer la fusion dans sa
globalité. Pour contourner ce problème, on modélise la fusion à l’aide de deux étapes successives :
le processus de capture, pendant la phase d’approche et jusqu’au point de contact, et le processus
de formation. Les conditions asymptotiques après le franchissement de la barrière coulombienne
correspondent alors aux conditions initiales de la barrière interne [32]. La probabilité de fusion est
donc égale au produit des probabilités de capture Pcapt et de formation Pform

Pfus(Ec.m.) = Pcapt.Pform, (1.4)

avec Ec.m. l’énergie de faisceau dans le centre de masse. Cette énergie est telle que Ecm = E∗−Q où
E∗ est l’énergie d’excitation du noyau composé par rapport à l’état fondamental et Q = Qfusion est
l’énergie associée à la fusion du noyau projectile et du noyau cible pour former le noyau composé
d’où l’expression en fonction des énergies de masses des noyaux Qfusion = (Mp +Mc −MCN)c

2.
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Figure 1.8: Schématisation du potentiel V en fonction de la coordonnée collective q lors du pro-
cessus de fusion du noyau composé de nombre de masse A. Le sommet de la barrière coulombienne
est noté Vb. Le sommet BS de la barrière interne, spécifique des noyaux super-lourds, se situe après
le point de contact de potentiel V0. Les grandeurs BS et V0 sont définies par rapport au niveau
fondamental du noyau composé. La correction d’énergie de couches est ∆Eshell = Eshell < 0. Ecm

est l’énergie de faisceau disponible dans le centre de masse. E∗ représente l’énergie d’excitation
du noyau composé par rapport à l’état fondamental et Q = Qfusion. Figure adaptée de [19].

Expérimentalement il est difficile d’accéder à l’̂ılot de stabilité des super-lourds car actuellement
on ne dispose pas de faisceaux d’ions projectiles et d’ions cibles assez exotiques qui sont suffisam-
ment riches en neutrons. Les noyaux composés synthétisés lors des collisions d’ions lourds sont donc
en général déficitaires en neutrons par rapport aux nombre de neutrons des noyaux prédits pour
l’̂ılot de stabilité des super-lourds. Suivants les laboratoires, différents types de procédés sont mis
en œuvre : la fusion froide, la fusion chaude et la fusion que l’on peut qualifier de � très-chaude �.
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- La fusion froide est utilisée au GSI et à RIKEN. Elle se caractérise par une énergie d’excitation
du noyau composé de l’ordre de 10 MeV et une évaporation d’un ou deux neutrons en moyenne.
Cette méthode permet de produire au GSI des noyaux de numéros atomiques Z allant de 107 à
112 et à RIKEN des noyaux de numéros atomiques Z compris entre 110 et 113. La fission associée
est asymétrique et les produits de fission sont peu excédentaires en neutrons. Lors du processus de
désintégration radioactive, les cascades de désintégration se situent dans une région bien connue
du diagramme de Segré, ce qui facilite l’identification.

- La fusion chaude est quant à elle utilisée au JINR. L’énergie d’excitation du noyau composé est de
l’ordre de 30MeV et le nombre moyen de neutrons évaporés varie de trois à cinq. Cette technique
permet la synthèse de noyaux de numéros atomiques Z = 114, Z = 115, Z = 116, Z = 117 et
Z = 118 [13]. La fission associée est symétrique et les produits de fission sont excédentaires en
neutrons. Le GSI a comfirmé des réactions de fusion chaude pour les noyaux Z = 114 et Z = 116,
qui sont donc en cours d’être nommés. Cependant pour , Z = 114, Z = 116 et Z = 118 les résultats
obtenus au JINR sont encore soumis à débat car les cascades de désintégration se trouvent alors
dans une zone mal connue du diagramme de Segré.

- La fusion � très-chaude � est mise en œuvre au GANIL. L’énergie d’excitation du noyau composé,
considéré dans ce cas comme un noyau chaud, est alors de l’ordre de 70 MeV ou 80 MeV et le
nombre de neutrons évaporés s’élève à huit ou neuf. En outre, les noyaux formés sont Z = 114,
Z = 120 et Z = 124 [16]. Les nombres de neutrons associés sont proches de 180. Pour ces deux
derniers cas, la stabilité particulière de ces deux noyaux est mise en évidence par des temps de
fission longs, signatures de l’existence de barrières de fission importantes.

Pour ce type de fusion, il n’y a pas de résidus d’évaporation observés car tous les noyaux formés
fissionnent. De ce fait, ces noyaux sont alors trop instables pour pouvoir réaliser des synthèses
d’atomes avec tout le cortège électronique.

1.2.3 Métastabilité et désexcitation des noyaux d’éléments super-lourds

Pour la fusion � très-chaude � mise en œuvre au GANIL, l’énergie mobilisée est grande donc la
durée de vie du noyau composé à partir de la collision est petite, l’énergie d’excitation par rapport
à l’état fondamental étant alors importante. La section efficace résultante des différents processus
de désexcitation du noyau composé est de ce fait grande. La probabilité de survie du noyau super-
lourd, particulièrement instable, est alors petite. Ainsi, la fusion du noyau super-lourd métastable
est donc inéluctablement suivie de sa désexcitation qui à son tour conditionne sa survie.

La section efficace résiduelle est donc le produit de la probabilité de fusion Pfus et de la
probabilité de survie Psurv pour les différentes valeurs du moment angulaire total J ≤ Jmax :

σres(Ec.m.) =
λ2

4π

∑
J≤Jmax

(2J + 1)Pfus(Ec.m.)Psurv(E
∗), (1.5)

avec E∗ = Ec.m. + Q l’énergie d’excitation du noyau composé par rapport à l’état fondamental
avec Q = Qfusion. Pour simplifier les notations les dépendances des probabilités Pfus et Psurv par
rapport au moment angulaire total J ne sont pas représentées. Pour les noyaux super-lourds la
valeur J = 0 assure la principale contribution de cette section efficace.

Cette section efficace σres(Ec.m.) traduit la compétition entre fusion et fission, il est donc difficile
d’optimiser sa valeur. En effet, dans la gamme d’énergie compatible avec le processus de fusion,
plus l’énergie cinétique Ec.m. mise en jeu dans la collision est faible et plus la probabilité de fusion
Pfus(Ec.m.) est petite mais en même temps plus la probabilité de survie du noyau chaud composé
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ainsi formé Psurv(E
∗) est grande car dans ce cas l’énergie d’excitation E∗

0 de ce noyau composé,
premier noyau de la cascade de désexcitation, est plus faible. Ces considérations sont valides pour
une énergie E∗

0 inférieure à 100MeV , comme par exemple 70MeV ou 80MeV . Dans ce cadre, on
peut donc déterminer la probabilité de survie Psurv(E

∗) associée en fonction des différents canaux
de désexcitation disponibles, les deux principaux étant la fission et l’évaporation de neutrons.

De manière générale, à cause de la compétition entre les différents canaux de désexcitation,
les temps de fission obtenus au GANIL pour les noyaux super-lourds Z =120 et Z =124 [14], voir
partie 1.1.4, sont largement supérieurs au temps de fission estimé à partir du taux de Kramers
correspondant au taux de fission par-dessus une barrière de potentiel depuis un état fondamental
métastable thermalisé [33] quand la température vérifie T < Bf , voir partie 4.2.1.

Pour essayer de comprendre les valeurs importantes de ces temps de fission, différents outils
sont utilisés. On peut par exemple utiliser, dans le cas où la fission est considérée comme le seul
processus de désexcitation, le temps de descente du point selle au point de scission, voir figure 1.9.
En particulier, le temps de descente depuis le point selle correspondant au maximum de potentiel
(associé au puits de l’état fondamental) jusqu’au point de scission où le noyau composé est détruit
peut alors être long dans le cas des noyaux super-lourds, voir partie 4.2.1.

En outre, figure 1.9, avec le type de potentiel V (q) envisagé, on visualise les formes successives
du noyau pendant sa déformation et en particulier des états isomériques associés de formes très
différentes de la forme du noyau dans l’état fondamental . Ces isomères de forme présentent une
certaine stabilité qui se traduit par une augmentation de la durée de vie du noyau et donc du
temps de fission. A priori, l’existence d’un puits de potentiel isomérique, voir partie 1.1.2, peut
être un autre élément d’explication possible pour les temps de fission longs.

Figure 1.9: Exemple de potentiel schématique V (q) à une dimension avec double barrière de po-
tentiel, par analogie avec les actinides. Dans ce schéma simplifié, les effets de couches stabilisateurs
dans la région de l’état fondamental ne sont pas représentés. La variable collective q est associée à
la déformation jusqu’à la fission du noyau composé au point de scission de coordonnée qs. Figure
adaptée de [7].

1.2.4 Axes d’étude

Pour apporter des éléments d’information sur la dynamique de la fusion-fission des noyaux
super-lourds on envisage deux axes d’étude. Dans le premier axe d’étude on suppose la phase de
capture réussie et on s’intéresse à la formation proprement dite du noyau composé super-lourd
par diffusion. Dans le deuxième axe d’étude on se focalise sur la désexcitation du noyau composé
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super-lourd et de la châıne isotopique de désexcitation associée par compétition entre fission et
évaporation de neutrons.

D’après le principe de causalité, tout phénomène physique possède une origine. L’état d’un
système doit alors garder une trace, pendant un temps caractéristique, des états antérieurs. On
parle alors d’effets de mémoire. En physique nucléaire, pour accéder à la dynamique du système, il
est donc nécessaire d’utiliser des équations de transport stochastiques où les effets de mémoire sont
pris en compte grâce à la présence d’un noyau mémoire. Par exemple, dans le cas des oscillations
résonantes des noyaux, modes collectifs de faibles amplitudes, le temps de relaxation est du même
ordre de grandeur que l’inverse de la fréquence des oscillations. C’est pourquoi, dans ce cas, le
noyau mémoire doit être pris en compte pour reproduire les données expérimentales [34, 35].
Cependant, pour simplifier, on peut écarter ces effets de mémoire si le temps caractéristique d’un
processus est long devant le temps caractéristique du noyau mémoire. C’est le cas de la fission.

La fusion est un processus que l’on modélise comme une diffusion par-dessus une barrière. Pour
ce type de réaction, l’échelle de temps est assez petite pour considérer que la prise en compte du
noyau mémoire est pertinente. Il faut donc tenir compte de l’influence des effets de mémoire sur la
phase de formation par fusion nucléaire du noyau composé. L’équation de transport stochastique
est alors une équation de Langevin généralisée. En général, des simulations numériques s’avèrent
nécessaires car des solutions analytiques ne sont obtenues que dans les cas particuliers des poten-
tiels paraboliques, linéaires ou nuls. Dans le cas présent, on considère que le potentiel est de forme
parabolique au sommet de la barrière interne, ce qui permet une résolution exacte. L’équation du
mouvement est en général non linéaire, cependant l’étude est restreinte aux faibles amplitudes en
utilisant une équation linéaire dans le but d’étudier les effets du noyau mémoire sur la diffusion.

Dans le chapitre 2, on rappelle les grandes lignes et les principaux résultats du cas sans effets
de mémoire avant d’aborder l’équation de Langevin généralisée. Dans le chapitre 3 on aborde la
prise en compte des effets de mémoire dans la formation du noyau composé.

La fission, mode collectif de forte amplitude, est un processus lent comparé au temps carac-
téristique du noyau mémoire [36]. On peut donc a priori écarter les effets de mémoire sur l’ensemble
du processus à l’exception du passage du point selle au point de scission. En effet, un calcul récent
montre que le temps de descente du point selle au point de scission est également sensible aux
effets de mémoire [35]. On étudie la désexcitation du noyau composé métastable en le considérant
comme un noyau chaud. Comme dans ce cas, la forme de la barrière de fission n’est pas bien
connue, afin de regarder l’influence de la forme de la barrière sur le processus de fission du noyau
composé, différents types de barrières sont envisagés. Le but est d’essayer de comprendre les
résultats expérimentaux obtenus au GANIL avec la technique du blocage cristallin. Le recours à
une équation de Langevin n’est plus pertinent compte tenu des temps caractéristiques de fission
de l’ordre de 10−18s et de l’énorme statistique que cette méthode impose. On utilise donc des
équations de Bateman pour décrire la compétition entre fission et évaporation de neutrons. Cette
modélisation est hybride car elle associe les points de vue statistique et dynamique. De plus, cette
approche permet une résolution analytique.

Le chapitre 4 envisage l’étude de la simple barrière et le chapitre 5 aborde celle de la double
barrière. Pour ces deux cas, on conserve la même progression. Dans un premier temps l’étude de
la barrière est réalisée avec la fission comme seul processus de désexcitation. Dans un deuxième
temps on considère la compétition entre fission et évaporation de neutrons avec tout d’abord la
barrière de fission Bf constante puis la prise en compte des corrections d’effets de couches.

On regarde alors l’influence de la barrière de potentiel sur le temps de fission et les grandeurs
physiques associées comme la probabilité d’existence d’événements avec des temps de fission
supérieurs à 10−18s ou la multiplicité de neutrons de préscission.



Chapitre 2

Equation de Langevin, diffusion et effets
de mémoire

Le but de ce chapitre consiste à rappeler les principales caractéristiques de la dynamique
stochastique, sans et avec effets de mémoire. En particulier on précise le domaine de validité de
ces approches ainsi que leur relation avec la physique nucléaire.

Dans un premier temps, on aborde le lien entre le mouvement brownien et l’équation de
Langevin markovienne. Dans un deuxième temps, on rappelle le cadre général de la diffusion avec
une barrière de potentiel parabolique, voir figure 2.1, et les principaux résultats du cas markovien.
Dans un troisième temps on examine l’origine des effets de mémoire et un modèle statistique qui
permet d’aboutir à une équation de Langevin généralisée.

q0

p0

q

V

Figure 2.1: Modélisation du sommet de la barrière interne des noyaux super-lourds par un po-
tentiel parabolique avec les conditions initiales q0 < 0 et p0 > 0.

2.1 Mouvement brownien et équation de Langevin

2.1.1 Mouvement brownien, variable stochastique et cadre markovien

Le mouvement brownien

En 1827 le botaniste Robert Brown observe les trajectoires erratiques de particules micro-
scopiques de pollen dans de l’ambre [37]. Ces grains de pollen ne pouvant plus être vivants, le
mouvement n’est pas d’origine biologique comme on le pensait auparavant mais d’origine physique
ou chimique. Plus tard, on donne à ce phénomène le nom de mouvement brownien. Ce n’est qu’à
partir de 1905 qu’Albert Einstein fournit une première interprétation du processus [38] : le com-
portement désordonné des grains est dû à leurs collisions avec les molécules d’eau, constitutives du
milieu. Indépendamment en 1906, M. V. Smoluchowski, à partir d’une équation de conservation
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dans l’espace des phases c’est-à-dire d’une approche globale, aboutit aux mêmes constatations.
L’inconvénient de ces approches réside dans le fait que l’inertie de la particule brownienne n’est
pas prise en compte. Paul Langevin en 1908 analyse plus précisément l’influence du milieu sur la
particule brownienne en incluant les effets d’inertie [39]. Il propose alors une approche originale
qui consiste, en partant du mouvement individuel de la particule brownienne, à introduire une
force aléatoire afin de modéliser son comportement erratique.

Des situations similaires au mouvement brownien apparaissent dans de nombreux domaines de
la physique. On peut citer à titre d’exemples la fission et la fusion, thèmes centraux de notre étude
de physique nucléaire, ou le bruit Nyquist dans les conducteurs ohmiques. De manière générale, le
mouvement brownien peut être considéré comme un � cas d’école � permettant de comprendre les
mécanismes qui régissent les fluctuations et les dissipations d’énergie. Le problème présente aussi
un intérêt pratique car ces fluctuations sont sources de bruit de fond, ce qui limite la précision
des mesures. Dans le cas général on parle de mouvement brownien quand une particule est assez
petite pour être soumise à un mouvement aléatoire, une fois plongée dans un bain thermique.

Mathématiquement le mouvement brownien de la particule peut être décrit à l’aide d’une
variable aléatoire continue q dont l’évolution est régie par l’équation de Langevin. Le domaine
de validité de cette équation phénoménologique peut être étendu à la physique nucléaire sous
certaines conditions, voir partie 2.3.1. Dans ce chapitre et le chapitre suivant, q est considérée
comme une variable collective caractérisant l’élongation, c’est-à-dire la distance séparant le noyau
projectile du noyau cible pendant la formation du noyau composé et m représente l’inertie.

Variable aléatoire et processus markovien

Contrairement au cadre classique déterministe, la variable q n’est pas connue avec certitude
à l’instant t quand on connâıt la position initiale q0 à t0 = 0. En effet, on ne connâıt que la
probabilité qu’elle prenne une valeur particulière à t. q est donc une variable stochastique. Pour une
telle variable continue on utilise alors la notion de densité de probabilité W (q, t|q0, t0). Dans le cas
général, la densité de probabilité à elle seule ne permet pas de caractériser de manière exhaustive
le processus aléatoire, autrement dit stochastique, il faut aussi connâıtre l’ensemble des densités
de probabilités conjointes W (qn, tn|...|qk, tk|...|q0, t0), avec qk valeur prise par la variable aléatoire
q à l’instant tk tel que t0 < tk < tn. La prise en compte de � l’historique � de la particule est donc
nécessaire car il faut envisager à partir de (q0, t0) tous les chemins possibles (qk, tk) antérieurs à
l’état (qn, tn).

Au contraire, un processus markovien ne tient pas compte de la � mémoire � du système. Pour
cette classe de processus, l’état (qn, tn) ne dépend donc que de l’état (qn−1, tn−1) et pas des états
antérieurs. De ce fait, pour un processus de Markov on peut donc écrire

W (qn, tn|qn−1, tn−1|...|q0, t0) =
n∏

i=1

W (qi, ti|qi−1, ti−1)W (q0, t0). (2.1)

2.1.2 L’équation de Langevin markovienne

Modélisation phénoménologique du mouvement brownien

Comme on l’a déjà évoqué dans la partie 2.1.1, l’équation de Langevin est introduite pour la
première fois en 1908 par Paul Langevin [39]. Dans cette approche phénoménologique, on considère
un système constitué d’une particule de masse m, en interaction avec un milieu possédant un grand
nombre de degrés de liberté s1; ...; sn. Pour simplifier l’étude, on se place à une dimension.
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Le centre de masse de la particule est donc caractérisé par sa position q(t) et sa vitesse
p(t) = q̇(t). Il n’est pas possible de décrire exactement le couplage entre les nombreux degrés
de liberté secondaires représentatifs du milieu s1; ...; sn. En revanche, comme la variation de ces
degrés de liberté secondaires est très rapide par rapport à celle de la variable collective q(t), ces
degrés peuvent être assimilés à un bain thermique de température T . L’interaction entre la par-
ticule brownienne et les degrés de liberté secondaires peut alors être représentée par une force
effective F (t). D’autre part, la particule brownienne est aussi susceptible de subir l’action d’un
champ de force extérieur, dérivant d’une énergie potentielle V . Ainsi, l’équation fondamentale de
la dynamique s’écrit :

mq̈ = F (t)− ∂V

∂q
. (2.2)

La deuxième loi de Newton néglige les fluctuations de ces chocs entre les constituants du bain et
la particule de masse m. Cette hypothèse est justifiée uniquement quand la masse de la particule
est grande devant celle des différents constituants du bain. Ce n’est donc plus le cas pour une
particule comparable aux constituants du bain. En effet celle-ci, à cause des nombreuses collisions
avec le milieu est soumise à un mouvement stochastique. De ce fait, l’évolution de cette particule
ne peut plus être décrite par une équation de Newton, déterministe par nature [40]. Afin de pallier
le problème, on adjoint alors au bilan des forces une force stochastique f(t). De ce fait, la force
totale qui décrit les interactions entre la particule brownienne et le bain thermique peut se scinder
en deux termes : F (t) = 〈F (t)〉+ f(t).

1. Le premier terme est appelé force de friction. Il est associé au fait que dans le référentiel
du centre de masse de la particule brownienne, il y a plus de chocs avec les constituants du
bain thermique à l’avant la particule brownienne qu’à l’arrière. Pour les mêmes raisons il y a
plus de gouttes d’eau sur le pare-brise d’une voiture qui roule sous la pluie que sur la lunette
arrière. La valeur moyenne de la force F (t) n’est donc pas nulle. On la note 〈F (t)〉 avec 〈..〉,
symbole caractérisant une moyenne statistique sur un ensemble de systèmes, constitués d’une
particule brownienne et d’un bain thermique, tous identiques à l’échelle macroscopique. En
général, cette force est proportionnelle à la vitesse de la particule et de sens opposé au
mouvement d’où : 〈F (t)〉 = −γq̇(t), avec γ le coefficient de friction. γ traduit le transfert
irréversible moyen de l’énergie associée à la particule vers les degrés de liberté du milieu.

2. Le deuxième terme est la force stochastique proprement dite f(t) qui symbolise la partie
rapidement variable de F (t). Pour être plus précis, f(t) est issue des fluctuations statistiques
de part et d’autre de 〈F (t)〉. f(t) n’est pas connue avec précision mais des hypothèses
statistiques peuvent être faites :

Dans un premier temps 〈f(t)〉, le moment d’ordre 1 de f(t), est par définition nul car il est
obtenu en retranchant la valeur moyenne 〈F (t)〉 à F (t) afin d’accéder à f(t).

Dans un deuxième temps pour 〈f(t)f(t′)〉, le moment d’ordre 2 de f(t), on fait l’hypothèse
que deux événements séparés d’un intervalle de temps suffisamment long ne sont pas corrélés.
Le moment d’ordre 2 a donc la forme d’une distribution paire, symétrique, piquée aux
alentours de la valeur t − t′ = 0. Cette distribution est dans le cas markovien, c’est-à-dire
quand il n’y a pas d’effet de mémoire, associée à une distribution δ de Dirac. De plus, pour ce
cas markovien, d’après le théorème fluctuation-dissipation [41], on peut montrer que f(t) =√
2γTν(t), avec ν un nombre aléatoire gaussien, tel que 〈ν(t)〉 = 0 et 〈ν(t)ν(t′)〉 = δ(t− t′).
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Bilan du cas markovien

L’équation de Langevin markovienne s’écrit alors, en introduisant le coefficient de friction
réduit β = γ/m = τ−1

p et la force stochastique réduite rm(t) = f(t)/m :

q̈ + βq̇ +
1

m

∂V

∂q
= rm(t). (2.3)

les moments d’ordre un et deux de la force stochastique réduite vérifient

〈rm(t)〉 = 0 et 〈rm(t)rm(t′)〉 =
2βT

m
δ(t− t′), (2.4)

en accord avec le théorème fluctuation-dissipation.
Ainsi, pour résumer la situation, le système constitué d’une particule de massem, dont le centre

de masse est caractérisé par q(t), soumise à une barrière de potentiel quadratique V = −1
2
mω2q2,

plongée dans un bain thermique caractérisé par la température T et le coefficient de friction réduit
β est :

q̈ + βq̇ − ω2q = rm(t) rm(t) =
√

2βT
m
ν(t) (2.5)

〈rm(t)〉 = 0 〈rm(t)rm(t′)〉 = 2βT
m
δ(t− t′) (2.6)

Le système ci-dessus est qualifé de markovien, autrement dit complètement aléatoire, car il ne
présente aucun effet de mémoire. Des événements à deux instants t et t′ différents sont donc
complètement décorrélés. De plus, le coefficient réduit β est associé à la dissipation de la particule
brownienne vers les degrés de liberté du bain thermique. La force stochastique gaussienne réduite
représente les fluctuations autour de la valeur moyenne. L’équation de Langevin (2.5) est qualifiée
d’équation réduite car le bain thermique est décrit uniquement par deux paramètres T et β. De
plus, seules les dérivées première et seconde de la coordonnée q(t) apparaissent dans cette équation
linéaire. En outre, pour accéder aux grandeurs physiques, seuls les deux premiers moments de la
force stochastique réduite sont nécessaires.

2.2 Diffusion et barrière de potentiel parabolique

2.2.1 Point de vue général

Le problème de la diffusion par-dessus une barrière de potentiel parabolique à une dimension
V (q) = −mω2q2/2, avec des conditions initiales strictes comme q0 < 0 et p0 = q̇0 > 0, peut être
résolu exactement avec la méthode utilisée dans la référence [41] ou en utilisant les transformées
de Laplace, cette dernière méthode étant plus rapide.

Pour évaluer la probabilité de formation par passage par-dessus la barrière de potentiel, nous
avons uniquement besoin de la distribution réduite obtenue quand on réalise la moyenne sur
tous les degrés de liberté excepté q. On retrouve une distribution gaussienne pour la densité de
probabilité

W (q, t|q0, p0) =
1√

2πσq(t)
exp

(
−(q − 〈q(t)〉)2

2σ2
q (t)

)
, (2.7)

avec σ2
q (t) la variance et 〈q(t)〉 la valeur moyenne de q(t). De ce fait, la probabilité de formation

par franchissement de la barrière est

Pform(t; q0, p0) =

∫ +∞

0

W (q, t|q0, p0)dq =
1

2
erfc

(
− 〈q(t)〉√

2σq(t)

)
, (2.8)
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en notant erfc la fonction erreur complémentaire :

erfc(z) =
2√
π

∫ +∞

z

e−t2dt. (2.9)

Le problème peut être généralisé, si on conserve l’hypothèse du potentiel parabolique, à des cas
non markoviens où la distribution des conditions initiales est gaussienne, voir le chapitre 3 traitant
de l’influence des effets de mémoire sur le processus de diffusion. Dans ce cadre plus général le
problème est aussi soluble analytiquement [42].

2.2.2 Rappels sur la diffusion sans effets de mémoire

Dans cette section, on rappelle brièvement les principaux résultats de la diffusion markovienne
par-dessus une barrière de potentiel parabolique afin de mieux comprendre ensuite l’influence des
effets de mémoire. Pour plus de détails regarder [41].

L’équation de Langevin markovienne (2.5) peut être mise sous la forme

d

dt

[
q
p

]
= D.

[
q
p

]
+

[
0

rm(t)

]
, (2.10)

où la matrice de dérive déterministe D et le terme stochastique rm(t) s’écrivent

D =

[
0 1
ω2 −β

]
et rm(t) =

√
2βT
m
ν(t). (2.11)

On peut donc intégrer formellement l’équation (2.10) pour aboutir à[
q
p

]
= e(t−t0)D.

[
q0
p0

]
+

∫ t

t0

e(t
′−t0)D

[
0

rm(t
′)

]
dt′, (2.12)

où le premier terme du membre de droite correspond à la valeur moyenne de q, déterministe, et
le second terme à la diffusion stochastique.

D’autre part, les valeurs propres de la matrice de dérive D, solutions de l’équation,

λ2 + βλ− ω2 = (λ− a)(λ− b) = 0, (2.13)

sont
a = 1

2
(
√
β2 + 4ω2 − β),

b = −1
2
(
√
β2 + 4ω2 + β).

(2.14)

On peut remarquer que a > 0 et b < 0 et en déduire la valeur moyenne de q ainsi que sa variance
[41, 43, 44, 45]. On obtient alors, avec β′ =

√
β2 + 4ω2, les expressions suivantes

〈q(t)〉 = q0

[
ch(

β′t

2
) +

β

β′ sh(
β′t

2
)

]
e−βt/2 +

2p0
β′ sh(

β′t

2
)e−βt/2, (2.15)

σ2
q = − T

mω2

[
1−

(
2
β2

β′2 sh
2(
β′t

2
) +

β

β′ sh(
β′t

2
) + 1

)
e−βt/2

]
. (2.16)

Or, comme dans ce cas la densité de probabilité W (q, t|q0, t0) est une gaussienne, on peut alors
accéder à la probabilité de passage par-dessus la barrière de potentiel en utilisant la démarche
évoquée dans la partie 2.2.1.
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Pour les temps longs, at� 1, la probabilité de formation converge vers une limite finie

Pform(t→ ∞; q0, p0) →
1

2
erfc

[
ω√
βa

(√
B

T
− a

ω

√
K

T

)]
, (2.17)

où K = mp20/2 représente l’énergie cinétique initiale et B = mω2q20/2 la hauteur de barrière que la
particule doit franchir. Dans le cas du problème de Kramers [33], la température est uniquement
responsable de la diffusion à cause de l’équilibre initial dans le puits métastable. Ici, il y a une
interaction entre le processus dynamique et le processus diffusif, il faut donc prendre en compte
l’énergie cinétique initiale K. Le phénomène est alors transitoire, le flux par-dessus la barrière est
sensible uniquement pendant une fenêtre temporelle limitée [42].

Pour avoir la moitié des particules franchissant la barrière de potentiel, l’énergie cinétique
initiale doit vérifier

K =
(ω
a

)2
B = Beff . (2.18)

De plus, dans la limite de faible friction, la condition précédente devientK ' B. Par exemple, avec
des valeurs usuelles de physique nucléaire, ~ω = 1.0MeV et β = 5.1021s−1 on obtient β

2ω
= 1.5

d’où Beff ' 11B. Par contre, avec ~ω = 1.0MeV et β = 2.1021s−1 on obtient β
2ω

= 0.66 d’où
Beff ' 3.5B. Ceci illustre le rôle important joué par la dissipation sur la barrière effective.

Comme déjà évoqué dans [42], suivant les valeurs de l’énergie cinétique initiale K et de la
barrière effective Beff , on observe alors trois régimes :
- Quand K < Beff , la trajectoire moyenne ne parvient jamais à atteindre le sommet de la barrière,
situé à q = 0. La probabilité de passage par-dessus la barrière est alors principalement due à la
diffusion thermique qui est un processus lent.
- Dans le cas critique où K = Beff , la trajectoire moyenne converge vers l’asymptote q = 0
correspondant au sommet de la barrière et la probabilité de franchissement de la barrière de
potentiel tend vers 1/2, indépendamment de la valeur de la température.
- Enfin, quand, K > Beff , la trajectoire moyenne franchit la barrière de potentiel et la diffusion
thermique ne joue plus un rôle crucial.

2.3 Equation de Langevin généralisée

2.3.1 Domaine de validité et temps caractéristique des effets de mémoire

Domaine de validité et lien avec la physique nucléaire

Dans le mouvement brownien, le grain de pollen modifie le bain thermique. Si le bain revient
rapidement à l’équilibre, le processus est markovien. Au contraire, si le retour à l’équilibre est
lent, le processus n’est plus markovien car le système est alors soumis à des effets de mémoire.
Ces considérations peuvent être retransposées en physique nucléaire.

En physique nucléairem représente l’inertie et β caractérise le coefficient de friction réduit dans
le noyau. De plus, la fusion est envisagée de manière globale grâce à q, la variable d’élongation du
noyau, qui est reliée à la distance moyenne entre les noyaux projectile et cible. De ce fait, 〈q(t)〉
correspond à l’élongation moyenne et la vitesse moyenne associée 〈p(t)〉 est une variable lente par
rapport au mouvement rapide des nucléons à l’intérieur du noyau. Quand les échelles de temps
de ces deux processus sont décorrélées, on retrouve le cadre markovien dans lequel l’utilisation de
l’équation de Langevin phénoménologique devient pertinente. Cependant, cette décorrélation des
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échelles de temps n’est pas toujours réaliste car toutes les situations ne vérifient pas τ << τp = β−1,
avec τ le temps caractéristique des effets de mémoire. Pour illustrer notre propos nous pouvons
prendre l’exemple de la dynamique d’une petite bille d’acier dans un fluide. La chute d’une petite
bille d’acier dans l’eau est un processus markovien car, du fait de la très faible viscosité de ce
fluide, les effets de mémoire peuvent être négligés, on est alors dans la configuration τ << τp. Au
contraire, cette même bille tombant dans du miel est un phénomène non markovien. En effet, à
cause de la grande viscosité du fluide, le temps de réponse du milieu par rapport au mouvement
de la bille n’est plus négligeable. Dans ce cas, τ n’est plus négligeable devant τp. Quand il y a des
effets de mémoire, il n’y a donc plus de séparation stricte entre les deux échelles de temps.

Le traitement complet d’un système est plus complexe dans le cas non markovien que dans le
cas markovien car il nécessite l’emploi de nombreux paramètres supplémentaires. Pour déterminer
les situations où le traitement non markovien s’impose, c’est-à-dire quand le critère τ << τp n’est
plus vérifié, il faut donc déterminer l’ordre de grandeur du temps caractéristique des effets de
mémoire τ afin de le comparer à τp. Usuellement, les valeurs de β étant dans cette étude égales à
2.1021s−1 ou 5.1021s−1, on peut estimer un ordre de grandeur de τp compris entre 10−22s et 10−21s.
De ce fait, si le temps caractéristique des effets de mémoire τ est du même ordre de grandeur que
τp, le traitement markovien n’est plus valide.

Estimation du temps caractéristique des effets de mémoire

Le temps caractéristique des effets de mémoire τ correspond au temps caractéristique de relaxa-
tion du bain thermique. Le recours à la physique statistique [46, 47, 48] s’avère donc indispensable
pour prendre en compte la réponse du bain thermique que l’on modélise grâce à des oscillateurs
harmoniques couplés [49, 50, 51, 52]. Le traitement exhaustif microscopique d’un système est
irréalisable en pratique, compte tenu du nombre gigantesque de degrés de liberté à cette échelle.
On réalise donc des moyennes sur les degrés de liberté du bain thermique.

On aboutit alors au constat universel suivant : toutes les dérivations envisagées pour décrire
le passage du niveau microscopique au niveau macroscopique conduisent à des effets de mémoire
[34, 35, 53, 54]. Leur traitement est alors réalisé en regardant les différentes échelles de temps. En
particulier, dans le contexte nucléaire, τ peut être déterminé à partir de la linéarisation du terme
intégral de collision de l’équation de Boltzmann. Suivant les références, les largeurs de corrélation
associées à la relaxation du bain thermique sont comprises entre ~/τ ' 1MeV et ~/τ ' 10MeV .
Par exemple, la valeur caractéristique de 1 MeV est du même ordre de grandeur que les largeurs
de corrélation des résonances géantes des noyaux [55, 56] et la valeur caractéristique de 10 MeV
est issue d’une analyse quantique [57]. On peut alors en déduire un ordre de grandeur du temps
caractéristique des effets de mémoire τ , de l’ordre de 10−22s à 10−21s.

Le temps caractéristique des effets de mémoire τ étant dans ce cas comparable à τp = β−1 on
en déduit que les effets de mémoire doivent être intégrés dans un traitement dynamique réaliste
des processus nucléaires. Plus précisément, les effets de mémoire doivent donc jouer un rôle im-
portant dans la phase de fusion des noyaux composés. Il est alors nécessaire d’introduire des effets
de mémoire dans la description du processus de formation des noyaux composés super-lourds. En
accord avec les valeurs de τ de ce paragraphe, le temps caractéristique de formation des noyaux
composés est estimé dans la référence [7] entre 10−22s et 10−21s.

En physique nucléaire, on peut alors prendre en compte les effets de mémoire par l’intermédiaire
de dérivations spécifiques de l’équation de Langevin généralisée qui décrit l’évolution dynamique
de la variable collective continue q(t).
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2.3.2 Dérivation à partir d’un modèle statistique

Cadre du modèle et dérivation de l’équation de Langevin généralisée

Le système considéré est hors équilibre et en évolution irréversible. Le problème envisagé est
toujours à une dimension. Seules les situations proches de l’équilibre sont examinées. Le cadre
envisagé est donc celui de l’approximation linéaire et l’ensemble canonique constitue l’ensemble
statistique choisi [58].

Les considérations développées pour la particule brownienne sont transposables en physique
nucléaire. Parmi les différents modèles statistiques, le plus simple est celui décrivant l’évolution
de la variable collective q et de sa vitesse de variation associée p. q(t) est couplée à un bain
thermique de température T , modélisé par un système d’oscillateurs harmoniques couplés. L’inertie
est caractérisée parm. Le fait d’assimiler le bain à des oscillateurs harmoniques couplés ne restreint
pas le champ d’application du modèle utilisé. Au contraire, beaucoup de phénomènes physiques
peuvent être expliqués grâce à ce type d’approche. Dans le cas particulier d’un bain d’oscillateurs
harmoniques, la force de rappel qui en dérive est linéaire par rapport aux coordonnées. Il résulte
de ceci que, pour ce type de bain, la théorie de la réponse linéaire devient exacte. Ainsi, à partir
de modèles statistiques simples, qui décrivent le couplage de q(t) à un bain thermique et qui
sont caractérisés par un hamiltonien global Ht = H0 + Hb + Hint, on aboutit au même type de
bruit coloré. On considère que l’hamiltonien du bain thermique, Hb(s1, ..., sn), est modélisé par
un ensemble d’oscillateurs harmoniques couplés et l’hamiltonien associé à q(t) est de la forme
H0 = mp2/2 + V (q). Par hypothèse, le couplage entre q(t) et le bain thermique est de type
harmonique [49, 52]. De plus, la partie du hamiltonien spécifique de l’interaction est de la forme
Hint = −kq(t) avec k =

∑n
i=1 cisi et ci des constantes de couplage.

On suppose que les degrés de liberté du bain thermique possèdent une inertie plus faible que
celle de q(t), ils peuvent donc être intégrés, via des moyennes statistiques. Les fluctuations du bain
thermique seul, c’est-à-dire sans couplage avec q(t), peuvent être caractérisées par la fonction de
corrélation suivante :

Cb(t) = 〈δf(t0)δf(t)〉 =
∑
i,j

cicj〈δsi(t0)δsj(t)〉, (2.19)

avec 〈..〉 moyenne statistique sur le bain, δf(t) = f(t) − 〈f(t)〉 écart à l’équilibre de la force
fluctuante couplée linéairement aux déviations par rapport à l’équilibre δsi(t) = si(t)−〈si(t)〉 des
degrés de liberté secondaires si. La force fluctuante f(t) est différente de la force fluctuante du bain
pur fb(t) car elle est modifiée par l’influence de q(t). D’après le théorème fluctuation-dissipation,
dans le cadre de la théorie de la réponse linéaire on peut alors écrire une équation auto-cohérente
reliant f(t) et q(t) à l’aide de la fonction réponse χb(t− t′) du bain pur

f(t) = fb(t) +

∫ +∞

−∞
dt′χb(t− t′)q(t′), (2.20)

avec fb(t) la force fluctuante du bain pur et un terme intégral, non local en temps, traduisant le
couplage entre q(t) et le bain thermique. La force fluctuante du bain pur fb(t) vérifie une statistique
gaussienne avec une valeur moyenne 〈fb(t)〉 = Aq(t0)Cb(t) et une variance Cb(t). En accord avec
le principe de causalité, la fonction réponse χb(t− t′) est reliée à la fonction de corrélation Cb(t) :

χb(t) = −AdCb

dt
(t) si t > t0 χb(t) = 0 si t < t0, (2.21)

avec A une constante et t0 l’instant à partir duquel la variable collective q(t) est en contact avec le
bain thermique En effectuant une intégration par partie, du terme intégral du membre de droite
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de l’équation (2.20), compte tenu de la définition (2.21), on aboutit à

f(t) = −∂Vb
∂q

+ δf(t)−m

∫ t

t0

dt′Γ(t− t′)q̇(t′), (2.22)

avec Vb = −ACb(t0)q
2/2, δf(t) = fb(t) − 〈fb(t)〉 et le noyau mémoire Γ(t) = ACb(t)/m qui est

proportionnel à la fonction de corrélation. Ce noyau mémoire est donc relié aux corrélations des
forces fluctuantes, elles-mêmes associées au couplage entre q(t) et le bain. Plus les corrélations sont
importantes, plus le temps caractéristique de relaxation du bain thermique τ est important et plus
l’influence de Γ(t) est étendue dans le temps. Les formes analytiques du noyau mémoire Γ(t) sont
variées [59, 60]. On peut par exemple considérer une décroissance temporelle exponentielle avec
un temps de décroissance caractéristique τ représentant le temps de relaxation du bain.

lim
t→+∞

Γ(t) = lim
t→+∞

Cb(t) = 0 Γ(t) ∝ Cb(t) ∝ e−t/τ (2.23)

En appliquant l’équation fondamentale de la dynamique avec f(t) définie par l’équation (2.22)
et une force extérieure dérivant du potentiel Vext on a alors une équation de Langevin généralisée :

mq̈(t) = −∂Vext
∂q

+ f(t). (2.24)

En accord avec le théorème fluctuation-dissipation, la force f(t) définie par l’équation (2.22) prend
en compte les frottements par l’intermédiaire du terme intégral. On peut montrer, voir partie 2.3.2,
que dans le cas markovien le terme intégral se simplifie pour prendre une forme plus classique :
−mβq̇(t). On reconnâıt alors l’expression de la force de type frottement fluide valide pour les
basses vitesses.

Dans la suite de l’étude on considère l’équation de Langevin généralisée (2.25) et le noyau
mémoire (2.26) à décroissance exponentielle avec τ correspondant au temps de relaxation du bain.

Système d’équations non-markovien et retour au système d’équations markovien

L’équation de Langevin généralisée (2.25), sous réserve de faible déformation du bain thermique
est

q̈(t) +

∫ t

t0

dt′ Γ(t− t′)q̇(t′) +
1

m

∂V

∂q
= ρ(t), (2.25)

avec un noyau mémoire de la forme,

Γ(t) =
β

τ
e−t/τ , (2.26)

où β est le coefficient de friction réduit et m l’inertie. L’échelle de temps du noyau mémoire Γ(t)
représente le temps caractéristique sur lequel les effets de mémoire ne sont pas négligeables. Ce
temps est associé au temps de relaxation du bain thermique τ , de l’ordre de 10−22s à 10−21s.

La force réduite ρ(t) =
√

2T
βm

∫ t

t0
dt′ν(t′)Γ(t− t′) est une force réduite stochastique gaussienne.

ν est donc un nombre aléatoire gaussien vérifiant 〈ν(t)〉 = 0 et 〈ν(t)ν(t′)〉 = δ(t − t′). En outre,
on peut montrer que le théorème fluctuation-dissipation se décline de la manière suivante où les
deux premiers moments de la force stochastique réduite ρ peuvent s’écrire

〈ρ(t)〉 = 0 et 〈ρ(t)ρ(t′)〉 = T

m
[Γ(|t− t′|)− Γ(t+ t′ − 2t0)], (2.27)
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avec la constante de Boltzmann vérifiant kB = 1.
Dans certaines situations, l’évolution dynamique de la variable collective q(t) est simplifiée

car certains degrés de liberté sont déjà thermalisés. L’écriture du théorème fluctuation-dissipation
(2.27) devient alors :

〈ρ(t)〉 = 0 et 〈ρ(t)ρ(t′)〉 = T

m
[Γ(|t− t′|)], (2.28)

De manière générale, quand τ est petit devant le temps caractéristique τp = β−1 de la grandeur
collective q(t), ce qui correspond à la limite τ → 0, on peut faire une approximation en deux étapes :

1.
∫ t

t0
dt′ Γ(t− t′)q̇(t′) ' q̇(t)

∫ t

t0
dt′ Γ(t− t′) ;

2. t−t0
τ

� 1, ce qui revient à faire l’hypothèse du chaos moléculaire, hypothèse équivalente à la

limite t0 → −∞. Dans cette limite
∫ t

t0
dt′Γ(t− t′) → β, on retrouve le coefficient de friction

réduit du cas markovien.

Ces deux hypothèses entrâınent bien le fait que∫ t

t0

dt′Γ(t− t′)q̇(t′) '
(∫ t

t0

dt′Γ(t− t′)

)
q̇(t) = βq̇(t) (2.29)

On retrouve alors le cadre markovien, voir partie 2.1.2. L’approximation markovienne écarte
donc de l’équation du mouvement les effets de mémoire qui sont non locaux en temps. L’équation
(2.29) illustre de plus le fait que β est relié aux forces fluctuantes, caractérisant le couplage entre
la particule et le bain, comme cela a été précédemment évoqué.

Application au passage d’une barrière parabolique

Ainsi, pour résumer la situation, on peut accéder à l’évolution dynamique de la variable col-
lective q(t) grâce aux équations (2.30) et (2.31). Les effets de mémoire sont pris en compte grâce
au noyau mémoire Γ(t) et m représente l’inertie. Ce système, soumis à une barrière de potentiel
quadratique V = −1

2
mω2q2, est plongé dans un bain thermique caractérisé par la température T

et le coefficient de friction réduit β. On a donc

q̈(t) +

∫ t

t0

dt′Γ(t− t′)q̇(t′)− ω2q(t) = ρ(t) ρ(t) =

√
2T

βm

∫ t

t0

dt′ν(t′)Γ(t− t′), (2.30)

Γ(t) =
β

τ
e−t/τ 〈ρ(t)〉 = 0 〈ρ(t)ρ(t′)〉 =

T

m
[Γ(|t− t′|)− Γ(t+ t′ − 2t0)]. (2.31)

De plus, quand certains degrés de liberté du bain thermique sont déjà thermalisés, avec le même
noyau mémoire Γ(t), le théorème fluctuation-dissipation devient :

Γ(t) =
β

τ
e−t/τ 〈ρ(t)〉 = 0 〈ρ(t)ρ(t′)〉 = T

m
[Γ(|t− t′|)], (2.32)

Les processus markoviens ne représentant qu’une classe particulière de situations, on voit la
nécessité du développement d’un modèle incluant des effets de mémoire. Dans cette optique le
chapitre 3 consiste donc à étudier la diffusion par-dessus une barrière de potentiel parabolique
avec effets de mémoire afin d’accéder aux grandeurs pertinentes du problème. Après ce passage
obligé, on peut se pencher sur les applications en physique nucléaire. Plus particulièrement, on
s’intéresse aux modifications induites par les effets de mémoire sur la phase de formation du noyau
composé.



