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Résumé

Cette these porte sur I'étude de différents aspects de la physique nucléaire depuis les basses
énergies jusqu’aux énergies intermédiaires. Pour les basses énergies, ou la matiere nucléaire est
essentiellement constituée de nucléons en interaction, la partie I traite de la fusion-fission des
noyaux super-lourds, et la partie II des regles de somme associées aux interactions de type Skyrme.
Pour les énergies intermédiaires, la matiere nucléaire étant alors considérée comme une phase
hadronique principalement constituée de pions, la partie III se focalise sur I’hydrodynamique
relativiste de la matiere nucléaire avec brisure spontanée de symétrie chirale.

Dans la partie I, on s’intéresse a la formation puis a la désexcitation des noyaux super-lourds.

Les effets de mémoire doivent étre pris en compte dans la dynamique de formation d’un noyau
super-lourd. On étudie donc la formation du noyau composé avec effets de mémoire. Pour des effets
de mémoire intermédiaires, des oscillations apparaissent, ce qui est tres différent de la dynamique
d'un systeme markovien.

Pour la désexcitation d’un noyau super-lourd, I’existence d’un puits isomérique dans la barriere
de potentiel, méme s’il change la dynamique de désexcitation et augmente les temps de fission, ne
permet pas d’expliquer les résultats des expériences menées au GANIL par blocage cristallin. En
revanche, cette étude pourrait étre utile a 1’étude de la dynamique de la fission des actinides.

Dans la partie II, les regles de somme M; et Mjz associées aux potentiels phénoménologiques
de type Skyrme sont calculées a partir de leurs définitions intrinseques. On détermine alors M;
jusqu’au niveau tensoriel et M3 avec potentiel central.

Dans la partie III, pour le traitement hydrodynamique de la matiere hadronique appliqué aux
collisions d’ions lourds on peut, en premiere approximation, écarter les modifications induites par
la brisure spontanée de symétrie chirale mais pas celles dues a I'aspect dissipatif.
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Abstract

This study focuses on different aspects of nuclear physics from low energies to intermediate
ones. For the low energies, the nuclear matter is essentially constituted from interacting nucleons.
Part I is on the fusion-fission of super-heavy elements, while Part II is on the Skyrme interactions-
associated sum rules. In the case of the intermediate energies, where the nuclear matter is con-
sidered as being an hadronic phase mainly constituted from pions, Part III is focused on nuclear
matter relativistic hydrodynamics with spontaneous chiral symmetry breaking.

In Part I, the formation and the desexcitation of super-heavy nuclei are being studied.

The memory effects must be taken into consideration within the super-heavy nuclei formation
dynamics. Therefore we analyzed the formation of compound nuclei including the memory effects.
As for the intermediate memory effects, some oscillations appear, which is very different from the
Markovian dynamics.

For super-heavy nuclei desexcitation, the existence of isomeric state within the potential barrier
cannot explain the results of experiments performed at GANIL with the crystal blocking technique,
and this despite of the fact that it modifies the desexcitation dynamics and increases the fission
time. However, this latter study could be useful for the study of the actinides fission.

In Part I1, the phenomenological Skyrme effective interactions-associated M; and M3 sum rules
are being calculated based on their intrinsic definitions. We identify then M; up to the tensorial
level and M3 with central potential.

In Part III, as for the hadronic matter hydrodynamics being applied to heavy ions collisions,
and as a first approach only, we can neglect spontaneous chiral symmetry but certainly not the
dissipative impact.
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Introduction générale

Depuis la découverte de la radioactivité par Henri Becquerel a la fin du X7.X°€ siecle, les ap-
plications de la physique nucléaire sont multiples dans la société contemporaine [1, 2]. Avec main-
tenant plus d'un siecle d’existence, cette discipline a étendu son influence bien au-dela du simple
cadre scientifique, jusqu’aux domaines de la politique, de ’économie et de l'environnement. En
outre, les applications technologiques sont nombreuses, notamment en ce qui concerne la produc-
tion d’énergie par fission nucléaire. Dans le domaine scientifique a proprement parler, la physique
nucléaire est un domaine de recherche tres actif, qui recouvre un grand nombre de thématiques,
des particules subnucléiques aux étoiles. Elle constitue donc un maillon pour I’exploration de I'in-
finiment grand et de U'infiniment petit [3]. La physique nucléaire permet par exemple d’apporter
des éclaircissements indispensables en astrophysique pour appréhender des phénomenes tres variés
comme la nucléosynthese primordiale dans le modele du Big-Bang ou la nucléosynthese stellaire
afin de décrire 1’évolution des étoiles en supernovae et en étoiles a neutrons [4]. Elle permet aussi
de poser des pistes d’investigation sur des problemes encore non résolus comme celui de la matiere
noire qui correspond a la masse cachée de 'univers. L’apport de la physique nucléaire est donc
incontournable pour comprendre les origines, la structure et ’évolution de notre univers.

Sur Terre, dans les conditions standard de stabilité, la matiere nucléaire est considérée comme
un systeme infini de nucléons en interaction. On peut accéder aux propriétés de cette matiere
nucléaire en sondant le cceur des noyaux lourds. Ces noyaux étant stables, a 'exception des
noyaux radioactifs, il est donc nécessaire de les perturber fortement en réalisant des collisions.
Suivant l'énergie de faisceau voulue, on utilise différents types d’accélérateurs, voir figure 1. On
peut alors étudier la nature et le comportement de la matiere nucléaire a différentes énergies en
explorant le diagramme de phase de la matiere nucléaire depuis la zone stable des noyaux jusqu’a
des situations tres éloignées de I’équilibre. En effet, une large gamme d’énergie est disponible
pour explorer les différentes régions du diagramme de phase comme la phase nucléonique avec des
énergies de faisceau jusqu'a 400-500 MeV /A, A étant le nombre de nucléons, la phase hadronique
au-dela de 500 MeV/A ou méme le plasma de quarks-gluons a partir de 10 GeV//A. L’énergie de
faisceau par nucléon représente 1’énergie cinétique communiquée dans le référentiel du laboratoire
a chaque nucléon de l'ion lourd projectile. D'un point de vue thermodynamique le diagramme
de phase de la figure 1 permet de visualiser différents états de la matiere nucléaire comme la
phase nucléonique, la phase hadronique et le plasma de quarks-gluons. Lors du passage entre ces
différentes zones la matiere nucléaire est de ce fait soumise a des transitions de phases.

La premiere analyse correspondant a la représentation actuelle de la matiere agencée comme des
systemes de particules reliées par des interactions de portées et d’intensités différentes [5] est relatée
par Newton dans son traité d’optique [6]. Sans connaitre le concept de champ d’interaction, il est
conscient a I’époque qu’une interaction immédiate a distance est impossible. De maniere générale,
les interactions agissant a une certaine échelle sont les résultantes d’interactions plus intenses
agissant a une échelle inférieure. En outre, selon la relation de De Broglie, plus les quantités de
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FI1GURE 1: Diagramme de phase de la matiere nucléaire représentant la température T" exprimée
en MeV en fonction de la densité réduite p/py de la matiere nucléaire, avec py la densité de la
matiere nucléaire stable. Par convention, la constante de Boltzmann kg est égale a 1. L’énergie
de faisceau détermine 'acces a différentes parties du diagramme de phase de la matiere nucléaire.
Ce diagramme est issu de la référence [7].

mouvements et donc plus les énergies mises en jeu sont importantes et plus les échelles de distances
sondées sont petites. De ce fait, en fonction de I’énergie disponible, les < briques élémentaires >
de matiere et les modélisations des interactions associées peuvent varier. Pour fixer les idées, on
peut se placer a I’échelle moléculaire ou les forces de Van Der Walls intermoléculaires sont la
résultante de forces plus intenses entre les atomes d’'une méme molécule [8]. Ces constats généraux
s’appliquent en physique nucléaire. Par exemple, 'interaction nucléaire a 1’échelle des nucléons est
la résultante d’une interaction plus intense entre les quarks a l'intérieur d’un nucléon.

Pour les collisions d’ions lourds a basses énergies, ’entité nucléon reste viable. On peut alors,
sous certaines conditions drastiques, former a partir d'un noyau cible et d’un noyau projec-
tile un noyau composé dont la dimension est plus importante. En revanche, pour des collisions
d’ions lourds correspondant aux énergies intermédiaires de la phase hadronique, les ions lourds se
transpersent mutuellement. Le noyau cible et le noyau projectile sont donc détruits. Les nucléons
eux-memes peuvent alors étre annihilés et de nouvelles particules sont créées, principalement des
pions. L’étude dynamique des collisions d’ions lourds permet donc d’obtenir, a différentes échelles
de distance et d’énergie, des informations sur 1’évolution, les structures et les interactions associées
de la matiere nucléaire. Pendant les collisions d’ions lourds, les noyaux peuvent étre fortement
écartés de leur état fondamental, il est donc important de bien faire la différence entre ce qui se
rapporte aux propriétés stucturelles de la matiere nucléaire et ce qui est spécifique de la dynamique
de ces collisions. De maniere générale, on peut alors accéder aux propriétés thermodynamiques de
la matiere nucléaire et déterminer une équation d’état ou s’intéresser a des propriétés dynamiques
qui permettent d’accéder a des coefficients de transport comme par exemple la viscosité [9].

L’énergie transmise lors dune collision est convertie en énergie d’excitation collective a I’ensem-
ble du noyau et (ou) en énergie d’excitation individuelle aux nucléons, ce qui géneére des modes
collectifs et (ou) individuels. Les mouvements collectifs sont caractérisés par différentes échelles
d’amplitude et d’énergie en fonction desquelles les déformations et (ou) compressions subies par le
noyau sont variables. Par exemple, les résonances géantes sont des mouvements collectifs de faibles
amplitudes et la fission un mode collectif de forte amplitude. Au contraire, les états nucléoniques



excités sont des excitations individuelles. Quand on communique ’énergie d’excitation E* au
noyau, celui-ci n’est alors plus dans son état fondamental mais dans un état excité. Si E* est trop
élevée le noyau n’est plus viable. Sur la figure 2, sont représentés différents types de modélisations
de la matiére nucléaire en fonction de 1'énergie d’excitation par nucléons E*/A, depuis les basses
énergies d’excitation jusqu’aux hautes énergies d’excitation [9)].
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FIGURE 2: Modélisation du noyau a différentes échelles d’énergie en fonction de 1’énergie d’exci-
tation par nucléon E*/A. De bas en haut, on peut voir la modélisation du noyau et le type de
matiere nucléaire associée depuis les basses énergies vers les hautes énergies et ’augmentation du

pouvoir de résolution associé. Figure adaptée de [7] et [10].

On observe dans la région des basses énergies nucléaires les résonances géantes du noyau puis sa
modélisation comme systeme a A corps de protons et de neutrons. Ces nucléons sont donc agencés
en noyaux tres divers, stables ou instables, exotiques, chauds, 1égers ou lourds. Ensuite, dans la
région des énergies intermédiaires correspondant a la phase hadronique, le noyau est modélisé par
un ensemble d’états nucléoniques excités N* en interaction via les particules A et les pions .
Enfin, pour les hautes énergies, apparait le plasma de quarks-gluons. A I’heure actuelle aucune
sous-structure des quarks n’a été expérimentalement mise a jour.

Les noyaux et les particules sont de nature quantique mais aux températures envisagées et pen-
dant les collisions d’ions lourds, un traitement semi-classique n’est pas irréaliste. En outre, suivant
le domaine énergétique étudié, le cadre d’étude peut varier. Pour décrire les différents états de
la matiere nucléaire on envisage alors, suivant les situations, des approches microscopiques ou
macroscopiques par rapport a ’échelle caractéristique des noyaux. Se pose alors la question du
passage entre le niveau microscopique et le niveau macroscopique ainsi que le lien avec les modeles

purement phénoménologiques.



Dans cette these on aborde plus en détail trois thématiques en relation avec deux zones du
diagramme de phase T' = T'(p/po) de la figure 1. Ce travail se découpe donc en trois parties. Les
parties I et II correspondent a la zone des basses énergies nucléaires de la matiere nucléonique et
la partie III est associée a la zone des énergies intermédiaires de la phase hadronique. Dans les
parties I et III on adopte par rapport a la dimension caractéristique des noyaux des approches
macroscopiques purement phénoménologiques ou intégrant certains aspects issus d’une analyse
microscopique. Dans la partie IT on considere un point de vue microscopique.

Partie I - Fusion-fission des éléments super-lourds

La partie I traite, pour les énergies proches de la barriere de Coulomb, de la dynamique de
fusion-fission d’une classe particuliere de noyaux qualifiés de noyaux d’éléments super-lourds, les
SHE, acronyme signifiant <« Super-Heavy Elements ». Les éléments super-lourds, qui n’existent
pas a I’état naturel, sont caractérisés par un numéro atomique 7Z > 103, c’est-a-dire au dela des
actinides. Les masses de ces éléments super-lourds sont donc tres grandes devant celles des autres
éléments existant sur Terre. De plus, pour comprendre le regain de stabilité des noyaux de cet
ilot de stabilité, il faut développer des modeles nucléaires allant au-dela du modele macroscopique
standard de la goutte liquide qui considere le noyau comme une goutte liquide incompressible. En
effet, la stabilité de ces noyaux vérifiant Z > 110 est d’origine quantique et s’explique par I'ex-
istence de couches énergétiques de neutrons et de protons. La stabilité étant maximale pour des
couches de protons et de neutrons fermées, par analogie avec les couches électroniques fermées des
gaz nobles. Depuis les travaux pionniers de Mendeleiev en 1869 et la proposition due a Moseley de
classement des éléments chimiques par numéros atomiques Z croissants, la recherche de nouveaux
éléments chimiques est en perpétuelle évolution. A I'heure actuelle, c’est en 2009 que le dernier
élément chimique, 1’élément Copernicium Z = 112, est ajouté a la classification périodique de
Mendeleiev. De plus, les éléments Z = 114 et Z = 116 sont en cours d’étre ajoutés.

Les éléments super-lourds sont produits par collisions d’ions lourds. On a alors formation des
noyaux de ces éléments super-lourds, entourés de leur cortege électronique respectif. Cette synthese
est difficile car la probabilité de leur formation par fusion est tres faible. De plus, leur durée de
vie est limitée car ils se caractérisent par des périodes radioactives d’autant plus petites que les
éléments super-lourds sont instables [11, 12]. Par exemple, le Copernicium 277 est radioactif a avec
une période radioactive estimée a 280 us. Les avancées dans le domaine des éléments super-lourds
sont nombreuses depuis une vingtaine d’années, a la fois sur le plan expérimental, avec I’avenement
d’accélérateurs de plus en plus performants et sur le plan théorique avec le développement de
modeles dynamiques. Ces progres permettent la production d’éléments super-lourds de numéros
atomiques de plus en plus élevés. Ce qui permet par la méme occasion d’étudier la matiere nucléaire
dans des situations extrémes, les noyaux étant alors tres exotiques, et de tester la validité des
modeles nucléaires. Différents laboratoires de physique nucléaire dans le monde comme le GSI, en
Allemagne, le RIKEN, au Japon, et le JINR, en Russie, synthétisent des éléments super-lourds
[13]. A ce jour la synthese de ’élément super-lourd de numéro atomique le plus élevé Z = 118 est
effectuée en 2003 au JINR. Ce résultat est en attente de confirmation par les autres laboratoires.

En outre, dans ce domaine de recherche tres actif, une étape supplémentaire est franchie avec
I’amélioration ou la construction de nouvelles installations, comme c’est le cas par exemple au GSI,
au JINR et au GANIL, permettant de produire des faisceaux de haute intensité afin d’accumuler
des statistiques plus rapidement. Ceci va de pair avec une amélioration de la précision associée
a l'estimation des probabilités des différents processus associés a la synthese des éléments super-



lourds. En pratique on accede a ces probabilités en estimant de maniere de plus en plus précise
les sections efficaces correspondantes car on passe du picobarn au femtobarn. Par exemple, la
mise en service au GANIL de SPIRAL2, la deuxieme génération de < Systeme de Production
d’Ions Radioactifs Accélérés en Ligne >, est fixée en 2013. La premiere phase de développement
du faisceau de haute intensité de SPIRAL2 est consacrée en partie a ’étude des éléments super-
lourds. Ces faisceaux de haute intensité ont pour but d’explorer les basses énergies nucléaires,
proches de la barriere de Coulomb, en accumulant des données statistiques plus rapidement.

D’autre part, indépendamment de SPIRALZ2, des mesures récentes de temps de fission effectuées
au GANIL avec la technique du blocage cristallin [14, 15, 16] constituent une preuve expérimentale
étayant 'existence d’un ilot d’éléments super-lourds survivant relativement longtemps. Selon cette
technique de mesure, les noyaux possédant des nombres de protons Z=120 ou Z=124 ont des temps
de fission relativement longs, ce qui est la signature d’une certaine stabilité. En effet, les queues de
distribution sont supérieures & 10785 ce qui est, toutes proportions gardées, grand devant les temps
caractéristiques typiques de fission, de 1’ordre de 1072°s par exemple. De plus, statistiquement 10%
des événements détectés possedent des temps de fission supérieurs a 10~ s,

Dans le but d’obtenir des contraintes supplémentaires pour la localisation de 1'ilot de stabilité
des éléments super-lourds, il est possible d’effectuer un traitement dynamique macroscopique de
la fusion-fission des noyaux super-lourds. Selon le modele du noyau composé, on étudie donc le
processus complet de cette réaction en le séparant en deux phases successives et indépendantes : la
fusion et la fission. Pour étre plus réaliste, ce traitement dynamique de la fusion-fission des noyaux
super-lourds doit tenir compte des aspects dont 1'origine est microscopique par rapport a la taille
caractéristique de ces noyaux. Il faut alors incorporer des effets de mémoire dans la modélisation
de I'étape de fusion. De plus, I'instabilité des noyaux super-lourds par rapport a la fission doit étre
prise en compte en intégrant I’existence d’'une stucture en couches énergétiques des protons et des
neutrons. La fission est mieux connue que la fusion et de nombreuses questions restent ouvertes
sur le processus de fusion. Par exemple, la fusion est un processus qui est dépendant des effets de
couches, principalement au niveau de la barriere de Coulomb. Dans la suite de I’étude cet aspect
n’est pas envisagé.

Le temps caractéristique de formation d’un noyau composé a partir d'un noyau projectile et
d'un noyau cible est tres rapide, de 'ordre 107225 & 1072's. De ce fait, le temps caractéristique
du processus de fusion, de I'ordre de 1072!s est comparable au temps caractéristique des effets de
mémoire. Par opposition le temps caractéristique de fission est de maniere générale plus grand,
de l'ordre de 1072°s ou plus. De ce fait, contrairement & 1'étape de fission, il est donc nécessaire
d’inclure des effets de mémoire dans un traitement dynamique réaliste de ’étape de fusion des
noyaux super-lourds. Pour étudier I'influence des effets de mémoire sur la dynamique de forma-
tion de ces noyaux lors de collisions d’ions lourds, il faut donc utiliser une équation de transport
dynamique avec extension stochastique de type Langevin comportant un noyau mémoire. Cepen-
dant, la majorité des études portant sur la fusion ne prennent pas en compte ces effets de mémoire
et s’appuient sur une équation de Langevin Markovienne, c¢’est-a-dire sans effets de mémoire.

Quelles sont les modifications induites par la prise en compte d’effets de mémoire sur l’étude
dynamique du processus de fusion d’un noyau super-lourd ¢

Les noyaux super-lourds formés par la réaction de fusion sont des édifices métastables considérés
comme des noyaux composés qui se désexcitent. Ces noyaux sont considérés comme des noyaux
chauds car une grande partie de I’énergie d’excitation est stockée sous forme thermique, c’est-a-
dire de maniere désordonnée sur un grand nombre de nucléons. Dans 1’étape de désexcitation d’un



noyau chaud super-lourd, on envisage alors la compétition entre les deux processus dominants qui
sont, pour des énergies d’excitation des noyaux super-lourds inférieures a 100 MeV, la fission et
I’évaporation de neutrons. En outre, pour des raisons pratiques, on modélise alors la dynamique
de désexcitation en utilisant des équations maitresses de type Bateman.

Une barriere de potentiel réaliste doit donc incorporer ces corrections microscopiques d’effets
de couches. La prise en compte de ces corrections d’effets de couches modifie la forme de la barriere
de potentiel par rapport a la barriere de potentiel associée au modele de la goutte liquide. Dans
certains des modeles nucléaires un puits de potentiel secondaire s’ajoute au puits de potentiel de
I’état fondamental pour former une double barriere. Ce puits de potentiel secondaire est associé a
un isomere nucléaire, état excité du noyau, de forme tres différente de celle du noyau a I’état fon-
damental. La durée de vie de cet état isomérique est d’autant plus grande que le puits isomérique
est profond, ce qui entraine une augmentation du temps de fission.

Quelle est linfluence d’une simple et d’une double barriere de potentiel sur la dynamique de
désexcitation d’un noyau super-lourd avec compétition entre fission et évaporation de neutrons ?

L’adjonction d’une barriere de potentiel isomérique a une barriere de potentiel simple permet-
elle d’expliquer les résultats obtenus au GANIL par blocage cristallin ?

Partie II - Regles de somme et interactions tensorielles de type Skyrme

La partie II est consacrée a la détermination de criteres de stabilité, les regles de somme, a
partir de leurs définitions intrinseques. Ces regles de somme sont des relations qui permettent de
déterminer le domaine de validité, la robustesse, d'une théorie. En effet, quand ces regles de somme
sont mises en défaut, la théorie n’est alors plus valide. Dans cette étude, pour accéder a ces regles
de somme, on s’appuie sur une classe de forces phénoménologiques : les forces de type Skyrme.
Ces forces de Skyrme permettent la description des interactions entre nucléons aux basses énergies.

Le cadre général de I'interaction nucléon-nucléon releve du probleme a A corps. Le nombre de
nucléons A, entre 200 et 250 pour les noyaux lourds, de 'ordre de 300 ou plus pour les super-lourds
et infini dans le modele de la matiere nucléaire, interdit toute résolution exacte du probleme a
A corps. Le traitement au niveau microscopique de I'interaction entre nucléons dans le milieu est
donc un probleme particulierement complexe. En effet, il est impossible a partir de 'interaction
libre nucléon-nucléon de retrouver directement les propriétés de I'interaction nucléon-nucléon dans
le milieu. Il faut donc prendre en compte les effets du milieu sur l'interaction nucléon-nucléon en
envisageant des interactions effectives qui possedent des propriétés de symétrie similaires. A 1'heure
actuelle, il n’existe pas de paramétrisation générale simple et réaliste pour l'interaction effective
nucléon-nucléon. On utilise alors des interactions effectives valides uniquement dans un domaine
d’énergie particulier.

Les méthodes de résolution générales envisagées en physique nucléaire sont des méthodes
numériques auto-cohérentes de type Hartree-Fock. A partir d’un certain nombre d’itérations et
quand on s’appuie sur des forces phénoménologiques stables, on obtient alors la convergence des
grandeurs physiques. Certaines forces que 1'on pensait stables a un certain stade d’itérations
génerent un phénomene de dérive quand on augmente encore le nombre d’itérations, ce qui peut
aboutir a des fluctuations ou des divergences des grandeurs physiques quand on réalise des calculs
de structures nucléaires de noyaux. Chose surprenante, ces divergences dans les structures des
noyaux peuvent a priori étre reliées aux divergences de la matiere nucléaire infinie. Les criteres



pour déceler les fluctuations ou les divergences de la matiere nucléaire infinie sont donc < trans-
posables > aux fluctuations ou divergences dans les calculs de stuctures des noyaux. De ce constat,
on confirme tout l'intérét de la détermination des regles de somme. En effet, le fait qu’'une regle
de somme ne soit plus respectée représente la signature d’une fluctuation ou d’une divergence.

La majorité des études qui s’appuient sur les forces de Skyrme ne prennent pas en compte
I’aspect tensoriel et se limitent a un potentiel avec un terme central auquel on adjoint une partie
spin-orbite. En outre, 'intérét de se placer au niveau tensoriel permet d’avoir une meilleure con-
naissance de la structure de ces interactions nucléaires. On en déduit des regles de somme comme
les moments M; et Ms.

Comment calculer les régles de somme a partir de leur définition intrinséque avec un potentiel
phénoménologique de type Skyrme jusqu’au niveau tensoriel pour le moment M, et avec potentiel
central pour le moment Ms ?

Partie 111 - Hydrodynamique nucléaire et brisure de symétrie chirale

La partie III concerne 1’étude hydrodynamique relativiste de la matiere nucléaire aux énergies
intermédiaires correspondant au domaine de la physique hadronique. La matiere nucléaire est alors
soumise a une brisure spontanée de symétrie chirale qui se manifeste par 'apparition de pions.
L’intérét de la prise en compte de ce type de brisure de symétrie est de disposer d’une approche
hydrodynamique plus réaliste. Ces considérations pourront étre ensuite appliquées aux collisions
d’ions lourds relativistes car celles-ci produisent un grand nombre de particules qui sont en ma-
jorité des pions.

Dans le domaine de l'infiniment petit, la physique nucléaire est a l'origine de la physique
des particules, de I’étude des interactions élémentaires ainsi que celle des particules élémentaires
de la matiere [5, 6]. Ce domaine d’investigation reste trés actuel avec la recherche du boson de
Higgs grace a la mise en service au CERN en 2008 du grand collisionneur de hadrons, le < Large
Hadrons Collider ». Dans le domaine < d’énergies intermédiaires > de la physique hadronique, le
déconfinement des quarks n’est pas observé. En pratique, la production d’un grand nombre de
pions lors de collisions ultrarelativistes observées au CERN rend donc indispensable une théorie
incorporant la brisure spontanée de symétrie chirale.

Dans cette partie III on abordera ainsi 1’étude des propriétés de la matiere dense et chaude
produite lors de collisions nucléaires ultrarelativistes, c’est-a-dire les propriétés d’un gaz de pions.
Les pions sont les particules les plus légeres du monde hadronique, domaine ou la symétrie chirale
est brisée spontanément. Plus précisément, les pions sont les modes de Goldstone associés a cette
brisure de symétrie, ce qui explique leur faible masse et entraine par conséquent leur production
en grand nombre pendant les collisions d’ions lourds ultrarelativistes. La description du gaz de
pions entre sa formation et la libération des particules se fera par un traitement hydrodynamique,
le but étant donc de développer une théorie hydrodynamique en présence de brisure spontanée de
symétrie chirale. On se placera alors dans la géométrie de Bjorken.

Pour des raisons de simplification, un grand nombre d’études hydrodynamiques de la matiere
nucléaire lors des collisions d’ions lourds se limitent a assimiler cette matiere nucléaire a un fluide
parfait relativiste. De ce fait, ces études ne prennent en considération ni la brisure spontanée
de symétrie chirale ni 'aspect dissipatif associé a la production d’entropie a cause du caractere
irréversible de ces collisions.



Un traitement hydrodynamique réaliste de la matiére nucléaire lors de collisions d’ions lourds

aux énergies intermédiaires de la phase hadronique peut-il s affranchir de la prise en compte de la
brisure spontanée de symétrie chirale et (ou) de la dissipation ?

Dans ces différentes situations, quels sont les changements générés sur le profil de température
utilisé dans les collisions d’ions lourds ¢

Envisageons donc maintenant ces différents themes d’étude.



Partie I : Fusion-fission des noyaux
d’éléments super-lourds






Introduction de la Partie 1

Le nombre de protons et de neutrons composant les noyaux est limité. De ce fait, les noyaux
eux-mémes ont donc une dimension limitée. Selon le modele de la goutte liquide, dans la nature,
les noyaux d’éléments super-lourds de numéro atomique vérifiant Z > 110 ne peuvent exister. Pour
ces noyaux, l'interaction coulombienne répulsive entre protons I’emporte sur I'interaction nucléaire
forte attractive entre nucléons et la barriere de fission issue du modele de la goutte liquide est
alors quasi-nulle. Ce dernier point étant en contradiction avec I’existence de noyaux super-lourds,
pour obtenir des barrieres de potentiel plus réalistes, il faut donc aller au-dela du modele de la
goutte liquide.

De maniere générale, on s’appuie donc sur la mécanique quantique pour établir des modeles
nucléaires plus élaborés. Ces modeles nucléaires prédisent 1’existence d’un ilot d’éléments super-
lourds relativement stables. La localisation de I'ilot de stabilité des éléments super-lourds grace a
la théorie des couches est un sujet de recherche tres actif. La stabilité de ces noyaux est assurée par
des fermetures de couches énergétiques de protons et de neutrons. Cependant, suivant le modele
utilisé, différents nombres magiques correspondant aux fermetures de couches de protons et de
neutrons sont alors déterminés. C’est le cas du Plomb 208, le noyau doublement magique le plus
lourd existant sur Terre. A I’heure actuelle, il subsiste toujours des ambiguités sur la prédiction
du noyau doublement magique suivant. Ce noyau doublement magique est un noyau super-lourd.

Les différents modeles prédictifs aboutissent a des valeurs similaires pour la fermeture de la
couche de neutrons qui est estimée a N = 184. Par contre, il n’y a pas de concensus pour la
fermeture de la couche de protons car, suivant les modeles, les valeurs de Z varient de 114 a 126.
Les barrieres de fission associées a ces différentes modélisations peuvent alors prendre des formes
variées et étre par exemple simples, doubles ou encore triples. Une simple barriere de potentiel ne
présente pas de puits de potentiel secondaire, contrairement a une double ou une triple barriere
qui en possedent respectivement un ou deux. Dans 1’état fondamental, correspondant au puits
principal, le noyau super-lourd peut étre déformé. Un isomere de forme est un état excité du
noyau, associé a un puits secondaire isomérique du potentiel, dont la durée de vie est longue
comparativement aux temps caractéristiques nucléaires. Cet isomere de forme peut étre dans un
état de déformation tres différent de celui du noyau dans 1’état fondamental. Suivant le type
d’état isomérique, la stabilité du noyau super-lourd varie fortement car le temps de présence de
I'isomere de forme dans le puits isomérique est d’autant plus grand que le puits isomérique est
profond et donc que la barriere isomérique de fission associée est importante. Ces zones d’ombres
compliquent donc fortement la localisation de 'ilot de stabilité des éléments super-lourds. Une
description complete de la dynamique de fusion-fission de ces noyaux s’impose donc quand on
veut relier les prédictions théoriques et les résultats expérimentaux afin d’apporter des contraintes
supplémentaires sur la valeur de Z correspondant a la fermeture de couches de protons ainsi que
sur la forme de la barriere de fission et en particulier sur le regain de stabilité associé a la présence
d'un ou de deux puits isomériques.
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Lors de I'étude du mécanisme de formation d’'un noyau composé, la fusion et la fission sont
considérées comme indépendantes. En effet, apres 1’étape de fusion, il n’y a pas de trace de
la maniere avec laquelle le noyau projectile et le noyau cible ont fusionné. De ce fait, le noyau
composé ne dépend que de ces propriétés intrinseques comme par exemple 1'énergie d’excitation. En
outre, pour la fusion et la fission, on observe une dissipation d’énergie et des fluctuations d’origine
statistique. En accord avec le théoreme fluctuation-dissipation on utilise donc habituellement des
équations de transport avec extention stochastique de type Langevin par exemple. De plus, un
modele dynamique réaliste doit incorporer des criteres issus d’une analyse microscopique. Il faut
alors tenir compte pour l'étape de fusion des effets de mémoire et pour 1’'étape de fission des
corrections d’effets de couches qui modifient la forme de la barriere de potentiel correspondante.
Dans cette étude, on n’étudie pas I'influence des effets de couches dans I'étape de fusion.

La phase de fusion peut étre décomposée en deux étapes, I’étape de capture ou le noyau pro-
jectile et le noyau cible se rapprochent jusqu’a étre en contact et 1’étape de formation du noyau
composé. Dans cette étude, on s’intéresse plus particulierement a cette étape de formation. Con-
trairement au cas des noyaux légers, ou seule la barriere de potentiel coulombienne est a franchir,
pour les noyaux super-lourds la présence d’une barriere interne constitue une entrave a la fusion.
L’étude de cette entrave présente un grand intérét car actuellement ce processus n’est pas compris
completement. Au voisinage du maximum de potentiel de cette barriere interne, on peut approxi-
mer le potentiel par un potentiel osculateur parabolique afin d’estimer les tendances générales
d’évolution. On considere alors cette étape de formation comme une diffusion classique par-dessus
une barriere de potentiel parabolique avec effets de mémoire. De plus, pour le traitement dy-
namique on utilise une équation de Langevin généralisée avec un noyau mémoire. En effet, dans le
cas général, un processus aléatoire, c’est a dire stochastique, doit tenir compte de < I'historique >
de son évolution. Un des buts de cette partie consiste donc a établir une expression exacte con-
cernant la probabilité de formation du noyau composé en tenant compte de cet aspect.

Dans la phase de fission, le noyau composé super-lourd se comporte comme un noyau chaud car
une grande partie de I’énergie d’excitation est présente sous forme thermique. Les deux processus
principaux de désexcitation du noyau composé super-lourd sont pour des énergies d’excitation
inférieures a 100 MeV la fission thermique et 1’évaporation de neutrons. La compétition entre
ces deux voies de désexcitation permet d’augmenter la durée de vie d’un noyau super-lourd car
I’évaporation de neutron permet d’évacuer une partie de 1’énergie d’excitation du noyau chaud par
un autre moyen que la fission thermique. En particulier, il est intéressant d’étudier le temps de
fission afin d’avoir des informations sur la stabilité des noyaux. En effet, plus le temps de fission est
important, plus la barriere de fission est élevée, et plus le noyau est stable. La méthode habituelle
consiste a s’appuyer sur une équation de Langevin, cependant avec des temps de fission de I'ordre
de 107185 cette approche n’est pas viable en pratique. On a donc recours a des équations maitresses
de type Bateman pour modéliser la compétition entre fission et évaporation de neutrons. Les études
réalisées avec une simple barriere de fission ne permettent pas d’expliquer les résultats obtenus au
GANIL par blocage cristallin. Afin de comprendre ces résultats, il faut donc examiner d’autres
effets comme 'existence d’un puits de potentiel isomérique qui induit forcément une augmentation
du temps de fission. Il est donc intéressant de comparer le cas de la simple et de la double barriere
de potentiel, sans et avec corrections d’effets de couches.

Mots-clés :
Eléments Super-Lourds - Diffusion stochastique - Potentiel parabolique - Effets de mémoire -
Temps de fission - Evaporation de neutrons - Barriere de potentiel isomérique



Chapitre 1

Stabilité et synthese des super-lourds

Le but de ce chapitre consiste a rappeler ce qui est a l'origine de la stabilité des noyaux
super-lourds ainsi que la maniere de les synthétiser.

Dans un premier temps on aborde l'origine quantique de la stabilité de ces noyaux, que 1'on
considere comme froids, grace aux modeles en couches nucléaires et on rappelle les principales
informations concernant 1’ilot de stabilité des super-lourds.

Dans un second temps on aborde la dynamique de fusion-fission de ces noyaux en les considérant
comme des noyaux composés chauds, a cause de I’énergie d’excitation principalement sous forme
thermique, avant de préciser les axes d’étude de la partie 1.

1.1 Stabilité et localisation de I’ilot des super-lourds

1.1.1 Potentiel nucléaire et barriére de fission
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FI1GURE 1.1: Exemple de potentiel schématique V' a une dimension avec simple barriere de poten-
tiel. La variable collective ¢ est associée a la déformation jusqu’a la fission du noyau composé au
point de scission de coordonnée ¢,. Figure adaptée de [14].
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De maniere générale, le potentiel V' est associé a la variation d’énergie de liaison du noyau
en fonction de la déformation. Pour décrire cette déformation, on introduit la variable collective
continue ¢. Le potentiel V' est alors considéré comme une fonction continue de q.

De plus, le potentiel nucléaire peut se décomposer en un puits de potentiel et une barriere de
potentiel. La barriere de fission correspond alors a la différence de potentiel entre la déformation au
point selle et la déformation de 1’état fondamental, voir figure 1.1. Quand la variable de déformation
q devient trop grande, c¢’est-a-dire quand la barriere de potentiel est franchie, alors le noyau devient
trop instable et fissionne. Le temps de vie de cet édifice est alors fortement augmenté [14]. La figure
1.1 est une représentation schématique du potentiel V(¢) & une dimension car le potentiel réel est
multidimentionnel.

Selon le modele de la goutte liquide LDM <« Liquid Drop Model >, plus le nombre de nucléons
est grand et plus la barriere de fission BE¥PM g’abaisse. Pour un noyau moyen, avec A de 1'ordre
de 100, l'ordre de grandeur de Bj’%DM est d’environ 40 MeV [17]. Pour un noyau lourd, avec A
de I'ordre de 200, BfDM n’est plus que de 10 MeV. Enfin, dans le cas des noyaux super-lourds,
avec A de I'ordre de 300, Bf”" devient nulle. Pour ces noyaux super-lourds, le numéro atomique
associé vérifie Z > 110. La répulsion coulombienne déstabilisatrice est alors prépondérante [7, 16].

Si on envisage uniquement les criteres du modele de la goutte liquide [18], I'ilot de stabilité des
super-lourds ne peut exister car BfD M diminue progressivement avec I’augmentation de Z jusqu’a
devenir quasi nulle pour Z > 110. Pour comprendre ce regain de stabilité, il faut donc étudier les
structures nucléaires de maniere plus approfondie en utilisant les modeles en couches nucléaires.

1.1.2 Modeles en couches et barrieres isomériques

Pour aller au-dela du modele de la goutte liquide [18], il faut étudier le mouvement des nucléons
a l'intérieur du noyau. Le confinement de ces derniers est modélisé par un potentiel nucléaire V.
Ce potentiel est la résultante des interactions forte et coulombienne entre nucléons. De maniere
générale, compte tenu des échelles d’énergies et de densités, le traitement de la stabilité des
noyaux releve de la description quantique. La nature quantique des noyaux découle du caractere
fermionique des nucléons, voir partie 6.1.1. En outre, pour prendre en compte la taille finie des
noyaux il faut aller plus loin et utiliser des modeles microscopiques en couches nucléaires [19, 20].
Les nucléons sont alors considérés comme des nucléons quasi-indépendants en interaction dans le
potentiel V.

On peut utiliser par exemple, le modele macroscopique-microscopique de type Strutinsky avec
un potentiel de type Woods-Saxon ou de type Yukawa [21, 22|, des méthodes autocohérentes
de type Hartree-Fock s’appuyant sur des potentiels phénoménologiques non relativistes de type
Skyrme ou de type Gogny ou encore des traitements relativistes [9, 23, 24, 25, 26]. Suivant ces
différents modeles théoriques, les conclusions sur les fermetures de couches different. Pour un noyau
sphérique ou déformé, les couches correspondent a un < gap » a lintérieur de la distribution
inhomogene des niveaux d’énergie des états individuels du noyau. Les corrections de couches
représentent les écarts par rapport a la position moyenne dune couche.

L’énergie d’excitation générée lors de collisions d’ions lourds peut se diviser en deux catégories,
une énergie macroscopique et une énergie microscopique : £ = E,,4cr0 + Emicro- L'énergie a ’échelle
microscopique est intrinseque a l’ensemble des nucléons. L’énergie a 1’échelle macroscopique est
quant a elle associée aux mouvements collectifs du noyau comme par exemple la déformation. De
manicre analogue, il y a deux contributions a la barriere de fission By :

By ~ BfPM — AEg = Bf"M + |AEgpe. (1.1)
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La partie macroscopique de la barriere de fission est déterminée a partir du modele de
la goutte liquide et la partie microscopique AFq,.; négative, d’origine quantique, est issue des
corrections d’énergie de couches, de l'anglais < shell ». Par définition, la valeur absolue de la
correction de couche |AFg,,| correspond a la différence entre 1'énergie de liaison avec et sans
effets de couches. L’effet stabilisateur de ce dernier terme génere une élévation de la barriere de
fission By, principalement par un abaissement de I’énergie du niveau fondamental car I’abaissement
en énergie au niveau du point selle, plus ténu, peut étre en premiere approximation négligé.