Chapitre 3

Effets de mémoire et noyau super-lourd

Ce chapitre porte sur l’étude des modifications induites par la prise en compte des effets de
mémoire sur l’étape de formation du noyau composé d’un élément super-lourd. Lors de la fusion
du noyau projectile et du noyau cible, on suppose donc que la phase de capture est réussie. Les
conditions initiales de notre étude sont alors prises au point de contact entre ces deux noyaux. La
démarche suivie s’inspire de celle exposée dans la référence [41]. Plus particulièrement, ce chapitre
est une généralisation des calculs effectués pour ce problème à une dimension, en y incluant des
effets de mémoire [61]. Un des intérêts de cette étude réside dans le fait qu’elle est transposable à
la barrière interne des noyaux super-lourds, assimilée à une parabole dans cette étude, voir figure
3.1.

q0

p0

q

V

Figure 3.1: Modélisation du sommet de la barrière interne des noyaux super-lourds par un po-
tentiel parabolique avec les conditions initiales q0 < 0 et p0 > 0.

En premier lieu, on se base sur un système d’équations équivalent à l’équation de Langevin
généralisée afin d’accéder aux valeurs propres du système et étudier leur nature en fonction de
l’intensité des effets de mémoire. Ensuite, on aboutit à la solution exacte de la variable collective
q(t) ainsi qu’à sa valeur moyenne et à sa variance. L’étape suivante consiste alors à établir la pro-
babilité de formation Pform(t) et le courant de formation jform(t). On étudie également l’influence
des conditions initiales sur la dynamique du système. Pour finir, on s’intéresse à la probabilité
d’existence du noyau composé PCN(t), à la dynamique oscillatoire et au temps de descente du
point selle au point de scission.

3.1 Résolution exacte pour la diffusion non-markovienne

Dans cette partie on modélise l’étape de formation comme une diffusion par-dessus une barrière
de potentiel. On considère alors le problème de la diffusion avec effets de mémoire dans le cas d’une

35
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barrière de potentiel parabolique à une dimension. Le traitement dynamique du système, carac-
térisé par la coordonnée collective q(t), est alors décrit grâce à un système d’équations équivalent
à l’équation de Langevin généralisée définie partie 2.3.2, c’est à dire avec effets de mémoire. Dans
ce cadre on détermine l’équation caractéristique correspondante, les valeurs propres associées et
on étudie leur nature en fonction de l’intensité des effets de mémoire.

3.1.1 Système d’équations équivalent

Dans le cadre général, non-markovien, l’équation de Langevin généralisée (2.30) peut être
réécrite sous forme matricielle comme une équation différentielle du premier ordre d’un vecteur
colonne lui-même défini dans un espace à trois dimensions,

d

dt

 q
p
f

 = D.

 q
p
f

+

 0
0
r(t)

 , (3.1)

avec D la matrice de dérive déterministe, f une nouvelle variable ayant la dimension d’une
accélération et r(t) le terme de diffusion purement stochastique. La matrice de dérive D et le
terme stochastique r(t) s’écrivent respectivement

D =

 0 1 0
ω2 0 1

0 −β
τ

− 1
τ

 et r(t) = 1
τ

√
2βT
m
ν(t), (3.2)

avec ν(t) un nombre aléatoire gaussien vérifiant 〈ν(t)〉 = 0 et 〈ν(t)ν(t′)〉 = δ(t− t′).
L’équation (3.1) peut alors s’intégrer formellement en q

p
f

 = e(t−t0)D.

 q0
p0
f0

+

∫ t

t0

e(t
′−t0)D

 0
0

r(t′)

 dt′, (3.3)

où le premier terme du membre de droite correspond à la valeur moyenne déterministe et le second
à la diffusion stochastique.

Dans ce cadre non-markovien l’équation différentielle matricielle (3.1) se réécrit sous la forme
d’un système d’équations différentielles du premier ordre dans un espace à trois dimensions,

q̇ = p
ṗ = ω2q + f

ḟ = −1

τ
[βp+ f ] + r(t). (3.4)

Pour que le système d’équations (3.4) soit exactement équivalent au système caractérisé par les
équations (2.30) et (2.31), il faut que f0 = 0. Une valeur non nulle de f0 signifie un � coup de pied
initial � donné au système. Dans ce cas de figure correspondant à f0 6= 0, le système d’équations
(3.4) est alors relié aux équations (2.30) et (2.32). On peut donc considérer pour la variable f une
distribution initiale gaussienne de variance σ2

f0
= βT/(mτ) et de valeur moyenne nulle f̄0 = 0, en

relation avec la fonction de corrélation réduite du bruit.
Pour plus de généralité, dans cette étude on garde le terme f0 dans les calculs afin de pouvoir

envisager par la suite l’une ou l’autre des deux situations : soit f0 = 0, soit f0 6= 0.
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A partir de (3.4) on aboutit à une équation différentielle du troisième ordre par rapport à la
variable collective q(t)

τ
...
q + q̈ +

(
β − τω2

)
q̇ − ω2q = τr(t). (3.5)

Ensuite, pour transformer l’équation différentielle (3.5) en équation algébrique on utilise les pro-
priétés de la transformée de Laplace. En particulier, on utilise la correspondance biunivoque entre
q̃(s) et q(t)

q̃(s) =

∫ +∞

0

e−stq(t)dt ⇔ q(t) =

∫ +∞

0

e+stq̃(s)ds. (3.6)

On peut alors écrire(
τs3 + s2 +

(
β − τω2

)
s− ω2

)
q̃(s) = (τs2 + s+ β)q0 + (1 + τs)p0 + τf0 + τ r̃(s), (3.7)

avec r̃(s) la transformée de Laplace de r(t).

3.1.2 Equation caractéristique et détermination des valeurs propres

Les valeurs propres λ1, λ2 et λ3 de la matrice de dérive peuvent être obtenues à partir de
l’équation caractéristique associée au membre de gauche de l’équation (3.7). En effet, le polynôme
ainsi obtenu, du troisième degré en λ, admet comme solutions ces trois valeurs propres. On peut
alors écrire

τλ3 + λ2 + (β − τω2)λ− ω2 = τ(λ− λ1)(λ− λ2)(λ− λ3) = 0. (3.8)

Les trois valeurs propres, λ1, λ2, et λ3, peuvent donc être déterminées exactement à partir de
l’équation (3.8), voir également [62], on obtient alors les expressions suivantes :

λ1 = − 1

3τ

− 1

3τ

−1 + 3βτ − 3(ωτ)2[
−1 + 9

2
βτ + 9(ωτ)2 +

[
(−1 + 9

2
βτ + 9(ωτ)2)2 + (−1 + 3βτ − 3(ωτ)2)3

]1/2]1/3
+

1

3τ

[
−1 +

9

2
βτ + 9(ωτ)2 +

[
(−1 +

9

2
βτ + 9(ωτ)2)2 + (−1 + 3βτ − 3(ωτ)2)3

]1/2]1/3
,

λ2 = −1

2
(
1

τ
+ λ1) + iθ,

λ3 = −1

2
(
1

τ
+ λ1)− iθ, (3.9)

avec i2 = −1 et θ2 = 1
τ2
(−1

4
(1 + λ1τ)

2 + ω2

λ1
τ).

La première valeur propre λ1 est toujours réelle et positive.

Dans le cas où λ2 et λ3 sont réelles, θ2 < 0 c’est pourquoi θ = − i
τ

√
1
4
(1 + λ1τ)2 − ω2

λ1
τ . Au

contraire, dans le cas où λ2 et λ3 sont complexes conjuguées, θ2 > 0 et θ = 1
τ

√
−1

4
(1 + λ1τ)2 +

ω2

λ1
τ .

A la limite τ → 0, on retrouve les valeurs propres a et b, voir (2.14), du cas markovien

lim
τ→0

λ1 = a, lim
τ→0

λ2 = b, lim
τ→0

λ3 = −∞, et lim
τ→0

λ3τ = −1. (3.10)
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3.1.3 Nature des valeurs propres en fonction des effets de mémoire

La possibilité que les deux valeurs propres λ2 et λ3 puissent devenir complexes, quand τ
ε]τ1, τ2[, est due au noyau mémoire Γ(t). Les valeurs critiques τ1 et τ2 du temps de relaxation τ
pour lesquelles la nature des valeurs propres change peuvent être déterminées de deux manières :
graphiquement ou par calculs. Ces deux méthodes, dont l’équivalence a été testée numériquement,
permettent d’accéder à des expressions approchées de τ1 et τ2, voir les équations (3.13) et (3.14).

Dans un premier temps on utilise la méthode graphique pour illustrer les trois types de com-
portements envisageables suivant la valeur de τ , voir figure 3.2. L’équation (3.8) peut se mettre
sous la forme

(λ− a)(λ− b) = τλ(ω − λ)(ω + λ) ⇔ m(λ) = k(λ). (3.11)

Dans (3.11),m(λ) correspond à l’équation caractéristique markovienne et k(λ) représente la contri-
bution du noyau mémoire. On peut résoudre graphiquement (3.11), voir la figure 3.2, en disposant
sur un même graphe le membre de gauche m(λ) et le membre de droite k(λ) de cette équation
et en regardant les points d’intersection. En effet, pour τ > 0, résoudre (3.11) revient à chercher
les points d’intersection entre la courbe représentative de l’équation de la parabole m(λ), dont
les racines sont a et b, et la courbe représentative du polynôme du troisième degré k(λ) dont
les racines sont 0 et ±ω. On peut alors remarquer qu’une des valeurs propres, λ1, est toujours
positive et vérifie a < λ1 < ω. Les deux autres valeurs propres sont soit négatives soit complexes
conjuguées. Dans ce dernier cas leur partie réelle, (λ2+λ3)/2 = −(λ1+

1
τ
)/2, est toujours négative.

Λ2Λ3 Λ1

mHΛL

kHΛL
Λ

Λ1

mHΛLkHΛL

Λ
Λ2Λ3 Λ1

mHΛL kHΛL

Λ

Figure 3.2: Illustration graphique des trois types de comportements. De gauche à droite, on
visualise le cas de figure proche du cadre markovien pour τ < τ1, puis le cas non-markovien
oscillant pour τ1 < τ < τ2 et enfin le cas non-markovien et non oscillant pour τ2 < τ . Pour les
définitions de τ1 et τ2, voir respectivement les équations (3.13) et (3.14). Le graphique central est
caractérisé par une solution réelle positive λ1 et deux solutions complexes conjuguées λ2 et λ3 à
partie réelle négative. Les deux autres graphiques sont associés à une solution réelle positive λ1 et
deux solutions réelles négatives λ2 et λ3.

Dans un deuxième temps on détermine les expressions approchées de τ1 et τ2. Pour τ1 on
utilise la méthode calculatoire s’appuyant sur l’utilisation d’un discriminant généralisé. Comme
la détermination de τ2 par la méthode calculatoire est fastidieuse, on utilise alors la méthode
graphique.

Pour accéder à ωτ1, on utilise donc la méthode explicitée dans [62]. En effet, (3.8) est de la
forme α1λ

3 + α2λ
2 + α3λ + α4 = 0. A partir l’équation précédente, en posant ψ = λ − δ et

δ = − α2

3α1
, on obtient une équation telle que ψ3 + φψ + ϕ = 0 avec φ = 3α1δ

2 + 2α2δ + α3
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et ϕ = α1δ
3 + α2δ

2 + α3δ + α4. Cette méthode fait ensuite intervenir le discriminant généralisé
∆ = 4φ3 + 27ϕ2.
- Pour ∆ < 0 (3.8) admet trois solutions réelles λ1, λ2 et λ3.
- Pour ∆ > 0 (3.8) admet une solution réelle λ1 et deux solutions complexes conjuguées λ2 et λ3.

La nature de λ2 et λ3 peut donc être déterminée en utilisant un déterminant généralisé ∆ :

∆τ 4 =
1

τ 2

[
4

(
−1

3
+ βτ − (ωτ)2

)3

+ 3

(
2

9
− βτ − 2(ωτ)2

)2
]
. (3.12)

Si ∆ > 0 λ2 et λ3 sont complexes conjuguées. Si ∆ < 0 elles sont réelles.
Pour les petites valeurs de τ , ∆ < 0, jusqu’à τ1. La valeur de τ1 peut être estimée en réalisant

un développement limité de ∆τ 4 au premier ordre en ωτ . On obtient alors le résultat donné par
(3.13).

La détermination de τ2, quand λ2 et λ3 redeviennent à nouveau réelles, aboutit à une estimation
de ωτ2, voir (3.14). La méthode utilisée est la suivante. Graphiquement, voir figure 3.2, on peut
voir que cela correspond au cas où le minimum négatif de la représentation graphique du membre
de droite k(λ) de l’équation (3.11) devient tangent à la représentation graphique du membre de
gauche m(λ). On accède alors à l’expression (3.14).

Ainsi, les deux valeurs frontière τ1 et τ2 sont maintenant accessibles grâce à :

ωτ1 ' 1

8

2ω

β

1 +
(

β
2ω

)2
5
4
+
(

β
2ω

)2 , (3.13)

ωτ2 '
√
3 + 3

β

2ω
. (3.14)

Par exemple, avec β
2ω

= 1.5, on a ωτ1 ' 0.08 et ωτ2 ' 6.23.

3.2 Solution exacte pour la diffusion non-markovienne

Dans ce paragraphe on détermine la solution exacte q(t), la valeur moyenne 〈q(t)〉 et la vari-
ance associée σ2

q (t). Les calculs de 〈q(t)〉 et de σ2
q (t) sont motivés par le fait que les densités de

probabilités W associées au système sont supposées être des gaussiennes dans le présent modèle.
On peut ensuite se focaliser sur les comportements asymptotique et dynamique du système. On
examine alors les évolutions de grandeurs qui caractérisent le passage par-dessus la barrière de
potentiel parabolique comme la valeur moyenne 〈q(t)〉, de la probabilité de formation Pform(t) et
le courant de formation jform(t). On regarde aussi l’influence des conditions initiales à l’aide d’une
densité de probabilité W0 tenant compte d’une dispersion gaussienne des conditions initiales.

3.2.1 Variable collective, valeur moyenne et variance

Grâce à la connaissance explicite des valeurs propres λ1, λ2 et λ3 la transformée de Laplace de
q(t) peut être déterminée à partir des équations (3.7), (3.8) et (3.9), on a donc

q̃(s) =
(s2τ + s+ β)q0 + (1 + sτ)p0 + τf0 + τ r̃(s)

τ(s− λ1)(s− λ2)(s− λ3)
. (3.15)

Ensuite, par transformée de Laplace inverse, on obtient alors la valeur exacte de la variable
collective q(t)

q(t) = u(t)q0 + v(t)p0 + w(t)f0 + w(t) ∗ r(t), (3.16)
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où la notation ∗ correspond au produit de convolution des deux fonctions w(t) et r(t) avec

u(t) =
3∑

i=1

λ2i τ + λi + β

τ
∏

n6=i(λi − λn)
eλit, (3.17)

v(t) =
3∑

i=1

1 + τλi
τ
∏

n6=i(λi − λn)
eλit, (3.18)

w(t) =
3∑

i=1

1∏
n6=i(λi − λn)

eλit. (3.19)

Or 〈r(t)〉 = 0, la valeur moyenne est alors

〈q(t)〉 = u(t)q0 + v(t)p0 + w(t)f0. (3.20)

La variance est donc

σ2
q (t) =

2Tβ

mτ 2

3∑
i=1

3∑
j=1

e(λi+λj)t − 1

(λi + λj)
∏

n6=i(λi − λn)
∏

m6=j(λj − λm)
. (3.21)

Comme 〈q(t)〉 et σ2
q (t) entrent dans la définition de la distribution gaussienne, la probabilité de

formation est de ce fait connue à chaque instant, voir équation (2.8).

3.2.2 Comportements asymptotique et dynamique

Comportement asymptotique

Pour les temps longs, seul le terme proportionnel à eλ1t subsiste et la probabilité de formation
converge vers une valeur finie. En accord avec les considérations développées dans la partie 3.1.1
pour les valeurs de f0 nulle ou non-nulle, on examine les deux cas de figure suivants :

Avec une distribution initiale stricte f0 = 0, la probabilité de formation s’écrit

Pform(t→ +∞; q0, p0, f0 = 0) =
1

2
erfc

[
ω(1 + λ1τ)√

λ1β

(√
B

T
− λ1
ω

√
K

T

)]
, (3.22)

où K et B sont respectivement l’énergie cinétique initiale et la hauteur de barrière.

Avec une distribution initiale gaussienne pour f0 telle que σf0 =
√
Tβ/(mτ) et f̄0 = 0, la

probabilité de formation devient

P̄form(t→ +∞; q0, p0, σf0 =

√
Tβ

mτ
) =

1

2
erfc

[
ω

√
(1 + λ1τ)

λ1β

(√
B

T
− λ1
ω

√
K

T

)]
. (3.23)

Les deux expressions précédentes diffèrent par un facteur
√
1 + λ1τ à l’intérieur de la fonction

erreur complémentaire. Ainsi, pour les faibles temps de relaxation τ , les probabilités de formation
sont très proches, ce qui n’est plus vrai pour les temps longs, voir la figure 3.3.
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Figure 3.3: Probabilités de formation asymptotiques Pform(t → +∞) comme fonctions de
l’énergie cinétique initiale. La ligne discontinue large représente la condition initiale stricte f0
et la ligne continue correspond à une distribution initiale σf0 =

√
Tβ/(mτ). De plus, β

2ω
= 1.5 et

T = B
2
. Pour la figure de gauche ωτ = 1 et pour la figure de droite ωτ = 10.

Dans les deux cas de figure, pour que limt→+∞〈q(t)〉 soit nulle, l’énergie cinétique initiale doit
vérifier

K =

(
ω

λ1

)2

B = Beff . (3.24)

Ce résultat est similaire au cas markovien, voir équation (2.18). En effet a < λ1 < ω, c’est
pourquoi la barrière effective que la particule doit franchir est plus petite quand le temps de
relaxation est important. Le noyau mémoire tend à minimiser l’influence des processus dissipatifs,
correspondant à une diminution de la friction effective. Pour un temps de relaxation donné cet
effet est plus important quand β

2ω
' 1, voir figure 3.4 :

0 2 4 6 8 10
0

2

4

6

8

10

12

14

ΩΤ

B
ef

f�
B

0 1 2 3 4 5 6

0.6

0.7

0.8

0.9

1.0

β� H 2 ΩL

B
ef

f�
B

ef
fH

τ =
0
L

Figure 3.4: Graphique de gauche :
Beff

B
comme fonction de ωτ , pour différentes valeurs de β

2ω
:

β
2ω

= 1 (longue et large ligne discontinue), β
2ω

= 2 (petite ligne discontinue), β
2ω

= 3 (ligne

continue). Graphique de droite :
Beff

Beff (τ=0)
comme fonction de β

2ω
pour différentes valeurs de ωτ :

ωτ = 0.07 (petite ligne discontinue), ωτ = 0.4 (longue et large ligne continue) et ωτ = 1 ( ligne
continue).
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La valeur moyenne 〈q(t)〉 doit franchir la barrière effective Beff . Ce type de barrière prend en
compte la viscosité via la friction et les effets de mémoire. Par exemple, avec des valeurs usuelles
en physique nucléaire, ~ω = 1MeV , β = 5.1021s−1, ~/τ ' 1MeV d’où τ = 10−21s et ωτ ' 1 on
obtient Beff ' 6.5B, ce qui correspond à une diminution de 40% par rapport au cas markovien
où on trouve Beff (τ = 0) ' 11B. Par la même démarche, avec β = 2.1021s−1, on détermine
Beff ' 2B. On constate également une diminution de 40% par rapport au cas markovien qui dans
ce cas est associé à Beff (τ = 0) ' 3.5B.

Ces considérations montrent le rôle important joué par les effets de mémoire sur l’abaissement
de la barrière effective par rapport au cas markovien, voir figure 3.4.

En outre, comme dans l’étude du cas markovien, on observe alors trois régimes qui dépendent
de l’énergie cinétique initiale K :

- Quand K < Beff , on observe un régime de diffusion thermique.

- Dans le cas critique, K = Beff , la trajectoire moyenne converge vers le sommet de la barrière.

- Pour finir, quand K > Beff on observe un régime de franchissement dynamique.

Comportement transitoire

Le régime dynamique de transition vers le comportement stationnaire asymptotique dépend de
la nature des valeurs propres λ1, λ2 et λ3. La nature de ces valeurs propres est reliée aux valeurs
de τ , voir partie 3.1.3. On aboutit à trois types de comportements associés aux trois courbes de
chaque graphique de la figure 3.5. Ces trois types de comportements peuvent se résumer de la
manière suivante :

- Pour les petits temps de relaxation, τ < τ1, les valeurs propres sont réelles et la situation est
très proche du cas markovien, avec un coefficient de friction réduit β un peu plus petit.

- Le régime de transition change complètement quand le temps de relaxation vérifie τ ε]τ1, τ2[. Un
comportement oscillant, nouveau par rapport au cas markovien apparâıt. Deux des valeurs propres
sont alors complexes conjuguées et la trajectoire moyenne, la probabilité de franchissement de la
barrière de potentiel Pform et le courant au sommet de cette barrière jform (voir équation (3.25)),
sont soumis à des oscillations.

- Finalement quand le temps de relaxation est très grand, τ > τ2, les valeurs propres redeviennent
toutes réelles et cette situation est similaire au cas markovien avec cette fois un coefficient de
friction réduit β plus important.

Le courant jform au sommet de la barrière de potentiel parabolique est défini par la dérivée de
la probabilité de formation par rapport au temps :

jform =
dPform(t)

dt
, (3.25)

En physique nucléaire, les oscillations de la trajectoire moyenne 〈q(t)〉 correspondent aux
résonances quadrupolaires géantes [34, 63].
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Figure 3.5: Grandeurs adimentionnées : trajectoire moyenne, probabilité de formation et courant
au sommet de la barrière comme fonction du temps pour quatre régimes, K = 0, (première ligne
de la figure) K = Beff/2 (seconde ligne de la figure), K = Beff (troisième ligne de la figure)
et K = 2Beff (dernière ligne de la figure). Pour chaque graphique trois courbes différentes sont
tracées : le cas markovien (ωτ = 0 : ligne solide), le cas non-oscillant (ωτ = 0.07 : petite ligne
discontinue) et le cas oscillant (ωτ = 0.4 : longue et large ligne discontinue). De plus, β

2ω
= 1.5,

T = B
2
, T0 = 0 et σq0 = 0. Pour mieux visualiser les comportements, chaque ligne de la figure

possède sa propre échelle.

3.2.3 Dispersions des conditions initiales

Jusqu’à présent, le problème a été envisagé en prenant des conditions initiales q0, p0, f0 strictes.
On peut donc se poser la question de l’influence sur les résultats d’une dispersion des conditions
initiales. Ce problème a déjà été abordé dans le cas markovien [42], avec une distribution gaussienne
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W0 pour laquelle il existe une solution exacte,

W0(q̄0, σq0 ; p̄0, σp0 ; f̄0, σf0) =
exp

[
− (q0−q̄0)2

2σ2
q0

]
exp

[
− (p0−p̄0)2

2σ2
p0

]
exp

[
− (f0−f̄0)2

2σ2
f0

]
(2π)

3
2σq0σp0σf0

, (3.26)

avec

σ2
p0

=
T0
m

et σ2
f0

=
βT0
mτ

. (3.27)

Comme il n’y a pas de puits de potentiel dans ce problème, on ne peut pas relier σ2
q0

à la
température initiale T0. De plus, comme précédemment, q̄0 < 0, p̄0 = ˙̄q0 > 0 et f̄0 = 0. Le système
n’est pas forcément à l’équilibre et il semble difficile d’interpréter T0 comme une température. Cela
dépend de la situation physique.

Dans le cas de la fusion des ions lourds, la dissipation apparâıt déjà au niveau de la phase
d’approche, générant une dispersion des conditions initiales, q0, p0 et f0 [64, 65]. Ultérieurement,
après la collision des noyaux, la dissipation est connue pour être très forte et les degrés de liberté
internes sont supposés être rapidement équilibrés à la température T . Les degrés de liberté collectifs
ne sont pas concernés car ils sont couplés aux degrés de liberté intrinsèques à travers les termes de
fluctuation-dissipation. De ce fait, dans une telle situation, la dispersion des conditions initiales
doit être envisagée avec une largeur différente.

La nouvelle probabilité de formation peut s’écrire sous la forme d’une intégrale triple. Pour
chaque variable, le domaine d’intégration s’étend de −∞ à +∞. On a donc

P̄form(t; q̄0, σq0 ; p̄0, σp0 ; f̄0, σf0) =

∫ ∫ ∫ +∞

−∞
Pform(t; q0, p0, f0)W0(q̄0, σq0 ; p̄0, σp0 ; f̄0, σf0)dq0dp0df0

=
1

2
erfc

(
− 〈q̄(t)〉√

2σ′(t)

)
, (3.28)

où la valeur moyenne 〈q(t)〉 est la même que dans l’équation (3.20) en remarquant que q0, p0 et
f0 sont remplacés par respectivement q̄0, p̄0 et f̄0. La variance est plus large,

σ′2(t) = σ2
q (t) + u2(t)σ2

q0
+ v2(t)σ2

p0
+ w2(t)σ2

f0
, (3.29)

avec u(t), v(t) et w(t) donnés respectivement par les équations (3.17), (3.18) et (3.19).

On peut remarquer que la trajectoire moyenne n’est pas affectée par les conditions de dispersion
initiales. En outre, les oscillations qui peuvent se produire ne sont pas atténuées, voir figure 3.6.

- Quand K < Beff , le processus est dominé par la diffusion, la probabilité de passage est alors
plus importante quand T0 augmente.

- Quand K = Beff , on retrouve le régime critique pour lequel la valeur asymptotique de la variable
collective moyenne est nulle : limt→+∞〈q(t)〉 = 0. Dans ce cas, on a alors limt→+∞ P̄form(t) = 1/2
quelle que soit la valeur de T0.

- Quand K ≥ Beff , la transition est plus douce. De plus, on observe une augmentation du
refranchissement en sens inverse la barrière par la variable collective moyenne 〈q(t)〉, après un
premier passage au niveau du point selle.
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0.5 1.0 1.5 2.0
Ωt

0.05
0.10
0.15
0.20
0.25
0.30

P formH tL
K<Beff

0.5 1.0 1.5 2.0
Ωt

0.2
0.4
0.6
0.8
1.0

P formH tL
K=Beff

0.1 0.2 0.3 0.4
Ωt

0.2
0.4
0.6
0.8
1.0

P formH tL
K>Beff

Figure 3.6: Probabilité de franchissement oscillante moyenne P̄form(t) (ωτ = 0.4) comme fonction
du temps pour trois régimes : K = Beff/2 (première colonne), K = Beff (seconde colonne) et
K = 2Beff (troisième colonne). Pour chaque graphique trois différentes courbes sont tracées :
T0 = T (longue et large ligne discontinue), T0 = T/2 (petite ligne discontinue) and T0 = 0 (ligne
continue). De plus, β

2ω
= 1.5, T = B

2
et σq0 = 0.

Pour les temps longs vérifiant λ1t� 1, la probabilité de passage par-dessus la barrière converge
vers une valeur finie.

P̄form(t→ ∞; q̄0, σq0 , p̄0, σp0 ; f̄0 = 0, T0) →
1

2
erfc

[√
B̄

T ′ −
λ1
ω

√
K̄

T ′

]
, (3.30)

avec

T ′ =
βλ1T

ω2(1 + λ1τ)2
+mω2σ2

q0
+

(
λ1
ω

)2(
1 +

βτ

(1 + λ1τ)2

)
T0. (3.31)

K̄ = mp̄20/2 est, par définition, l’énergie cinétique moyenne initiale, B̄ = mω2q̄20/2 la hauteur
de barrière moyenne et T ′ une température dynamique généralisée, tenant compte des effets de
mémoire. σ2

f0
= βT0/(mτ) est la variance associée à f̄0.

La condition sur l’énergie cinétique initiale n’est pas modifiée. On a alors

K̄c =

(
ω

λ1

)2

B̄ = B̄eff . (3.32)

Quand K̄ � B̄eff , et T
′ < B̄/10, la probabilité de franchissement de la barrière est extrêmement

faible. Elle peut s’écrire sous la forme suivante

P̄form(t→ +∞; q̄0, σq0 , p̄0, T0) '
√

T ′

4πB̄
exp

(
− B̄

T ′

)
. (3.33)

Le mode diffusif prédomine devant le mode dynamique. Ce résultat possède un facteur de type
Arrhenius [66] similaire à celui obtenu dans le cas markovien et peut être qualifié de � formule de
Kramers inverse � [42].

3.3 Conséquences sur le noyau composé super-lourd

Dans cette partie on examine en premier lieu les conséquences des effets de mémoire sur
la dynamique oscillatoire ainsi que le comportement asymptotique du système pour l’étape de
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formation du noyau composé. Ensuite, on étudie la probabilité d’existence du noyau composé
pendant la fusion nucléaire en prenant en compte le fait qu’il soit métastable et donc qu’il puisse par
la suite fissionner. Le temps caractéristique de fission étant grand devant le temps caractéristique
du noyau mémoire, on peut donc pour la fission écarter les effets de mémoire et décrire en première
approche cette fission uniquement grâce au taux de fission de type Kramers. De ce fait, on ne
considère donc pas dans cette approche simple l’évaporation des particules légères. Pour finir on
s’intéresse à l’influence des effets de mémoire sur le temps du point selle au point de scission.

3.3.1 Comportements dynamiques oscillatoire et asymptotique

La possibilité d’un comportement dynamique oscillatoire de la variable collective q(t) et de
la probabilité de formation moyenne du noyau composé P̄form(t) permettent, quand l’énergie
cinétique initiale est inférieure à la barrière, un franchissement de cette barrière ce qui entrâıne la
fission du noyau composé. Le temps de premier passage par-dessus la barrière est alors diminué
par rapport à une situation non-oscillante, voir la figure 3.7.
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Figure 3.7: 〈q̄(t)〉
q0

et P̄form(t) comme des fonctions de ωt pour trois régimes : K = Beff/2,
K = Beff et K = 2Beff . Pour chaque régime, la ligne continue est associée au cas markovien et
la ligne discontinue représente le cas non-markovien oscillant pour lequel ωτ = 0.6. De plus, pour
toutes les courbes β

2ω
= 1.5 et pour P̄form(t), T/B = 0.5, T0/T = 0.5 et σ2

q0
= 0.

En outre, les oscillations générées par les effets de mémoire se situent dans les mêmes do-
maines de fréquences que celles des résonances géantes des noyaux, voir partie 2.3.1. Le temps
caractéristique de relaxation du bain thermique τ est dans ce cas estimé à 10−21s car alors
~/τ ' 1MeV . Dans la référence [59], le passage par-dessus la barrière parabolique est étudié
avec un bruit non-ohmique. Le comportement dynamique présente des oscillations dont l’origine
n’est pas explicitée. Il découle de cette étude que l’origine des oscillations peut être reliée à la na-
ture non-markovienne du bruit coloré. D’autre part, si on considère le cas de la diffusion quantique
par-dessus la barrière [57, 67, 68, 69], le bruit est toujours non-markovien. La largeur associée au
temps de corrélation évalué dans [57] est de l’ordre de ~/τ ' 10MeV d’où τ ' 10−22s , les autres
variables restant inchangées. Ces valeurs sont au-delà de l’intervalle d’oscillation. La trajectoire
moyenne doit donc adopter un comportement markovien avec une friction très faible. Dans ce
cadre, on peut remarquer que

lim
τ→∞

λ1 = ω, lim
τ→∞

λ2 = 0 et lim
τ→∞

λ3 = −ω, (3.34)
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il apparâıt alors que la diffusion tend vers une limite de friction nulle, le coefficient de friction
réduit vérifiant alors β ' 0, comme dans le cas quantique pour les basses températures [68].

En effet, pour ωτ grand, la réponse du bain est lente. Le bain n’est donc pas modifié lors
de la variation de la variable collective moyenne 〈q(t)〉. L’état asymptotique markovien dans la
limite des faibles frictions est similaire à l’état asymptotique avec effets de mémoire importants et
friction non nulle, voir la figure 3.8.
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Figure 3.8: 〈q(t)〉
q0

comme une fonction de ωt pour trois régimes : K = Beff/2, K = Beff et
K = 2Beff . Pour chacun de ces régimes la ligne continue est associée au cas markovien avec
β → 0 et la ligne discontinue représente le cas non-markovien et non oscillant pour lequel β

2ω
= 1.5

et ωτ = 10.

3.3.2 Probabilité d’existence du noyau composé super-lourd

Le but de ce paragraphe est double. On doit en premier lieu établir l’expression de la probabilité
d’existence PCN(t) du noyau composé super-lourd, en accord avec l’hypothèse de Bohr concernant
la séparation entre la phase de fusion et la phase de fission. Ensuite on doit regarder l’influence
des effets de mémoire (surtout dans la gamme d’effets de mémoire pour lesquels on observe des
oscillations) sur les conditions de raccordement entre ces deux phases. A priori si la probabilité
de formation d’un noyau super-lourd varie, comme ce noyau composé est le premier noyau de la
cascade de désexcitation, cela doit avoir des conséquences sur ce processus de désexcitation.

Dans ce paragraphe on étudie donc un modèle simple pour envisager la dynamique de fusion-
fission des noyaux composés chauds super-lourds. De manière générale, ces entités instables évacuent
ensuite leur excédent d’énergie en se désexcitant principalement suivant deux modes : l’évaporation
de particules légères et la fission. Ces deux voies étant alors en compétition, il faut donc étudier la
dynamique du processus en intégrant cet aspect. Avec cette modélisation simple envisagée dans
la suite de ce paragraphe, on ne considère que la fission comme mode de désexcitation.

Les dynamiques de réaction dans les collisions d’ions lourds sont souvent étudiées par l’in-
termédiaire d’un petit nombre de variables pertinentes qui évoluent en accord avec une équation
de Langevin [70]. La plupart des études sont basées sur l’emploi d’une équation phénoménologique
de Langevin ou de son équation équivalente de Klein-Kramers, ces équations étant markoviennes.
Bien que des dérivations microscopiques aboutissent à des équations avec effets de mémoire, ces
démarches incluant les effets de mémoire sont rarement utilisées dans ce domaine.
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Lors de la synthèse d’éléments super-lourds grâce à la fusion d’ions lourds à des niveaux
d’énergies proches de la barrière de Coulomb, les probabilités de formation sont si faibles qu’il
faut d’un point de vue expérimental accumuler beaucoup de statistiques. Des modèles simples
sont aussi développés dans le but de se faire une idée des résultats obtenus à partir de l’analyse de
l’énorme statistique numérique. Pour étudier l’étape de formation, la probabilité de franchissement
de la barrière parabolique est un outil très utile [41, 42, 57, 59, 64, 67, 68, 69, 71].

Pour illustrer la dynamique de fusion-fission on peut donc étudier un modèle simplifié. On
considère alors PCN(t), la probabilité d’existence du noyau composé CN � compound nucleus �,
dans le puits de potentiel métastable, limité par la barrière de potentiel Bf ≥ T . Pour caractériser
l’évolution de PCN(t), on suppose que la fusion du noyau composé dans la voie d’entrée et que sa
fission dans la voie de sortie, sont décorrélées. On utilise alors la relation

dPCN(t)

dt
= jfus(t)− jfiss(t). (3.35)

Dans la voie d’entrée, par hypothèse, on suppose que la phase de capture est réussie donc Pcapt = 1,
voir l’équation (1.4). De ce fait, jfus(t) est assimilé à jform(t). En outre, le courant de formation
jform(t) est non nul pendant une courte fenêtre temporelle dont le temps caractéristique est τform.
Ce courant correspond au courant d’entrée par-dessus la barrière de potentiel, considérée comme
parabolique. Dans la voie de sortie le courant de fission jfiss(t) correspond à la probabilité de fission
par unité de temps. De plus, ce courant de fission peut être assimilé en première approximation au
taux de fission de Kramers ΓK

f indépendant du temps, voir partie 4.2.1. D’autre part, le régime
transitoire associé à la relaxation nucléaire n’est donc dans ce cas pas pris en compte, en accord
avec les spécificités de la fusion-fission des noyaux super-lourds. On peut alors écrire

PCN(t) =

∫ t

0

e−ΓK
f (t−t′)jform(t

′)dt′. (3.36)

Comme le temps caractéristique de fission vérifie dans ce modèle τKfiss ' 1/ΓK
f � τform avec τform

le temps caractéristique sur lequel le courant jform(t) n’est pas nul, on peut alors sur l’intervalle
t′ε[0, t] faire l’approximation eΓKt′ ' 1. De ce fait, en supposant que le noyau composé n’est pas
formé initialement, PCN(t = 0) = 0, on aboutit à

PCN(t) ' e−ΓK
f t

∫ t

0

jform(t
′)dt′ ' P̄form(t)e

−ΓK
f t. (3.37)

Pour les temps longs la nature métastable du noyau composé se manifeste par limt→∞ PCN(t) = 0.
Avec cette modélisation simple de PCN(t) l’hypothèse de décorrélation de la phase de fusion et
de la phase de fission de Bohr se traduit par une multiplication entre les deux termes Pform(t)

et e−ΓK
f t. L’expression de Pform(t) pour le cas markovien est définie par (2.8) avec cette fois des

conditions initiales gaussiennes et la détermination de Pform(t) avec effets de mémoire est effectuée
dans ce chapitre, voir l’équation (3.28). De plus, la définition de ΓK

f corrrespond à l’équation (4.1).

Avec cette modélisation simple de PCN(t) on peut mettre en évidence l’influence des effets de
mémoire sur la probabilité d’existence du noyau composé, voir la figure 3.9. On peut alors observer
la décorrélation entre la phase de fusion et la phase de fission. Les figures étant représentées avec
des axes semi-logarithmiques, on remarque aussi la grande différence d’échelles de temps entre ces
deux phases. Ceci est en accord avec le fait que le processus de formation du noyau composé est
beaucoup plus rapide que sa désexcitation.
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Pendant le régime transitoire de l’étape de formation du noyau composé, le comportement non-
markovien est marqué par une probabilité d’existence du noyau composé PCN(t) plus importante
et augmentant plus rapidement que dans le cas markovien. Dans le palier intermédiaire associé au
régime asymptotique de formation du noyau composé les différences de comportement s’estompent
car les oscillations disparaissent. Ce palier intermédiaire est plus ou moins bien visible suivant les
valeurs respectives de l’énergie cinétique initiale K et de la barrière effective Beff .

Enfin, pour des temps plus longs le début de la désexcitation du noyau composé super-lourd,
dans cet exemple par fission thermique uniquement, marque la fin du palier intermédiaire. PCN(t)
devient donc monotone décroissante. Pour finir, on retrouve la nature métastable du noyau com-
posé qui se traduit par limt→∞ PCN(t) = 0.
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Figure 3.9: PCN(t) comme une fonction de ωt pour K = Beff/10, K = Beff/2, K = Beff et
K = 2Beff . Dans chaque graphique la ligne continue est associée au cas markovien et les lignes
discontinues représentent les cas non-markoviens pour lesquels ωτ = 0.5 (petite ligne discontinue),
ωτ = 1.0 (ligne discontinue intermédiaire) et ωτ = 2.0 (grande ligne discontinue). En outre,
β
2ω

= 1.5, T/B = 0.5, T0/T = 0.5 et σ2
q0
= 0.

Figure 3.9, dans le cas où K = Beff/10, on remarque que les effets de mémoire influencent
fortement la condition de raccordement entre la phase de formation et la phase de désexcitation du
noyau composé super-lourd. C’est cette situation qui correspond à la dynamique de fusion-fission
des noyaux super-lourds car après franchissement de la barrière de Coulomb, l’énergie cinétique K
correspondant à l’énergie cinétique initiale de la phase de formation est petite devant la barrière
effective Beff .
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Les effets de mémoire peuvent aussi induire des modifications du temps du point selle au point
de scission.

3.3.3 Temps du point selle au point de scission et effets de mémoire

La fission thermique peut être vue comme un phénomène de diffusion par-dessus une barrière de
potentiel multidimensionnelle. Dans cette approche simplifiée, on se limite à une barrière monodi-
mensionnelle. Grâce à l’équation de Langevin généralisée [61], l’étude de la dynamique associée
est possible. Dans la référence [72], il est stipulé que, à cause des effets de mémoire, le temps du
point selle au point de scisson est approximativement multiplié par trois. Un tel comportement
peut parâıtre en contradiction avec le fait que le noyau mémoire tend à faire décrôıtre le coefficient
de friction réduit β.

Par exemple, en utilisant les notations introduites dans ce chapitre, on considère la valeur
moyenne de la variable collective comme une fonction du temps pour un autre type de conditions
initiales telles que q0 = 0 et p0 > 0,

〈q(t)〉
qs

= v(t)ω

√
K

Bs

. (3.38)

Dans l’équation (3.38), K est l’énergie cinétique initiale, le coefficient v(t) est défini à l’équation
(3.18) et Bs = mω2q2s/2 est la barrière de potentiel depuis le sommet du point selle, situé en
q = 0, jusqu’au point de scission de coordonnée qs. On constate alors que, pour un paramètre de
friction réduit β donné, la dynamique non-markovienne conduit à une viscosité plus faible et donc
un temps du point selle au point de scission τsd→s plus petit.

Cependant, si le paramètre de friction réduit β est dérivé à partir d’un modèle microscopique
[34, 53, 72], il dépend du temps relaxation choisi pour le noyau mémoire. Par exemple, dans les
références [34, 53] β est proportionnel à ce temps de relaxation. Ainsi, un temps de relaxation
plus grand signifie une viscosité plus grande avec comme conséquence un temps du point selle au
point de scission plus long, voir la figure 3.10.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ωt

X
q
H
tL
\
�
q

s
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comme une fonction de ωτ avec K = B/10. Trois régimes sont représentés :
β
2ω

= 1.5, ωτ = 0 (ligne solide), β
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= 1.5, ωτ = 1 (petite ligne discontinue) et β
2ω

= 3, ωτ = 2
(longue et large ligne discontinue).
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3.4 Conclusion

Pour clore ce chapitre on peut donc rappeler les modifications induites par la prise en compte
des effets de mémoire sur la dynamique de fusion-fission des noyaux super-lourds.

Le temps caractéristique de formation d’un noyau composé super-lourd, de l’ordre de 10−22s
à 10−21s, et le temps caractéristique de relaxation du bain thermique, estimé à 10−21s, sont com-
parables. La prise en compte des effets de mémoire est donc nécessaire pour étudier le processus
d’entrave à la fusion des noyaux super-lourds. Dans une gamme intermédiaire d’effets de mémoire
des oscillations apparaissent, ce qui est très différent de la dynamique d’un système markovien.
Ces oscillations modifient alors fortement la dynamique des grandeurs physiques dans l’étape de
formation des noyaux super-lourds. De ce fait, il est donc pertinent d’inclure des effets de mémoire
dans l’étape de fusion d’un noyau composé super-lourd, plus précisément pour l’étape de formation
proprement dite du noyau composé super-lourd.

De plus, il en va de même pour le temps du point selle au point de scission dans l’étape de
fission. Ce temps du point selle au point de scission peut être influencé par des effets de mémoire.
Comme ce temps peut être long dans le cas des noyaux super-lourds, les modifications induites
par les effets de mémoire peuvent alors être grandes. En outre, dans cette fin de chapitre, on
aborde la fission d’une manière simple pour prendre en compte l’influence de la désexcitation sur
la probabilité d’existence du noyau composé.

Une étude plus approfondie de la fission, mode privilégié de désexcitation du noyau composé,
est réalisée dans les chapitres 4 et 5. En effet, un des buts des chapitres 4 et 5 consiste à aller au-
delà d’un traitement de la fission du point de vue de Kramers en tenant compte de la compétition
entre les deux principales voies de désexcitation du noyau composé : l’évaporation de neutrons et
la fission. On revient alors notamment sur l’étude du point selle au point de scission.
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Chapitre 4

Noyau super-lourd et simple barrière de
fission

Le but de ce chapitre consiste à étudier la dynamique du processus de désexcitation des noyaux
super-lourds dans le cas d’une simple barrière de potentiel. Les différentes modélisations envisagées
avec cette simple barrière de potentiel ne permettent pas une interprétation quantitative des
résultats obtenus au GANIL par blocage cristallin pour les noyaux Z = 120 et Z = 124 [19]. Cepen-
dant cette étude présente l’intérêt de pouvoir introduire les outils nécessaires à une compréhension
globale des différents mécanismes mis en jeu lors de cette désexcitation. On peut alors apporter
des informations sur l’évolution des grandeurs physiques pertinentes. Dans ce chapitre on applique
donc ces outils en considérant le cas d’une simple barrière, du type de la figure 4.1. Ces mêmes
outils sont aussi utilisés dans le chapitre 5 mais cette fois pour une double barrière.

Selle
V(q)

Scission

q

Puits

Figure 4.1: Schématisation de la simple barrière de potentiel V (q) en fonction de la coordonnée
collective q, associée à la déformation du noyau composé. q est donc une coordonnée le long du
chemin le plus probable par-dessus la barrière de fission vers le point de scission, de coordonnée
qs. Ce point de scission, correspondant à la fission du noyau composé, est considéré comme une
frontière absorbante car, une fois ce point franchi, le noyau composé ne peut être reformé. La
coordonnée collective correspondant à l’état fondamental du potentiel V est notée qgd, gd signifiant
� ground �, et la coordonnée collective associée au point selle est qsd, sd signifiant � saddle �.

Ce chapitre se décompose en quatre parties. La partie 4.1 est un bilan des points d’accord et
de désaccord entre les valeurs expérimentales et les modélisations envisagées avec prise en compte
des corrections d’effets de couches. Les parties suivantes abordent différents modèles académiques
afin d’étudier l’influence des grandeurs physiques sur la dynamique de désexcitation du noyau
composé. On envisage dans la partie 4.2 la fission comme seule voie de désexcitation, puis dans la
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partie 4.3 le cas d’une barrière de fission constante. Enfin, dans la partie 4.4, on prend en compte
les corrections d’effets de couches. Dans ce chapitre, la constante de Boltzmann kB est égale à un.

4.1 Résultats expérimentaux et modélisations

A l’heure actuelle, les tentatives de modélisation avec une simple barrière de potentiel ne
permettent pas d’accéder à une interprétation quantitative de la dynamique de désexcitation des
noyaux super-lourds. En effet, même avec des modèles prenant en compte les différents modes
de désexcitation (fission, évaporation de particules légères, émission de photons γ) et incluant les
corrections d’effets de couches, les résultats obtenus ne permettent pas de retouver les valeurs des
observables associées aux expériences réalisées au GANIL par blocage cristallin [19, 31, 73, 74, 75].

4.1.1 Constat actuel sur les résultats expérimentaux et les modélisations

Les principaux résultats de ces mesures par blocage cristallin peuvent être résumés de la
manière suivante : pour Z = 114 aucun événement supérieur à 10−18s n’est détecté. Au contraire,
pour Z = 120 et Z = 124, respectivement 10% et 12% des événements de capture possèdent
un temps de vie supérieur à 10−18s. De plus, aucun résidu de fission chaud n’a été observé. La
probabilité de survie de ces résidus est donc nulle.

Les modélisations réalistes doivent donc permettre de reproduire le comportement de ces deux
observables, c’est-à-dire une probabilité d’événements de fission P (tfiss ≥ 10−18s) de l’ordre de
10% et une probabilité de survie Psurv des fragments de fission nulle. De plus, les modélisations
doivent permettre d’accéder aux grandeurs physiques comme le taux de fission λfiss et le temps de
fission moyen τfiss = 〈tfiss〉. En particulier, d’après les valeurs de l’observable P (tfiss ≥ 10−18s),
la queue de distribution des temps de fission tfiss doit pouvoir être supérieure à 10−18s.

Figure 4.2: Schéma de gauche : modélisation de la cascade de désexcitation de Kwepie2
[19]. Schéma de droite : modélisation de la cascade de désexcitation isotopique résultant de la
compétition entre les deux processus dominants : fission et évaporation de neutron [31].
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Le temps de fission estimé à partir du taux de Kramers est de l’ordre de 10−20s, voir partie
4.2.1. Ce temps ne permet pas d’expliquer les valeurs P (tfiss ≥ 10−18s) ' 10%. De manière
générale, pour avoir des temps de fission tfiss aussi longs, il y a impérativement compétition en-
tre le canal de fission et les autres canaux de désexcitation associés aux particules légères et aux
photons γ. L’existence des ces différents canaux de désexcitation se manifeste par l’apparition d’ar-
borescences représentant les voies de désexcitation disponibles pour les noyaux successifs depuis
le noyau composé super-lourd jusqu’au résidu final. Par exemple, avec Kewpie2, la modélisation
de la cascade est effectuée en retenant comme voies de désexcitation pour chaque noyau de la
cascade : le canal de fission et les canaux d’évaporation de neutron et de proton, voir le schéma
de gauche de la figure 4.2. De ce fait, grâce à ces voies alternatives à la fission, les valeurs des
observables et des grandeurs physiques associées augmentent par rapport au cas de figure où seule
la fission est possible.

Le processus de fission est le mode principal de désexcitation des noyaux super-lourds quand
l’énergie d’excitation du noyau composé initial est E∗

0 = 70 MeV. Cependant, parmi les autres
modes de désexcitation, un mode particulier se distingue : l’évaporation de neutrons. En effet,
pour des énergies d’excitation inférieures à 100 MeV, on peut alors envisager la compétition entre
les deux modes dominants : la fission et l’évaporation de neutrons. L’arborescence devient dans
ce cas une simple châıne de désexcitation isotopique, voir le schéma de droite de la figure 4.2.
La compétition entre fission et évaporation de neutrons permet donc, pour chaque isotope de la
châıne, en évacuant une partie de l’énergie d’excitation, de stabiliser le système, via cette châıne.
En effet, à l’exception du dernier isotope qui ne peut que fissionner, le noyau composé et les autres
isotopes de cette châıne peuvent soit émettre un neutron soit fissionner.

Dans le but de reproduire les valeurs des observables P (tfiss ≥ 10−18s) ' 10% et Psurv = 0 une
première approche consiste à utiliser les différentes tables de données. Cette première approche
permet par la même occasion de tester ces tables. Par exemple, on peut utiliser des tables comme
celles de Koura [76, 77] afin d’étudier la compétition entre fission et évaporation de neutrons d’une
cascade de désexcitation isotopique à partir du noyau composé Z = 124 et A0 = 308. On a alors
à partir de ces tables les valeurs suivantes :

Ai 308 307 306 305 304 303 302 301 300 299
Bn,i (MeV) 7.97 6.42 8.14 6.68 8.34 6.83 9.00 7.34 9,02 7,60

|∆Eshell|i (MeV) 10.55 10.43 10.38 10.30 10.20 10.13 10.08 9.56 9.21 8.88

Avec cet exemple, on remarque que les valeurs des barrières d’évaporation de neutron Bn,i sont
de l’ordre de 6, 7 ou 8 MeV et que les corrections d’énergie de couches des différents isotopes de
la cascade sont proches de |∆Eshell|i ' 10 MeV.

De manière générale, les différentes données tabulées sont donc réinjectées dans les codes de
cascades de désexcitation, comme ceux associés aux schémas de la figure 4.2. En procédant ainsi,
les différentes approches aboutissent à des valeurs de P (tfiss ≥ 10−18s) inférieures de plusieurs
ordres de grandeurs aux valeurs attendues pour avoir compatibilité avec les valeurs expérimentales.

Comme la première approche s’avère infructueuse, une deuxième approche consiste à prendre
le problème du point de vue opposé. Cette fois, on part des valeurs des observables Psurv = 0 et
P (tfiss ≥ 10−18s) ' 10%. Cette approche est difficile car, avec des énergies d’excitation de 70 ou
80 MeV, la châıne isotopique peut alors comporter huit ou neuf isotopes successifs à partir du
noyau composé super-lourd. Il est donc impossible d’accéder aux valeurs des barrières de fission des
différents noyaux avec uniquement les deux observables P (tfiss ≥ 10−18s) et Psurv. Le nombre d’ob-
servables n’étant pas assez important pour déterminer de manière univoque toutes les grandeurs
physiques de la cascade de désexcitation, la résolution mathématique exacte est inenvisageable.
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Pour contourner ce problème, différentes hypothèses sont envisagées afin de modéliser l’évolution
globale des corrections d’énergie de couches sur l’ensemble de la cascade de désexcitation.

Par l’intermédiaire des mêmes codes de cascades de désexcitation que ceux utilisés dans la
première approche, on détermine alors les valeurs homologues des valeurs issues des tables. Les
valeurs issues de cette deuxième approche sont alors très différentes des valeurs tabulées. Ainsi,
pour les corrections d’effets de couches |∆Eshell|i des différents isotopes i de la cascade, les valeurs
obtenues sont largement supérieures à la valeur typique |∆Eshell|i ' 10 MeV issues des tables de
Koura.

Les modélisations à partir des tables de données et des valeurs des observables comportant
encore des zones d’ombres, afin de comprendre la dynamique de désexcitation de manière globale,
on se tourne alors vers des modèles académiques.

4.1.2 Etude à l’aide de modèles académiques

L’approche quantitative de la désexcitation des noyaux super-lourds n’étant pas envisageable,
on se tourne donc vers des modèles académiques afin d’apporter des informations sur la fusion-
fission des noyaux super-lourds. On considère alors trois types de modèles académiques.

Dans le premier modèle académique, on suppose que la fission thermique est la seule voie
de désexcitation possible à l’issue de l’étape de formation du noyau composé. La désexcitation
des noyaux super-lourds peut alors être étudiée en s’intéressant au temps de fission moyen τfiss
du noyau composé car cette grandeur physique constitue une mesure de la stabilité des noyaux
super-lourds. Afin d’estimer ce temps de fission moyen et les grandeurs associées on introduit
alors différents outils. Le temps de fission moyen est donc relié au temps moyen de premier passage
MFPT , au temps de relaxation non linéaire NLRT et au temps du point selle au point de scission
τsd→s. On peut alors étudier l’influence de la fission thermique comme seul mode de désexcitation
sur le temps de fission moyen τfiss.

Dans le deuxième modèle académique, on envisage la compétition entre la fission thermique
et l’évaporation de neutrons avec une barrière de fission constante. Pour des raisons pratiques,
le traitement usuel de type Langevin est alors écarté au profit des équations mâıtresses de type
Bateman.

Dans le troisième modèle, en utilisant à nouveau les équations de Bateman, on étudie la prise
en compte des corrections d’effets de couches sur cette compétition entre la fission thermique et
l’évaporation de neutrons en considérant deux variantes (une description intuitive et la prescription
d’Ignatyuk). Pour chacune de ces deux variantes, on considère que ces corrections d’énergies de
couches sont les mêmes pour tous les isotopes de la cascade.

Pour les deuxième et troisième modèles académiques, on peut alors déterminer dans un pre-
mier temps les populations Ps(t) des différents noyaux, c’est-à-dire les probabilités d’existence des
ces différents noyaux en fonction du temps. A partir de la population totale P (t) on peut alors
accéder à probabilité de survie Psurv. Dans un deuxième temps, les populations étant les grandeurs
physiques intermédiaires à partir desquelles toutes les autres grandeurs physiques sont définies,
on peut alors déterminer : le temps de fission moyen τfiss ainsi que le taux de fission λfiss, la
probabilité P (tfiss ≥ 10−18s) caractérisant l’existence d’événements de fission au delà de 10−18s
et la multiplicité de neutrons de préscission Nsimple.

Avant de passer à l’étude proprement dite des modèles académiques, on attire l’attention sur
un point important. Un modèle académique est un outil de compréhension afin de déterminer les
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paramètres pertinents d’un problème. Certains choix sont donc arbitraires et ne se réfèrent pas
forcément à une réalité physique. Il est donc utopique de vouloir reproduire quantitativement des
données expérimentales à partir de tels modèles.

4.2 La fission comme seule voie de désexcitation

En pratique l’hypothèse qui consiste à ne retenir que la fission en tant que processus de
désexcitation du noyau composé est valide pour la fission froide avec de faibles énergies d’ex-
citation des deux fragments de fission inférieures ou égales à typiquement 10 MeV [78]. Dans
cette partie, on utilise ce modèle académique pour étudier le lien entre la désexcitation par fission
thermique et le temps de fission moyen τfiss.

Pour évaluer le temps de fission moyen, on utilise différents outils avec différents domaines
de validité, qui présentent des avantages et des inconvénients [79, 80]. Par exemple, le taux de
Kramers λKfiss est utilisable uniquement pour les basses températures par rapport à la barrière
de fission mais peut être employé pour décrire la fission thermique seule ou sa compétition avec
l’évaporation de neutrons.

Le temps moyen de premier passage MFPT , le temps de relaxation non linéaire NLRT et
le temps du point selle au point de scission τsd→s n’ont pas de contraintes de température mais
leurs définitions sont analytiques uniquement dans le régime sur-critique. En outre, ces temps
caractéristiques ne sont pas généralisables à l’étude de la compétition entre fission et évaporation
de neutrons.

4.2.1 Outils pour évaluer le temps de fission moyen

Taux de fission λKfiss et temps de fission τKfiss de Kramers

Pour décrire le processus de fission, en première approche, on utilise le taux stationnaire de
fission de Kramers λKfiss. Cette approche stationnaire est valide quand l’énergie thermique est
petite devant la barrière de fission d’où T < Bf et pour des valeurs de β/(2ωsd) proches de l’unité
jusqu’à des valeurs très supérieures. Ce taux est aussi appelé taux de fuite car il est relié à la
probabilité de présence par unité de temps du noyau composé dans l’état fondamental, assimilé
à un puits de potentiel métastable thermalisé. Ce taux de fission, correspondant à la largeur de
fission ΓK

f , s’écrit [33] :

λKfiss = ΓK
f =

ωgd

2π

(√
1 + (β/(2ωsd))

2 − β/(2ωsd)

)
e−Bf/T , (4.1)

avec ωgd et ωsd respectivement les pulsations harmoniques des potentiels quadratiques osculateurs
dans l’état fondamental et au niveau de la selle de la barrière de fission Bf . T est la température
du bain thermique et β le coefficient de friction réduit. En outre, dans le régime suramorti [7, 90],
correspondant à la limite de grande viscosité où β/(2ωsd) >> 1, on aboutit à

λKfiss = ΓK
f =

ωgdωsd

2πβ
e−Bf/T . (4.2)

Par exemple, pour des valeurs de β/(2ωsd) égales à 1.44 et 2.0 il n’y a alors plus que respectivement
10% et 5% d’écart entre entre (4.1) et (4.2). Le taux de fission stationnaire de Kramers λKfiss est
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par définition l’inverse du temps caractéristique de fission de Kramers τKfiss

τKfiss =
1

λKfiss
. (4.3)

Par exemple, avec les valeurs β/(2ωsd) ' 1.5 et T/B ' 0.5 on a alors τKfiss ' 10−20s.

Dans le modèle de Kramers, l’existence d’un état transitoire avant l’établissement du régime
stationnaire où le noyau est thermalisé n’est pas pris en compte. Le temps caractéristique de cet
état transitoire est le temps de relaxation nucléaire τr.

Temps de relaxation nucléaire τr

La valeur du temps de relaxation nucléaire τr dépend de l’état initial de thermalisation du
noyau. En effet, quand le noyau peut être initialement considéré comme froid, il existe un régime
de relaxation nucléaire, correspondant au processus transitoire de thermalisation de la distribution
des déformations de ce noyau. De plus, le temps caractéristique τr de ce régime est généralement
du même ordre de grandeur que celui de l’évaporation des particules légères. [74, 79, 81]. Il n’existe
pas de formule analytique générale pour τr cependant on peut définir des expressions valables dans
les cas particuliers des régimes sur-amorti β/(2ωgd) >> 1 et sous-amorti β/(2ωgd) << 1, avec ωgd

la pulsation de l’oscillateur dans l’état fondamental [82, 83] :

τr =
β

2ω2
gd

ln

(
10Bf

T

)
si

β

2ωgd

>> 1 τr =
1

β
ln

(
10Bf

T

)
si

β

2ωgd

<< 1. (4.4)

Dans la suite de ce chapitre, on considère que ωgd = ωsd = ω.

Dans le cas de la fusion-fission des noyaux super-lourds, ces noyaux composés chauds sont
formés par diffusion par-dessus une barrière et peuvent être considérés comme thermalisés. De ce
fait, le temps de relaxation nucléaire pour les noyaux super-lourds est considéré comme nul.

Afin de montrer que pour les noyaux super-lourds le temps de relaxation nucléaire peut être
écarté, on se place dans une situation où ce temps est maximisé par rapport au cas des noyaux
super-lourds car on considère des noyaux froids pour lesquels la condition initiale de thermali-
sation est de type Dirac c’est-à-dire piquée au fond du puits. Dans ce cas la formule (4.4) est
valide. En utilisant (4.4) avec β/(2ω) = 0.66 ou β/(2ω) = 1.5, ~ω = 1 MeV et T/Bf = 0.5, on
estime alors que le temps de relaxation nucléaire τr est de l’ordre de 10−21s. D’autre part, dans
les mêmes conditions, avec une énergie d’excitation du noyau composé de 70 MeV et une barrière
d’évaporation de neutron Bn = 6 MeV on détermine à l’aide de (4.13) ou de (4.32) que la largeur
d’évaporation de neutron associée au noyau composé est de l’ordre de Γn,0 ' 1020s−1. De ce fait,
τr est petit devant la largeur d’évaporation de neutron d’où τrΓn,0 << 1. On peut donc écarter le
temps de relaxation nucléaire pour les noyaux composés super-lourds.

Dans la suite de l’étude, on considère donc pour les noyaux super-lourds que

τSHE
r ' 0. (4.5)

Cependant, τr est gardé dans les définitions des grandeurs caractéristiques de cette partie car ce
terme peut être pertinent pour d’autres domaines que celui qui nous intéresse.
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Temps moyen de premier passage MFPT

Le temps moyen de premier passage MFPT , � Mean First Passage Time �, est le temps
nécessaire pour franchir la barrière de potentiel depuis une condition initiale en amont du point
selle jusqu’au point de scission, considéré comme une frontière absorbante [84]. On a de ce fait
qi < qsd < qs. Une expression analytique du MFPT pour β/(2ω) � 1 est alors

MFPT [qi → qs] =
mβ

T

∫ qs

qi

eV (u)/Tdu

∫ u

−∞
e−V (v)/Tdv, (4.6)

avec, β le coefficient de friction réduit, m l’inertie et T la température.
Ce temps caractéristique est le plus intuitif pour comprendre la fission car il n’inclut pas de

courant de retour au point de scission. On l’utilise donc pour définir le temps de fission moyen
quand la fission est le seul mode de désexcitation.

Temps de passage moyen MPT et temps de relaxation non linéaire NLRT

Le temps moyen de passage MPT � Mean Passage Time � correspond au temps moyen du
noyau composé dans le puits de potentiel associé à l’état fondamental avant qu’il ne fissionne.

MPT [qi → qsd] =

∫ +∞

0

P (t; qsd, qi)dt. (4.7)

De plus, si les conditions initiale et asymptotique sur la probabilité de présence vérifient respec-
tivement P (t = 0; qsd, qi) = 1 et P (t→ +∞; qsd, qi) = 0, le MPT est alors équivalent au temps de
relaxation non linéaire NLRT , � Non Linear Relaxation Time �. Une expression analytique du
temps de relaxation non linéaire pour β/(2ω) � 1 est

NLRT [qi → qsd] =
mβ

T

(∫ qsd

qi

eV (u)/Tdu

∫ u

−∞
e−V (v)/Tdv +

∫ qs

qsd

eV (u)/Tdu

∫ qsd

−∞
e−V (v)/Tdv

)
.

(4.8)
Pour prendre en compte le temps de relaxation nucléaire τr de manière simple on peut utiliser
une largeur de fission de la forme Γ = h(t − τr)Γ∞, avec h la distribution de Heaviside et Γ∞ le
taux du régime stationnaire, c’est-à-dire la probabilité de fission par unité de temps du régime
asymptotique [79, 80]. Le NLRT s’écrit donc de manière générale

NLRT [qi → qsd] = τr +
1

Γ∞
. (4.9)

Dans le cas de la fusion-fission des noyaux super-lourds le temps de relaxation nucléaire τr peut
être négligé dans l’équation (4.9).

Le temps du point selle au point de scission

Le temps de descente du point selle au point de scission peut être relié auMFPT et au NLRT .
Plus précisément, d’après les considérations des deux paragraphes précédents τsd→s, le temps du
point selle qsd au point de scission qs, peut être défini par

τsd→s =MFPT [qi → qs]−NLRT [qi → qsd]. (4.10)

Par exemple, pour les noyaux de l’élément plomb, le temps τsd→s est petit. Dans ce cas de figure, il
peut être négligé en première approche. Cette approximation n’est plus possible avec des noyaux
super-lourds pour lesquels τsd→s peut devenir plus grand (car le point selle et le point de scission
sont alors beaucoup plus éloignés) et ainsi être comparables aux autres temps caractéristiques.
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4.2.2 Estimation du temps de fission moyen d’un noyau super-lourd

Dans ce cadre, le temps de fission peut alors être défini par :

τfiss =MFPT [qi → qs] = NLRT [qi → qsd] + τsd→s = τr +
1

Γ∞
+ τsd→s. (4.11)

De plus, si la température vérifie T < Bf alors Γ∞ ' ΓK
f . Dans ce cas, l’équation (4.11) est donc

valide pour la fission pure avec des températures basses et une friction moyenne ou importante.
En outre, pour la fusion-fission des noyaux super-lourds le temps de relaxation nucléaire n’est pas
pris en compte, ces noyaux chauds étant thermalisés : τSHE

r ' 0. De plus, avec les valeurs usuelles,
β/(2ω) = 1.5 et T/B = 0.5 on a NLRT [qi → qsd] = 1/ΓK

f ' 10−20s. Le temps de descente du
point selle consécutif à l’état fondamental jusqu’au point de scission τsd→s doit donc être important
si on veut retrouver des valeurs de temps de fission τfiss de l’ordre de 10−18s. Pour accéder à de
telles valeurs, la partie de la courbe V (q) entre le point selle est le point de scission doit a priori
comporter un puits isomérique, voir partie 5.1.2.

La fission thermique n’étant pas le seul mode de désexcitation, un traitement plus complet
doit tenir compte de la compétition entre la fission thermique et l’évaporation de neutrons.

4.3 Compétition entre fission et évaporation de neutrons

4.3.1 Domaine de validité du modèle

Le début de cette étude avec la simple barrière de potentiel est réalisé dans [85]. Dans cette par-
tie du chapitre, on étudie l’évolution dynamique du noyau chaud composé quand il y a compétition
entre deux voies de désexcitation, la fission thermique et l’évaporation de neutrons [86, 87]. Une
des conséquences de la compétition entre ces deux processus est l’existence d’une châıne d’iso-
topes qui émettent successivement un neutron avant que le dernier des isotopes de la châıne ne
fissionne, voir le graphique de droite de la figure 4.2. Pour décrire l’évolution de cette châıne
de désexcitation, on utilise un modèle hybride alliant les deux aspects dynamique et statistique.
L’équation de Langevin n’étant pas viable compte tenu des temps caractéristiques de fission tfiss
qui peuvent être de l’ordre de 10−18s et de la statistique qu’il faut accumuler dans ce type d’ap-
proche. On se base alors sur les équations mâıtresses de type de Bateman et des outils statistiques.
De plus, la résolution du système d’équations différentielles associé s’appuie sur les transformées
de Laplace.

Le choix de la fission et de l’évaporation de neutrons comme principaux canaux pour décrire la
cascade de désintégration du noyau composé est une hypothèse réaliste. En effet, pour une énergie
d’excitation de l’isotope initial vérifiant E∗

0 ≤ 100 MeV, les différentes voies de désexcitations
sont la fission, l’évaporation de particules légères, neutrons, protons, particules α ou l’émission de
photon γ. Le choix des neutrons comme candidats peut se justifier par le fait que, contrairement
aux protons et aux particules α, les neutrons ne sont pas sensibles à la barrière coulombienne. De
plus, comme les photons γ emportent peu d’énergie lors de leur émission, on peut en première
approximation négliger l’émission de ces photons. En outre, expérimentalement on constate que
pour la gamme d’énergie considérée [7], il y a en début de châıne de désexcitation, un à deux
ordres de grandeur entre le taux d’émission de neutrons et les taux d’émission de protons ou de
photons γ.
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En pratique ce cadre d’étude où on envisage la compétition entre la fission thermique et
l’évaporation de neutrons est donc valide pour le début de la châıne de désintégration, par contre
il n’est plus vérifié rigoureusement pour la fin de la châıne car par exemple les processus de
désexcitation par émission de photons γ ne sont alors plus négligeables. Ces derniers emportant
avec eux le peu d’énergie d’excitation encore présente à ce stade de la cascade de désexcitation,
la fission thermique n’est alors plus possible.

Dans la suite de ce paragraphe 4.3, on considère le cas de figure où la barrière de fission Bf

est constante avant d’envisager au paragraphe 4.4 la prise en compte des corrections d’effets de
couches ∆Eshell.

4.3.2 Outils pour évaluer l’évaporation de neutrons et la fission

Les outils pour évaluer la fission et l’évaporation de neutrons sont de nature statistique [86]. On
utilise notamment les largeurs de fission et d’évaporation, grandeurs correspondant respectivement
aux probabilités de transition par unité de temps du processus de fission et d’évaporation de
neutron. Par hypothèse, ces grandeurs sont considérées comme indépendantes du temps mais
varient en fonction de l’isotope de la cascade de désexcitation.

Dans ce deuxième modèle académique on considère les barrières de fission et les barrières
d’évaporation de neutron constantes tout au long de la châıne de désexcitation. Ce choix est
arbitraire et ne s’appuie pas sur la réalité physique.

Energies d’excitation des isotopes et exemples académiques étudiés

Le noyau composé, premier isotope de la cascade de désexcitation, possède une énergie d’exci-
tation E∗

0 et un nombre de masse correspondant A0. L’isotope i de cette même cascade est associé à
l’énergie d’excitation E∗

i et au nombre de masse Ai = A−i. De plus, E∗
i+1 = E∗

i −(Bn,i+2Ti) car on
suppose que le neutron émis par l’isotope i emporte avec lui l’énergie de la barrière d’évaporation
Bn,i et l’énergie cinétique moyenne 2Ti (par hypothèse, on assimile alors l’énergie cinétique à
l’énergie cinétique moyenne) donc :

E∗
i+1 = E∗

i −
(
Bn,i + 2

√
E∗

i /ai

)
, (4.12)

avec ai le paramètre de densité de niveau de l’isotope i dont une expression simplifiée peut être
déterminée à partir du modèle de Fermi. On a alors E∗

i = aiT
2
i , avec Ti la température associée.

L’estimation du paramètre de densité de niveau ai n’est pas simple dans le cas général [88, 89].
On utilise donc différentes expressions simplifiées de ai, en MeV −1 : Ai/8 correspond à la valeur
moyenne extrapolée à partir de résultats expérimentaux obtenus avec les atomes froids et Ai/10,
Ai/12 sont issues de calculs de type champ moyen [7]. Dans cette partie, le nombre de masse du
premier isotope est A0 = 308, la barrière d’évaporation Bn,i peut prendre différentes valeurs entre
5MeV et 7MeV . De plus le coefficient de friction réduit est β = 2.1021s−1 ou β = 5.1021s−1, ce
qui correspond respectivement à β/(2ω) = 0.66 ou β/(2ω) = 1.65 avec ~ω = 1.0MeV .

L’émission de neutrons est un phénomène aléatoire qui se produit en continu jusqu’à la fission
du dernier isotope de la châıne. L’énergie d’excitation du dernier isotope E∗

smax
devient alors

inférieure à l’énergie de liaison Bn,i correspondant à la barrière d’évaporation de neutron. La
contrainte E∗

smax
< Bn,i, détermine donc le nombre maximal de neutrons émis quand toute la

cascade de désexcitation est parcourue pour aboutir à la fission du dernier isotope, numéroté lui
aussi par smax. Dans cette étude smax est égal à 8 neutrons pour E∗

0 = 70 MeV ou 9 neutrons pour



62 CHAPITRE 4. NOYAU SUPER-LOURD ET SIMPLE BARRIÈRE DE FISSION

E∗
0 = 80 MeV, voir figure 4.3. Avec l’énergie d’excitation du noyau composé on peut déterminer

les énergies d’excitation des isotopes de la châıne de désexcitation en fonction de ai.
Par exemple, avec E∗

0 = 70 MeV, A0 = 308 et Bn,i = 6 MeV on a en MeV :

a0 smax E∗
0 E∗

1 E∗
2 E∗

3 E∗
4 E∗

5 E∗
6 E∗

7 E∗
8

A0/8 8 70.0 61.3 52.8 44.4 36.3 28.3 20.6 13.1 5.92
A0/10 8 70.0 61.0 52.2 43.6 35.2 27.0 19.1 11.5 4.29
A0/12 8 70.0 60.7 51.6 42.8 34.2 25.9 17.8 10.2 2.88

Avec E∗
0 = 80 MeV, A0 = 308 et Bn,i = 6 MeV on obtient en MeV :
a0 smax E∗

0 E∗
1 E∗

2 E∗
3 E∗

4 E∗
5 E∗

6 E∗
7 E∗

8 E∗
9

A0/10 9 80.0 70.8 61.7 52.9 44.3 35.9 27.7 19.8 12.2 4.88

Largeur d’évaporation de neutron Γn,i de l’isotope i

La largeur d’évaporation de neutron est définie à partir du formalisme de Weisskopf. Pour
chaque isotope i de la châıne de désexcitation, de nombre de masse Ai, on peut définir E∗

i l’énergie
d’excitation, Bn,i la barrière d’évaporation, εmax

i = E∗
i − Bn,i et µi = (Ai − 1)mn/Ai la masse

réduite du neutron émis avec mn = 931, 5 MeV.c−2. Le neutron est un fermion de spin 1
2
. La

largeur d’évaporation de neutron associée est en s−1 [86]

ΓW
n,i =

2µi

π2~3ρ(E∗
i )

∫ εmax
i

0

σinv(ε)ερ(ε
max
i − ε, ai)dε, (4.13)

avec la densité de niveau ρ(Ei, ai) et la section efficace σinv(ε)

ρ(Ei, ai) =
g
√
π

48a
1/4
i E∗

i
5/4
e2
√

aiE∗
i σinv(ε) = αn

(
1 +

βn
ε

)
πR2

n. (4.14)

Dans la densité de niveau, exprimée enMeV −1, ai est le paramètre de densité de niveau et g = 4 la
dégénérescence totale spin-isospin. La section efficace inverse, c’est-à-dire de capture est exprimée
en fm2, avec les variables αn(Ai) = 0.76 + 1.93A

−1/3
i , βn(Ai) = (1.66A

−2/3
i − 0.050)/αn(Ai) et le

rayon du noyau Rn(Ai) = 1.70A
1/3
i , lui-même exprimé en fm.

A partir de l’expression (4.13), on peut déterminer une formule analytique pour ΓW
n,i en estimant

une forme approchée de l’intégrale [85]. On obtient alors

Γn,i =
2µi

π~3
E

∗5/4
i αnR

2
n

(εmax
i )1/4

e2
√

aiεmax
i −2

√
aiE∗

i

[
εmax
i + βn

−5/4 +
√
aiεmax

i

− εmax
i

−1/4 +
√
aiεmax

i

]
. (4.15)

Cette largeur est considérée comme nulle pour E∗
i ≤ Bn. En outre, comme E∗

smax
< Bn le dernier

isotope ne peut émettre de neutron, d’où Γn,smax = 0. C’est cette formule (4.15) que nous utilisons
dans la suite de l’étude avec barrière de fission Bf constante.

Largeur de fission Γf,i de l’isotope i

La probabilité de transition par unité de temps associée c’est-à-dire la largeur de fission, ex-
primée en s−1, est basée tout d’abord sur le formalisme de Bohr-Wheeler

ΓBW
f,i =

1

2π~ρ(E∗
i )

∫ E∗
i −Bf

0

ρ(E∗
i −Bf − ε, ai)dε. (4.16)
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En utilisant à nouveau la méthode utilisée dans [85] afin d’estimer une forme approchée de
l’intégrale (4.16), on peut alors déterminer une formule analytique pour ΓBW

f,i

ΓBW
f,i =

1

2π~
(E∗

i )
5/4

a
1/2
i (E∗

i −Bf )3/4
e2
√

ai(E∗
i −Bf )−2

√
aiE∗

i , (4.17)

Cette largeur est considérée comme nulle pour E∗
i ≤ Bf . En outre, la largeur de fission doit tenir

compte de la viscosité via la friction dans le noyau. Il faut donc multiplier ΓBW
f,i de l’équation

(4.17) par le facteur de correction de Kramers-Strutinsky ~ωK/Ti [91]. On aboutit donc à

Γf,i = ΓBW
f,i

~ωK

Ti
=
ωK

2π

(E∗
i )

3/4

(E∗
i −Bf )3/4

e2
√

ai(E∗
i −Bf )−2

√
aiE∗

i , (4.18)

avec ωK =
√
ω2 + β2/4−β/2 la fréquence de Kramers, Ti =

√
E∗

i /ai la température de l’isotope i
et β le coefficient de friction réduit. Dans la suite de l’étude avec barrière de fission Bf constante,
c’est cette largeur de fission corrigée (4.18) qui est désormais utilisée.

4.3.3 Grandeurs physiques dans le cas de la simple barrière

Dans le but de comprendre les résultats expérimentaux obtenus au GANIL avec la technique
du blocage cristallin, voir partie 1.1.4, il faut tout d’abord calculer les populations des isotopes
de la châıne de désexcitation avant de déterminer le taux de fission, le temps de fission moyen,
le nombre d’événements normalisés plus long que 10−18s ainsi que la multiplicité de neutrons de
préscission.

Populations des différents isotopes

Les populations correspondent à la répartition des différents isotopes en fonction du temps.
Par définition, les populations sont normalisées et donc identifiables à des probabilités d’existence.
Les conditions initiales sont P0(t = 0) = 1 (existence du noyau composé) et Ps(t = 0) = 0, avec
0 < s ≤ smax. Pour calculer P0(t) et Ps(t) on utilise alors les équations mâıtresses de type Bateman
avec Γs = Γf,s + Γn,s :

dP0(t)

dt
= −Γ0P0(t)

dPs(t)

dt
= Γn,s−1Ps−1(t)− ΓsPs(t). (4.19)

Pour le dernier isotope de la cascade de désexcitation Γn,smax = 0 car il ne peut plus émettre de
neutrons. Par contre, ce dernier isotope peut encore fissionner quand Bn > Bf donc

dPsmax(t)

dt
= −Γf,smaxPsmax(t) + Γn,smax−1Psmax−1(t) si Bn > Bf

dPsmax(t)

dt
= Γn,smax−1Psmax−1(t) si Bn < Bf . (4.20)

Dans ce cas, à partir des transformées et transformées inverses de Laplace, on trouve que les
populations Ps(t), avec 0 ≤ s ≤ smax, sont :

P0(t) = e−Γ0t

Ps(t) =
s−1∏
i=0

Γn,i

s∑
i=0

e−Γit∏s
j=0,j 6=i(Γj − Γi)



64 CHAPITRE 4. NOYAU SUPER-LOURD ET SIMPLE BARRIÈRE DE FISSION

Psmax(t) =
smax−1∏

i=0

Γn,i

smax∑
i=0

e−Γit∏smax

j=0,j 6=i(Γj − Γi)
. (4.21)

On peut alors déterminer la population totale P (t) et la probabilité de survie Psurv du résidu
de fission :

P (t) = Psimple(t) =
smax∑
s=0

Ps(t) lim
t→∞

P (t) = Psurv. (4.22)

Figure 4.3, on observe que pour E∗
0 = 70 MeV, à partir du noyau composé, le nombre d’isotopes

successifs de la cascade de désexcitation (et donc le nombre de neutrons maximum qui peut être
émis) s’élève à smax = 8, tandis que pour E∗

0 = 80 MeV on a smax = 9. La condition Bf = Bn

traduit la forte compétition entre les deux canaux de désexcitation tout au long de la cascade, ce
qui permet d’observer les populations sur des temps relativement longs. Par exemple, à t = 10−18s
on a pour E∗

0 = 70 MeV les isotopes 6 et 7 et pour E∗
0 = 80 MeV on observe les isotopes 7 et 8.
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Figure 4.3: Populations Ps(t) et population totale P (t) = Ptot(t) en fonction du temps t quand
l’énergie d’excitation E∗

0 du noyau composé est 70 MeV ou 80 MeV. Les énergies d’excitations
E∗

i des isotopes successifs des deux cascades de désexcitation sont visibles dans les tableaux de
valeurs de la partie 4.3.2. Pour les deux graphiques on a β/(2ω) = 0.66, A0 = 308, ai = Ai/10,
~ω = 1 MeV et Bf = Bn = 6 MeV . Avec cette dernière condition la largeur de fission du dernier
isotope vérifie Γn,smax = 0. Comme cet isotope ne peut alors plus fissionner la probabilité de survie
du résidu Psurv est non nulle.

A partir des populations Ps(t) des différents noyaux de la cascade et de la population totale
P (t) définies par (4.21) et (4.22), on accède alors aux autres grandeurs physiques : λfiss, τfiss,
Nsimple et P (tfiss ≥ 10−18s). On peut ainsi réaliser une étude variationnelle de ces grandeurs afin
de déterminer les paramètres pertinents qui influent sur ces grandeurs physiques.
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Taux de fission λfiss et temps de fission moyen τfiss

Le taux de fission varie en fonction de la hauteur de barrière de fission Bf par l’intermédiaire
de la largeur de fission Γf,s des isotopes s.

λfiss(t) = − 1

P (t)

dP (t)

dt
=

1

P (t)

smax∑
s=0

Γf,sPs(t), (4.23)

avec la population totale P (t) de la simple barrière et Ps(t) la population de l’isotope s.
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Figure 4.4: Taux de fission λfiss comme fonction du temps t et temps de fission moyen τfiss
comme fonction de Bf/Bn. L’étude variationnelle est effectuée autour des valeurs types E∗

0 = 68
MeV , β/(2ω) = 0.66, A0 = 308, ai = Ai/10, ~ω = 1 MeV et Bn = 6 MeV . Dans chaque
graphique ces valeurs de référence sont associées à la courbe continue simple.

Dans la partie supérieure gauche de la figure 4.4, on observe une décroissance temporelle lente
du taux de fission λfiss correspondant à une lente variation de la population totale P (t) (voir figure
4.3) depuis un temps de l’ordre de 10−21ss jusqu’à un temps de l’ordre de 10−17ss puis une chute
brutale entre 10−16ss et 10−15ss reliée au fait que P (t) devienne constante. On remarque également
que plus la barrière d’évaporation de neutron Bn est petite, plus l’évaporation de neutrons est
favorisée par rapport à la fission et plus λfiss diminue rapidement.
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Le temps de fission moyen τfiss peut être défini par les deux variantes de l’équation (4.24) en
utilisant la formule analytique (4.22) de la population totale P (t) = Psimple(t) :

τfiss = −
∫ tB
tA
tdP (t)

dt
dt

P (tA)− P (tB)
=
tAP (tA)− tBP (tB) +

∫ tB
tA
P (t)dt

P (tA)− P (tB)
. (4.24)

Dans la figure 4.4, les différents courbes des trois graphiques qui représentent le temps de fission
moyen τfiss en fonction de Bf/Bn sont toutes centrées au voisinage de la valeur Bf/Bn ' 1. Ceci
montre que, quand Bf ' Bn indépendamment de leur valeurs, la compétition entre les deux voies
de désexcitation est alors forte sur toute la cascade. Pour Bf ≤ Bn la fusion domine donc si on
augmente Bf alors le temps de fission moyen τfiss augmente. Pour Bf ≥ Bn seuls les premiers
isotopes fisssionnent. Si Bf augmente, il y a de moins en moins d’isotopes qui fissionnent donc
τfiss diminue.

De plus, on remarque dans le graphique supérieur droit la grande sensibilité du modèle par
rapport aux énergies d’excitation E∗

i des isotopes de la cascade. En effet, le chevauchement des
courbes ne respecte pas l’ordre des valeurs de Bn : on s’attendrait plutôt à observer la courbe
Bn = 6 MeV au dessus de la courbe Bn = 7 MeV. Ceci est dû notamment à la modélisation de
l’énergie emportée par l’évaporation d’un neutron à partir d’un isotope i car elle conditionne la
valeur de l’énergie d’excitation E∗

i+1 de l’isotope suivant, voir équation (4.12).
Sur le graphique de la partie inférieure gauche on observe l’influence du coefficient de friction β

qui intervient via le coefficient de Kramers-Strutinsky dans la largeur de fission Γf,i, voir l’équation
(4.18). Plus β est important, plus cette largeur de fission Γf,i est petite et donc plus le temps
de fission moyen τfiss est important car alors la fission est moins favorisée. Cette influence est
uniquement visible pour Bf < Bn c’est-à-dire quand la fission reste prédominante.

Le graphique de la partie inférieure droite met en évidence pour Bf > Bn, donc quand
l’évaporation de neutron est majoritaire, l’influence de la densité de niveau ai sur d’évaporation de
neutron Γn,i, voir l’équation (4.15). Plus ai est important, plus la largeur d’évaporation de neutron
Γn,i diminue. Or, de manière générale, pour le cas de figure Γn,i > Γf,i donc si Γn,i diminue alors
la compétition entre les deux modes de désexcitation est favorisée d’où une augmentation de τfiss.

Multiplicité de neutrons de préscission et nombre d’événements normalisés

Une définition de la multiplicité de neutrons de préscission est donnée dans la référence [87].
Pour utiliser cette dernière, nous devons modifier les notations de [87] car dans ce chapitre le
premier isotope de la châıne est l’isotope 0. Avec la simple barrière on peut écrire :

dP (t)

dt
=
dPsimple(t)

dt
=

smax∑
s=0

dPs(t)

dt
= −

smax∑
s=0

Γf,sPs(t). (4.25)

Par intégration on a donc 1 − P (+∞) =
∑smax

s=0 ps avec ps =
∫ +∞
0

Γf,sPs(t)dt. La multiplicité de
neutrons de préscission est alors :

Nsimple =

∑smax
s=0 s.ps

1− P (+∞)
=

∑smax
s=0 s.ps∑smax
s=0 ps

. (4.26)

La multiplicité de neutrons de préscission Nsimple est inférieure à smax (nombre maximal de neu-
trons évaporables par la châıne de désexcitation) car statistiquement les différentes cascades iso-
topiques n’aboutissent pas toutes jusqu’au dernier isotope, la fission ayant lieu dans ce cas au
niveau d’un isotope situé en amont.
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En outre, par définition, le nombre d’événements normalisés plus longs que 10−18s est

P (tfiss ≥ 10−18s) =
P (10−18s)− P (+∞)

P (0)− P (+∞)
' P (10−18s)− P (10−14s)

P (10−24s)− P (10−14s)
. (4.27)

Le choix du temps 10−18s est motivé par les mesures effectuées au GANIL, voir partie 1.1.4. En
pratique, pour la résolution numérique, 0 est approximé par 10−14s et 10−24s est une valeur pour
laquelle on retrouve les mêmes résultats que pour t→ +∞.
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Figure 4.5: Multiplicité de neutrons de préscission Nsimple et nombre d’événements normalisés
P (tfiss ≥ 10−18s) comme fonctions de Bf/Bn. L’étude variationnelle est effectuée avec les mêmes
valeurs de référence que figure 4.4.

Dans les quatre graphiques de la figure 4.5, on retrouve que la compétition entre la fission
thermique et l’évaporation de neutrons des différents isotopes de la cascade est la plus forte pour
Bf/Bn ' 1.

Dans le graphique supérieur gauche de la figure 4.5, on remarque que la multiplicité de neutrons
de préscission Nsimple est supérieure quand l’énergie d’excitation du noyau composé E∗

0 est de 80
MeV au lieu de 70 MeV. Ceci peut s’expliquer par le fait que la cascade isotopique comporte un
isotope supplémentaire avec E∗

0 = 80 MeV qu’avec 70 MeV, voir figure 4.3, et donc un nombre de
neutrons de préscission émis plus important. De plus le fait que de manière générale Γn,i > Γf,i

permet de comprendre la valeur de la multiplicité de neutrons de préscission Nsimple globalement
assez élevée pour ces deux énergies d’excitation.
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Le graphique supérieur droit met en évidence le fait que P (tfiss ≥ 10−18s), la probabilité
d’événements de fission supérieur à 10−18s, diminue quand l’énergie d’excitation du noyau composé
augmente, avec un maximum de probabilité d’événements pour Bf ' Bn dans les deux cas.

Le graphique inférieur gauche illustre le fait que pour Bf < Bn (cas où le mode de fission
thermique est dominant) on retrouve l’influence du coefficient β : quand β augmente la fission,
même si elle reste prépondérante, est moins favorisée donc P (tfiss ≥ 10−18s) est plus grande.

Le graphique inférieur droit confirme les modifications induites par le paramètre de densité ai
pour Bf < Bn (cas où le mode d’évaporation de neutrons est dominant) : plus ai augmente, plus
la largeur d’évaporation de neutron Γn,i diminue et se rapproche de la valeur de la largeur fission
Γf,i. De ce fait, la compétition entre les deux principales voies de désexcitation est favorisée et
P (tfiss ≥ 10−18s) est plus importante.

Bilan sur l’évolution des grandeurs physiques pour Bf constante

L’évolution des grandeurs physiques, voir figures 4.4 et 4.5, est liée aux valeurs des barrières
de fission Bf et d’évaporation Bn. Suivant les cas de figure, on observe trois régimes :

- Bn � Bf : le mode de désexcitation dominant est la fission.
- Bn ' Bf : la compétition entre les deux modes fission et évaporation de neutrons est forte.
- Bn � Bf : le mode de désexcitation dominant est l’évaporation de neutrons.
Dans le modèle étudié quand Bn � Bf , la fission étant le mode de désexcitation dominant, la

globalité des noyaux fissionnent et peu de neutrons sont évaporés car seul le début de la châıne
de désexcitation est parcouru. La multiplicité de neutrons de préscission Nsimple est alors faible
et le temps de fission moyen τfiss est donc petit. Si Bf augmente, le nombre d’isotopes mis en
jeu dans dans la châıne augmente donc l’évaporation de neutrons est de plus en plus importante
d’où une multiplicité de neutrons de préscission Nsimple ainsi qu’un temps de fission moyen τfiss
croissants. On constate un comportement similaire pour P (tfiss ≥ 10−18s), le nombre d’événements
normalisés plus longs que 10−18s.

Pour Bn ' Bf : τfiss � τKfiss ' 10−20s. Le temps de fission moyen est beaucoup plus grand
que le temps de fission de Kramers, car il y a une forte compétition entre les deux modes de
désexcitation sur la totalité de la châıne. Il en va de même pour Nsimple et P (tfiss ≥ 10−18s).

Au contraire, pour Bn � Bf l’évaporation de neutrons est le mode de désexcitation principal.
Les événements de fission sont donc très peu probables et τfiss redevient faible car seuls les premiers
isotopes peuvent fissionner après avoir évaporé un petit nombre de neutrons, les noyaux ne sont
alors plus assez chauds pour fissionner. De ce fait, la multiplicité de neutrons de préscission Nsimple

diminue. P (tfiss ≥ 10−18s) diminue également pour les mêmes raisons.
Avec le temps de fission moyen τfiss on peut mettre en évidence, quand Bn et Bf sont com-

parables, la grande sensibilité de cette modélisation par rapport à la barrière de fission Bf et par
rapport aux énergies d’excitation E∗

i des isotopes de la châıne. En particulier, pour une barrière
d’évaporation Bn constante, un changement de la valeur de Bf modifie les critères de fission et
joue sur l’aptitude à fissionner du dernier isotope. De plus, une modification de E∗

0 peut impliquer
un changement du nombre total d’isotopes de la châıne en changeant la valeur de smax. Ce type
de comportement peut s’expliquer par le choix de conditions drastiques (de type Heaviside) pour
les possibilités de fission et d’évaporation des différents isotopes. Dans certains cas de figure cela
peut aboutir à des irrégularités non physiques, intrinsèques à la simplicité du modèle. Un traite-
ment numérique avec le programme Kewpie2 [19, 73] prenant en compte la fission et l’évaporation
de neutrons, de protons et de photons confirme ces considérations. Dans ce cadre plus général,
l’évolution des grandeurs physiques est plus lissée qu’avec notre modèle.