Certains modeles prédisent pour les noyaux super-lourds de simples barrieres de fission, que
I’on peut déterminer grace a I’équation 1.1, car les effets de couches n’induisent alors qu'un abaisse-
ment du niveau fondamental. Par opposition, d’autres modélisations indiquent que les corrections
d’effets de couches génerent un abaissement du niveau fondamental ainsi que ’apparition d’un
ou de deux puits isomériques [27], voir figure 1.2. Une barriere de fission isomérique correspond
alors a la différence de potentiel entre la déformation du maximum secondaire et la déformation
du puits isomérique.

LDM
By

— — Modéle de la goutte liquide

Modéle en couches (Strutinsky)

—

FIGURE 1.2: Potentiel V' en fonction de la variable collective ¢ selon le modele de la goutte liquide
et selon le modele de correction d’énergie de couches de type Strutinsky, avec un puits isomérique,
pour un noyau lourd de type actinide. Le numéro atomique est proche de Z = 100 car la barriere
de fission issue du modele standard de la goutte liquide est encore conséquente. Figure adaptée

de [10].

Pour prendre en compte la dynamique de déformation des noyaux on s’appuie donc sur ’étude
de formes caractéristiques. En outre, dans le cas d’un noyau instable il faut tenir compte en
particulier de I’évolution de la forme de ce dernier, voir figure 1.3.

O @ © & ¢ o

FiGURE 1.3: Evolution de la forme du noyau pendant un processus de fission asymétrique. On
peut voir, de gauche a droite, le noyau sphérique dans I’état fondamental puis déformé. Ensuite la
déformation se poursuit jusqu’a la fission au point de scission en deux produits de fission. Figure
adaptée de [28].



16 CHAPITRE 1. STABILITE ET SYNTHESE DES SUPER-LOURDS

Les effets stabilisateurs de couches nucléaires s’amenuisent progressivement avec l’augmenta-
tion de la température. En effet, dans ce cas, les protons et les neutrons peuvent franchir plus
facilement le < gap > entre la couche occupée et la couche vide la plus proche. En effet, une couche
de protons ou de neutrons inaccessible a basse température peut le devenir quand la température
augmente. Pour les faibles énergies d’excitation autour de 1’état fondamental, le noyau est peu
déformé et la barriere de potentiel assure la stabilité du systeme. Par contre, pour des énergies
d’excitation plus grandes, statistiquement la probabilité de franchissement de la barriere de fission
n’est plus négligeable. Le noyau composé peut alors devenir instable par déformation jusqu’au
point de scission ou deux fragments de fission se séparent.

1.1.3 Consensus pour N mais pas pour /

A T’heure actuelle le nombre de neutrons du noyau super-lourd doublement magique est estimé
a N = 184 mais il subsiste des zones d’ombres sur la détermination du nombre de protons Z. Les
différentes valeurs de Z issues des différents modeles prédictifs se répartissent sur une large gamme
de valeurs, entre 114 et 126.

Sur la figure 1.4 on visualise les structures particulierement stables qualifiées de < noyaux
doublement magiques > existant sur Terre [21, 22].

wph : |
- i
7 2 62 (plomb)
: 126
- = — o0 (étain)
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o 58
.| 28 (nickel)
E | 28 20 (calcium)
— II = § N ) I
£ 'Z'L B {oxygéne) oyaux stables Wl
§' & ——2 (neélium) Noyaux radioactifs
= connus

MNombre de neutrons

FIGURE 1.4: Carte des noyaux dans le plan (N, Z7), nombres magiques et noyaux doublement
magiques. En particulier, on remarque le noyau doublement magique le plus massif a I’état naturel
sur Terre : le plomb 208 avec Z=82 protons et N=126 neutrons. Figure adaptée de [3].

Les simulations numériques réalisées en prenant en compte les correction d’effets de couches
avec différents potentiels reproduisent les niveaux d’énergie des noyaux existant dans la nature. Par
extrapolation a partir de ces mémes modeles on retrouve les nombres magiques pour les fermetures
de couches des protons et des neutrons correspondant a I'illot de stabilité des super-lourds.

Pour des noyaux super-lourds vérifiant Z > 110, la barriere de fission issue du modele macro-
scopique de la goutte liquide BfP* est quasi nulle. Les effets stabilisateurs sont donc d’origine
purement quantique. On peut alors écrire

B}?HE ~ |AE5hell|- (12)
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Ces noyaux super-lourds se caractérisent par de hautes barrieres de fission, de l'ordre de
plusieurs MeV, voir 'exemple de la figure 1.5 ou les barrieres de fission peuvent s’élever jusqu’a
|AEshell‘ ~ 10 MeV.

Suivant les modeles prédictifs pour ces noyaux super-lourds, les nombres magiques associés
aux fermetures de couches de protons et de neutrons changent et les ilots de stabilité prédits
correspondent a des noyaux sphériques ou déformés [15, 23, 24, 25, 29, 30]. Par exemple, avec la
méthode auto-cohérente Hartree-Fock utilisant des potentiels de Skyrme SkP et SLy7 on trouve
Z=126 et N=184. De plus, avec la méthode des corrections de couches de type Strutinsky a
I’aide d’un potentiel de type Woods-Saxon on trouve Z=114 et N=178, N=182. En outre, avec un
traitement relativiste on trouve Z=120, Z=124 et N=178. [23, 24, 25, 26]. 1l existe d’autres types
de potentiels qui aboutissent a d’autres valeurs de Z, cette liste de valeurs de Z n’est donc pas
exhaustive.
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FIGURE 1.5: Trois exemples pour les énergies de correction de couches AFEg,.; en MeV dans
le plan (N, Z). Les différentes courbes de niveau sont obtenues par la méthode auto-cohérente
Hartree-Fock en utilisant des potentiels de Skyrme SkP et SLy7, voir les chapitres 6 et 7, ou avec
la méthode des corrections de couches de type Strutinsky a 1’aide d’un potentiel de type Wood-
Saxon. Suivant la modélisation choisie, les valeurs de AFg,.; changent et la localisation de 1'ilot
de stabilité differe. Pour ces noyaux, la barriere de fission issue du modele macroscopique de la
goutte liquide est quasi inexistante. Figure issue de [30].
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De plus, comme il n’y a pas de concensus pour Z, il n’y en a pas non plus pour le nombre de
masse A. Par exemple, pour Z=124 et N=184 on obtient un nombre de masse A=308.

Dans la suite de I’étude nous utilisons le plus souvent I’expression (1.2) quand on considere
les corrections d’effets de couches sur la barriere de fission pour les noyaux super-lourds vérifiant
Z > 110. De plus, dans les différents graphiques et applications numériques concernant les noyaux
super-lourds, on envisage en général des corrections d’effets de couches se répartissant dans un
gamme de valeurs proches de |AFEge;| ~ 10 MeV et un nombre de masse A = 308.

1.1.4 Mesure de la stabilité des super-lourds par blocage cristallin

Une méthode expérimentale utilisée au GANIL [9, 14, 15, 16, 19] se base sur la technique de
blocage dans les monocristaux, < crystal blocking technique ». Cette technique permet d’étudier la
stabilité des noyaux super-lourds par mesure de temps de fission ;5. Avec cette méthode, on peut
étudier les noyaux super-lourds formés par collisions entre un noyau lourd du faisceau incident et
le noyau cible d’un atome du monocristal. L’énergie d’excitation Ej des noyaux super-lourds ainsi
formés est de l'ordre de 70 MeV ou 80 MeV. Quand les projectiles sont des noyaux de plomb et
les cibles des noyaux de germanium on synthétise des noyaux de numéro atomique Z = 114. Avec
un faisceau de noyaux d’uranium et des cibles de nickel ou de germanium, les numéros atomiques
des noyaux sont alors respectivement Z = 120 ou Z = 124. Ces noyaux étant métastables, les
produits de fission correspondants et les distributions angulaires associées sont déterminés par un
systeme de détection aligné avec un des axes principaux du monocristal, voir figure 1.6.
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FIGURE 1.6: Schéma simplifié¢ de la technique du blocage cristallin. Figure adaptée de [14, 31].

Les observables, grandeurs mesurables, sont dans ce cadre P(tps > 107'%s), la probabilité
d’existence de fragments de fission au-dela de 107185 et la multiplicité de neutrons de préscission,
correspondant au nombre de neutrons émis avant le point de scission. En effet, par cinématique
inverse, les projectiles étant plus massifs que les cibles, ce temps caractéristique est directement
relié aux limitations inférieures de sensibilité dues aux vibrations thermiques du cristal cible. Avec
ces cristaux et les vitesses associés aux différentes réactions étudiées, les résidus de temps de vie
caractéristiques inférieurs & cette limite de 107!8s ne sont pas mesurables [15]. Comme le temps
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de fission moyen 7y;ss n’est pas une observable, 'estimation de cette grandeur physique modele-
dépendante est indirecte. Dans ce cas, si le modele sur lequel s’appuie I'estimation d’une telle
grandeur est trop simpliste, il y a alors des imprécisions sur la valeur obtenue. Un avantage de la
technique du blocage cristallin réside dans le fait qu’elle n’est pas reliée a un modele nucléaire.
D’une part, le temps de fission est une grandeur physique indépendante des modeles de fusion, ce
qui est intéressant car les sections efficaces de fusion sont mal connues. D’autre part, le temps de
fission est indépendant des modeles nucléaires décrivant la fission. Le modele utilisé ici est bien
connu car il s’appuie sur les interactions atomiques dans les monocristaux qui génerent des effets
de canalisation et d’ombre en fonction du temps caractéristique du processus envisagé.

Un fragment de fission émis suivant une direction principale du cristal subit 'interaction des
atomes du plan cristallin associé au noyau cible. Le type de propagation ultérieure des fragments
de fission par rapport a une direction principale du monocristal est relié a 1’échelle de temps du
processus. Une estimation quantitative du temps de fission associé est alors possible.

Les fragments de fission sortent du cristal mais a des angles v différents. En effet, quand
la fission est rapide, les fragments sont produits dans le voisinage du site cible. Si I'interaction
électromagnétique entre le fragment et les atomes du cristal est intense, les angles 1 sont grands car
il y a une déflection importante de la trajectoire. Au-dela du domaine des vibrations thermiques,
pour des temps caractéristiques supérieurs & 107!%s, I'interaction entre le noyau cible et le plan
cristallin est de ce fait moins importante et les angles 1 sont petits.

Pour Z = 114 aucun événement supérieur & 107185 n’est détecté. Au contraire, pour Z = 120
et Z = 124, respectivement 10% et 12% des événements de capture possedent un temps de vie
supérieur a 107185 [14, 15, 16].

1.2 Etapes de synthese des super-lourds et axes d’étude
1.2.1 Fusion-fission des noyaux super-lourds et processus associés

Phase d’approche Phase de formation

Noyau
composé
Pomt de contact

O

Fission

Diffusion
elastique

Quasi- F|ssmn Evaporation de
particules légéres

FiGURE 1.7: Etapes de la fusion-fission des noyaux super-lourds et processus en compétition.
Figure issue de la référence [19].

Pour réaliser la synthese de noyaux super-lourds, de numéro atomique Z > 100, les techniques
actuelles consistent a réaliser des collisions entre ions lourds. Lors de telles collisions, I'influence
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du parametre d’impact est primordiale car suivant sa valeur différentes situations sont possibles,
voir figure 1.7. Cette synthese est favorisée pour les faibles parametres d’impact associés aux
collisions centrales. Il y a alors optimisation de la phase d’approche vers le point de contact entre
les noyaux cible et projectile au détriment de leur diffusion élastique. Ensuite, pendant la phase
de formation, le noyau composé commence a se former par apparition d’un col d’interpénétration
entre le projectile et la cible. Pendant cette étape cruciale, il y a alors compétition entre la quasi-
fission et la formation du noyau composé métastable. Enfin, une fois le noyau composé formé, la
désexcitation associée s’effectue soit par formation de deux fragments de fission, soit par formation
d’un noyau résiduel apres évaporation d'une particule légere.

Expérimentalement, il n’est pas facile de différencier les fragments issus de la fission de ceux
provenant de la quasi-fission. Cependant, les différences entre les échelles de temps caractéristiques
associées a ces différents processus servent de signatures pour leur discrimination. Par exemple le
temps caractéristique de la quasi-fission, inférieur & 1072° s, n’est pas détectable avec la technique
du blocage cristallin contrairement au temps caractéristique de désexcitation du noyau composé
avec compétition entre fission et évaporation de particules légeres ici supérieur a 10718 s.

Dans la figure 1.7 on remarque que le processus de fusion s’effectue en deux étapes, la phase de
capture et la phase de formation, voir partie 1.2.2. Lors de la fusion, une seule tentative est pos-
sible, il n’y a pas de deuxieme chance. Pour la phase d’approche, la condition initiale est située a
I'infini et la condition asymptotique au point de contact unique entre les noyaux qui collisionnent.
Pour la phase de formation, la condition initiale est située a ce méme point de contact. Le noyau
composé formé se trouvant dans un état excité, il peut étre considéré comme un noyau chaud. Ce
noyau composé étant métastable, statistiquement la fission autorise de multiples tentatives pour
le franchissement de la barriere de fission. Pour la fission la condition initiale se situe alors dans le
puits thermalisé correspondant a 1’état fondamental du noyau composé. La compétition entre la
fission et 1’évaporation de particules légeres conditionne la désexcitation du noyau composé, voir
partie 1.2.3.

Il est donc tres difficile d’explorer le domaine ou doivent se situer les noyaux d’éléments super-
lourds car les deux principaux criteres mis en jeu, la fusion et la fission sont antagonistes. En
pratique, le principal probleme réside dans la détermination du < juste équilibre > afin de les
optimiser conjointement.

1.2.2 Fusion des noyaux d’éléments super-lourds

Les noyaux super-lourds se caractérisent par de tres faibles sections efficaces de fusion, de 'ordre
du picobarn ou méme encore plus petites [13, 15, 19, 32]. De maniere générale, la section efficace
de fusion peut s’écrire en fonction des différentes valeurs du moment angulaire total J < J,q. :

/\2
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ou A représente la longueur d’onde de De Broglie et E.,, 1’énergie de faisceau dans le centre
de masse. La probabilité de fusion Pf,s(E..,.) dépend également de J. Dans le cas des noyaux
super-lourds, la valeur J = 0 du moment angulaire constitue la contribution principale a la section
efficace de fusion.

Figure 1.8 on visualise la schématisation du potentiel V(g) lors de la fusion d’un noyau cible,
de numéro atomique Z., et d'un noyau projectile, de numéro atomique Z,, pour former un noyau
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composé de numéro atomique Z = Z.+ Z,. Les nombres de masse associés sont alors A = A.+ A,,.
Pour tout type de noyau, il existe une barriere associée a la forte répulsion coulombienne entre les
noyaux projectile et cible. De plus, contrairement aux noyaux légers, pour les noyaux super-lourds
tels que Z..Z, > 1600 il existe une barriere interne apres le point de contact. Cette seconde barriere
est associée au processus de formation du noyau composé proprement dit et géneére un phénomene
d’entrave a la fusion. A I’heure actuelle, il n’existe pas de théorie pour considérer la fusion dans sa
globalité. Pour contourner ce probleme, on modélise la fusion a I'aide de deux étapes successives :
le processus de capture, pendant la phase d’approche et jusqu’au point de contact, et le processus
de formation. Les conditions asymptotiques apres le franchissement de la barriere coulombienne
correspondent alors aux conditions initiales de la barriere interne [32]. La probabilité de fusion est
donc égale au produit des probabilités de capture P, et de formation Py,

Pfus(Ec.m.> = Pcapt'Pforma (14)

avec E. , 'énergie de faisceau dans le centre de masse. Cette énergie est telle que E.,, = E*—(Q ou
E* est I'énergie d’excitation du noyau composé par rapport a I'état fondamental et QQ = Q) fysion st
I’énergie associée a la fusion du noyau projectile et du noyau cible pour former le noyau composé
d’ou 'expression en fonction des énergies de masses des noyaux Q fusion = (M, + M, — Men)c.

ir ’;\ i
// Y *
4 B \ E

E cm A S /
Y, \ i
] ° \ s

] - -__--h. 8 .

\V/ . -E shell o J

/ barriere barriére A

de Coulomb interne Q état fondamental

q

FI1GURE 1.8: Schématisation du potentiel V' en fonction de la coordonnée collective ¢ lors du pro-
cessus de fusion du noyau composé de nombre de masse A. Le sommet de la barriere coulombienne
est noté V,,. Le sommet Bg de la barriere interne, spécifique des noyaux super-lourds, se situe apres
le point de contact de potentiel V. Les grandeurs Bg et V; sont définies par rapport au niveau
fondamental du noyau composé. La correction d’énergie de couches est AF e = Espen < 0. Ee,
est I'énergie de faisceau disponible dans le centre de masse. E* représente 'énergie d’excitation
du noyau composé par rapport a 1'état fondamental et @ = Q fusion. Figure adaptée de [19].

Expérimentalement il est difficile d’accéder a I'ilot de stabilité des super-lourds car actuellement
on ne dispose pas de faisceaux d’ions projectiles et d’ions cibles assez exotiques qui sont suffisam-
ment riches en neutrons. Les noyaux composés synthétisés lors des collisions d’ions lourds sont donc
en général déficitaires en neutrons par rapport aux nombre de neutrons des noyaux prédits pour
Illot de stabilité des super-lourds. Suivants les laboratoires, différents types de procédés sont mis
en ceuvre : la fusion froide, la fusion chaude et la fusion que 'on peut qualifier de < tres-chaude .



22 CHAPITRE 1. STABILITE ET SYNTHESE DES SUPER-LOURDS

- La fusion froide est utilisée au GSI et a RIKEN. Elle se caractérise par une énergie d’excitation
du noyau composé de l'ordre de 10 MeV et une évaporation d'un ou deux neutrons en moyenne.
Cette méthode permet de produire au GSI des noyaux de numéros atomiques Z allant de 107 a
112 et a RIKEN des noyaux de numéros atomiques Z compris entre 110 et 113. La fission associée
est asymétrique et les produits de fission sont peu excédentaires en neutrons. Lors du processus de
désintégration radioactive, les cascades de désintégration se situent dans une région bien connue
du diagramme de Segré, ce qui facilite I'identification.
- La fusion chaude est quant a elle utilisée au JINR. L’énergie d’excitation du noyau composé est de
I'ordre de 30 MeV et le nombre moyen de neutrons évaporés varie de trois a cing. Cette technique
permet la synthese de noyaux de numéros atomiques 7 = 114, Z = 115, Z = 116, Z = 117 et
Z = 118 [13]. La fission associée est symétrique et les produits de fission sont excédentaires en
neutrons. Le GSI a comfirmé des réactions de fusion chaude pour les noyaux Z = 114 et Z = 116,
qui sont donc en cours d’étre nommés. Cependant pour , Z = 114, Z = 116 et Z = 118 les résultats
obtenus au JINR sont encore soumis a débat car les cascades de désintégration se trouvent alors
dans une zone mal connue du diagramme de Segré.
- La fusion < tres-chaude > est mise en ccuvre au GANIL. L’énergie d’excitation du noyau composé,
considéré dans ce cas comme un noyau chaud, est alors de 'ordre de 70 MeV ou 80 MeV et le
nombre de neutrons évaporés s’éleve a huit ou neuf. En outre, les noyaux formés sont Z = 114,
Z =120 et Z = 124 [16]. Les nombres de neutrons associés sont proches de 180. Pour ces deux
derniers cas, la stabilité particuliere de ces deux noyaux est mise en évidence par des temps de
fission longs, signatures de l’existence de barrieres de fission importantes.

Pour ce type de fusion, il n’y a pas de résidus d’évaporation observés car tous les noyaux formés
fissionnent. De ce fait, ces noyaux sont alors trop instables pour pouvoir réaliser des syntheses
d’atomes avec tout le cortege électronique.

1.2.3 Métastabilité et désexcitation des noyaux d’éléments super-lourds

Pour la fusion < tres-chaude > mise en ceuvre au GANIL, I’énergie mobilisée est grande donc la
durée de vie du noyau composé a partir de la collision est petite, I’énergie d’excitation par rapport
a ’état fondamental étant alors importante. La section efficace résultante des différents processus
de désexcitation du noyau composé est de ce fait grande. La probabilité de survie du noyau super-
lourd, particulierement instable, est alors petite. Ainsi, la fusion du noyau super-lourd métastable
est donc inéluctablement suivie de sa désexcitation qui a son tour conditionne sa survie.

La section efficace résiduelle est donc le produit de la probabilité de fusion Py,s et de la
probabilité de survie Pj,,., pour les différentes valeurs du moment angulaire total J < J,,,4s :

/\2

Ores (Ecm) = E

> (@7 + 1) Prus(Ben.) Pauro (), (1.5)

JS Jma,z

avec B* = E.,, + @ 'énergie d’excitation du noyau composé par rapport a 1’état fondamental
avec ) = @ fusion- Pour simplifier les notations les dépendances des probabilités Py, et Py, par
rapport au moment angulaire total J ne sont pas représentées. Pour les noyaux super-lourds la
valeur J = 0 assure la principale contribution de cette section efficace.

Cette section efficace 0,.¢5( Ee.pm.) traduit la compétition entre fusion et fission, il est donc difficile
d’optimiser sa valeur. En effet, dans la gamme d’énergie compatible avec le processus de fusion,
plus I’énergie cinétique E.,, mise en jeu dans la collision est faible et plus la probabilité de fusion
Prys(E..m.) est petite mais en méme temps plus la probabilité de survie du noyau chaud composé
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ainsi formé Pj,,.,(E*) est grande car dans ce cas 'énergie d’excitation Ej de ce noyau composé,
premier noyau de la cascade de désexcitation, est plus faible. Ces considérations sont valides pour
une énergie £ inférieure a 100 MeV, comme par exemple 70 MeV ou 80 MeV . Dans ce cadre, on
peut donc déterminer la probabilité de survie Pj,,.,(E*) associée en fonction des différents canaux
de désexcitation disponibles, les deux principaux étant la fission et ’évaporation de neutrons.

De maniere générale, a cause de la compétition entre les différents canaux de désexcitation,
les temps de fission obtenus au GANIL pour les noyaux super-lourds Z =120 et Z =124 [14], voir
partie 1.1.4, sont largement supérieurs au temps de fission estimé a partir du taux de Kramers
correspondant au taux de fission par-dessus une barriere de potentiel depuis un état fondamental
métastable thermalisé [33] quand la température vérifie T' < By, voir partie 4.2.1.

Pour essayer de comprendre les valeurs importantes de ces temps de fission, différents outils
sont utilisés. On peut par exemple utiliser, dans le cas ou la fission est considérée comme le seul
processus de désexcitation, le temps de descente du point selle au point de scission, voir figure 1.9.
En particulier, le temps de descente depuis le point selle correspondant au maximum de potentiel
(associé au puits de I’état fondamental) jusqu’au point de scission ou le noyau composé est détruit
peut alors étre long dans le cas des noyaux super-lourds, voir partie 4.2.1.

En outre, figure 1.9, avec le type de potentiel V'(¢) envisagé, on visualise les formes successives
du noyau pendant sa déformation et en particulier des états isomériques associés de formes tres
différentes de la forme du noyau dans I'état fondamental . Ces isomeres de forme présentent une
certaine stabilité qui se traduit par une augmentation de la durée de vie du noyau et donc du
temps de fission. A priori, I'existence d'un puits de potentiel isomérique, voir partie 1.1.2, peut
étre un autre élément d’explication possible pour les temps de fission longs.
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FIGURE 1.9: Exemple de potentiel schématique V' (g) & une dimension avec double barriere de po-
tentiel, par analogie avec les actinides. Dans ce schéma simplifié, les effets de couches stabilisateurs
dans la région de I’état fondamental ne sont pas représentés. La variable collective ¢ est associée a
la déformation jusqu’a la fission du noyau composé au point de scission de coordonnée ¢s. Figure
adaptée de [7].

1.2.4 Axes d’étude

Pour apporter des éléments d’information sur la dynamique de la fusion-fission des noyaux
super-lourds on envisage deux axes d’étude. Dans le premier axe d’étude on suppose la phase de
capture réussie et on s’intéresse a la formation proprement dite du noyau composé super-lourd
par diffusion. Dans le deuxieme axe d’étude on se focalise sur la désexcitation du noyau composé
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super-lourd et de la chaine isotopique de désexcitation associée par compétition entre fission et
évaporation de neutrons.

D’apres le principe de causalité, tout phénomene physique possede une origine. L’état d’un
systeme doit alors garder une trace, pendant un temps caractéristique, des états antérieurs. On
parle alors d’effets de mémoire. En physique nucléaire, pour accéder a la dynamique du systeme, il
est donc nécessaire d’utiliser des équations de transport stochastiques ot les effets de mémoire sont
pris en compte grace a la présence d’un noyau mémoire. Par exemple, dans le cas des oscillations
résonantes des noyaux, modes collectifs de faibles amplitudes, le temps de relaxation est du meéme
ordre de grandeur que l'inverse de la fréquence des oscillations. C’est pourquoi, dans ce cas, le
noyau mémoire doit étre pris en compte pour reproduire les données expérimentales [34, 35].
Cependant, pour simplifier, on peut écarter ces effets de mémoire si le temps caractéristique d’un
processus est long devant le temps caractéristique du noyau mémoire. C’est le cas de la fission.

La fusion est un processus que I’on modélise comme une diffusion par-dessus une barriere. Pour
ce type de réaction, 1’échelle de temps est assez petite pour considérer que la prise en compte du
noyau mémoire est pertinente. Il faut donc tenir compte de 'influence des effets de mémoire sur la
phase de formation par fusion nucléaire du noyau composé. L’équation de transport stochastique
est alors une équation de Langevin généralisée. En général, des simulations numériques s’averent
nécessaires car des solutions analytiques ne sont obtenues que dans les cas particuliers des poten-
tiels paraboliques, linéaires ou nuls. Dans le cas présent, on considere que le potentiel est de forme
parabolique au sommet de la barriere interne, ce qui permet une résolution exacte. L’équation du
mouvement est en général non linéaire, cependant 1’étude est restreinte aux faibles amplitudes en
utilisant une équation linéaire dans le but d’étudier les effets du noyau mémoire sur la diffusion.

Dans le chapitre 2, on rappelle les grandes lignes et les principaux résultats du cas sans effets
de mémoire avant d’aborder ’équation de Langevin généralisée. Dans le chapitre 3 on aborde la
prise en compte des effets de mémoire dans la formation du noyau composé.

La fission, mode collectif de forte amplitude, est un processus lent comparé au temps carac-
téristique du noyau mémoire [36]. On peut donc a priori écarter les effets de mémoire sur I'ensemble
du processus a I'exception du passage du point selle au point de scission. En effet, un calcul récent
montre que le temps de descente du point selle au point de scission est également sensible aux
effets de mémoire [35]. On étudie la désexcitation du noyau composé métastable en le considérant
comme un noyau chaud. Comme dans ce cas, la forme de la barriere de fission n’est pas bien
connue, afin de regarder I'influence de la forme de la barriere sur le processus de fission du noyau
composé, différents types de barrieres sont envisagés. Le but est d’essayer de comprendre les
résultats expérimentaux obtenus au GANIL avec la technique du blocage cristallin. Le recours a
une équation de Langevin n’est plus pertinent compte tenu des temps caractéristiques de fission
de l'ordre de 10785 et de I’énorme statistique que cette méthode impose. On utilise donc des
équations de Bateman pour décrire la compétition entre fission et évaporation de neutrons. Cette
modélisation est hybride car elle associe les points de vue statistique et dynamique. De plus, cette
approche permet une résolution analytique.

Le chapitre 4 envisage ’étude de la simple barriere et le chapitre 5 aborde celle de la double
barriere. Pour ces deux cas, on conserve la méme progression. Dans un premier temps 1’étude de
la barriere est réalisée avec la fission comme seul processus de désexcitation. Dans un deuxieme
temps on considere la compétition entre fission et évaporation de neutrons avec tout d’abord la
barriere de fission By constante puis la prise en compte des corrections d’effets de couches.

On regarde alors I'influence de la barriere de potentiel sur le temps de fission et les grandeurs
physiques associées comme la probabilité d’existence d’événements avec des temps de fission
supérieurs & 107185 ou la multiplicité de neutrons de préscission.



Chapitre 2

Equation de Langevin, diffusion et effets
de mémoire

Le but de ce chapitre consiste a rappeler les principales caractéristiques de la dynamique
stochastique, sans et avec effets de mémoire. En particulier on précise le domaine de validité de
ces approches ainsi que leur relation avec la physique nucléaire.

Dans un premier temps, on aborde le lien entre le mouvement brownien et 1’équation de
Langevin markovienne. Dans un deuxieme temps, on rappelle le cadre général de la diffusion avec
une barriere de potentiel parabolique, voir figure 2.1, et les principaux résultats du cas markovien.
Dans un troisieme temps on examine l'origine des effets de mémoire et un modele statistique qui
permet d’aboutir a une équation de Langevin généralisée.
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FI1GURE 2.1: Modélisation du sommet de la barriere interne des noyaux super-lourds par un po-
tentiel parabolique avec les conditions initiales ¢y < 0 et py > 0.

2.1 Mouvement brownien et équation de Langevin

2.1.1 Mouvement brownien, variable stochastique et cadre markovien
Le mouvement brownien

En 1827 le botaniste Robert Brown observe les trajectoires erratiques de particules micro-
scopiques de pollen dans de I'ambre [37]. Ces grains de pollen ne pouvant plus étre vivants, le
mouvement n’est pas d’origine biologique comme on le pensait auparavant mais d’origine physique
ou chimique. Plus tard, on donne a ce phénomene le nom de mouvement brownien. Ce n’est qu’a
partir de 1905 qu’Albert Einstein fournit une premiere interprétation du processus [38] : le com-
portement désordonné des grains est du a leurs collisions avec les molécules d’eau, constitutives du
milieu. Indépendamment en 1906, M. V. Smoluchowski, a partir d'une équation de conservation
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dans l'espace des phases c’est-a-dire d’une approche globale, aboutit aux mémes constatations.
L’inconvénient de ces approches réside dans le fait que l'inertie de la particule brownienne n’est
pas prise en compte. Paul Langevin en 1908 analyse plus précisément I'influence du milieu sur la
particule brownienne en incluant les effets d’inertie [39]. Il propose alors une approche originale
qui consiste, en partant du mouvement individuel de la particule brownienne, a introduire une
force aléatoire afin de modéliser son comportement erratique.

Des situations similaires au mouvement brownien apparaissent dans de nombreux domaines de
la physique. On peut citer a titre d’exemples la fission et la fusion, themes centraux de notre étude
de physique nucléaire, ou le bruit Nyquist dans les conducteurs ohmiques. De maniere générale, le
mouvement brownien peut étre considéré comme un < cas d’école > permettant de comprendre les
mécanismes qui régissent les fluctuations et les dissipations d’énergie. Le probleme présente aussi
un intérét pratique car ces fluctuations sont sources de bruit de fond, ce qui limite la précision
des mesures. Dans le cas général on parle de mouvement brownien quand une particule est assez
petite pour étre soumise a un mouvement aléatoire, une fois plongée dans un bain thermique.

Mathématiquement le mouvement brownien de la particule peut étre décrit a 1’aide d’une
variable aléatoire continue ¢ dont I'évolution est régie par I'équation de Langevin. Le domaine
de validité de cette équation phénoménologique peut étre étendu a la physique nucléaire sous
certaines conditions, voir partie 2.3.1. Dans ce chapitre et le chapitre suivant, ¢ est considérée
comme une variable collective caractérisant 1’élongation, c’est-a-dire la distance séparant le noyau
projectile du noyau cible pendant la formation du noyau composé et m représente l'inertie.

Variable aléatoire et processus markovien

Contrairement au cadre classique déterministe, la variable ¢ n’est pas connue avec certitude
a l'instant t quand on connait la position initiale gy a tg = 0. En effet, on ne connait que la
probabilité qu’elle prenne une valeur particuliere a t. ¢ est donc une variable stochastique. Pour une
telle variable continue on utilise alors la notion de densité de probabilité W (q, t|qo, to). Dans le cas
général, la densité de probabilité a elle seule ne permet pas de caractériser de maniere exhaustive
le processus aléatoire, autrement dit stochastique, il faut aussi connaitre I’ensemble des densités
de probabilités conjointes W (qy, t,|..-|qx, tk|---|q0, to), avec qx valeur prise par la variable aléatoire
q a l'instant t; tel que ty < t, < t,,. La prise en compte de < I'historique > de la particule est donc
nécessaire car il faut envisager a partir de (qo,tp) tous les chemins possibles (gx,tx) antérieurs a
Iétat (qn, tn).

Au contraire, un processus markovien ne tient pas compte de la « mémoire > du systeme. Pour
cette classe de processus, I'état (g,,t,) ne dépend donc que de 1'état (g,_1,%,-1) et pas des états
antérieurs. De ce fait, pour un processus de Markov on peut donc écrire

n

W (g, tnldn-1,tn-1|.--|q0, to) = H W (qi, tilgi—1, ti—1)W(qo, to)- (2.1)

=1
2.1.2 L’équation de Langevin markovienne

Modélisation phénoménologique du mouvement brownien

Comme on 'a déja évoqué dans la partie 2.1.1, ’équation de Langevin est introduite pour la
premiere fois en 1908 par Paul Langevin [39]. Dans cette approche phénoménologique, on consideére
un systeme constitué d’une particule de masse m, en interaction avec un milieu possédant un grand
nombre de degrés de liberté si;...; s,,. Pour simplifier ’étude, on se place a une dimension.
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Le centre de masse de la particule est donc caractérisé par sa position ¢(t) et sa vitesse
p(t) = ¢(t). 1l n’est pas possible de décrire exactement le couplage entre les nombreux degrés
de liberté secondaires représentatifs du milieu si;...;s,. En revanche, comme la variation de ces
degrés de liberté secondaires est tres rapide par rapport a celle de la variable collective ¢(t), ces
degrés peuvent étre assimilés a un bain thermique de température T'. L’interaction entre la par-
ticule brownienne et les degrés de liberté secondaires peut alors étre représentée par une force
effective F'(t). D’autre part, la particule brownienne est aussi susceptible de subir I'action d'un
champ de force extérieur, dérivant d’une énergie potentielle V. Ainsi, I’équation fondamentale de
la dynamique s’écrit :

mi = F(t) — 2. (2.2)

La deuxieme loi de Newton néglige les fluctuations de ces chocs entre les constituants du bain et
la particule de masse m. Cette hypothese est justifiée uniquement quand la masse de la particule
est grande devant celle des différents constituants du bain. Ce n’est donc plus le cas pour une
particule comparable aux constituants du bain. En effet celle-ci, a cause des nombreuses collisions
avec le milieu est soumise & un mouvement stochastique. De ce fait, I’évolution de cette particule
ne peut plus étre décrite par une équation de Newton, déterministe par nature [40]. Afin de pallier
le probleme, on adjoint alors au bilan des forces une force stochastique f(t). De ce fait, la force
totale qui décrit les interactions entre la particule brownienne et le bain thermique peut se scinder
en deux termes : F(t) = (F(t)) + f(¢).

1. Le premier terme est appelé force de friction. Il est associé au fait que dans le référentiel
du centre de masse de la particule brownienne, il y a plus de chocs avec les constituants du
bain thermique a ’avant la particule brownienne qu’a ’arriere. Pour les mémes raisons il y a
plus de gouttes d’eau sur le pare-brise d'une voiture qui roule sous la pluie que sur la lunette
arriere. La valeur moyenne de la force F'(¢) n’est donc pas nulle. On la note (F(t)) avec (..),
symbole caractérisant une moyenne statistique sur un ensemble de systemes, constitués d’une
particule brownienne et d'un bain thermique, tous identiques a I’échelle macroscopique. En
général, cette force est proportionnelle a la vitesse de la particule et de sens opposé au
mouvement d’ou : (F(t)) = —vq(t), avec «y le coefficient de friction. v traduit le transfert
irréversible moyen de 1’énergie associée a la particule vers les degrés de liberté du milieu.

2. Le deuxieéme terme est la force stochastique proprement dite f(¢) qui symbolise la partie
rapidement variable de F'(t). Pour étre plus précis, f(t) est issue des fluctuations statistiques
de part et d’autre de (F'(t)). f(t) n’est pas connue avec précision mais des hypotheses
statistiques peuvent étre faites :

Dans un premier temps (f(¢)), le moment d’ordre 1 de f(¢), est par définition nul car il est
obtenu en retranchant la valeur moyenne (F'(t)) a F'(t) afin d’accéder a f(t).

Dans un deuxieme temps pour (f(t)f(t')), le moment d’ordre 2 de f(t), on fait ’hypothese
que deux événements séparés d’un intervalle de temps suffisamment long ne sont pas corrélés.
Le moment d’ordre 2 a donc la forme d'une distribution paire, symétrique, piquée aux
alentours de la valeur t — ¢ = 0. Cette distribution est dans le cas markovien, c’est-a-dire
quand il n’y a pas d’effet de mémoire, associée a une distribution ¢ de Dirac. De plus, pour ce
cas markovien, d’apres le théoreme fluctuation-dissipation [41], on peut montrer que f(t) =
V29T (t), avec v un nombre aléatoire gaussien, tel que (v(t)) = 0 et (v(t)v(t')) = o(t — ).
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Bilan du cas markovien

L’équation de Langevin markovienne s’écrit alors, en introduisant le coefficient de friction
réduit § = y/m = 7,7 et la force stochastique réduite r,,(t) = f(t)/m :

10V
i+ BG4+ — =7 (1) 2.3
q+5q+m5q T'm(t) (2.3)
les moments d’ordre un et deux de la force stochastique réduite vérifient
28T
() =0 et () = 205(1 1), (24

en accord avec le théoreme fluctuation-dissipation.

Alinsi, pour résumer la situation, le systeme constitué d’une particule de masse m, dont le centre
de masse est caractérisé par ¢(t), soumise a une barriere de potentiel quadratique V' = —%muﬂqz,
plongée dans un bain thermique caractérisé par la température T et le coefficient de friction réduit
[ est :

i+ Bi—Pg=ralt)  ralt) =/ 2u(t) (2.5)
(F(®) =0 (r(O)rm(t)) = 225(t — 1) (26)

Le systeme ci-dessus est qualifé de markovien, autrement dit completement aléatoire, car il ne
présente aucun effet de mémoire. Des événements a deux instants t et ¢ différents sont donc
completement décorrélés. De plus, le coefficient réduit 8 est associé a la dissipation de la particule
brownienne vers les degrés de liberté du bain thermique. La force stochastique gaussienne réduite
représente les fluctuations autour de la valeur moyenne. L’équation de Langevin (2.5) est qualifiée
d’équation réduite car le bain thermique est décrit uniquement par deux parametres T et 5. De
plus, seules les dérivées premiere et seconde de la coordonnée ¢(t) apparaissent dans cette équation
linéaire. En outre, pour accéder aux grandeurs physiques, seuls les deux premiers moments de la
force stochastique réduite sont nécessaires.

2.2 Diffusion et barriere de potentiel parabolique

2.2.1 Point de vue général

Le probleme de la diffusion par-dessus une barriere de potentiel parabolique a une dimension
V(q) = —mw?q*/2, avec des conditions initiales strictes comme gy < 0 et py = ¢y > 0, peut étre
résolu exactement avec la méthode utilisée dans la référence [41] ou en utilisant les transformées
de Laplace, cette derniere méthode étant plus rapide.

Pour évaluer la probabilité de formation par passage par-dessus la barriere de potentiel, nous
avons uniquement besoin de la distribution réduite obtenue quand on réalise la moyenne sur
tous les degrés de liberté excepté q. On retrouve une distribution gaussienne pour la densité de

probabilité
1 — (q(t)))?
(Ll 0y, 2
V2o, (t) 205(t)
avec o (t) la variance et (q(t)) la valeur moyenne de ¢(t). De ce fait, la probabilité de formation
par franchissement de la barriere est

W(Q7 t|QO7PO) -

Pform(t;q07p0) = o N W(QaﬂQO;PO)dq = %erfc (_%> ) (28)
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en notant erfc la fonction erreur complémentaire :

erfe(z) = —= / m (2.9)

Le probleme peut étre généralisé, si on conserve ’hypothese du potentiel parabolique, a des cas
non markoviens ot la distribution des conditions initiales est gaussienne, voir le chapitre 3 traitant
de l'influence des effets de mémoire sur le processus de diffusion. Dans ce cadre plus général le
probléeme est aussi soluble analytiquement [42].