4.4. PRISE EN COMPTE DES CORRECTIONS DE COUCHES 69

Le temps de fission moyen τfiss et le nombre d’événements normalisés P (tfiss ≥ 10−18s) sont
également sensibles au coefficient de friction réduit β quand la fission est le mode de désexcitation
dominant et au paramètre de densité de niveau ai quand l’évaporation de neutrons est le mode de
désexcitation majoritaire. β et ai sont des paramètres sensibles pour respectivement les largeurs
de fission Γf,i et d’évaporation Γn,i. Si β augmente alors Γf,i diminue et si ai augmente alors
Γn,i diminue également. La forte compétition entre fission et évaporation de neutrons pouvant se
traduire par Γf,i ' Γn,i, les variations de β et ai optimisent les valeurs des grandeurs physiques
quand les valeurs des deux types de barrières Γf,i et Γn,i sont similaires. Pour maximiser la
compétition entre ces deux types de désexcitation, il faut donc soit diminuer Γn,i quand l’évaporation
de neutrons est le mode de désexcitation dominant en augmentant ai, soit diminuer Γf,i quand la
fission est le mode de désexcitation majoritaire en augmentant β.

L’hypothèse de barrière de fission Bf constante n’est pas physique car elle ne tient pas compte
de la structure des noyaux super-lourds. Avec les deux variantes du modèle académique envisagé
dans la partie suivante, on considère les modifications induites par les corrections d’effets de
couches sur les grandeurs physiques.

4.4 Prise en compte des corrections de couches

Les corrections d’effets de couches sont pour les noyaux super-lourds qui vérifient Z ≥ 110
l’unique source de stabilité car alors la barrière de fission du modèle de la goutte liquide est
nulle. Avec ce type de noyaux, il est donc intéressant d’utiliser un modèle académique incluant
ces corrections d’effets de couches. Pour ce faire, différentes appproches sont possibles. Dans cette
partie on utilise tout d’abord dans la partie 4.4.1 une approche intuitive puis ensuite dans la
partie 4.4.2 la prescription d’Ignatyuk.

4.4.1 Première approche intuitive pour les effets de couches

On détermine respectivement l’énergie des isotopes E∗
i et la largeur d’évaporation Γn,i à partir

des formules (4.12) et (4.15) du paragraphe précédent. La définition du paramètre de densité de
niveau ai reste inchangée par rapport au cas de la barrière de fission Bf constante. On utilise donc
Ai/8, Ai/10 ou Ai/12. Cette première approche consiste à envisager, même si elle est critiquable
[19, 71, 75], une barrière de fission de la forme

BSHE
f,i ' |∆Eshell|i e−E∗

i /Ed , (4.28)

avec |∆Eshell|i la valeur absolue de la correction d’origine quantique de l’énergie de couche de l’iso-
tope i, définie à partir de l’état fondamental. |∆Eshell|i est supposée dans cette étude être la même
pour tous les isotopes i de la châıne. De plus, E∗

i est l’énergie d’excitation de l’isotope i par rapport
au niveau fondamental et Ed = 18, 5 MeV l’énergie de � damping �, paramètre caractéristique
obtenu par extrapolation à partir des noyaux stables. En outre, comme les corrections d’énergie
de couches sont négatives il y a un effet stabilisateur par abaissement des niveaux d’énergie, prin-
cipalement au niveau du fondamental, ce qui implique une augmentation de la barrière de fission.
Pour accéder à la largeur de fission Γf,i incluant le facteur correctif de Kramers-Strutinsky, il faut
remplacer Bf par l’expression (4.18) dans la formule littérale de la largeur de fission.

Avec cette modélisation, il est difficile d’évaluer les valeurs absolues des corrections d’énergie
de couches |∆Eshell|i pour lesquelles la compétition entre fission et évaporation de neutrons est
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maximale. Avec la définition de la barrière de fission (4.28), BSHE
f,i varie en fonction de l’isotope

i de la cascade de désexcitation. De manière générale avec |∆Eshell|i ' 10 MeV (valeur moyenne
issue des tables de Koura), les barrières de fission BSHE

f,i sont inférieures à Bn = 6 MeV, sauf
éventuellement en fin de châıne de désexcitation. La compétition entre la fission et l’évaporation
de neutrons est donc moins forte et c’est la fission qui est favorisée. Ceci induit une diminution plus
importante des populations en fonction du temps par rapport au cas de la barrière de fission Bf

constante car le canal de désexcitation par fission prédomine sur toute la cascade de désexcitation.
Dans la figure 4.6 les populations Pi(t) et la population totale P (t) sont déterminées par

(4.21) et (4.22). On constate alors une décroissance beaucoup plus rapide des populations en
comparaison avec le cas Bf constante. Le graphique supérieur de cette figure peut être comparé
au graphique E∗

0 = 70 MeV de la figure 4.3. Dans le cas présent, la décroissance des populations
étant importante, on ne peut visualiser l’évolution que des populations jusqu’à l’isotope 3. Au
delà il faut regarder le graphique inférieur de la figure 4.6 sur lequel on visualise une décroissance
de la population totale vers 10−19s. La probabilité de survie Psurv est donc faible.
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Figure 4.6: Populations Pi(t) et population totale P (t) = Ptot(t) en fonction du temps t pour
deux échelles différentes afin d’observer tous les isotopes de la cascade avec |∆Eshell|=10 MeV.
Pour les deux graphiques on a E∗

0 = 70 MeV, β/(2ω) = 0.66, A0 = 308, ai = Ai/10, ~ω = 1 MeV
et Bn = 6 MeV . On remarque que Psurv est faible mais pas nulle.

Dans les différents graphiques de la figure 4.7 on remarque que la compétition entre la fission
et l’évaporation de neutrons est maximale (les grandeurs physiques étant alors maximales) pour
des énergies de correction de couches |∆Eshell| ' 10 MeV. On retrouve la valeur moyenne des
corrections d’énergies de couches de la table de Koura. Dans cette étude variationnelle du temps
de fission moyen τfiss les valeurs sont très inférieures à celles observées sur la figure 4.4 pour les trois
graphiques qui concernent le temps de fission moyen τfiss. De plus, les courbes de ces graphiques
ne sont pas forcément centrées car la coordonnée horizontale est |∆Eshell| et pas |∆Eshell|/Bn.
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Dans le graphique supérieur gauche de la figure 4.7, on retrouve le fait que le temps de fission
moyen τfiss diminue quand l’énergie d’excitation du noyau composé E∗

0 augmente.

Avec le graphique supérieur droit de cette même figure, on constate que le temps de fission
moyen τfiss augmente quand Bn diminue car alors le processus d’évaporation de neutrons est moins
prépondérant devant le processus de fission : la compétition entre ces deux canaux de désexcitation
redevient donc plus forte car alors la prédominance du canal de fission est contrebalancée.

De manière générale on peut montrer que Γf,i diminue quand β augmente et que Γf,i augmente
quand ai diminue. De plus, une compétition forte entre les deux canaux de désexcitation peut se
traduire par Γn,i ' Γf,i. On peut utiliser ces considérations pour comparer les deux graphiques
inférieurs de la figure 4.7 avec leurs homologues de la figure 4.4. Sur les graphiques de gauche
des deux figures on constate que la compétition entre les deux canaux de désexcitation augmente
quand β augmente, de ce fait τfiss est plus grand. En revanche pour les graphiques de droite de ces
deux figures l’influence du paramètre de densité de niveau ai est inversée : dans le cas présent on
peut vérifier que, en général Γn,i ≤ Γf,i, contrairement au cas Bf constante pour lequel de manière
générale Γn,i > Γf,i. Avec la prise en compte des corrections d’effets de couches, la compétition
entre fission et évaporation de neutrons est alors favorisée quand Γn,i augmente c’est-à-dire quand
ai décrôıt.
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Figure 4.7: Temps de fission moyen τfiss comme fonction de |∆Eshell|. L’étude variationnelle est
effectuée autour des valeurs types A0 = 308, E∗

0 = 70 MeV , β/(2ω) = 0.66, ai = Ai/10, ~ω = 1
MeV et Bn = 6 MeV .
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Dans le graphique supérieur gauche de la figure 4.8, on confirme que la multiplicité de neutrons
de préscission Nsimple augmente avec l’énergie d’excitation du premier isotope E∗

0 et que par la
même occasion dans le graphique supérieur droit le nombre d’événements normalisés supérieurs à
10−18s c’est-à-dire P (tfiss ≥ 10−18s) diminue (comme dans le cas Bf constante : voir les graphiques
supérieurs gauche et droit de la figure 4.5).

De plus on peut comparer les graphiques inférieurs gauche et droit des figures 4.5 et 4.8. On
retrouve alors pour le graphique de gauche le fait qu’une augmentation de β, le coefficient de
friction réduit, favorise la forte compétition entre la fission et l’évaporation de neutrons (comme
dans le cas Bf constante). De plus, dans le graphique de droite, une diminution du paramètre
de densité de niveau ai optimise la compétition entre la fission et l’évaporation de neutrons (con-
trairement au cas Bf constante). En effet, pour le modèle académique de cette partie de manière
générale Γn,i ≤ Γf,i (contrairement au cas Bf constante où généralement Γn,i > Γf,i). Il faut donc
ici augmenter Γn,i en diminuant ai.

En outre, en accord avec l’évolution des populations dont la décroissance est rapide, voir figure
4.6, on retrouve le fait que la multiplicité de neutrons de préscission Nsimple est beaucoup plus
petite que dans le cas Bf constante.
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Figure 4.8: Multiplicité de neutrons de préscission Nsimple et nombre d’événements normalisés
P (tfiss ≥ 10−18s) comme fonctions de |∆Eshell|. L’étude variationnelle est réalisée autour des
valeurs types A0 = 308, E∗

0 = 70 MeV , β/(2ω) = 0.66, ai = Ai/10, ~ω = 1 MeV et Bn = 6 MeV .
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L’étude de ce modèle académique, où les corrections d’effets de couches sont prises en compte
de manière simple, permet de confirmer les tendances générales d’évolution déjà présentes dans
le modèle académique avec barrière de fission constante. Cependant, les valeurs des grandeurs
physiques τfiss, Nsimple et P (tfiss ≥ 10−18s) représentées dans les figures 4.7 et 4.8 sont inférieures
aux valeurs attendues pour avoir compatibilité avec les résultats des mesures effectuées au GANIL
par blocage cristallin. En particulier, la valeur de P (tfiss ≥ 10−18s) est inférieure de plusieurs
ordres de grandeurs aux 10% mesurés.

La modélisation de la barrière de fission BSHE
f,i définie par l’équation (4.28) constitue une ap-

proximation importante valide si E∗
i � Bf et si E∗

i � |∆Eshell| [19], ce qui n’est pas réaliste pour
les derniers isotopes de la châıne de désexcitation.

En outre, on doit tenir compte des changements induits par les corrections d’effets de couches
sur le paramètre de densité de niveau ai et sur les énergies d’excitation E

∗
i des différents isotopes

i de la cascade de désexcitation. Ces modifications nécessitent une redéfinition des largeurs de
fission Γf,i et d’évaporation de neutrons Γn,i. C’est pourquoi nous utilisons dans la partie suivante
une approche plus élaborée pour tenir compte des corrections d’effets de couches : la prescription
d’Ignatyuk.

4.4.2 Traitement de type Ignatyuk des effets de couches

Cette approche consiste à considérer que BSHE
f,i ' |∆Eshell|i car la correction d’effets de couches

est définie par rapport à l’état fondamental. Par contre, l’abaissement en énergie dû aux effets de
couches au niveau du point selle est négligé. On considère donc qu’au point selle |∆Eshell|i = 0.
Avec ce type de modélisation, le paramètre de densité de niveau ai, l’énergie des isotopes E∗

i , les
largeurs d’évaporation Γn,i et de fission Γf,i sont modifiés par ces corrections d’effets de couches.

En effet, le paramètre de densité de niveau des noyaux super-lourds est soumis à des irrégularités
à cause des structures de couches nucléaires [19]. Une description traduisant le comportement
physique de ce paramètre doit inclure cette dépendance d’où le choix de la définition d’Ignatyuk
pour laquelle

agdi (E∗
i ) = ai

[
1−

(
1− e−E∗

i /Ed
) |∆Eshell|i

E∗
i

]
, (4.29)

avec ai le paramètre de densité de niveau du paragraphe précédent. Au contraire, on considère
que le paramètre de densité de niveau au point selle n’est pas modifié et vérifie donc asdi = ai.

L’énergie d’excitation de l’isotope i, définie à partir du niveau fondamental, est alors

E∗
i+1 = E∗

i −
(
Bn,i + 2

√
E∗

i /a
gd
i

)
. (4.30)

De plus, la largeur d’évaporation Γn,i prend la forme

Γn,i =
2µi

π2~3ρgd(E∗
i , a

gd
i )

∫ εmax
i

0

σinv(ε)ερgd(ε
max
i − ε, agdi+1)dε, (4.31)

avec εmax
i = E∗

i − Bn,i. A partir de l’expression (4.31), on peut ainsi déterminer une formule
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analytique pour Γn,i en utilisant la même méthode que dans le paragraphe précédent.

Γn,i =
2µi

π~3
(agdi )1/4E

∗5/4
i αnR

2
n

(agdi+1ε
max
i )1/4

e2
√

agdi+1ε
max
i −2

√
agdi E∗

i

 εmax
i + βn

−5/4 +
√
agdi+1ε

max
i

− εmax
i

−1/4 +
√
agdi+1ε

max
i

 .
(4.32)

On procède de même pour la largeur de fission corrigée Γf,i incluant le facteur de correction de

Kramers-Strutinsky en utilisant Ti =
√
E∗

i /a
sd
i , la température de l’isotope i au point selle. Par

analogie avec l’équation (4.18) on obtient alors la forme intégrale définie par l’équation (4.33)

Γf,i =
~ωK

Ti

1

2π~ρgd(E∗
i , a

gd
i )

∫ E∗
i −|∆Eshell|i

0

ρsd(E
∗
i − |∆Eshell|i − ε, asdi )dε. (4.33)

En estimant ensuite une forme approchée de l’intégrale (4.33) la largeur de fission corrigée Γf,i est
alors

Γf,i =
ωK

2π

(E∗
i )

3/4

(E∗
i − |∆Eshell|i)3/4

(agdi )1/4

(asdi )1/4
e2
√

asdi (E∗
i −|∆Eshell|i)−2

√
agdi E∗

i . (4.34)

On peut ainsi, à partir des nouvelles définitions des largeurs d’évaporation Γn,i (4.32) et de fis-
sion Γf,i (4.34), déterminer les populations Pi(t) et la population totale P (t). Comme pour les
autres exemples académiques, les définitions des populations en fonction des largeurs Γn,i et Γf,i

restent les mêmes. On utilise donc à nouveau les expressions (4.21) et (4.22). Ce sont les largeurs
d’évaporation de neutrons Γn,i et de fission Γf,i qui influent véritablement sur la dynamique de
désexcitation de la cascade isotopique.

De ce fait, les nouvelles formes analytiques de ces largeurs étant très différentes de celles des
modèles académiques précédents, les changements sur les populations et donc sur les grandeurs
physiques sont donc a priori importants. En particulier, avec les mêmes valeurs usuelles que celles
utilisées dans les modèles académiques précédents, on constate que le plus souvent Γf,i > Γn,i. De
plus, cette inégalité est plus marquée que dans le cas du modèle intuitif de la partie 4.4.1. La
fission thermique est donc a priori un mode de désexcitation encore plus marqué par rapport à
l’évaporation de neutrons car la compétition entre fission thermique et évaporation de neutrons
est moins forte.

En comparant la figure 4.6 et la figure 4.9 on constate en effet la décroissance beaucoup plus
rapide des populations en comparaison avec la première approche intuitive pour considérer les
corrections d’effets de couches. Cette différence de comportement est surtout visible pour la queue
de la cascade de désexcitation. Dans le cas présent, au delà de 10−19s la population totale est
quasi nulle (contrairement au cas de la figure 4.6) la probabilité de survie Psurv est alors nulle.
La fission est donc un mode de désexcitation encore plus favorisé que dans le modèle académique
intuitif de la partie 4.4.1.

Avec cette prescription d’Ignatyuk, contrairement au modèle académique de la partie 4.4.1, le
paramètre de densité de niveau, les énergies d’excitation et les largeurs d’évaporation de neutrons
et de fission sont modifiées par les corrections d’effets de couches. Les évolutions des popula-
tions et des grandeurs physiques associées sont donc très différentes de celles des autres modèles
académiques.
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Figure 4.9: Populations Pi(t) et population totale P (t) = Ptot(t) en fonction du temps t pour
deux échelles différentes afin d’observer tous les isotopes de la cascade avec |∆Eshell|=10 MeV.
Par analogie, on utilise les mêmes paramètres que dans la figure 4.6.

Quand on regarde l’ensemble des graphiques de la figure 4.10 on remarque la présence de pics
centrés sur BSHE

f,i ' |∆Eshell|i ' Bn,i = 6 MeV. Quand ils existent, ces pics traduisent la forte
compétition entre la fission thermique et l’évaporation de neutrons.

Pour comparer les deux approches avec corrections d’effets de couches envisagées dans ce
chapitre, on peut regarder la figure 4.7 et la figure 4.10. Ces deux figures représentent une étude
variationnelle du temps de fission moyen τfiss en fonction des corrections d’effets de couches
|∆Eshell|.

Dans les différentes graphiques de ces deux figures, on retrouve les mêmes critères d’évolution
pour l’énergie d’excitation E∗

i , la barrière d’évaporation de neutrons Bn,i, le coefficient de friction
réduit β et le paramètre de densité de niveau ai.

La principale différence (excepté les valeurs globalement plus petites des grandeurs physiques)
est que dans la figure 4.10 l’évolution générale du temps de fission moyen τfiss en fonction de
|∆Eshell| en dehors des pics est monotone croissante, contrairement à la figure 4.7 où des paliers
sont visibles.

Quand on compare la figure 4.8 et la figure 4.11, on constate que les conclusions issues
des études variationnelles précédentes restent valides pour l’énergie d’excitation E∗

i , la barrière
d’évaporation de neutrons Bn,i, le coefficient de friction réduit β ainsi que le paramètre de densité
de niveau ai.
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Figure 4.10: Temps de fission moyen τfiss en fonction de |∆Eshell| selon la prescription d’Ignatyuk.
L’étude variationnelle est effectuée autour des valeurs caractéristiques E∗

0 = 70MeV , Bn = 6MeV ,
smax = 8, ~ω = 1MeV , β/(2ω) = 0.66, A0 = 308 et ai = Ai/10. Par analogie, on conserve les
mêmes paramètres que dans la figure 4.7.

Dans le graphique supérieur gauche de la figure 4.11 on remarque que la multiplicité de neutrons
de préscission Nsimple est d’autant plus grande que l’énergie d’excitation E

∗
0 du noyau composé est

petite. En outre, dans ce modèle académique, les largeurs d’évaporation Γn,i et de fission thermique
Γf,i sont modifiées fortement par les corrections d’effets de couches |∆Eshell|.

En outre, le canal d’évaporation de neutrons est de plus en plus défavorisé par rapport au
canal de fission thermique avec l’augmentation de |∆Eshell|. Plus précisément on peut montrer
que Γn,i décrôıt plus vite que Γf,i en fonction de |∆Eshell|. De ce fait, la multiplicité de neutrons
de préscission Nsimple décrôıt avec l’augmentation de |∆Eshell|. Les faibles valeurs de Nsimple sont
reliées aux cascades de désexcitation courtes, le nombre de neutrons émis avant fission est donc
faible.

Dans les autres graphiques de la figure 4.11, on constate une évolution globalement croissante
P (tfiss > 10−18s) du nombre normalisé d’événements de fission au delà de 10−18s avec l’augmention
de |∆Eshell| jusqu’à |∆Eshell| = 8 MeV avant de marquer un palier.
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Figure 4.11: Multiplicité de neutrons de préscission N et nombre d’événements normalisés plus
longs que 10−18s P (tfiss > 10−18s) comme fonctions de |∆Eshell| selon la prescription d’Ignatyuk.
L’étude variationnelle est effectuée autour des valeurs usuelles E∗

0 = 70MeV , Bn = 6MeV , smax =
8, ~ω = 1MeV , β/(2ω) = 0.66, A0 = 308 et ai = Ai/10. Par analogie, on conserve les mêmes
paramètres que dans la figure 4.8.

Bilan sur l’évolution des grandeurs physiques avec corrections d’effets de couches

La décroissance des populations est plus importante dans le cas de la prescription d’Ignatyuk
car dans ce cas, la désexcitation par fission thermique est encore plus favorisée qu’avec la première
approche intuitive. De ce fait, la compétition entre la fission et l’évaporation de neutrons est donc
moins forte pour la prescription d’Ignatyuk que pour l’approche intuitive.

Dans les deux modèles, quand l’énergie d’excitation du noyau composé E∗
0 augmente, le temps

de fission moyen τfiss et le nombre d’événements normalisés supérieurs à 10−18 autrement dit
P (tfiss > 10−18s) diminuent, contrairement à la multiplicité de préscission Nsimple. La compétition
entre la fission thermique et l’évaporation de neutrons est favorisée quand les largeurs de fission
et d’évaporation de neutrons sont proches.

De manière générale, pour les deux modèles avec corrections d’effets de couches, la largeur de
fission est plus grande que la largeur d’évaporation de neutrons. Pour retrouver cette situation
optimale avec l’approche intuitive et la prescription d’Ignatyuk il faut que le paramètre de friction
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réduite augmente (ce qui fait diminuer la largeur de fission) et (ou) que le paramètre de densité
de niveau diminue (ce qui fait augmenter la largeur d’évaporation de neutrons).

Ainsi, l’influence des définitions des largeurs d’évaporation de neutrons et de largeurs de fission
est très grande car ces largeurs entrent dans la définition des populations des noyaux. Un point clé
commun aux modèles académiques qui considèrent la compétition entre la fission thermique (avec
barrière de fission constante ou avec correction d’effets de couches) et l’évaporation de neutrons
consiste à déterminer les probabilités d’existence des différents noyaux en fonction du temps à
partir desquelles on peut accéder aux grandeurs physiques. Plus la compétition entre la fission
thermique et l’évaporation de neutrons est grande et plus les largeurs associées sont proches. Les
variations des différents paramètres qui optimisent cette compétition sont toutes en accord avec
ce constat.

4.5 Conclusion

Quand on considère la compétition entre la fission thermique et l’évaporation de neutrons, pour
avoir 10 % d’événements de fission supérieurs à 10−18s vers la fin de la cascade, la compétition
entre le canal de fission et les autres canaux de désexcitation doit être forte pour chaque noyau
de cette cascade. Quand on remonte la cascade de désexcitation (et donc quand on remonte le
temps), ce pourcentage d’événements de fission est d’autant plus grand que l’isotope considéré est
proche du noyau composé initial. De ce fait, le pourcentage le plus élevé associé au noyau composé
super-lourd doit être important.

Afin d’estimer l’ordre de grandeur des corrections d’effets de couches pour le noyau com-
posé dans le cadre de la simple barrière, on considère pour le noyau composé un pourcentage
d’événements de fission au pire supérieur ou égal à 10 %, et une énergie d’excitation du noyau
composé de l’ordre de 70 MeV. On estime alors à partir du rapport de la largeur de fission sur la
largeur totale Γf,0/(Γf,0 +Γn,0) ' 10% (ou encore à partir de barrière de fission définie par (4.28)
estimée alors à 1 MeV) que la correction d’énergie de couches pour le noyau composé est de l’ordre
de 50 MeV. Sur cet exemple on illustre donc le fait que la modélisation avec la simple barrière de
la châıne isotopique de désexcitation ne fonctionne pas car les valeurs des corrections d’effets de
couches associées sont trop grandes pour être réalistes.

Parmi les autres pistes d’investigation possibles on peut s’intéresser à l’adjonction d’une
barrière isomérique à la simple barrière de potentiel. Les états isomériques associés, de formes
très différentes de la forme du noyau dans l’état fondamental, présentent une certaine stabilité qui
se traduit par une augmentation de la durée de vie du noyau et donc de son temps de fission moyen.
De ce fait, l’existence d’un puits de potentiel isomérique, voir partie 1.1.2, peut être un élément
d’explication des temps de fission longs. Dans le chapitre 5, on reprend donc l’étude des mêmes
modèles académiques que dans ce chapitre 4 en considérant une double barrière de potentiel.



Chapitre 5

Noyau super-lourd et double barrière de
fission

Le but de ce chapitre consite à regarder si un potentiel avec une structure isomérique permet
d’expliquer les mesures réalisées au GANIL par blocage cristallin. On ne connâıt pas la forme
de la barrière de noyaux super-lourds. Cependant, le choix de la double barrière est motivé par
l’analogie que l’on peut faire avec la double barrière des actinides. De plus, certaines études
prédisent l’existence de cette double barrière pour les noyaux super-lourds [27], voir partie 1.1.2.
On s’intéresse donc aux observables qui sont dans ce cadre la probabilité de survie des résidus de
fission et le pourcentage d’événements de temps de fission supérieur à 10−18s. On étudie aussi les
grandeurs physiques comme le temps de fission moyen et la multiplicité de neutrons de préscission.

Dans ce chapitre on réutilise donc les mêmes modèles académiques que dans le chapitre 4 afin
d’étudier les modifications induites par la présence d’une barrière isomérique sur les grandeurs
physiques. Le potentiel V (q) présente donc une double barrière, voir figure 5.1.

V(q)

q

Selle (a)

Scission

Puits (b)

Puits (a)

Selle (b)

isomérique

isomérique

Figure 5.1: Le potentiel V (q) est constitué de deux puits de potentiel : le puits de potentiel (a)
de l’état fondamental déjà présent dans l’étude du chapitre 4 et un puits de potentiel isomérique
(b). Comme dans le chapitre 4, la coordonnée collective q est associée à la déformation du noyau
composé. Les coordonnées collectives associées aux deux puits du potentiel V sont notées qgda et
qgdb et les coordonnées collectives qui correspondent aux deux selles du potentiel sont dénommées
qsda et qsdb. De plus, le point de scission, de coordonnée qs, est encore considéré comme une frontière
absorbante car, une fois ce point franchi, le noyau ne peut être reformé.

Dans un premier temps on revient sur le modèle académique où la fission thermique est le seul
mode de désexcitation afin d’étudier l’influence de la forme de la barrière isomérique sur le temps
de fission moyen τfiss et ainsi déterminer la forme qui maximise les écarts avec la simple barrière.

79
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Dans un second temps on réutilise le modèle académique caractérisant la compétition entre les
deux modes principaux de désexcitation, la fission thermique et l’évaporation de neutrons, dans
le cas de figure où la barrière de fission Bf est considérée comme constante.

Dans un troisième temps, on revient sur le modèle académique incluant les corrections d’énergie
de couches dans le traitement de la compétition entre la fission thermique et l’évaporation de
neutrons. On envisage alors deux variantes pour modéliser les corrections d’effets de couches : une
approche intuitive et la prescription d’Ignatyuk.

5.1 La fission comme seule voie de désexcitation

5.1.1 Modélisation du problème et probabilités d’existence

Dans le chapitre 4, on a mis en avant le fait que le temps de relaxation nucléaire peut être
écarté de l’étude de la fusion-fission des noyaux super-lourds, voir partie 4.2. En effet, les noyaux
composés ainsi formés sont déjà thermalisés. Cependant dans cette partie, on conserve le temps de
relaxation nucléaire τr afin de déterminer des relations de portée plus générale que le cas particulier
de la fusion-fission des noyaux super-lourds.

Système d’équations

La probabilité d’existence du noyau composé P (t) est définie par P (t) = Pa(t) + Pb(t) avec
Pa(t) et Pb(t) les probabilités d’existence dans l’état fondamental (a) et dans l’état isomérique (b).
Pour calculer Pa(t) et Pb(t) on utilise le système d’équations (5.1) :

dPa(t)

dt
= −Γa→b(t)Pa(t) + Γb→aPb(t),

dPb(t)

dt
= Γa→b(t)Pa(t)− (Γb→a + Γb→ext)Pb(t). (5.1)

Les largeurs de transitions Γb→a et Γb→ext sont supposées constantes contrairement à Γa→b(t) :

Γa→b(t) = h(t− τr)Γa→b, (5.2)

forme qui permet de prendre en compte de manière simple le temps de relaxation nucléaire τr
avec h la distribution de Heaviside et Γa→b la largeur asymptotique associée au régime station-
naire. Par analogie avec la simple barrière on peut définir des expressions du temps de relaxation
nucléaire τr valables dans les cas particuliers des régimes sur-amorti β/(2ωgd) >> 1 et sous-
amorti β/(2ωgd) << 1. On utilise alors l’équation (4.9) avec cette fois-ci Ba→b la hauteur de la
première barrière de l’énergie potentielle pour aller de l’état fondamental métastable (a) vers l’état
isomérique (b). Dans la suite de ce chapitre, on considère que ωgd = ωsd = ω.

Probabilités d’existence

Avec les conditions initiales Pa(0) = 1, Pb(0) = 0, (5.1) et (5.2) on a ∀t ∈ [0, τr] : Pa(t) = 1,
Pb(t) = 0. Pour résoudre le problème on utilise la correspondance biunivoque entre la transformée
de Laplace P̃i et la probabilité de présence Pi(t), avec i ε{a; b}, de chaque isotope de la châıne de
désexcitation. De ce fait, en utilisant la transformée de Laplace, on trouve P̃a et P̃b. Finalement,
avec la transformée de Laplace inverse on obtient :

Pa(t) = 1 + h(t− τr)
[
e−

ξ
2
(t−τr)

(
cosh

[α
2
(t− τr)

]
− γ

α
sinh

[α
2
(t− τr)

])
− 1
]
, (5.3)
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Pb(t) =
2

α
h(t− τr)Γa→be

− ξ
2
(t−τr)sinh

[α
2
(t− τr)

]
, (5.4)

avec
α =

√
β2 − 4Γa→bΓb→ext, ξ = Γa→b + Γb→a + Γb→ext et γ = Γa→b − Γb→a − Γb→ext.

Dans le cas particulier de la fusion-fission des noyaux super-lourds, on peut considérer que
τSHE
r ' 0 d’où :

Pa(t) = e−
ξ
2
t
(
cosh

[α
2
t
]
− γ

α
sinh

[α
2
t
])
, (5.5)

Pb(t) =
2

α
Γa→be

− ξ
2
tsinh

[α
2
t
]
. (5.6)

A partir des probabilités d’existence, c’est-à-dire des populations, on peut alors accéder au
temps de fission moyen τfiss.

5.1.2 Temps de fission moyen

Estimation du temps de fission moyen τfiss pour la double barrière

La probabilité d’existence du noyau composé, depuis la coordonnée initiale qi jusqu’au point
selle qsdb est définie par P (t; qsdb, qi) = Pa(t; qsda, qi)+Pb(t; qsdb, qsda), avec Pa et Pb respectivement
les probabilités de présence dans le puits a et dans le puits b. Par analogie avec (4.6) le temps de
fission peut être défini par :

τfiss =MFPT [qi → qs] = NLRT [qi → qsdb] + τsdb→s, (5.7)

avec τsdb→s le temps du point selle qsdb au point de scission qs. En outre, à partir de (4.7), (5.3) et
(5.4) on aboutit à

NLRT [qi → qsdb] = τr +
1

Γb→ext

(
1 +

Γb→a + Γb→ext

Γa→b

)
. (5.8)

Ensuite avec (5.7) on trouve :

τfiss = τr +
1

Γb→ext

(
1 +

Γb→a + Γb→ext

Γa→b

)
+ τsdb→s. (5.9)

Dans le cas particulier de la fusion-fission des noyaux super-lourds, on peut écarter le temps
de relaxa- tion nucléaire τr. Le domaine de validité de cette équation (5.9) correspond à une
température T plus petite que les barrières Ba→b, Bb→a et Bb→ext ainsi qu’une friction moyenne ou
importante. En effet, dans ce cadre, les différentes largeurs correspondent à des largeurs de type
Kramers, voir partie 4.2.

La différence de temps de fission moyen la plus grande entre la barrière double et la barrière
simple est obtenue pour le cas particulier où toutes les barrières sont identiques d’où :

Ba→b = Bb→a = Bb→ext ⇔ Γa→b = Γb→a = Γb→ext. (5.10)

La double barrière de potentiel est dans ce cas symétrique et correspond au potentiel 2.a de la
figure 5.2. Pour tous les autres potentiels de cette même figure 5.2 cette différence est moindre, le
rapport (5.11) est compris entre 1 et 3. En effet, en considérant les différentes formules définissant
τfiss et NLRT pour la simple et la double barrière, on peut écrire les encadrements suivants :

1 ≤ τfiss(double)

τfiss(simple)
≤ NLRT (double)

NLRT (simple)
≤ NLRT (double (2.a))

NLRT (simple)
≤ 3, (5.11)
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avec par hypothèse τSHE
r ' 0 et des temps de descente identiques pour les cas double et simple

barrière donc τsd→s = τsdb→s. De plus, τfiss(double), τfiss(simple), NLRT (double), NLRT (simple)
sont définis respectivement par les équations (5.9), (4.11), (5.8) et (4.9). La borne supérieure 3 du
rapport (5.11) est obtenue à la limite τsd→s = τsdb→s → 0.

2.a

q �qgda

V� T

2.b q �qgda

V� T
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Figure 5.2: Différents types de barrières isomériques. En particulier, on remarque la double
barrière symétrique (2.a) qui maximise les différences entre la double barrière et la simple barrière
de potentiel.

De manière générale, il y a maximisation des effets entre la simple et la double barrière quand
les puits et les selles du potentiel sont symétriques. Ce constat reste vrai pour un nombre variable
de barrières de potentiel comme par exemple la triple barrière de potentiel. Par la même méthode
que celle utilisée avec la double barrière, on peut montrer que le rapport maximal du temps de
fission moyen τfiss de la triple barrière symétrique par la simple barrière est de 6. Dans toutes les
autres barrières triples, ce rapport est inférieur. On a alors, dans les mêmes conditions que précé-
demment, l’encadrement suivant :

1 ≤ τfiss(triple)

τfiss(simple)
≤ 6, (5.12)

Dans le cas de la fusion-fission des noyaux super-lourds, avec les valeurs usuelles β/(2ω) = 1.5
et T/B = 0.5, on a NLRT [qi → qsd] = 3/ΓK

f ' 3.10−20s. De ce fait, le temps de descente du point
selle qsdb associé à l’état isomérique jusqu’au point de scission qs (même s’il peut être grand dans
le cas des noyaux super-lourds) ne permet pas à lui seul de comprendre l’existence de temps de
fission de l’ordre de 10−18s. Les doubles barrières (ou mêmes les triples car pour la triple barrière
symétrique NLRT [qi → qsd] = 6/ΓK

f ' 6.10−20s) ne permettent donc pas de comprendre dans
le cadre de la fission comme seule source de désexcitation les temps de fission déterminés au
GANIL par blocage cristallin. Il faut donc impérativement tenir compte de la compétition avec
l’évaporation de neutrons.

Dans la gamme d’énergie d’excitation envisagée (E∗
0 ≤ 100 MeV pour le noyau composé super-

lourd), on peut maintenant étudier l’influence des deux principaux processus de désexcitation :
l’évaporation de neutrons sur la dynamique de désexcitation du système. De plus, afin de maximiser
les différences entre la double et la simple barrière, on étudie donc dans la majeure partie de la
suite du chapitre une double barrière symétrique du type 2.a de la figure 5.2.
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5.2 Désexcitation par fission et évaporation de neutrons

5.2.1 Modélisation du problème et populations

Modélisation du problème et exemples académiques étudiés

Figure 5.3: Exemple de la double barrière de fission. L’état fondamental est associé au puits
(a) et le puits isomérique correspond au puits (b). Les neutons de préscission et de postscission
désexcitent le système respectivement avant et après le point de scission. Dans cette étude on
s’intéresse uniquement à la compétition entre la fisssion thermique et la désexcitation due aux
neutrons de préscission. Le potentiel V est une fonction de la variable collective q représentant la
déformation du noyau. Figure adaptée de la référence [7].

Dans cette partie du chapitre, on étudie l’évolution dynamique du noyau composé quand il y a
compétition entre la fission thermique et l’évaporation de neutrons. Par analogie avec le chapitre
4, on envisage l’existence d’une châıne d’isotopes qui émettent successivement un neutron avant
la fission éventuelle du dernier des isotopes de la châıne. Afin d’étudier l’influence de la forme de
la barrière de fission sur la dynamique, on considère une double barrière de fission. On considère
que la barrière d’évaporation de neutron ne varie pas et quelle est indépendante de l’isotope. Afin
d’accéder aux grandeurs physiques, on suppose dans un premier temps que la barrière de fission est
constante avant de prendre en compte dans un deuxième temps les corrections d’effets de couches.

Afin de comparer les cas simple et double barrières, les conditions initiales sont les mêmes
que pour la simple barrière, voir partie 4.3.2. Les seuls changements concernent les conditions
initiales sur les populations. Pour la simple barrière de fission : P0(t = 0) = 1 et Ps(t = 0) = 0
avec 0 < s ≤ smax. Pour la double barrière de fission : P0(t = 0) = P0b(t = 0)+P0a(t = 0) = 1 avec
P0a(t = 0) = 1, P0b(t = 0) = Ps(t = 0) = 0 avec 0 < s ≤ smax, car on suppose que, contrairement
à l’état fondamental (a), l’état isomérique (b) du noyau composé n’est pas initialement peuplé.

Populations, équations de Bateman et transformée de Laplace

Les populations correspondent à la répartition des isotopes en fonction du temps. Pour la
double barrière, la population de l’isotope i est maintenant Pi(t) = Pia(t) + Pib(t), avec Pia et Pib
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respectivement la population de l’état fondamental (a) et la population de l’état isomérique (b)
associées à l’isotope i. En outre, on suppose que Γn,ia = Γn,ib = Γn,i. La population totale est alors

P (t) = Pdouble(t) =
smax∑
i=0

Pi(t). (5.13)

Pour calculer P0a(t) et P0b(t) on utilise les équations de Bateman

dP0a(t)

dt
= −(Γa→b,0 + Γn,0)P0a(t) + Γb→a,0P0b(t),

dP0b(t)

dt
= Γa→b,0P0a(t)− (Γb→a,0 + Γf,0 + Γn,0)P0b(t), (5.14)

et pour calculer Pia(t) et Pib(t) on s’appuie sur

dPia(t)

dt
= Γn,i−1Pi−1a(t) + Γb→a,iPib(t)− (Γa→b,i + Γn,i)Pia(t),

dPib(t)

dt
= Γn,i−1Pi−1b(t) + Γa→b,iPia(t)− (Γb→a,i + Γf,i + Γn,i)Pib(t). (5.15)

Enfin, pour la population du dernier isotope Γn,smax = 0 car ce dernier ne peut plus évaporer de
neutron et sa fission est possible uniquement si Bn > Bf .

dPsmaxa

dt
= Γn,smax−1Psmax−1a + Γb→a,smaxPsmaxb − Γa→b,smaxPsmaxa

dPsmaxb

dt
= Γn,smax−1Psmax−1b + Γa→b,smaxPsmaxa − (Γb→a,smax + Γf,smax + Γn,smax)Psmaxb si Bn > Bf

dPsmaxb

dt
= Γn,smax−1Psmax−1b + Γa→b,smaxPsmaxa − (Γb→a,smax + Γn,smax)Psmaxb si Bn < Bf . (5.16)

Pour transformer le système d’équations différentielles en système d’équations algébriques et ainsi
déterminer les populations des différents isotopes de la cascade, on se base sur la théorie de la
transformée de Laplace.

5.2.2 Calcul exact des populations

En utilisant les transformées de Laplace on peut alors obtenir, à partir des équation de Bate-
man, P̃ia et P̃ib avec 0 ≤ i ≤ smax. Dans la suite ce chapitre on utilise pour simplifier l’écriture
des différentes formules analytiques les largeurs intermédiaires Γia et Γib. Les définitions de ces
largeurs sont : Γia = Γa→b,i + Γn,i et Γib = Γb→a,i + Γn,i + Γf,i.

Populations du noyau composé, premier des isotopes : s = 0

En utilisant la transformée de Laplace inverse avec P0a(0) = 1 et P0b(0) = 0, car on considère
que le noyau composé super-lourd est initialement dans le puits de l’état fondamental (a), on a :

P0a(t) = e−(Γ0a+Γ0b)
t
2

[
cosh(Γ0

t

2
) +

Γ0b − Γ0a

Γ0

sinh(Γ0
t

2
)

]
,

P0b(t) = 2e−(Γ0a+Γ0b)
t
2
Γa→b,0

Γ0

sinh(Γ0
t

2
), (5.17)

avec Γ0 =
√
(Γ0a − Γ0b)2 + 4Γa→b,0Γb→a,0 > 0 qui est le déterminant du polynôme suivant
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(s+ Γ0a)(s+ Γ0b)− Γa→b,0Γb→a,0 = s2 + (Γ0a + Γ0b)s+ Γ0aΓ0b − Γa→b,0Γb→a,0. (5.18)

Les racines de ce polynôme vérifient θ02 < θ01 < 0 et peuvent s’écrire :

θ01 =
−(Γ0a + Γ0b) + Γ0

2
θ02 =

−(Γ0a + Γ0b)− Γ0

2
. (5.19)

On peut alors exprimer P0a(t) et P0b(t) sous une forme plus générale, pour les mêmes conditions
initiales (P0a(0) = 1 et P0b(0) = 0) avec δo,a(θ0j) = Γ0b + θ0j et δo,b(θ0j) = Γa→b,0 :

P0a(t) = eθ01t
Γ0b + θ01
(θ01 − θ02)

+ eθ02t
Γ0b + θ02
(θ02 − θ01)

=
2∑

j=1,j 6=k

eθ0jt
δo,a(θ0j)

(θ0j − θ0k)
, (5.20)

P0b(t) = eθ01t
Γa→b,0

(θ01 − θ02)
+ eθ02t

Γa→b,0

(θ02 − θ01)
=

2∑
j=1,j 6=k

eθ0jt
δo,b(θ0j)

(θ0j − θ0k)
. (5.21)

Populations des isotopes tels que 0 < s < smax

Pour déterminer les autres populations Psa(t) et Psb(t), 0 < s < smax, on utilise le polynôme

(s+ Γia)(s+ Γib)− Γa→b,iΓb→a,i = s2 + (Γia + Γib)s+ ΓiaΓib − Γa→b,iΓb→a,i, (5.22)

dont les racines θi1 et θi2, vérifiant θi2 < θi1 < 0, ainsi que le déterminant associé Γi sont :

θi1 =
−(Γia + Γib) + Γi

2
, θi2 =

−(Γia + Γib)− Γi

2
et Γi =

√
(Γia − Γib)2 + 4Γa→b,iΓb→a,i > 0.

(5.23)
A partir des transformées de Laplace P̃sa et P̃sb que l’on détermine par récurrence, on applique

les transformées de Laplace inverses pour accéder aux populations Psa(t) et Psb(t).
En particulier, on utilise des termes intermédiaires δs,a(θij) et δs,b(θij) qui sont eux aussi établis

par récurrence à partir les conditions initiales P0a(0) = 1, P0b(0) = 0 et Psa(0) = Psb(0) = 0
avec 0 < s < smax. A partir de δ0,a(θij) = θij + Γ0b et δ0,b(θij) = Γa→b,0 on détermine alors
δs,a(θij) = (θij+Γsb)δs−1,a(θij)+Γb→a,sδs−1,b(θij) et δs,b(θij) = (θij+Γsa)δs−1,b(θij)+Γa→b,sδs−1,a(θij).

Après calculs, on trouve que les populations sont

Psa(t) = δs

s∑
i=0

2∑
j=1

eθijt
δs,a(θij)

ψs
ij

et Psb(t) = δs

s∑
i=0

2∑
j=1

eθijt
δs,b(θij)

ψs
ij

, (5.24)

avec : δs =
s−1∏
i=0

Γn,i ψs
ij =

s∏
l=0

2∏
k=1

(θij − θlk)ij 6=lk,

δs,a(θij) = (θij + Γsb)δs−1,a(θij) + Γb→a,sδs−1,b(θij),
δs,b(θij) = (θij + Γsa)δs−1,b(θij) + Γa→b,sδs−1,a(θij). (5.25)

Les conditions initiales pour le noyau composé imposent δ0,a(θij) = Γ0b+θij et δ0,b(θij) = Γa→b,0.
ψs
ij est le produit de toutes les combinaisons possibles des termes (θij − θlk), compatibles avec

0 ≤ l ≤ s, k ε{1, 2} et ij 6= lk, avec i et j fixés.
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Par exemple, avec s = 1 on obtient :

P1a(t) = Γn,0
eθ01tδ1,a(θ01)

(θ01 − θ02)(θ01 − θ11)(θ01 − θ12)
+ Γn,0

eθ02tδ1,a(θ02)

(θ02 − θ01)(θ02 − θ11)(θ02 − θ12)

+ Γn,0
eθ11tδ1,a(θ11)

(θ11 − θ01)(θ11 − θ02)(θ11 − θ12)
+ Γn,0

eθ12tδ1,a(θ12)

(θ12 − θ01)(θ12 − θ02)(θ12 − θ11)
(5.26)

P1b(t) = Γn,0
eθ01tδ1,b(θ01)

(θ01 − θ02)(θ01 − θ11)(θ01 − θ12)
+ Γn,0

eθ02tδ1,b(θ02)

(θ02 − θ01)(θ02 − θ11)(θ02 − θ12)

+ Γn,0
eθ11tδ1,b(θ11)

(θ11 − θ01)(θ11 − θ02)(θ11 − θ12)
+ Γn,0

eθ12tδ1,b(θ12)

(θ12 − θ01)(θ12 − θ02)(θ12 − θ11)
,(5.27)

avec δ1,a(θij) = (θij +Γ1b)δ0,a(θij)+Γb→a,1δ0,b(θij) et δ1,b(θij) = (θij +Γ1a)δ0,b(θij)+Γa→b,1δ0,a(θij).
Les autres populations sont déterminées successivement en utilisant la même méthode jusqu’à la
population de l’avant-dernier isotope Psmax−1(t). Pour cet avant-dernier isotope (5.24) est utilisable
uniquement si Bf < E∗

smax−1. Dans le cas contraire il faut, par une méthode analogue, déterminer
la formule analytique de Psmax−1(t) avec comme contrainte Γf,smax−1 = 0 et en déduire la nouvelle
expression de Psmax(t).

Dans la suite de ce chapitre, on considère pour la double barrière de potentiel de fission le
cas où les deux barrières de potentiel sont de même hauteur afin de maximiser les effets par
rapport à la simple barrière, notamment sur le temps de fission moyen τfiss, comme cela a déjà
été évoqué dans le chapitre 4. Le potentiel correspondant est donc le potentiel 2.a de la figure 5.2
Par hypothèse, pour chaque isotope, les hauteurs de barrière de potentiel de l’état fondamental
(a) et de l’état isomérique (b) sont égales. 0n a donc

Bf,s = Ba→b,s = Bb→a,s ⇔ Γf,s = Γa→b,s = Γb→a,s. (5.28)

De ce fait les largeurs Γsa et Γsb s’écrivent pour toute la suite de ce chapitre : Γsa = Γf,s + Γn,s

et Γsb = 2Γf,s + Γn,s.

Populations du dernier isotope de la châıne : s = smax

Dans le cas de la double barrière symétrique et avec les conditions initiales Psmaxa(0) = 0,
Psmaxb(0) = 0 on aboutit pour Bf < E∗

smax−1 et quand le dernier isotope de la châıne peut
fissionner, c’est-à-dire pour Bf < Bn ou E∗

smax
> Bf , aux populations suivantes :

Psmaxa(t) = δsmax

smax−1∑
i=0

2∑
j=1

[
δ
−(θij)
smax−1,a

ψsmax−1
ij

(
eθijt − e−

3+
√

5
2

Γf,smax t

θij +
3+

√
5

2
Γf,smax

)
+
δ
+(θij)
smax−1,a

ψsmax−1
ij

(
eθijt − e−

3−
√

5
2

Γf,smax t

θij +
3−

√
5

2
Γf,smax

)]
,

(5.29)

Psmaxb(t) = δsmax

smax−1∑
i=0

2∑
j=1

[
δ
−(θij)
smax−1,b

ψsmax−1
ij

(
eθijt − e−

3+
√

5
2

Γf,smax t

θij +
3+

√
5

2
Γf,smax

)
+
δ
+(θij)
smax−1,b

ψsmax−1
ij

(
eθijt − e−

3−
√
5

2
Γf,smax t

θij +
3−

√
5

2
Γf,smax

)]
,

(5.30)

avec δ−(θij)
s,a =

(5−
√
5)

10
δs,a(θij)−

1√
5
δs,b(θij) δ+(θij)

s,a =
(5 +

√
5)

10
δs,a(θij) +

1√
5
δs,b(θij), (5.31)

δ
−(θij)
s,b =

(5 +
√
5)

10
δs,b(θij)−

1√
5
δs,a(θij) δ

+(θij)
s,b =

(5−
√
5)

10
δs,b(θij) +

1√
5
δs,a(θij). (5.32)
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Au contraire, pour E∗
smax−1 > Bf ≥ Bn ou E∗

smax
< Bf , c’est à dire quand le dernier isotope de la

châıne ne peut plus fissionner les populations deviennent

Psmaxa(t) = δsmax

smax−1∑
i=0

2∑
j=1

δsmax−1,a(θij)

ψsmax−1
ij

(
eθijt − 1

θij

)
,

Psmaxb(t) = δsmax

smax−1∑
i=0

2∑
j=1

δsmax−1,b(θij)

ψsmax−1
ij

(
eθijt − 1

θij

)
. (5.33)

Cas du noyau composé d’énergie d’excitation E∗
0 = 70 MeV

Pour un noyau composé possédant une énergie d’excitation E∗
0 = 70 MeV , voir figure 5.4, le

nombre de neutrons de préscission est smax = 8, il y a donc huit autres isotopes successifs dans la
cascade de désintégration. P0(t) s’exprime avec (5.20) et (5.21).
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Figure 5.4: Exemple des populations partielles et totales pour la simple et la double barrière
de potentiel (a+b), (a) et (b). Pour la simple barrière de potentiel P0(t = 0) = 1, et Ps(t) = 0,
0 ≤ s ≤ smax avec smax = 8, pour la double barrière de potentiel P0a(t = 0) = 1 et P0b(t = 0) = 0.
E∗

0 = 70MeV , ~ω = 1MeV , β/(2ω) = 0.66, A0 = 308 et ai = Ai/10. Bn = Bf = 6MeV donc
Γf,8 = 0 car dans ce cas le dernier isotope ne fissionne pas, ce qui implique l’apparition d’un palier.

P1(t) est définie grâce à (5.26) et (5.27). Les autres populations P2(t), P3(t), P4(t), P5(t), P6(t)
et P7(t) sont déterminées successivement en utilisant la même méthode. L’expression de P7(t)
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n’est applicable directement que si Bf < E∗
7 . Comme P8(t) est déterminée à partir de P7(t),

cette contrainte sur la barrière de fission Bf s’applique aussi au dernier isotope. Pour finir, quand
Bf < Bn ou E∗

8 > Bf , la population du dernier isotope de la châıne P8(t) est obtenue à partir
de (5.29), (5.32), (5.30) et (5.32). Au contraire, quand Bf ≥ Bn ou E∗

8 < Bf , la population de ce
dernier isotope est obtenue avec (5.33).

Sur les deux graphiques supérieurs de la figure 5.4, on remarque que la décroissance de la
population totale est moins importante pour la double barrière (a+b) que pour la simple barrière,
à cause de la présence de la barrière isomérique (b). Les populations sont de ce fait plus importantes
avec la double barrière.

Dans les deux graphiques inférieurs de cette même figure, on visualise, avec les conditions
initiales choisies, la décroissance des populations dans l’état fondamental au profit de l’état
isomérique (b). En effet, une partie des populations de l’état fondamental (a) se retouve dans
le puits isomérique (b), l’autre partie ayant subi le processus de fission.

5.2.3 Effets de la barrière isomérique sur les grandeurs physiques

Taux de fission λfiss et temps de fission moyen τfiss

Par analogie avec le taux de fission de la simple barrière, défini équation (4.23), on peut
déterminer le taux de fission pour la double barrière (a+ b) et d’autre part le taux de fuite associé
uniquement à la barrière de l’état fondamental (a) :

λ
(a+b)
fiss = − 1

P (t)

dP (t)

dt
=

smax∑
s=0

Γf,sPsb(t)

P (t)
λ
(a)
fuite = − 1

Pa(t)

dPa(t)

dt
=

smax∑
s=0

Γf,s(Psa(t)− Psb(t))

Pa(t)
,

(5.34)
avec P (t) la population totale associée à la double barrière (a + b), Pa(t) la population totale
spécifique de la barrière (a) et Psa(t) ainsi que Psb(t) les populations de l’isotope s associées
respectivement à l’état fondamental (a) et à la barrière isomérique (b).

Le graphique supérieur gauche de la figure 5.5 représente le taux de fission λfiss(t) comme

fonction du temps t pour la simple barrière, avec P0(t = 0) = 1. Le taux de fission λ
(a+b)
fiss (t) pour

la double barrière (a+b) ainsi que taux de fuite λ
(a)
fuite(t) spécifique de la barrière (a) sont aussi

des fonctions du temps t, avec P0a(t = 0) = 1. On remarque que le taux de fission de la simple

barrière est pratiquement confondu avec le taux de fuite λ
(a)
fuite, spécifique de l’état fondamental

(a). Ces deux taux sont des fonctions monotones décroissantes du temps alors que λ
(a+b)
fiss est une

fonction croissante puis décroissante du temps. Cette évolution temporelle spécifique de λ
(a+b)
fiss

peut se comprendre en superposant les évolutions de (a) et (b). En effet, à un instant t, comme on
peut le voir figure 5.4, l’état isomérique (b) n’est pas peuplé à t = 0, ses populations augmentent
donc avec le temps, contrairement aux populations de l’état fondamental (a).

De plus, jusqu’à typiquement 10−19s, l’augmentation des populations de (b) est plus rapide

que la décroissance des populations de (a). En outre, on constate que λ
(a+b)
fiss est toujours inférieur

aux deux autres taux, surtout dans la partie croissante jusqu’à 10−19s.
Les temps de fission moyens τfiss de la simple et de la double barrière, sont estimés à partir de

(4.24) en utilisant pour P (t) respectivement la population totale Psimple(t) et la population totale
Pdouble(t).

Avec le graphique de la partie supérieure de la figure 5.5, on constate que la valeur du temps
de fission moyen τfiss = 10−18s, valeur type des mesures effectuées au GANIL avec la technique
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du blocage cristallin, est obtenue pour Bf = 4MeV avec la simple barrière et pour Bf = 3MeV
avec la double barrière.

En outre, pour Bf = 0 MeV , on peut montrer que l’on retrouve le cas de la fission pure
caractérisée par le facteur 3 du rapport (τfiss−double)/(τfiss−simple), voir équation (5.11). Pour
les autres valeurs de Bf il y a compétition entre la fission et l’évaporation de neutrons. On retrouve
alors le constat déjà évoqué pour la simple barrière Bf/Bn ' 1. pour Bf < Bn on retrouve une
fission dominante, contrairement à Bf > Bn où l’évaporation de neutrons prédomine.
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Figure 5.5: Taux de fission λfiss et temps de fission moyen τfiss pour la double et la simple
barrière, multiplicité de neutrons de préscission N et nombre d’événements normalisé P (tfiss >
10−18s) comme fonctions de Bf sauf pour le taux de fission pour lequel Bf = 6 MeV. E∗

0 = 70MeV ,
Bn = 6MeV , smax = 8, ~ω = 1MeV , β/(2ω) = 0.66, A0 = 308 et ai = Ai/10. Pour la simple
barrière P0(t = 0) = 1 et pour la double barrière P0a(t = 0) = 1.

Multiplicité de neutrons de préscission et nombre d’événements normalisés

Par analogie avec les équations (4.25) et (4.26) relatives à la simple barrière on a

dP (t)

dt
=
dPdouble(t)

dt
=

smax∑
s=0

dPs(t)

dt
= −

smax∑
s=0

Γf,sPsb(t), (5.35)
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alors 1 − P (+∞) =
∑smax

s=0 psb avec psb =
∫ +∞
0

Γf,sPsb(t)dt. La multiplicité de neutrons de
préscission est donc

Ndouble =

∑smax
s=0 s.psb

1− P (+∞)
=

∑smax
s=0 s.psb∑smax
s=0 psb

. (5.36)

En outre, dans le cas de la double barrière, le nombre d’événements normalisés plus longs que
10−18s est obtenu à partir de la définition de la simple barrière (4.27) en utilisant la population
totale P (t) = Pdouble(t) au lieu de P (t) = Psimple(t).

Avec les deux graphes de la partie inférieure de la figure 5.5, les 10% d’événements normalisés
supérieurs à 10−18s mesurés au GANIL sont obtenus pour la simple barrière avec Bf = 3.5MeV
et pour la double barrière avec Bf = 2.5MeV . Les multiplicités de neutrons correspondantes à
ces valeurs de Bf , différentes suivant les types de barrière envisagés, sont alors Nsimple = 3.5 et
Ndouble = 4.2.

Ce choix de la barrière de fission constante pour la double barrière de potentiel permet de
comprendre la forte compétition entre les deux canaux de désexcitation tout au long de la châıne.
Cependant, on rappelle que ce choix est arbitraire car une barrière de fission constante n’a pas de
réalité physique.

Après cette étude du modèle académique, avec l’hypothèse arbitraire de barrière de fission
constante incluant la barrière isomérique, nous regardons dans la partie suivante les modifications
induites sur les grandeurs physiques par cette barrière isomérique avec cette fois les corrections
d’effets de couches.

5.3 Prise en compte des corrections d’effets de couches

Les corrections d’effets de couches sont mal connues pour les noyaux super-lourds. Dans le
modèle académique envisagé, on considère que les correctionc d’effets de couches |∆Eshell|i sont
les mêmes pour tous les isotopes de la châıne de désexcitation. Afin d’étudier ces corrections
d’effets de couches on procède alors comme dans le chapitre 4 en utilisant aussi deux variantes.
On envisage tout d’abord une approche intuitive simple et ensuite la prescription d’Ignatyuk
[92] pour exprimer le lien entre les corrections d’effets de couches et les énergies d’excitation des
différents isotopes.

5.3.1 Première approche intuitive pour les effets de couches

Comme on l’a déjà évoqué partie 1.1.3, les corrections d’effets de couches sont à l’origine de
la stabilité des noyaux super-lourds. Dans cette section, on reprend l’étude réalisée partie 4.4.1
pour tenir compte des corrections d’effets de couches sur la barrière double barrière symétrique
pour laquelle les différences avec la simple barrière sont maximisées. En particulier, on utilise à
nouveau la modélisation intuitive de la barrière de fission par BSHE

f,i ' |∆Eshell|i e−E∗
i /Ed , avec Ed

un paramètre libre fixé à 18.5 MeV.
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Figure 5.6: Exemple des populations partielles et totales pour la simple et la double barrière
de potentiel (a+b), (a) et (b) comme fonctions du temps t. Pour la simple barrière de potentiel
P0(t = 0) = 1, et Ps(t) = 0, 0 ≤ s ≤ smax avec smax = 8, pour la double barrière de potentiel
P0a(t = 0) = 1 et P0b(t = 0) = 0. E∗

0 = 70MeV , ~ω = 1MeV , β/(2ω) = 0.66, A0 = 308 et
ai = Ai/10. Bn = Bf = 6MeV donc Γf,8 = 0 car dans ce cas le dernier isotope ne fissionne pas, ce
qui implique l’apparition d’un palier. Par analogie, on conserve donc les mêmes paramètres que
dans la figure 5.4 sauf pour les corrections d’énergie de couches prise égales à |∆Eshell| = 10 MeV.

Figure 5.6 on observe une décroissance plus rapide qu’avec le modèle avec barrière de fission
constante sur toute la cascade. Il subsiste une probabilité de survie du noyau super-lourd car la
fission est le canal de désexcitation devant l’évaporation de neutrons.

En accord avec les conditions initiales, l’état isomérique (b) n’est pas peuplé initialement, con-
trairement à l’état fondamental (a). D’autre part, la probabilité de survie n’est pas rigoureusement
nulle, il reste une faible probabilité résiduelle.

Les valeurs des grandeurs physiques obtenues avec la présente modélisation dans le cas de la
double barrière, même si elles sont supérieures à celles obtenues avec la simple barrière, restent
inférieures aux mesures effectuées au GANIL, voir figure 5.7.

Dans le graphique supérieur gauche de la figure 5.7 on constate que le taux de fission est plus
élevé et que sa décroissance est anticipée par rapport au cas de la barrière de fission constante,
voir figure 5.5.
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Figure 5.7: Taux de fission λfiss et temps de fission moyen τfiss pour la double et la simple
barrière, multiplicité de neutrons de préscission N ainsi que le nombre normalisé d’événements
P (tfiss > 10−18s) comme fonctions de |∆Eshell| sauf pour le taux de fission où |∆Eshell| = 8 MeV.
E∗

0 = 70 MeV, Bn = 6 MeV, smax = 8, ~ω = 1MeV , β/(2ω) = 0.66, A0 = 308 et ai = Ai/10.
Pour la simple barrière P0(t = 0) = 1 et pour la double barrière P0a(t = 0) = 1.

Figure 5.7 on retrouve les mêmes comportements des paramètres énergie d’excitation E∗
i que

pour la simple barrière et la double barrière avec le choix arbitraire de barrière de fission constante
pour tous les isotopes de la cascade de désexcitation.

Comme avec la simple barrière de potentiel, on peut regarder l’influence des corrections d’effets
de couches en utilisant la prescription d’Ignatyuk.

5.3.2 Traitement de type Ignatyuk des effets de couches

Dans cette section on reprend le même cadre d’étude que dans la partie 4.4.2.

Figure 5.8 on constate avec la préscription d’Ignatyuk une décroissance de la population totale
et des populations en fonction du temps encore plus rapide que dans les autres modélisations
envisagées. Ceci est en accord avec le fait que dans ce cas de figure la compétition entre fission
thermique et évaporation de neutrons est moins forte car la fission prédomine. De ce fait, seules
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les populations des premiers isotopes ont des valeurs significatives. La châıne de désexcitation
isotopique n’est donc pas en moyenne parcourue intégralement avant fission.

On remarque également que l’on gagne un ordre de grandeur pour la durée de vie de la châıne
de désexcitation isotopique entre la simple barrière et la double barrière. De plus, on retouve le
fait que l’état isomérique (b) n’est pas peuplé initialement, contrairement à l’état fondamental
(a). D’autre part, la probabilité de survie Psurv est nulle, ce qui est en accord avec les mesures
effectuées au GANIL par blocage cristallin.
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Figure 5.8: Exemple des populations partielles et totales pour la simple et la double barrière
de potentiel (a+b), (a) et (b) comme fonctions du temps t. Pour la simple barrière de potentiel
P0(t = 0) = 1, et Ps(t) = 0, 0 ≤ s ≤ smax avec smax = 8, pour la double barrière de potentiel
P0a(t = 0) = 1 et P0b(t = 0) = 0. Par analogie, on conserve les mêmes paramètres que dans la
figure 5.6. En particulier les corrections d’énergie de couches sont estimées à |∆Eshell| = 10 MeV.

Avec les hypothèses d’étude choisies, dans la plage de valeurs de |∆Eshell| envisagée, les
grandeurs physiques issues de la prescription d’Ignatyuk sont inférieures aux résultats des mesures
effectuées au GANIL, voir figure 5.9.

La fission étant le mode de désexcitation dominant, la châıne de désexcitation isotopique
n’étant pas en moyenne parcourue intégralement. Dans le graphique supérieur gauche de la figure
5.9, pour le taux de fission λfiss en fonction du temps, les principales différences entre simple
et double barrière se situent donc avant 10−19s. De ce fait, on peut constater sur le graphique
inférieur gauche que la multiplicité de neutrons de préscission N en fonction de |∆Eshell|, même
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si elle est plus importante pour la double barrière, reste peut élevée et quasi constante N ' 1.5.

102
104
106
108

1010
1012
1014
1016
1018
1020
1022

10-24 10-22 10-20 10-18 10-16 10-14

λ f
is

s 
(s

-1
)

temps (s)

E*
0= 70 MeV           double (a+b)

simple

  7⋅10-21

  1⋅10-20

  2⋅10-20

  3⋅10-20

  5⋅10-20

  1⋅10-19

 0  2  4  6  8 10

τ f
is

s(
s)

|∆Eshell| (MeV)

 
E*

0= 70 MeV            double
simple

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0  2  4  6  8 10

N

|∆Eshell| (MeV)

 
E*

0= 70 MeV                double
simple

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  2  4  6  8 10

P
(t

fi
ss

>
 1

0
-1

8
 s

)

|∆Eshell| (MeV)

 
 E*

0= 70 MeV         double
               simple

Figure 5.9: Taux de fission λfiss et temps de fission moyen τfiss pour la double et la simple
barrière, multiplicité de neutrons de préscission N et nombre d’événements normalisés plus longs
que 10−18s P (tfiss > 10−18s) comme fonctions de |∆Eshell|, selon la prescription d’Ignatyuk, sauf
pour le taux de fission où |∆Eshell| = 8 MeV. E∗

0 = 70MeV , Bn = 6MeV , smax = 8, ~ω = 1MeV ,
β/(2ω) = 0.66, A0 = 308 et ai = Ai/10. Pour la simple barrière P0(t = 0) = 1 et pour la double
barrière P0a(t = 0) = 1. Par analogie avec la figure 5.7, on conserve les mêmes paramètres.

Dans la figure supérieure droite on remarque également une augmentation modérée du temps
de fission moyen τfiss en fonction de |∆Eshell| dans le cas de la double barrière. En effet, τfiss est
toujours inférieur au temps caractéristique 10−18s. De plus, pour |∆Eshell| = 0 MeV, on retrouve
la valeur 3 du rapport (τfiss − double)/(τfiss − simple). Cependant, pour des valeurs de |∆Eshell|
supérieures à 0 les valeurs les plus élevées de ce même rapport ne sont pas assez importantes pour
pouvoir expliquer les résultats expérimentaux.

Dans la presciption d’Ignatyuk, l’évaporation de neutrons est défavorisée par rapport à la
fission. La compétition entre les deux canaux de désexcitation du noyau composé est donc moin-
dre, le mode de désexcitation majoritaire étant la fission. De plus P (tfiss ≥ 10−18s), le nombre
d’événements normalisés supérieurs à 10−18s, est donc dans ce cas inférieur de plusieurs ordres de
grandeur au 10% du résultat expérimental, voir le graphique inférieur droit de la figure 5.9.
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5.4 Conclusion

La présence d’une structure isomérique dans le potentiel augmente les valeurs des grandeurs
physiques. Cette augmentation est optimisée dans le cas de la double barrière symétrique, c’est-à-
dire quand le puits et la barrière isomériques sont identiques au puits et à la barrière associés à
l’état fondamental.

Dans le modèle académique avec fission thermique comme seul mode de désexcitation et dans
les autre modèles qui prennent en compte la compétition entre la fission thermique et l’évaporation
de neutrons, l’augmentation induite par la structure isomérique sur les grandeurs physiques n’est
pas assez importante pour permettre d’expliquer les valeurs des observables obtenues au GANIL
par blocage cristallin.

De manière pragmatique, on peut se poser la question de la validité des résultats de mesures par
blocage cristallin pour Z = 120 et Z = 124. Cependant, des mesures récentes effectuées au GANIL
[93], se basant sur le phénomène de fluorescence X associé à l’ionisation des couches électroniques
internes K et L [94, 95], confirment les valeurs obtenues pour Z = 120. Les conclusions de ces
nouveaux résutats sont généralisables au noyau Z = 124.

On arrive donc au constat suivant : la prescription d’Ignatyuk qui est adaptée pour les énergies
d’excitation mises en jeu dans le cadre de la fusion-fission froide ou de la fusion-fission chaude, voir
partie 1.2.2, semble ne pas être transposable à la fusion-fission � ultra-chaude � mise en œuvre
au GANIL.
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Conclusion de la Partie I

Dans le processus complet de fusion-fission des noyaux super-lourds nous avons étudié chacune
de ces deux phases. Dans la phase de fusion, nous avons étudié plus particulièrement la phase de
formation des noyaux super-lourds et dans la phase de survie nous nous sommes focalisés sur la
désexcitation des noyaux quand il y a compétition entre la fission et l’évaporation de neutrons.

Il découle de l’étude de la phase de formation des noyaux super-lourds que le traitement
markovien, utilisé dans la majeure partie des travaux sur ce sujet, est une approximation trop
rude. En effet, les effets de mémoire induisent de nombreux changements sur la diffusion par-
dessus cette barrière de potentiel parabolique et de ce fait sur la dynamique de formation d’un
noyau super-lourd. Ces changements interviennent principalement sur deux niveaux.

D’une part, ils modifient le comportement asymptotique du système en générant un abaisse-
ment de la viscosité, cet abaissement étant plus visible dans le régime critique. Pour les temps
longs, le comportement asymptotique avec effets de mémoire et friction modérée est similaire au
comportement asymptotique markovien avec friction faible. Ceci implique une réduction de la
dissipation d’autant plus importante que le temps de relaxation est important.

D’autre part, phénomène nouveau par rapport au cas markovien, des oscillations peuvent
apparâıtre dans une gamme intermédiaire de temps de relaxation. Ce nouveau comportement
change grandement l’évolution dynamique de grandeurs physiques comme la variable collective,
la probabilité de formation et le courant de formation d’un noyau super-lourd.

Un traitement rigoureux de la formation des noyaux super-lourds doit donc inclure des effets
de mémoire pour dépasser le cadre markovien trop restrictif. En effet, ne pas considérer l’influence
des effets de mémoire sur la dynamique de fusion des noyaux super-lourds peut donc aboutir à
une analyse erronée du processus.

Pour l’étude de la désexcitation des noyaux super-lourds, nous nous sommes intéressés à l’in-
terprétation des mesures réalisées au GANIL par blocage cristallin pour les noyaux Z = 120 et
Z = 124. Les modélisations réalisées avec une simple barrière de potentiel ne permettant pas de
comprendre ces résultats, nous avons étudié les modifications induites par l’existence d’une struc-
ture isomérique de la barrière de potentiel sur la dynamique de désexcitation. Dans ce contexte,
nous nous sommes intéressés à son influence sur la distribution des temps de fission des noyaux
super-lourds. Une approche de type Langevin n’étant pas envisageable dans ce cas de figure, une
méthode alternative s’appuyant sur des équations de type Bateman a été développée.

L’existence d’une structure isomérique augmente de manière significative la valeur des temps de
fission, cependant dans le cas des noyaux super-lourds elle ne permet pas d’expliquer les résultats
obtenus au GANIL par blocage cristallin. Par contre, ces travaux doivent pouvoir aussi être ap-
pliqués aux noyaux d’actinides, pour lesquels cette barrière isomérique doit induire une forte
augmentation des temps de fission. En effet, pour ces noyaux, la contribution de la goutte liquide
à la barrière de fission est importante.
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Partie II : Règles de somme et
interactions tensorielles de Skyrme
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Introduction de la Partie II

La physique nucléaire des basses énergies s’étend de 100 keV à quelques MeV [10]. Comme on l’a
délà souligné dans l’introduction générale, dans cette gamme d’énergie, les � briques élémentaires �

de la matière sont les nucléons, on peut alors parler de matière nucléonique. En fonction de l’énergie
disponible, les excitations de la matière nucléaire prennent différentes formes, voir la figure 2 de
l’introduction générale. Les comportements des nucléons sont alors individuels ou collectifs. Les
nucléons eux-mêmes peuvent être excités, l’amplitude de ces modes collectifs étant variable. Par
exemple, les résonances géantes sont des modes collectifs de vibration des noyaux avec une faible
amplitude. Au contraire, comme on l’a évoqué dans la partie I de cette thèse, la fission est un
mode collectif de forte amplitude.

D’un point de vue tout à fait général, on constate une certaine universalité de la densité dans
les noyaux lourds. Comme point de départ pour un modèle de compréhension de la cohésion
des noyaux on peut donc envisager le modèle de la matière nucléaire infinie. Dans ce modèle
on ne considère pas les effets de bord associés à la taille finie des noyaux. La matière nucléaire
est donc un système idéal infini formé de nucléons en interaction. La densité à saturation de
ρ0 = 0, 16nucléons.fm−3 est associée à la portée finie de l’interaction nucléaire qui est de l’ordre
du fermi. Un nucléon ne peut donc pas exploiter toutes les liaisons nucléon-nucléon, il y a alors
limitation des interactions aux nucléons les plus proches [10]. Plus précisément, l’interaction forte
est attractive pour des distances entre nucléons de l’ordre du fermi et très répulsive pour des
distances entre nucléons plus petites. Ce dernier aspect correspond au cœur dur du potentiel
d’interaction nucléon-nucléon. En pratique, la matière nucléaire à l’équilibre correspond au centre
des noyaux lourds. Pour un volume fini de matière, le nombre de nucléons est alors proportionnel au
volume considéré. De ce fait, on retrouve alors le comportement expérimental des rayons nucléaires.
En outre, les différentes grandeurs physiques du modèle sont reliées par une équation d’état (voir
la figure 1 de l’introduction générale).

Le régime nucléonique est le domaine dans lequel les degrés de liberté subnucléoniques tels les
quarks, les gluons, les résonances hadroniques comme par exemple les pions et les kaons ne prennent
pas une place prépondérante. Il n’y a pas de séparation nette entre le domaine nucléonique et le
domaine hadronique. Cependant, on peut placer une frontière au niveau du seuil de la production
de pions, correspondant à une énergie incidente d’un nucléon sur une cible fixe d’environ 290
Mev/A. Du point de vue des collisions nucléaires, le domaine associé correspond donc à 100-
200 Mev/A. On peut alors envisager l’étude des propriétés de la matière hors équilibre. Pour les
énergies mises en jeu, il suffit de se placer dans le cadre de la dynamique non-relativiste même si
certains aspects ne peuvent être déconnectés totalement du domaine relativiste.

La résolution exacte du problème à A corps est impossible. On peut dans ce cas réaliser l’étude
de la structure à l’échelle nucléaire avec les nucléons comme particules élémentaires effectives car
ces structures ne sont en réalité pas ponctuelles mais composées de quarks. Le caractère non
perturbatif de la Chromo-Dynamique Quantique pour les basses énergies ne permet pas, à l’heure
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actuelle, de déterminer l’interaction nucléon-nucléon directement à partir de l’interaction quark-
quark. On a donc recours à des interactions effectives. De plus, il n’existe pas de modélisation
générale pour l’interaction nucléon-nucléon pour l’ensemble du domaine envisagé, mais plusieurs
modélisations valides dans des domaines d’énergie particuliers. Par exemple, l’interaction effective
nucléon-nucléon peut être modélisée grâce à des forces phénoménologiques de type Gogny ou de
type Skyrme.

Les différentes modélisations s’appuyent le plus souvent sur des potentiels central et spin-
orbite. Le traitement du terme tensoriel est de ce fait écarté même s’il permet une analyse plus
approfondie de l’interaction entre nucléons. Nous nous proposons dans ce chapitre de l’inclure
dans le cadre des réponses nucléaires.

En premier lieu, dans le chapitre 6 on procède à des rappels sur la matière nucléaire, les forces
effectives de type Skyrme et on précise les axes d’étude ainsi que l’expression de la partie tensorielle
du potentiel de Skyrme. Ensuite, dans le chapitre 7 on rappelle, dans le cadre théorique général
de la théorie de la réponse linéaire, les principales caractéristiques de l’approximation Hartree-
Fock et de l’approximation des phases aléatoires (RPA). Enfin, dans le chapitre 8, à partir des

définitions intrinsèques des moments M
(α)
1 et M

(α)
3 on indique les principales étapes des calculs

qui permettent de déterminer ces règles de somme : pour M
(α)
1 jusqu’au niveau tensoriel et pour

M
(α)
3 avec potentiel central uniquement.

Mots-clés :
Interaction effective nucléon-nucléon - Potentiel effectif de Skyrme - Règles de sommes - Développement
asymptotique - Définitions intrinsèques des moments



Chapitre 6

Interaction nucléon-nucléon et force de
Skyrme

L’interaction effective de type Skyrme est un exemple d’interaction phénoménologique nucléon-
nucléon à deux corps qui prend en compte les effets de milieu. Cette interaction, de portée nulle,
n’est pas valide sur l’ensemble du domaine des basses énergies nucléaires. Plus précisément, le do-
maine de validité de cette force effective phénoménologique est défini pour une énergie de faisceau
de l’ordre de 100-120 MeV/A et de faibles moments relatifs allant jusqu’à 2fm−1.

Dans un premier temps, nous présenterons brièvement les propriétés de l’interaction nucléon-
nucléon, en particulier ses symétries et le passage de l’interaction nucléon-nucléon libre à l’inter-
action nucléon-nucléon effective.

Dans un deuxième temps, nous examinerons le cas particulier de l’interaction phénoménologique
effective de type Skyrme avec potentiels central puis spin-orbite avant de préciser les axes d’étude
de la partie II et en particulier la partie tensorielle du potentiel.

6.1 Interaction nucléon-nucléon

6.1.1 Nature fermionique de la matière nucléaire

De manière générale, les noyaux, les nucléons ou les constituants plus élémentaires comme
les quarks et les leptons sont des objets intrinsèquement quantiques. Comme première approche,
on peut considérer la matière nucléaire comme un gaz de Fermi. Le libre parcours moyen des
nucléons étant, à cause des corrélations de Fermi en accord avec le principe de Pauli, grand devant
les distances caractéristiques, les nucléons sont alors considérés comme des nucléons indépendants.
Grâce au modèle de Fermi, on retrouve alors les caractéristiques du modèle de la goutte liquide
ainsi que les caractéristiques de la matière nucléaire [2]. Par exemple, on retrouve la valeur typique
de la densité de la matière nucléaire à saturation ρ0 avec la formule suivante :

ρ0 =
g

6π2

(mnvF
~

)3
=
gk3F
6π2

, (6.1)

où g est la dégénérescence totale de spin et d’isospin, mn est la masse d’un nucléon, vF et εF sont
respectivement la vitesse de Fermi et l’énergie de Fermi. pF = ~kF = mnvF correspond à la norme
du moment de Fermi. Avec les valeurs usuelles des grandeurs εF = 37MeV et mn = 935MeV.c−2

on aboutit à vF = 0.28c. De plus, avec g = gS.gτ = 4 on obtient ρ0 = 0.16 nucléons.fm−3.
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En outre, l’indiscernabilité des particules au niveau microscopique a comme conséquence l’in-
troduction de deux types de particules, aux comportements statistiques très différents, les fermions
et les bosons [96]. Les bosons, de spin entier et vérifiant la statistique de Bose-Einstein ont un
comportement grégaire. On peut donc avoir un très grand nombre de bosons dans un seul état
énergétique. Au contraire, les fermions, de spin demi-entier et obéissant à la statistique de Fermi-
Dirac, sont au plus un par état énergétique à cause du principe d’exclusion de Pauli. Les fonctions
d’ondes des bosons et des fermions sont respectivement symétriques et antisymétriques. Pour ces
derniers, l’antisymétrie de la fonction d’onde peut être exprimée avec un déterminant de Slater.
La matière nucléaire est constituée de fermions et les bosons sont quant à eux les médiateurs des
interactions.

Pour les noyaux la transition entre un traitement purement quantique et un traitement semi-
classique se fait de manière continue avec l’élévation de la température du système. On passe
alors d’un système fortement quantique pour les basses températures à un système semi-classique
pour les hautes températures. Le domaine de l’équation d’état associé à la physique nucléonique
est tel que la température T vérifie T ≤ 15 − 20MeV et une masse volumique ρ ≤ ρ0 = 0.16
nucléons.fm−3, avec ρ0 la densité de saturation de la matière nucléaire infinie.

6.1.2 Symétries de l’interaction libre nucléon-nucléon

De manière générale, le potentiel nucléon-nucléon doit respecter un certain nombre d’invari-
ances : par translation dans l’espace des positions et des impulsions, par rotation et par réflexion
dans l’espace des positions ou encore par renversement du temps [7]. Il faut ensuite ajouter des
invariances liées à des degrés de liberté internes (isospin par exemple). Ces différentes propriétés
doivent obligatoirement se retrouver dans le potentiel nucléon-nucléon que l’on peut décomposer
en un terme central, un terme spin-orbite et un terme tenseur :

v(i,j) = vC(i,j) + vLS(i,j) + vT (i,j). (6.2)

Les indices i et j sont associés aux deux nucléons. Ils interviennent au niveau des différents
termes à travers la position relative ~ri − ~rj = ~rij, l’impulsion relative ~pij =

1
2
(~pi − ~pj), le moment

cinétique orbital ~L = ~rij ∧ ~pij ou encore les opérateurs dans les espaces d’isospin ~τi, ~τj et de

spin ~S = 1
2
(~si + ~sj) (~si est relié aux matrices de Pauli par ~si = ~

2
~σi, avec ~σi le vecteur dont

les composantes sont les matrices de Pauli). vC(i,j) et vT (i,j) sont des termes locaux car ils ne
dépendent pas de ~p, contrairement à vLS(i,j). Le terme prépondérant du potentiel v(i,j) est vC(i,j),
répulsif à courte portée (type cœur dur) et attractif à portée intermédiaire [7, 17]. Il peut par
exemple s’écrire :

vC(i,j) = v0(~rij) + v~σ(~σi.~σj) + v~τ (~τi.~τj) + v~σ.~τ (~σi.~σj).(~τi.~τj), (6.3)

avec v0(~r) qui dépend seulement de la distance relative entre les deux nucléons. Les autres ter-
mes correspondent au potentiel d’échange. Ce dernier peut être répulsif ou attractif, suivant les
configurations des nucléons.

Le potentiel tenseur à deux corps est un terme local, non central et peut être mis par exemple
sous la forme suivante :

vT (i,j) = (vT,0(~rij) + vT,~τ (~τi.~τj)) .

(
3

r2ij
(~σi.~rij)(~σj.~rij)− (~σi.~σj)

)
. (6.4)
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Le potentiel spin-orbite, quant à lui, est le terme non-local le plus important. Il dépend de ~p
par l’intermédiaire du moment cinétique orbital ~L :

vLS(i,j) = v0LS(~rij).(~L.~S). (6.5)

L’étape suivante consiste à construire une interaction nucléon-nucléon dans le milieu à partir de
l’interaction nucléon-nucléon libre. C’est une tâche particulièrement complexe. Dans le paragraphe
suivant nous allons présenter brièvement une possibilité pour résoudre ce problème qui adopte le
point de vue d’échanges de mésons.

6.1.3 Echanges de mésons spécifiques et Matrice G de Brueckner

L’interaction nucléaire à l’échelle des nucléons est la résultante d’une interaction plus intense
entre les quarks à l’intérieur d’un nucléon. La base actuelle de l’interprétation de l’interaction
nucléaire repose sur l’échange de mésons comme les pions π [97]. La première description théorique
de l’interaction nucléon-nucléon du point de vue des échanges de particules date de 1935. Celle-ci
est due au physicien japonais Yukawa qui avait prédit un boson médiateur de masse mπ ' 140
MeV (découvert en 1947). Puisque celui-ci est massif, il correspond à la partie de portée finie (de
l’ordre de 1fm). De manière plus précise, le pion est relié à la partie longue portée attractive du
potentiel tandis que les mésons plus lourds sont reliés à la partie répulsive [21, 22].

L’interaction forte est attractive pour des distances entre nucléons de l’ordre du fermi et très
répulsive pour des distances plus petites entre nucléons. Un traitement pertinent de l’interaction
nucléon-nucléon doit donc prendre en compte ces spécificités. On retouve les caractéristiques du
potentiel répulsif de cœur dur traduisant la saturation de la force nucléaire et faisant le lien avec la
dureté de l’équation d’état de la matière nucléaire, elle-même reliée au module d’incompressibilité.
Ces propriétés sont la manifestation des effets de milieu qui sont très importants en physique
nucléaire. Elles sont reliées au fait que deux nucléons ne peuvent s’approcher au-dessous d’une
certaine distance, l’interaction nucléon-nucléon devenant alors très répulsive. Pour un nombre
de constituants supérieur à deux, le problème à A corps n’est pas soluble analytiquement. On
contourne alors le problème via l’utilisation d’une théorie de champ moyen Hartree-Fock grâce à
laquelle l’interaction entre un nucléon et les A-1 autres est traitée par un potentiel moyen. Une
variante simplificatrice consiste à prendre en compte les effets de milieu en utilisant un potentiel
à deux corps dans le milieu. L’interaction nucléon-nucléon dépend au premier ordre de l’état de
spin relatif des partenaires mais aussi de leur vitesse relative. En outre, le potentiel spin-orbite
nucléaire représente la valeur moyenne du potentiel spin-orbite des nucléons deux à deux.

En pratique, l’élément de matrice 〈φ|V |φ〉 diverge à cause du cœur dur du potentiel V et le fait
que φ, la fonction d’onde non corrélée à deux corps, ne soit pas nulle pour des distances inférieures
au rayon de ce cœur dur. Pour pallier ce problème important de divergence on utilise donc une
interaction effective modélisée par la matrice G de Brueckner qui tient compte des corrélations
entre nucléons. En effet, G|φ〉 = V |ψ〉, avec ψ la fonction d’onde non corrélée à deux corps. G est
alors déterminée par sommation en série du potentiel V , ce qui permet d’aboutir à une équation
de type Bethe-Goldstone.

Afin de déterminer des potentiels réalistes, une autre méthode consiste à se baser sur les
symétries de l’interaction libre nucléon-nucléon pour construire de manière phénoménologique des
potentiels effectifs comme ceux de Skyrme.
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6.2 Forces effectives de type Skyrme et axes d’étude

6.2.1 Forces effectives phénoménologiques de type Skyrme

Il est tout à fait possible de déterminer de manière semi-phénoménologique des forces effec-
tives [29]. Avec un nombre limité de paramètres, on peut en effet générer les principales carac-
téristiques de la force nucléaire comme l’énergie de liaison, le rayon de noyaux, la saturation de la
force nucléaire... Ces interactions ne se déduisent pas directement d’un potentiel nucléon-nucléon
mais permettent, en ajustant les paramètres libres grâce aux valeurs expérimentales de noyaux
particuliers, de construire une forme de potentiel effectif [4, 7].

Les forces de Skyrme sont souvent utilisées car, toute proportion gardée, leur utilisation est
simple et leur pouvoir prédictif grand [98, 99]. Elles sont par exemple utilisées pour déterminer
la stucture ou la dynamique des noyaux. Par hypothèse, ce sont des interactions de contact.
Contrairement à ce que l’on pourrait penser a priori, cette approximation donne de bons résultats.
Les différents types de forces de Skyrme comportent un développement en puissances de la densité
locale de matière ρ(~r) et de ses dérivées successives. De manière générale elle prennent aussi en
compte le spin et la nature du nucléon, neutron ou proton via l’isospin. Le plus souvent, le potentiel
de Skyrme choisi peut être mis sous la forme de deux termes, la partie centrale et la partie spin-
orbite, ce qui représente une dizaine de paramètres différents.

Plus précisément la partie à deux corps v(i,j) du potentiel s’écrit :

v(i,j) = t0(1 + x0Pσ)δ(~rij) +
t1
2
(1 + x1Pσ)(~k

′2δ(~rij) + δ(~rij)~k
2)

+ t2(1 + x2Pσ)~k
′δ(~rij)~k + iW0

~k′ ∧ δ(~rij)~k. (6.6)

où l’opérateur ~k = 1
2i
(~∇i − ~∇j) agit à droite et l’opérateur congugué ~k′ = − 1

2i
(~∇i − ~∇j) agit

à gauche, ~ri − ~rj = ~rij et Pσ est l’opérateur d’échange de spin. Le terme à trois corps est, par
hypothèse, de portée nulle également :

v(i,j,k) = t3δ(~rij)δ(~rjk). (6.7)

Dans un système possédant autant de spins � up � que de spin � down �, c’est-à-dire dans un
système saturé en spin, le terme de potentiel à trois corps est équivalent à un terme de potentiel
à deux corps. La forme générale de ce terme, compatible avec une valeur réaliste du module
d’incompressibilité de la matière nucléaire, est alors

v(i,j) =
t3
6
(1 + x3Pσ)δ(~rij)ρ

γ(~Rij). (6.8)

Au total, ce sont donc dix paramètres (t0, t1, t2, t3, x0, x1, x2, x3,W0, γ) qu’il faut déterminer en les
ajustant aux grandeurs physiques. Le potentiel effectif de Skyrme à deux corps peut donc s’écrire :

vSkyrme
(i,j) (~Rij, ~rij) = vSkyrme

C(i,j) + vSkyrme
LS(i,j) , (6.9)

vSkyrme
C(i,j) = t0(1 + x0Pσ)δ(~rij) +

t1
2
(1 + x1Pσ)(~k

′2δ(~rij) + δ(~rij)~k
2)

+ t2(1 + x2Pσ)~k
′δ(~rij)~k +

t3
6
(1 + x3Pσ)δ(~rij)ρ

γ(~Rij), (6.10)

vSkyrme
LS(i,j) = iW0

~k′ ∧ δ(~rij)~k. (6.11)
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Dans le terme central, t0 est négatif car il est lié à la partie attractive de l’interaction. Au con-
traire, t3 est positif car il correspond à la partie répulsive pour laquelle on associe une dépendance
en densité de la forme ργ. Le paramètre γ représente le cœur � dur � de la matière nucléaire (de
manière générale 1/6 ≤ γ ≤ 1). t0 et t3 sont associés aux contributions de volume. t1 et t2 sont
quant à eux associés à des termes en gradients et donc aux effets de surface. x0, x1, x2 et x3 sont
reliés à l’opérateur d’échange de spin et aux propriétés d’antisymétrie neutron-proton.

Plusieurs paramétrisations du potentiel de Skyrme (voir tableau ci-dessous [30]) sont possibles
suivant la physique que l’on étudie. Ainsi, par exemple, SLy7 est une paramétrisation qui donne
une masse effective m∗/m = 0.67 et qui est adaptée à l’étude des barrières de fission des noyaux
lourds.

Skyrme t0 t1 t2 t3 x0 x1 x2 x3 W0 γ
SkM -2645 385.0 -120.0 15595 0.09 0.0 0.0 0.0 130 1/6
SKa -1602.8 570.88 -67.70 8000 -0.02 0.0 0.0 -0.286 125 1/3
SI -1057.3 235.9 -100.0 14463 0.56 0.0 0.0 1.0 120 1

SLy0 -2486.4 485.25 -440.86 13783 0.7947 -0.4983 -0.9323 1.2893 128 1/6
SLy4 -2488.9 486.82 -546.39 13777 0.834 -0.3438 -1.0 1.263 125 1/6
SLy7 -2480.8 461.29 -433.93 13669 0.848 -0.492 -1.0 1.393 125 1/6
SkP -2931.7 320.62 -337.41 18709 0.2922 0.6532 -0.6532 0.1810 100 1/6

6.2.2 Axes d’étude

L’utilisation des forces de Skyrme est omniprésente dans les calculs de structure nucléaire. Mais
récemment des calculs de type champ moyen sur des noyaux ont montré la présence d’instabilités
non physiques. Afin de comprendre l’origine de ces instabilités, on a calculé, dans chaque canal
de spin et d’isospin, la fonction réponse pour la matière nucléaire infinie. Bien que la correspon-
dance entre matière nucléaire infinie et noyaux ne soit pas totalement directe, il a été montré que
les instabilités observées sur les noyaux apparaissaient comme des pôles de la réponse. Il a été
également constaté que ces pôles se manifestaient dans une violation des règles de somme de la
fonction réponse.