2.2.2 Rappels sur la diffusion sans effets de mémoire

Dans cette section, on rappelle brievement les principaux résultats de la diffusion markovienne
par-dessus une barriere de potentiel parabolique afin de mieux comprendre ensuite 'influence des
effets de mémoire. Pour plus de détails regarder [41].

L’équation de Langevin markovienne (2.5) peut étre mise sous la forme

%[gl_u[g}—i_{rm@@)}’ (2.10)

ou la matrice de dérive déterministe D et le terme stochastique r,,(t) s’écrivent

D= {0?2 _H et () = /2 01). (2.11)

On peut donc intégrer formellement 1’équation (2.10) pour aboutir a

t
q | _ (t—to)D | 40 / (t'—to)D { 0 } /
=e ) + e dt’, 2.12
{p ] [po } 0 rm(t) (2.12)

ol le premier terme du membre de droite correspond a la valeur moyenne de ¢, déterministe, et
le second terme a la diffusion stochastique.
D’autre part, les valeurs propres de la matrice de dérive D, solutions de 1’équation,

M4 BA—w?=(A—a)\—b) =0, (2.13)

sont

a = %(Vﬁ2+4w2_5)7 (214)
b = —%(\/ﬁQ + 4w? + B).
On peut remarquer que a > 0 et b < 0 et en déduire la valeur moyenne de ¢ ainsi que sa variance
[41, 43, 44, 45]. On obtient alors, avec ' = /32 + 4w?, les expressions suivantes

(@) = a0 [ w5+ S >} e By By, (2.15)
ol = —sz {1 — (2@ hQ(BIt) +§ h(ﬂ )+ 1) —“/2} : (2.16)

Or, comme dans ce cas la densité de probabilité W (q, t|qo, to) est une gaussienne, on peut alors
accéder a la probabilité de passage par-dessus la barriere de potentiel en utilisant la démarche
évoquée dans la partie 2.2.1.
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Pour les temps longs, at > 1, la probabilité de formation converge vers une limite finie

Pt opm (t — 00; )—>1f d \/B a\/K
form 35 4o, Po 261’ C \/@ T w T

ol K = mp?/2 représente 'énergie cinétique initiale et B = mw?q3 /2 la hauteur de barriere que la
particule doit franchir. Dans le cas du probleme de Kramers [33], la température est uniquement
responsable de la diffusion a cause de 1’équilibre initial dans le puits métastable. Ici, il y a une
interaction entre le processus dynamique et le processus diffusif, il faut donc prendre en compte
I’énergie cinétique initiale K. Le phénomene est alors transitoire, le flux par-dessus la barriere est
sensible uniquement pendant une fenétre temporelle limitée [42].

Pour avoir la moitié des particules franchissant la barriere de potentiel, 1’énergie cinétique
initiale doit vérifier

, (2.17)

K = (3)23 = By (2.18)

a

De plus, dans la limite de faible friction, la condition précédente devient K ~ B. Par exemple, avec
des valeurs usuelles de physique nucléaire, hw = 1.0MeV et B = 5.10?*s™! on obtient % =15
d’ott B.yy ~ 11B. Par contre, avec iw = 1.0MeV et B = 2.10*'s™! on obtient % = 0.66 d’on
Besr ~ 3.5B. Ceci illustre le role important joué par la dissipation sur la barriere effective.
Comme déja évoqué dans [42], suivant les valeurs de 1’énergie cinétique initiale K et de la
barriere effective B.sr, on observe alors trois régimes :
- Quand K < By, la trajectoire moyenne ne parvient jamais a atteindre le sommet de la barriere,
situé a ¢ = 0. La probabilité de passage par-dessus la barriere est alors principalement due a la
diffusion thermique qui est un processus lent.
- Dans le cas critique ou K = B.sy, la trajectoire moyenne converge vers 'asymptote ¢ = 0
correspondant au sommet de la barriere et la probabilité de franchissement de la barriere de
potentiel tend vers 1/2, indépendamment de la valeur de la température.
- Enfin, quand, K > By, la trajectoire moyenne franchit la barriere de potentiel et la diffusion
thermique ne joue plus un roéle crucial.

2.3 Equation de Langevin généralisée

2.3.1 Domaine de validité et temps caractéristique des effets de mémoire
Domaine de validité et lien avec la physique nucléaire

Dans le mouvement brownien, le grain de pollen modifie le bain thermique. Si le bain revient
rapidement a l’équilibre, le processus est markovien. Au contraire, si le retour a I’équilibre est
lent, le processus n’est plus markovien car le systeme est alors soumis a des effets de mémoire.
Ces considérations peuvent étre retransposées en physique nucléaire.

En physique nucléaire m représente l'inertie et 8 caractérise le coefficient de friction réduit dans
le noyau. De plus, la fusion est envisagée de maniere globale grace a ¢, la variable d’élongation du
noyau, qui est reliée a la distance moyenne entre les noyaux projectile et cible. De ce fait, (¢(t))
correspond a ’élongation moyenne et la vitesse moyenne associée (p(t)) est une variable lente par
rapport au mouvement rapide des nucléons a l'intérieur du noyau. Quand les échelles de temps
de ces deux processus sont décorrélées, on retrouve le cadre markovien dans lequel I'utilisation de
I’équation de Langevin phénoménologique devient pertinente. Cependant, cette décorrélation des
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échelles de temps n’est pas toujours réaliste car toutes les situations ne vérifient pas 7 << 7, = 871,
avec T le temps caractéristique des effets de mémoire. Pour illustrer notre propos nous pouvons
prendre I'exemple de la dynamique d’une petite bille d’acier dans un fluide. La chute d’une petite
bille d’acier dans ’eau est un processus markovien car, du fait de la tres faible viscosité de ce
fluide, les effets de mémoire peuvent étre négligés, on est alors dans la configuration 7 << 7,. Au
contraire, cette méme bille tombant dans du miel est un phénomene non markovien. En effet, a
cause de la grande viscosité du fluide, le temps de réponse du milieu par rapport au mouvement
de la bille n’est plus négligeable. Dans ce cas, 7 n’est plus négligeable devant 7,. Quand il y a des
effets de mémoire, il n’y a donc plus de séparation stricte entre les deux échelles de temps.

Le traitement complet d’un systeme est plus complexe dans le cas non markovien que dans le
cas markovien car il nécessite l’emploi de nombreux parametres supplémentaires. Pour déterminer
les situations ou le traitement non markovien s’impose, c’est-a-dire quand le critere 7 << 7, n’est
plus vérifié, il faut donc déterminer 'ordre de grandeur du temps caractéristique des effets de
mémoire 7 afin de le comparer a 7,. Usuellement, les valeurs de 3 étant dans cette étude égales a
2.10%'s7! ou 5.10%'s™!, on peut estimer un ordre de grandeur de 7, compris entre 107225 et 1072!s.
De ce fait, si le temps caractéristique des effets de mémoire 7 est du méme ordre de grandeur que
Tp, le traitement markovien n’est plus valide.

Estimation du temps caractéristique des effets de mémoire

Le temps caractéristique des effets de mémoire 7 correspond au temps caractéristique de relaxa-
tion du bain thermique. Le recours a la physique statistique [46, 47, 48] s’avere donc indispensable
pour prendre en compte la réponse du bain thermique que I'on modélise grace a des oscillateurs
harmoniques couplés [49, 50, 51, 52]|. Le traitement exhaustif microscopique d'un systéme est
irréalisable en pratique, compte tenu du nombre gigantesque de degrés de liberté a cette échelle.
On réalise donc des moyennes sur les degrés de liberté du bain thermique.

On aboutit alors au constat universel suivant : toutes les dérivations envisagées pour décrire
le passage du niveau microscopique au niveau macroscopique conduisent a des effets de mémoire
(34, 35, 53, 54]. Leur traitement est alors réalisé en regardant les différentes échelles de temps. En
particulier, dans le contexte nucléaire, 7 peut étre déterminé a partir de la linéarisation du terme
intégral de collision de ’équation de Boltzmann. Suivant les références, les largeurs de corrélation
associées a la relaxation du bain thermique sont comprises entre /7 ~ 1MeV et h/7 ~ 10MeV.
Par exemple, la valeur caractéristique de 1 MeV est du meéme ordre de grandeur que les largeurs
de corrélation des résonances géantes des noyaux [55, 56] et la valeur caractéristique de 10 MeV
est issue d'une analyse quantique [57]. On peut alors en déduire un ordre de grandeur du temps
caractéristique des effets de mémoire 7, de I'ordre de 107225 & 10~ 2Ls.

Le temps caractéristique des effets de mémoire 7 étant dans ce cas comparable a 7, = 7! on
en déduit que les effets de mémoire doivent étre intégrés dans un traitement dynamique réaliste
des processus nucléaires. Plus précisément, les effets de mémoire doivent donc jouer un role im-
portant dans la phase de fusion des noyaux composés. Il est alors nécessaire d’introduire des effets
de mémoire dans la description du processus de formation des noyaux composés super-lourds. En
accord avec les valeurs de 7 de ce paragraphe, le temps caractéristique de formation des noyaux
composés est estimé dans la référence [7] entre 107*2s et 107 2!s.

En physique nucléaire, on peut alors prendre en compte les effets de mémoire par I'intermédiaire
de dérivations spécifiques de 1’équation de Langevin généralisée qui décrit 1’évolution dynamique
de la variable collective continue ¢(t).
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2.3.2 Dérivation a partir d’'un modele statistique
Cadre du modele et dérivation de I’équation de Langevin généralisée

Le systeme considéré est hors équilibre et en évolution irréversible. Le probleme envisagé est
toujours a une dimension. Seules les situations proches de I'équilibre sont examinées. Le cadre
envisagé est donc celui de 'approximation linéaire et I’ensemble canonique constitue 1’ensemble
statistique choisi [58].

Les considérations développées pour la particule brownienne sont transposables en physique
nucléaire. Parmi les différents modeles statistiques, le plus simple est celui décrivant 1’évolution
de la variable collective ¢ et de sa vitesse de variation associée p. ¢(t) est couplée & un bain
thermique de température 7', modélisé par un systeme d’oscillateurs harmoniques couplés. L’inertie
est caractérisée par m. Le fait d’assimiler le bain a des oscillateurs harmoniques couplés ne restreint
pas le champ d’application du modele utilisé. Au contraire, beaucoup de phénomenes physiques
peuvent étre expliqués grace a ce type d’approche. Dans le cas particulier d’un bain d’oscillateurs
harmoniques, la force de rappel qui en dérive est linéaire par rapport aux coordonnées. Il résulte
de ceci que, pour ce type de bain, la théorie de la réponse linéaire devient exacte. Ainsi, a partir
de modeles statistiques simples, qui décrivent le couplage de ¢(f) & un bain thermique et qui
sont caractérisés par un hamiltonien global H, = Hy + H, + H;,;, on aboutit au méme type de
bruit coloré. On considére que I'hamiltonien du bain thermique, Hy(sq, ..., S,), est modélisé par
un ensemble d’oscillateurs harmoniques couplés et 'hamiltonien associé a ¢(t) est de la forme
Hy = mp?/2 + V(q). Par hypothese, le couplage entre ¢(¢) et le bain thermique est de type
harmonique [49, 52]. De plus, la partie du hamiltonien spécifique de 'interaction est de la forme
Hine = —kq(t) avec k= >"" | ¢;s; et ¢; des constantes de couplage.

On suppose que les degrés de liberté du bain thermique possedent une inertie plus faible que
celle de ¢(t), ils peuvent donc étre intégrés, via des moyennes statistiques. Les fluctuations du bain
thermique seul, c’est-a-dire sans couplage avec ¢(t), peuvent étre caractérisées par la fonction de
corrélation suivante :

Col(t) = (3£ (0)3f (1)) = D cic;(3silto)ds; (1)), (2.19)

irj

avec (..) moyenne statistique sur le bain, df(t) = f(t) — (f(t)) écart a 'équilibre de la force
fluctuante couplée linéairement aux déviations par rapport a 1'équilibre ds;(t) = s;(t) — (s;(t)) des
degrés de liberté secondaires s;. La force fluctuante f(t) est différente de la force fluctuante du bain
pur f,(t) car elle est modifiée par I'influence de ¢(t). D’apres le théoréeme fluctuation-dissipation,
dans le cadre de la théorie de la réponse linéaire on peut alors écrire une équation auto-cohérente
reliant f(¢) et ¢(t) a I'aide de la fonction réponse x;(t — t') du bain pur

+0o0
10 =0+ [ttt =t (2.20)
—00

avec f,(t) la force fluctuante du bain pur et un terme intégral, non local en temps, traduisant le
couplage entre ¢(t) et le bain thermique. La force fluctuante du bain pur f;,(¢) vérifie une statistique
gaussienne avec une valeur moyenne (fy(t)) = Aq(to)Cy(t) et une variance Cy(t). En accord avec
le principe de causalité, la fonction réponse x,(t —t') est reliée a la fonction de corrélation Cy(t) :

d¢;
Ys(t) = —Ad—tb(t) si t> 1 () =0 si t<to, (2.21)
avec A une constante et to I'instant a partir duquel la variable collective ¢(t) est en contact avec le
bain thermique En effectuant une intégration par partie, du terme intégral du membre de droite
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de I’équation (2.20), compte tenu de la définition (2.21), on aboutit a

oV

f(t):—a—q

t
+0f(t) — m/ de'T(t —t")q(t), (2.22)
to

avec Vi, = —ACy(t0)q*/2, of(t) = fo(t) — (fo(t)) et le noyau mémoire I'(t) = AC,(t)/m qui est
proportionnel a la fonction de corrélation. Ce noyau mémoire est donc relié aux corrélations des
forces fluctuantes, elles-mémes associées au couplage entre ¢(t) et le bain. Plus les corrélations sont
importantes, plus le temps caractéristique de relaxation du bain thermique 7 est important et plus
I'influence de T'(¢) est étendue dans le temps. Les formes analytiques du noyau mémoire I'(¢) sont
variées [59, 60]. On peut par exemple considérer une décroissance temporelle exponentielle avec

un temps de décroissance caractéristique 7 représentant le temps de relaxation du bain.
lim T'(t) = lim Cy(t) =0 (t) o« Cy(t) o e Y7 (2.23)

t—-+o0 t—+4o00

En appliquant I’équation fondamentale de la dynamique avec f(t) définie par I’équation (2.22)
et une force extérieure dérivant du potentiel V,,; on a alors une équation de Langevin généralisée :

mi(t) = —ag;” + f(t). (2.24)

En accord avec le théoreme fluctuation-dissipation, la force f(¢) définie par I’équation (2.22) prend
en compte les frottements par 'intermédiaire du terme intégral. On peut montrer, voir partie 2.3.2,
que dans le cas markovien le terme intégral se simplifie pour prendre une forme plus classique :
—mf3q(t). On reconnait alors I'expression de la force de type frottement fluide valide pour les
basses vitesses.

Dans la suite de 1’étude on considere 1'équation de Langevin généralisée (2.25) et le noyau
mémoire (2.26) a décroissance exponentielle avec 7 correspondant au temps de relaxation du bain.
Systeme d’équations non-markovien et retour au systeme d’équations markovien

L’équation de Langevin généralisée (2.25), sous réserve de faible déformation du bain thermique
est

it + / Car i — i) + L2 2 o (2.25)
q —t')q ——— = p(t), :
to m aq P
avec un noyau mémoire de la forme,
I(t) = ée_t/T, (2.26)
T

ou 3 est le coefficient de friction réduit et m l'inertie. L’échelle de temps du noyau mémoire I'(t)
représente le temps caractéristique sur lequel les effets de mémoire ne sont pas négligeables. Ce
temps est associé au temps de relaxation du bain thermique 7, de 'ordre de 107225 & 1072!s.

La force réduite p(t) = , /% ftz dt'v(t)I'(t — t') est une force réduite stochastique gaussienne.
v est donc un nombre aléatoire gaussien vérifiant (v(t)) = 0 et (v(t)v(t')) = 6(t — t'). En outre,

on peut montrer que le théoreme fluctuation-dissipation se décline de la maniere suivante ou les
deux premiers moments de la force stochastique réduite p peuvent s’écrire

(p()) =0 et (p(t)p(t')) = %[F(It — 1) =Dt + " = 2t)], (2.27)
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avec la constante de Boltzmann vérifiant kg = 1.

Dans certaines situations, ’évolution dynamique de la variable collective ¢(t) est simplifiée
car certains degrés de liberté sont déja thermalisés. L’écriture du théoreme fluctuation-dissipation
(2.27) devient alors :

() =0 et {p(t)olt)) = [T(|t )] (2.28)

De maniere générale, quand 7 est petit devant le temps caractéristique 7, = S~ de la grandeur
collective ¢(t), ce qui correspond a la limite 7 — 0, on peut faire une approximation en deux étapes :

t .
L[, dt' Dt —)q(t") ~ 4t ft dt'T(t —t');
2. % > 1, ce qui revient a faire I'hypothese du chaos moléculaire, hypothese équivalente a la

limite ty — —oo. Dans cette limite ft'; dt'T'(t —t') — f3, on retrouve le coefficient de friction
réduit du cas markovien.

Ces deux hypotheses entrainent bien le fait que

t t
/ dt'T(t —t)g(t") ~ (/ dt'T(t — t’)) q(t) = Bq(t) (2.29)
to to

On retrouve alors le cadre markovien, voir partie 2.1.2. L’approximation markovienne écarte
donc de I’équation du mouvement les effets de mémoire qui sont non locaux en temps. L’équation
(2.29) illustre de plus le fait que (3 est relié aux forces fluctuantes, caractérisant le couplage entre
la particule et le bain, comme cela a été précédemment évoqué.

Application au passage d’une barriere parabolique

Ainsi, pour résumer la situation, on peut accéder a I’évolution dynamique de la variable col-
lective ¢(t) grace aux équations (2.30) et (2.31). Les effets de mémoire sont pris en compte grace
au noyau mémoire I'(t) et m représente 'inertie. Ce systeme, soumis a une barriere de potentiel
quadratique V = —%mquQ, est plongé dans un bain thermique caractérisé par la température T’
et le coefficient de friction réduit 8. On a donc

G(t) + /tt dt'T(t —t)q(t") — wq(t) = p(t) =4/ ;2 / dt'v(tT(t —t), (2.30)

Gett ) =0 {pp(t)) = D) T+t —2)) (23)

I(t) =
De plus, quand certains degrés de liberté du bain thermique sont déja thermalisés, avec le méme
noyau mémoire I'(¢), le théoréme fluctuation-dissipation devient :

et i) =0 {p(t)olt)) = D1t 1), (2:32)

Les processus markoviens ne représentant qu'une classe particuliere de situations, on voit la
nécessité du développement d’un modele incluant des effets de mémoire. Dans cette optique le
chapitre 3 consiste donc a étudier la diffusion par-dessus une barriere de potentiel parabolique
avec effets de mémoire afin d’accéder aux grandeurs pertinentes du probleme. Apres ce passage
obligé, on peut se pencher sur les applications en physique nucléaire. Plus particulierement, on
s’intéresse aux modifications induites par les effets de mémoire sur la phase de formation du noyau
composeé.

r(t) =



Chapitre 3

Effets de mémoire et noyau super-lourd

Ce chapitre porte sur I’étude des modifications induites par la prise en compte des effets de
mémoire sur 1’étape de formation du noyau composé d'un élément super-lourd. Lors de la fusion
du noyau projectile et du noyau cible, on suppose donc que la phase de capture est réussie. Les
conditions initiales de notre étude sont alors prises au point de contact entre ces deux noyaux. La
démarche suivie s’inspire de celle exposée dans la référence [41]. Plus particulierement, ce chapitre
est une généralisation des calculs effectués pour ce probleme a une dimension, en y incluant des
effets de mémoire [61]. Un des intéréts de cette étude réside dans le fait qu’elle est transposable &
la barriere interne des noyaux super-lourds, assimilée a une parabole dans cette étude, voir figure
3.1.

FI1GURE 3.1: Modélisation du sommet de la barriere interne des noyaux super-lourds par un po-
tentiel parabolique avec les conditions initiales ¢y < 0 et py > 0.

En premier lieu, on se base sur un systeme d’équations équivalent a 1’équation de Langevin
généralisée afin d’accéder aux valeurs propres du systeme et étudier leur nature en fonction de
I'intensité des effets de mémoire. Ensuite, on aboutit a la solution exacte de la variable collective
q(t) ainsi qu’a sa valeur moyenne et a sa variance. L’étape suivante consiste alors a établir la pro-
babilité de formation Py (t) et le courant de formation jsory, (t). On étudie également I'influence
des conditions initiales sur la dynamique du systeme. Pour finir, on s’intéresse a la probabilité
d’existence du noyau composé Poy(t), a la dynamique oscillatoire et au temps de descente du
point selle au point de scission.

3.1 Résolution exacte pour la diffusion non-markovienne

Dans cette partie on modélise ’étape de formation comme une diffusion par-dessus une barriere
de potentiel. On considere alors le probleme de la diffusion avec effets de mémoire dans le cas d’une

35
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barriere de potentiel parabolique a une dimension. Le traitement dynamique du systeme, carac-
térisé par la coordonnée collective ¢(t), est alors décrit grace a un systeme d’équations équivalent
a ’équation de Langevin généralisée définie partie 2.3.2, c’est a dire avec effets de mémoire. Dans
ce cadre on détermine 1’équation caractéristique correspondante, les valeurs propres associées et
on étudie leur nature en fonction de l'intensité des effets de mémoire.

3.1.1 Systeme d’équations équivalent

Dans le cadre général, non-markovien, 1’équation de Langevin généralisée (2.30) peut étre
réécrite sous forme matricielle comme une équation différentielle du premier ordre d’un vecteur
colonne lui-méme défini dans un espace a trois dimensions,

d 14 q 0
|| =D|p|+] 0 | (3.1)
f f r(t)

avec D la matrice de dérive déterministe, f une nouvelle variable ayant la dimension d’une
accélération et r(t) le terme de diffusion purement stochastique. La matrice de dérive D et le
terme stochastique r(t) s’écrivent respectivement

0 1 0
D=|w 0 1 et r(t)=1/2ZLu(), (3.2)
0 B 1

avec v(t) un nombre aléatoire gaussien vérifiant (v(t)) = 0 et (v(t)v(t')) =o(t — ).
L’équation (3.1) peut alors s’intégrer formellement en

q do t 0
p | =P | po | + / et | dt, (3.3)
/ Jo 10 r(t')

ol le premier terme du membre de droite correspond a la valeur moyenne déterministe et le second
a la diffusion stochastique.

Dans ce cadre non-markovien ’équation différentielle matricielle (3.1) se réécerit sous la forme
d’un systeme d’équations différentielles du premier ordre dans un espace a trois dimensions,

= P
w21q + f
[Bp + f]+r(t). (3.4)

T

- 3.
I

Pour que le systeme d’équations (3.4) soit exactement équivalent au systéme caractérisé par les
équations (2.30) et (2.31), il faut que fo = 0. Une valeur non nulle de fj signifie un < coup de pied
initial > donné au systeme. Dans ce cas de figure correspondant a fy # 0, le systeme d’équations
(3.4) est alors relié aux équations (2.30) et (2.32). On peut donc considérer pour la variable f une
distribution initiale gaussienne de variance O'J%O = BT/(m7) et de valeur moyenne nulle f; = 0, en
relation avec la fonction de corrélation réduite du bruit.

Pour plus de généralité, dans cette étude on garde le terme fy dans les calculs afin de pouvoir
envisager par la suite 'une ou 'autre des deux situations : soit fy = 0, soit fy # 0.
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A partir de (3.4) on aboutit a une équation différentielle du troisieme ordre par rapport a la
variable collective ¢(t)
Tq + 4+ (B — Tw2) q—w?q=T1r(t). (3.5)

Ensuite, pour transformer I’équation différentielle (3.5) en équation algébrique on utilise les pro-
priétés de la transformée de Laplace. En particulier, on utilise la correspondance biunivoque entre

q(s) et q(t)

+oo +oo
i(s) = —st d = +stq(s)ds. 3.6
i) = [t o 0= [ i (36)
On peut alors écrire
(78 +s* + (B—1w?) s —w?) §(s) = (78> + s+ B)qo + (L + 78)po + 7 fo + TF(s), (3.7)

avec 7(s) la transformée de Laplace de r(t).

3.1.2 Equation caractéristique et détermination des valeurs propres

Les valeurs propres Ai, Ay et A3 de la matrice de dérive peuvent étre obtenues a partir de
I’équation caractéristique associée au membre de gauche de I'équation (3.7). En effet, le polynome
ainsi obtenu, du troisieme degré en A\, admet comme solutions ces trois valeurs propres. On peut
alors écrire

A A4 (B — TN —w? = 7(A — M)A — A) (A — Ag) = 0. (3.8)

Les trois valeurs propres, A1, Ao, et A3, peuvent donc etre déterminées exactement a partir de
'équation (3.8), voir également [62], on obtient alors les expressions suivantes :

1
AN o= -
! 37
1 —1+ 387 — 3(wr)?
37 9 2 9 22 2y311/2]?
[—1 + 987 + 9(wT)? + [(—1 4 §87 4+ 9(wT)?)?2 + (=1 + 387 — 3(wT)?)?]
1 9 9 2]t
+ 5 -1+ §ﬁ7' +9(wr)® + [(—1+ 557’ +9(wT)?)? + (-1 + 367 — 3(w7)2)31 ] :
1,1 i
/\2 = —?(% + )\1) + 20,
Ag = _§(F+/\1)—@'97 (3.9)

)
La premiere valeur propre A; est toujours réelle et positive.

wee # = 1 et 0 = A(-4(1+ Ar)? + 520),

Dans le cas ol Ay et A3 sont réelles, 62 < 0 c’est pourquoi § = —%\/}1(1 + M7)2 — ‘;—TT. Au

contraire, dans le cas ot Ay et A3 sont complexes conjuguées, 62 > 0 et § = %\/—}1(1 + M7)2 4 O;\—TT.

A la limite 7 — 0, on retrouve les valeurs propres a et b, voir (2.14), du cas markovien

lim A\ =a, limA =0, limA3=—00, et limA37=—1. (3.10)
T—0 T7—0 7—0 T—0
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3.1.3 Nature des valeurs propres en fonction des effets de mémoire

La possibilité que les deux valeurs propres Mg et A3 puissent devenir complexes, quand 7
€]y, 12|, est due au noyau mémoire I'(¢). Les valeurs critiques 71 et 7 du temps de relaxation 7
pour lesquelles la nature des valeurs propres change peuvent étre déterminées de deux manieres :
graphiquement ou par calculs. Ces deux méthodes, dont I’équivalence a été testée numériquement,
permettent d’accéder a des expressions approchées de 11 et 7, voir les équations (3.13) et (3.14).

Dans un premier temps on utilise la méthode graphique pour illustrer les trois types de com-
portements envisageables suivant la valeur de 7, voir figure 3.2. L’équation (3.8) peut se mettre
sous la forme

A—a)A—b) = TAw - Nw+A) & m\) = k). (3.11)

Dans (3.11), m(\) correspond a I’équation caractéristique markovienne et k() représente la contri-
bution du noyau mémoire. On peut résoudre graphiquement (3.11), voir la figure 3.2, en disposant
sur un méme graphe le membre de gauche m(\) et le membre de droite k(\) de cette équation
et en regardant les points d’intersection. En effet, pour 7 > 0, résoudre (3.11) revient & chercher
les points d’intersection entre la courbe représentative de I’équation de la parabole m(\), dont
les racines sont a et b, et la courbe représentative du polynéme du troisieme degré k(A) dont
les racines sont 0 et +w. On peut alors remarquer qu'une des valeurs propres, A;, est toujours
positive et vérifie a < \; < w. Les deux autres valeurs propres sont soit négatives soit complexes
conjuguées. Dans ce dernier cas leur partie réelle, (A2 +A3)/2 = —(A; +2)/2, est toujours négative.

k(d) m(2) m(A) k(d)
m(Q),

N\ w A o)A

Ficure 3.2: Illustration graphique des trois types de comportements. De gauche a droite, on
visualise le cas de figure proche du cadre markovien pour 7 < 7, puis le cas non-markovien
oscillant pour 71 < 7 < 7y et enfin le cas non-markovien et non oscillant pour 7 < 7. Pour les
définitions de 71 et 7o, voir respectivement les équations (3.13) et (3.14). Le graphique central est
caractérisé par une solution réelle positive A\ et deux solutions complexes conjuguées s et A3 a
partie réelle négative. Les deux autres graphiques sont associés a une solution réelle positive A; et
deux solutions réelles négatives Ay et As.

Dans un deuxieme temps on détermine les expressions approchées de 71 et 7. Pour 7 on
utilise la méthode calculatoire s’appuyant sur l'utilisation d’un discriminant généralisé. Comme
la détermination de 75 par la méthode calculatoire est fastidieuse, on utilise alors la méthode
graphique.

Pour accéder a wy, on utilise donc la méthode explicitée dans [62]. En effet, (3.8) est de la
forme ;A3 + apA? + as\ + a4 = 0. A partir I'équation précédente, en posant 1) = X — § et
§ = —22 on obtient une équation telle que ¥ + ¢ + ¢ = 0 avec ¢ = 3a10% + 2020 + a3

3aq’?
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et p = a10% + 0% + a3d + ay. Cette méthode fait ensuite intervenir le discriminant généralisé

A = 4¢3 + 272

- Pour A < 0 (3.8) admet trois solutions réelles A, Ay et As.

- Pour A > 0 (3.8) admet une solution réelle \; et deux solutions complexes conjuguées Ay et 3.
La nature de Ay et A3 peut donc étre déterminée en utilisant un déterminant généralisé A :

Art = % [4 (—% + BT — (w7)2>3 +3 (g — BT — 2(w7)2)2] : (3.12)

Si A > 0 Ay et A3 sont complexes conjuguées. Si A < 0 elles sont réelles.

Pour les petites valeurs de 7, A < 0, jusqu’a 71. La valeur de 7y peut étre estimée en réalisant
un développement limité de A7 au premier ordre en w7. On obtient alors le résultat donné par
(3.13).

La détermination de 75, quand A\ et A3 redeviennent a nouveau réelles, aboutit a une estimation
de wry, voir (3.14). La méthode utilisée est la suivante. Graphiquement, voir figure 3.2, on peut
voir que cela correspond au cas ou le minimum négatif de la représentation graphique du membre
de droite k(A) de I’équation (3.11) devient tangent a la représentation graphique du membre de
gauche m(\). On accede alors a Iexpression (3.14).

Ainsi, les deux valeurs frontiere 77 et 75 sont maintenant accessibles grace a :

1201+ (L)
1201+ ()
8624+ (L)

2w

12

(3.13)

wTy

wry o~ NS (3.14)
2w

Par exemple, avec 26 = 1.5, on a wr ~ 0.08 et wm ~ 6.23.

w

3.2 Solution exacte pour la diffusion non-markovienne

Dans ce paragraphe on détermine la solution exacte ¢(t), la valeur moyenne (g(t)) et la vari-
ance associée o2 (t). Les calculs de (g(t)) et de o(t) sont motivés par le fait que les densités de
probabilités W associées au systeme sont supposées étre des gaussiennes dans le présent modele.
On peut ensuite se focaliser sur les comportements asymptotique et dynamique du systeme. On
examine alors les évolutions de grandeurs qui caractérisent le passage par-dessus la barriere de
potentiel parabolique comme la valeur moyenne (¢(t)), de la probabilité de formation Py, () et
le courant de formation j oy, (t). On regarde aussi 'influence des conditions initiales & I’aide d'une
densité de probabilité Wy tenant compte d'une dispersion gaussienne des conditions initiales.

3.2.1 Variable collective, valeur moyenne et variance

Grace a la connaissance explicite des valeurs propres i, Ay et A3 la transformée de Laplace de
q(t) peut étre déterminée a partir des équations (3.7), (3.8) et (3.9), on a donc
i(s) = (s°T 4+ s+ B)go + (1 + 57)po + 7 fo + T (s)
T(S — )\1)(5 — )\2)(5 — /\3)
Ensuite, par transformée de Laplace inverse, on obtient alors la valeur exacte de la variable
collective ¢(t)

(3.15)

q(t) = u(t)qo + v(t)po + w(t) fo + w(t) = r(t), (3.16)
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ou la notation * correspond au produit de convolution des deux fonctions w(t) et () avec

3
NT+N+B
u(t) = . et (3.17)
Zzzl: T Hn;éiO‘i = An)

v(t) = e, 3.18
©) ; T Hn;éi(Ai — An) ( )

w(t) = ;Hn#(i_%)e%t. (3.19)

Or (r(t)) = 0, la valeur moyenne est alors

(q(t)) = u(t)go + v(t)po + w(t) fo. (3.20)
La variance est donc

e()\i-i-)\j)t _ 1

2 B ﬁ 3 3
N m_z::z:: Ai A A) Tei i = An) Ty (X5 = Am)

(3.21)

Comme (q(t)) et o7(t) entrent dans la définition de la distribution gaussienne, la probabilité de
formation est de ce fait connue & chaque instant, voir équation (2.8).

3.2.2 Comportements asymptotique et dynamique
Comportement asymptotique

Pour les temps longs, seul le terme proportionnel & e** subsiste et la probabilité de formation
converge vers une valeur finie. En accord avec les considérations développées dans la partie 3.1.1
pour les valeurs de fy nulle ou non-nulle, on examine les deux cas de figure suivants :

Avec une distribution initiale stricte fy = 0, la probabilité de formation s’écrit

1—|—)\17 ([ 1\/?)

ou K et B sont respectivement 1'énergie cinétique initiale et la hauteur de barriere.
Avec une distribution initiale gaussienne pour fy telle que oy = /T5/(m7) et fo = 0, la
probabilité de formation devient

_ T 1 [(1+ M7 / )\ /
Pform(t — +09; o, Po, O fy = m_f') = Eerfc [w )\151 ( At )

Les deux expressions précédentes different par un facteur /1 + A\;7 a l'intérieur de la fonction
erreur complémentaire. Ainsi, pour les faibles temps de relaxation 7, les probabilités de formation
sont tres proches, ce qui n’est plus vrai pour les temps longs, voir la figure 3.3.

(3.22)

1
Prorm(t = 400; g0, po, fo = 0) = Serfc

(3.23)
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FIGURE 3.3: Probabilités de formation asymptotiques Pjom(t — +00) comme fonctions de
I’énergie cinétique initiale. La ligne discontinue large représente la condition initiale stricte fy
et la ligne continue correspond & une distribution initiale o = /T5/(m). De plus, % =1.5et
T = %. Pour la figure de gauche wr = 1 et pour la figure de droite wr = 10.
Dans les deux cas de figure, pour que lim;_, . (q(t)) soit nulle, ’énergie cinétique initiale doit
vérifier
w

2
K= (—) B = By (3.24)
A1

Ce résultat est similaire au cas markovien, voir équation (2.18). En effet a < A\ < w, clest
pourquoi la barriere effective que la particule doit franchir est plus petite quand le temps de
relaxation est important. Le noyau mémoire tend a minimiser 'influence des processus dissipatifs,
correspondant a une diminution de la friction effective. Pour un temps de relaxation donné cet
effet est plus important quand % ~ 1, voir figure 3.4 :

“vwpr—m-rm— ] 1.0 ‘ [ N R e
12+ ] ~ o . — -
, 0.9/ —
10} ] T \ P
\ ] ~
28 o8 | > —
Fo ]
47\ 1 %0.7’
~ ] 28]
2r Dl — 0.6F
O T2 4 6 8 10 o 1 2 3 4 5 6
wT B/(2 w)

FIGURE 3.4: Graphique de gauche : % comme fonction de w7, pour différentes valeurs de % :

% = 1 (longue et large ligne discgntinue), % = 2 (petite ligne discontinue), % = 3 (ligne
continue). Graphique de droite : Wffzo) comme fonction de % pour différentes valeurs de wr :

wr = 0.07 (petite ligne discontinue), wr = 0.4 (longue et large ligne continue) et wr = 1 ( ligne
continue).
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La valeur moyenne (¢(t)) doit franchir la barriere effective B.s¢. Ce type de barriere prend en
compte la viscosité via la friction et les effets de mémoire. Par exemple, avec des valeurs usuelles
en physique nucléaire, hw = 1MeV, B = 5.10%'s7!, i/ ~ 1MeV dott 7 = 107?'s et wT ~ 1 on
obtient B.ss >~ 6.5B, ce qui correspond & une diminution de 40% par rapport au cas markovien
olt on trouve Bess(T = 0) ~ 11B. Par la méme démarche, avec § = 2.10*'s™!, on détermine
B.sf >~ 2B. On constate également une diminution de 40% par rapport au cas markovien qui dans
ce cas est associé a Beys(7 = 0) >~ 3.5B.

Ces considérations montrent le role important joué par les effets de mémoire sur I’abaissement
de la barriere effective par rapport au cas markovien, voir figure 3.4.

En outre, comme dans I’étude du cas markovien, on observe alors trois régimes qui dépendent
de I'énergie cinétique initiale K :

- Quand K < B.yf, on observe un régime de diffusion thermique.
- Dans le cas critique, K = By, la trajectoire moyenne converge vers le sommet de la barriere.

- Pour finir, quand K > B, on observe un régime de franchissement dynamique.

Comportement transitoire

Le régime dynamique de transition vers le comportement stationnaire asymptotique dépend de
la nature des valeurs propres A1, Ay et A3. La nature de ces valeurs propres est reliée aux valeurs
de 7, voir partie 3.1.3. On aboutit a trois types de comportements associés aux trois courbes de
chaque graphique de la figure 3.5. Ces trois types de comportements peuvent se résumer de la
maniere suivante :

- Pour les petits temps de relaxation, 7 < 7, les valeurs propres sont réelles et la situation est
tres proche du cas markovien, avec un coefficient de friction réduit 5 un peu plus petit.

- Le régime de transition change completement quand le temps de relaxation vérifie 7 €|7y, 72[. Un
comportement oscillant, nouveau par rapport au cas markovien apparait. Deux des valeurs propres
sont alors complexes conjuguées et la trajectoire moyenne, la probabilité de franchissement de la
barriere de potentiel Py, €t le courant au sommet de cette barriere jfq-m, (voir équation (3.25)),
sont soumis a des oscillations.

- Finalement quand le temps de relaxation est tres grand, 7 > 79, les valeurs propres redeviennent
toutes réelles et cette situation est similaire au cas markovien avec cette fois un coefficient de
friction réduit S plus important.

Le courant jt,m au sommet de la barriere de potentiel parabolique est défini par la dérivée de
la probabilité de formation par rapport au temps :

. AP orm (T
Jform = fdt ( >a (325)

En physique nucléaire, les oscillations de la trajectoire moyenne (q(t)) correspondent aux
résonances quadrupolaires géantes [34, 63].
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FI1GURE 3.5: Grandeurs adimentionnées : trajectoire moyenne, probabilité de formation et courant
au sommet de la barriere comme fonction du temps pour quatre régimes, K = 0, (premiere ligne
de la figure) K = B.ss/2 (seconde ligne de la figure), K = B.s; (troisieme ligne de la figure)
et K = 2B.sy (derniere ligne de la figure). Pour chaque graphique trois courbes différentes sont
tracées : le cas markovien (wr = 0 : ligne solide), le cas non-oscillant (wr = 0.07 : petite ligne
discontinue) et le cas oscillant (wr = 0.4 : longue et large ligne discontinue). De plus, 2 o = L5,
T = %, To = 0 et o4y = 0. Pour mieux visualiser les comportements, chaque ligne de la figure
possede sa propre échelle.

3.2.3 Dispersions des conditions initiales

Jusqu’a présent, le probleme a été envisagé en prenant des conditions initiales qq, po, fo strictes.
On peut donc se poser la question de I'influence sur les résultats d’une dispersion des conditions
initiales. Ce probleme a déja été abordé dans le cas markovien [42], avec une distribution gaussienne
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Wy pour laquelle il existe une solution exacte,

exp [_ (qo—t?o)Q] exp [_ (po—ﬁo)q exp [_(fo—fo)Q]

2 2
20q0 20'po 20

WO(QOva-qo;pOaUpo; f()?o-fo> = 3 fo s (326)
(27") 20q90py0 fo
avec
T BT
2 0 2 0
o, =— et oy =—. 3.27
PO m fo mr ( )
3 ? : . N . 2 N
Comme il n’y a pas de puits de potentiel dans ce probleme, on ne peut pas relier o, a la

température initiale Tj,. De plus, comme précédemment, gy < 0, po = go > 0 et fy = 0. Le systeme
n’est pas forcément a I’équilibre et il semble difficile d’interpréter T comme une température. Cela
dépend de la situation physique.