De manière générale, les règles de somme sont des contraintes auxquelles doivent satisfaire
une théorie. Le but de la partie II consiste à déterminer ces contraintes. Plus précisément, le but
principal est de calculer, pour les différents canaux (α), les moments M1 et M3 directement à
partir des définitions intrinsèques en faisant intervenir, pour la première fois, le terme tenseur du
potentiel pour M1.

En effet, pour les calculs effectués avec les forces effectives phénoménologiques de Skyrme on
ne considère le plus souvent que les parties centrale et spin-orbite du potentiel à deux corps. Mais,
pour des raisons évidentes d’importance intrinsèque en physique nucléaire et même s’il a été écarté
pour des raisons de complexité jusqu’à présent, il faut considérer le terme tenseur à deux corps
[100, 101]. Celui-ci s’écrit :

vSkyrme
T (i,j) = vteT (i,j) + vtoT (i,j), (6.12)

vteT (i,j) =
te
2
{[3(~σi.~k′)(~σj.~k′)− (~σi.~σj)~k′

2
]δ(~rij) + δ(~rij)[3(~σi.~k)(~σj.~k)− (~σi.~σj)~k

2]}, (6.13)

vtoT (i,j) = to{3(~σi.~k′)δ(~rij)(~σj.~k)− (~σi.~σj)~k′δ(~rij)~k]}, (6.14)
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avec te � even � partie paire et to � odd � partie impaire par rapport au renversement du temps.
Les autres grandeurs entrant dans la définition du tenseur vSkyrme

T (i,j) ont été définies dans ce chapitre,

aux équations (6.10) et (6.11).

Dans les deux prochains chapitres de cette partie II, nous allons rappeler le formalisme général
utilisé pour les règles de somme avant d’exposer les grandes lignes du calcul lui-même ainsi que
les résultats obtenus.



Chapitre 7

Formalisme général et physique
nucléaire

Le but de ce chapitre est de rappeler le formalisme général qui sera utilisé au chapitre 8 pour
le calcul explicite des règles de somme.

En premier lieu, dans le cadre de la théorie de la réponse linéaire, on aborde les notions de
champ moyen et l’approximation Hartree-Fock. Ensuite, on définit de manière générale la fonction
réponse et les règles de somme ainsi que l’approximation des phases aléatoires.

Enfin, on indique les grandes lignes de la méthode asymptotique utilisée pour obtenir les
moments M

(α)
1 et M

(α)
3 .

7.1 Cadre de l’étude et outils utilisés

7.1.1 Champ moyen et approximation Hartree-Fock

L’approximation Hartree-Fock est une approximation de champ moyen. Dans cette théorie, le
problème à A corps est réduit à celui du problème à un corps effectif [102]. Les nucléons sont de
ce fait considérés comme non corrélés et chaque nucléon est soumis à un potentiel représentant
l’effet des autres nucléons du milieu. La figure 7.1 représente schématiquement l’équation de Dyson
décrivant la modification du propagateur du fermion habillé en fonction du propagateur de fermion
libre et des contributions dues aux effets de milieu dans l’approximation HF [103].

++=

Figure 7.1: Approximation Hartree-Fock. De gauche à droite on identifie la décomposition du
propagateur de fermion habillé par les effets de milieu en fonction du propagateur de fermion libre,
du terme d’échange de Fock et du terme local d’Hartree.

On calcule ainsi l’énergie HF qui peut se décomposer en deux termes : le terme d’Hartree,
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terme local représentant l’interaction directe, et le terme de Fock, terme non local représentant
l’interaction d’échange. Dans cette approximation, l’énergie totale est donc la somme de l’énergie
cinétique du système sans interaction et de ces deux derniers termes caractérisant les effets de
milieu.

L’état fondamental nucléon-nucléon |0〉 peut être décomposé en un produit direct de kets,
associés aux quasi-particules i et j, de type Hartree-Fock tel que |0〉 = |0〉HF ⊗ |0〉HF . De plus
le ket |0〉 peut être défini par un déterminant de Slater traduisant le caractère complètement
antisymétrique associé à la nature fermionique des nucléons. En outre, pour chaque particule il
faut prendre en considération l’espace direct, l’espace de spin et l’espace d’isospin.

D’autre part, la propagation des particules dans le milieu n’est pas la seule à subir des modifica-
tions. C’est aussi le cas des interactions. Les modifications induites par le milieu sur les interactions
peuvent être modélisées par la notion de polarisation Π qui caractérise la réponse du milieu à une
perturbation extérieure.

7.1.2 Formalisme général : fonction réponse et règles de somme

On considère un opérateur excitation F (α) permettant de passer de l’état fondamental nucléaire
|0 > à l’état excité |k > : |k >= F (α)|0 >. La notation condensée (α) signifie que l’opérateur dépend
des variables spatiales position et quantité de mouvement et des variables internes spin et isospin
d’où (α) = (~r, ~p | ~σ, ~τ). Dans la suite de l’étude, afin de simplifier les notations, on considère la
référence à l’espace réel comme implicite. On note donc (α) = (S, I) avec S et I respectivement
les nombres de spin et d’isospin.

La fonction réponse de l’état fondamental nucléaire sous l’action de l’opérateur F (α) est alors

Π(α)(ω, ~q) =
∑
k

| < k|F (α)|0 > |2δ(ω − ωk), (7.1)

avec ωk = Ek − E0 et H|k >= Ek|0 >. Ek est la valeur propre associée au vecteur propre |k >
pour le hamiltonien H et E0 représente l’énergie de l’état fondamental. Si |k > est un état situé
dans le continuum, la somme discrète doit être remplacée par une intégrale.

En pratique, le calcul de la fonction réponse peut ne pas être évident car il n’est pas toujours
facile de déterminer les états propres |k >. On peut contourner cette difficulté en utilisant la
technique des règles de somme et définir les moments Mp, avec p entier naturel allant de 0 à +∞.

M (α)
p =

∫
Π(α)(ω, ~q)ωpdω =

∑
k

| < k|F (α)|0 > |2ωp
k (7.2)

En théorie, si on connait l’infinité des moments M
(α)
p , on a alors autant d’information que dans la

fonction réponse Π(α)(ω, ~q). Cependant, en pratique, on ne peut pas déterminer tous les moments

M
(α)
p . Cette alternative au calcul direct de la fonction réponse n’est donc viable que si sa conver-

gence de celle-ci est assez importante pour qu’une estimation de Π(α)(ω, ~q) à l’aide des premiers
moments suffise.

La forme générale des règles de somme diffère suivant la parité des moments. En effet, les
définitions des moments pairs nécessitent l’utilisation d’anticommutateurs {, } tandis que celles
des moments impairs se basent sur les commutateurs [, ]. C’est ce deuxième type de moment qui
va nous intéresser dans la suite de cette partie II. Mais avant cela, nous allons dire quelques mots
de la réponse du système.
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7.1.3 Approximation des phases aléatoires

L’approximation des phases aléatoires (de l’anglais Random Phase Approximation RPA) per-
met de calculer la réponse du système à une perturbation. L’excitation physique prise en compte
est de type p-h (particle-hole). Souvent l’antisymétrisation est compliquée à mettre en oeuvre et
on se contente de l’approximation des anneaux, voir figure 7.2.

On peut également noter qu’il est possible de déterminer la fonction réponse Π(α) dans le
cadre RPA à partir d’une interaction effective possédant une dépendance en vitesse ou, ce qui est
équivalent, en utilisant la fonctionnelle de la densité d’énergie correspondante. Il est alors possible
d’accéder aux règles de somme [25, 26, 104].

.. .......

sonde

Milieu

extérieure

réponse

Figure 7.2: Modélisation de la propagation des excitations dans un milieu à l’aide de la méthode
RPA, sous forme de bulles de polarisation, et de la réponse associée.

7.2 Détermination des règles de somme

7.2.1 Hamiltonien avec potentiel de type Skyrme

Le hamiltonien général H = EC + V peut être réécrit sous la forme

H =
n∑

i=1

hi =
n∑

i=1

eci +
1

2

n∑
i=1

n∑
j=1,j 6=i

vSkyrme
(i,j) , (7.3)

avec eci l’énergie cinétique du nucléon i et vSkyrme
(i,j) le potentiel de type Skyrme. L’énergie cinétique

peut s’écrire

eci =
~k2i
2m

, (7.4)

avec ~ki = −i~∇i et le potentiel effectif de Skyrme :

vSkyrme
(i,j) = vSkyrme

C(i,j) + vSkyrme
LS(i,j) + vSkyrme

T (i,j) , (7.5)

avec les contributions du potentiel central, du potentiel spin-orbite et du potentiel tenseur définies
respectivement par (6.10), (6.11) et (6.12).
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7.2.2 Développement asymptotique et règles de somme M
(α)
1 et M

(α)
3

Dans le cadre RPA, la fonction réponse par unité de volume est [104] :

Π(α)(q0, ~q) =
1

V

∑
k

|〈k|F (α)|0〉|2
(

1

q0 − Ek + iη
+

1

−q0 − Ek + iη

)
, (7.6)

avec V le volume total du système et η > 0, un infiniment petit.
Π(α)(q0, ~q) vérifie la relation de dispersion

Π(α)(q0, ~q) = − 1

π

∫ +∞

0

Im
(
Π(α)(ω, ~q)

)( 1

q0 − ω + iη
+

1

−q0 − ω + iη

)
dω. (7.7)

En outre, la règle de somme d’ordre p est reliée à la partie imaginaire de Π(α)(ω, ~q), elle-même
reliée aux propriétés physiques du système, et s’écrit :

M (α)
p (~q) = − 1

πρ0

∫ +∞

0

Im
(
Π(α)(ω, ~q)

)
ωpdω, (7.8)

avec ρ0 la densité particulaire de la matière nucléaire symétrique à saturation. Les ordres impairs
des règles de somme sont obtenus par exemple avec un développement asymptotique de la fonction
réponse, vue comme une série de puissances de q0

lim
q0→+∞

Π(α)(q0, ~q) = 2ρ0

+∞∑
p=0

M
(α)
2p+1(~q)

q2p+2
0

= 2ρ0

(
M

(α)
1 (~q)

q20
+
M

(α)
3 (~q)

q40
+ ...

)
. (7.9)

Il suffit alors d’exprimer Π(α)(q0, ~q) à l’aide des paramètres de la force de Skyrme et on détermine
ensuite la limite pour q0 → +∞. En se limitant aux deux premiers moments impairs, on aboutit
à :

lim
q0→+∞

Π(α)(q0, ~q) = ρ0
~q2

q20

(
1

m∗ − ρ0
2
W

(α)
2

)
+ ρ0

~q4

q40

(
1

m∗ − ρ0
2
W

(α)
2

)2 [(
3

5
~k2F +

~q2

4

)
1

m∗ +
ρ0
4
W

(α)
1 +

ρ0
2

(
~k2F +

~q2

4

)
W

(α)
2

]
+ ... (7.10)

Par identification, on exprime alors les règles de somme en fonction des paramètres de Skyrme.
Le prochain paragraphe donne l’exemple, dans le cas d’un potentiel central uniquement, du calcul
de M

(α)
1 et M

(α)
3 .

7.2.3 Rappel des résultats pour M
(α)
1 et M

(α)
3 avec termes centraux

Dans les canaux (α) = (S, I), quand on ne considère que la partie centrale du potentiel effectif

de Skyrme, il est possible de séparerM
(α)
1 en deux contributions : une qui est spécifique de l’énergie

cinétique et l’autre qui est associée au potentiel central. Les momentsM
(α)
1 peuvent alors se mettre

sous la forme :

M
(α)
1 =M

(α)
1EC

+M
(α)
1C . (7.11)
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Cette décomposition n’est plus possible pour les règles de somme M
(α)
3 car on ne peut plus dans

ce cas séparer complètement les contributions du potentiel central du terme purement cinétique.
Ainsi, les moments associés au terme cinétique et au potentiel central peuvent s’écrire :

M
(α)
1 (~q) =

~q2

2m∗

(
1− m∗ρ0

2
W

(α)
2

)
=

~q2

2m
+
~q2

4
ρ0

(
W

(0,0)
2 −W

(α)
2

)
, (7.12)

M
(α)
3 (~q) =

~q4

2

(
1

m∗ − ρ0
2
W

(α)
2

)2 [(
3

5
~k2F +

~q2

4

)
1

m∗ +
ρ0
4
W

(α)
1 +

ρ0
2

(
~k2F +

~q2

4

)
W

(α)
2

]
, (7.13)

avec ~kF le moment de Fermi, ~q le moment transféré, ρ0 la densité de la matière nucléaire symétrique
à saturation correspondant à l’équation (6.1) et m∗ la masse effective. Dans le cas présent m∗ est
telle que

1

m∗ =
1

m
+
ρ0
8
(3t1 + 5t2 + 4x2t2) . (7.14)

Cette masse effective m∗ est reliée à la dépendance en impulsion et en énergie des niveaux
d’énergie à un corps donc au type d’interaction effective. La valeur de m∗ varie en fonction de la
paramétrisation de Skyrme choisie, voir partie 6.2.1. Par exemple, pour la paramétrisation SLy7
le rapport de la masse effective par la masse réelle vérifie m∗/m = 0.67. De plus,

W
(0,0)
1 = 3t0 +

(γ + 1)(γ + 2)

4
t3ρ

γ
0 +

3

4
t1~q

2 − (5 + 4x2)

4
t2~q

2, (7.15)

W
(0,1)
1 = −(1 + 2x0)t0 −

(1 + 2x3)

6
t3ρ

γ
0 −

(1 + 2x1)

4
t1~q

2 − (1 + 2x2)

4
t2~q

2, (7.16)

W
(1,0)
1 = −(1− 2x0)t0 −

(1− 2x3)

6
t3ρ

γ
0 −

(1− 2x1)

4
t1~q

2 − (1 + 2x2)

4
t2~q

2, (7.17)

W
(1,1)
1 = −t0 −

1

6
t3ρ

γ
0 −

1

4
t1~q

2 − 1

4
t2~q

2, (7.18)

W
(0,0)
2 =

3

4
t1 +

(5 + 4x2)

4
t2, (7.19)

W
(0,1)
2 = −(1 + 2x1)

4
t1 +

(1 + 2x2)

4
t2, (7.20)

W
(1,0)
2 = −(1− 2x1)

4
t1 +

(1 + 2x2)

4
t2, (7.21)

W
(1,1)
2 = −1

4
t1 +

1

4
t2. (7.22)

Passons maintenant au calcul des règles de somme en présence de termes tensoriels.
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Chapitre 8

Détermination des règles de somme

Dans un premier temps, on définit de manière intrinsèque les règles de somme pour M
(α)
1

incluant le potentiel tenseur. Dans un deuxième temps, on aborde le calcul exact des règles de
somme pour M

(α)
1 . Ensuite on procède de même pour M

(α)
3 en se focalisant sur le terme purement

cinétique et les termes issus des combinaisons de l’énergie cinétique et du potentiel central.

8.1 Règles de somme M
(α)
1 jusqu’au niveau tensoriel

Pour chacune des règles de sommeM
(α)
1 la décomposition en quatre termes est possible. Parmi

ces termes, un terme est spécifique de l’énergie cinétique et trois termes sont associés au potentiel.
En effet, par analogie avec la décomposition du potentiel, on aboutit à un terme central C, un
terme spin-orbite LS et un terme tenseur T .

M
(α)
1 =M

(α)
1EC

+M
(α)
1C +M

(α)
1LS +M

(α)
1T (8.1)

Le calcul explicite a montré que les moments M
(α)
1LS associés au potentiel spin-orbite sont en

réalité nuls.

8.1.1 Définitions antisymétrisées de M
(α)
1 avec potentiel tenseur

Le hamiltonien du système est H = EC + VC + VLS + VT . L’énergie cinétique EC est associée
à un opérateur à un corps donc le moment correspondant M

(α)
1EC

(~q) n’est pas antisymétrisé. Au
contraire, pour le potentiel V qui est associé à un opérateur à deux corps on doit donc tenir compte
de la nature fermionique des nucléons. La définition de M

(α)
1 (~q) prend alors la forme suivante

M
(α)
1 (~q) =M

(α)
1EC

(~q) +M
(α)
1C (~q) +M

(α)
1T (~q), (8.2)

avec

M
(α)
1EC

(~q) =
1

2
〈0|
[
F †(α),

[
EC , F

(α)
]]

|0〉, (8.3)

M
(α)
1C (~q) =

1

2
〈0|
[
F †(α),

[
VC , F

(α)
]]
A|0〉, (8.4)

M
(α)
1T (~q) =

1

2
〈0|
[
F †(α),

[
VT , F

(α)
]]
A|0〉, (8.5)
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où le ket |0〉 caractérisant l’état fondamental peut s’écrire sous la forme du produit direct |0〉 =
|0〉direct ⊗ |0〉interne, avec |0〉direct le ket associé à l’espace réel et |0〉interne le ket de l’espace interne
lui-même défini par le produit direct |0〉interne = |0〉spin ⊗ |0〉isospin.

De plus, l’opérateur A = (1 − PXPσPτ ) assure l’antisymétrisation avec PX l’opérateur parité
agissant sur l’espace réel ainsi que les opérateurs d’échange Pσ et Pτ agissant respectivement sur
l’espace de spin et l’espace d’isospin. Pour une fonction paire ou une fonction impaire, l’opérateur
parité PX est égal à respectivement 1 ou -1. En outre P 2

σ = 1 et P 2
τ = 1. Avec une notation plus

détaillée, on peut écrire

Pσij
=

1+ ~σi.~σj
2

et Pτij =
1+ ~τi.~τj

2
, (8.6)

avec ~σi et ~τi des vecteurs dont les composantes (σx
i , σ

y
i , σ

z
i ) et (τ

x
i , τ

y
i , τ

z
i ) sont respectivement les

matrices de Pauli dans l’espace de spin et l’espace d’isospin. Pour i = j les matrices de Pauli
anticommutent et pour i 6= j ces matrices vérifient l’algèbre de Lie. L’opérateur antisymétrisation
devient donc

Aij = (1− PXij
Pσij

Pτij). (8.7)

En outre, l’opérateur excitation F (α) et son hermitique conjugué F †(α) sont tels que

F (α) =
n∑
l

θ
(α)
l ei~q.~rl F †(α) =

n∑
l

θ
(α)
l e−i~q.~rl (8.8)

avec θ
(0,0)
l = 12 la matrice unité d’ordre deux, θ

(0,1)
l = τ zl la matrice de Pauli de spin selon l’axe z,

θ
(1,0)
l = σz

l la matrice de Pauli d’isospin selon l’axe z et θ
(1,1)
l = σz

l τ
z
l . Dans ces quatre situations,

les éléments de matrice de θ
(α)
l sont donc réels.

8.1.2 Calculs exacts de M
(α)
1 à partir des définitions intrinsèques

Avec des notations plus explicites les différentes contributions de M
(α)
1 (~q) deviennent

M
(α)
1EC

(~q) =
1

4m

∑
l,m,i

〈0|
[
θ
(α)
l e−i~q.~rl ,

[
~k2i , θ

(α)
m ei~q.~rm

]]
|0〉, (8.9)

M
(α)
1C (~q) =

1

4

∑
l,m,i,j 6=i

〈0|
[
θ
(α)
l e−i~q.~rl ,

[
vSkyrme
C(i,j) , θ(α)m ei~q.~rm

]]
Aij|0〉, (8.10)

M
(α)
1T (~q) =

1

4

∑
l,m,i,j 6=i

〈0|
[
θ
(α)
l e−i~q.~rl ,

[
vSkyrme
T (i,j) , θ(α)m ei~q.~rm

]]
Aij|0〉. (8.11)

D’après les formes centrale (6.10) et tenseur (6.12) du potentiel effectif de Skyrme, les règles de

somme M
(α)
1C (~q) et M

(α)
1T (~q) peuvent se décomposer sous la forme suivante

M
(α)
1C (~q) = M

t0(α)
1C (~q) +M

t1(α)
1C (~q) +M

t2(α)
1C (~q) +M

t3(α)
1C (~q), (8.12)

M
(α)
1T (~q) = M

te(α)
1T (~q) +M

to(α)
1T (~q). (8.13)

En pratique, dans l’espace interne, on considère la matière nucléaire comme doublement
symétrique par rapport au spin et à l’isospin. De plus, afin de calculer les différents commu-
tateurs des règles de somme, on se base alors sur les propriétés des matrices de Pauli qui peuvent
se traduire dans l’espace de spin par la relation

σx
kσ

y
l = (iεxyzσz

k + 12δ
xy)δkl + (12 − δkl)σ

y
l σ

x
k , (8.14)
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où εxyz est l’opérateur complètement antisymétrique de Lévi-Civita, 12 la matrice unité d’ordre
2 et δkl le symbole de Kronecker. Cette relation est transposable dans l’espace d’isospin avec les
matrices τxk , τ

y
k et τ zk . Pour l = k les matrices de Pauli anticommutent et pour l 6= k elles vérifient

l’algèbre de Lie.
Dans l’espace direct, en représentation ~r, on utilise les spécificités de la distribution de Dirac

δ~rij = 〈~ri|~rj〉 ainsi que la relation de fermeture∫ ∫
d~rid~rj|~ri, ~rj〉〈~ri, ~rj| = 1. (8.15)

En outre, on peut choisir ~q selon une direction particulière, par exemple la direction z de vecteur
unitaire ~uz. Sans perdre en généralité on peut donc écrire ~q = q~uz.

8.1.3 Résultats : règle de somme M
(α)
1 (~q) avec terme tenseur

A partir des outils détaillés dans le paragraphe précédent, on aboutit, après de longs calculs,
aux résultats suivants :
Le terme M

(α)
1EC

(~q) associé à l’énergie cinétique s’écrit

M
(α)
1EC

(~q) =
~q2

2m
; (8.16)

la règle de sommeM
(α)
1C (~q) relative à la partie centrale du potentiel de Skyrme peut se mettre sous

la forme :

M
(α)
1C (~q) =

~q2ρ0
4

(
W

(0,0)
2 −W

(α)
2

)
, (8.17)

avec les coefficients W
(0,0)
2 et W

(α)
2 définis à l’aide des relations (7.19), (7.20), (7.21) et (7.22).

L’expression (8.17) est alors équivalente à la relation (7.12). En outre, la règle de somme spécifique

de la partie tenseur du potentiel de Skyrme M
(α)
1T (~q) est

M
(0,0)
1T (~q) = 0, (8.18)

M
(0,1)
1T (~q) = 0, (8.19)

M
(1,0)
1T (~q) = −~q

2ρ0
4

(te + 3to) , (8.20)

M
(1,1)
1T (~q) =

~q2ρ0
4

(te − to) . (8.21)

Ainsi, la règle de somme M
(α)
1 (~q) incluant la partie tenseur de rang zéro peut donc s’écrire

M
(0,0)
1 (~q) =

~q2

2m
, (8.22)

M
(0,1)
1 (~q) =

~q2

2m
+
~q2ρ0
4

(
t1(1 +

x1
2
) + t2(1 +

x2
2
)
)
, (8.23)

M
(1,0)
1 (~q) =

~q2

2m
+
~q2ρ0
4

(
t1(1−

x1
2
) + t2(1 +

x2
2
)
)
− ~q2ρ0

4
(te + 3to) , (8.24)

M
(1,1)
1 (~q) =

~q2

2m
+
~q2ρ0
4

(t1 + t2(1 + x2)) +
~q2ρ0
4

(te − to) . (8.25)
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8.2 Règles de somme M
(α)
3 et potentiel central

De manière générale, pour chacune des règles de somme la décomposition en quatre termes
n’est plus possible car les différentes contributions du hamiltonien ne commutent pas entre elles
dans le triple commutateur. Parmi ces termes, un terme est spécifique de l’énergie cinétique mais
les autres termes ne sont donc plus décomposables en un terme central C, un terme spin-orbite LS
et un terme tenseur T . Dans la suite de ce chapitre, on se focalise sur le terme purement cinétique
et sur les termes issus des différentes combinaisons associées aux parties cinétique et centrale du
hamiltonien.

8.2.1 Définitions antisymétrisées de M
(α)
3 avec potentiel central

Le hamiltonien du système, de la forme H = EC + VC + VLS + VT , est le même que pour
M

(α)
1 . Par analogie, on reprend les mêmes hypothèses de travail que pour M

(α)
1 , voir partie 8.1.1.

L’opérateur à un corps associé à l’énergie cinétique est donc relié au moment M
(α)
3ECECEC

(~q) qui

n’est pas antisymétrisé.
Au contraire, les autres termes qui entrent dans la définition de M

(α)
3 (~q) doivent être anti-

symétrisés à cause de l’opérateur à deux corps représentatif du potentiel V . Pour la suite de ce
chapitre on utilise le hamiltonien HC = EC + VC .

La définition des différents termes des règles de somme M
(α)
3 s’appuie en particulier sur le

triple commutateur
[[
F †, HC

]
, [HC , [HC , F ]]

]
. En développant ce triple commutateur, on peut

décomposer le moment M
(α)
3C en huit contributions, elles-mêmes subdivisées en quatre catégories

(8.26), (8.27), (8.28) et (8.29) suivant que les termes de ces catégories sont respectivement pro-
portionnels à 1/m3, 1/m2, 1/m ou indépendant de m :

M
(α)
3 (~q) = M

(α)
3ECECEC

(~q) (8.26)

+ M
(α)
3ECECVC

(~q) +M
(α)
3ECVCEC

(~q) +M
(α)
3VCECEC

(~q) (8.27)

+ M
(α)
3ECVCVC

(~q) +M
(α)
3VCECVC

(~q) +M
(α)
3VCVCEC

(~q) (8.28)

+ M
(α)
3VCVCVC

(~q), (8.29)

avec

M
(α)
3ECECEC

(~q) =
1

2
〈0|
[[
F †, EC

]
, [EC , [EC , F ]]

]
|0〉, (8.30)

M
(α)
3ECECVC

(~q) =
1

2
〈0|
[[
F †, EC

]
, [EC , [VC , F ]]

]
A|0〉, (8.31)

M
(α)
3ECVCEC

(~q) =
1

2
〈0|
[[
F †, EC

]
, [VC , [EC , F ]]

]
A|0〉, (8.32)

M
(α)
3VCECEC

(~q) =
1

2
〈0|
[[
F †, VC

]
, [EC , [EC , F ]]

]
A|0〉, (8.33)

M
(α)
3ECVCVC

(~q) =
1

2
〈0|
[[
F †, EC

]
, [VC , [VC , F ]]

]
A2|0〉, (8.34)

M
(α)
3VCECVC

(~q) =
1

2
〈0|
[[
F †, VC

]
, [EC , [VC , F ]]

]
A2|0〉, (8.35)

M
(α)
3VCVCEC

(~q) =
1

2
〈0|
[[
F †, VC

]
, [VC , [EC , F ]]

]
A2|0〉, (8.36)

M
(α)
3VCVCVC

(~q) =
1

2
〈0|
[[
F †, VC

]
, [VC , [VC , F ]]

]
A3|0〉. (8.37)
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Pour les termes dont la définition fait référence au potentiel VC , l’opérateur antisymétrisation A
intervient autant de fois que ce potentiel central apparâıt dans le triple commutateur.

8.2.2 Calculs exacts de M
(α)
3 à partir des définitions intrinsèques

En pratique, on s’appuie sur les mêmes hypothèses que celles utilisées pour le calcul de M
(α)
1 ,

voir partie 8.1.2, mais cette fois avec un triple commutateur. Avec des notations plus explicites, on
peut réécrire les termes du paragraphe précédent. Par exemple, pour le terme purement cinétique :

M
(α)
3ECECEC

(~q) =
1

16m3

∑
l,m,i,j,p

〈0|
[[
θ
(α)
l e−i~q.~rl , ~k2p

]
,
[
~k2j ,
[
~k2i , θ

(α)
m ei~q.~rm

]]]
|0〉. (8.38)

Pour les termes faisant intervenir une fois le potentiel vSkyrme
C(i,n) et l’opérateur antisymétrisation

associé Ain on peut écrire :

M
(α)
3ECECVC

(~q) =
1

16m2

∑
l,m,n,i,j,p

〈0|
[[
θ
(α)
l e−i~q.~rl , ~k2p

]
,
[
~k2j ,
[
vSkyrme
C(i,n) , θ(α)m ei~q.~rm

]]]
Ain|0〉, (8.39)

M
(α)
3ECVCEC

(~q) =
1

16m2

∑
l,m,n,i,j,p

〈0|
[[
θ
(α)
l e−i~q.~rl , ~k2p

]
,
[
vSkyrme
C(i,n) ,

[
~k2j , θ

(α)
m ei~q.~rm

]]]
Ain|0〉, (8.40)

M
(α)
3VCECEC

(~q) =
1

16m2

∑
l,m,n,i,j,p

〈0|
[[
θ
(α)
l e−i~q.~rl , vSkyrme

C(i,n)

]
,
[
~k2j ,
[
~k2p, θ

(α)
m ei~q.~rm

]]]
Ain|0〉. (8.41)

Pour les termes faisant intervenir deux fois le potentiel de Skyrme central et les opérateurs anti-
symétrisation associés on a :

M
(α)
3ECVCVC

(~q) =
1

16m

∑
l,m,n,i,j,p,s

〈0|
[[
θ
(α)
l e−i~q.~rl , ~k2p

]
,
[
vSkyrme
C(j,s) ,

[
vSkyrme
C(i,n) , θ(α)m ei~q.~rm

]]]
AjsAin|0〉.

(8.42)

M
(α)
3VCECVC

(~q) =
1

16m

∑
l,m,n,i,j,p,s

〈0|
[[
θ
(α)
l e−i~q.~rl , vSkyrme

C(j,s)

]
,
[
~k2p,
[
vSkyrme
C(i,n) , θ(α)m ei~q.~rm

]]]
AjsAin|0〉.

(8.43)

M
(α)
3VCVCEC

(~q) =
1

16m

∑
l,m,n,i,j,p,s

〈0|
[[
θ
(α)
l e−i~q.~rl , vSkyrme

C(j,s)

]
,
[
vSkyrme
C(i,n) ,

[
~k2p, θ

(α)
m ei~q.~rm

]]]
AjsAin|0〉.

(8.44)
Enfin, pour le terme faisant intervenir trois fois le potentiel de Skyrme central et les opérateurs
antisymétrisation correspondants on obtient :

M
(α)
3VCVCVC

(~q) =
1

16

∑
l,m,n,i,j,p,s,r

〈0|
[[
θ
(α)
l e−i~q.~rl , vSkyrme

C(p,r)

]
,
[
vSkyrme
C(j,s) ,

[
vSkyrme
C(i,n) , θ(α)m ei~q.~rm

]]]
AprAjsAin|0〉.

(8.45)

Après de longs calculs, on aboutit aux résultats explicités dans le paragraphe suivant.
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8.2.3 Résultats : règle de somme M
(α)
3 (~q) avec terme central

Pour tous les canaux (α) on obtient la même expression du terme purement cinétiqueM
(α)
3ECECEC

(~q) :

M
(α)
3ECECEC

(~q) =
1

m3

[(
~q2

2

)3

+
~q

2

43

5
k2F

]
. (8.46)

Dans le cas particulier du canal (α) = (0, 0), les seuls termes non nuls sont le terme cinétique,
proportionnel à 1/m3, et les termes de potentiel proportionnels à 1/m2. Ainsi, on peut écrire

M
(0,0)
3 (~q) =M

(0,0)
3ECECEC

(~q) +M
(0,0)
3ECECVC

(~q) +M
(0,0)
3ECVCEC

(~q) +M
(0,0)
3VCECEC

(~q). (8.47)

Le terme purement cinétique est déterminé par l’équation (8.46) et la somme des termes en lien
avec le potentiel central prend la forme

M
(0,0)
3ECECVC

(~q) +M
(0,0)
3ECVCEC

(~q) +M
(0,0)
3VCECEC

(~q) =M
t0(0,0)
3C +M

t1(0,0)
3C +M

t2(0,0)
3C +M

t3(0,0)
3C , (8.48)

avec

M
t0(0,0)
3C =

1

m2

~q4ρ0
2

3

4
t0, (8.49)

M
t1(0,0)
3C =

3

m2

~q4ρ0
2

(
~q2

8
+
k2F
5

)
t1, (8.50)

M
t2(0,0)
3C =

1

m2

~q4ρ0
2

(
1 +

4

5
x2

)
k2F t2, (8.51)

M
t3(0,0)
3C =

1

m2

~q4ρ0
2

(γ + 1)(γ + 2)

16
ργ0t3. (8.52)

Cette réécriture est possible uniquement dans le canal (0, 0) car le potentiel n’intervient qu’une
seule fois pour les termes proportionnels à 1/m2.

Avec les autres canaux, les termes proportionnels à 1/m ou les termes indépendants de m ne
sont plus nuls. Après calculs, dans le cas général du canal (α) on obtient

M
(α)
3 (~q) =

1

m3

[(
~q2

2

)3

+
~q

2

43

5
k2F

]

+
1

m2

~q4ρ0
4

[
W

(α)
1

2
+
k2F
5

(
9W

(0,0)
2 −W

(α)
2

)
+
~q2

4

(
3W

(0,0)
2 −W

(α)
2

)]

+
1

m

~q4ρ20
4

(
W

(0,0)
2 −W

(α)
2

)[W (α)
1

2
+
k2F
10

(
9W

(0,0)
2 + 7W

(α)
2

)
+
~q2

8

(
3W

(0,0)
2 +W

(α)
2

)]

+
~q4ρ30
16

(
W

(0,0)
2 −W

(α)
2

)2 [W (α)
1

2
+ k2F

(
3

5
W

(0,0)
2 +W

(α)
2

)
+
~q2

4

(
W

(0,0)
2 +W

(α)
2

)]
,

(8.53)

avec W
(α)
1 et W

(α)
2 définis partie 7.2.3. Cette formulation de l’équation (8.53) est compatible avec

l’équation (7.13).



Conclusion de la Partie II

Les règles de somme sont des contraintes qui permettent de vérifier la robustesse d’une théorie.
Différentes méthodes sont utilisées pour déterminer ces règles de somme à partir d’un potentiel
donné. Par exemple, on peut accéder à ces contraintes en réalisant des développements asymp-
totiques de la fonction réponse du système ou en les calculant à partir de leurs définitions in-
trinsèques. Ces règles de somme peuvent alors se mettre sous la forme de moments M

(α)
p dans

différents canaux (α) et à différents ordres p.
En physique nucléaire des basses énergies, on peut utiliser le potentiel phénoménologique de

type Skyrme pour décrire l’interaction nucléon-nucléon. En outre, la fonction réponse de la matière
nucléaire peut être évaluée dans le cadre de la théorie de la réponse linéaire avec l’approximation
RPA. D’autre part, la détermination de ces mêmes règles de somme à partir des définitions in-
trinsèques s’effectue en pratique, pour les ordres p impairs, par le calcul de commutateurs de même
rang que l’ordre p du moment M

(α)
p associé. Pour M

(α)
1 il faut donc calculer un commutateur sim-

ple et pour M
(α)
3 un commutateur triple. On peut alors exprimer M

(α)
1 et M

(α)
3 . Pour des raisons

de complexité des calculs, la majeure partie des études écartent la partie tensorielle du potentiel
de Skyrme.

Dans cette partie II, on a déterminé dans les différents canaux (α) les règles de somme à partir

de leurs définitions intrinsèques. Les calculs pour obtenirM
(α)
1 ont été réalisés en incluant le poten-

tiel de Skyrme jusqu’au niveau tensoriel. Pour l’étude deM
(α)
3 , on s’appuie sur le potentiel central

de Skyrme. Cette étude de M
(α)
3 avec potentiel central peut servir de point de comparaison pour

la méthode de détermination de M
(α)
3 avec terme tenseur, numériquement ou par développement

asymptotique de la fonction réponse.
Initialement, le but de ces calculs était de vérifier les formules analytiques des réponses. L’ob-

jectif a été atteint et on a effectivement trouvé une concordance des résultats. Mais l’intérêt des
moments va bien au-delà : on a en effet pu montrer qu’une violation des règles de somme signalait
la présence d’un pôle dans la réponse, c’est-à-dire une instabilité. Nous sommes donc en train de
mener une étude systématique de détection des instabilités à partir des règles de somme, ce qui
est évidemment fondamental pour la construction de nouvelles forces.
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Partie III : Hydrodynamique nucléaire
et brisure de symétrie chirale
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Introduction de la Partie III

Avec les avancées scientifiques et techniques, suivant les époques, le nombre et la nature
des particules considérées comme élémentaires varie [5, 6]. Vers la fin du XIXe siècle, les par-
ticules élémentaires correspondent aux éléments de la classification de Mendelëıev. A chaque
étape ultérieure, la compréhension des propriétés de ces particules s’effectue alors grâce aux
développements contemporains des connaissances en physique nucléaire, en physique des par-
ticules et en astrophysique. Dans les années 1930-1940, on peut comprendre toute la classification
de Mendelëıev avec seulement trois particules : l’électron, le neutron et le proton. En 1936 le
muon est découvert dans le rayonnement cosmique. Ensuite, à partir des années 1950-1960, avec
l’avénement d’accélérateurs de particules et de détecteurs de plus en plus performants un grand
nombre de particules, supposées à l’époque élémentaires, sont détectées. Ces particules peuvent
être classées en deux catégories, les hadrons qui subissent l’interaction nucléaire forte et les leptons
qui ne la subissent pas.

Le classement des hadrons en famille permet de mettre en évidence des sous-structures. Ces
études se basent sur l’existence de symétries internes, auxquelles sont associés de nouveaux nom-
bres quantiques additifs que l’on peut considérer comme des charges généralisées. C’est le cas par
exemple du nombre baryonique et du nombre leptonique. Dans l’étude de ces symétries, l’apport
de la théorie des groupes est indéniable [105]. Plus précisément, elle constitue un point de départ
pour l’élaboration du modèle des quarks et l’émergence du concept de saveur. De manière générale,
l’étude des symétries est un outil très puissant pour simplifier la résolution d’un problème. Ces
considérations, associées aux grandeurs conservées, ont permis par exemple à Pauli de postuler
l’existence des neutrinos.

Actuellement, on comptabilise douze particules élémentaires, de spin 1
2
en unité ~, réparties en

deux catégories : les quarks et les leptons. Ces particules sont élémentaires au sens géométrique
du terme car on ne leur connâıt pas de sous-structure. Les quarks et les leptons sont eux-mêmes
sub-divisés de manière similaire en trois familles(

u
d

)(
c
s

)(
t
b

)
et

(
e−

νe

)(
µ−

νµ

)(
τ−

ντ

)
De plus, par conjugaison de charge, à chaque particule correspond une antiparticule.

L’interaction forte n’agit que sur les quarks et sur les structures composées de quarks, c’est-
à-dire les hadrons. Cette interaction conserve la saveur et l’universalité de la force de couleur.
Les bosons médiateurs de l’interaction entre quarks sont les gluons. La force de couleur entre les
quarks est une force attractive dont l’intensité augmente avec la distance. Elle permet d’expliquer
le confinement des quarks et le processus d’hadronisation des quarks quand la distance entre ces
quarks devient trop grande. L’existence des quarks est donc mise en évidence indirectement par
l’observation de jets hadroniques lors des collisions d’ions lourds.

Dans cette partie III on considère la phase hadronique car les gammes d’énergies envisagées
ne permettent pas l’observation du déconfinement des quarks. Les quarks sont alors considérés
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comme des sous-structures des hadrons générés pendant les collisions. Le domaine des énergies
intermédiaires de la physique hadronique est borné d’une part par le domaine des basses énergies
spécifique à la physique nucléaire proprement dite, c’est-à-dire la physique des noyaux, et d’autre
part par le domaine des hautes énergies du plasma de quarks-gluons. La frontière inférieure de la
phase hadronique est associée à des énergies qui correspondent au seuil de production des pions.
La frontière supérieure se situe quant à elle au seuil de déconfinement des quarks aboutissant au
plasma de quarks-gluons.

De manière générale les collisions d’ions lourds qui sont génératrices de matière hadronique
sont des événements globalement hors équilibre que l’on traite dans un cadre relativiste. De plus,
avec le refroidissement du système, l’équilibre thermodynamique local est atteint après un régime
transitoire.

Le domaine d’application du traitement hydrodynamique d’un système est très vaste. Plus
précisément, il est adapté à tout système qui a atteint un état d’équilibre thermodynamique
local. Il est par exemple utilisé en physique hadronique afin d’étudier des collisions d’ions lourds
ultrarelativistes et en astrophysique dans les étoiles à neutrons.

L’hydrodynamique permet non seulement d’accéder aux propriétés dissipatives d’un système,
comme les coefficients de transport, mais également de déterminer son évolution spatio-temporelle.
Par exemple, pour les collisions d’ions lourds ultrarelativistes on utilise dans les codes de simula-
tions numériques le profil de température en fonction du temps pour tenter de reproduire certains
spectres expérimentaux. Même si l’on peut s’interroger sur la validité d’un traitement hydrody-
namique pour de tels systèmes à petite durée de vie, il n’en reste pas moins que cette approche
est très largement utilisée dans la littérature, avec succès. En outre, il faut savoir que la produc-
tion de pions est très importante pendant les réactions de haute énergie dans les collisionneurs
ou dans les rayonnements cosmiques. Cependant, les articles publiés jusqu’à maintenant ne font
absolument pas référence au fait que la description de la phase hadronique produite lors de ces
collisions est principalement constituée de pions et donc présente une brisure spontanée de la
symétrie chirale. Or, en présence d’un phénomène comme la brisure spontanée de symétrie, la
théorie hydrodynamique elle-même doit être modifiée. Pour quantifier cette modification il est
intéressant de déterminer, dans un cadre simple, les changements qu’elle génère sur le profil de
température utilisé dans les collisions d’ions lourds.

Le modèle du superfluide relativiste sert de base de généralisation pour le fluide nucléaire
relativiste. Après une première partie générale sur l’hydrodynamique en présence d’une brisure
de symétrie, nous abordons plus précisément dans une deuxième partie le problème de la matière
hadronique en relation avec la brisure de la symétrie chirale.

Ensuite, pour résoudre analytiquement ou numériquement les équations obtenues dans les
différents cas, on utilise la géométrie de Bjorken qui permet de modéliser simplement une collision
d’ions lourds. Enfin nous présentons les résultats obtenus et nous les comparons à [106] où l’auteur
prend en compte d’autres � corrections � au modèle du fluide idéal comme la dissipation. Pour
finir nous envisageons les cas des pions non massifs et des pions massifs.

Mots-clés :
Symétrie chirale - Matière hadronique - Hydrodynamique relativiste - Brisure spontanée -
Bosons de Goldstone - Collisions d’ions lourds - Modèle de Bjorken



Chapitre 9

Physique hadronique et symétrie chirale

9.1 Physique hadronique

9.1.1 hadrons et quarks

En 1932 Heisenberg est le premier à mettre en évidence la symétrie des forces nucléaires. Ces
symétries sont par exemple visibles dans les doublets d’états du nucléon (p, n), en relation avec
une parité nucléaire qui échangerait proton et neutron. Ce doublet hadronique puise son origine
dans un autre doublet plus élémentaire (u, d), qui est à l’origine de la symétrie d’isospin I. En
outre, la mise en évidence d’une symétrie similaire à celle des rotations permet de comprendre
l’existence de multiplets de même moment cinétique de spin, de même parité et de masses voisines.

Figure 9.1: Octuplets et décuplets des mésons et baryons constitués des quarks légers u, d et
s. Multiplets usuels de SU(3)f : mésons, assemblage quark-antiquark et baryons, assemblage de
trois quarks. Ces hadrons sont les principaux constituants de la phase hadronique. Figure issue de
[6].

Les mésons sont des bosons et les baryons sont des fermions. Leurs propriétés sont donc in-
trinsèquement différentes. La découverte des particules étranges permet de classer le grand nombre
de hadrons en multiplets en les associant aux quarks u, d et s. Cette classification s’appuie sur le
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groupe de lie SU(3)f , de l’anglais flavour, dont les multiplets sont les représentations irréductibles.
Ce groupe de rang deux possède deux générateurs qui commutent : l’hypercharge et l’isospin. L’hy-
percharge est définie par Y = B + S, avec B le nombre baryonique et S l’étrangeté. La troisième
composante d’isospin est notée I3 = Q− 1

2
Y , avec Q la charge électrique.

Gell-Mann associe l’origine de cette symétrie à l’existence d’un triplet de constituants fonda-
mentaux, les quarks u, d et s. En 1961 Murray Gell-Mann donne le nom de voie octuple à la
classification des hadrons en mésons et baryons. Il permet de résoudre l’épineux problème de l’ex-
istence d’un très grand nombre de hadrons. La voie octuple fait référence à la religion boudhiste
dans laquelle la voie qui mène à la fin de la souffrance est la voie du milieu [8]. La symétrie devient
exacte quand on se place dans la limite où on néglige la différence de masse entre les quarks u, d et
s. La petite brisure de symétrie est due aux différences de masses entre les particules d’un même
multiplet. Les quarks u et d sont considérés comme des saveurs légères car en réalité mu ' 6 MeV,
md ' 10 MeV et ms ' 160 MeV [5].

Les collisionneurs de hautes énergies permettent l’accès à des domaines d’énergies plus grandes.
De ce fait, ils permettent la mise en évidence des autres particules élémentaires, plus lourdes,
comme le lepton τ et les autres quarks c, b, t, qualifiés de saveurs lourdes, l’ordre de grandeur de
leurs masses allant du GeV à 102 GeV [6].

Les mésons les plus légers de la phase hadronique sont des pions π+,π0 et π−. Ils sont formés de
paires quarks-antiquarks des saveurs légères u et d. Ce sont des mésons pseudo-scalaires Jp = 0−

[111]. Les composantes standards du champs de pion peuvent s’exprimer en fonction des champs
des saveurs légères mais aussi en fonction des composantes cartésiennes du champs de pion πi avec
i ε{1, 2, 3} :

π+ = −ud̄ π0 = 1√
2
(uū− dd̄) π− = ūd. (9.1)

π+ = − 1√
2
(π1 + iπ2) π0 = π3 π− =

1√
2
(π1 − iπ2). (9.2)

Le vecteur ~π dont les composantes sont les composantes cartésiennes πi se transforme comme un
vecteur vrai dans l’espace d’isospin.

Le modèle des multiplets de hadrons basé sur le groupe de saveur SU(3)f ne permet pas
d’expliquer tous les résultats expérimentaux. Par exemple, ce modèle n’interdit pas l’existence de
hadrons � exotiques � formés d’assemblage à deux quarks ou quatre quarks alors que ces derniers
n’ont jamais été observés expérimentalement, contrairement aux mésons et aux baryons. De plus,
du point de vue statistique, la fonction d’onde totale de certains baryons comme le ∆++ n’est pas
antisymétrique, ce qui est en complète contradiction avec le principe de Pauli et la statistique de
Fermi-Dirac.

Pour pallier ces problèmes, on introduit un nouveau nombre quantique : la couleur, associé
au groupe de transformation SU(3)c. La ChromoDynamique Quantique, de l’anglais Quantum
ChromoDynamics QCD, est la théorie qui intègre le traitement dynamique de la couleur.

9.1.2 Chromo-Dynamique Quantique

Dans le domaine des hautes énergies, la création et l’annihilation de particules devient possible.
Pour voir une description pertinente de ces processus, il faut alors se placer dans le cadre de la
théorie quantique relativiste des champs. En effet, Le modèle standard actuel, qui décrit les par-
ticules élémentaires et leurs interactions, est fondé sur la théorie de champ électro-faible, réunion
des interactions électro-magnétiques et faibles, et de la chromodynamique quantique, basée elle-
même sur la force de couleur qui régit l’interaction forte. Les interactions sont donc traitées avec
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un vocabulaire analogue à celui de la synthèse additive des couleurs en optique. Les symétries
correspondantes sont associées à l’invariance de jauge locale.

La chromodynamique quantique est une théorie de jauge locale, invariante de Lorentz, intégrant
les propriétés de confinement des quarks, les six saveurs (d,u), (s,c), (b,t) et les trois couleurs (vert,
bleu, rouge). Selon la théorie des groupes, SU(3)c est associé aux huit gluons colorés, bosons
médiateurs de l’interaction entre les quarks. SU(3)f est toujours associé aux saveurs des quarks
colorés u, d et s. Pour chaque saveur de quarks, il existe trois couleurs et les champs de gluons ont
huit états de couleur. Dans cette théorie, les quarks colorés n’existent pas à l’état libre mais dans
des singlets de couleurs qualifiés d’états blancs, ce qui est en adéquation avec le confinement de
la couleur, même si ce dernier point n’est pas encore strictement démontré. De plus, la fonction
d’onde spin-saveur-couleur des baryons est alors totalement antisymétrisée.

La densité lagrangienne LQCD associée prend en compte ces différents aspects.

LQCD = Lquarks + Lint + Lgluons, (9.3)

avec

Lquarks = i
∑
f

ψfγ
µ∂µψf −

∑
f

ψfMfψf . (9.4)

En pratique, on peut s’affranchir des termes de LQCD se rapportant aux gluons car ils sont in-
variants indépendamment de Lquarks [5, 107]. ψf est un quadrispineur pour lequel ψf = ψ†

fγ
0.

Mf représente la matrice diagonale des masses des quarks des différentes saveurs. Les matrices
γµ vérifient l’algèbre de Clifford [108] et en particulier γµγν + γνγµ = 2gµν avec gµν le tenseur
métrique,

γi =

(
0 σi

−σi 0

)
et γ0 =

(
0 −12

−12 0

)
. (9.5)

Les matrices de l’algèbre de Clifford sont des matrices 4×4 définies ici en représentation chirale
[108]. Quand on se place au niveau du secteur des quarks légers u et d de la première génération,
de masses respectives mu et md, la densité lagrangienne prend alors la forme :

LQCD = iψγµ∂µψ − ψMψ avec ψ =

(
ψu

ψd

)
et M =

(
mu 0
0 md

)
. (9.6)

9.2 Rappels de symétrie chirale

Selon le théorème de Nœther, l’invariance sous l’action d’un groupe continu d’ordre n implique
l’existence de n charges conservées. En appliquant ce théorème au système étudié, on peut alors
déterminer les charges et courants associés.

9.2.1 La symétrie chirale

Symétrie exacte

Dans le secteur des quarks légers u et d, la densité lagrangienne LQCD (9.6) peut se réécrire :

LQCD = iψγµ∂µψ − mu−md

2
ψτ3ψ − mu+md

2
ψψ avec ψ =

(
ψu

ψd

)
et τ3 =

(
1 0
0 −1

)
.

(9.7)
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mu, md, ψu et ψd sont respectivement les masses et les champs des quarks u et d. De plus, ψ est
un isospineur pour lequel ψ = ψ†γ0 et τ3 est la troisième matrice d’isospin de Pauli.

Après ce bref rappel, on peut maintenant examiner les deux types de transformations qui
s’appliquent sur l’isospineur ψ dans l’espace vectoriel SU(2).

La symétrie vectorielle et la symétrie axiale

La symétrie vectorielle, correspondant à l’isospin, est associée à la transformation : ψ →
eiαk

τk
2 ψ, où τk est une matrice de Pauli (k = 1, 2, 3) et αk est un paramètre continu. Dans la

réalité, md −mu ' 4 MeV donc il y a une petite violation de la symétrie d’isospin. Cependant,
comme ce terme est négligeable devant l’ordre de grandeur des masses hadroniques estimé àMH ≈1
GeV, on peut donc faire l’approximation mu = md et considérer que cette symétrie est vérifiée.
De ce fait, cette symétrie est de type Wigner et les hadrons sont classés en multiplets d’isospin car
Ik|0 >= 0 et [Ik,H] = 0, avec Ik l’opérateur isospin et H l’hamiltonien. En outre, avec le théorème
de Nœther, on détermine la charge associée Qk = Ik et le quadri-courant Vµ

k , ici un vecteur vrai

Qk =
∫
d~rψ† τk

2
ψ, Vµ

k = ψγµ
τk
2
ψ. (9.8)

La symétrie axiale est associée à la transformation : ψ → eiαk
τk
2
γ5
ψ avec γ5 = iγ0γ1γ2γ3. Pour

que la symétrie soit réalisée, il faudrait que mu = md = 0, ce qui n’est pas possible. En effet,
la masse moyenne des quarks légers est m = mu+md

2
' 8 MeV, la symétrie axiale n’est donc pas

vérifiée. De plus, grâce au théorème de Nœther, on accède aussi à la charge associée Q5
k et au

quadri-courant Aµ
k , ici un pseudo-vecteur

Q5
k =

∫
d~rψ†γ5 τk

2
ψ, Aµ

k = ψγµγ
5 τk

2
ψ (9.9)

A cause de la brisure explicite de symétrie axiale, il existe une brisure explicite de symétrie
chirale, cela est vérifié expérimentalement. Cependant, comme m � MH , on peut négliger dans
la suite cette brisure explicite de symétrie devant la brisure spontanée de symétrie chirale.

9.2.2 Brisure spontanée et symétrie chirale

ψR = 1+γ5

2
ψ et ψL = 1−γ5

2
ψ correspondent respectivement aux champs chiraux droit et gauche.

De plus, pour une particule de masse nulle, la notion de chiralité cöıncide avec la notion d’hélicité.
La transformation chirale SU(2)R⊗SU(2)L, agit indépendamment sur l’un ou l’autre des champs

ψR et ψL. Plus précisément, dans SU(2)R : ψR → eiβk
τk
2 ψR avec ψL → ψL et dans SU(2)L :

ψL → eiαk
τk
2 ψL avec ψR → ψR. En outre, les charges droites et gauches, qui sont les générateurs

des transformations, forment deux algèbres fermées séparées :

QkR =
∫
d~rψ†

R
τk
2
ψR = 1

2

(
Qk +Q5

k

)
, QkL =

∫
d~rψ†

L
τk
2
ψL = 1

2

(
Qk −Q5

k

)
. (9.10)

Par analogie, on peut en déduire les expressions des quadri-courants chiraux droit et gauche.
Dans le secteur des quarks légers, à la limite où m = 0, LQCD est exactement invariant sous

cette symétrie, les charges sont alors rigoureusement conservées :[QkL,H] = [QkR,H] = 0. Mais
avec m 6= 0, les charges sont quasi conservées car une petite brisure de symétrie axiale entraine
une petite brisure de symétrie chirale. Le nombre de multiplets devrait donc doubler car on associe
à chaque particule un partenaire chiral de masse quasi égale et de parité opposée. En pratique ce
n’est pas le cas car, Q5

k ne vérifie pas la symétrie de Wigner : Q5
k|0 >6= 0 par opposition à Qk = Ik.

Sous l’action de Q5
k, le vide n’est donc pas invariant et la symétrie chirale, n’est apparente ni

dans l’état fondamental, ni au niveau du spectre des particules, même si cet état possède la même
énergie que le vide avec une symétrie vérifiée au niveau du hamiltonien : [Q5

k,H] = 0.
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9.2.3 Bosons de Goldstone et brisure spontanée de symétrie chirale

De manière générale, on se base sur des théories effectives comme les modèles σ linéaire et
σ non-linéaire pour décrire les mécanismes à l’origine de l’apparition des bosons de Goldstone
associés à la brisure spontanée de symétrie chirale [109].

σ

σ,πV(      )

π

A

Figure 9.2: Potentiel effectif V (σ, π) du modèle σ-linéaire. Les deux axes perpendiculaires sont
associés à l’existence des deux types de bosons σ et π. Le cercle chiral est défini par σ2 + ~π2 = f 2

π

et représente les minima du potentiel V (σ, π). le point A, situé dans une direction perpendiculaire
à l’axe σ, est un point particulier de ce cercle.

D’après le théorème de Goldstone, lors de la brisure spontanée d’une symétrie continue, des
bosons de masse nulle sont générés. Pour la brisure spontanée de symétrie chirale, ces bosons
de Goldstone sont des pions de masse nulle encore appelés pions chiraux, voir partie 10.2. Les
fluctuations autour de l’état fondamental A ne coûtent aucune énergie au système. Au contraire,
les fluctuations selon l’axe σ se font dans le potentiel effectif V (σ, π) [5, 110, 111]. En outre, le
paramètre d’ordre mesurant la brisure spontanée de symétrie chirale est 〈σ〉 = fπ ' 93 MeV, fπ
étant la constante de désintégration du pion.

Avec la présence de termes dans le hamiltonien qui brisent explicitement la symétrie chirale,
la masse des pions mπ ' 140 MeV, même si elle est petite n’est plus négligeable devant la
masse typique d’un hadron MH . Dans ce cas ces pions massifs sont en fait des pseudo-bosons de
Goldstone, que l’on considère en pratique comme de véritables bosons de Goldstone. Le théorème
de Goldstone ne s’applique pas si la symétrie brisée est une symétrie de jauge. Dans ce cas, aucun
boson de Goldstone n’est généré et les bosons de jauge deviennent massifs. On retrouve alors le
mécanisme de Higgs [8].

Le modèle σ-linéaire, caractérisé par V (σ, π), est valide au voisinage de la transition de phase
chirale. Or, parce qu’ils sont les bosons les plus légers, les pions sont les seules particules associées
aux excitations thermiques de basses températures. Pour s’affranchir de la prise en compte du
méson σ, on se tourne donc vers le modèle σ non-linéaire. Comme le système évolue sur le cercle
chiral on substitue σ2 par la différence f 2

π −~π2. Dans la suite de la partie III, on écarte la particule
σ et on considère le pion π comme un boson de Goldstone.
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9.3 Limite semi-classique en physique nucléaire et axes

d’étude

9.3.1 Limite semi-classique

Avec les hautes température générées dans les collisions d’ions lourds l’aspect quantique n’est
pas toujours prépondérant. De ce fait, un traitement semi-classique n’est pas dénué de sens [7].
Différentes méthodes sont utilisées pour le passage d’un traitement quantique à un traitement semi-
classique, parmi lesquelles figurent les transformations de Weil-Wigner et de Wigner-Kirkwood
[7, 8]. En pratique, pour retrouver l’espace des phases de l’approximation semi-classique à partir du
point de vue quantique, on réalise un développement de Taylor en puissances de ~ et on ne conserve
que le terme d’ordre le plus bas. On utilise alors les crochets de Poisson, analogues classiques des
commutateurs quantiques. Cette limite semi-classique est utilisée à l’échelle mésoscopique pour
décrire l’hydrodynamique de la matière nucléaire, voir partie 11.1.1.

Ainsi, à l’échelle mésoscopique, en régime hydrodynamique, les variables utilisées sont des
grandeurs moyennées. On peut donc définir par exemple les densités de charge moyenne droite et
gauche ρR et ρL. Ce cadre de travail permet de réaliser le traitement hydrodynamique relativiste
de la brisure de symétrie chirale dans la matière nucléaire.

9.3.2 Axes d’étude

Le but de la partie III consiste à étudier l’influence de la prise en compte de la brisure spon-
tanée de symétrie chirale sur l’étude hydrodynamique de la matière nucléaire. Dans la gamme
d’énergie envisagée, la production de pions est importante pendant la transition de phase entre la
matière nucléaire et la matière hadronique. En outre, la transition de phase quarks-gluons n’est
pas observée, il n’y a donc pas de déconfinement des quarks. De plus, on considère que le traite-
ment hydrodynamique est valide quand l’équilibre thermodynamique local est établi à l’échelle
mésoscopique. L’échelle mésoscopique est une échelle intermédiaire grande devant l’échelle mi-
croscopique, on peut donc réaliser des moyennes statistiques, et petite par rapport à l’échelle
macroscopique, on peut alors se placer dans l’approximation des milieux continus.

De manière générale, pour décrire l’hydrodynamique des collisions d’ions lourds dans la matière
nucléaire, un grand nombre d’études se basent sur le fluide relativiste idéal pour lequel la brisure
de symétrie chirale n’est alors pas prise en compte. Cette hypothèse n’est pas rigoureuse au niveau
du principe mais on peut se demander si elle se justifie en pratique. Pour répondre à cette question,
on compare trois fluides relativistes différents : le fluide idéal sans brisure de symétrie, le fluide
idéal avec brisure spontanée de symétrie et le fluide dissipatif sans brisure de symétrie.

Dans le cas non dissipatif avec brisure de symétrie, on considère les pions comme de véritables
bosons de Goldstone. Ces pions chiraux sont donc de masse nulle. On se place tout d’abord à
température nulle puis à température finie.

Dans le cas dissipatif, lorsque l’on considère qu’il n’y a pas de brisure spontanée de symétrie,
pour prendre en compte la dissipation on étudie différents ordres. A l’ordre zéro on retrouve le cas
du fluide idéal sans brisure de symétrie. L’ordre un est une première approche pour prendre en
compte la dissipation mais à cet ordre le comportement du système n’est pas physique car il n’y
a pas de relaxation. Enfin, l’ordre deux est plus réaliste car à cette ordre, spécifique de la théorie
de Müller-Israel-Steward, la relaxation du système vers l’équilibre est prise en compte. Pour ces
ordres un et deux on envisage alors des pions chiraux ou des pions massifs.



Chapitre 10

Hydrodynamique et brisure de symétrie

Dans ce chapitre on rappelle en premier lieu les principales caractéristiques du traitement
hydrodynamique d’un fluide. On envisage alors la cinématique non relativiste puis la cinématique
relativiste sans brisure spontanée de symétrie. Ensuite, on aborde la cas d’une brisure spontanée de
symétrie continue avec l’exemple du superfluide relativiste afin qu’il serve de base de généralisation
au chapitre 11 pour le traitement hydrodynamique relativiste de la matière nucléaire.

10.1 Le point de vue hydrodynamique

10.1.1 Le domaine de validité de l’approximation hydrodynamique

Considérons un système régi par les lois de la théorie classique, assimilable à un fluide. Afin
d’étudier ce système, on doit se donner une échelle de description. L’échelle microscopique est
techniquement inaccessible car, à cette échelle, les grandeurs caractérisant le système fluctuent trop
rapidement. Afin de pallier ce problème, on réalise un processus de nivellement en se positionnant à
une échelle intermédiaire : l’échelle mésoscopique. En effet, cette échelle étant grande par rapport à
l’échelle microscopique, des moyennes statistiques ont un sens. D’autre part, l’échelle mésoscopique
est très petite par rapport à l’échelle macroscopique, on peut alors étudier le système dans le cadre
de l’approximation des milieux continus : L � λ, avec L, de l’ordre du libre parcours moyen, et
λ, longueur caractéristique de variation des grandeurs du système, qui s’identifie à la longueur
d’onde pour des grandeurs périodiques [112].

Si le système étudié est à l’échelle macroscopique faiblement hors équilibre, alors on considère
que celui-ci peut être divisé en cellules mésoscopiques qui sont à l’équilibre local. Dans chaque cel-
lule on peut alors appliquer les lois valables à l’équilibre et définir des grandeurs thermodynamiques
comme par exemple la température ou le potentiel chimique. Les paramètres caractérisant le
système sont constants dans une cellule mais varient d’une cellule à l’autre.

Les collisions assurent dans un premier temps la relaxation vers l’équilibre local. Une fois
l’équilibre local atteint, le traitement hydrodynamique du système devient valide. Ce traitement
permet la compréhension d’un système hors équilibre quand ses propriétés ne varient pas trop
rapidement dans l’espace et le temps. Plus précisément, il faut définir une échelle de longueur
mais aussi une échelle de temps : le régime hydrodynamique correspond aux excitations de basses
fréquences et de grandes longueurs d’onde où la fréquence angulaire w et le nombre d’onde k sont
alors petits.

wτ � 1 kL =
2π

λ
L� 1 ⇔ L� λ (10.1)
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On se retrouve donc dans le cadre de l’approximation des milieux continus car les échelles de
longueur sont très supérieures à la taille d’une cellule qui est de l’ordre du libre parcours moyen,
c’est-à-dire la distance entre deux collisions. De plus, les échelles de temps sont de l’ordre du temps
de collision τ . Du point de vue spatio-temporel, le système est donc proche de l’équilibre.

A cause du grand nombre de constituants dans un système, certains phénomènes collectifs
cohérents peuvent apparâıtre comme par exemple les modes hydrodynamiques.

10.1.2 Les variables hydrodynamiques

De manière générale, on envisage un système globalement hors équilibre, à cause de perturba-
tions diverses. En outre, on se place dans le cas de figure où son évolution est régie par les lois de
l’hydrodynamique. Le retour à l’équilibre local du système après perturbation étant rapide dans
la majeure partie des situations, le temps caractéristique de relaxation associé est alors petit. Cet
équilibre local est caractérisé par les densités associées aux grandeurs conservées. Pour illustrer
notre propos, on peut prendre l’exemple du fluide normal pour lequel les grandeurs conservées
sont le nombre de particules, l’énergie et la quantité de mouvement, voir la partie 10.1.3. En effet,
l’existence d’une quantité conservée dans un système implique la présence d’un mode hydrody-
namique [113]. Cependant, comme on le verra ultérieurement dans la partie 10.2, la réciproque
est fausse. En outre, on peut démontrer que la constante de temps τR, associée à la relaxation
des variables hydrodynamiques est inversement proportionnelle au carré du nombre d’onde. On en
déduit donc que τR est proportionnelle au carré de la longueur caractéristique des inhomogénéités
spatiales, à savoir la longueur caractéristique λ.

τR ∝ 1

k2
∝ λ2 ⇒ lim

k→0
τR = +∞. (10.2)

Dans le régime hydrodynamique, vérifiant kL� 1 et wτ � 1 avec L la dimension caractéristique
d’une cellule et τ le temps caractéristique de collision, λ et 1/ω deviennent très grandes de-
vant respectivement L et τ . Or, les transports des quantités associées aux grandeurs conservées
s’effectuent sur la longueur caractéristique λ. De ce fait, quand cette longeur est très grande, c’est-
à-dire pour les faibles gradients, les temps d’homogénéisation deviennent très longs. A la limite
kL → 0 et wτ → 0, le temps caractéristique τR associé au mode hydrodynamique devient alors
infini. En effet, les écarts par rapport aux valeurs moyennes des quantités conservées s’atténuent
avec un temps infini, ce qui implique une durée de vie infinie du mode hydrodynamique associé.
Ce phénomène est dû au degré de collectivité élevé des modes hydrodynamiques. En outre, ces
modes possèdent toute l’information sur les propriétés dynamiques macroscopiques d’un système.

Un nombre restreint de variables entre dans la description hydrodynamique d’un système. En
effet, contrairement aux temps de relaxation caractéristiques associés au petit nombre de variables
hydrodynamiques, les temps de relaxation des autres degrés de liberté restent bornés, même à la
limite hydrodynamique. Par exemple, si on a un excès local d’une grandeur quelconque, celle-ci
va relaxer par des processus collisionnels de temps caractéristique très petits. La disparition de
l’inhomogénéité est alors quasi-instantanée à notre échelle.

Au contraire, un mode hydrodynamique ne vérifie pas ce processus. L’origine profonde de la
séparation des échelles de temps provient du fait que les inhomogénéités spatiales d’une grandeur
conservée ne peuvent pas disparâıtre instantanément. Le processus d’homogénéisation se fait donc
uniquement par transport, diffusif ou convectif, des régions de forte densité vers les régions de
faible densité et non par homogénéisation locale, comme c’est le cas habituellement.
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Figure 10.1: Processus d’homogénéisation non local d’une grandeur conservée ψ sur la longueur
caractéristique λ, entre les régions R1 et R2.

Le traitement hydrodynamique développé jusqu’à présent est indépendant de la cinématique.
Nous allons maintenant inclure dans ce traitement la cinématique classique puis la cinématique
relativiste.

10.1.3 Le fluide normal non relativiste

Le fluide normal, dans un cadre classique c’est à dire non relativiste, est considéré comme un
fluide non chargé, isotrope et non superfluide. De plus, on peut montrer que ce fluide est décrit
par cinq grandeurs locales : la densité d’énergie ε0, la densité particulaire n0 et les composantes du
vecteur densité de quantité de mouvement ~p0. Ces grandeurs locales sont alors associées aux cinq
quantités conservées que sont l’énergie, le nombre de particules et les composantes de la quantité
de mouvement. De ce fait, le fluide normal possède donc cinq modes hydrodynamiques.

Plus précisément, les modes hydrodynamiques sont obtenus en linéarisant autour de l’équilibre
les équations de conservation associées. La modélisation des perturbations par rapport à l’équilibre
s’effectue en utilisant un vecteur d’onde ~k. En outre, la fréquence des modes hydrodynamiques
permet d’accéder au type de mode, diffusif ou propagatif. Le temps de relaxation τR est égal à
l’inverse de la partie réelle de cette fréquence. On retrouve alors le résultat général τR ∝ k−2, voir
la partie 10.1.2. En effectuant un développement limité à l’ordre k2, on trouve cinq modes. Parmi
ces cinq modes trois modes sont purement dissipatifs et deux modes sont propagatifs amortis.

Les trois modes purement dissipatifs, c’est à dire non propagatifs se scindent en deux modes
visqueux : w = −νk2, avec ν la viscosité cinématique et un mode thermique : w = −κk2, avec
κ la diffusivité thermique du milieu. L’origine des deux modes visqueux est due à la diffusion
de quantité de mouvement dans les directions transverses par rapport au vecteur ~k. Le mode
thermique puise son origine dans la diffusion de chaleur.

Les deux modes propagatifs amortis correspondent aux modes sonores : w = ±ick−Γk2, avec
c la célérité du son et Γ, la constante d’atténuation. Leur origine réside dans l’effet combiné des
oscillations de pression et du transport de quantité de mouvement dans la direction du vecteur ~k.

Dans certains cas, comme les processus de haute énergie, la cinématique classique est insuff-
isante. Il faut alors se tourner vers une cinématique relativiste.

10.1.4 Le fluide normal relativiste

Dans certaines situations, les énergies mises en jeu peuvent donner lieu à l’annihilation et à la
création de particules. En outre, le fluide normal relativiste est le modèle adapté à la description
de ces processus. Dans ce cadre d’étude, il n’y a, de ce fait, plus conservation stricte de la densité
particulaire. Cependant, d’autres types de grandeurs sont alors conservés. On peut citer à titre
d’exemples : le nombre leptonique, la charge baryonique, l’étrangeté...
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Dans le cadre de la relativité restreinte, l’invariance de Galilée est remplacée par l’invariance
de Lorentz. Les grandeurs indicées par 0 sont ici définies dans le référentiel propre. Comme on a
toujours cinq quantités conservées, dont les densités associées sont ε0 = T 00 la densité d’énergie,
T 0i la composante i de la densité de quantité de mouvement où i ε{1, 2, 3} et n0 la densité de
charge. Cette dernière grandeur correspond pour un fluide à la charge baryonique. On peut donc
leur associer cinq modes hydrodynamiques, analogues relativistes des modes du fluide normal non
relativiste. Le système complet des équations hydrodynamiques peut s’écrire :

T µν = (ε0 + p0)u
µuν − p0g

µν ,
∂µ T

µν = 0, ∂µ(n0u
µ) = 0. (10.3)

T µν est le tenseur impulsion-énergie avec, ε0 la densité d’énergie, p0 la pression et n0 la densité de
particules. uµ = γ(c, ~v) est le quadrivecteur vitesse du fluide, vérifiant uµu

µ = c2 = 1. ~v représente
la vitesse d’écoulement du fluide, γ = (1 − (v/c)2)−1/2 correspond au facteur de Lorentz et gµν

au tenseur métrique [114]. On reconnâıt aussi les équations de conservation de l’impulsion-énergie
et du nombre baryonique. De plus, en utilisant la différentielle dP = s0dT0 + n0dµ0, le système
complet (10.3) et en projetant l’équation de conservation du tenseur T µν selon la direction du
quadrivecteur uν on retrouve alors la conservation de l’entropie, s0 étant la densité d’entropie :

uν∂µT
µν = 0 ⇒ ∂µ(s0u

µ) = 0. (10.4)

Dans certains cas des degrés de liberté supplémentaires interviennent, le système d’équations
(10.3) devient incomplet, en particulier pour décrire des systèmes subissant des brisures spontanées
de symétrie. Il faut alors adapter la méthode de description.

10.2 La brisure spontanée d’une symétrie continue

La méthode de description précédente est insuffisante quand le système est soumis à la brisure
spontanée d’une symétrie continue, phénomène pouvant se produire lors d’une transition de phase,
car dans ce cas le nombre de degrés de liberté augmente.

10.2.1 Influence du paramètre d’ordre

Quand le degré de symétrie du hamiltonien associé à un système est supérieur à celui de son
état fondamental, on peut alors dire que le système est soumis à une brisure de symétrie. Pour
décrire cette situation, il faut adjoindre aux degrés de liberté associés au cas de figure où la brisure
est absente, un ou plusieurs degrés de liberté supplémentaires.

Pour décrire le nouvel état, caractérisé par la brisure spontanée de symétrie, on utilise donc
un paramètre d’ordre. De manière générale, quand ce paramètre d’ordre devient non-nul, on dit
que la symétrie du système est brisée. Ce paramètre d’ordre nous informe sur le degré d’ordre
du système associé à cette brisure. En outre, les échelles de temps et d’espace sur lesquelles le
paramètre d’ordre varie sont comparables à celles des quantités conservées. En fonction du cas de
figure, la dimension du paramètre d’ordre change. Il peut prendre la forme d’un nombre réel ou
d’un nombre complexe. Dans le cas de la superfluidité, voir partie 10.2.3, il correspond à la valeur
moyenne de la fonction d’onde de la phase superfluide et dans le cas de la supraconductivité à
celle du condensat. Il peut aussi être défini par un vecteur comme l’aimantation pour un système
ferromagnétique ou un tenseur comme c’est le cas avec la transition de phase smectique-nématique
dans les cristaux liquides [115].
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De plus, de nouveaux modes collectifs, appelés modes de Goldstone, sont observés. Ces nou-
veaux modes sont la signature d’une transition de phase particulière qui ordonne le système. Ce
comportement particulier du système, qui puise son origine dans certaines corrélations à longues
portées créatrices d’ordre, est le sujet du paragraphe suivant.

10.2.2 Hydrodynamique des modes de Goldstone

D’après le théorème de Goldstone [116], lorsque le système est soumis à une brisure spontanée
d’une symétrie continue, il apparait alors un ou plusieurs modes collectifs, qualifiés de modes de
Goldstone. Ces nouveaux modes sont aussi appelé modes mous car ce sont des modes collectifs
de basses fréquences. Les considérations précédentes ne sont plus vraies pour la brisure spontanée
d’une symétrie discrète et pour la brisure spontanée d’une symétrie de jauge, voir partie 9.2.3.

Mêmes si les causes sont différentes, les temps de relaxation τR d’un mode de Goldstone et
d’un mode hydrodynamique associé à une grandeur conservée, voir partie 10.1.2, possèdent une
forme similaire. De ce fait, à la limite des basses fréquences et des grandes longueurs d’onde, ce
qui mathématiquement se traduit par w → 0 et λ→ +∞, le temps caractéristique d’un mode de
Goldstone, à l’instar de celui d’un mode hydrodynamique classique, tend donc vers l’infini.

Les modes de Goldstone sont associés à des particules de masse nulle et au comportement
grégaire, les bosons de Goldstone, excitations immédiatement accessibles à très basse température,
dans le domaine situé au dessus de l’état fondamental. Quand on se place à température finie,
la durée de vie de ces excitations est très grande, du fait de la grande cohérence de ces modes
collectifs. En effet, seules les corrélations à longue portée sont à l’origine de ces modes [116]. Au
contraire, les corrélations à courte portée s’opposent au processus de mise en ordre. Par exemple,
pour la transition ferro-para, ce sont les corrélations à courte portée qui écartent localement
l’aimantation de la direction � choisie � par le système lors de la brisure de symétrie. On a donc
localement des fluctuations d’orientation du paramètre d’ordre, même si globalement la direction
du paramètre d’ordre ne change pas.

λ/2δ

M
R

R 1

2

M

z

Figure 10.2: Représentation d’une fluctuation d’orientation du paramètre d’ordre M sur la
longueur caractéristique λ.

Les fluctuations d’orientation ne peuvent disparâıtre dans la région R1 que sous l’action d’une
force de rappel, d’orientation différente, due à la région R2. Pour que le processus soit efficace,
il faut que ces deux régions soient éloignées d’une distance supérieure ou égale à la longueur
caractéristique des inhomogénéités λ. Les corrélations à longue portée sont donc bien génératrices
d’ordre.

Maintenant que l’on considère les brisures spontanées dans le traitement du système, on peut
faire l’inventaire du nombre de modes hydrodynamiques correspondant. De manière générale, les
modes hydrodynamiques peuvent être associés aux grandeurs conservées, voir partie 10.1.2, ou
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comme on vient de le voir à une brisure spontanée de symétrie s’accompagnant de corrélations à
longue portée.

Pour résumer, le nombre total des modes hydrodynamiques est égal à la somme du nombre
de modes de Goldstone issus de la brisure spontanée et du nombre de quantités conservées [117].
Cependant, le dénombrement de ces modes ne permet pas de savoir si ces modes sont convectifs
ou diffusifs. Afin d’accéder à cette information, il faut donc approfondir l’analyse, comme on l’a
fait pour le fluide normal non-relativiste, voir 10.1.3, et se pencher sur le système d’équations qui
régit la dynamique du système. Par cette méthode, on peut par exemple aussi accéder à la nature
des modes pour le cas du superfluide relativiste, voir partie 10.2.3, ou pour la matière nucléaire,
voir partie 11.1.3.

10.2.3 Le cas du superfluide relativiste

La transition de phase fluide-superfluide s’effectue à la température critique TC et la brisure de
symétrie associée est de type U(1). Le paramètre d’ordre correspondant est < ψ >= ψ0e

iφ, valeur
moyenne de la fonction d’onde ψ de la phase superfluide. Aux cinq modes hydrodynamiques du
fluide normal s’ajoute la variable hydrodynamique supplémentaire φ, caractérisant la phase du
condensat superfluide. En effet, ψ0 est une variable hydrodynamique uniquement près de la tran-
sition de phase [118], dans cette étude on se place donc loin du point critique. Dans le superfluide,
loin de ce point critique, le nombre de modes hydrodynamiques s’élève donc à six.

Le traitement classique de la brisure de symétrie U(1) aboutit au modèle phénoménologique des
deux fluides de Landau [118, 119]. Dans ce modèle, un fluide correspond au fluide normal de vitesse

~vn et l’autre au superfluide, de vitesse ~vs =
~
m
~∇φ. Cette séparation en deux fluides est artificielle

car dans la réalité, fluide et superfluide forment un unique fluide. Ce modèle permet de donner une
interprétation de la superfluidité. Ce phénomène se manifeste par exemple par l’existence d’un
mode hydrodynamique, le second son, qui se propage de manière cohérente, rapide et sans variation
de densité, contrairement à une onde sonore classique. La variable hydrodynamique associée est
la phase du condensat φ. De plus, il y a changement de la nature du mode de transport de la
chaleur. En effet, le mode n’est plus diffusif mais propagatif.

Le traitement relativiste dans le cas où la dissipation est négligée aboutit à [120, 121, 122] :

T µν = (ε+ p)uµuν − pgµν + V 2∂µφ∂νφ,
∂µT

µν = 0, uµ∂µφ = −µ0, ∂µ(n0u
µ − V 2∂µφ) = 0. (10.5)

Le tenseur T µν du superfluide contient un terme de plus que son homologue du fluide normal, voir
partie 10.3, à savoir V 2∂µφ∂νφ. Ce terme tient compte explicitement de la brisure de symétrie
U(1) du superfluide relativiste. On reconnâıt l’équation de conservation du tenseur impulsion-
énergie, l’équation d’évolution de la phase du condensat et l’équation de conservation de la densité
particulaire. V 2 représente la densité superfluide à la limite non relativiste, µ0 = γµ le potentiel
chimique dans le référentiel propre, avec γ le facteur de Lorentz, et uµ = γ(1, ~vn) la quadrivitesse
du fluide normal. La nouvelle variable hydrodynamique φ est reliée au potentiel chimique et figure
aussi dans l’équation de conservation du nombre de particules. D’autre part, grâce à la différentielle
dP = s0dT0 + n0dµ0 +

1
2
V 2d(∂µφ∂νφ) et (10.5), on peut retrouver l’équation de conservation de

l’entropie (10.4). Cette équation est la même que celle du fluide parfait normal, ce qui est cohérent
avec l’absence, par hypothèse, de toute source de dissipation dans le superfluide.

Le modèle hydrodynamique du superfluide relativiste est utile au chapitre 11 pour la généralisation
du modèle hydrodynamique relativiste à la matière nucléaire avec brisure de symétrie chirale
SU(2)L ⊗ SU(2)R.



Chapitre 11

Brisure de symétrie chirale et matière
nucléaire

Le but de ce chapitre consiste à établir un système complet d’équations hydrodynamiques
relativistes pour la matière nucléaire prenant en compte la brisure spontanée de symétrie chirale
dans la zone centrale de collision en absence de baryons. L’intérêt de cette démarche réside dans
le fait que le système d’équations obtenu dans ce cadre particulier est compatible avec le domaine
de validité du modèle de Bjorken, il peut donc être utilisé au chapitre 12. Le traitement hydrody-
namique à l’échelle mésoscopique impose l’utilisation de grandeurs moyennées comme les densités
de charge moyenne droite et gauche ρR et ρL.

Dans un premier temps on pose les bases générales du modèle hydrodynamique complet de
la matière nucléaire. Dans un deuxième temps on se place dans la zone centrale de collision, en
absence de baryons et on réalise un développement limité à l’ordre deux en champ de pion de la
phase du condensat chiral.

11.1 Modèle hydrodynamique complet et matière nucléaire

Pour établir le modèle hydrodynamique complet, on envisage la brisure spontanée de symétrie
chirale dans le cas idéal d’un fluide relativiste parfait. Par hypothèse de travail, les phénomènes
dissipatifs sont donc écartés du modèle [123].

La méthode générale suivie, afin d’obtenir les équations hydrodynamiques qui décrivent la
brisure spontanée de symétrie chirale dans la matière nucléaire, est relatée dans [122] et les prin-
cipales étapes du raisonnement sont rappelées dans [124]. Cette méthode générale est idéale pour
traiter les brisures de symétries. Par exemple, elle peut être utilisée pour déterminer le système
d’équations hydrodynamiques complet du superfluide relativiste (10.5).

La démarche peut se décomposer en étapes charnières : pour commencer, on détermine les cro-
chets de Poisson entre les variables hydrodynamiques. Il faut aussi que les symétries du problème
soient compatibles avec le hamiltonien le plus général possible. Avec cet hamiltonien et les cro-
chets de Poisson il faut alors calculer les équations hydrodynamiques correspondantes. Par la
suite, comme la densité de moment est égale au flux d’énergie, on peut alors utiliser l’invariance
de Lorentz. Pour finir, on peut effectuer la mise en forme du système hydrodynamique complet.

139
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11.1.1 Variables hydrodynamiques et hamiltonien

On peut classer les quatorze degrés de liberté hydrodynamiques en deux groupes :
Le premier groupe correspond aux onze variables hydrodynamiques du fluide nucléaire qui sont

reliées aux densités des grandeurs conservées. Ces grandeurs sont les trois composantes T 0i de la
densité de moment, la densité d’entropie s, la densité de nombre baryonique n, les trois densités
de charge droite et les trois densités de charge gauche. Dans SU(2), on peut écrire ces dernières
sous forme matricielle à l’aide des expressions ρR ≡ ρiRτi/2 et ρL ≡ ρiLτi/2.

Le deuxième groupe de variables est formé par les modes de Goldstone qui sont reliés à la brisure
spontanée de symétrie. En outre, pour la symétrie chirale, les bosons associés à ces trois modes
sont les pions. En coordonnées cartésiennes les champs de pions s’écrivent π1, π2, π3. Dans SU(2),
ces modes peuvent donc avoir une représentation matricielle. Plus précisément, les trois degrés
de liberté sont associés aux trois générateurs infinitésimaux de la transformation : Σ ≡ ei~τ .~π/fπ ,
qualifiée, par analogie avec le modèle du superfluide, de phase du condensat chiral. En effet, la
matrice Σ représente la généralisation dans SU(2) de la phase du condensat superfluide φ, avec φ
appartenant à U(1).

De manière générale, la méthode utilisée s’appuie sur la mécanique analytique [125]. Dans ce
cadre, on effectue le passage de l’espace de Hilbert à l’espace des phases et l’algèbre des crochets
de Poisson remplace l’algèbre de Lie entre les commutateurs. De plus, les opérateurs associés à
la première quantification dans l’espace de Hilbert retrouvent le statut de grandeurs classiques
dans l’espace des phases. Dans cet espace, le caractère non-abélien de l’algèbre de SU(2) n’est
alors plus d’origine quantique mais d’origine matricielle. Pour illustrer notre propos, on peut pren-
dre l’exemple des crochets de Poisson caractérisant la symétrie chirale. A l’échelle mésoscopique,
les composantes des charges ρR et ρL forment, comme c’est aussi le cas pour leurs opérateurs
quantiques associés (9.10), avec εabc le tenseur complètement antisymétrique de Levi-Civita, deux
algèbres fermées et séparées{

ρaL(~x), ρ
b
R(~y)

}
= 0,{

ρaR(~x), ρ
b
R(~y)

}
= −εabcρcR(~x)δ3(~x− ~y),{

ρaL(~x), ρ
b
L(~y)

}
= −εabcρcL(~x)δ3(~x− ~y). (11.1)

A l’échelle mésoscopique, les densités de charge ρR et ρL sont les générateurs des rotations chirales.
De plus, les crochets de Poisson des composantes ρaR et ρaL avec Σ et Σ† ne s’annulent pas.

{
ρaR(~x),Σ(~y)

}
= − i

2
τaΣ(~x)δ3(~x− ~y),

{
ρaR(~x),Σ

†(~y)
}

=
i

2
Σ†(~x)τaδ3(~x− ~y),{

ρaL(~x),Σ(~y)
}

=
i

2
Σ(~x)τaδ3(~x− ~y),

{
ρaL(~x),Σ

†(~y)
}

= − i

2
τaΣ†(~x)δ3(~x− ~y). (11.2)

On peut faire le même constat pour les crochets de Poisson de la composante de la densité de
moment T 0i avec ρL, ρR, Σ et Σ†.{

T 0i(~x),Σ(~y)
}

= −∂iΣ(~x)δ3(~x− ~y),
{
T 0i(~x),Σ†(~y)

}
= −∂iΣ†(~x)δ3(~x− ~y),{

T 0i(~x), ρR(~y)
}

= ρR(~x)∂iδ
3(~x− ~y),

{
T 0i(~x), ρL(~y)

}
= ρL(~x)∂iδ

3(~x− ~y). (11.3)

D’après les symétries du système, le hamiltonien le plus général prend la forme :

H =

∫
dx3T 00

(
T 0i, s, n, ρaR, ρ

a
L,Σ,Σ

†, ∂iΣ, ∂iΣ
†) . (11.4)
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Dans la définition de H, on considère la densité volumique d’énergie T 00 comme une fonction des
quatorze degrés de liberté hydrodynamiques et des dérivées partielles premières ∂iΣ et ∂iΣ

† car on
suppose que Σ et Σ† sont des fonctions lentement variables spatialement. Les dérivées partielles
des ordres supérieurs ne sont donc pas prises en compte. En outre, la différentielle totale de la
densité d’énergie prend la forme

dT 00 = Tds+ µdn+ vidT 0i + Tr
[
µRdρR + µLdρL + σ†dΣ + dΣ†σ + γ†i d∂iΣ + d∂iΣ

†γi

]
, (11.5)

avec respectivement T , µ, vi, µR, µL, σ et γi, les variables thermodynamiques conjuguées à celles
déjà énoncées pour le hamiltonien (11.4). Le caractère non-abélien du groupe des matrices de
SU(2) nous oblige à être vigilant lors des permutations. Au contraire, ce n’est plus le cas à
l’intérieur d’une trace où les éléments sont invariants par permutation circulaire. De plus, grâce à
une transformation de Legendre, on peut déterminer la pression p ainsi que sa différentielle totale
dp :

p = viT 0i + Ts+ µn+ Tr [µRρR + µLρL]− T 00, (11.6)

dp = T 0idvi + sdT + ndµ+ Tr
[
ρRdµR + ρLdµL − σ†dΣ− dΣ†σ − γ†i d∂iΣ− d∂iΣ

†γi

]
. (11.7)

11.1.2 Equations hydrodynamiques et développement limité d’ordre
quadratique

La méthode générale pour établir les équations hydrodynamiques du système se base sur l’u-
tilisation des relations (11.8), avec H le hamiltonien du système et F (a, b, c, d, ...) une fonction de
plusieurs variables hydrodynamiques a, b, c, d,...[125] :

∂a

∂t
=
{
H, a

}
,

{
F(a, b, c, d, ...), a

}
=
∂F

∂b

{
b, a
}
+
∂F

∂c

{
c, a
}
+
∂F

∂d

{
d, a
}
+ ... (11.8)

Maintenant que l’on connâıt les crochets de Poisson associés aux variables hydrodynamiques de
la matière nucléaire, voir partie 11.1.1, on peut alors déterminer le système complet d’équations
hydrodynamiques associé

∂tT
0k = −∂iT ik,
∂tn = −∂i(nvi),
∂tρR = −∂i(ρRvi)−

i

2
[µR, ρR] +

i

2

[
Σ(σ† − ∂iγ

†
i )− (σ − ∂iγi)Σ

†
]
,

∂tρL = −∂i(ρLvi)−
i

2
[µL, ρL]−

i

2

[
(σ† − ∂iγ

†
i )Σ− Σ†(σ − ∂iγi)

]
,

∂tΣ = −vi∂iΣ− i

2
(µLΣ− ΣµR), (11.9)

avec la composante spatiale du tenseur impulsion-énergie T ik = pδik+viT 0k+Tr
[
γ†i ∂kΣ + ∂kΣ

†γi

]
.

L’égalité entre le flux d’énergie et la densité de moment ∂tT
00 = −∂iT 0i entrâıne l’invariance

relativiste. Ensuite, à partir du système d’équations hydrodynamiques (11.9), on trouve en utilisant
la définition de T 0i :

T 0i =
∂p

∂vi
= vi

(
Ts+ µn+ vkT 0k + Tr [µRρR + µLρL]

)
+ Tr

[
vk∂kΣ

†γi + γ†i v
k∂kΣ

]
− i

2

[
(µLΣ

† − µRΣ
†)γi − (µLΣ− ΣµR)γ

†
i

]
. (11.10)
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A ce niveau, la seule hypothèse sur la structure du hamiltonien est la lente variation spatiale
de Σ et de Σ†, les dérivées partielles premières ∂iΣ et ∂iΣ

† étant alors petites.
Dans la suite de l’étude, on suppose aussi que les charges ρR, ρL sont petites. Ces deux hy-

pothèses sont plausibles car quand la symétrie chirale est vérifiée exactement Σ est constante et ρL,
ρR sont nulles. De plus, les deux hypothèses précédentes sont en accord avec une lente dépendance
spatio-temporelle de Σ. De ce fait, elles autorisent un développement limité au plus bas ordre en
Σ d’où une dépendance spatio-temporelle d’ordre quadratique en Σ. On en déduit que la densité
d’énergie T 00 est alors de la forme

T 00 = ε0(s, n, T
0i) + ε1,

avec ε0 la densité d’énergie du fluide normal relativiste, voir la partie 10.1.4, et ε1 la densité
d’énergie associée aux termes chiraux de plus bas ordre par rapport à Σ, Σ† et à leurs dérivées
spatiales respectives ∂iΣ et ∂iΣ

† donc

ε1 =
f2
s

4
(δij −

1− v2π
1− v2πv

2
vivj)Tr

[
∂iΣ∂jΣ

†]+ 1

γ2f2
t (1− v2πv

2)
Tr
[
(ρL − ΣρRΣ

†)2
]

+
1

γ2f2
v

Tr
[
(ρL + ΣρRΣ

†)2
]
− i

v2π
γ2(1− v2πv

2)
vkTr

[
(ρLΣ∂kΣ

† + Σ†∂kΣρR)
]
. (11.11)

Dans (11.11), vπ ≡ fs/ft représente la vitesse du pion alors que fs, ft et fv sont des fonctions
de la température T = T0/γ et du potentiel chimique µ = µ0/γ. Ces grandeurs peuvent être
déterminées dans le cadre de la chromodynamique quantique, via la thermodynamique. ft et fs
correspondent aux constantes de désintégration temporelle et spatiale du pion. Si on se place à
température nulle, comme l’invariance de Lorentz est dans ce cas vérifiée à l’échelle microscopique
alors fs = ft. Cependant, à température finie, et de manière générale à cause de la présence d’un
bain thermique, l’invariance de Lorentz à l’échelle microscopique n’est plus vérifiée. De ce fait, il
n’y a plus égalité entre fs et ft.