Dans le cas de la fusion des ions lourds, la dissipation apparait déja au niveau de la phase
d’approche, générant une dispersion des conditions initiales, qo, po et fo [64, 65]. Ultérieurement,
apres la collision des noyaux, la dissipation est connue pour étre tres forte et les degrés de liberté
internes sont supposés étre rapidement équilibrés a la température T'. Les degrés de liberté collectifs
ne sont pas concernés car ils sont couplés aux degrés de liberté intrinseques a travers les termes de
fluctuation-dissipation. De ce fait, dans une telle situation, la dispersion des conditions initiales
doit étre envisagée avec une largeur différente.

La nouvelle probabilité de formation peut s’écrire sous la forme d’une intégrale triple. Pour
chaque variable, le domaine d’intégration s’étend de —oo a +o00. On a donc

Prorm(t; G0, 0405 D0, Opy; fo, 05,) = /// Prorm(t; g0, Do, fo)WolQos 0g0; Po, Opos fo, 04,)dgodpodfo

1 {a(®))
§erfc <_\/§T’(t)> : (3.28)

ou la valeur moyenne (g(t)) est la méme que dans I'équation (3.20) en remarquant que qo, po et
fo sont remplacés par respectivement ¢y, po et fo. La variance est plus large,

o (t) = oo (t) + u’(t)os, + v (t)os, + w?(t)oF,, (3.29)

avec u(t), v(t) et w(t) donnés respectivement par les équations (3.17), (3.18) et (3.19).

On peut remarquer que la trajectoire moyenne n’est pas affectée par les conditions de dispersion
initiales. En outre, les oscillations qui peuvent se produire ne sont pas atténuées, voir figure 3.6.
- Quand K < By, le processus est dominé par la diffusion, la probabilité de passage est alors
plus importante quand 7T, augmente.

- Quand K = By, on retrouve le régime critique pour lequel la valeur asymptotique de la variable
collective moyenne est nulle : lim;_, . {q(t)) = 0. Dans ce cas, on a alors limy s oo Prorm(t) = 1/2
quelle que soit la valeur de Tj.

- Quand K > By, la transition est plus douce. De plus, on observe une augmentation du
refranchissement en sens inverse la barriere par la variable collective moyenne (¢(t)), apres un
premier passage au niveau du point selle.
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FIGURE 3.6: Probabilité de franchissement oscillante moyenne Pfoy, (t) (wr = 0.4) comme fonction
du temps pour trois régimes : K = B.ss/2 (premiere colonne), K = B.ss (seconde colonne) et
K = 2B,y (troisieme colonne). Pour chaque graphique trois différentes courbes sont tracées :
To =T (longue et la;ge ligne discontinue), Ty = T'/2 (petite ligne discontinue) and Ty = 0 (ligne

continue). De plus, 3~ = 1.5, T'= % et o4 = 0.

Pour les temps longs vérifiant \;¢ > 1, la probabilité de passage par-dessus la barriere converge

vers une valeur finie.
B )N /K
Vo~ Vo (3:30)

ﬁ)\lT )\1 2 57’
T =—"" — +muw + (= 14 —— ) Tp. 3.31
w2<1 )\17_)2 m qu w (1 )\17_)2 0 ( )

_ ) i _ 1
Pform(t — OO;Q070q07p070p0; fO = O,T()) — ierfc

avec

K = mp?/2 est, par définition, 'énergie cinétique moyenne initiale, B = mw?q2/2 la hauteur
de barriere moyenne et 7" une température dynamique généralisée, tenant compte des effets de
mémoire. 03 = fTy/(m7) est la variance associée & f.

La condition sur I’énergie cinétique initiale n’est pas modifiée. On a alors

2
K, = (i> B = B.;. (3.32)
Al

Quand K < B, et T < B/10, 1a probabilité de franchissement de la barriere est extrémement
faible. Elle peut s’écrire sous la forme suivante

_ T B
Pform(t — +OO, Cj(]? quaﬁOu TO) = 47TB €xp (_ﬁ> . (333>

Le mode diffusif prédomine devant le mode dynamique. Ce résultat possede un facteur de type
Arrhenius [66] similaire a celui obtenu dans le cas markovien et peut étre qualifié de < formule de
Kramers inverse » [42].

3.3 Conséquences sur le noyau composé super-lourd

Dans cette partie on examine en premier lieu les conséquences des effets de mémoire sur
la dynamique oscillatoire ainsi que le comportement asymptotique du systeme pour 1'étape de
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formation du noyau composé. Ensuite, on étudie la probabilité d’existence du noyau composé
pendant la fusion nucléaire en prenant en compte le fait qu’il soit métastable et donc qu’il puisse par
la suite fissionner. Le temps caractéristique de fission étant grand devant le temps caractéristique
du noyau mémoire, on peut donc pour la fission écarter les effets de mémoire et décrire en premiere
approche cette fission uniquement grace au taux de fission de type Kramers. De ce fait, on ne
considere donc pas dans cette approche simple I’évaporation des particules 1égeres. Pour finir on
s’intéresse a 'influence des effets de mémoire sur le temps du point selle au point de scission.

3.3.1 Comportements dynamiques oscillatoire et asymptotique

La possibilité d’'un comportement dynamique oscillatoire de la variable collective ¢(t) et de
la probabilité de formation moyenne du noyau composé Pj,.,(t) permettent, quand I'énergie
cinétique initiale est inférieure a la barriere, un franchissement de cette barriere ce qui entraine la
fission du noyau composé. Le temps de premier passage par-dessus la barriere est alors diminué
par rapport a une situation non-oscillante, voir la figure 3.7.
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FIGURE 3.7: @é—é» et Pfomn(t) comme des fonctions de wt pour trois régimes : K = Bej/2,
K = B.¢f et K = 2B.s¢. Pour chaque régime, la ligne continue est associée au cas markovien et
la ligne discontinue représente le cas non-markovien oscillant pour lequel wr = 0.6. De plus, pour
toutes les courbes % = 1.5 et pour Prom(t), T/B = 0.5, Tp/T = 0.5 et 020 = 0.

En outre, les oscillations générées par les effets de mémoire se situent dans les mémes do-
maines de fréquences que celles des résonances géantes des noyaux, voir partie 2.3.1. Le temps
caractéristique de relaxation du bain thermique 7 est dans ce cas estimé & 1072's car alors
h/T ~ 1MeV. Dans la référence [59], le passage par-dessus la barriere parabolique est étudié
avec un bruit non-ohmique. Le comportement dynamique présente des oscillations dont 'origine
n’est pas explicitée. Il découle de cette étude que l'origine des oscillations peut étre reliée a la na-
ture non-markovienne du bruit coloré. D’autre part, si on considere le cas de la diffusion quantique
par-dessus la barriere [57, 67, 68, 69], le bruit est toujours non-markovien. La largeur associée au
temps de corrélation évalué dans [57] est de Pordre de i/7 ~ 10MeV d’ott 7 ~ 107?25 , les autres
variables restant inchangées. Ces valeurs sont au-dela de I'intervalle d’oscillation. La trajectoire
moyenne doit donc adopter un comportement markovien avec une friction tres faible. Dans ce
cadre, on peut remarquer que

lim A\ =w, lm A =0 et lim \3=—w, (3.34)
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il apparait alors que la diffusion tend vers une limite de friction nulle, le coefficient de friction
réduit vérifiant alors 5 ~ 0, comme dans le cas quantique pour les basses températures [68].

En effet, pour wr grand, la réponse du bain est lente. Le bain n’est donc pas modifié lors
de la variation de la variable collective moyenne (g(t)). L’état asymptotique markovien dans la
limite des faibles frictions est similaire a ’état asymptotique avec effets de mémoire importants et
friction non nulle, voir la figure 3.8.
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FIGURE 3.8: {42 comme une fonction de wt pour trois régimes : K = B.sr/2, K = By et
K = 2B.s¢. Pour chacun de ces régimes la ligne continue est associée au cas markovien avec
B — 0 et la ligne discontinue représente le cas non-markovien et non oscillant pour lequel % =1.5
et wr = 10.

3.3.2 Probabilité d’existence du noyau composé super-lourd

Le but de ce paragraphe est double. On doit en premier lieu établir I’expression de la probabilité
d’existence Py (t) du noyau composé super-lourd, en accord avec ’hypothese de Bohr concernant
la séparation entre la phase de fusion et la phase de fission. Ensuite on doit regarder I'influence
des effets de mémoire (surtout dans la gamme d’effets de mémoire pour lesquels on observe des
oscillations) sur les conditions de raccordement entre ces deux phases. A priori si la probabilité
de formation d’un noyau super-lourd varie, comme ce noyau composé est le premier noyau de la
cascade de désexcitation, cela doit avoir des conséquences sur ce processus de désexcitation.

Dans ce paragraphe on étudie donc un modele simple pour envisager la dynamique de fusion-
fission des noyaux composés chauds super-lourds. De maniere générale, ces entités instables évacuent
ensuite leur excédent d’énergie en se désexcitant principalement suivant deux modes : I’évaporation
de particules légeres et la fission. Ces deux voies étant alors en compétition, il faut donc étudier la
dynamique du processus en intégrant cet aspect. Avec cette modélisation simple envisagée dans
la suite de ce paragraphe, on ne considere que la fission comme mode de désexcitation.

Les dynamiques de réaction dans les collisions d’ions lourds sont souvent étudiées par l'in-
termédiaire d’'un petit nombre de variables pertinentes qui évoluent en accord avec une équation
de Langevin [70]. La plupart des études sont basées sur 'emploi d’une équation phénoménologique
de Langevin ou de son équation équivalente de Klein-Kramers, ces équations étant markoviennes.
Bien que des dérivations microscopiques aboutissent a des équations avec effets de mémoire, ces
démarches incluant les effets de mémoire sont rarement utilisées dans ce domaine.
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Lors de la synthese d’éléments super-lourds grace a la fusion d’ions lourds a des niveaux
d’énergies proches de la barriere de Coulomb, les probabilités de formation sont si faibles qu’il
faut d’'un point de vue expérimental accumuler beaucoup de statistiques. Des modeéles simples
sont aussi développés dans le but de se faire une idée des résultats obtenus a partir de I’analyse de
I’énorme statistique numérique. Pour étudier I'étape de formation, la probabilité de franchissement
de la barriere parabolique est un outil tres utile [41, 42, 57, 59, 64, 67, 68, 69, 71].

Pour illustrer la dynamique de fusion-fission on peut donc étudier un modele simplifié. On
considere alors Poy(t), la probabilité d’existence du noyau composé C'N < compound nucleus >,
dans le puits de potentiel métastable, limité par la barriere de potentiel By > T'. Pour caractériser
I’évolution de Poy(t), on suppose que la fusion du noyau composé dans la voie d’entrée et que sa
fission dans la voie de sortie, sont décorrélées. On utilise alors la relation

dPCN(t)

2 ) = ). (3.35)

Dans la voie d’entrée, par hypothese, on suppose que la phase de capture est réussie donc P = 1,
voir I'équation (1.4). De ce fait, jr,s(t) est assimilé & jron(t). En outre, le courant de formation
Jform(t) est non nul pendant une courte fenétre temporelle dont le temps caractéristique est 7sopm-
Ce courant correspond au courant d’entrée par-dessus la barriere de potentiel, considérée comme
parabolique. Dans la voie de sortie le courant de fission j;s5(t) correspond a la probabilité de fission
par unité de temps. De plus, ce courant de fission peut étre assimilé en premiere approximation au
taux de fission de Kramers I’ff indépendant du temps, voir partie 4.2.1. D’autre part, le régime
transitoire associé a la relaxation nucléaire n’est donc dans ce cas pas pris en compte, en accord
avec les spécificités de la fusion-fission des noyaux super-lourds. On peut alors écrire

t
Pon(t) = / e TF (t=t) Jtorm()dt. (3.36)
0

Comme le temps caractéristique de fission vérifie dans ce modele Tﬁss ~ 1/ Fff > Tform QVeC Tform
le temps caractéristique sur lequel le courant jf,.,(t) n’est pas nul, on peut alors sur l'intervalle
t'e[0, 1] faire approximation e'¥* ~ 1. De ce fait, en supposant que le noyau composé n’est pas
formé initialement, Poy(t = 0) = 0, on aboutit a

t
Poy(t) = e 7" / Jporm (&)t = Prop (t)e 17, (3.37)
0

Pour les temps longs la nature métastable du noyau composé se manifeste par lim;_, o, Pon(t) = 0.
Avec cette modélisation simple de Poy(t) 'hypothese de décorrélation de la phase de fusion et
de la phase de fission de Bohr se traduit par une multiplication entre les deux termes Ppopp (%)

et e TFt. Lexpression de Pporm(t) pour le cas markovien est définie par (2.8) avec cette fois des
conditions initiales gaussiennes et la détermination de Pyoqy, (t) avec effets de mémoire est effectuée
dans ce chapitre, voir I’équation (3.28). De plus, la définition de Fff corrrespond a I’équation (4.1).

Avec cette modélisation simple de Poy(t) on peut mettre en évidence l'influence des effets de
mémoire sur la probabilité d’existence du noyau composé, voir la figure 3.9. On peut alors observer
la décorrélation entre la phase de fusion et la phase de fission. Les figures étant représentées avec
des axes semi-logarithmiques, on remarque aussi la grande différence d’échelles de temps entre ces
deux phases. Ceci est en accord avec le fait que le processus de formation du noyau composé est
beaucoup plus rapide que sa désexcitation.
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Pendant le régime transitoire de I’étape de formation du noyau composé, le comportement non-
markovien est marqué par une probabilité d’existence du noyau composé Py (t) plus importante
et augmentant plus rapidement que dans le cas markovien. Dans le palier intermédiaire associé au
régime asymptotique de formation du noyau composé les différences de comportement s’estompent
car les oscillations disparaissent. Ce palier intermédiaire est plus ou moins bien visible suivant les
valeurs respectives de ’énergie cinétique initiale K et de la barriere effective B.yy.

Enfin, pour des temps plus longs le début de la désexcitation du noyau composé super-lourd,
dans cet exemple par fission thermique uniquement, marque la fin du palier intermédiaire. Poy ()
devient donc monotone décroissante. Pour finir, on retrouve la nature métastable du noyau com-

posé qui se traduit par limy; . Pon(t) = 0.
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FIGURE 3.9: Pon(t) comme une fonction de wt pour K = Bess/10, K = Bess/2, K = Beyy et
K = 2B.¢¢. Dans chaque graphique la ligne continue est associée au cas markovien et les lignes
discontinues représentent les cas non-markoviens pour lesquels wr = 0.5 (petite ligne discontinue),
wr = 1.0 (ligne discontinue intermédiaire) et wr = 2.0 (grande ligne discontinue). En outre,

% — 1.5, T/B = 0.5, TO/T: 0.5 et 030 =0.

Figure 3.9, dans le cas ot K = B.s;/10, on remarque que les effets de mémoire influencent
fortement la condition de raccordement entre la phase de formation et la phase de désexcitation du
noyau composé super-lourd. C’est cette situation qui correspond a la dynamique de fusion-fission
des noyaux super-lourds car apres franchissement de la barriere de Coulomb, I’énergie cinétique K
correspondant a 1’énergie cinétique initiale de la phase de formation est petite devant la barriere

effective Beyy.



20 CHAPITRE 3. EFFETS DE MEMOIRE ET NOYAU SUPER-LOURD

Les effets de mémoire peuvent aussi induire des modifications du temps du point selle au point
de scission.

3.3.3 Temps du point selle au point de scission et effets de mémoire

La fission thermique peut étre vue comme un phénomene de diffusion par-dessus une barriere de
potentiel multidimensionnelle. Dans cette approche simplifiée, on se limite a une barriere monodi-
mensionnelle. Grace a 1'équation de Langevin généralisée [61], I’étude de la dynamique associée
est possible. Dans la référence [72], il est stipulé que, a cause des effets de mémoire, le temps du
point selle au point de scisson est approximativement multiplié par trois. Un tel comportement
peut paraitre en contradiction avec le fait que le noyau mémoire tend a faire décroitre le coefficient
de friction réduit 3.

Par exemple, en utilisant les notations introduites dans ce chapitre, on considere la valeur
moyenne de la variable collective comme une fonction du temps pour un autre type de conditions
initiales telles que gg = 0 et pg > 0,

(a(t)) K 539

Dans I'équation (3.38), K est 1'énergie cinétique initiale, le coefficient v(t) est défini a ’équation
(3.18) et By = mw?q?/2 est la barriere de potentiel depuis le sommet du point selle, situé en
q = 0, jusqu’au point de scission de coordonnée gs. On constate alors que, pour un parametre de
friction réduit 8 donné, la dynamique non-markovienne conduit a une viscosité plus faible et donc
un temps du point selle au point de scission 7445 plus petit.

Cependant, si le parametre de friction réduit 3 est dérivé a partir d’'un modele microscopique
[34, 53, 72], il dépend du temps relaxation choisi pour le noyau mémoire. Par exemple, dans les
références [34, 53] B est proportionnel a ce temps de relaxation. Ainsi, un temps de relaxation
plus grand signifie une viscosité plus grande avec comme conséquence un temps du point selle au
point de scission plus long, voir la figure 3.10.
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FIGURE 3.10: <q(§—:)> comme une fonction de wr avec K = B/10. Trois régimes sont représentés :
% = 1.5, wr = 0 (ligne solide), % = 1.5, wr = 1 (petite ligne discontinue) et % =3, wr =2
(longue et large ligne discontinue).
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3.4 Conclusion

Pour clore ce chapitre on peut donc rappeler les modifications induites par la prise en compte
des effets de mémoire sur la dynamique de fusion-fission des noyaux super-lourds.

Le temps caractéristique de formation d’un noyau composé super-lourd, de 'ordre de 10~%2s
a 1072, et le temps caractéristique de relaxation du bain thermique, estimé & 1072!s, sont com-
parables. La prise en compte des effets de mémoire est donc nécessaire pour étudier le processus
d’entrave a la fusion des noyaux super-lourds. Dans une gamme intermédiaire d’effets de mémoire
des oscillations apparaissent, ce qui est tres différent de la dynamique d’un systeme markovien.
Ces oscillations modifient alors fortement la dynamique des grandeurs physiques dans 1’étape de
formation des noyaux super-lourds. De ce fait, il est donc pertinent d’inclure des effets de mémoire
dans I’étape de fusion d’un noyau composé super-lourd, plus précisément pour I’étape de formation
proprement dite du noyau composé super-lourd.

De plus, il en va de méme pour le temps du point selle au point de scission dans 1’étape de
fission. Ce temps du point selle au point de scission peut étre influencé par des effets de mémoire.
Comme ce temps peut étre long dans le cas des noyaux super-lourds, les modifications induites
par les effets de mémoire peuvent alors étre grandes. En outre, dans cette fin de chapitre, on
aborde la fission d’une maniere simple pour prendre en compte I'influence de la désexcitation sur
la probabilité d’existence du noyau composé.

Une étude plus approfondie de la fission, mode privilégié de désexcitation du noyau composé,
est réalisée dans les chapitres 4 et 5. En effet, un des buts des chapitres 4 et 5 consiste a aller au-
dela d’un traitement de la fission du point de vue de Kramers en tenant compte de la compétition
entre les deux principales voies de désexcitation du noyau composé : I’évaporation de neutrons et
la fission. On revient alors notamment sur I’étude du point selle au point de scission.
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Chapitre 4

Noyau super-lourd et simple barriere de
fission

Le but de ce chapitre consiste a étudier la dynamique du processus de désexcitation des noyaux
super-lourds dans le cas d'une simple barriere de potentiel. Les différentes modélisations envisagées
avec cette simple barriere de potentiel ne permettent pas une interprétation quantitative des
résultats obtenus au GANIL par blocage cristallin pour les noyaux Z = 120 et Z = 124 [19]. Cepen-
dant cette étude présente I'intérét de pouvoir introduire les outils nécessaires a une compréhension
globale des différents mécanismes mis en jeu lors de cette désexcitation. On peut alors apporter
des informations sur 1’évolution des grandeurs physiques pertinentes. Dans ce chapitre on applique
donc ces outils en considérant le cas d’une simple barriere, du type de la figure 4.1. Ces mémes
outils sont aussi utilisés dans le chapitre 5 mais cette fois pour une double barriere.

Selle
V()

N\ q

. Scission
Puits t

FIGURE 4.1: Schématisation de la simple barriere de potentiel V' (g) en fonction de la coordonnée
collective ¢, associée a la déformation du noyau composé. ¢ est donc une coordonnée le long du
chemin le plus probable par-dessus la barriere de fission vers le point de scission, de coordonnée
qs- Ce point de scission, correspondant a la fission du noyau composé, est considéré comme une
frontiere absorbante car, une fois ce point franchi, le noyau composé ne peut étre reformé. La
coordonnée collective correspondant a I’état fondamental du potentiel V' est notée q4q4, gd signifiant
< ground >, et la coordonnée collective associée au point selle est gsq, sd signifiant < saddle >.

Ce chapitre se décompose en quatre parties. La partie 4.1 est un bilan des points d’accord et
de désaccord entre les valeurs expérimentales et les modélisations envisagées avec prise en compte
des corrections d’effets de couches. Les parties suivantes abordent différents modeles académiques
afin d’étudier I'influence des grandeurs physiques sur la dynamique de désexcitation du noyau
composé. On envisage dans la partie 4.2 la fission comme seule voie de désexcitation, puis dans la
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partie 4.3 le cas d’une barriere de fission constante. Enfin, dans la partie 4.4, on prend en compte
les corrections d’effets de couches. Dans ce chapitre, la constante de Boltzmann kg est égale a un.

4.1 Reésultats expérimentaux et modélisations

A T’heure actuelle, les tentatives de modélisation avec une simple barriere de potentiel ne
permettent pas d’accéder a une interprétation quantitative de la dynamique de désexcitation des
noyaux super-lourds. En effet, méme avec des modeles prenant en compte les différents modes
de désexcitation (fission, évaporation de particules légeres, émission de photons ) et incluant les
corrections d’effets de couches, les résultats obtenus ne permettent pas de retouver les valeurs des
observables associées aux expériences réalisées au GANIL par blocage cristallin [19, 31, 73, 74, 75].

4.1.1 Constat actuel sur les résultats expérimentaux et les modélisations

Les principaux résultats de ces mesures par blocage cristallin peuvent étre résumés de la
maniére suivante : pour Z = 114 aucun événement supérieur a 107185 n’est détecté. Au contraire,
pour Z = 120 et Z = 124, respectivement 10% et 12% des événements de capture possedent
un temps de vie supérieur a 10718s. De plus, aucun résidu de fission chaud n’a été observé. La
probabilité de survie de ces résidus est donc nulle.

Les modélisations réalistes doivent donc permettre de reproduire le comportement de ces deux
observables, c’est-a-dire une probabilité d’événements de fission P(tp;ss > 10_185) de Tordre de
10% et une probabilité de survie Py, des fragments de fission nulle. De plus, les modélisations
doivent permettre d’accéder aux grandeurs physiques comme le taux de fission Ay, et le temps de
fission moyen 755 = (tfiss). En particulier, d’apres les valeurs de l'observable P(t ;55 > 107185),
la queue de distribution des temps de fission ¢ ;55 doit pouvoir étre supérieure a 107%s.
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FIGURE 4.2: Schéma de gauche : modélisation de la cascade de désexcitation de Kwepie2
[19]. Schéma de droite : modélisation de la cascade de désexcitation isotopique résultant de la
compétition entre les deux processus dominants : fission et évaporation de neutron [31].
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Le temps de fission estimé & partir du taux de Kramers est de l'ordre de 10~%s, voir partie
4.2.1. Ce temps ne permet pas d’expliquer les valeurs P(tfss > 107'8s) ~ 10%. De maniere
générale, pour avoir des temps de fission ty;, aussi longs, il y a impérativement compétition en-
tre le canal de fission et les autres canaux de désexcitation associés aux particules légeres et aux
photons 7. L’existence des ces différents canaux de désexcitation se manifeste par I’apparition d’ar-
borescences représentant les voies de désexcitation disponibles pour les noyaux successifs depuis
le noyau composé super-lourd jusqu’au résidu final. Par exemple, avec Kewpie2, la modélisation
de la cascade est effectuée en retenant comme voies de désexcitation pour chaque noyau de la
cascade : le canal de fission et les canaux d’évaporation de neutron et de proton, voir le schéma
de gauche de la figure 4.2. De ce fait, grace a ces voies alternatives a la fission, les valeurs des
observables et des grandeurs physiques associées augmentent par rapport au cas de figure ot seule
la fission est possible.

Le processus de fission est le mode principal de désexcitation des noyaux super-lourds quand
I’énergie d’excitation du noyau composé initial est £ = 70 MeV. Cependant, parmi les autres
modes de désexcitation, un mode particulier se distingue : ’évaporation de neutrons. En effet,
pour des énergies d’excitation inférieures a 100 MeV, on peut alors envisager la compétition entre
les deux modes dominants : la fission et I’évaporation de neutrons. L’arborescence devient dans
ce cas une simple chaine de désexcitation isotopique, voir le schéma de droite de la figure 4.2.
La compétition entre fission et évaporation de neutrons permet donc, pour chaque isotope de la
chaine, en évacuant une partie de ’énergie d’excitation, de stabiliser le systeme, via cette chaine.
En effet, a ’exception du dernier isotope qui ne peut que fissionner, le noyau composé et les autres
isotopes de cette chaine peuvent soit émettre un neutron soit fissionner.

Dans le but de reproduire les valeurs des observables P(t ;55 > 107'8s) ~ 10% et Py = 0 une
premiere approche consiste a utiliser les différentes tables de données. Cette premiere approche
permet par la méme occasion de tester ces tables. Par exemple, on peut utiliser des tables comme
celles de Koura [76, 77] afin d’étudier la compétition entre fission et évaporation de neutrons d’'une
cascade de désexcitation isotopique a partir du noyau composé Z = 124 et Ag = 308. On a alors
a partir de ces tables les valeurs suivantes :

A, 308 | 307 | 306 305 304 | 303 302 | 301 | 300 | 299
B,; (MeV) 797 | 642 | 814 | 6.68 | 834 | 6.83 | 9.00 | 7.34 | 9,02 | 7,60
|AEspen]i (MeV) | 10.55 | 10.43 | 10.38 | 10.30 | 10.20 | 10.13 | 10.08 | 9.56 | 9.21 | 8.88

Avec cet exemple, on remarque que les valeurs des barrieres d’évaporation de neutron B,,; sont
de 'ordre de 6, 7 ou 8 MeV et que les corrections d’énergie de couches des différents isotopes de
la cascade sont proches de |AFEge); >~ 10 MeV.

De maniere générale, les différentes données tabulées sont donc réinjectées dans les codes de
cascades de désexcitation, comme ceux associés aux schémas de la figure 4.2. En procédant ainsi,
les différentes approches aboutissent a des valeurs de P(tf;ss > 107185) inférieures de plusieurs
ordres de grandeurs aux valeurs attendues pour avoir compatibilité avec les valeurs expérimentales.

Comme la premiere approche s’avere infructueuse, une deuxieme approche consiste a prendre
le probleme du point de vue opposé. Cette fois, on part des valeurs des observables Py, = 0 et
P(tpiss > 10718s) ~ 10%. Cette approche est difficile car, avec des énergies d’excitation de 70 ou
80 MeV, la chaine isotopique peut alors comporter huit ou neuf isotopes successifs a partir du
noyau composé super-lourd. Il est donc impossible d’accéder aux valeurs des barrieres de fission des
différents noyaux avec uniquement les deux observables P(t ;55 > 107'%s) et Pyy;p. Le nombre d’ob-
servables n’étant pas assez important pour déterminer de maniere univoque toutes les grandeurs
physiques de la cascade de désexcitation, la résolution mathématique exacte est inenvisageable.
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Pour contourner ce probleme, différentes hypotheses sont envisagées afin de modéliser 1’évolution
globale des corrections d’énergie de couches sur I’ensemble de la cascade de désexcitation.

Par l'intermédiaire des mémes codes de cascades de désexcitation que ceux utilisés dans la
premiere approche, on détermine alors les valeurs homologues des valeurs issues des tables. Les
valeurs issues de cette deuxieme approche sont alors tres différentes des valeurs tabulées. Ainsi,
pour les corrections d’effets de couches |AEgpey]; des différents isotopes i de la cascade, les valeurs
obtenues sont largement supérieures a la valeur typique |AFEgen|; >~ 10 MeV issues des tables de
Koura.

Les modélisations a partir des tables de données et des valeurs des observables comportant
encore des zones d’ombres, afin de comprendre la dynamique de désexcitation de maniere globale,
on se tourne alors vers des modeles académiques.

4.1.2 Etude a I’aide de modeles académiques

L’approche quantitative de la désexcitation des noyaux super-lourds n’étant pas envisageable,
on se tourne donc vers des modeles académiques afin d’apporter des informations sur la fusion-
fission des noyaux super-lourds. On considere alors trois types de modeles académiques.

Dans le premier modele académique, on suppose que la fission thermique est la seule voie
de désexcitation possible a l'issue de I’étape de formation du noyau composé. La désexcitation
des noyaux super-lourds peut alors étre étudiée en s’intéressant au temps de fission moyen 7,
du noyau composé car cette grandeur physique constitue une mesure de la stabilité des noyaux
super-lourds. Afin d’estimer ce temps de fission moyen et les grandeurs associées on introduit
alors différents outils. Le temps de fission moyen est donc relié au temps moyen de premier passage
MF PT, au temps de relaxation non linéaire N LRT et au temps du point selle au point de scission
Ted—ss. On peut alors étudier I'influence de la fission thermique comme seul mode de désexcitation
sur le temps de fission moyen 7y;gs.

Dans le deuxieme modele académique, on envisage la compétition entre la fission thermique
et I’évaporation de neutrons avec une barriere de fission constante. Pour des raisons pratiques,
le traitement usuel de type Langevin est alors écarté au profit des équations maitresses de type
Bateman.

Dans le troisieme modele, en utilisant a nouveau les équations de Bateman, on étudie la prise
en compte des corrections d’effets de couches sur cette compétition entre la fission thermique et
I’évaporation de neutrons en considérant deux variantes (une description intuitive et la prescription
d’'Ignatyuk). Pour chacune de ces deux variantes, on considere que ces corrections d’énergies de
couches sont les mémes pour tous les isotopes de la cascade.

Pour les deuxieme et troisieme modeles académiques, on peut alors déterminer dans un pre-
mier temps les populations P,(t) des différents noyaux, c’est-a-dire les probabilités d’existence des
ces différents noyaux en fonction du temps. A partir de la population totale P(¢) on peut alors
accéder a probabilité de survie Py,,.,. Dans un deuxieme temps, les populations étant les grandeurs
physiques intermédiaires a partir desquelles toutes les autres grandeurs physiques sont définies,
on peut alors déterminer : le temps de fission moyen 7y, ainsi que le taux de fission A, la
probabilité P(t s > 10718s) caractérisant lexistence d’événements de fission au dela de 107185
et la multiplicité de neutrons de préscission Ngmpe-

Avant de passer a I’étude proprement dite des modeles académiques, on attire ’attention sur
un point important. Un modele académique est un outil de compréhension afin de déterminer les
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parametres pertinents d’'un probleme. Certains choix sont donc arbitraires et ne se réferent pas
forcément a une réalité physique. Il est donc utopique de vouloir reproduire quantitativement des
données expérimentales a partir de tels modeles.

4.2 La fission comme seule voie de désexcitation

En pratique I’hypotheése qui consiste a ne retenir que la fission en tant que processus de
désexcitation du noyau composé est valide pour la fission froide avec de faibles énergies d’ex-
citation des deux fragments de fission inférieures ou égales a typiquement 10 MeV [78]. Dans
cette partie, on utilise ce modele académique pour étudier le lien entre la désexcitation par fission
thermique et le temps de fission moyen 7p;ss.

Pour évaluer le temps de fission moyen, on utilise différents outils avec différents domaines
de validité, qui présentent des avantages et des inconvénients [79, 80]. Par exemple, le taux de
Kramers )\féss est utilisable uniquement pour les basses températures par rapport a la barriere
de fission mais peut étre employé pour décrire la fission thermique seule ou sa compétition avec
I’évaporation de neutrons.

Le temps moyen de premier passage M F' PT', le temps de relaxation non linéaire NLRT et
le temps du point selle au point de scission 7,4_,s n'ont pas de contraintes de température mais
leurs définitions sont analytiques uniquement dans le régime sur-critique. En outre, ces temps
caractéristiques ne sont pas généralisables a I’'étude de la compétition entre fission et évaporation
de neutrons.

4.2.1 Outils pour évaluer le temps de fission moyen
Taux de fission \f;,, et temps de fission 77, de Kramers

Pour décrire le processus de fission, en premiere approche, on utilise le taux stationnaire de
fission de Kramers A% .. Cette approche stationnaire est valide quand 1'énergie thermique est
petite devant la barriere de fission d’ott T' < By et pour des valeurs de /(2wsq) proches de 'unité
jusqu’a des valeurs tres supérieures. Ce taux est aussi appelé taux de fuite car il est relié a la
probabilité de présence par unité de temps du noyau composé dans ’état fondamental, assimilé
a un puits de potentiel métastable thermalisé. Ce taux de fission, correspondant a la largeur de
fission T, s’écrit [33] :

M = T = 228 (1ot (5 = 3/ (20 ) 57, 1)

avec wyq et w,q respectivement les pulsations harmoniques des potentiels quadratiques osculateurs
dans I'état fondamental et au niveau de la selle de la barriere de fission By. T' est la température
du bain thermique et ( le coefficient de friction réduit. En outre, dans le régime suramorti [7, 90],
correspondant a la limite de grande viscosité ot 5/(2wsq) >> 1, on aboutit a

2K K _ WgdYsd B /T (4.2)

fiss — - f — 27_{_6

Par exemple, pour des valeurs de 3/(2wsq) égales a 1.44 et 2.0 il n’y a alors plus que respectivement
10% et 5% d’écart entre entre (4.1) et (4.2). Le taux de fission stationnaire de Kramers A est
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par définition I'inverse du temps caractéristique de fission de Kramers Tﬁss

1
T]{z('ss = ? (43)

Par exemple, avec les valeurs 5/(2wsq) ~ 1.5 et T'/B ~ 0.5 on a alors Tﬁss ~ 1072,

Dans le modele de Kramers, 'existence d'un état transitoire avant 1’établissement du régime
stationnaire ou le noyau est thermalisé n’est pas pris en compte. Le temps caractéristique de cet
état transitoire est le temps de relaxation nucléaire 7,.

Temps de relaxation nucléaire 7,

La valeur du temps de relaxation nucléaire 7, dépend de I’état initial de thermalisation du
noyau. En effet, quand le noyau peut étre initialement considéré comme froid, il existe un régime
de relaxation nucléaire, correspondant au processus transitoire de thermalisation de la distribution
des déformations de ce noyau. De plus, le temps caractéristique 7, de ce régime est généralement
du méme ordre de grandeur que celui de I’évaporation des particules légeres. [74, 79, 81]. Il n’existe
pas de formule analytique générale pour 7, cependant on peut définir des expressions valables dans
les cas particuliers des régimes sur-amorti 3/(2wyq) >> 1 et sous-amorti 5/ (2wgq) << 1, avec wyq
la pulsation de 'oscillateur dans ’état fondamental [82, 83] :

6] (1OBf) . B 1 (1OBf) G
Tr = In si >> 1 T, =—=In{——| si << L 4.4
ngd T 2wgq I6; T 2wgq (4:4)

Dans la suite de ce chapitre, on considere que wyq = wsg = w.

Dans le cas de la fusion-fission des noyaux super-lourds, ces noyaux composés chauds sont
formés par diffusion par-dessus une barriere et peuvent étre considérés comme thermalisés. De ce
fait, le temps de relaxation nucléaire pour les noyaux super-lourds est considéré comme nul.

Afin de montrer que pour les noyaux super-lourds le temps de relaxation nucléaire peut étre
écarté, on se place dans une situation ou ce temps est maximisé par rapport au cas des noyaux
super-lourds car on considere des noyaux froids pour lesquels la condition initiale de thermali-
sation est de type Dirac c’est-a-dire piquée au fond du puits. Dans ce cas la formule (4.4) est
valide. En utilisant (4.4) avec 5/(2w) = 0.66 ou /(2w) = 1.5, hw = 1 MeV et T//By = 0.5, on
estime alors que le temps de relaxation nucléaire 7, est de lordre de 1072!s. D’autre part, dans
les mémes conditions, avec une énergie d’excitation du noyau composé de 70 MeV et une barriere
d’évaporation de neutron B,, = 6 MeV on détermine a I’aide de (4.13) ou de (4.32) que la largeur
d’évaporation de neutron associée au noyau composé est de lordre de I', o ~ 10?*°s71. De ce fait,
7, est petit devant la largeur d’évaporation de neutron d’ou 7,I', 9 << 1. On peut donc écarter le
temps de relaxation nucléaire pour les noyaux composés super-lourds.

Dans la suite de 1’étude, on considere donc pour les noyaux super-lourds que

TSHE ~ ), (4.5)

r

Cependant, 7, est gardé dans les définitions des grandeurs caractéristiques de cette partie car ce
terme peut étre pertinent pour d’autres domaines que celui qui nous intéresse.
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Temps moyen de premier passage M F PT

Le temps moyen de premier passage M F PT, < Mean First Passage Time >, est le temps
nécessaire pour franchir la barriere de potentiel depuis une condition initiale en amont du point
selle jusqu’au point de scission, considéré comme une frontiere absorbante [84]. On a de ce fait
¢ < Gsa < qs- Une expression analytique du M FPT pour §/(2w) > 1 est alors

m qs u
MFPTq — q] = —6/ eV(“)/Tdu/ e VT qy, (4.6)
T qi —00
avec, (3 le coefficient de friction réduit, m l'inertie et T' la température.
Ce temps caractéristique est le plus intuitif pour comprendre la fission car il n’inclut pas de
courant de retour au point de scission. On 'utilise donc pour définir le temps de fission moyen
quand la fission est le seul mode de désexcitation.

Temps de passage moyen M PT et temps de relaxation non linéaire NLRT

Le temps moyen de passage M PT <« Mean Passage Time > correspond au temps moyen du
noyau composé dans le puits de potentiel associé a ’état fondamental avant qu’il ne fissionne.

+oo
MPT(q; = qsd] —/ P(t; qea, i)t (4.7)
0

De plus, si les conditions initiale et asymptotique sur la probabilité de présence vérifient respec-
tivement P(t = 0; ¢sq,¢;) = 1 et P(t — +00; qsq, ;) = 0, le M PT est alors équivalent au temps de
relaxation non linéaire NLRT, <« Non Linear Relaxation Time ». Une expression analytique du
temps de relaxation non linéaire pour 5/(2w) > 1 est

mp3 v Y vy v B vy
NLRT[q; = qsa] = - e du e dv + e du e dv | .
q —00 4dsd —0
(4.8)

Pour prendre en compte le temps de relaxation nucléaire 7, de maniere simple on peut utiliser
une largeur de fission de la forme I' = h(t — 7,.)['«, avec h la distribution de Heaviside et 'y, le
taux du régime stationnaire, c’est-a-dire la probabilité de fission par unité de temps du régime
asymptotique [79, 80]. Le NLRT s’écrit donc de maniere générale

i

1
NLRT|q; = qsa) = T + T (4.9)

Dans le cas de la fusion-fission des noyaux super-lourds le temps de relaxation nucléaire 7, peut
étre négligé dans 1’équation (4.9).