11.1.3 Système complet d’équations hydrodynamiques

Afin de réécrire les équations du système sous forme covariante, c’est-à-dire un système d’équa-
tions qui conserve la même forme par changement de référentiel, l’utilisation de combinaisons
linéaires des variables initiales s’impose. On peut donc définir deux combinaisons de potentiels
chimiques et deux combinaisons de charges, à savoir µV = (µL + ΣµRΣ

†), µA = (µL − ΣµRΣ
†),

ρV = (ρL + ΣρRΣ
†) et ρA = (ρL − ΣρRΣ

†). Dans cette optique, la mise sous forme covariante à
l’ordre quadratique de la densité d’énergie en utilisant K̂ = T0

∂
∂T0

+ µ0
∂

∂µ0
, permet d’écrire :

T 00 = (K̂ − 1)p0 +
1

4
(K̂ + 1)(f2

t − f2
s )u

µuνTr
[
∂µΣ∂νΣ

†]+ (K̂ − 1)
1

4
f2
sTr

[
∂µΣ∂

µΣ†]
+(K̂ + 1)

1

4
f2
vTr

[
(γµV )

2
]
. (11.12)

Par transformation de Legendre, on en déduit la pression, toujours à l’ordre quadratique :

p = p0 +
1

4
f 2
sTr

[
∂µΣ∂

µΣ†]+ 1

4
(f 2

t − f 2
s )u

µuνTr
[
∂µΣ∂νΣ

†]+ 1

4
f2
vTr

[
(γµV )

2
]
. (11.13)

On peut donc établir la forme covariante du tenseur impulsion-énergie, à l’aide des expressions
(11.10), (11.12) et (11.13). On obtient alors :

T µν = (ε+ p)uµuν − pgµν +
1

4
f2
sTr

[
∂µΣ∂νΣ† + ∂νΣ∂µΣ†] . (11.14)
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Dans (11.14), les deux premiers termes du membre de droite de T µν correspondent au tenseur
impulsion-énergie du fluide parfait relativiste, voir partie 10.3. En outre, le dernier terme du
membre de droite, proportionnel à f 2

s , est associé à la brisure spontanée de la symétrie chirale.
Ainsi, le système complet est décrit par quatorze équations hydrodynamiques, le nombre de

variables hydrodynamiques étant comme on l’a déjà évoqué précédement lui aussi de quatorze :

∂µT
µν = 0 ∂µ(n0u

µ) = 0, (11.15)

i∂µ(f
2
sΣ∂

µΣ† + (f2
t − f2

s )u
µuνΣ∂νΣ

†) + [uµΣ∂µΣ
†,
f 2
v

2
µV ] = 0, (11.16)

∂µ(
f 2
v

2
µV u

µ) +
1

2
[uµΣ∂µΣ

†,
f2
v

2
µV ] = 0. (11.17)

En outre, dans les quatorze équations on retrouve les cinq équations du fluide normal relativiste
et neuf autres équations se rapportant à l’hydrodynamique de la symétrie chirale. Ces dernières
correspondent à l’équation du premier ordre en Σ (11.17) et à l’équation du second ordre en Σ
(11.16). De plus, on peut montrer que les neuf équations spécifiques de la symétrie chirale sont
équivalentes à l’équation du premier ordre en Σ et aux équations ∂µJ

µ
L = 0 et ∂µJ

µ
R = 0 avec

Jµ
R = − i

4

[
(f 2

t − f 2
s )u

µuνΣ†∂νΣ + f 2
sΣ

†∂µΣ
]
+

1

4
uµΣ†f2

vµVΣ, (11.18)

Jµ
L = − i

4

[
(f 2

t − f 2
s )u

µuνΣ∂νΣ
† + f 2

sΣ∂
µΣ†]+ 1

4
uµf 2

vµV . (11.19)

Pour finir, le système hydrodynamique étant fermé, le problème est donc en théorie soluble.
Cependant, en pratique la démarche est ardue. D’autre part, à partir de ce système complet, on
peut retrouver la conservation de l’entropie par la même démarche que celle de (10.4).

11.2 Hypothèses simplificatrices pour le système complet

Maintenant que les principales notions, nécessaires à la compréhension du problème ont été
présentées, on peut désormais aborder le problème de manière plus concrète. La suite de l’étude
consiste à essayer de mettre en évidence les écarts dus à la brisure spontanée de symétrie chirale par
rapport au fluide nucléaire standard où la symétrie chirale est vérifiée exactement. La résolution
globale du problème étant compliquée, nous allons donc restreindre le domaine de validité.

11.2.1 Absence de production de baryons

Dans les collisions d’ions lourds relativistes le nombre de mésons produits est très important.
De ce fait, lors de ce type de collision, le nombre de baryons créés dans la zone centrale de rapidité
est négligeable devant le nombre de mésons, voir partie 12.1.1. Dans la suite de l’étude, nous
supposons donc que le nombre de baryons est nul, ce qui se traduit par µV = 0 et n0 = 0. Le
système complet d’équations se réduit alors à :

T µν = (ε+ p)uµuν − pgµν +
1

4
f2
sTr

[
∂µΣ∂νΣ† + ∂νΣ∂µΣ†] (11.20)

∂µT
µν = 0 (11.21)

p = p0 +
1

4
f2
sTr

[
∂µΣ∂

µΣ†]+ 1

4
(f 2

t − f 2
s )u

µuνTr
[
∂µΣ∂νΣ

†] (11.22)

i∂µ(f
2
sΣ∂

µΣ† + (f 2
t − f 2

s )u
µuνΣ∂νΣ

†) = 0. (11.23)
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11.2.2 Développement limité en champ de pion

Le développement limité à l’ordre zéro correspond au cas de figure où la production de pions est
nulle, la phase du condensat est alors Σ = 1. On se place désormais dans le cas où le développement
limité de la phase Σ du condensat chiral en puissances de ~τ .~π est vérifié, avec ~τ vecteur dont les
composantes sont les matrices de Pauli et ~π le champ de pion classique. En se limitant à l’ordre
quadratique en ~τ .~π on obtient pour Σ

Σ = exp

[
i
~τ .~π

fπ

]
' 1 + i

~τ .~π

fπ
− 1

2

(
~τ .~π

fπ

)2

+ o
(
(~τ .~π)2

)
. (11.24)

En réalisant le développement limité au premier ordre en ~τ .~π des équations (11.20), (11.21),
(11.22) et (11.23) on retrouve le système complet d’équations associé au fluide normal relativiste
sans baryons et sans brisure spontanée de symétrie chirale, voir partie 10.3.

Par contre, le développement limité au deuxième ordre dans le développement en champ de
pion ~τ .~π de ces mêmes équations permet d’aboutir à

T µν = (ε+ p)uµuν − pgµν +
1

4

f2
s

f2
π

Tr [∂µ(~τ .~π)∂ν(~τ .~π) + ∂ν(~τ .~π)∂µ(~τ .~π)] (11.25)

∂µT
µν = 0 (11.26)

p = p0 +
1

4

f2
s

f2
π

Tr [∂µ(~τ .~π)∂
µ(~τ .~π)] +

1

4

(f 2
t − f 2

s )

f2
π

uµuνTr [∂µ(~τ .~π)∂ν(~τ .~π)] (11.27)

∂µ

(
(f 2

t − f 2
s )

f2
π

uµuν∂ν(~τ .~π) +
f2
s

f2
π

∂µ(~τ .~π)

)
= 0. (11.28)

Avec la même méthode que celle utilisée pour le fluide normal (10.4), on retrouve alors la
conservation de l’entropie avec le développement limité à l’ordre deux en champ de pion.

Ces équations sont applicables pour de petites fluctuations chirales dans la zone centrale,
indépendamment de toute considération de géométrie. Dans le chapitre 12, on se place dans la
géométrie de Bjorken (1 + 1) afin de quantifier les écarts générés par la brisure spontanée de
symétrie chirale sur le fluide normal relativiste.



Chapitre 12

Applications aux réactions entre ions
lourds

Comme on l’a déjà évoqué au chapitre 10, le point de vue hydrodynamique est fréquemment
utilisé pour décrire les fluides à basses fréquences et grandes longueurs d’onde. Dans ce cadre, le
système est décrit grâce à un nombre restreint de degrés de liberté, les variables hydrodynamiques.
Dans ce chapitre, nous utilisons le système complet d’équations établi à la fin du chapitre 11, voir
partie 11.2.2, dans une géométrie particulière, la géométrie de Bjorken (1 + 1).

Le but de ce chapitre consiste dans un premier temps à rappeler les grandes lignes du modèle
de Bjorken pour le fluide idéal. Dans un deuxième temps on étudie les écarts induits par la prise
en compte de la brisure spontanée de symétrie chirale sur l’évolution de la matière nucléaire sans
dissipation. Dans un troisième temps on s’intéresse aussi à la prise en compte de la dissipation
dans la matière nucléaire mais cette fois sans brisure de symétrie chirale [123].

12.1 Domaine de validité du modèle de Bjorken

12.1.1 Régime de transparence et zone centrale

Le modèle de Bjorken est souvent associé au point de vue hydrodynamique pour décrire
la dynamique des collisions d’ions lourds ultrarelativistes. Une des particularités du modèle de
Bjorken réside dans le fait que les solutions obtenues pour décrire l’évolution de la pression P ,
la température T , la densité d’énergie ε et la densité d’entropie s sont analytiques, voir partie
12.1.3.

Parmi les différentes approches, certaines envisagent la collision entre deux ions lourds ultra-
relativistes identiques [126, 127]. La nature relativiste de cette collision impose la dilatation des
temps et la contraction des longueurs parallèles au mouvement par rapport aux référentiels pro-
pres des ions lourds. Avec les notations choisies, l’axe du boost de Lorentz est orienté selon z.
Les vitesses n’étant plus additives sous la transformation de Lorentz, on utilise leurs analogues
relativistes, les rapidités y.

y = arcth(vz) =
1

2
ln

(
E + Pz

E − Pz

)
,

avec E, l’énergie, Pz l’impulsion selon l’axe z d’une particule et vz = Pz

E
. De plus, il faut utiliser

le temps propre τ = t
γ
, temps dans le référentiel de repos d’une particule, à la place du temps t à

cause de la perte du caractère absolu de ce dernier.
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cm

o

B A

2R 2R

2R 2R
γcm γ

Figure 12.1: Collision dans le centre de masse de deux ions lourds ultrarelativistes identiques A et
B. γcm représente le facteur de Lorentz dans le référentiel du centre de masse et R correspond au
rayon propre des noyaux. Dans le référentiel du centre de masse, il y a contraction de la longueur
parallèle à la direction du boost de Lorentz par rapport au référentiel propre. Figure adaptée de
[128].

Expérimentalement, on peut avoir accès au nombre de particules N, produites par unité de

rapidité dN
dy

. Pendant les collisions, un grand nombre de mésons et de baryons secondaires sont

créés dans la région de rapidité entre le projectile et la cible. On peut citer par exemple les pions
π+, π−, π0, les kaons K+, K−, K0, voir partie 9.1.1.

En outre, le traitement hydrodynamique de l’évolution du système n’est pas valide aux premiers
instants des collisions mais à partir du moment où l’équilibre local est atteint, c’est à dire pour
τ ≥ τ0 ' 1fm

c
. De plus, pour les domaines de très haute énergie comme Ecm ≥ 100A.MeV [128],

avec A le nombre de nucléons, les échelles de temps des mécanismes d’expansion hydrodynamique
et de production de particules sont décorrélées.

dy

y
0

mésons

baryons

du progectile
fragmentation
de la cible

dN

fragmentation

centralplateau

fragmentation du
projectile

fragmentation de la
cible

mésons

baryons

Figure 12.2: Vision schématique de dN
dy

en fonction de la rapidité y dans une collision d’ions lourds

à très haute énergie. Trois zones sont visibles, une zone centrale et deux zones périphériques. Figure
adaptée de [128].

Le nombre de baryons est important dans les deux zones périphériques de fragmentation de la
cible et du projectile. Dans la zone centrale, correspondant à y ' 0, la production de mésons est
très importante tandis que les baryons sont quasi absents. De ce fait, dans la suite de l’étude on
suppose que le nombre de baryons est nul dans la zone centrale.

En outre, comme le nombre de particules produites par unité de rapidité dans cette zone
centrale présente un plateau, on peut donc en première approximation le considérer constant lors
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de collisions A+ A de particules identiques

dN

dy

∣∣∣∣
A+A

' constante. (12.1)

La validité de cette hypothèse sur la distribution de rapidité s’appuie sur l’extrapolation de
résultats expérimentaux analogues lors des collisions p+ p entre protons.

Contrairement au cas général, où les observables dépendent de la rapidité y, dans la zone
centrale on peut donc adopter un traitement simplifié où on suppose l’indépendance de ces mêmes
observables par rapport à y. De plus, les mésons sont principalement des pions car, leurs énergies de
masse étant plus petites que celles des autres mésons, ils sont formés prioritairement. En pratique
ils correspondent à 90% de la totalité des mésons. Dans la suite de l’étude on suppose donc que
les pions sont les seuls mésons formés.

L’ensemble des hypothèses simplificatrices précédentes concernant la zone centrale sont in-
trinsèques au modèle de Bjorken.

12.1.2 Rappels sur le modèle de Bjorken sans brisure de symétrie

Dans la gamme de hautes énergies Ecm ≥ 100A.MeV [128, 129, 130] les deux noyaux ne
sont pas stoppés pour former un noyau composé chaud comme c’est le cas pour les gammes
d’énergies inférieures mais se transpercent mutuellement et sont alors transparents l’un par rapport
à l’autre. Parmi les différents modèles simples décrivant les collisions d’ions lourds, celui de Bjorken
est souvent utilisé pour décrire les collisions centrales symétriques. Plus précisément, le modèle
de Bjorken est un modèle hydrodynamique à (1 + 1) dimensions qui est valide dans la région
centrale de collision. D’après les dimensions du modèle, le système est représenté par un cylindre de
rayon très grand. Pendant la collision l’expansion transversale est alors négligée devant l’expansion
longitudinale car on néglige l’épaisseur longitudinale des noyaux. En outre, on suppose alors que
les coordonnées longitudinales des nucléons d’un même noyau sont identiques.

oo

B A B’A’

Figure 12.3: Schéma d’une collision d’ions lourds ultrarelativistes dans le modèle de Bjorken
(1 + 1). A, B et A′, B′ représentent respectivement les noyaux avant et après collision. La région
entre A′ et B′ représente la zone centrale de production de pions. Figure adaptée de [129].

L’évolution du système peut être visualisée dans un diagramme d’espace-temps caractérisé par
le temps propre τ et la rapidité y qui sont les variables naturelles du modèle de Bjorken. Dans
ce diagramme les temps propres sont représentés par des hyperboles situées à l’intérieur du cône
de lumière. La rapidité y est la coordonnée permettant de se déplacer sur ces hyperboles. Les
conditions initiales du fluide nucléaire sont donc caractérisées par une hyperbole de temps propre
constant τ0. Les particules secondaires de cette collision possèdent une distribution en vitesse et
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leurs temps caractéristiques de désintégration vérifient τ ≥ τ0 =
1fm
c
. De plus, une des spécificités

de la cinématique relativiste impose des temps de vie d’autant plus longs que les vitesses des
particules sont élevées. Par exemple dans la figure 12.4 avec la convention c = 1, des particules
assimilées à des particules libres, créées en (t, z) = (0, 0), se désintègrent sur l’hyperbole de temps
propre τ =

√
t2 − z2.

Comme on l’a déjà évoqué pour le nombre de particules par unité de rapidité dans la zone
centrale, voir partie 12.1.1, les propriétés du système sont indépendantes de la rapidité le long
de l’hyperbole τ0. L’invariance selon l’axe z par transformation de Lorentz est alors vérifiée pour
le système ainsi que pour les équations hydrodynamiques qui le caractérisent. Les propriétés du
fluide au point de coordonnée z se déduisent de celles en 0. Comme la vitesse du fluide est nulle
en z = 0, la quadrivitesse peut s’écrire uµ = (1, 0, 0, 0), ce qui en z devient uµ = xµ

τ
= ( t

τ
, 0, 0, z

τ
),

par transformation de Lorentz suivant l’axe z, dont la vitesse est v = z
τ
.

t

z

projectile

phase hydrodynamique

cible

freeze-out

de la cible
fragmentation

du projectile
fragmentation

=1fm/cτ

équilibre local

Figure 12.4: Evolution dans l’espace-temps de la région centrale de rapidité dans le modèle de
Bjorken. L’évolution hydrodynamique du système est située entre l’obtention de l’équilibre local
en τ0 et le freeze-out en τf . Figure adaptée de [127].

Le diagramme d’espace-temps est constitué de différentes zones représentant chacune une étape
de l’évolution du système pendant son refroidissement [128]. Par ordre chronologique, dans la
première étape τ ≤ τ0, le système se thermalise pour atteindre l’équilibre local en τ = τ0 ' 1fm

c
.

Ensuite dans la deuxième étape, pour τ ≥ τ0, la symétrie du modèle est réalisée. Dans le cadre
de cette théorie effective, la transition de phase du plasma de quark-gluons, si elle existe, est
incorporée dans le processus de thermalisation du système. Le refroidissement du système aboutit
alors à la phase d’hadronisation des quarks en mésons et baryons [128]. De ce fait, dans la zone
centrale le point de vue hydrodynamique du gaz de pions devient valide. Pour finir, dans la
troisième étape le gaz de pions évolue jusqu’à τf , temps de � freeze-out �, contemporain de la
libération des pions. Les pions peuvent alors s’échapper du milieu dense et deviennent libres dans
ce régime asymptotique.
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12.1.3 Caractéristiques du modèle

De manière générale, les grandeurs caractérisant le système sont des fonctions des deux vari-
ables naturelles du problème, le temps propre τ et la rapidité y.

De plus, on relie ces variables (τ ,y) aux variables (t,z) en utilisant les relations

t(τ, y) = τ cosh(y) et z(τ, y) = τ sinh(y). (12.2)

Dans la zone centrale, voir partie 12.1.1, par hypothèse ces grandeurs sont indépendantes de
la rapidité. Dans le modèle de Bjorken à (1 + 1) dimensions, ce cas de figure est plausible si
τ ≤ R/c ' 6fm/c, où R est le rayon des noyaux. Pour des temps propres supérieurs il faut prendre
en compte l’expansion transverse et donc utiliser un modèle à (3+1) dimensions [129]. Dans la zone
centrale les observables comme la densité d’énergie ε, la pression p, la température T , la densité
d’entropie s deviennent indépendantes les unes des autres et sont des fonctions de la seule variable
τ . Le système est alors soluble analytiquement en se basant sur l’hydrodynamique relativiste du
fluide normal, voir partie 10.3, et les lois de la thermodynamique. Dans ce cas particulier le
nombre baryonique est nul donc dE=TdS-pdV d’où une enthalpie volumique w = ε + p = Ts.
Ainsi, on peut déterminer la dépendance en τ de chacune de ces grandeurs.

∂s

∂τ
+
s

τ
= 0 ⇒ s(τ) = s(τ0)

τ0
τ

(12.3)

∂T

∂τ
+

1

3

T

τ
= 0 ⇒ T (τ) = T (τ0)

(τ0
τ

)1/3
(12.4)
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= 0 ⇒ ε(τ) = ε(τ0)
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(12.5)

∂p

∂τ
+

4

3

p

τ
= 0 ⇒ p(τ) = p(τ0)

(τ0
τ

)4/3
. (12.6)

De plus, l’équation d’état du système est celle d’un gaz de Bose de masse nulle, les pions étant
ultrarelativistes. On a donc une loi de type loi de Stephan

p = aT 4 =
ε

3
avec a = gπ

π2

90
, (12.7)

où gπ = 3 est la dégénérescence due aux pions π+, π−, π0 [128, 130]. De plus, on peut retrouver
l’équation (12.6) à partir des équations (12.5) et (12.7).

En outre, pour τ0 ' 1fm
c

correspondant au début de l’évolution hydrodynamique, les conditions
initiales associées sont

ε(τ0) ' 210MeV.fm−3 P (τ0) ' 70MeV.fm−3

T (τ0) ' 200MeV s(τ0) ' 1.4fm−3 (12.8)

12.2 Géométrie de Bjorken et brisure de symétrie chirale

12.2.1 Développements limités en ~τ .~π dans la zone centrale

Le but de cette partie consiste à essayer de généraliser le modèle de Bjorken en tenant compte
de la brisure spontanée de symétrie chirale. La démarche n’est pas facile dans le cas général car
les hypothèses du modèle de Bjorken standard ne sont pas toutes compatibles avec cette brisure.
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Par exemple, l’invariance par translation selon la direction z de la transformation de Lorentz est
brisée. Cette brisure de symétrie interne est visible dans le hamiltonien à cause de la présence
de termes se rapportant à la brisure de la symétrie chirale. En outre, les termes dans le tenseur
impulsion-énergie T µν qui brisent la symétrie chirale ne vérifient pas la symétrie d’espace-temps.

Les grandeurs pertinentes du système sont des fonctions des deux variables naturelles : temps
propre τ et rapidité y. De manière générale c’est la dépendance par rapport à y qui rend le problème
difficile hors de la région centrale où la rapidité y n’est pas nulle. Dans la suite de l’étude on ne
considère dans la zone centrale que la dépendance par rapport à la variable τ et on pose y = 0.
De ce fait, dans la zone centrale, on retrouve alors la symétrie de Bjorken, à savoir l’indépendance
des variables par rapport à y. Comme dans le modèle de Bjorken standard, on suppose aussi que
le nombre de baryons dans cette zone centrale est nul.

On envisage maintenant le développement limité en champ de pion du condensat chiral Σ.
Dans le développement limité au premier ordre en ~τ .~π, les termes de brisure sont inexistants, pour
le tenseur impulsion-énergie T µν ainsi que pour les équations d’évolution des grandeurs spécifiques
du système. Les équations hydrodynamiques sont alors celle du fluide parfait relativiste et on
retrouve les résultats du modèle de Bjorken standard, voir partie 12.1.3.

Au contraire, avec le développement limité au deuxième ordre en ~τ .~π, on observe des termes
spécifiques de la brisure de symétrie chirale. Seule la forme analytique de la densité d’entropie est
identique à (12.3), obtenue pour le modèle de Bjorken standard malgré la prise en compte de la
brisure de symétrie chirale.

∂s

∂τ
+
s

τ
= 0 ⇒ s(τ) = s(τ0)

τ0
τ
. (12.9)

Les autres équations concernant la densité d’énergie ε et la température T ne sont plus a pri-
ori solubles analytiquement. Ces dernières prennent la forme d’un système d’équations couplées,
constituant une généralisation des équations (12.4) et (12.5)(
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De plus, la pression est déterminée à partir de la généralisation de l’équation d’état (12.7). Celle-ci
n’est alors plus celle d’un gaz de Bose ultrarelativiste.

p = aT 4 +
1

4

f2
t

f2
π
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∂~τ .~π
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)2
]
. (12.12)

Pour finir, afin de fermer le système d’équations, il faut utiliser l’équation d’évolution du champ
de pion (11.28) dans la géométrie de Bjorken

f 2
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f 2
π

∂2~τ .~π

∂τ 2
+

[
1

τ

f 2
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f 2
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+
∂
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(
f 2
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f 2
π

)]
∂~τ.~π

∂τ
= 0. (12.13)

Les termes spécifiques de la brisure interviennent sous forme de traces Tr excepté dans (12.13). Le
système d’équations est maintenant fermé donc soluble numériquement si on connâıt les formes
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analytiques des constantes de désintégration ft, fs et fπ = 93 MeV . La résolution de (12.13), et
la forme analytique (12.9) donnent accès à (12.10). On peut alors résoudre les équations (12.11)
et (12.12).

Comme il n’existe pas d’expressions analytiques générales pour ft et fs en fonction de la
température, on est amené à faire des hypothèses simplificatrices. On envisage ensuite deux pos-
sibilités : température nulle d’où une indépendance de ft et fs par rapport à la température et
température finie avec une dépendance en température pour ft et fs valide aux basses températures.

12.2.2 Constantes de désintégration indépendantes de la température

Système d’équations associé

Une hypothèse simple, justifiée pour les basses températures, consiste à considérer que ft =
fs = fπ. La validité de cette hypothèse s’appuie sur le fait que, même si à température finie ces
fonctions ne sont pas égales, voir partie 11.1.2, leurs corrections pour les basses températures
sont en T 2 [5]. De ce fait, les corrections pour f2

t , f
2
s et f 2

t − f 2
s sont alors en T 4. En outre,

comme Tr[~τ 2] = 2, avec ~τ le vecteur dont les composantes sont les matrices de Pauli, le système
d’équations prend la forme
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(
∂

∂τ
+

1

τ

)
∂πi

∂τ
= 0, (12.18)

avec πi la composante cartésienne i du champ de pion ~π vérifiant iε{1, 2, 3}. Par hypothèse πi est
indépendante de la rapidité y et ne dépendant que du temps propre τ dans la zone centrale.

Expression analytique du champ de pion ~π et matrice densité

La forme analytique de la composante πi(τ) du champ de pion se détermine par intégration
de l’équation (12.18) correspondant au laplacien à une dimension en coordonnées cylindriques. La
condition initiale est πi(τ0) = 0 car les pions sont inexistants pour τ < τ0.

∂πi

∂τ
=
A

τ
⇒ πi = A ln

(
τ

τ0

)
. (12.19)

Dans le système complet d’équations, seule la dérivée du champ de pion par rapport au temps
propre intervient. L’évolution du système est donc indépendante de la condition initiale pour le
champ de pion πi(τ0). Ainsi, seule la connaissance de A est nécessaire. A est en fait une variable
aléatoire car on ne peut pas déterminer la valeur exacte de A, la vitesse des pions formés en
τ=τ0 pouvant varier. Pour aller plus loin, on détermine la distribution des valeurs de A en τ0 car,
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avec ces conditions initiales différentes, on peut procéder à des moyennes. On peut ainsi établir
la distribution de la variable aléatoire A en τ0 et déterminer le comportement du système dans la
limite des grands nombres.

Dans la densité d’énergie le terme caractérisant la brisure spontanée (11.11) peut s’écrire
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. (12.20)

La matrice densité du système ρ est alors
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Si on considère la symétrie d’isospin vérifiée on a gπ = 3 et la constante d’intégration A devient
indépendante de i. La matrice densité peut donc s’écrire

ρ ∝ exp

(
−gπ

β

2

∫
d3x

(
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τ

)2
)
. (12.22)

De plus, pour τ=τ0, la matrice densité est une gaussienne centrée en 0 dont il faut déterminer
la variance. Si V0 est le volume initial dans le référentiel du centre de masse et γcm le facteur de
Lorentz assurant le passage entre les deux référentiels alors V0/γcm est le volume initial du système
dans le référentiel du laboratoire
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2
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= exp
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. (12.23)

Le volume initial est supposé de la forme V0 = πR2.2cτ0 avec R ' 5fm le rayon des noyaux
projectile et cible comme on peut le voir dans la figure 12.1 et 2cτ0 = 2fm la distance de séparation
entre le projectile et la cible, c étant la célérité de la lumière dans le vide. De plus, le facteur de
Lorentz assure le passage entre le centre de masse des deux noyaux en collision et le référentiel du
laboratoire est estimé à γcm ' 10. De ce fait, pour τ = τ0 la variance de la distribution gaussienne
de A centrée en 0 est

σ2(τ0) =
T (τ0)τ0γcm
2gππR2

' 4.25MeV.fm−1. (12.24)

Résolution analytique

Le cadre dans lequel le système d’équations est valide s’appuie donc sur les hypothèses sui-
vantes : on suppose que dans la zone centrale, où les baryons sont négligés, les grandeurs du
système ne dépendent que du temps propre et sont indépendantes de la rapidité, on pose alors
y = 0. De plus, on réalise un développement limité au deuxième ordre en champ de pion de la
phase du condensat chiral, avec ft = fs = fπ = 93 MeV et on considère que la symétrie d’isospin
est vérifiée. Avec les hypothèses que nous venons de rappeler, on trouve le système suivant, dont
la résolution est analytique

s(τ) = s(τ0)
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Dans la suite de l’étude, on remplace pour τ = τ0, A
2 par < A2 >≡ σ2(τ0) dans ε et p.

Cette démarche a pour but la détermination de l’importance des termes spécifiques de la brisure
spontanée de symétrie chirale au deuxième ordre en champ de pion par rapport aux termes du cas
idéal sans brisure. On estime avec (12.8) un écart de l’ordre de 1% par rapport au cas idéal pour
la densité d’entropie, la densité d’énergie, la pression et la température. En effet, comme on peut
le voir avec la figure (12.5), dans tous les cas les deux catégories de courbes se superposent pour
chacune des quatre grandeurs
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Figure 12.5: Les grandeurs adimensionnées du cas avec brisure spontanée de symétrie chirale au
deuxième ordre en champ de pion et du cas idéal sont superposées.

En conclusion, on peut dire que l’approximation qui consiste à négliger la brisure spontanée de
symétrie chirale dans le traitement hydrodynamique du système semble être vérifiée. En pratique,
on peut donc déterminer l’évolution du système avec le modèle du fluide parfait relativiste. Cepen-
dant, l’hypothèse où les constantes de désintégration ft = fs = fπ = 93 MeV sont indépendantes
de la température est peut-être trop simpliste. Dans le paragraphe suivant nous introduisons donc
une dépendance en température.

12.2.3 Constantes de désintégration dépendantes de la température

Avec une dépendance explicite en température du type f2
t = f2

s = f2
π [1 − T 2/(6f 2

π)], valide
à basse température [107], la résolution analytique complète n’est plus possible pour toutes les
grandeurs. En outre, le terme spécifique de la brisure de symétrie chirale dans la matrice densité
(11.11) prend la forme
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. (12.29)
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De ce fait, en utilisant la méthode de la variation de la constante, la solution de l’équation
d’évolution du champ de pion (12.13) s’écrit
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Ensuite par la même méthode de résolution que dans la partie 12.2.2 et en posant T0 = T (τ0), le
système d’équations (12.9), (12.10), (12.11), (12.12) devient
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En τ = τ0, la variance de la distribution gaussienne pour la variable aléatoire A centrée en 0 est
maintenant σ2

T (τ0) telle que σ2
T (τ0) =< A2 >= σ2(τ0)/([1− T 2

0 /(6f
2
π)]).
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Figure 12.6: Evolution de la température en fonction du temps propre. Ligne continue : fluide
sans brisure de symétrie chirale et ligne pointillée : fluide avec brisure spontanée de symétrie.

L’estimation de l’ordre de grandeur des termes correctifs avec f2
t = f 2

s = f 2
π [1 − T 2/(6f2

π)]
s’effecue par le remplacement pour τ = τ0 de A2 par < A2 >. On aboutit cette fois-ci à un
écart de 5% par rapport au cas idéal. De ce fait, l’utilisation du fluide idéal dans le traitement
hydrodynamique de la matière nucléaire constitue donc une bonne approximation. Par exemple,
pour T (τ0) = 200MeV on a en τ/τ0 = 6, T (6τ0) = 105MeV pour le fluide avec brisure spontanée
de symétrie chirale et T (6τ0) = 110 MeV pour le fluide idéal.
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12.3 Le fluide visqueux

Jusqu’à présent, toute source de dissipation a été sciemment écartée. Un traitement plus réaliste
doit tenir compte de cet aspect. Dans la suite de l’étude on s’intéresse à une source particulière
de dissipation : la viscosité, le but étant de quantifier les écarts par rapport au fluide idéal.

12.3.1 Pions de masse nulle : pions chiraux

Par hypothèse, on considère que dans la suite de l’étude la symétrie chirale est vérifiée. Plus
précisément, on se place dans le même cadre d’étude que celui de la référence [106]. On considère
donc la géométrie de Bjorken à (1+1) dimensions dans laquelle on étudie le comportement hydro-
dynamique d’un gaz de pions ultrarelativistes vérifiant mπ = 0. En outre, comme pour le fluide
avec brisure spontanée de symétrie chirale, dans la zone centrale s, T , ε et P ne dépendent que
du temps propre τ . De plus, les relations entre ces grandeurs sont

s = 4aT 3 ε = 3aT 4 P = aT 4, (12.35)

avec a = gππ
2/90 et gπ = 3 la dégénérescence du champ de pion. De manière générale, pour les

particules de masse nulle, la viscosité de compression ζ s’annule. la seule viscosité prise en compte
est la viscosité de cisaillement η = b/T , avec b = πf 4

π/8. La forme de l’équation d’évolution de la
densité d’énergie varie en fonction de la forme analytique du tenseur des contraintes visqueuses Φ
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τ
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τ
. (12.36)

On envisage trois cas de figure correspondant aux trois situations suivantes :

Φ = 0 cas idéal

Φ =
4

3

η

τ
premier ordre

τπ
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∂τ
= −Φ +

4

3

η

τ
deuxième ordre (12.37)

-A l’ordre zéro, η = 0 : on retrouve le système d’équations du fluide parfait idéal.
-A l’ordre un, ordre où l’on se place habituellement pour les lois phénoménologiques de Fourier et
Fick par exemple, la viscosité de cisaillement est prise en compte. Cependant, cet ordre n’est pas
� réaliste � car le temp de relaxation associé est infini.
-A l’ordre deux, on pallie le problème du temps de relaxation de l’ordre un par l’intermédiaire du
temps de relaxation τπ = 3η/2p, qui cette fois-ci est fini, selon la théorie de Müller-Israel-Steward.

La méthode de résolution est la même pour les trois ordres. Dans un premier temps, ε et Φ
sont déterminés, avec (12.36) et (12.37). Dans un deuxième temps, on peut alors trouver T , s et P
avec l’aide de (12.35). La dépendance en température de la viscosité implique que, pour les ordres
un et deux, il n’existe pas de solution analytique. D’après la résolution numérique on montre que,
contrairement aux résultats de [106], les écarts au fluide idéal dus à la viscosité sont minimes. Les
résultats obtenus sont en accord avec l’auteur de [106, 131, 132].

Dans ce cas de figure, l’approximation fluide parfait est donc aussi réaliste. Ainsi, le traitement
hydrodynamique relativiste de la matière nucléaire en considérant des pions de masse nulle est
une bonne approximation dans le cas non dissipatif avec brisure spontanée de symétrie chirale et
quand on prend en compte la viscosité avec la symétrie chirale respectée. Cependant, ce constat se
base sur les hypothèses de [106] qui ne sont plus viables pour les formes analytiques de la viscosité
η et du temps de relaxation τπ quand on considère des pions massifs.
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12.3.2 Pions massifs et pions chiraux

Quand on considère que les pions ne sont plus de masse nulle comme c’est le cas pour les
pions chiraux mais qu’ils sont massifs, il faut revoir le système complet d’équations du système.
Les équations hydrodynamiques associées aux grandeurs conservées restent les mêmes que pour
l’étude de la brisure spontanée de symétrie chirale. Par contre, dans cette section, on considère
pour les pions massifs d’autres équations de transports que celles de la section 12.3.1 où les pions
sont chiraux. En outre, pour les pions massifs on considère une section efficace π−π expérimentale
au lieu d’une section efficace π − π déduite de l’algèbre des courants comme c’est le cas pour les
pions chiraux. La viscosité η et le temps de relaxation τπ en fonction de la température T sont
plus importants pour les pions massifs que pour les pions chiraux [133].
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Figure 12.7: Evolution de la température en fonction du temps propre pour le cas idéal et les
deux ordres de la théorie dissipative avec des pions massifs et des pions chiraux. Figure adaptée
de [134].

Les profils d’évolution des pions massifs sont similaires pour les deux ordres dissipatifs. En
outre, quand les pions sont massifs, le refroidissement est plus lent que pour le cas idéal ou le cas
des pions chiraux. Pour τ/τ0 = 6 la température des pions massifs est 20% plus importante que
pour le cas idéal ou les deux ordres dissipatifs des pions chiraux. Par exemple, pour T (τ0) = 200
MeV on a en τ/τ0 = 6, T (6τ0) = 140 MeV pour le fluide dissipatif et T (6τ0) = 110 MeV pour
le fluide idéal. De ce fait, lors du traitement des collisions d’ions lours, l’aspect dissipatif doit être
pris en compte [135].



Conclusion de la Partie III

Dans cette partie III, on a effectué le traitement hydrodynamique de la matière hadronique
produite lors de collisions d’ions lourds ultrarelativistes. Le but de la démarche consiste à estimer
quantitativement les écarts par rapport au fluide relativiste idéal dans la zone centrale de col-
lision, en se plaçant dans une géométrie simple, la géométrie de Bjorken (1 + 1). Pour cela, on
réalise différentes approximations. Dans la zone centrale, les particules produites sont des mésons,
essentiellement des pions, la densité baryonique est donc négligée. En outre, les grandeurs ne sont
fonctions que du temps propre, la rapidité est alors supposée nulle. De plus, on suppose l’invariance
de Lorentz à l’échelle microscopique. Bien que ces approximations soient parfaitement justifiées
d’un point de vue phénoménologique, il n’en reste pas moins qu’il serait souhaitable de s’en af-
franchir. Cela aurait cependant pour conséquence d’alourdir énormément le traitement analytique
et numérique sans pour autant forcément changer de manière significative les écarts par rapport
au fluide idéal.

Une extension pour aller au-delà du fluide idéal consiste à prendre en compte la brisure spon-
tanée de symétrie chirale. Pour ce faire, on réalise un développement limité de la phase du con-
densat chiral au deuxième ordre en champ de pion. Dans ce cadre on étudie deux cas de figure.
Dans le premier cas, on considère que les constantes de désintégration temporelle et spatiale du
pion ne dépendent pas de la température. On estime alors un écart du profil de température
de 1% par rapport au cas idéal. Dans le second cas, on considère une dépendance temporelle
pour les constantes de désintégration du pion dans l’approximation des basses températures. On
en déduit alors 5% d’écart par rapport au cas idéal. De ce fait, en première approximation le
traitement hydrodynamique de la brisure de symétrie avec le fluide relativiste idéal est une bonne
approximation.

Une autre extension pour aller au-delà du fluide idéal prenant cette fois en compte de manière
simple les effets dissipatifs aux ordres un et deux a été également développée pour les pions chiraux,
c’est-à-dire de masse nulle. Les écarts au cas idéal obtenus sont également petits. A priori, cela
signifie que l’approximation du fluide idéal dans les collisions d’ions lourds s’avère être dans ce
cas aussi une bonne approximation. Cependant, avec un traitement plus réaliste de la viscosité
de cisaillement, du temps de relaxation, de la section efficace π − π et en considérant les pions
massifs le constat est tout autre. En effet, on constate que le refroidissement est ralenti de 20%
par rapport au cas idéal. Un traitement réaliste des collisions d’ions lourds doit donc tenir compte
impérativement des effets dissipatifs.

Il faut également signaler que les équations hydrodynamiques présentées dans cette partie III
peuvent être utilisées à d’autres desseins au premier rang desquels figure la relaxation des DCC,
� Disoriented Chiral Condensates �, produits lors des collisions d’ions lourds.

Depuis cette étude le traitement dissipatif et en particulier le calcul de la viscosité ont été
développés pour la géométrie (1 + 1) [135, 136]. En outre, une étude a été réalisée en géométrie
(3 + 1) [137].
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Conclusion générale

Cette thèse porte sur l’étude de différents aspects de la physique nucléaire depuis les basses
énergies jusqu’aux énergies intermédiaires. Pour les basses énergies, où la matière nucléaire est
essentiellement constituée de nucléons en interaction, les thèmes abordés traitent d’une part de la
fusion-fission des éléments super-lourds et d’autre part des règles de somme associées aux interac-
tions tensorielles de type Skyrme. Pour les énergies intermédiaires, la matière issue des collisions
d’ions lourds ultrarelativistes étant alors considérée comme une phase hadronique principalement
constituée de pions, on se focalise sur l’hydrodynamique avec brisure de symétrie chirale.

Dans la continuité des conclusions relatives à chacune des trois parties de cette thèse, nous
rappelons maintenant les principaux résultats et constatations qui en découlent ainsi que les
différentes perspectives d’étude.

Partie I - Fusion-fission des éléments super-lourds

Dans le cadre de la fusion-fission de noyaux super-lourds, les effets de mémoire doivent être
pris en compte dans la dynamique de formation d’un noyau super-lourd. La grande majorité
des études sur la fusion des noyaux super-lourds sont réalisées dans un cadre markovien. Une
piste d’investigation possible consisterait à tenir compte des effets de mémoire dans le phénomène
d’entrave à la fusion des noyaux super-lourds.

Dans la phase de désexcitation d’un noyau super-lourd, l’existence d’un puits isomérique dans
la barrière de potentiel, même s’il change la dynamique de désexcitation et augmente les temps
de fission, ne permet pas d’expliquer les résultats des expériences menées au GANIL par blocage
cristallin. En revanche, cette étude pourrait être utile à l’étude de la dynamique de la fission des
actinides.

Partie II - Règles de somme et interactions tensorielles de type Skyrme

Dans cette partie II, on a utilisé les interactions phénoménologiques effectives de type Skyrme
afin de déterminer les règles de somme M1 et M3. Pour M1 on a intégré le terme tensoriel et pour
M3 on a utilisé le terme central uniquement.

La connaissance de M1 et M3 a tout d’abord permis de vérifier numériquement les intégrales
des réponses. Mais l’intérêt des moments ne se limite pas à cela : une étude est actuellement en
cours pour la détection systématique des instabilités des paramétrisations de la force de Skyrme.
En effet, il se trouve que la violation des règles de somme cöıncide avec un pôle dans la réponse
et donc à une instabilité. Ce genre d’approche présente donc un avantage indéniable en raison de
son caractère prédictif.
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Partie III - Hydrodynamique nucléaire et brisure de symétrie chirale

Dans cette partie III, on a réalisé l’étude hydrodynamique relativiste de la matière nucléaire
pour les énergies intermédiaires. On se place alors dans la géométrie (1 + 1) de Bjorken afin
d’étudier les collisions d’ions lourds ultrarelativistes, en se focalisant plus particulièrement sur la
zone centrale de collision. Dans cette zone centrale la production d’un grand nombre de pions,
considérés comme des bosons de Goldstone ou des pseudo-bosons de Goldstone suivant qu’ils
soient respectivement non-massiques ou massiques, est associée à la brisure spontanée de symétrie
chirale.

Les écarts par rapport au modèle du fluide parfait ultrarelativiste qui sont dus à la brisure
de symétrie chirale sont ténus, de l’ordre de 5%, contrairement aux écarts d’origine dissipative
qui eux peuvent être plus importants, de l’ordre de 20%. De ce fait dans un traitement réaliste
de l’hydrodynamique nucléaire ultrarelativiste on peut s’affranchir, en première approche, de la
brisure de symétrie chirale mais pas de l’aspect dissipatif. Ces considérations s’appliquent au profil
de température utilisé dans les collisions d’ions lourds.

Pour l’instant, toutes les études de cette partie III ont été effectuées loin du point critique. Dans
la transition de phase fluide-superfluide loin du point critique, seule la phase du condensat est une
variable hydrodynamique. Par contre, près du point critique, l’amplitude du condensat devient
aussi une variable hydrodynamique. De ce fait, près du point critique, le système complet des
équations hydrodynamiques est modifié. Cette étude est réalisée pour le superfluide non relativiste
dans le cadre du modèle de Landau des deux fluides [138, 139, 140]. La trame de la démarche
consiste donc en premier lieu à généraliser ce système d’équations au cas du superfluide relativiste
près du point critique. Ensuite, à partir du système d’équations ainsi obtenu, l’étape suivante
consiste à trouver un système complet d’équations hydrodynamiques pour la matière nucléaire
près du point critique.
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[4] E. Suraud, La matière nucléaire, Des étoiles aux noyaux, Collection Enseignement des sci-
ences, HERMANN, Editeurs des Sciences et des Arts, Paris (1998)

[5] G. Chanfray, G. Smadja, Les particules et leurs symétries, Enseignement de la physique,
Masson (1997)
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[105] J. Hladik, La théorie des groupes en physique et chimie quantiques, Collection Enseignement
des sciences, MASSON (1995)

[106] A. Muronga, Proc. 17th Winter Workshop on Nuclear Dynamics, Park City, Utah, USA
March 10-17, (2001)

[107] M. Knecht, P. Guichon, J.-Y. Ollitrault, C. Cavata, H.-J. Pirner, S. Kox, G. Chanfray,
C. Kuhn, M. Gonin, O. Sorlin, Ecole Joliot-Curie de physique nucléaire 1998 - Matière
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Dans la partie II, les règles de somme M1 et M3 associées aux potentiels phénoménologiques de type Skyrme sont 
calculées à partir de leurs définitions intrinsèques. On détermine alors M1 jusqu'au niveau tensoriel et M3 avec 
potentiel central. 

Dans la partie III, pour le traitement hydrodynamique de la matière hadronique appliqué aux collisions d'ions lourds 
on peut, en première approximation, écarter les modifications induites par la brisure spontanée de symétrie chirale 
mais pas celles dues à l'aspect dissipatif. 
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