Le temps du point selle au point de scission

Le temps de descente du point selle au point de scission peut étre relié¢ au M FPT et au NLRT.
Plus précisément, d’apres les considérations des deux paragraphes précédents 7.4, le temps du
point selle gs4 au point de scission ¢, peut étre défini par

Tsdss = MFPT[q; = qs] — NLRT[q; — qsa- (4.10)

Par exemple, pour les noyaux de I’élément plomb, le temps 7,4, est petit. Dans ce cas de figure, il
peut étre négligé en premiere approche. Cette approximation n’est plus possible avec des noyaux
super-lourds pour lesquels 74,5 peut devenir plus grand (car le point selle et le point de scission
sont alors beaucoup plus éloignés) et ainsi étre comparables aux autres temps caractéristiques.
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4.2.2 Estimation du temps de fission moyen d’un noyau super-lourd

Dans ce cadre, le temps de fission peut alors étre défini par :

1
Ttiss = MFPT[% — QS] = NLRT[C]z — qsd] + Tsd—s = Tr + F_ + Tod—ss- (411>

De plus, si la température vérifie T' < By alors I'y, ~ Fff . Dans ce cas, 1’équation (4.11) est donc
valide pour la fission pure avec des températures basses et une friction moyenne ou importante.
En outre, pour la fusion-fission des noyaux super-lourds le temps de relaxation nucléaire n’est pas

pris en compte, ces noyaux chauds étant thermalisés : 757F ~ 0. De plus, avec les valeurs usuelles,

B/(2w) =15 et T/B = 0.5 on a NLRT[g; — qsa] = 1/TF ~ 107%s. Le temps de descente du
point selle consécutif a I’état fondamental jusqu’au point de scission 7,4, doit donc étre important
si on veut retrouver des valeurs de temps de fission 74,5 de I'ordre de 10785, Pour accéder a de
telles valeurs, la partie de la courbe V' (q) entre le point selle est le point de scission doit a priori

comporter un puits isomérique, voir partie 5.1.2.

La fission thermique n’étant pas le seul mode de désexcitation, un traitement plus complet
doit tenir compte de la compétition entre la fission thermique et I’évaporation de neutrons.

4.3 Compétition entre fission et évaporation de neutrons

4.3.1 Domaine de validité du modele

Le début de cette étude avec la simple barriere de potentiel est réalisé dans [85]. Dans cette par-
tie du chapitre, on étudie ’évolution dynamique du noyau chaud composé quand il y a compétition
entre deux voies de désexcitation, la fission thermique et I’évaporation de neutrons [86, 87]. Une
des conséquences de la compétition entre ces deux processus est l’existence d’une chaine d’iso-
topes qui émettent successivement un neutron avant que le dernier des isotopes de la chaine ne
fissionne, voir le graphique de droite de la figure 4.2. Pour décrire 1’évolution de cette chaine
de désexcitation, on utilise un modele hybride alliant les deux aspects dynamique et statistique.
L’équation de Langevin n’étant pas viable compte tenu des temps caractéristiques de fission ;s
qui peuvent étre de I'ordre de 107185 et de la statistique qu’il faut accumuler dans ce type d’ap-
proche. On se base alors sur les équations maitresses de type de Bateman et des outils statistiques.
De plus, la résolution du systeme d’équations différentielles associé s’appuie sur les transformées
de Laplace.

Le choix de la fission et de I’évaporation de neutrons comme principaux canaux pour décrire la
cascade de désintégration du noyau composé est une hypothese réaliste. En effet, pour une énergie
d’excitation de l'isotope initial vérifiant Ej < 100 MeV, les différentes voies de désexcitations
sont la fission, I’évaporation de particules 1égeres, neutrons, protons, particules o ou I’émission de
photon 7. Le choix des neutrons comme candidats peut se justifier par le fait que, contrairement
aux protons et aux particules «, les neutrons ne sont pas sensibles a la barriere coulombienne. De
plus, comme les photons v emportent peu d’énergie lors de leur émission, on peut en premiere
approximation négliger 1’émission de ces photons. En outre, expérimentalement on constate que
pour la gamme d’énergie considérée [7], il y a en début de chaine de désexcitation, un & deux
ordres de grandeur entre le taux d’émission de neutrons et les taux d’émission de protons ou de
photons 7.
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En pratique ce cadre d’étude ou on envisage la compétition entre la fission thermique et
I’évaporation de neutrons est donc valide pour le début de la chaine de désintégration, par contre
il n’est plus vérifié rigoureusement pour la fin de la chaine car par exemple les processus de
désexcitation par émission de photons v ne sont alors plus négligeables. Ces derniers emportant
avec eux le peu d’énergie d’excitation encore présente a ce stade de la cascade de désexcitation,
la fission thermique n’est alors plus possible.

Dans la suite de ce paragraphe 4.3, on considere le cas de figure ou la barriere de fission By
est constante avant d’envisager au paragraphe 4.4 la prise en compte des corrections d’effets de
couches AFEgpen.

4.3.2 QOutils pour évaluer ’évaporation de neutrons et la fission

Les outils pour évaluer la fission et I’évaporation de neutrons sont de nature statistique [86]. On
utilise notamment les largeurs de fission et d’évaporation, grandeurs correspondant respectivement
aux probabilités de transition par unité de temps du processus de fission et d’évaporation de
neutron. Par hypothese, ces grandeurs sont considérées comme indépendantes du temps mais
varient en fonction de l'isotope de la cascade de désexcitation.

Dans ce deuxieme modele académique on considere les barrieres de fission et les barrieres
d’évaporation de neutron constantes tout au long de la chaine de désexcitation. Ce choix est
arbitraire et ne s’appuie pas sur la réalité physique.

Energies d’excitation des isotopes et exemples académiques étudiés

Le noyau composé, premier isotope de la cascade de désexcitation, possede une énergie d’exci-
tation £ et un nombre de masse correspondant A,. L’isotope i de cette méme cascade est associé a
I’énergie d’excitation £} et au nombre de masse A; = A—i. De plus, E},, = Ef — (B, ;+27T;) car on
suppose que le neutron émis par l'isotope ¢ emporte avec lui I’énergie de la barriere d’évaporation
B, et I'énergie cinétique moyenne 27; (par hypothese, on assimile alors ’énergie cinétique a
I'énergie cinétique moyenne) donc :

Bl = B = (Bui+2VE Jai) | (4.12)

avec a; le parametre de densité de niveau de l'isotope ¢ dont une expression simplifiée peut étre
déterminée & partir du modele de Fermi. On a alors E} = ;T?, avec T} la température associée.
L’estimation du parametre de densité de niveau a; n’est pas simple dans le cas général [88, 89].
On utilise donc différentes expressions simplifiées de a;, en MeV ! : A;/8 correspond A la valeur
moyenne extrapolée a partir de résultats expérimentaux obtenus avec les atomes froids et A;/10,
A; /12 sont issues de calculs de type champ moyen [7]. Dans cette partie, le nombre de masse du
premier isotope est Ay = 308, la barricre d’évaporation B,,; peut prendre différentes valeurs entre
5MeV et TMeV . De plus le coefficient de friction réduit est 8 = 2.10%'s7! ou 8 = 5.10%'s7 !, ce
qui correspond respectivement a 3/(2w) = 0.66 ou 5/(2w) = 1.65 avec hw = 1.0MeV .

L’émission de neutrons est un phénomene aléatoire qui se produit en continu jusqu’a la fission
du dernier isotope de la chaine. L’énergie d’excitation du dernier isotope E;  devient alors
inférieure a 1'énergie de liaison B, ; correspondant a la barriere d’évaporation de neutron. La
contrainte E; < B,;, détermine donc le nombre maximal de neutrons émis quand toute la
cascade de désexcitation est parcourue pour aboutir a la fission du dernier isotope, numéroté lui
aussl par Sy,.;. Dans cette étude s,,q, est égal a 8 neutrons pour Ej = 70 MeV ou 9 neutrons pour



62 CHAPITRE 4. NOYAU SUPER-LOURD ET SIMPLE BARRIERE DE FISSION

E; = 80 MeV, voir figure 4.3. Avec I'énergie d’excitation du noyau composé on peut déterminer
les énergies d’excitation des isotopes de la chaine de désexcitation en fonction de a;.
Par exemple, avec £ =70 MeV, Ay = 308 et B,,; = 6 MeV on a en MeV :

a0 | smes | Ef | Bf | By | B3 | E; | EX | B | Ef | E}
Ao/8 | 8 [70.0 | 61.3 528 44.4 | 36.3]28.3[20.6 | 13.1 | 5.92
Ao/10 | 8 [70.0|61.0 | 522 43.6 | 35.2 | 27.0 | 19.1 | 11.5 | 4.29
Ao/12| 8 [70.0|60.7 | 51.6 | 42.8 [ 342|259 | 17.8 | 10.2 | 2.88

Avec Ej = 80 MeV, Ay = 308 et B, ; = 6 MeV on obtient en MeV :
ao smax | Ly | EY | B | B | Ey | EX | Ef | Er | E} | E;
Ap/10 9 |80.0|70.8|61.7[529|44.3 359 |27.7]19.8 |12.2 | 4.88

Largeur d’évaporation de neutron I',; de I'isotope ¢

La largeur d’évaporation de neutron est définie a partir du formalisme de Weisskopf. Pour
chaque isotope ¢ de la chaine de désexcitation, de nombre de masse A;, on peut définir E ’énergie
d’excitation, B, ; la barriere d’évaporation, €"** = Ef — B,,; et p; = (4; — 1)m,/A; la masse
réduite du neutron émis avec m,, = 931,5 MeV.c™2. Le neutron est un fermion de spin % La
largeur d’évaporation de neutron associée est en s—! [86]

max

2,[% “ mazx
Fm = —W2h3p(E*) / Tino(€)ep(€*T — €, a;)de, (4.13)
i) Jo

avec la densité de niveau p(E;, a;) et la section efficace 0, (€)

p(E;,a;) = ﬂle% “EE T Gi(€) = ay, (1 + &) TR (4.14)
48a;/ Br5/4 ¢

Dans la densité de niveau, exprimée en MeV !, a; est le parametre de densité de niveau et g = 4 la
dégénérescence totale spin-isospin. La section efficace inverse, c¢’est-a-dire de capture est exprimée
en fm? avec les variables a,,(4;) = 0.76 + 1.93A;1/3, Bn(4;) = (1.66A;2/3 —0.050)/a, (A;) et le
rayon du noyau R,(A;) = 1.70AZ1 / ? lui-méme exprimé en fm.

A partir de ’expression (4.13), on peut déterminer une formule analytique pour FnW’Z- en estimant
une forme approchée de U'intégrale [85]. On obtient alors

#5/4 2 max max
2u B o Ry o /g e —2, fa, B} &' + DB €

i

wh3 (emar)l/4 © —5/4 + \Ja;emT B —1/4 + Jaere= |-

Cette largeur est considérée comme nulle pour Ej < B,,. En outre, comme E; < B, le dernier
isotope ne peut émettre de neutron, d’ou I',, 5, .. = 0. C’est cette formule (4.15) que nous utilisons
dans la suite de I'étude avec barriere de fission By constante.

Lhpi= (4.15)

Largeur de fission I's; de I’isotope i

La probabilité de transition par unité de temps associée c’est-a-dire la largeur de fission, ex-
primée en s~!, est basée tout d’abord sur le formalisme de Bohr-Wheeler

1 E;—Bf
rew— __ _— Ef — Bf — €, a;)de. 4.16
M- By (4.16)
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En utilisant a nouveau la méthode utilisée dans [85] afin d’estimer une forme approchée de
I'intégrale (4.16), on peut alors déterminer une formule analytique pour F??/

*\b/4
F}BE/V _ 1 (E}) / 62\/%(E;«_Bf)—2\/alEg*7 (4.17)
Y 2mhal(Er - By

Cette largeur est considérée comme nulle pour £ < By. En outre, la largeur de fission doit tenir
compte de la viscosité via la friction dans le noyau. Il faut donc multiplier Fﬂ” de I’équation
(4.17) par le facteur de correction de Kramers-Strutinsky hwg /T; [91]. On aboutit donc a

hiw wrg  (E7)34 T H) 9. [
_ BWI®K YK i 2¢/ai(Ef —By)—-2,/ai B}
Lri=T7%; i o (Br — f>3/4e , (4.18)

avec wx = y/w? + 52/4— (/2 la fréquence de Kramers, T; = /E}/a; la température de l'isotope i
et 3 le coefficient de friction réduit. Dans la suite de I’étude avec barriere de fission By constante,
c’est cette largeur de fission corrigée (4.18) qui est désormais utilisée.

4.3.3 Grandeurs physiques dans le cas de la simple barriere

Dans le but de comprendre les résultats expérimentaux obtenus au GANIL avec la technique
du blocage cristallin, voir partie 1.1.4, il faut tout d’abord calculer les populations des isotopes
de la chaine de désexcitation avant de déterminer le taux de fission, le temps de fission moyen,
le nombre d’événements normalisés plus long que 10785 ainsi que la multiplicité de neutrons de
préscission.

Populations des différents isotopes

Les populations correspondent a la répartition des différents isotopes en fonction du temps.
Par définition, les populations sont normalisées et donc identifiables a des probabilités d’existence.
Les conditions initiales sont Py(t = 0) = 1 (existence du noyau composé) et Ps(t = 0) = 0, avec
0 < 8 < Spae- Pour calculer Py(t) et Py(t) on utilise alors les équations maitresses de type Bateman
avec I's =T'p s+ 1 5

dPo(t)
dt

dP,(t)
dt

Pour le dernier isotope de la cascade de désexcitation I', 5, .. = 0 car il ne peut plus émettre de
neutrons. Par contre, ce dernier isotope peut encore fissionner quand B,, > By donc

— _TyRy(t) = Tpac1Paca(t) = TLPA(1). (4.19)

d Smazx (t) l )] y
T = _nysmaa: Smax (t) + ansmax—lpsmax—1<t> St Bn > Bf
dpP,, . (t
2;$< ) - Fnysmazflpsmazfl(t) SZ Bn < B‘f <420)

Dans ce cas, a partir des transformées et transformées inverses de Laplace, on trouve que les
populations Py(t), avec 0 < s < 8,04, sONE :

PO (t) g G_F()t
! 5 e—Fit
Ps(t) = Fn,i 5
im0 = im0 e(Ty = 1)
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Smaz—1 Smaxzx —I';t

Poe® = 1T i3 5 =7y

i=0 11j=0,j#i

(4.21)

On peut alors déterminer la population totale P(t) et la probabilité de survie Py, du résidu

de fission :
smax

P(t) = Punpie(t) = X% P(t) lim P(t) = Pour- (4.22)
s—

Figure 4.3, on observe que pour £} = 70 MeV, a partir du noyau composé, le nombre d’isotopes
successifs de la cascade de désexcitation (et donc le nombre de neutrons maximum qui peut étre
émis) s’éleve a Spq = 8, tandis que pour Ef = 80 MeV on a S,,4, = 9. La condition Bf = B,
traduit la forte compétition entre les deux canaux de désexcitation tout au long de la cascade, ce
qui permet d’observer les populations sur des temps relativement longs. Par exemple, a t = 10~ %5
on a pour Ej =70 MeV les isotopes 6 et 7 et pour £ = 80 MeV on observe les isotopes 7 et 8.
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FIGURE 4.3: Populations P;(t) et population totale P(t) = P, (t) en fonction du temps ¢ quand
Iénergie d’excitation Ej du noyau composé est 70 MeV ou 80 MeV. Les énergies d’excitations
EY des isotopes successifs des deux cascades de désexcitation sont visibles dans les tableaux de
valeurs de la partie 4.3.2. Pour les deux graphiques on a §/(2w) = 0.66, Ay = 308, a; = A;/10,
hw=1MeV et By = B, =6 MeV. Avec cette derniere condition la largeur de fission du dernier
isotope vérifie I', ;... = 0. Comme cet isotope ne peut alors plus fissionner la probabilité de survie
du résidu P,,,, est non nulle.

A partir des populations Ps(t) des différents noyaux de la cascade et de la population totale
P(t) définies par (4.21) et (4.22), on accede alors aux autres grandeurs physiques : Afiss, Tfiss,
Nyimpie €t P(tfiss > 10718s). On peut ainsi réaliser une étude variationnelle de ces grandeurs afin
de déterminer les parametres pertinents qui influent sur ces grandeurs physiques.
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Taux de fission \y;;; et temps de fission moyen 7y,

Le taux de fission varie en fonction de la hauteur de barriere de fission By par 'intermédiaire
de la largeur de fission I'f ; des isotopes s.

sl =~y i = i 2 PO (1.29

avec la population totale P(t) de la simple barriere et Ps(t) la population de l'isotope s.

Tfiss (S)
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FIGURE 4.4: Taux de fission A5 comme fonction du temps ¢t et temps de fission moyen 7y
comme fonction de By/B,,. L’étude variationnelle est effectuée autour des valeurs types Ej = 68
MeV, 5/(2w) = 0.66, Ag = 308, a; = A;/10, hw = 1 MeV et B, = 6 MeV. Dans chaque
graphique ces valeurs de référence sont associées a la courbe continue simple.

Dans la partie supérieure gauche de la figure 4.4, on observe une décroissance temporelle lente
du taux de fission A ;s correspondant a une lente variation de la population totale P(t) (voir figure
4.3) depuis un temps de ordre de 10725 jusqu’a un temps de 'ordre de 10717%s puis une chute
brutale entre 107155 et 10715%s relie au fait que P(¢) devienne constante. On remarque également
que plus la barriere d’évaporation de neutron B, est petite, plus I’évaporation de neutrons est
favorisée par rapport a la fission et plus As;ss diminue rapidement.
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Le temps de fission moyen 7,5 peut étre défini par les deux variantes de 1’équation (4.24) en
utilisant la formule analytique (4.22) de la population totale P(t) = Pijmpie(t) :

e S _ taP(ta) —tpP(tp) + [/ P(t)dt
fiss P(tA) — P(tB) P(tA) — P(tB)

(4.24)

Dans la figure 4.4, les différents courbes des trois graphiques qui représentent le temps de fission
moyen Ty;ss en fonction de By/B,, sont toutes centrées au voisinage de la valeur By/B,, ~ 1. Ceci
montre que, quand By ~ B,, indépendamment de leur valeurs, la compétition entre les deux voies
de désexcitation est alors forte sur toute la cascade. Pour By < B,, la fusion domine donc si on
augmente By alors le temps de fission moyen 7y;5s augmente. Pour By > B, seuls les premiers
isotopes fisssionnent. Si By augmente, il y a de moins en moins d’isotopes qui fissionnent donc
Triss diminue.

De plus, on remarque dans le graphique supérieur droit la grande sensibilité du modele par
rapport aux énergies d’excitation £ des isotopes de la cascade. En effet, le chevauchement des
courbes ne respecte pas 'ordre des valeurs de B,, : on s’attendrait plutot a observer la courbe
B,, = 6 MeV au dessus de la courbe B,, = 7 MeV. Ceci est du notamment a la modélisation de
I’énergie emportée par ’évaporation d’'un neutron a partir d'un isotope ¢ car elle conditionne la
valeur de I’énergie d’excitation E;,; de 'isotope suivant, voir équation (4.12).

Sur le graphique de la partie inférieure gauche on observe I'influence du coefficient de friction
qui intervient via le coefficient de Kramers-Strutinsky dans la largeur de fission I'f;, voir I’équation
(4.18). Plus 8 est important, plus cette largeur de fission I'f; est petite et donc plus le temps
de fission moyen 7y;s est important car alors la fission est moins favorisée. Cette influence est
uniquement visible pour Bf < B, c¢’est-a-dire quand la fission reste prédominante.

Le graphique de la partie inférieure droite met en évidence pour Bf > B,, donc quand
I’évaporation de neutron est majoritaire, I'influence de la densité de niveau a; sur d’évaporation de
neutron I',, ;, voir 'équation (4.15). Plus a; est important, plus la largeur d’évaporation de neutron
I',,; diminue. Or, de maniere générale, pour le cas de figure I';,; > I'¢; donc si I, ; diminue alors
la compétition entre les deux modes de désexcitation est favorisée d’oli une augmentation de 7.

Multiplicité de neutrons de préscission et nombre d’événements normalisés

Une définition de la multiplicité de neutrons de préscission est donnée dans la référence [87].
Pour utiliser cette derniere, nous devons modifier les notations de [87] car dans ce chapitre le
premier isotope de la chaine est 'isotope 0. Avec la simple barriere on peut écrire :

dAP(t)  dPumpic(t) X dPs(t) g
= = 5 - § Ty Ps(). 4.2
dt dt dt L £.ala(?) (4.25)

s=0

Par intégration on a donc 1 — P(+o0) = > 2" ps avec p, = O+°° I'; s Ps(t)dt. La multiplicité de
neutrons de préscission est alors :

stmple 1 o P<+OO> Zz’rggxps . .

La multiplicité de neutrons de préscission Ngjmpe est inférieure a $,,4, (nombre maximal de neu-
trons évaporables par la chaine de désexcitation) car statistiquement les différentes cascades iso-
topiques n’aboutissent pas toutes jusqu’au dernier isotope, la fission ayant lieu dans ce cas au
niveau d’un isotope situé en amont.



4.3. COMPETITION ENTRE FISSION ET EVAPORATION DE NEUTRONS 67

En outre, par définition, le nombre d’événements normalisés plus longs que 10785 est
P(107"%s) — P(+00) _ P(107"s) — P(10~"s)

P(0) — P(+00) — P(107%%s) — P(10~4s)
Le choix du temps 1075 est motivé par les mesures effectuées au GANIL, voir partie 1.1.4. En

pratique, pour la résolution numérique, 0 est approximé par 10~*s et 10724s est une valeur pour
laquelle on retrouve les mémes résultats que pour t — +oo.

P(tyiss > 1071%s) =

(4.27)
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FIGURE 4.5: Multiplicité de neutrons de préscission Ngipmpe €t nombre d’événements normalisés
P(tiss > 107'8s) comme fonctions de B t/B. L’étude variationnelle est effectuée avec les mémes
valeurs de référence que figure 4.4.

Dans les quatre graphiques de la figure 4.5, on retrouve que la compétition entre la fission
thermique et I’évaporation de neutrons des différents isotopes de la cascade est la plus forte pour

Dans le graphique supérieur gauche de la figure 4.5, on remarque que la multiplicité de neutrons
de préscission Ngjmpre est supérieure quand 'énergie d’excitation du noyau composé Ej est de 80
MeV au lieu de 70 MeV. Ceci peut s’expliquer par le fait que la cascade isotopique comporte un
isotope supplémentaire avec £ = 80 MeV qu’avec 70 MeV, voir figure 4.3, et donc un nombre de
neutrons de préscission émis plus important. De plus le fait que de maniere générale I',,; > I'y;
permet de comprendre la valeur de la multiplicité de neutrons de préscission Ngjppie globalement
assez ¢levée pour ces deux énergies d’excitation.
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Le graphique supérieur droit met en évidence le fait que P(tpss > 107'%s), la probabilité
d’événements de fission supérieur & 107185, diminue quand I’énergie d’excitation du noyau composé
augmente, avec un maximum de probabilité d’événements pour By ~ B,, dans les deux cas.

Le graphique inférieur gauche illustre le fait que pour By < B, (cas ou le mode de fission
thermique est dominant) on retrouve l'influence du coefficient § : quand S augmente la fission,
méme si elle reste prépondérante, est moins favorisée donc P(t ;s > 107%s) est plus grande.

Le graphique inférieur droit confirme les modifications induites par le parametre de densité a;
pour By < B,, (cas ou le mode d’évaporation de neutrons est dominant) : plus a; augmente, plus
la largeur d’évaporation de neutron I',,; diminue et se rapproche de la valeur de la largeur fission
I't;. De ce fait, la compétition entre les deux principales voies de désexcitation est favorisée et
P(tpiss > 107'85) est plus importante.

Bilan sur I’évolution des grandeurs physiques pour By constante

L’évolution des grandeurs physiques, voir figures 4.4 et 4.5, est liée aux valeurs des barrieres
de fission By et d’évaporation B,,. Suivant les cas de figure, on observe trois régimes :

- B, > By : le mode de désexcitation dominant est la fission.

- B, ~ By : la compétition entre les deux modes fission et évaporation de neutrons est forte.

- B, < By : le mode de désexcitation dominant est I'évaporation de neutrons.

Dans le modele étudié quand B,, > By, la fission étant le mode de désexcitation dominant, la
globalité des noyaux fissionnent et peu de neutrons sont évaporés car seul le début de la chaine
de désexcitation est parcouru. La multiplicité de neutrons de préscission Ngmpe est alors faible
et le temps de fission moyen 7y;,s est donc petit. Si By augmente, le nombre d’isotopes mis en
jeu dans dans la chaine augmente donc I'évaporation de neutrons est de plus en plus importante
d’ott une multiplicité de neutrons de préscission Ngjy,pe ainsi qu'un temps de fission moyen 7y
croissants. On constate un comportement similaire pour P (¢ ;55 > 107185), le nombre d’événements
normalisés plus longs que 107185,

Pour B, ~ By : Tfiss > Tﬁss ~ 107%s. Le temps de fission moyen est beaucoup plus grand
que le temps de fission de Kramers, car il y a une forte compétition entre les deux modes de
désexcitation sur la totalité de la chaine. Il en va de méme pour Ngjmpie €t P(tfiss > 10718s).

Au contraire, pour B,, < By I'évaporation de neutrons est le mode de désexcitation principal.
Les événements de fission sont donc treés peu probables et 7y;55 redevient faible car seuls les premiers
isotopes peuvent fissionner apres avoir évaporé un petit nombre de neutrons, les noyaux ne sont
alors plus assez chauds pour fissionner. De ce fait, la multiplicité de neutrons de préscission Ngipmpie
diminue. P(ts;ss > 107'8s) diminue également pour les mémes raisons.

Avec le temps de fission moyen 7y;ss on peut mettre en évidence, quand B,, et By sont com-
parables, la grande sensibilité de cette modélisation par rapport a la barriere de fission By et par
rapport aux énergies d’excitation E des isotopes de la chaine. En particulier, pour une barriere
d’évaporation B, constante, un changement de la valeur de By modifie les critéres de fission et
joue sur I'aptitude a fissionner du dernier isotope. De plus, une modification de £ peut impliquer
un changement du nombre total d’isotopes de la chaine en changeant la valeur de s,,,,. Ce type
de comportement peut s’expliquer par le choix de conditions drastiques (de type Heaviside) pour
les possibilités de fission et d’évaporation des différents isotopes. Dans certains cas de figure cela
peut aboutir a des irrégularités non physiques, intrinseques a la simplicité du modele. Un traite-
ment numérique avec le programme Kewpie2 [19, 73] prenant en compte la fission et I’évaporation
de neutrons, de protons et de photons confirme ces considérations. Dans ce cadre plus général,
I’évolution des grandeurs physiques est plus lissée qu’avec notre modele.
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Le temps de fission moyen 7,55 et le nombre d’événements normalisés P(t ;s > 107'8s) sont
également sensibles au coefficient de friction réduit § quand la fission est le mode de désexcitation
dominant et au parametre de densité de niveau a; quand I’évaporation de neutrons est le mode de
désexcitation majoritaire. S et a; sont des parametres sensibles pour respectivement les largeurs
de fission I'y; et d’évaporation I',;. Si B augmente alors I'y; diminue et si a;, augmente alors
I',,; diminue également. La forte compétition entre fission et évaporation de neutrons pouvant se
traduire par I'y; ~ I'), ;, les variations de 3 et a; optimisent les valeurs des grandeurs physiques
quand les valeurs des deux types de barrieres I'y; et I',; sont similaires. Pour maximiser la
compétition entre ces deux types de désexcitation, il faut donc soit diminuer I',, ; quand ’évaporation
de neutrons est le mode de désexcitation dominant en augmentant a;, soit diminuer I's; quand la
fission est le mode de désexcitation majoritaire en augmentant (.

L’hypothese de barriere de fission By constante n’est pas physique car elle ne tient pas compte
de la structure des noyaux super-lourds. Avec les deux variantes du modele académique envisagé
dans la partie suivante, on considere les modifications induites par les corrections d’effets de
couches sur les grandeurs physiques.

4.4 Prise en compte des corrections de couches

Les corrections d’effets de couches sont pour les noyaux super-lourds qui vérifient Z > 110
I'unique source de stabilité car alors la barriere de fission du modele de la goutte liquide est
nulle. Avec ce type de noyaux, il est donc intéressant d’utiliser un modele académique incluant
ces corrections d’effets de couches. Pour ce faire, différentes appproches sont possibles. Dans cette
partie on utilise tout d’abord dans la partie 4.4.1 une approche intuitive puis ensuite dans la
partie 4.4.2 la prescription d’Ignatyuk.

4.4.1 Premiere approche intuitive pour les effets de couches

On détermine respectivement 1’énergie des isotopes £ et la largeur d’évaporation I',, ; a partir
des formules (4.12) et (4.15) du paragraphe précédent. La définition du parametre de densité de
niveau a; reste inchangée par rapport au cas de la barriere de fission By constante. On utilise donc
A;/8, A;/10 ou A;/12. Cette premiere approche consiste a envisager, méme si elle est critiquable
[19, 71, 75], une barriére de fission de la forme

BF"F ~ |AE el e/, (4.28)

avec |AFgpen|; 1a valeur absolue de la correction d’origine quantique de 1’énergie de couche de 'iso-
tope 7, définie a partir de I’état fondamental. |A Eyep|; est supposée dans cette étude étre la méme
pour tous les isotopes ¢ de la chaine. De plus, E est I'énergie d’excitation de 'isotope 7 par rapport
au niveau fondamental et E; = 18,5 MeV 1'énergie de <« damping >, parametre caractéristique
obtenu par extrapolation a partir des noyaux stables. En outre, comme les corrections d’énergie
de couches sont négatives il y a un effet stabilisateur par abaissement des niveaux d’énergie, prin-
cipalement au niveau du fondamental, ce qui implique une augmentation de la barriere de fission.
Pour accéder a la largeur de fission I'; incluant le facteur correctif de Kramers-Strutinsky, il faut
remplacer By par 'expression (4.18) dans la formule littérale de la largeur de fission.

Avec cette modélisation, il est difficile d’évaluer les valeurs absolues des corrections d’énergie
de couches |AFEgpen|; pour lesquelles la compétition entre fission et évaporation de neutrons est
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maximale. Avec la définition de la barriere de fission (4.28), Bffw varie en fonction de l'isotope
i de la cascade de désexcitation. De maniere générale avec |AFEspen|; ~ 10 MeV (valeur moyenne
issue des tables de Koura), les barrieres de fission B}qu sont inférieures a B, = 6 MeV, sauf
éventuellement en fin de chaine de désexcitation. La compétition entre la fission et I’évaporation
de neutrons est donc moins forte et c’est la fission qui est favorisée. Ceci induit une diminution plus
importante des populations en fonction du temps par rapport au cas de la barriere de fission By
constante car le canal de désexcitation par fission prédomine sur toute la cascade de désexcitation.

Dans la figure 4.6 les populations P;(t) et la population totale P(t) sont déterminées par
(4.21) et (4.22). On constate alors une décroissance beaucoup plus rapide des populations en
comparaison avec le cas By constante. Le graphique supérieur de cette figure peut étre comparé
au graphique £ = 70 MeV de la figure 4.3. Dans le cas présent, la décroissance des populations
étant importante, on ne peut visualiser ’évolution que des populations jusqu’a l'isotope 3. Au
dela il faut regarder le graphique inférieur de la figure 4.6 sur lequel on visualise une décroissance
de la population totale vers 107'%s. La probabilité de survie P,,,, est donc faible.
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FIGURE 4.6: Populations P;(t) et population totale P(t) = P, (t) en fonction du temps ¢ pour
deux échelles différentes afin d’observer tous les isotopes de la cascade avec |AEgpen|=10 MeV.
Pour les deux graphiques on a Ef = 70 MeV, 5/(2w) = 0.66, Ay = 308, a; = A;/10, hw =1 MeV
et B, =6 MeV. On remarque que P, est faible mais pas nulle.

Dans les différents graphiques de la figure 4.7 on remarque que la compétition entre la fission
et 'évaporation de neutrons est maximale (les grandeurs physiques étant alors maximales) pour
des énergies de correction de couches |AEgpe;| ~ 10 MeV. On retrouve la valeur moyenne des
corrections d’énergies de couches de la table de Koura. Dans cette étude variationnelle du temps
de fission moyen 7y, les valeurs sont tres inférieures a celles observées sur la figure 4.4 pour les trois
graphiques qui concernent le temps de fission moyen 7y;55. De plus, les courbes de ces graphiques
ne sont pas forcément centrées car la coordonnée horizontale est |AEgey| et pas |AEpen|/Bn.-
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Dans le graphique supérieur gauche de la figure 4.7, on retrouve le fait que le temps de fission
moyen Ty;ss diminue quand I'énergie d’excitation du noyau composé Ej augmente.

Avec le graphique supérieur droit de cette méme figure, on constate que le temps de fission
moyen 7y;ss augmente quand B, diminue car alors le processus d’évaporation de neutrons est moins
prépondérant devant le processus de fission : la compétition entre ces deux canaux de désexcitation
redevient donc plus forte car alors la prédominance du canal de fission est contrebalancée.

De maniere générale on peut montrer que I's; diminue quand 3 augmente et que I'y; augmente
quand a; diminue. De plus, une compétition forte entre les deux canaux de désexcitation peut se
traduire par I';,; >~ I's;. On peut utiliser ces considérations pour comparer les deux graphiques
inférieurs de la figure 4.7 avec leurs homologues de la figure 4.4. Sur les graphiques de gauche
des deux figures on constate que la compétition entre les deux canaux de désexcitation augmente
quand 3 augmente, de ce fait 74,55 est plus grand. En revanche pour les graphiques de droite de ces
deux figures I'influence du parametre de densité de niveau a; est inversée : dans le cas présent on
peut vérifier que, en général I', ; < I'y;, contrairement au cas By constante pour lequel de maniere
générale I',,; > I'y,;. Avec la prise en compte des corrections d’effets de couches, la compétition
entre fission et évaporation de neutrons est alors favorisée quand I',,; augmente c’est-a-dire quand
a; décroit.
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FIGURE 4.7: Temps de fission moyen 7,5 comme fonction de |AEg,ey|. L'étude variationnelle est
effectuée autour des valeurs types Ay = 308, Ej = 70 MeV, 5/(2w) = 0.66, a; = A;/10, hw = 1
MeV et B,, =6 MeV.
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Dans le graphique supérieur gauche de la figure 4.8, on confirme que la multiplicité de neutrons
de préscission Ngmpye augmente avec I'énergie d’excitation du premier isotope Ej et que par la
méme occasion dans le graphique supérieur droit le nombre d’événements normalisés supérieurs a
1075 c’est-a-dire P(tf;5s > 107'85) diminue (comme dans le cas By constante : voir les graphiques
supérieurs gauche et droit de la figure 4.5).

De plus on peut comparer les graphiques inférieurs gauche et droit des figures 4.5 et 4.8. On
retrouve alors pour le graphique de gauche le fait qu'une augmentation de 3, le coefficient de
friction réduit, favorise la forte compétition entre la fission et I’évaporation de neutrons (comme
dans le cas By constante). De plus, dans le graphique de droite, une diminution du parametre
de densité de niveau a; optimise la compétition entre la fission et 1’évaporation de neutrons (con-
trairement au cas By constante). En effet, pour le modele académique de cette partie de maniere
générale I', ; <T'y; (contrairement au cas By constante ou généralement I',; > I';;). Il faut donc
ici augmenter I'), ; en diminuant a;.

En outre, en accord avec I’évolution des populations dont la décroissance est rapide, voir figure
4.6, on retrouve le fait que la multiplicité de neutrons de préscission Ngjmpe est beaucoup plus
petite que dans le cas By constante.
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FIGURE 4.8: Multiplicité de neutrons de préscission Ngimpe €t nombre d’événements normalisés
P(tiss > 107%s) comme fonctions de |AFEge|. L’étude variationnelle est réalisée autour des
valeurs types Ay = 308, Ej =70 MeV, /(2w) = 0.66, a; = A;/10, hiw = 1 MeV et B, = 6 MeV.
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L’étude de ce modele académique, ou les corrections d’effets de couches sont prises en compte
de manieére simple, permet de confirmer les tendances générales d’évolution déja présentes dans
le modele académique avec barriere de fission constante. Cependant, les valeurs des grandeurs
physiques Triss, Noimple €t P(tfiss > 107185) représentées dans les figures 4.7 et 4.8 sont inférieures
aux valeurs attendues pour avoir compatibilité avec les résultats des mesures effectuées au GANIL
par blocage cristallin. En particulier, la valeur de P(tsss > 107'%s) est inférieure de plusieurs
ordres de grandeurs aux 10% mesurés.

La modélisation de la barriere de fission BSH E définie par 'équation (4.28) constitue une ap-
proximation importante valide si Ef > By et si Ef > |AEgqu| [19], ce qui n’est pas réaliste pour
les derniers isotopes de la chaine de désexcitation.

En outre, on doit tenir compte des changements induits par les corrections d’effets de couches
sur le parametre de densité de niveau a; et sur les énergies d’excitation £ des différents isotopes
1 de la cascade de désexcitation. Ces modifications nécessitent une redéfinition des largeurs de
fission I'¢; et d’évaporation de neutrons I',, ;. C’est pourquoi nous utilisons dans la partie suivante
une approche plus élaborée pour tenir compte des corrections d’effets de couches : la prescription
d’Ignatyuk.

4.4.2 Traitement de type Ignatyuk des effets de couches

Cette approche consiste a considérer que BSH B~ ~ |AFEgpenl; car la correction d’effets de couches
est définie par rapport a ’état fondamental. Par contre, 'abaissement en énergie du aux effets de
couches au niveau du point selle est négligé. On considere donc qu’au point selle |AFEgen|; = 0.
Avec ce type de modélisation, le parametre de densité de niveau a;, ’énergie des isotopes E}, les
largeurs d’évaporation I'y, ; et de fission I'y; sont modifiés par ces corrections d’effets de couches.

En effet, le parametre de densité de niveau des noyaux super-lourds est soumis a des irrégularités
a cause des structures de couches nucléaires [19]. Une description traduisant le comportement
physique de ce parametre doit inclure cette dépendance d’ou le choix de la définition d’Ignatyuk
pour laquelle

dE)) = a; [1 — (1 — e Bi/Ea) [8Bsneuls Sfel”’] , (4.29)
L
avec a; le parametre de densité de niveau du paragraphe précédent. Au contraire, on considere
que le parametre de densité de niveau au point selle n’est pas modifié et vérifie donc ai? = a;.

L’énergie d’excitation de l'isotope i, définie a partir du niveau fondamental, est alors

Ef, = Ef - (Bm + 24/ E* /afd> : (4.30)

De plus, la largeur d’évaporation I'), ; prend la forme

max

2/14' /E’ d
I,,= Oinw(€)€ mar— e ad?))de, 4.31
= i [ e el (131

7 ’L

avec €' = EF — B, ;. A partir de l'expression (4.31), on peut ainsi déterminer une formule
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analytique pour I',; en utilisant la méme méthode que dans le paragraphe précédent.

gd\1/4 *5/4 2 mazx max
r . — 20 (ag") / Ei™ o Ry QW—Q\/ade;‘ €' + By, €;
CO mh3 gd _maz\1/4 ¢ d a d
(a6 =5/A+Jaler T 1[4+ alL e

(4.32)

On procede de méme pour la largeur de fission corrigée I'¢; incluant le facteur de correction de
Kramers-Strutinsky en utilisant T, = \/E}/a$?, la température de l'isotope i au point selle. Par
analogie avec I’équation (4.18) on obtient alors la forme intégrale définie par 1’équation (4.33)

th 1 /E:_lAEshellli d
r i = s E,l* - AES ell|ls — €, le de. 4.33
5 T; 2mhpgq( B} agd) 0 paal | et ) ( )

At

En estimant ensuite une forme approchée de I'intégrale (4.33) la largeur de fission corrigée I'y; est
alors

o2V @i (B; —|AEpen i) =2v/af B} (4.34)

Wi (£;)* (af)!/
Ff,i — s

21 (B — | AEgpenli)3 (as?)1/4

On peut ainsi, a partir des nouvelles définitions des largeurs d’évaporation I',,; (4.32) et de fis-
sion I'y; (4.34), déterminer les populations P;(¢) et la population totale P(t). Comme pour les
autres exemples académiques, les définitions des populations en fonction des largeurs I';, ; et T'y;
restent les mémes. On utilise donc & nouveau les expressions (4.21) et (4.22). Ce sont les largeurs
d’évaporation de neutrons I',; et de fission I'y; qui influent véritablement sur la dynamique de
désexcitation de la cascade isotopique.

De ce fait, les nouvelles formes analytiques de ces largeurs étant tres différentes de celles des
modeles académiques précédents, les changements sur les populations et donc sur les grandeurs
physiques sont donc a priori importants. En particulier, avec les mémes valeurs usuelles que celles
utilisées dans les modeles académiques précédents, on constate que le plus souvent I'y; > I',, ;. De
plus, cette inégalité est plus marquée que dans le cas du modele intuitif de la partie 4.4.1. La
fission thermique est donc a priori un mode de désexcitation encore plus marqué par rapport a
I’évaporation de neutrons car la compétition entre fission thermique et évaporation de neutrons
est moins forte.

En comparant la figure 4.6 et la figure 4.9 on constate en effet la décroissance beaucoup plus
rapide des populations en comparaison avec la premiere approche intuitive pour considérer les
corrections d’effets de couches. Cette différence de comportement est surtout visible pour la queue
de la cascade de désexcitation. Dans le cas présent, au dela de 10~'s la population totale est
quasi nulle (contrairement au cas de la figure 4.6) la probabilité de survie Pj,., est alors nulle.
La fission est donc un mode de désexcitation encore plus favorisé que dans le modele académique
intuitif de la partie 4.4.1.

Avec cette prescription d’Ignatyuk, contrairement au modele académique de la partie 4.4.1, le
parametre de densité de niveau, les énergies d’excitation et les largeurs d’évaporation de neutrons
et de fission sont modifiées par les corrections d’effets de couches. Les évolutions des popula-
tions et des grandeurs physiques associées sont donc tres différentes de celles des autres modeles
académiques.
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FIGURE 4.9: Populations P;(t) et population totale P(t) = P, (t) en fonction du temps ¢ pour
deux échelles différentes afin d’observer tous les isotopes de la cascade avec |AEguu|=10 MeV.
Par analogie, on utilise les mémes parametres que dans la figure 4.6.

Quand on regarde ’ensemble des graphiques de la figure 4.10 on remarque la présence de pics
centrés sur B;?f{E ~ |AEgeuli ~ Bn; = 6 MeV. Quand ils existent, ces pics traduisent la forte

compétition entre la fission thermique et I’évaporation de neutrons.

Pour comparer les deux approches avec corrections d’effets de couches envisagées dans ce
chapitre, on peut regarder la figure 4.7 et la figure 4.10. Ces deux figures représentent une étude

variationnelle du temps de fission moyen 75, en fonction des corrections d’effets de couches
|AEhen)-

Dans les différentes graphiques de ces deux figures, on retrouve les mémes criteres d’évolution
pour 'énergie d’excitation £, la barriere d’évaporation de neutrons B, ;, le coefficient de friction
réduit S et le parametre de densité de niveau a;.

La principale différence (excepté les valeurs globalement plus petites des grandeurs physiques)
est que dans la figure 4.10 I'évolution générale du temps de fission moyen 74,5 en fonction de
|AEpen| en dehors des pics est monotone croissante, contrairement a la figure 4.7 ou des paliers
sont visibles.

Quand on compare la figure 4.8 et la figure 4.11, on constate que les conclusions issues
des études variationnelles précédentes restent valides pour 1'énergie d’excitation E}, la barriere
d’évaporation de neutrons B, ;, le coefficient de friction réduit 3 ainsi que le parametre de densité
de niveau a;.
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FIGURE 4.10: Temps de fission moyen 7,5, en fonction de |A Egpep| selon la prescription d’Ignatyuk.
L’étude variationnelle est effectuée autour des valeurs caractéristiques £ = 7T0MeV, B,, = 6MeV,
Smaz = 8, hw = 1MeV | f/(2w) = 0.66, Ay = 308 et a; = A;/10. Par analogie, on conserve les
mémes parametres que dans la figure 4.7.

Dans le graphique supérieur gauche de la figure 4.11 on remarque que la multiplicité de neutrons
de préscission Ngjpmpie est d’autant plus grande que I'énergie d’excitation £; du noyau composé est
petite. En outre, dans ce modele académique, les largeurs d’évaporation I',, ; et de fission thermique
I'¢,; sont modifiées fortement par les corrections d’effets de couches |AEgpep|.

En outre, le canal d’évaporation de neutrons est de plus en plus défavorisé par rapport au
canal de fission thermique avec 'augmentation de |AFgpe|. Plus précisément on peut montrer
que I',; décroit plus vite que I'y; en fonction de |AEg,e|. De ce fait, la multiplicité de neutrons
de préscission Ngjmpe décroit avec I'augmentation de |AEgpeu|. Les faibles valeurs de Ngjppie sont

reliées aux cascades de désexcitation courtes, le nombre de neutrons émis avant fission est donc
faible.

Dans les autres graphiques de la figure 4.11, on constate une évolution globalement croissante
P(tiss > 10718s) du nombre normalisé d’événements de fission au dela de 10185 avec I’augmention
de [AEpen| jusqu’a [AEge;| = 8 MeV avant de marquer un palier.
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FIGURE 4.11: Multiplicité de neutrons de préscission N et nombre d’événements normalisés plus
longs que 107*8s P(ts;ss > 107'85) comme fonctions de |AEg,qy| selon la prescription d’Ignatyuk.
L’étude variationnelle est effectuée autour des valeurs usuelles Ej = 7T0MeV, B,, = 6MeV, Sy =
8, hw = 1MeV, B/(2w) = 0.66, Ay = 308 et a; = A;/10. Par analogie, on conserve les mémes
parametres que dans la figure 4.8.

Bilan sur I’évolution des grandeurs physiques avec corrections d’effets de couches

La décroissance des populations est plus importante dans le cas de la prescription d’Ignatyuk
car dans ce cas, la désexcitation par fission thermique est encore plus favorisée qu’avec la premiere
approche intuitive. De ce fait, la compétition entre la fission et ’évaporation de neutrons est donc
moins forte pour la prescription d’Ignatyuk que pour 'approche intuitive.

Dans les deux modeles, quand 'énergie d’excitation du noyau composé E; augmente, le temps
de fission moyen 7y;s et le nombre d’événements normalisés supérieurs a 10~'® autrement dit
P(tgiss > 10_185) diminuent, contrairement a la multiplicité de préscission Ngj,pie. La compétition
entre la fission thermique et 1’évaporation de neutrons est favorisée quand les largeurs de fission
et d’évaporation de neutrons sont proches.

De maniere générale, pour les deux modeles avec corrections d’effets de couches, la largeur de
fission est plus grande que la largeur d’évaporation de neutrons. Pour retrouver cette situation
optimale avec I'approche intuitive et la prescription d’Ignatyuk il faut que le parametre de friction
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réduite augmente (ce qui fait diminuer la largeur de fission) et (ou) que le parametre de densité
de niveau diminue (ce qui fait augmenter la largeur d’évaporation de neutrons).

Ainsi, 'influence des définitions des largeurs d’évaporation de neutrons et de largeurs de fission
est tres grande car ces largeurs entrent dans la définition des populations des noyaux. Un point clé
commun aux modeles académiques qui considerent la compétition entre la fission thermique (avec
barriere de fission constante ou avec correction d’effets de couches) et I’évaporation de neutrons
consiste a déterminer les probabilités d’existence des différents noyaux en fonction du temps a
partir desquelles on peut accéder aux grandeurs physiques. Plus la compétition entre la fission
thermique et I’évaporation de neutrons est grande et plus les largeurs associées sont proches. Les
variations des différents parametres qui optimisent cette compétition sont toutes en accord avec
ce constat.

4.5 Conclusion

Quand on considere la compétition entre la fission thermique et I’évaporation de neutrons, pour
avoir 10 % d’événements de fission supérieurs a 10~ s vers la fin de la cascade, la compétition
entre le canal de fission et les autres canaux de désexcitation doit étre forte pour chaque noyau
de cette cascade. Quand on remonte la cascade de désexcitation (et donc quand on remonte le
temps), ce pourcentage d’événements de fission est d’autant plus grand que l'isotope considéré est
proche du noyau composé initial. De ce fait, le pourcentage le plus élevé associé au noyau composé
super-lourd doit étre important.

Afin d’estimer 'ordre de grandeur des corrections d’effets de couches pour le noyau com-
posé dans le cadre de la simple barriere, on considere pour le noyau composé un pourcentage
d’événements de fission au pire supérieur ou égal a 10 %, et une énergie d’excitation du noyau
composé de 'ordre de 70 MeV. On estime alors a partir du rapport de la largeur de fission sur la
largeur totale I'yo /(' + 'y o) = 10% (ou encore a partir de barriere de fission définie par (4.28)
estimée alors & 1 MeV) que la correction d’énergie de couches pour le noyau composé est de ’ordre
de 50 MeV. Sur cet exemple on illustre donc le fait que la modélisation avec la simple barriere de
la chaine isotopique de désexcitation ne fonctionne pas car les valeurs des corrections d’effets de
couches associées sont trop grandes pour étre réalistes.

Parmi les autres pistes d’investigation possibles on peut s’intéresser a l’adjonction d’une
barriere isomérique a la simple barriere de potentiel. Les états isomériques associés, de formes
tres différentes de la forme du noyau dans 1’état fondamental, présentent une certaine stabilité qui
se traduit par une augmentation de la durée de vie du noyau et donc de son temps de fission moyen.
De ce fait, 'existence d’un puits de potentiel isomérique, voir partie 1.1.2, peut étre un élément
d’explication des temps de fission longs. Dans le chapitre 5, on reprend donc I'étude des mémes
modeles académiques que dans ce chapitre 4 en considérant une double barriere de potentiel.



Chapitre 5

Noyau super-lourd et double barriere de
fission

Le but de ce chapitre consite a regarder si un potentiel avec une structure isomérique permet
d’expliquer les mesures réalisées au GANIL par blocage cristallin. On ne connait pas la forme
de la barriere de noyaux super-lourds. Cependant, le choix de la double barriere est motivé par
I’analogie que 1'on peut faire avec la double barriere des actinides. De plus, certaines études
prédisent I'existence de cette double barriere pour les noyaux super-lourds [27], voir partie 1.1.2.
On s’intéresse donc aux observables qui sont dans ce cadre la probabilité de survie des résidus de
fission et le pourcentage d’événements de temps de fission supérieur & 10718s. On étudie aussi les
grandeurs physiques comme le temps de fission moyen et la multiplicité de neutrons de préscission.

Dans ce chapitre on réutilise donc les mémes modeles académiques que dans le chapitre 4 afin
d’étudier les modifications induites par la présence d’une barriere isomérique sur les grandeurs
physiques. Le potentiel V(g) présente donc une double barriere, voir figure 5.1.

A V(q) Selle (a) Selle (b)

isomérique

Puits (b)
isomérique

N _q
_ \

Puits (a) Scission

FIGURE 5.1: Le potentiel V(q) est constitué de deux puits de potentiel : le puits de potentiel (a)
de I’état fondamental déja présent dans ’étude du chapitre 4 et un puits de potentiel isomérique
(b). Comme dans le chapitre 4, la coordonnée collective ¢ est associée a la déformation du noyau
composé. Les coordonnées collectives associées aux deux puits du potentiel V' sont notées gyq, €t
qqar €t les coordonnées collectives qui correspondent aux deux selles du potentiel sont dénommées
(sda €t gsqp- De plus, le point de scission, de coordonnée ¢, est encore considéré comme une frontiere
absorbante car, une fois ce point franchi, le noyau ne peut étre reformé.

Dans un premier temps on revient sur le modele académique ou la fission thermique est le seul

mode de désexcitation afin d’étudier I'influence de la forme de la barriere isomérique sur le temps
de fission moyen 7y;ss et ainsi déterminer la forme qui maximise les écarts avec la simple barriere.

79
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Dans un second temps on réutilise le modele académique caractérisant la compétition entre les
deux modes principaux de désexcitation, la fission thermique et I’évaporation de neutrons, dans
le cas de figure ot la barriere de fission By est considérée comme constante.

Dans un troisieme temps, on revient sur le modele académique incluant les corrections d’énergie
de couches dans le traitement de la compétition entre la fission thermique et ’évaporation de
neutrons. On envisage alors deux variantes pour modéliser les corrections d’effets de couches : une
approche intuitive et la prescription d’Ignatyuk.

5.1 La fission comme seule voie de désexcitation

5.1.1 Modélisation du probleme et probabilités d’existence

Dans le chapitre 4, on a mis en avant le fait que le temps de relaxation nucléaire peut étre
écarté de I’étude de la fusion-fission des noyaux super-lourds, voir partie 4.2. En effet, les noyaux
composés ainsi formés sont déja thermalisés. Cependant dans cette partie, on conserve le temps de
relaxation nucléaire 7, afin de déterminer des relations de portée plus générale que le cas particulier
de la fusion-fission des noyaux super-lourds.

Systéme d’équations

La probabilité d’existence du noyau composé P(t) est définie par P(t) = P,(t) + Py(t) avec
P,(t) et Py(t) les probabilités d’existence dans I’état fondamental (a) et dans ’état isomérique (b).
Pour calculer P,(t) et P,(t) on utilise le systeme d’équations (5.1) :

o) DO+ Tiu P,
D L) ~ T + T BE). (5.1)
Les largeurs de transitions I'y_,, et I'y_,ez¢ sOnt supposées constantes contrairement a 'y (%) :
Lamsp(t) = h(t = 7:)Lamse, (5.2)

forme qui permet de prendre en compte de maniere simple le temps de relaxation nucléaire 7,
avec h la distribution de Heaviside et I',_,;, la largeur asymptotique associée au régime station-
naire. Par analogie avec la simple barriere on peut définir des expressions du temps de relaxation
nucléaire 7, valables dans les cas particuliers des régimes sur-amorti 5/(2w,q) >> 1 et sous-
amorti 8/(2w,q) << 1. On utilise alors I'équation (4.9) avec cette fois-ci B, la hauteur de la
premiere barriere de I'énergie potentielle pour aller de 1’état fondamental métastable (a) vers I’état
isomérique (b). Dans la suite de ce chapitre, on considere que wyq = wyg = w.

Probabilités d’existence

Avec les conditions initiales P,(0) = 1, P,(0) = 0, (5.1) et (5.2) on a ¥Vt € [0,7,] : Pu(t) = 1,
Py(t) = 0. Pour résoudre le probleme on utilise la correspondance biunivoque entre la transformée
de Laplace P; et la probabilité de présence P;(t), avec i €{a; b}, de chaque isotope de la chaine de
désexcitation. De ce fait, en utilisant la transformée de Laplace, on trouve P, et P,. Finalement,
avec la transformée de Laplace inverse on obtient :

Pt)=1+h(t—1) [e‘g(t_”‘) (cosh [%(t - T,,)] ~ T sinh [%(t - TT)D - 1] L (5.3)

(07



5.1. LA FISSION COMME SEULE VOIE DE DESEXCITATION 81

2 «
Py(t) = Zh(t — 7.)Tasspe™ 50=™)sinh [5@ - m} , (5.4)
Q@
avec

a = \/ﬁ2 - 4Fa—>brb—>ext7 6 = Fa—)b + Fb—)a + Fb—)eazt et Y= Fa—)b - Fb—)a - Fb—)emt-

Dans le cas particulier de la fusion-fission des noyaux super-lourds, on peut considérer que
mSHE ~ () d’ot -

P,(t) = et (cosh [%t] - %sinh [%tD : (5.5)
2
Py(t) = aP(Hbe—%fs,mh [%t} . (5.6)

A partir des probabilités d’existence, c’est-a-dire des populations, on peut alors accéder au
temps de fission moyen 7.

5.1.2 Temps de fission moyen
Estimation du temps de fission moyen 74,5, pour la double barriere

La probabilité d’existence du noyau composé, depuis la coordonnée initiale ¢; jusqu’au point
selle qsqp est définie par P(t; sap, @) = Pu(t; @sdas i) + Po(t; @sap, Gsda ), avec P, et P, respectivement
les probabilités de présence dans le puits a et dans le puits b. Par analogie avec (4.6) le temps de
fission peut étre défini par :

Tfiss = MFPT|q; — qs) = NLRT[q; = qsap) + Tsdp—s (5.7)

avec Tsap—ss le temps du point selle gq4, au point de scission ¢s. En outre, a partir de (4.7), (5.3) et
(5.4) on aboutit a

1 r a r ex
NLRT[q; — qsap] = 77 + <1 ba Tl t) : (5.8)
Fb—)ear:t Fa—)b

Ensuite avec (5.7) on trouve :

(1 + Fb—>a + Fb—>ext

Fa_>b > —f- Tsdb—ss- (59)

fiss T Fb—>ext
Dans le cas particulier de la fusion-fission des noyaux super-lourds, on peut écarter le temps
de relaxa- tion nucléaire 7,.. Le domaine de validité de cette équation (5.9) correspond a une
température T" plus petite que les barrieres B, .y, By_.q €t By_.cp ainsi qu’une friction moyenne ou
importante. En effet, dans ce cadre, les différentes largeurs correspondent a des largeurs de type
Kramers, voir partie 4.2.

La différence de temps de fission moyen la plus grande entre la barriere double et la barriere
simple est obtenue pour le cas particulier ou toutes les barrieres sont identiques d’ou :

Ba—>b = Bb—)a = Bb—>e:ct < Fa—>b = 1ﬂb—)a = Fb—>e:ct- (510)

La double barriere de potentiel est dans ce cas symétrique et correspond au potentiel 2.a de la
figure 5.2. Pour tous les autres potentiels de cette méme figure 5.2 cette différence est moindre, le
rapport (5.11) est compris entre 1 et 3. En effet, en considérant les différentes formules définissant
Triss €6 NLRT pour la simple et la double barriere, on peut écrire les encadrements suivants :

| < Ttiss(double) < NLRT (double) < NLRT (double (2.a))
T Triss(simple) = NLRT (simple) —  NLRT(simple)

<3, (5.11)
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avec par hypothese 797 ~ ( et des temps de descente identiques pour les cas double et simple

barriere donc Ty4_ys = Tsap—s. De plus, Tpss(double), Triss(simple), NLRT (double), N LRT (simple)
sont définis respectivement par les équations (5.9), (4.11), (5.8) et (4.9). La borne supérieure 3 du

rapport (5.11) est obtenue a la limite 744 _,s = Tsgps — 0.

V/T V/T V/T V/T
\ 2.a AN 2.b 4/ Ggga 2.c 2.d
Y/\\//\\ Q/dia \ \
: \— 0d/dgda i \— 0d/0gda
V/T V/T V/T V/T
2.e \ | A 2 f 2.9 2.h

d/dgda

£\ /\
\ /\ AN q/qua
< q/qua \\/ \ q/qua

< v

FiGURE 5.2: Différents types de barrieres isomériques. En particulier, on remarque la double
barriere symétrique (2.a) qui maximise les différences entre la double barriere et la simple barriere
de potentiel.

De maniere générale, il y a maximisation des effets entre la simple et la double barriere quand
les puits et les selles du potentiel sont symétriques. Ce constat reste vrai pour un nombre variable
de barriéres de potentiel comme par exemple la triple barriere de potentiel. Par la méme méthode
que celle utilisée avec la double barriere, on peut montrer que le rapport maximal du temps de
fission moyen 7¢;5s de la triple barriere symétrique par la simple barriere est de 6. Dans toutes les
autres barrieres triples, ce rapport est inférieur. On a alors, dans les mémes conditions que précé-
demment, I’encadrement suivant :

isst ) l
1< Lﬂpe) < 6, (5.12)
Ttiss(simple)

Dans le cas de la fusion-fission des noyaux super-lourds, avec les valeurs usuelles /(2w) = 1.5
et T/B =0.5,ona NLRT[q; — qsqa) = 3/1“;( ~ 3.107%%s. De ce fait, le temps de descente du point
selle gsqp associé a I'état isomérique jusqu’au point de scission g; (méme s’il peut étre grand dans
le cas des noyaux super-lourds) ne permet pas a lui seul de comprendre 'existence de temps de
fission de l'ordre de 107*®s. Les doubles barrieres (ou mémes les triples car pour la triple barriere
symétrique NLRT[q — qsa) = 6/T'5F ~ 6.107%s) ne permettent donc pas de comprendre dans
le cadre de la fission comme seule source de désexcitation les temps de fission déterminés au
GANIL par blocage cristallin. Il faut donc impérativement tenir compte de la compétition avec
I’évaporation de neutrons.

Dans la gamme d’énergie d’excitation envisagée (E§ < 100 MeV pour le noyau composé super-
lourd), on peut maintenant étudier I'influence des deux principaux processus de désexcitation :
I’évaporation de neutrons sur la dynamique de désexcitation du systeme. De plus, afin de maximiser
les différences entre la double et la simple barriere, on étudie donc dans la majeure partie de la
suite du chapitre une double barriere symétrique du type 2.a de la figure 5.2.
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5.2 Deésexcitation par fission et évaporation de neutrons

5.2.1 Modélisation du probleme et populations

Modélisation du probleme et exemples académiques étudiés

neutrons

T
po= |
i |
ba |
’J\;f
-

n €0 -0 o~
A, 2 npy’ %N
~A B X
=z & répulsion
5 £ coulombienne
— b=
w =) . - o
= = 1> isoméres de fission
[ == -
1] I
e e
o A1
Q- - . v
\ Variable collective g
S<I="~-~~ fission spontanée \ o
/
(a) \ scission

Formes du noyau \

FiGURE 5.3: Exemple de la double barriere de fission. L’état fondamental est associé au puits
(a) et le puits isomérique correspond au puits (b). Les neutons de préscission et de postscission
désexcitent le systeme respectivement avant et apres le point de scission. Dans cette étude on
s'intéresse uniquement a la compétition entre la fisssion thermique et la désexcitation due aux
neutrons de préscission. Le potentiel V est une fonction de la variable collective q représentant la
déformation du noyau. Figure adaptée de la référence [7].

Dans cette partie du chapitre, on étudie I’évolution dynamique du noyau composé quand il y a
compétition entre la fission thermique et ’évaporation de neutrons. Par analogie avec le chapitre
4, on envisage l'existence d’une chaine d’isotopes qui émettent successivement un neutron avant
la fission éventuelle du dernier des isotopes de la chalne. Afin d’étudier 'influence de la forme de
la barriere de fission sur la dynamique, on considere une double barriere de fission. On considere
que la barriere d’évaporation de neutron ne varie pas et quelle est indépendante de l'isotope. Afin
d’accéder aux grandeurs physiques, on suppose dans un premier temps que la barriere de fission est
constante avant de prendre en compte dans un deuxieme temps les corrections d’effets de couches.

Afin de comparer les cas simple et double barrieres, les conditions initiales sont les mémes
que pour la simple barriere, voir partie 4.3.2. Les seuls changements concernent les conditions
initiales sur les populations. Pour la simple barriere de fission : Py(t = 0) = 1 et Ps(t =0) =0
avec 0 < s < Syqq. Pour la double barriere de fission : Py(t = 0) = Poy(t = 0) + Poa(t = 0) = 1 avec
Poa(t=0) =1, Pp(t =0) = Ps(t =0) = 0 avec 0 < $ < Spqq, CAr ON SUPpOSe que, contrairement
a l'état fondamental (a), I'état isomérique (b) du noyau composé n’est pas initialement peuplé.

Populations, équations de Bateman et transformée de Laplace

Les populations correspondent a la répartition des isotopes en fonction du temps. Pour la
double barriere, la population de 'isotope 4 est maintenant P;(t) = Pi,(t) + Pyp(t), avec Py, et Py
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respectivement la population de I’état fondamental (a) et la population de I'état isomérique (b)
associées a l'isotope ¢. En outre, on suppose que I';, ;o = I',, i = ', ;. La population totale est alors

smax

P(t) = Pdauble(t) = Z R(t) (513>

Pour calculer Py,(t) et Py (t) on utilise les équations de Bateman

d Py, (t
;t( ) = _(Fa—>b,0 + Fn70)P0a(t) + Fb_m,op()b(if)7
dPoy(t
;z;( ) _ Lossb.0P0a(t) — Tosa0 + Lo+ Tino) Po(t), (5.14)

et pour calculer P;,(t) et Py(t) on s’appuie sur

dP,,(t
®) = DniciPio1a(t) + TosaiPin(t) — (Tasspi + i) Pia(2),
d}gzt(t)
Zibt Lhic1Pic1p(t) + Doy i Pia(t) — (Dysai + Tri 4+ Do) P (). (5.15)

Enfin, pour la population du dernier isotope I'), 5, .. = 0 car ce dernier ne peut plus évaporer de
neutron et sa fission est possible uniquement si B,, > By.

dP,

% - Fn,smam—lpsmw—la + Fb—m,smw Psmamb - Fa—)b,smm Psmwa
dP mazb )
th 4 - Fn7smaI71PSmazflb + Fa‘)bysmaz Psmaza - (Fb‘)a’smaz + Ff’smaz + ansmaI)Psmazb St Bn > Bf
dP mazb )
# = Fn75maz_1P3maz_1b + Fa_>b75ma:c Psmaaja - (]‘—‘b_ﬂlys'max + Fn75maz>P5marb 81 Bn < Bf (516)

Pour transformer le systeme d’équations différentielles en systeme d’équations algébriques et ainsi
déterminer les populations des différents isotopes de la cascade, on se base sur la théorie de la
transformée de Laplace.

5.2.2 Calcul exact des populations

En utilisant les transformées de Laplace on peut alors obtenir, a partir des équation de Bate-
man, Pw et f’ib avec 0 < 7 < $,42- Dans la suite ce chapitre on utilise pour simplifier 1’écriture
des différentes formules analytiques les largeurs intermédiaires I';, et I';,. Les définitions de ces
largeurs sont : I'y, = Dy + 1 et Iy = Ty +Ts + Ly

Populations du noyau composé, premier des isotopes : s =0

En utilisant la transformée de Laplace inverse avec Py, (0) = 1 et Py, (0) = 0, car on considere
que le noyau composé super-lourd est initialement dans le puits de 1’état fondamental (a), on a :

t t F _Fa . t
Poo(t) = e ToatTo)s | eosh(To=) + —2—2 sinh (=) |
2 To 2
T

t
—22b0 inh(To= ), (5.17)

Py(t) = 2eToutTon); o :

avec 'y = \/ (Coa — Lop)? + 4L ap000—0,0 > 0 qui est le déterminant du polynéme suivant
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(s 4+ Toa)(s + Top) = Tasp0l0500 = 8° + (Toa + Lop)s + Toal'op — Dasp ol ba0- (5.18)
Les racines de ce polynome vérifient 6y < 651 < 0 et peuvent s’écrire :

—(Toa + Top) + T 0o — —(Loa + Top) — T
2 02 — 2 .

601 - (519)

On peut alors exprimer Py,(t) et Pyy(t) sous une forme plus générale, pour les mémes conditions
initiales (Pga(()) =1et POb(O) = O) avec 5o,a<90j> = Fob + 90]' et 50,b(90j) = Faﬁbp :

2

Loy + 001 Loy + 0o 90.a(00;)
Py, (t) = efort 00T 701 fopt ~0b T 02 gloit_00al%05) 5.90
ha({) (601 — bo2) (6o2 — On) 12]:# (Bo; — Oor) (5.20)
r r 2 s Goul(fo;)
P (t _ 6901t a—b,0 + egozt a—b,0 _ egojt 0,b j ‘ 591
Ob( ) (901 — 902) ((902 — (901) j:%:#k ((90], _ 901@) ( )

Populations des isotopes tels que 0 < s < S,z

Pour déterminer les autres populations Py, (t) et Pgy(t), 0 < § < Spaz, on utilise le polynome
(s+ i) (s +Tip) = Taspilosai = 8° + (Tia + Din)s + Tialis — Dacspilbssais (5.22)
dont les racines #;; et 0,5, vérifiant 0,5 < 0;; < 0, ainsi que le déterminant associé I'; sont :

—(Lia+T) + T —(Li+Tw) =T
2 ) 6@'2 == 2

01 = et I'; = \/(Fia —Tw)? + 4T i lpsas > 0.
(5.23)

A partir des transformées de Laplace P,, et Py, que 'on détermine par récurrence, on applique
les transformées de Laplace inverses pour accéder aux populations Py, (t) et Pg(t).

En particulier, on utilise des termes intermédiaires ds ,(6;;) et d5,(6;;) qui sont eux aussi établis
par récurrence a partir les conditions initiales Py, (0) = 1, Ppp(0) = 0 et Py, (0) = Py(0) = 0
avec 0 < 8 < Spaz- A partiv de o4(6;5) = 0i; + Lop et S0p(0i5) = Taspo on détermine alors
0s,a(0i5) = (0ij+Tsp)0s-1,0(0i5) +ba,505-1,6(0i5) €t 655(0i) = (054 sa)05-16(0i5) + L amsp,505-1,0(8ij).-

Apres calculs, on trouve que les populations sont

) =, ZZ o, 0s.0(0s)) ” et Py(t) =4, ZZ bt “’S” : (5.24)

=0 j=1 1=0 j=1

s 2

avec : 5y = HFM Vi = HH — Ok )ij2ik,

Os.a(tis) = (QZJ+FSI7) s—1,a(0; )+Pl:—>a5 ds—1,(055),
58 (91]) = (9%J+Fsa) s§— 1b( )+Fa—>bs s— la(eij)- (5.25)

Les conditions initiales pour le noyau composé imposent 8o (6;;) = Lop+0i; €t 604(6i;) = Lasspo-
7; est le produit de toutes les combinaisons possibles des termes (6;; — 6ix), compatibles avec
0<1<s, ke{l,2}etij # 1k, avec i et j fixés.
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Par exemple, avec s = 1 on obtient :

€9°1t51 (601

) 9021551 ( 2)
P, =T, + T,
1a(t) o (Bo1 — 6o2)(6o1 — 011)(B01 — bh2) 0 (Boz — B01)(Bo2 — 611)(0p2 — 612)
+ I 611t51 ( 1) + o 012t61 ( 2) (5.26)
(011 — 001) (011 — Oo2) (011 — 012) " (012 — 001) (012 — o) (012 — 611)
%1851 ,(001) %026, 1, (6o2)
P(t) = T, : +1I', :
lb( ) 0 (901 — 002)(9001 - 011)(001 - 012) o (‘902 - 001)(9‘902 - 011)(‘902 - 012)
e”116 4(6011) e"12t41 1, (012)
+ I, ’ +T, : ,(5.27
. (011 — 6p1) (611 — Bo2) (011 — b12) o (012 — 6o1) (612 — Bo2) (012 — 611) ( )

avec 01,4(0ij) = (05 +T'16)00,a(0i5) + Toa1005(0i5) et 015(6i5) = (055 +T'1a)00,6(655) + T'asp,100,0(0s5)-
Les autres populations sont déterminées successivement en utilisant la méme méthode jusqu’a la
population de 'avant-dernier isotope P, —1(t). Pour cet avant-dernier isotope (5.24) est utilisable
uniquement si By < E; ;. Dans le cas contraire il faut, par une méthode analogue, déterminer
la formule analytique de P,,,,—1(t) avec comme contrainte I'y, 1 = 0 et en déduire la nouvelle
expression de P (t).

Dans la suite de ce chapitre, on considere pour la double barriere de potentiel de fission le
cas ou les deux barrieres de potentiel sont de méme hauteur afin de maximiser les effets par
rapport a la simple barriere, notamment sur le temps de fission moyen 7¢;5, comme cela a déja
été évoqué dans le chapitre 4. Le potentiel correspondant est donc le potentiel 2.a de la figure 5.2
Par hypothese, pour chaque isotope, les hauteurs de barriere de potentiel de 1’état fondamental
(a) et de 'état isomérique (b) sont égales. On a donc

Bf,s = Ba—)b,s = Bb—m,s g Ff,s = I\a—>b,s = Fb—)a,s- (528>
De ce fait les largeurs I'y, et I'y, s’écrivent pour toute la suite de ce chapitre : I's, = 'y + I'yy
et Fsb = 2Ff75 + Fn,s-
Populations du dernier isotope de la chaine : s = s,,4,

Dans le cas de la double barriere symétrique et avec les conditions initiales P; , .(0) = 0,
»(0) = 0 on aboutit pour By < E¥ | et quand le dernier isotope de la chaine peut

Smax

fissionner, c’est-a-dire pour By < B, ou E; > By, aux populations suivantes :

P,

Smaxzx

smas =1 2 58_(9“21 a ee’ijt — e 3+2\/§nysmazt (52_(01le a eaijt — e 372\/3Ff,smaxt
Psmale(t) = 55maz § E : ¢5maz_1 3+\/5F + 77Z)smaz_1 9 3—\/51—\ ’

91']‘ +

=0 gj=1 L "4 sSmaz ) sSmazx
(5.29)
Smaz—1 2 5 (927) 1b eaijt — e 3+2\/5Ff73maxt 5 ( ij) 1b eoijt — e 3_2\/5Ff,8maxt
P b(t) — (53 § E Smaxz — 71 + Smax— 71
Smaz max Smax — 3+\/5 Smax — 3—\/5
=0 gj=1 L ¢1] 97«7 + 2 F ySmazx 77Z)'L.7 0'5] + 2 F Smazx

9)_<5+\/5)
10

5++5 1 g 5—+/5 1
_ 5+ V5) )= —=0say) 650 = (1—0>63,b(9ij) + —=0s.a(0;5). (5.32)

6s,a<9ij) +
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Au contraire, pour E; | > By > B, ou E; < By, c’est a dire quand le dernier isotope de la
chaine ne peut plus fissionner les populations deviennent

Smaz—1 2 0.t
P " o smam—l a z e’iit — 1
Smaza( ) - Smaz Smax 9 )
(]

=0 j=1
G s “1( Pt — 1

Prilt) = 5, 33 ( ) 53
i=0 j=1 Z] v

Cas du noyau composé d’énergie d’excitation Ej =70 MeV

Pour un noyau composé possédant une énergie d’excitation £j = 70 MeV, voir figure 5.4, le
nombre de neutrons de préscission est s,,., = 8, il y a donc huit autres isotopes successifs dans la
cascade de désintégration. Py(t) s’exprime avec (5.20) et (5.21).

~
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F1GURE 5.4: Exemple des populations partielles et totales pour la simple et la double barriere
de potentiel (a+b), (a) et (b). Pour la simple barriere de potentiel Py(t = 0) = 1, et Py(t) = 0,
0 < 5 < Spaz AVEC Sy = 8, pour la double barriere de potentiel Py,(t = 0) =1 et Py,(t = 0) = 0.
Ef = 70MeV, hw = 1MeV, B/(2w) = 0.66, Ay = 308 et a; = A;/10. B,, = By = 6MeV donc
't s = 0 car dans ce cas le dernier isotope ne fissionne pas, ce qui implique 'apparition d'un palier.

P, (t) est définie grace a (5.26) et (5.27). Les autres populations Ps(t), Ps(t), Pu(t), Ps(t), Ps(t)
et P;(t) sont déterminées successivement en utilisant la méme méthode. L’expression de P (t)
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n'est applicable directement que si By < E3. Comme Ps(t) est déterminée a partir de P;(t),
cette contrainte sur la barriere de fission By s’applique aussi au dernier isotope. Pour finir, quand
By < B, ou E§ > By, la population du dernier isotope de la chaine Ps(t) est obtenue a partir
de (5.29), (5.32), (5.30) et (5.32). Au contraire, quand By > B, ou E} < By, la population de ce
dernier isotope est obtenue avec (5.33).

Sur les deux graphiques supérieurs de la figure 5.4, on remarque que la décroissance de la
population totale est moins importante pour la double barriere (a+ b) que pour la simple barriére,
a cause de la présence de la barriere isomérique (b). Les populations sont de ce fait plus importantes
avec la double barriere.

Dans les deux graphiques inférieurs de cette méme figure, on visualise, avec les conditions
initiales choisies, la décroissance des populations dans 'état fondamental au profit de 1’état
isomérique (b). En effet, une partie des populations de ’état fondamental (a) se retouve dans
le puits isomérique (b), Pautre partie ayant subi le processus de fission.

5.2.3 Effets de la barriere isomérique sur les grandeurs physiques
Taux de fission )y, et temps de fission moyen 7y,

Par analogie avec le taux de fission de la simple barriere, défini équation (4.23), on peut
déterminer le taux de fission pour la double barriere (a + b) et d’autre part le taux de fuite associé
uniquement a la barriere de I'état fondamental (a) :

“ 1 dP(t) TR Tj.Py(t) “ 1 dP,(t) X Tye(Pu(t) — Py(t))

)\( "H)) — _ — fa )\( ) —— f— )

fiss P(t) dt ZS_O P(t) fuite P,(t) dt Zs_o P, (1) ’
(5.34)

avec P(t) la population totale associée a la double barriere (a 4+ b), P,(t) la population totale
spécifique de la barriere (a) et P, (t) ainsi que Pg(t) les populations de l'isotope s associées
respectivement a 1’état fondamental (a) et a la barriere isomérique (b).

Le graphique supérieur gauche de la figure 5.5 représente le taux de fission Af;qs(¢) comme

fonction du temps t pour la simple barriere, avec Py(t = 0) = 1. Le taux de fission )\;C;;b) () pour

la double barriere (a+b) ainsi que taux de fuite )\ﬁ)ite(t) spécifique de la barriere (a) sont aussi

des fonctions du temps t, avec Py, (t = 0) = 1. On remarque que le taux de fission de la simple

(a)

barriere est pratiquement confondu avec le taux de fuite A spécifique de I’état fondamental

fuite?
(a). Ces deux taux sont des fonctions monotones décroissantes du temps alors que )\sz:sb) est une
fonction croissante puis décroissante du temps. Cette évolution temporelle spécifique de )\ngsb)

peut se comprendre en superposant les évolutions de (a) et (b). En effet, & un instant t, comme on
peut le voir figure 5.4, I’état isomérique (b) n’est pas peuplé a ¢t = 0, ses populations augmentent
donc avec le temps, contrairement aux populations de I’état fondamental (a).

De plus, jusqu’a typiquement 107'%s, I'augmentation des populations de (b) est plus rapide
que la décroissance des populations de (a). En outre, on constate que )\gfz;b)
aux deux autres taux, surtout dans la partie croissante jusqu’a 10719,

Les temps de fission moyens 7,55 de la simple et de la double barriere, sont estimés a partir de
(4.24) en utilisant pour P(t) respectivement la population totale Py (t) et la population totale
Pdouble(t)-

Avec le graphique de la partie supérieure de la figure 5.5, on constate que la valeur du temps
de fission moyen 745 = 107185, valeur type des mesures effectuées au GANIL avec la technique

est toujours inférieur
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du blocage cristallin, est obtenue pour By = 4MeVl" avec la simple barriere et pour By = 3MeV
avec la double barriere.

En outre, pour By = 0 MeV, on peut montrer que l'on retrouve le cas de la fission pure
caractérisée par le facteur 3 du rapport (755 —double) /(T4iss — simple), voir équation (5.11). Pour
les autres valeurs de By il y a compétition entre la fission et I’évaporation de neutrons. On retrouve
alors le constat déja évoqué pour la simple barriere By/B,, ~ 1. pour By < B,, on retrouve une
fission dominante, contrairement a By > B,, ou I’évaporation de neutrons prédomine.
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FIGURE 5.5: Taux de fission A5 et temps de fission moyen 7y;5s pour la double et la simple
barriere, multiplicité de neutrons de préscission N et nombre d’événements normalisé P(ts;ss >
10'85) comme fonctions de By sauf pour le taux de fission pour lequel By = 6 MeV. Ej = T0MeV,
B, = 6MeV, Spax = 8, hw = 1MeV, 5/(2w) = 0.66, Ay = 308 et a; = A;/10. Pour la simple
barriere Py(t = 0) = 1 et pour la double barriere Py, (t = 0) = 1.

Multiplicité de neutrons de préscission et nombre d’événements normalisés

Par analogie avec les équations (4.25) et (4.26) relatives a la simple barriere on a

dP(t) deouble(t) P dPs(t) Smax
= = = — F SPS t , )

s=0
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alors 1 — P(400) = > 2" " ps avec pgy, = fo [ sPy(t)dt. La multiplicité de neutrons de
préscission est donc

Nd be = Zzzgx S.Psb _ szngpr (5 36)
ouble 1— P(—l—OO) széwc Dsb .

En outre, dans le cas de la double barriere, le nombre d’événements normalisés plus longs que
10785 est obtenu a partir de la définition de la simple barriere (4.27) en utilisant la population
totale P(t) = Paoupie(t) au lieu de P(t) = Pyimpre(1).

Avec les deux graphes de la partie inférieure de la figure 5.5, les 10% d’événements normalisés
supérieurs & 107'®s mesurés au GANIL sont obtenus pour la simple barriere avec By = 3.5MeV
et pour la double barriere avec By = 2.5MeV . Les multiplicités de neutrons correspondantes a
ces valeurs de By, différentes suivant les types de barriere envisagés, sont alors Ngimpe = 3.5 et
Ndouble == 4.2.

Ce choix de la barriere de fission constante pour la double barriere de potentiel permet de
comprendre la forte compétition entre les deux canaux de désexcitation tout au long de la chaine.
Cependant, on rappelle que ce choix est arbitraire car une barriere de fission constante n’a pas de
réalité physique.

Apres cette étude du modele académique, avec I’hypothese arbitraire de barriere de fission
constante incluant la barriere isomérique, nous regardons dans la partie suivante les modifications
induites sur les grandeurs physiques par cette barriere isomérique avec cette fois les corrections
d’effets de couches.

5.3 Prise en compte des corrections d’effets de couches

Les corrections d’effets de couches sont mal connues pour les noyaux super-lourds. Dans le
modele académique envisagé, on considere que les correctionc d’effets de couches |AFEgpey|; sont
les mémes pour tous les isotopes de la chaine de désexcitation. Afin d’étudier ces corrections
d’effets de couches on procede alors comme dans le chapitre 4 en utilisant aussi deux variantes.
On envisage tout d’abord une approche intuitive simple et ensuite la prescription d’Ignatyuk
[92] pour exprimer le lien entre les corrections d’effets de couches et les énergies d’excitation des
différents isotopes.

5.3.1 Premiere approche intuitive pour les effets de couches

Comme on I'a déja évoqué partie 1.1.3, les corrections d’effets de couches sont a 'origine de
la stabilité des noyaux super-lourds. Dans cette section, on reprend ’étude réalisée partie 4.4.1
pour tenir compte des corrections d’effets de couches sur la barriere double barriere symétrique
pour laquelle les différences avec la simple barriere sont maximisées. En particulier, on utilise a
nouveau la modélisation intuitive de la barriere de fission par BSH E o~ |ABEgey)ie /P avec By
un parametre libre fixé a 18.5 MeV.
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FIGURE 5.6: Exemple des populations partielles et totales pour la simple et la double barriere
de potentiel (a+b), (a) et (b) comme fonctions du temps ¢. Pour la simple barriere de potentiel
Pyt =0) =1,et Ps(t) =0, 0 < 5 < Spaz aVEC Spar = 8, pour la double barriere de potentiel
Pou(t =0) = 1 et Pp(t =0) = 0. Ef = 7T0MeV, hw = 1MeV, §/(2w) = 0.66, Ay = 308 et
a; = A;/10. B, = By = 6MeV donc I';g = 0 car dans ce cas le dernier isotope ne fissionne pas, ce
qui implique 'apparition d'un palier. Par analogie, on conserve donc les mémes parametres que
dans la figure 5.4 sauf pour les corrections d’énergie de couches prise égales a |AFgpe| = 10 MeV.

Figure 5.6 on observe une décroissance plus rapide qu’avec le modele avec barriere de fission
constante sur toute la cascade. Il subsiste une probabilité de survie du noyau super-lourd car la
fission est le canal de désexcitation devant I’évaporation de neutrons.

En accord avec les conditions initiales, I’état isomérique (b) n’est pas peuplé initialement, con-
trairement a 1’état fondamental (a). D’autre part, la probabilité de survie n’est pas rigoureusement
nulle, il reste une faible probabilité résiduelle.

Les valeurs des grandeurs physiques obtenues avec la présente modélisation dans le cas de la
double barriere, méme si elles sont supérieures a celles obtenues avec la simple barriere, restent
inférieures aux mesures effectuées au GANIL, voir figure 5.7.

Dans le graphique supérieur gauche de la figure 5.7 on constate que le taux de fission est plus
élevé et que sa décroissance est anticipée par rapport au cas de la barriere de fission constante,
voir figure 5.5.
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FIGURE 5.7: Taux de fission Ay et temps de fission moyen 7y, pour la double et la simple
barriere, multiplicité de neutrons de préscission N ainsi que le nombre normalisé d’événements
P(tpiss > 107185) comme fonctions de |AFgpep| sauf pour le taux de fission ol |AEgpen| = 8 MeV.
E; =70 MeV, B, = 6 MeV, sy = 8, hw = 1MeV, B/(2w) = 0.66, Ay = 308 et a; = A;/10.
Pour la simple barriere Py(t = 0) = 1 et pour la double barriere Py, (t = 0) = 1.

Figure 5.7 on retrouve les mémes comportements des parametres énergie d’excitation E que
pour la simple barriere et la double barriere avec le choix arbitraire de barriere de fission constante
pour tous les isotopes de la cascade de désexcitation.

Comme avec la simple barriere de potentiel, on peut regarder 'influence des corrections d’effets
de couches en utilisant la prescription d’Ignatyuk.

5.3.2 Traitement de type Ignatyuk des effets de couches

Dans cette section on reprend le méme cadre d’étude que dans la partie 4.4.2.

Figure 5.8 on constate avec la préscription d’Ignatyuk une décroissance de la population totale
et des populations en fonction du temps encore plus rapide que dans les autres modélisations
envisagées. Ceci est en accord avec le fait que dans ce cas de figure la compétition entre fission
thermique et évaporation de neutrons est moins forte car la fission prédomine. De ce fait, seules
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les populations des premiers isotopes ont des valeurs significatives. La chalne de désexcitation
isotopique n’est donc pas en moyenne parcourue intégralement avant fission.

On remarque également que 1’'on gagne un ordre de grandeur pour la durée de vie de la chaine
de désexcitation isotopique entre la simple barriere et la double barriere. De plus, on retouve le
fait que I'état isomérique (b) n’est pas peuplé initialement, contrairement a ’état fondamental
(a). D’autre part, la probabilité de survie P, est nulle, ce qui est en accord avec les mesures
effectuées au GANIL par blocage cristallin.
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F1GURE 5.8: Exemple des populations partielles et totales pour la simple et la double barriere
de potentiel (a+b), (a) et (b) comme fonctions du temps ¢. Pour la simple barriere de potentiel
Pyt =0) =1, et Py(t) =0, 0 < 5 < Spaz aVeC Spae = 8, pour la double barriere de potentiel
Pou(t = 0) =1 et Py(t = 0) = 0. Par analogie, on conserve les mémes parametres que dans la
figure 5.6. En particulier les corrections d’énergie de couches sont estimées a |AFEgpen| = 10 MeV.

Avec les hypotheses d’étude choisies, dans la plage de valeurs de |AFEg;| envisagée, les
grandeurs physiques issues de la prescription d’Ignatyuk sont inférieures aux résultats des mesures
effectuées au GANIL, voir figure 5.9.

La fission étant le mode de désexcitation dominant, la chaine de désexcitation isotopique
n’étant pas en moyenne parcourue intégralement. Dans le graphique supérieur gauche de la figure
5.9, pour le taux de fission Mg en fonction du temps, les principales différences entre simple
et double barriere se situent donc avant 107'%s. De ce fait, on peut constater sur le graphique
inférieur gauche que la multiplicité de neutrons de préscission N en fonction de |AFgpe;|, méme
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si elle est plus importante pour la double barriere, reste peut élevée et quasi constante N ~ 1.5.
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FIGURE 5.9: Taux de fission A5 et temps de fission moyen 75, pour la double et la simple
barriere, multiplicité de neutrons de préscission N et nombre d’événements normalisés plus longs
que 1078s P(t ;s > 107%s) comme fonctions de |AEg,qy|, selon la prescription d’Ignatyuk, sauf
pour le taux de fission ot |AEen| = 8 MeV. Ef = T0MeV, B, = 6MeV, Spar = 8, iw = 1MeV,
B/(2w) = 0.66, Ay = 308 et a; = A;/10. Pour la simple barriere Py(t = 0) = 1 et pour la double
barriere Py,(t = 0) = 1. Par analogie avec la figure 5.7, on conserve les mémes parametres.

Dans la figure supérieure droite on remarque également une augmentation modérée du temps
de fission moyen 75 en fonction de |AEpe;| dans le cas de la double barriere. En effet, 755 est
toujours inférieur au temps caractéristique 107%s. De plus, pour |AE .| = 0 MeV, on retrouve
la valeur 3 du rapport (7455 — double)/(7siss — simple). Cependant, pour des valeurs de |AEgpe|
supérieures a 0 les valeurs les plus élevées de ce méme rapport ne sont pas assez importantes pour
pouvoir expliquer les résultats expérimentaux.

Dans la presciption d’Ignatyuk, ’évaporation de neutrons est défavorisée par rapport a la
fission. La compétition entre les deux canaux de désexcitation du noyau composé est donc moin-
dre, le mode de désexcitation majoritaire étant la fission. De plus P(t;ss > 107185), le nombre
d’événements normalisés supérieurs a 107185, est donc dans ce cas inférieur de plusieurs ordres de
grandeur au 10% du résultat expérimental, voir le graphique inférieur droit de la figure 5.9.
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5.4 Conclusion

La présence d’une structure isomérique dans le potentiel augmente les valeurs des grandeurs
physiques. Cette augmentation est optimisée dans le cas de la double barriere symétrique, c’est-a-
dire quand le puits et la barriere isomériques sont identiques au puits et a la barriere associés a
I’état fondamental.

Dans le modele académique avec fission thermique comme seul mode de désexcitation et dans
les autre modeles qui prennent en compte la compétition entre la fission thermique et I’évaporation
de neutrons, I'augmentation induite par la structure isomérique sur les grandeurs physiques n’est
pas assez importante pour permettre d’expliquer les valeurs des observables obtenues au GANIL
par blocage cristallin.

De maniere pragmatique, on peut se poser la question de la validité des résultats de mesures par
blocage cristallin pour Z = 120 et Z = 124. Cependant, des mesures récentes effectuées au GANIL
[93], se basant sur le phénomene de fluorescence X associé a I'ionisation des couches électroniques
internes K et L [94, 95], confirment les valeurs obtenues pour Z = 120. Les conclusions de ces
nouveaux résutats sont généralisables au noyau Z = 124.

On arrive donc au constat suivant : la prescription d’Ignatyuk qui est adaptée pour les énergies
d’excitation mises en jeu dans le cadre de la fusion-fission froide ou de la fusion-fission chaude, voir

partie 1.2.2, semble ne pas étre transposable a la fusion-fission < ultra-chaude > mise en ceuvre
au GANIL.
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Conclusion de la Partie 1

Dans le processus complet de fusion-fission des noyaux super-lourds nous avons étudié chacune
de ces deux phases. Dans la phase de fusion, nous avons étudié plus particulierement la phase de
formation des noyaux super-lourds et dans la phase de survie nous nous sommes focalisés sur la
désexcitation des noyaux quand il y a compétition entre la fission et I’évaporation de neutrons.

Il découle de I'étude de la phase de formation des noyaux super-lourds que le traitement
markovien, utilisé dans la majeure partie des travaux sur ce sujet, est une approximation trop
rude. En effet, les effets de mémoire induisent de nombreux changements sur la diffusion par-
dessus cette barriere de potentiel parabolique et de ce fait sur la dynamique de formation dun
noyau super-lourd. Ces changements interviennent principalement sur deux niveaux.

D’une part, ils modifient le comportement asymptotique du systeme en générant un abaisse-
ment de la viscosité, cet abaissement étant plus visible dans le régime critique. Pour les temps
longs, le comportement asymptotique avec effets de mémoire et friction modérée est similaire au
comportement asymptotique markovien avec friction faible. Ceci implique une réduction de la
dissipation d’autant plus importante que le temps de relaxation est important.

D’autre part, phénomene nouveau par rapport au cas markovien, des oscillations peuvent
apparaitre dans une gamme intermédiaire de temps de relaxation. Ce nouveau comportement
change grandement 1’évolution dynamique de grandeurs physiques comme la variable collective,
la probabilité de formation et le courant de formation d'un noyau super-lourd.

Un traitement rigoureux de la formation des noyaux super-lourds doit donc inclure des effets
de mémoire pour dépasser le cadre markovien trop restrictif. En effet, ne pas considérer I'influence
des effets de mémoire sur la dynamique de fusion des noyaux super-lourds peut donc aboutir a
une analyse erronée du processus.

Pour I'étude de la désexcitation des noyaux super-lourds, nous nous sommes intéressés a l'in-
terprétation des mesures réalisées au GANIL par blocage cristallin pour les noyaux Z = 120 et
Z = 124. Les modélisations réalisées avec une simple barriere de potentiel ne permettant pas de
comprendre ces résultats, nous avons étudié les modifications induites par 'existence d’une struc-
ture isomérique de la barriere de potentiel sur la dynamique de désexcitation. Dans ce contexte,
nous nous sommes intéressés a son influence sur la distribution des temps de fission des noyaux
super-lourds. Une approche de type Langevin n’étant pas envisageable dans ce cas de figure, une
méthode alternative s’appuyant sur des équations de type Bateman a été développée.

L’existence d’une structure isomérique augmente de maniere significative la valeur des temps de
fission, cependant dans le cas des noyaux super-lourds elle ne permet pas d’expliquer les résultats
obtenus au GANIL par blocage cristallin. Par contre, ces travaux doivent pouvoir aussi étre ap-
pliqués aux noyaux d’actinides, pour lesquels cette barriere isomérique doit induire une forte
augmentation des temps de fission. En effet, pour ces noyaux, la contribution de la goutte liquide
a la barriere de fission est importante.
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Partie II : Regles de somme et
interactions tensorielles de Skyrme
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Introduction de la Partie 11

La physique nucléaire des basses énergies s’étend de 100 keV a quelques MeV [10]. Comme on I'a
déla souligné dans I'introduction générale, dans cette gamme d’énergie, les < briques élémentaires >
de la matiere sont les nucléons, on peut alors parler de matiere nucléonique. En fonction de I'énergie
disponible, les excitations de la matiere nucléaire prennent différentes formes, voir la figure 2 de
I'introduction générale. Les comportements des nucléons sont alors individuels ou collectifs. Les
nucléons eux-meémes peuvent étre excités, 'amplitude de ces modes collectifs étant variable. Par
exemple, les résonances géantes sont des modes collectifs de vibration des noyaux avec une faible
amplitude. Au contraire, comme on 1’a évoqué dans la partie I de cette these, la fission est un
mode collectif de forte amplitude.

D’un point de vue tout a fait général, on constate une certaine universalité de la densité dans
les noyaux lourds. Comme point de départ pour un modele de compréhension de la cohésion
des noyaux on peut donc envisager le modele de la matiere nucléaire infinie. Dans ce modele
on ne considere pas les effets de bord associés a la taille finie des noyaux. La matiére nucléaire
est donc un systeme idéal infini formé de nucléons en interaction. La densité a saturation de
po = 0, 16nucléons. fm =3 est associée & la portée finie de I'interaction nucléaire qui est de I'ordre
du fermi. Un nucléon ne peut donc pas exploiter toutes les liaisons nucléon-nucléon, il y a alors
limitation des interactions aux nucléons les plus proches [10]. Plus précisément, 'interaction forte
est attractive pour des distances entre nucléons de l'ordre du fermi et tres répulsive pour des
distances entre nucléons plus petites. Ce dernier aspect correspond au coeur dur du potentiel
d’interaction nucléon-nucléon. En pratique, la matiere nucléaire a I’équilibre correspond au centre
des noyaux lourds. Pour un volume fini de matiere, le nombre de nucléons est alors proportionnel au
volume considéré. De ce fait, on retrouve alors le comportement expérimental des rayons nucléaires.
En outre, les différentes grandeurs physiques du modele sont reliées par une équation d’état (voir
la figure 1 de l'introduction générale).

Le régime nucléonique est le domaine dans lequel les degrés de liberté subnucléoniques tels les
quarks, les gluons, les résonances hadroniques comme par exemple les pions et les kaons ne prennent
pas une place prépondérante. Il n’y a pas de séparation nette entre le domaine nucléonique et le
domaine hadronique. Cependant, on peut placer une frontiere au niveau du seuil de la production
de pions, correspondant a une énergie incidente d’un nucléon sur une cible fixe d’environ 290
Mev/A. Du point de vue des collisions nucléaires, le domaine associé correspond donc a 100-
200 Mev/A. On peut alors envisager I’étude des propriétés de la matiere hors équilibre. Pour les
énergies mises en jeu, il suffit de se placer dans le cadre de la dynamique non-relativiste méme si
certains aspects ne peuvent eétre déconnectés totalement du domaine relativiste.

La résolution exacte du probleme a A corps est impossible. On peut dans ce cas réaliser I’étude
de la structure a I’échelle nucléaire avec les nucléons comme particules élémentaires effectives car
ces structures ne sont en réalité pas ponctuelles mais composées de quarks. Le caractere non
perturbatif de la Chromo-Dynamique Quantique pour les basses énergies ne permet pas, a I’heure
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actuelle, de déterminer I'interaction nucléon-nucléon directement a partir de l'interaction quark-
quark. On a donc recours a des interactions effectives. De plus, il n’existe pas de modélisation
générale pour l'interaction nucléon-nucléon pour I'ensemble du domaine envisagé, mais plusieurs
modélisations valides dans des domaines d’énergie particuliers. Par exemple, 'interaction effective
nucléon-nucléon peut étre modélisée grace a des forces phénoménologiques de type Gogny ou de
type Skyrme.

Les différentes modélisations s’appuyent le plus souvent sur des potentiels central et spin-
orbite. Le traitement du terme tensoriel est de ce fait écarté méme s’il permet une analyse plus
approfondie de l'interaction entre nucléons. Nous nous proposons dans ce chapitre de l'inclure
dans le cadre des réponses nucléaires.

En premier lieu, dans le chapitre 6 on procede a des rappels sur la matiere nucléaire, les forces
effectives de type Skyrme et on précise les axes d’étude ainsi que I'expression de la partie tensorielle
du potentiel de Skyrme. Ensuite, dans le chapitre 7 on rappelle, dans le cadre théorique général
de la théorie de la réponse linéaire, les principales caractéristiques de ’approximation Hartree-
Fock et de I'approximation des phases aléatoires (RPA). Enfin, dans le chapitre 8, a partir des
définitions intrinseques des moments Ml(o‘) et M?Ea) on indique les principales étapes des calculs
qui permettent de déterminer ces regles de somme : pour Ml(a) jusqu’au niveau tensoriel et pour
Mg(a) avec potentiel central uniquement.

Mots-clés :
Interaction effective nucléon-nucléon - Potentiel effectif de Skyrme - Regles de sommes - Développement
asymptotique - Définitions intrinseques des moments



Chapitre 6

Interaction nucléon-nucléon et force de
Skyrme

L’interaction effective de type Skyrme est un exemple d’interaction phénoménologique nucléon-
nucléon a deux corps qui prend en compte les effets de milieu. Cette interaction, de portée nulle,
n’est pas valide sur ’ensemble du domaine des basses énergies nucléaires. Plus précisément, le do-
maine de validité de cette force effective phénoménologique est défini pour une énergie de faisceau
de T'ordre de 100-120 MeV/A et de faibles moments relatifs allant jusqu’a 2 fm™!.

Dans un premier temps, nous présenterons brievement les propriétés de I'interaction nucléon-
nucléon, en particulier ses symétries et le passage de I'interaction nucléon-nucléon libre a l'inter-
action nucléon-nucléon effective.

Dans un deuxieme temps, nous examinerons le cas particulier de 'interaction phénoménologique
effective de type Skyrme avec potentiels central puis spin-orbite avant de préciser les axes d’étude
de la partie II et en particulier la partie tensorielle du potentiel.

6.1 Interaction nucléon-nucléon

6.1.1 Nature fermionique de la matiere nucléaire

De maniere générale, les noyaux, les nucléons ou les constituants plus élémentaires comme
les quarks et les leptons sont des objets intrinsequement quantiques. Comme premiere approche,
on peut considérer la matiere nucléaire comme un gaz de Fermi. Le libre parcours moyen des
nucléons étant, a cause des corrélations de Fermi en accord avec le principe de Pauli, grand devant
les distances caractéristiques, les nucléons sont alors considérés comme des nucléons indépendants.
Grace au modele de Fermi, on retrouve alors les caractéristiques du modele de la goutte liquide
ainsi que les caractéristiques de la matiere nucléaire [2]. Par exemple, on retrouve la valeur typique
de la densité de la matiere nucléaire a saturation py avec la formule suivante :

g <mnvF>3 gk}

“o2\n ) T e (6.1)

Po
ou g est la dégénérescence totale de spin et d’isospin, m,, est la masse d'un nucléon, vg et ex sont
respectivement la vitesse de Fermi et 1’énergie de Fermi. pp = hkrp = m,vp correspond a la norme
du moment de Fermi. Avec les valeurs usuelles des grandeurs e = 37MeV et m,, = 935MeV.c™2
on aboutit & vy = 0.28¢. De plus, avec g = ¢gg.¢g, = 4 on obtient py = 0.16 nucléons. frn 3.
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En outre, I'indiscernabilité des particules au niveau microscopique a comme conséquence 1’in-
troduction de deux types de particules, aux comportements statistiques tres différents, les fermions
et les bosons [96]. Les bosons, de spin entier et vérifiant la statistique de Bose-Einstein ont un
comportement grégaire. On peut donc avoir un tres grand nombre de bosons dans un seul état
énergétique. Au contraire, les fermions, de spin demi-entier et obéissant a la statistique de Fermi-
Dirac, sont au plus un par état énergétique a cause du principe d’exclusion de Pauli. Les fonctions
d’ondes des bosons et des fermions sont respectivement symétriques et antisymétriques. Pour ces
derniers, 'antisymétrie de la fonction d’onde peut étre exprimée avec un déterminant de Slater.
La matiere nucléaire est constituée de fermions et les bosons sont quant a eux les médiateurs des
interactions.

Pour les noyaux la transition entre un traitement purement quantique et un traitement semi-
classique se fait de maniere continue avec 1’élévation de la température du systeme. On passe
alors d'un systeme fortement quantique pour les basses températures a un systeme semi-classique
pour les hautes températures. Le domaine de I'équation d’état associé¢ a la physique nucléonique
est tel que la température T vérifie T < 15 — 20MeV et une masse volumique p < pg = 0.16
nucléons. fm ™3, avec py la densité de saturation de la matiere nucléaire infinie.

6.1.2 Symétries de I’interaction libre nucléon-nucléon

De maniere générale, le potentiel nucléon-nucléon doit respecter un certain nombre d’invari-
ances : par translation dans I’espace des positions et des impulsions, par rotation et par réflexion
dans l'espace des positions ou encore par renversement du temps [7]. Il faut ensuite ajouter des
invariances liées a des degrés de liberté internes (isospin par exemple). Ces différentes propriétés
doivent obligatoirement se retrouver dans le potentiel nucléon-nucléon que 1'on peut décomposer
en un terme central, un terme spin-orbite et un terme tenseur :

V(i,j) = VC(ig) T VLS(ij) T V(i) (6.2)

Les indices ¢ et j sont associés aux deux nucléons. Ils interviennent au niveau des différents
termes a travers la position relative 7; — 7; = 77;, 'impulsion relative p;; = %(ﬁz — P;), le moment
. 7’ . . =g _ — — 7’ 9. . — —
01net1%ue orbital L = 7j; A p;; ou encore les opérateurs dans les espaces d’isospin 7;, 7; et de
spin S = 1(5 + §;) (5i est relié aux matrices de Pauli par 5§ = 2, avec & le vecteur dont
les composantes sont les matrices de Pauli). veo(,j) et vr,) sont des termes locaux car ils ne
dépendent pas de p, contrairement a vrg(; . Le terme prépondérant du potentiel v(; ;) est v j),
répulsif a courte portée (type cceur dur) et attractif a portée intermédiaire [7, 17]. Il peut par
exemple s’écrire :

—

veig) = vo(Ti) +ve(0:.05) + vz(70.75) + v5.2(6:.05) (7i.75), (6.3)

avec vo(7) qui dépend seulement de la distance relative entre les deux nucléons. Les autres ter-
mes correspondent au potentiel d’échange. Ce dernier peut étre répulsif ou attractif, suivant les
configurations des nucléons.

Le potentiel tenseur a deux corps est un terme local, non central et peut étre mis par exemple
sous la forme suivante :

L o G P -
UT(i,j) = ('UT,(](Tij) + UTﬂ?(Ti.Tj)) . <—2(0'i.7’ij)(0'j.?”ij) — (O’Z‘.O'j)) . (64)
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Le potentiel spin-orbite, quant a lui, est le terme non-local le plus important. Il dépend de p
par l'intermédiaire du moment cinétique orbital L :

vLsg) = vis(Fig)-(L.5). (6.5)

L’étape suivante consiste a construire une interaction nucléon-nucléon dans le milieu a partir de
I'interaction nucléon-nucléon libre. C’est une tache particulierement complexe. Dans le paragraphe
suivant nous allons présenter brievement une possibilité pour résoudre ce probleme qui adopte le
point de vue d’échanges de mésons.

6.1.3 Echanges de mésons spécifiques et Matrice G de Brueckner

L’interaction nucléaire a 1’échelle des nucléons est la résultante d’une interaction plus intense
entre les quarks a l'intérieur d'un nucléon. La base actuelle de l'interprétation de l'interaction
nucléaire repose sur I’échange de mésons comme les pions 7 [97]. La premiére description théorique
de linteraction nucléon-nucléon du point de vue des échanges de particules date de 1935. Celle-ci
est due au physicien japonais Yukawa qui avait prédit un boson médiateur de masse m, ~ 140
MeV (découvert en 1947). Puisque celui-ci est massif, il correspond & la partie de portée finie (de
l'ordre de 1fm). De manieére plus précise, le pion est relié a la partie longue portée attractive du
potentiel tandis que les mésons plus lourds sont reliés a la partie répulsive [21, 22].

L’interaction forte est attractive pour des distances entre nucléons de 'ordre du fermi et tres
répulsive pour des distances plus petites entre nucléons. Un traitement pertinent de l'interaction
nucléon-nucléon doit donc prendre en compte ces spécificités. On retouve les caractéristiques du
potentiel répulsif de coeur dur traduisant la saturation de la force nucléaire et faisant le lien avec la
dureté de I’équation d’état de la matiere nucléaire, elle-méme reliée au module d’incompressibilité.
Ces propriétés sont la manifestation des effets de milieu qui sont tres importants en physique
nucléaire. Elles sont reliées au fait que deux nucléons ne peuvent s’approcher au-dessous d’une
certaine distance, 'interaction nucléon-nucléon devenant alors tres répulsive. Pour un nombre
de constituants supérieur a deux, le probleme a A corps n’est pas soluble analytiquement. On
contourne alors le probleme via 1'utilisation d'une théorie de champ moyen Hartree-Fock grace a
laquelle 'interaction entre un nucléon et les A-1 autres est traitée par un potentiel moyen. Une
variante simplificatrice consiste a prendre en compte les effets de milieu en utilisant un potentiel
a deux corps dans le milieu. L’interaction nucléon-nucléon dépend au premier ordre de I'état de
spin relatif des partenaires mais aussi de leur vitesse relative. En outre, le potentiel spin-orbite
nucléaire représente la valeur moyenne du potentiel spin-orbite des nucléons deux a deux.

En pratique, I’élément de matrice (¢|V'|¢) diverge a cause du cceur dur du potentiel V' et le fait
que ¢, la fonction d’onde non corrélée a deux corps, ne soit pas nulle pour des distances inférieures
au rayon de ce coeur dur. Pour pallier ce probleme important de divergence on utilise donc une
interaction effective modélisée par la matrice G de Brueckner qui tient compte des corrélations
entre nucléons. En effet, G|¢) = V|i), avec 9 la fonction d’onde non corrélée a deux corps. G est
alors déterminée par sommation en série du potentiel V', ce qui permet d’aboutir a une équation
de type Bethe-Goldstone.

Afin de déterminer des potentiels réalistes, une autre méthode consiste a se baser sur les
symétries de l'interaction libre nucléon-nucléon pour construire de maniere phénoménologique des
potentiels effectifs comme ceux de Skyrme.
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6.2 Forces effectives de type Skyrme et axes d’étude

6.2.1 Forces effectives phénoménologiques de type Skyrme

Il est tout a fait possible de déterminer de maniere semi-phénoménologique des forces effec-
tives [29]. Avec un nombre limité de parametres, on peut en effet générer les principales carac-
téristiques de la force nucléaire comme 1’énergie de liaison, le rayon de noyaux, la saturation de la
force nucléaire... Ces interactions ne se déduisent pas directement d’un potentiel nucléon-nucléon
mais permettent, en ajustant les parametres libres grace aux valeurs expérimentales de noyaux
particuliers, de construire une forme de potentiel effectif [4, 7].

Les forces de Skyrme sont souvent utilisées car, toute proportion gardée, leur utilisation est
simple et leur pouvoir prédictif grand [98, 99]. Elles sont par exemple utilisées pour déterminer
la stucture ou la dynamique des noyaux. Par hypothese, ce sont des interactions de contact.
Contrairement a ce que ’on pourrait penser a priori, cette approximation donne de bons résultats.
Les différents types de forces de Skyrme comportent un développement en puissances de la densité
locale de matiere p(7) et de ses dérivées successives. De maniere générale elle prennent aussi en
compte le spin et la nature du nucléon, neutron ou proton via I’isospin. Le plus souvent, le potentiel
de Skyrme choisi peut étre mis sous la forme de deux termes, la partie centrale et la partie spin-
orbite, ce qui représente une dizaine de parametres différents.

Plus précisément la partie a deux corps v(; ;) du potentiel s’écrit :

t - .,
Vi) = toll+ 0Po)3(F) + (14 2 P (26(7) + 0(7) )

+ to(1 4 22 P,)K'S(7)k + iWok' A 8(7;) (6.6)
ol l'opérateur k = %(ﬁz — V,) agit & droite et opérateur congugué K= —%(61 — ﬁj) agit
a gauche, 7; — 7; = 75 et P, est l'opérateur d’échange de spin. Le terme a trois corps est, par
hypothese, de portée nulle également :

Dans un systeme possédant autant de spins < up » que de spin < down >, c’est-a-dire dans un
systeme saturé en spin, le terme de potentiel a trois corps est équivalent a un terme de potentiel
a deux corps. La forme générale de ce terme, compatible avec une valeur réaliste du module
d’incompressibilité de la matiere nucléaire, est alors

t . _
Uig) = ¢ (L 23Pp)d(7%) 7 (By). (6.8)

Au total, ce sont donc dix parametres (g, t1, ta, t3, Tg, T1, T2, T3, Wo, v) qu’il faut déterminer en les
ajustant aux grandeurs physiques. Le potentiel effectif de Skyrme a deux corps peut donc s’écrire :

—

Skyrme — Skyrme Skyrme
VT (R, ) = vgl vl (6.9)

t - -
v = to(1+ woPa)S(Ry) + (L + @i P) (R25(75) + 6(7) )

S -t .
+ tg(l + .TQPg)klé(ﬁj)k + g(l + I3P0>6(ﬁj)P7(Rij), (610)
Vi = iAWk A (7). (6.11)



6.2. FORCES EFFECTIVES DE TYPE SKYRME ET AXES D’ETUDE 107

Dans le terme central, to est négatif car il est lié a la partie attractive de 'interaction. Au con-
traire, t3 est positif car il correspond a la partie répulsive pour laquelle on associe une dépendance
en densité de la forme p?. Le parametre 7 représente le coeur < dur » de la matiére nucléaire (de
maniere générale 1/6 < v < 1). ¢y et t3 sont associés aux contributions de volume. ¢ et t5 sont
quant a eux associés a des termes en gradients et donc aux effets de surface. zq, x1, 2 et x3 sont
reliés a 'opérateur d’échange de spin et aux propriétés d’antisymétrie neutron-proton.

Plusieurs paramétrisations du potentiel de Skyrme (voir tableau ci-dessous [30]) sont possibles
suivant la physique que l'on étudie. Ainsi, par exemple, SLy7 est une paramétrisation qui donne
une masse effective m*/m = 0.67 et qui est adaptée a 1’étude des barrieres de fission des noyaux
lourds.

Skyrme tg £y to t3 X0 X1 X9 X3 Wo Y
SkM -2645 | 385.0 | -120.0 | 15595 | 0.09 0.0 0.0 0.0 |130]|1/6
SKa |-1602.8 | 570.88 | -67.70 | 8000 | -0.02 0.0 0.0 -0.286 | 125 | 1/3

SI -1057.3 | 2359 | -100.0 | 14463 | 0.56 0.0 0.0 1.0 120 | 1
SLy0 | -2486.4 | 485.25 | -440.86 | 13783 | 0.7947 | -0.4983 | -0.9323 | 1.2893 | 128 | 1/6
SLy4 | -2488.9 | 486.82 | -546.39 | 13777 | 0.834 | -0.3438 | -1.0 1.263 | 125 | 1/6
SLy7 | -2480.8 | 461.29 | -433.93 | 13669 | 0.848 | -0.492 -1.0 1.393 | 125 | 1/6
SkP | -2931.7 | 320.62 | -337.41 | 18709 | 0.2922 | 0.6532 | -0.6532 | 0.1810 | 100 | 1/6

6.2.2 Axes d’étude

L’utilisation des forces de Skyrme est omniprésente dans les calculs de structure nucléaire. Mais
récemment des calculs de type champ moyen sur des noyaux ont montré la présence d’instabilités
non physiques. Afin de comprendre l'origine de ces instabilités, on a calculé, dans chaque canal
de spin et d’isospin, la fonction réponse pour la matiere nucléaire infinie. Bien que la correspon-
dance entre matiere nucléaire infinie et noyaux ne soit pas totalement directe, il a été montré que
les instabilités observées sur les noyaux apparaissaient comme des poles de la réponse. Il a été
également constaté que ces poles se manifestaient dans une violation des regles de somme de la
fonction réponse.

De maniere générale, les regles de somme sont des contraintes auxquelles doivent satisfaire
une théorie. Le but de la partie II consiste a déterminer ces contraintes. Plus précisément, le but
principal est de calculer, pour les différents canaux («), les moments M; et Mj directement &
partir des définitions intrinseques en faisant intervenir, pour la premiere fois, le terme tenseur du
potentiel pour M;.

En effet, pour les calculs effectués avec les forces effectives phénoménologiques de Skyrme on
ne considere le plus souvent que les parties centrale et spin-orbite du potentiel a deux corps. Mais,
pour des raisons évidentes d’importance intrinseque en physique nucléaire et méme s’il a été écarté
pour des raisons de complexité jusqu’a présent, il faut considérer le terme tenseur a deux corps
[100, 101]. Celui-ci s’écrit :

Skyrme te to

T(il{j) = Ura ) T VT (6.12)
t@ - 7 - 7 - = -2 — — - 7 - 7 - = 7

Uiy = 5 UBEK)(GK) = (365K ]0(7) + 6(7y)[3(6:k) (6 k) — (65.65)K]}, (6.13)

to

UT(i.5) (6.14)
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avec t. < even » partie paire et t, < odd > partie impaire par rapport au renversement du temps.
Les autres grandeurs entrant dans la définition du tenseur 'UT(iy;fl “ ont été définies dans ce chapitre,

aux équations (6.10) et (6.11).

Dans les deux prochains chapitres de cette partie II, nous allons rappeler le formalisme général
utilisé pour les regles de somme avant d’exposer les grandes lignes du calcul lui-méme ainsi que
les résultats obtenus.



Chapitre 7

Formalisme général et physique
nucléaire

Le but de ce chapitre est de rappeler le formalisme général qui sera utilisé au chapitre 8 pour
le calcul explicite des regles de somme.

En premier lieu, dans le cadre de la théorie de la réponse linéaire, on aborde les notions de
champ moyen et 'approximation Hartree-Fock. Ensuite, on définit de maniere générale la fonction
réponse et les regles de somme ainsi que ’approximation des phases aléatoires.

Enfin, on indique les grandes lignes de la méthode asymptotique utilisée pour obtenir les

(a) ()
moments M, et My .

7.1 Cadre de I'étude et outils utilisés

7.1.1 Champ moyen et approximation Hartree-Fock

L’approximation Hartree-Fock est une approximation de champ moyen. Dans cette théorie, le
probleme a A corps est réduit a celui du probleme a un corps effectif [102]. Les nucléons sont de
ce fait considérés comme non corrélés et chaque nucléon est soumis a un potentiel représentant
Ieffet des autres nucléons du milieu. La figure 7.1 représente schématiquement I’équation de Dyson
décrivant la modification du propagateur du fermion habillé en fonction du propagateur de fermion
libre et des contributions dues aux effets de milieu dans I'approximation HF [103].

FIGURE 7.1: Approximation Hartree-Fock. De gauche a droite on identifie la décomposition du
propagateur de fermion habillé par les effets de milieu en fonction du propagateur de fermion libre,
du terme d’échange de Fock et du terme local d’Hartree.

On calcule ainsi 1’énergie HF' qui peut se décomposer en deux termes : le terme d’Hartree,
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terme local représentant l'interaction directe, et le terme de Fock, terme non local représentant
I'interaction d’échange. Dans cette approximation, I'énergie totale est donc la somme de 1'énergie
cinétique du systeme sans interaction et de ces deux derniers termes caractérisant les effets de
milieu.

L’état fondamental nucléon-nucléon |0) peut étre décomposé en un produit direct de kets,
associés aux quasi-particules i et j, de type Hartree-Fock tel que |0) = |0)yr ® |0)gp. De plus
le ket |0) peut étre défini par un déterminant de Slater traduisant le caractére completement
antisymétrique associé a la nature fermionique des nucléons. En outre, pour chaque particule il
faut prendre en considération 'espace direct, ’espace de spin et I'espace d’isospin.

D’autre part, la propagation des particules dans le milieu n’est pas la seule a subir des modifica-
tions. C’est aussi le cas des interactions. Les modifications induites par le milieu sur les interactions
peuvent étre modélisées par la notion de polarisation II qui caractérise la réponse du milieu a une
perturbation extérieure.

7.1.2 Formalisme général : fonction réponse et regles de somme

On considere un opérateur excitation F(® permettant de passer de I'état fondamental nucléaire
0 > aDétat excité |k > : |k >= F(|0 >. La notation condensée (o) signifie que 'opérateur dépend
des variables spatiales position et quantité de mouvement et des variables internes spin et isospin
d'ou (a) = (7,p'| &,7). Dans la suite de I’étude, afin de simplifier les notations, on considere la
référence a l'espace réel comme implicite. On note donc («) = (S5, 1) avec S et I respectivement
les nombres de spin et d’isospin.

La fonction réponse de I’état fondamental nucléaire sous 1’action de 'opérateur F(®) est alors

I (w,q) =Y | < k[F[0 > [?6(w — w), (7.1)
k

avec wy = By — Ey et H|k >= E|0 >. Ej, est la valeur propre associée au vecteur propre |k >
pour le hamiltonien H et FEj représente ’énergie de 1'état fondamental. Si |k > est un état situé
dans le continuum, la somme discrete doit étre remplacée par une intégrale.

En pratique, le calcul de la fonction réponse peut ne pas étre évident car il n’est pas toujours
facile de déterminer les états propres |k >. On peut contourner cette difficulté en utilisant la
technique des regles de somme et définir les moments M, avec p entier naturel allant de 0 a +o0.

M) = / 1) (w0, Purdw = 37| < KF@0 > 2wl (7.2)
k

En théorie, si on connait I'infinité des moments M,Ea) , on a alors autant d’information que dans la
fonction réponse I1(*)(w, ¢). Cependant, en pratique, on ne peut pas déterminer tous les moments
M;SO‘). Cette alternative au calcul direct de la fonction réponse n’est donc viable que si sa conver-
gence de celle-ci est assez importante pour quune estimation de IT1(®) (w,q) a l'aide des premiers
moments suffise.

La forme générale des regles de somme differe suivant la parité des moments. En effet, les
définitions des moments pairs nécessitent 'utilisation d’anticommutateurs {, } tandis que celles
des moments impairs se basent sur les commutateurs [,]. C’est ce deuxiéme type de moment qui
va nous intéresser dans la suite de cette partie II. Mais avant cela, nous allons dire quelques mots
de la réponse du systeme.
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7.1.3 Approximation des phases aléatoires

L’approximation des phases aléatoires (de 1’anglais Random Phase Approximation RPA) per-
met de calculer la réponse du systeme a une perturbation. L’excitation physique prise en compte
est de type p-h (particle-hole). Souvent 'antisymétrisation est compliquée a mettre en oeuvre et
on se contente de I'approximation des anneaux, voir figure 7.2.

On peut également noter qu’il est possible de déterminer la fonction réponse II(®) dans le
cadre RPA a partir d’'une interaction effective possédant une dépendance en vitesse ou, ce qui est
équivalent, en utilisant la fonctionnelle de la densité d’énergie correspondante. Il est alors possible
d’accéder aux regles de somme [25, 26, 104].

FI1GURE 7.2: Modélisation de la propagation des excitations dans un milieu a ’aide de la méthode
RPA, sous forme de bulles de polarisation, et de la réponse associée.

7.2 Détermination des regles de somme

7.2.1 Hamiltonien avec potentiel de type Skyrme

Le hamiltonien général H = E + V' peut étre réécrit sous la forme

H=3 = zec,+ Ly~ g st (73)
=1

i=1 j=1,j#i

avec e.; 1’énergie cinétique du nucléon i et vi’?y)rme le potentiel de type Skyrme. L’énergie cinétique

peut s’écrire

k2
Cei = ! s 7.4
o (7.4)
avec /21 = —iﬁi et le potentiel effectif de Skyrme :
Skyrme __  Skyrme Skyrme Skyrme
Vig) T Vcay T VisGg) T VTG o (7.5)

avec les contributions du potentiel central, du potentiel spin-orbite et du potentiel tenseur définies
respectivement par (6.10), (6.11) et (6.12).
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7.2.2 Développement asymptotique et regles de somme Ml(a) et M?Ea)

Dans le cadre RPA, la fonction réponse par unité de volume est [104] :

1 1
11 (g0, q) = Z| (k| F@0)|? (qo_ — + : ) (7.6)

Ey+in  —qo— Ep +in

avec V' le volume total du systeme et n > 0, un infiniment petit.
1) (qo, §) vérifie la relation de dispersion

+o0
H<a>(q0@:_l/0 Im (I (w, @) (qo_ LRI )dw. (7.7)

a wtm  —qo—w+wm

En outre, la régle de somme d’ordre p est reliée a la partie imaginaire de I1(*)(w, ), elle-méme
reliée aux propriétés physiques du systeme, et s’écrit :

1 +00
(e ((7) =—— Im (II'(w, ) wPdw, (7.8)

avec po la densité particulaire de la matiere nucléaire symétrique a saturation. Les ordres impairs
des regles de somme sont obtenus par exemple avec un développement asymptotique de la fonction
réponse, vue comme une série de puissances de ¢q

M@ (o) (o)
2p+1(57) M, (J) M; (Cf)
qoliril e (QO, q) = 2po Z 2p+2 = 2po < q(z) + qf‘; +. ] (7.9)
11 suffit alors d’exprimer I1(*)(gq, ) & I'aide des parametres de la force de Skyrme et on détermine
ensuite la limite pour gy — 400. En se limitant aux deux premiers moments impairs, on aboutit
a:

-2 1 N
lim II@ (CIO,@ — poq_2 (__@WQ( ))

qo—>+00 a5

A 2 —9 —9

(1  po( 32 N 1 po@ , P02 4 (@)

1 —Ow “k 1 W Dk L\ w
poqé(m* 2 2 5F+4 m*+4 ! +2 F+4 2

(7.10)

Par identification, on exprime alors les regles de somme en fonction des parametres de Skyrme.

Le prochain paragraphe donne I’exemple, dans le cas d'un potentiel central uniquement, du calcul
(@) (@)

de M;™ et M,

7.2.3 Rappel des résultats pour Ml(a) et Mga) avec termes centraux

Dans les canaux («) = (5, ), quand on ne considere que la partie centrale du potentiel effectif
de Skyrme, il est possible de séparer Ml(a) en deux contributions : une qui est spécifique de 1’énergie

cinétique et I'autre qui est associée au potentiel central. Les moments Ml(a) peuvent alors se mettre
sous la forme :
M = M)+ M. (7.11)
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Cette décomposition n’est plus possible pour les regles de somme Méo‘) car on ne peut plus dans
ce cas séparer completement les contributions du potentiel central du terme purement cinétique.
Ainsi, les moments associés au terme cinétique et au potentiel central peuvent s’écrire :

po ] * -
«@ q m po «@ q C] 0,0) a
M) = e (1 - Wy )) = o=t (W< — W >>, (7.12)

1 po /3., @ 1 7
M@ a =L _ POy () o2 4 (a) L2 (a) 1
avec k r le moment de Fermi, ¢'le moment transféré, pg la densité de la matiere nucléaire symétrique

a saturation correspondant a l’équation (6.1) et m* la masse effective. Dans le cas présent m* est

telle que

m* 8
Cette masse effective m* est reliée a la dépendance en impulsion et en énergie des niveaux
d’énergie a un corps donc au type d’interaction effective. La valeur de m* varie en fonction de la
paramétrisation de Skyrme choisie, voir partie 6.2.1. Par exemple, pour la paramétrisation SLy7

le rapport de la masse effective par la masse réelle vérifie m*/m = 0.67. De plus,

Woo _ g, (% 1{4(7 £, Ztl(f _ Lﬁmtﬂz, (7.15)
WY = —(1+ 2wty — @@,pg - %th& $ +42x2) ", (7.16)
W = (1= 2a0)ty — (1_—62x3>t3pg - @th& - %tzfﬁ (7.17)
Wt = g — étgpg - %tlcjg - }ltgq*g, (7.18)
W0 _ %tl N wt% (7.19)
wpo = E2n), | Qin), (7.20)
Wyt = . _42x1)t1 + d +42x2)t27 (7.21)
Wiy = _}Ltl + itQ' (7.22)

Passons maintenant au calcul des regles de somme en présence de termes tensoriels.
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Chapitre 8

Détermination des regles de somme

Dans un premier temps, on définit de maniere intrinseque les regles de somme pour M; (@)
incluant le potentlel tenseur. Dans un deuxieme temps on aborde le calcul exact des regles de
somme pour M ). Ensuite on procede de méme pour M ) en se focalisant sur le terme purement
cinétique et les termes issus des combinaisons de I'énergie cinétique et du potentiel central.

8.1 Regles de somme Ml(a)

jusqu’au niveau tensoriel

Pour chacune des regles de somme Ml(a) la décomposition en quatre termes est possible. Parmi
ces termes, un terme est spécifique de I’énergie cinétique et trois termes sont associés au potentiel.
En effet, par analogie avec la décomposition du potentiel, on aboutit a un terme central C', un
terme spin-orbite LS et un terme tenseur 7.

M = MG+ M)+ MG+ M (8.1)
(a)

Le calcul explicite a montré que les moments M, ;¢ associés au potentiel spin-orbite sont en
réalité nuls.

(@)

8.1.1 Définitions antisymétrisées de )M, ' avec potentiel tenseur

Le hamiltonien du systeme est H = E¢ + Vo 4+ Vs + V. L’énergie cinétique E¢ est associée
a un opérateur a un corps donc le moment correspondant ]\/[1(%)0(@) n’est pas antisymétrisé. Au
contraire, pour le potentiel V' qui est associé a un opérateur a deux corps on doit donc tenir compte
de la nature fermionique des nucléons. La définition de M (cj) prend alors la forme suivante

@) = ML (@) + Mg (@) + M (), (8.2)
MUEL(@) = 500 [F1), [Ee, F@]] ), (5.3
M) = %<0\ [F1@) Ve, F]] Al0), (8.4)
M7 (@) = %<0| [F1, [V, F]] AJ0), (8.5)
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ou le ket |0) caractérisant I'état fondamental peut s’écrire sous la forme du produit direct |0) =
10} direct @ 10)interne, avec |0)girect le ket associé a 'espace réel et |0)inierne le ket de I'espace interne
lui-méme défini par le produit direct |0)interne = |0)spin @ |0)isospin-

De plus, l'opérateur A = (1 — Px P, P;) assure 'antisymétrisation avec Px l'opérateur parité
agissant sur l’espace réel ainsi que les opérateurs d’échange P, et P, agissant respectivement sur
I’espace de spin et I'espace d’isospin. Pour une fonction paire ou une fonction impaire, 'opérateur
parité Px est égal a respectivement 1 ou -1. En outre P2 = 1 et P? = 1. Avec une notation plus
détaillée, on peut écrire
14050

1+ 7.7
P, = ot P, =

2 Tij — 2 ?
avec d; et 7; des vecteurs dont les composantes (0¥, 07, 07) et (77, 7/, 77) sont respectivement les
matrices de Pauli dans l'espace de spin et l'espace d’isospin. Pour ¢ = j les matrices de Pauli
anticommutent et pour ¢ # j ces matrices vérifient I'algebre de Lie. L’opérateur antisymétrisation

devient donc

(8.6)

Ai] = (1 - PXijPUijPTij>' (87)
En outre, Iopérateur excitation F(® et son hermitique conjugué F1® sont tels que
FO) =3 gieitr FH@ =3 " gt (8.8)
! !

avec 91(0’0) = 15 la matrice unité d’ordre deux, 950’1) = 77 la matrice de Pauli de spin selon l'axe z,

1,0 . . 1. . 1,1 . .
Hl( ) = o; la matrice de Pauli d’isospin selon I'axe z et Gl( ) = o;7i. Dans ces quatre situations,

les éléments de matrice de HZ(O‘) sont donc réels.

8.1.2 Calculs exacts de Ml(a) a partir des définitions intrinseques

Avec des notations plus explicites les différentes contributions de Ml(a)(q_) deviennent

« 1 Q) 4 q.T % i |
M@ = 7= (0] [0, [R2 087 | | o), (8.9)
m J
lm,i
« 1 ) —iq.Ty Skyrme « iﬂ.Fm-
ME @ =7 D2 ] |0 [oZe ot | 4,00, (8.10)
l,mi,j7#1
a 1 a) —igw |, Skyrme p(a) iGm |
MP@ =7 3 [9} )emid l,[vT’ggj) 0@ i _}Aij|0>. (8.11)
Lmyi, i

D’apres les formes centrale (6.10) et tenseur (6.12) du potentiel effectif de Skyrme, les regles de
somme M) (q) et M%) (q) peuvent se décomposer sous la forme suivante

MG = ME(@) + ME(@) + ME(D) + MEY (), (8.12)
MEND = ME(@) + M (@), (8.13)

En pratique, dans l’espace interne, on considere la matiere nucléaire comme doublement
symétrique par rapport au spin et a lisospin. De plus, afin de calculer les différents commu-
tateurs des regles de somme, on se base alors sur les propriétés des matrices de Pauli qui peuvent
se traduire dans l’espace de spin par la relation

(T,fO'ly = (Z-eacyzaz + 12(5xy)(5kl + (12 — 5k1)0’?0',€, (814)
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ol €"* est 'opérateur completement antisymétrique de Lévi-Civita, 15 la matrice unité d’ordre
2 et Oy le symbole de Kronecker. Cette relation est transposable dans ’espace d’isospin avec les
matrices 77, 77 et 77. Pour | = k les matrices de Pauli anticommutent et pour I # k elles vérifient
I’algebre de Lie.

Dans 'espace direct, en représentation 7, on utilise les spécificités de la distribution de Dirac
= (13|;) ainsi que la relation de fermeture

O

Tig

/ / AF 7|7 ) (7 7 = L. (8.15)

En outre, on peut choisir ¢ selon une direction particuliere, par exemple la direction z de vecteur
unitaire u,. Sans perdre en généralité on peut donc écrire § = q,.

8.1.3 Résultats : regle de somme M (q_’) avec terme tenseur

A partir des outils détaillés dans le paragraphe précédent, on aboutit, apres de longs calculs,
aux résultats suivants :
Le terme Ml(?c((j) associé a l'énergie cinétique s’écrit

(a) q_Q
Mg (@) = 5 —; (8.16)

2m

la regle de somme Ml(g)(cj') relative a la partie centrale du potentiel de Skyrme peut se mettre sous
la forme :

(@) CP0 (10,0 (@)
Mic (@) = =~ (Wz’ - W, ) (8.17)

avec les coefficients Wi"” et Wi définis & aide des relations (7.19), (7.20), (7.21) et (7.22).
L’expression (8.17) est alors équivalente a la relation (7.12). En outre, la régle de somme spécifique

de la partie tenseur du potentiel de Skyrme Ml(;) (q) est

M3 () = 0, (8.18)
M@ = o, (8.19)
A0 o 7’ po
@ = TR+ 3L), (8.20)
_2
) 4 po
M (@) = 7 (te—1o). (8.21)

Ainsi, la regle de somme Ml(a)((j) incluant la partie tenseur de rang zéro peut donc s’écrire

(0,0) 7
Mg = o (8.22)
) )
7 @ @po
M@ = L (h+ D e n+ D)), (8.23)
) ) =2
s~ T &(t 1My 10 ﬁ>_m t, +3t, 8.24
) ) )
M@ = S+ T+ () + T (e — ). (8.25)
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(@)

8.2 Regles de somme ;' et potentiel central

De maniere générale, pour chacune des regles de somme la décomposition en quatre termes
n’est plus possible car les différentes contributions du hamiltonien ne commutent pas entre elles
dans le triple commutateur. Parmi ces termes, un terme est spécifique de 1’énergie cinétique mais
les autres termes ne sont donc plus décomposables en un terme central C', un terme spin-orbite LS
et un terme tenseur 7T'. Dans la suite de ce chapitre, on se focalise sur le terme purement cinétique
et sur les termes issus des différentes combinaisons associées aux parties cinétique et centrale du
hamiltonien.

(@)

8.2.1 Définitions antisymétrisées de NM; ' avec potentiel central

Le hamiltonien du systeme, de la forme H = E¢ + Vo + Vs + Vi, est le méme que pour
M . Par analogie, on reprend les mémes hypotheses de travail que pour M, voir partle 8.1.1.

L’opérateur a un corps associé a l'énergie cinétique est donc relié au moment Mé (@) qui

EcEcEc
n’est pas antisymétrisé.

Au contraire, les autres termes qui entrent dans la définition de M ((j) doivent étre anti-
symétrisés a cause de 'opérateur a deux corps représentatif du potentiel V. Pour la suite de ce
chapitre on utilise le hamiltonien Ho = Ec + V¢ .

La définition des différents termes des regles de somme M?Ea) s’appuie en particulier sur le

triple commutateur [[F T,HC} JHe, [He, F ]H En développant ce triple commutateur, on peut

décomposer le moment Még) en huit contributions, elles-mémes subdivisées en quatre catégories
(8.26), (8.27), (8.28) et (8.29) suivant que les termes de ces catégories sont respectivement pro-
portionnels & 1/m?, 1/m?, 1/m ou indépendant de m :

M@ = Mg (@) (8.26)
+ éZ)EV(dH ?E?VE (@) + M) . (@) (8.27)
My D M) (@ M (@) (8.28)
+ Mg (@), (8.29)

M) @) = SO [F, Be] (e, [Be. F] [0), (8.30

My (@) = %(0![[FT,EC},[EC,[VC,F]H Al0), (8.31)

M) (@) = %<0| [[F!, Eo], [V, [Ec, FIJ] AJ0), (8.32)

M@ = S0 ([P Ve [Ee (e, FI)) Al0), (339

M@ = SOl [ Ee] Ve Ve, FI]) A4%0), (834)

M@ = SOl [[F Ve [Ee, Ve, )] A4%0), (8.35)

My (@) = %(WHFT,Vc],[Vc,[Eo, 1] A2|0), (8.36)

M @ = S0 [[FVe) Ve, Ve, FIT) A%)0) (837
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Pour les termes dont la définition fait référence au potentiel Vi, 'opérateur antisymétrisation A
intervient autant de fois que ce potentiel central apparalt dans le triple commutateur.

8.2.2 Calculs exacts de M?EO‘) a partir des définitions intrinseques

En pratique, on s’appuie sur les mémes hypotheses que celles utilisées pour le calcul de Ml(a),
voir partie 8.1.2, mais cette fois avec un triple commutateur. Avec des notations plus explicites, on
peut réécrire les termes du paragraphe précédent. Par exemple, pour le terme purement cinétique :

« 1 o) —igF 1 7 7 ) _i1q.Tm
M§E)CECEC(® = 1o > (o H@l( Jemia l,kﬂ , [kf, [k?,é)ﬁn)eq m 0). (8.38)

l7m7i7j7p

. ) . . . Sk , . L. .
Pour les termes faisant intervenir une fois le potentiel UC(Z?";T)”Q et Popérateur antisymétrisation

associé A;, on peut écrire :

(@) _ 1 [[ol) —igm 2] [ Skyrme p(a) i@ m | 1]
MSECECVC ((T) o 16m?2 Z <0| __el e l’ki_ ) _kJ2" [Uc(gn) ’67(71)6[1 1] Ain|0>7 (8-39>
l,m,n,i,j,p
(@) 1 [[o(@) —igrm 72] [ Skyrme [72 n(@) igim]|]]
M) (@ =g D0 (ol [|6 e TR [l (K260 ||| Awf0), (8.40)
l,m,n,i,j,p

(@) 1 () —ig Sk 72 172 iG7m | | ]
M?’?/CECEC (@ © 16m2 Z <0| 9104 e, UC(E{:LTG] ’ [kj’ [kp’ 953)6 o Ai”|0>‘ (8'41)
Lmnigp o
Pour les termes faisant intervenir deux fois le potentiel de Skyrme central et les opérateurs anti-
symétrisation associés on a :

(c) _ 1 [[ole) —igr 7 Skyrme [ Skyrme o @'ﬁfm_—_
M3EchVc (@) = 6m Z (0] __91 e " l,k;] , [UC(;S) , _vc(gn) L0\t AjsAin0).
l,m,n,i,j,p,s
(8.42)
() _ 1 ([ q(a) —ig7  Skyrme| [372 [ Skyrme o iﬁFm- 17
MgVCECVc (Cf) B 16m Z <O| __el e Z’UC(Jyvs) I _k127’ _UC(E{n) ’eﬁn)eq 1] AJSAm|0>
l,m,n,i,j,p,s
(8.43)
(a) _ 1 N () —ig.7 Skyrme- [ Skyrme | 772 () ime--- ‘ '
M3VCVCEC ((f) - 16m lm;'jp s<0| “Ql e 172]0(]"3) I _Uc(i,n) ’ [k‘p,@ﬁ e 1] AJSAW|0>‘
(8.44)

Enfin, pour le terme faisant intervenir trois fois le potentiel de Skyrme central et les opérateurs
antisymétrisation correspondants on obtient :

(a) . 1 (o) —ig# . Skyrme Skyrme Skyrme p(a) iq.Tm
M@= S ol [[ee e ot [ostrme ot ]| A5 400)
ly;mmn,i,j,p,s,r

(8.45)
Apres de longs calculs, on aboutit aux résultats explicités dans le paragraphe suivant.
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8.2.3 Résultats : regle de somme M ((j) avec terme central

Pour tous les canaux («) on obtient la méme expression du terme purement cinétique M. éE)cEcEC (q) :

1 2\* '3
(@) _ 4 9,2
M3ECECEC (q - m3 [( 2 ) + 9 5kF . (846)

Dans le cas particulier du canal () = (0,0), les seuls termes non nuls sont le terme cinétique,
proportionnel & 1/m?, et les termes de potentiel proportionnels & 1/m?2. Ainsi, on peut écrire

0 ,0) 0,0)
(j - 3ECECEC ((j) + SECECVC (q) + 3ECVCEC<ﬁ) + ?EVCECEC (q) (847)

Le terme purement cinétique est déterminé par I’équation (8.46) et la somme des termes en lien
avec le potentiel central prend la forme

MG o @ M) (@) + M (@) = Mg+ Mg MY 4 M0, (8.48)
avec
My = mLTPi (8.49)
M = %647/) (% )tl, (8.50)
MEOO — #Tp (1 + a:Q) kity, (8.51)
MO — %‘742” 1ié7+2> Pits. (8.52)

Cette réécriture est possible uniquement dans le canal (0,0) car le potentiel n’'intervient qu’'une
seule fois pour les termes proportionnels & 1/m?.

Avec les autres canaux, les termes proportionnels & 1/m ou les termes indépendants de m ne
sont plus nuls. Apres calculs, dans le cas général du canal () on obtient

o L (2\ @3
M) = —3[(3) + T35

1 q4p0 Wa) k2 «a (jQ @
b T U (o ) € (s )
1 @4,02 o W(a) k3 el (jQ «
o (Wi S 55 (Y e g o+ L (3 )
—1 3 2 [ (@ 3 i
" qlpo (W(oo) WQ(O‘)> [%ij% (5W2(0,0)+W2(a)) +qz <W2(00)+W2(a)> :

avec Wl(a) et Wg(a) définis partie 7.2.3. Cette formulation de 'équation (8.53) est compatible avec
'équation (7.13).
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Les regles de somme sont des contraintes qui permettent de vérifier la robustesse d’une théorie.
Différentes méthodes sont utilisées pour déterminer ces regles de somme a partir d'un potentiel
donné. Par exemple, on peut accéder a ces contraintes en réalisant des développements asymp-
totiques de la fonction réponse du systeme ou en les calculant a partir de leurs définitions in-
trinseques. Ces regles de somme peuvent alors se mettre sous la forme de moments MZS“) dans
différents canaux («) et a différents ordres p.

En physique nucléaire des basses énergies, on peut utiliser le potentiel phénoménologique de
type Skyrme pour décrire I'interaction nucléon-nucléon. En outre, la fonction réponse de la matiere
nucléaire peut étre évaluée dans le cadre de la théorie de la réponse linéaire avec ’approximation
RPA. D’autre part, la détermination de ces mémes regles de somme a partir des définitions in-
trinseques s’effectue en pratique, Pour les ordres p impairs, par le calcul de commutateurs de méme
rang que 'ordre p du moment Mpa) associé. Pour Mla) il faut donc calculer un commutateur sim-
ple et pour Méa) un commutateur triple. On peut alors exprimer Ml(a) et Méa). Pour des raisons
de complexité des calculs, la majeure partie des études écartent la partie tensorielle du potentiel
de Skyrme.

Dans cette partie II, on a déterminé dans les différents canaux («) les régles de somme a partir
de leurs définitions intrinseques. Les calculs pour obtenir Ml(a) ont été réalisés en incluant le poten-
tiel de Skyrme jusqu’au niveau tensoriel. Pour I’étude de Méa), on s’appuie sur le potentiel central
de Skyrme. Cette étude de Méa) avec potentiel central peut servir de point de comparaison pour
la méthode de détermination de Méa) avec terme tenseur, numériquement ou par développement
asymptotique de la fonction réponse.

Initialement, le but de ces calculs était de vérifier les formules analytiques des réponses. L’ob-
jectif a été atteint et on a effectivement trouvé une concordance des résultats. Mais l'intérét des
moments va bien au-dela : on a en effet pu montrer qu'une violation des regles de somme signalait
la présence d’'un pole dans la réponse, c¢’est-a-dire une instabilité. Nous sommes donc en train de
mener une étude systématique de détection des instabilités a partir des regles de somme, ce qui
est évidemment fondamental pour la construction de nouvelles forces.
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Partie III : Hydrodynamique nucléaire
et brisure de symeétrie chirale
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Introduction de la Partie 111

Avec les avancées scientifiques et techniques, suivant les époques, le nombre et la nature
des particules considérées comme élémentaires varie [5, 6]. Vers la fin du XTX¢ siecle, les par-
ticules élémentaires correspondent aux éléments de la classification de Mendeleiev. A chaque
étape ultérieure, la compréhension des propriétés de ces particules s’effectue alors grace aux
développements contemporains des connaissances en physique nucléaire, en physique des par-
ticules et en astrophysique. Dans les années 1930-1940, on peut comprendre toute la classification
de Mendeleiev avec seulement trois particules : I'électron, le neutron et le proton. En 1936 le
muon est découvert dans le rayonnement cosmique. Ensuite, a partir des années 1950-1960, avec
I’avénement d’accélérateurs de particules et de détecteurs de plus en plus performants un grand
nombre de particules, supposées a I’époque élémentaires, sont détectées. Ces particules peuvent
étre classées en deux catégories, les hadrons qui subissent I'interaction nucléaire forte et les leptons
qui ne la subissent pas.

Le classement des hadrons en famille permet de mettre en évidence des sous-structures. Ces
études se basent sur l'existence de symétries internes, auxquelles sont associés de nouveaux nom-
bres quantiques additifs que I'on peut considérer comme des charges généralisées. C’est le cas par
exemple du nombre baryonique et du nombre leptonique. Dans 1’étude de ces symétries, I’apport
de la théorie des groupes est indéniable [105]. Plus précisément, elle constitue un point de départ
pour I'élaboration du modele des quarks et I'émergence du concept de saveur. De maniere générale,
I’étude des symétries est un outil tres puissant pour simplifier la résolution d’un probleme. Ces
considérations, associées aux grandeurs conservées, ont permis par exemple a Pauli de postuler
I’existence des neutrinos.

Actuellement, on comptabilise douze particules élémentaires, de spin % en unité h, réparties en
deux catégories : les quarks et les leptons. Ces particules sont élémentaires au sens géométrique
du terme car on ne leur connait pas de sous-structure. Les quarks et les leptons sont eux-mémes
sub-divisés de maniere similaire en trois familles
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De plus, par conjugaison de charge, a chaque particule correspond une antiparticule.

L’interaction forte n’agit que sur les quarks et sur les structures composées de quarks, c’est-
a-dire les hadrons. Cette interaction conserve la saveur et 1'universalité de la force de couleur.
Les bosons médiateurs de l'interaction entre quarks sont les gluons. La force de couleur entre les
quarks est une force attractive dont l'intensité augmente avec la distance. Elle permet d’expliquer
le confinement des quarks et le processus d’hadronisation des quarks quand la distance entre ces
quarks devient trop grande. L’existence des quarks est donc mise en évidence indirectement par
I’observation de jets hadroniques lors des collisions d’ions lourds.

Dans cette partie III on considere la phase hadronique car les gammes d’énergies envisagées
ne permettent pas l'observation du déconfinement des quarks. Les quarks sont alors considérés
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comme des sous-structures des hadrons générés pendant les collisions. Le domaine des énergies
intermédiaires de la physique hadronique est borné d’une part par le domaine des basses énergies
spécifique a la physique nucléaire proprement dite, c’est-a-dire la physique des noyaux, et d’autre
part par le domaine des hautes énergies du plasma de quarks-gluons. La frontiere inférieure de la
phase hadronique est associée a des énergies qui correspondent au seuil de production des pions.
La frontiere supérieure se situe quant a elle au seuil de déconfinement des quarks aboutissant au
plasma de quarks-gluons.

De maniere générale les collisions d’ions lourds qui sont génératrices de matiere hadronique
sont des événements globalement hors équilibre que 1’on traite dans un cadre relativiste. De plus,
avec le refroidissement du systeme, I’équilibre thermodynamique local est atteint apres un régime
transitoire.

Le domaine d’application du traitement hydrodynamique d’un systeme est tres vaste. Plus
précisément, il est adapté a tout systeme qui a atteint un état d’équilibre thermodynamique
local. Il est par exemple utilisé en physique hadronique afin d’étudier des collisions d’ions lourds
ultrarelativistes et en astrophysique dans les étoiles a neutrons.

L’hydrodynamique permet non seulement d’accéder aux propriétés dissipatives d’un systeme,
comme les coefficients de transport, mais également de déterminer son évolution spatio-temporelle.
Par exemple, pour les collisions d’ions lourds ultrarelativistes on utilise dans les codes de simula-
tions numériques le profil de température en fonction du temps pour tenter de reproduire certains
spectres expérimentaux. Méme si 'on peut s’interroger sur la validité d’un traitement hydrody-
namique pour de tels systemes a petite durée de vie, il n’en reste pas moins que cette approche
est tres largement utilisée dans la littérature, avec succes. En outre, il faut savoir que la produc-
tion de pions est tres importante pendant les réactions de haute énergie dans les collisionneurs
ou dans les rayonnements cosmiques. Cependant, les articles publiés jusqu’a maintenant ne font
absolument pas référence au fait que la description de la phase hadronique produite lors de ces
collisions est principalement constituée de pions et donc présente une brisure spontanée de la
symétrie chirale. Or, en présence d’un phénomene comme la brisure spontanée de symétrie, la
théorie hydrodynamique elle-méme doit étre modifiée. Pour quantifier cette modification il est
intéressant de déterminer, dans un cadre simple, les changements qu’elle génere sur le profil de
température utilisé dans les collisions d’ions lourds.

Le modele du superfluide relativiste sert de base de généralisation pour le fluide nucléaire
relativiste. Apres une premiere partie générale sur ’hydrodynamique en présence d’une brisure
de symétrie, nous abordons plus précisément dans une deuxieme partie le probleme de la matiere
hadronique en relation avec la brisure de la symétrie chirale.

Ensuite, pour résoudre analytiquement ou numériquement les équations obtenues dans les
différents cas, on utilise la géométrie de Bjorken qui permet de modéliser simplement une collision
d’ions lourds. Enfin nous présentons les résultats obtenus et nous les comparons a [106] ou I'auteur
prend en compte d’autres < corrections » au modele du fluide idéal comme la dissipation. Pour
finir nous envisageons les cas des pions non massifs et des pions massifs.

Mots-clés :
Symétrie chirale - Matiere hadronique - Hydrodynamique relativiste - Brisure spontanée -
Bosons de Goldstone - Collisions d’ions lourds - Modele de Bjorken



Chapitre 9

Physique hadronique et symeétrie chirale

9.1 Physique hadronique

9.1.1 hadrons et quarks

En 1932 Heisenberg est le premier a mettre en évidence la symétrie des forces nucléaires. Ces
symétries sont par exemple visibles dans les doublets d’états du nucléon (p,n), en relation avec
une parité nucléaire qui échangerait proton et neutron. Ce doublet hadronique puise son origine
dans un autre doublet plus élémentaire (u,d), qui est a l'origine de la symétrie d’isospin I. En
outre, la mise en évidence d’une symétrie similaire a celle des rotations permet de comprendre
I’existence de multiplets de méme moment cinétique de spin, de méme parité et de masses voisines.

La voie octuple
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F1GURE 9.1: Octuplets et décuplets des mésons et baryons constitués des quarks légers u, d et
s. Multiplets usuels de SU(3); : mésons, assemblage quark-antiquark et baryons, assemblage de
trois quarks. Ces hadrons sont les principaux constituants de la phase hadronique. Figure issue de

[6].
Les mésons sont des bosons et les baryons sont des fermions. Leurs propriétés sont donc in-
trinsequement différentes. La découverte des particules étranges permet de classer le grand nombre

de hadrons en multiplets en les associant aux quarks u, d et s. Cette classification s’appuie sur le
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groupe de lie SU(3), de I'anglais flavour, dont les multiplets sont les représentations irréductibles.
Ce groupe de rang deux possede deux générateurs qui commutent : I’hypercharge et I'isospin. L hy-
percharge est définie par Y = B + S, avec B le nombre baryonique et S I’étrangeté. La troisieme
composante d’isospin est notée I3 = () — %Y, avec () la charge électrique.

Gell-Mann associe 1'origine de cette symétrie a l'existence d'un triplet de constituants fonda-
mentaux, les quarks u, d et s. En 1961 Murray Gell-Mann donne le nom de voie octuple a la
classification des hadrons en mésons et baryons. Il permet de résoudre 1’épineux probleme de 'ex-
istence d’un tres grand nombre de hadrons. La voie octuple fait référence a la religion boudhiste
dans laquelle la voie qui meéne a la fin de la souffrance est la voie du milieu [8]. La symétrie devient
exacte quand on se place dans la limite ou on néglige la différence de masse entre les quarks u, d et
s. La petite brisure de symétrie est due aux différences de masses entre les particules d’'un meéme
multiplet. Les quarks u et d sont considérés comme des saveurs légeres car en réalité m, ~ 6 MeV,
mg ~ 10 MeV et m; ~ 160 MeV [5].

Les collisionneurs de hautes énergies permettent 1’acces a des domaines d’énergies plus grandes.
De ce fait, ils permettent la mise en évidence des autres particules élémentaires, plus lourdes,
comme le lepton 7 et les autres quarks c, b, t, qualifiés de saveurs lourdes, 'ordre de grandeur de
leurs masses allant du GeV a 10% GeV [6].

Les mésons les plus légers de la phase hadronique sont des pions 7+ ,7% et 7. Ils sont formés de
paires quarks-antiquarks des saveurs légeres u et d. Ce sont des mésons pseudo-scalaires J? = 0~
[111]. Les composantes standards du champs de pion peuvent s’exprimer en fonction des champs
des saveurs légeres mais aussi en fonction des composantes cartésiennes du champs de pion 7 avec
ie{l,2,3}:

0 (uu —dd) 7 = ud. (9.1)

at = —ud 7° =
nt = —i(ﬂ'l + i7?) =73 o= L(ﬂ'l —im?) (9.2)
V2 V2 ‘ '
Le vecteur 7 dont les composantes sont les composantes cartésiennes 7 se transforme comme un
vecteur vrai dans l'espace d’isospin.

Le modele des multiplets de hadrons basé sur le groupe de saveur SU(3); ne permet pas
d’expliquer tous les résultats expérimentaux. Par exemple, ce modele n’interdit pas I'existence de
hadrons < exotiques > formés d’assemblage a deux quarks ou quatre quarks alors que ces derniers
n’ont jamais été observés expérimentalement, contrairement aux mésons et aux baryons. De plus,
du point de vue statistique, la fonction d’onde totale de certains baryons comme le AT n’est pas
antisymétrique, ce qui est en complete contradiction avec le principe de Pauli et la statistique de
Fermi-Dirac.

Pour pallier ces probléemes, on introduit un nouveau nombre quantique : la couleur, associé
au groupe de transformation SU(3).. La ChromoDynamique Quantique, de I'anglais Quantum
ChromoDynamics QC'D, est la théorie qui integre le traitement dynamique de la couleur.

1
V2
70

9.1.2 Chromo-Dynamique Quantique

Dans le domaine des hautes énergies, la création et ’annihilation de particules devient possible.
Pour voir une description pertinente de ces processus, il faut alors se placer dans le cadre de la
théorie quantique relativiste des champs. En effet, Le modele standard actuel, qui décrit les par-
ticules élémentaires et leurs interactions, est fondé sur la théorie de champ électro-faible, réunion
des interactions électro-magnétiques et faibles, et de la chromodynamique quantique, basée elle-
meéme sur la force de couleur qui régit 'interaction forte. Les interactions sont donc traitées avec
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un vocabulaire analogue a celui de la synthese additive des couleurs en optique. Les symétries
correspondantes sont associées a l'invariance de jauge locale.

La chromodynamique quantique est une théorie de jauge locale, invariante de Lorentz, intégrant
les propriétés de confinement des quarks, les six saveurs (d,u), (s,c), (b,t) et les trois couleurs (vert,
bleu, rouge). Selon la théorie des groupes, SU(3). est associé aux huit gluons colorés, bosons
médiateurs de l'interaction entre les quarks. SU(3)y est toujours associé aux saveurs des quarks
colorés u, d et s. Pour chaque saveur de quarks, il existe trois couleurs et les champs de gluons ont
huit états de couleur. Dans cette théorie, les quarks colorés n’existent pas a 1’état libre mais dans
des singlets de couleurs qualifiés d’états blancs, ce qui est en adéquation avec le confinement de
la couleur, méme si ce dernier point n’est pas encore strictement démontré. De plus, la fonction
d’onde spin-saveur-couleur des baryons est alors totalement antisymétrisée.

La densité lagrangienne Loep associée prend en compte ces différents aspects.

Locp = ﬁquarks + Ling + 'Cgluons7 (9.3)

avec

Equarks = Z'Z@D_fw Wy — Z@Z’_foQﬁf- (9.4)
f f

En pratique, on peut s’affranchir des termes de Lgep se rapportant aux gluons car ils sont in-

variants indépendamment de Equarks [5, 107]. ¥¢ est un quadrispineur pour lequel Ef = 1/}}70.

My représente la matrice diagonale des masses des quarks des différentes saveurs. Les matrices
v# vérifient 1'algebre de Clifford [108] et en particulier y#4" 4+ y*~* = 2g"” avec g"” le tenseur

métrique,
i 0 o 0o _ 0 -1
'y—(_gi O) et 7—(_12 0 ) (9.5)

Les matrices de 'algebre de Clifford sont des matrices 4 x 4 définies ici en représentation chirale
[108]. Quand on se place au niveau du secteur des quarks légers u et d de la premieére génération,
de masses respectives m, et my, la densité lagrangienne prend alors la forme :

Locp = ZEV“@W — My avec ) = ( :ﬁ: > et M = < T’Z)“ ng ) ) (9.6)

9.2 Rappels de symétrie chirale

Selon le théoreme de Neether, I'invariance sous ’action d’un groupe continu d’ordre n implique
I’existence de n charges conservées. En appliquant ce théoreme au systeme étudié, on peut alors
déterminer les charges et courants associés.

9.2.1 La symétrie chirale
Symétrie exacte

Dans le secteur des quarks légers u et d, la densité lagrangienne Locp (9.6) peut se réécrire :

Locp = i@y”@uw — m“gdeTgl/z — —m“;mdﬁw avec 1) = < zz ) et 13 = ( (1) _01 > ,
(9.7)
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My, My, Py €t 1y sont respectivement les masses et les champs des quarks u et d. De plus, ¢ est
un isospineur pour lequel ¢ = 1770 et 75 est la troisieme matrice d’isospin de Pauli.

Apres ce bref rappel, on peut maintenant examiner les deux types de transformations qui
s’appliquent sur Iisospineur ¢ dans espace vectoriel SU(2).

La symétrie vectorielle et la symétrie axiale

La symétrie vectorielle, correspondant a l’isospin, est associée a la transformation : ¢ —
eio‘k%kw, ou 7 est une matrice de Pauli (k = 1,2,3) et aj est un parametre continu. Dans la
réalité, mg — m, ~ 4 MeV donc il y a une petite violation de la symétrie d’isospin. Cependant,
comme ce terme est négligeable devant I'ordre de grandeur des masses hadroniques estimé a My ~1
GeV, on peut donc faire 'approximation m, = m, et considérer que cette symétrie est vérifiée.
De ce fait, cette symétrie est de type Wigner et les hadrons sont classés en multiplets d’isospin car
I|0 >= 0 et [Ix, H] = 0, avec I} 'opérateur isospin et H I'hamiltonien. En outre, avec le théoreme
de Neether, on détermine la charge associée Q, = I, et le quadri-courant VI, ici un vecteur vrai

Qp = [ dFyt iy, Vi =50 (9-8)

La symétrie axiale est associée a la transformation : ¢ — emk’%kVS@/J avec v° = i7%y1~y2y3. Pour
que la symétrie soit réalisée, il faudrait que m, = myg = 0, ce qui n’est pas possible. En effet,
la masse moyenne des quarks légers est m = % ~ 8 MeV, la symétrie axiale n’est donc pas
vérifiée. De plus, grace au théoreme de Neether, on accéde aussi & la charge associée Q7 et au
quadri-courant Aj, ici un pseudo-vecteur

Q; = [ dFiy oy, Ap =010 3 (9.9)
A cause de la brisure explicite de symétrie axiale, il existe une brisure explicite de symétrie

chirale, cela est vérifié expérimentalement. Cependant, comme m < Mg, on peut négliger dans
la suite cette brisure explicite de symétrie devant la brisure spontanée de symétrie chirale.

9.2.2 Brisure spontanée et symétrie chirale

YR = #w et Y = 1—_2'L51/1 correspondent respectivement aux champs chiraux droit et gauche.
De plus, pour une particule de masse nulle, la notion de chiralité coincide avec la notion d’hélicité.
La transformation chirale SU(2)r ® SU(2)1, agit indépendamment sur I'un ou 'autre des champs
g et . Plus précisément, dans SU(2)g : ¥ — BTy avec by — Py et dans SU(2)y :
v — ei"‘k%k@/;L avec g — Ygr. En outre, les charges droites et gauches, qui sont les générateurs
des transformations, forment deux algebres fermées séparées :

Qun = [ VR vn =5 (Qu + Q1) Qu = [ For =5 (Q— Q1) (9.10)
Par analogie, on peut en déduire les expressions des quadri-courants chiraux droit et gauche.
Dans le secteur des quarks légers, a la limite ou m = 0, Loep est exactement invariant sous
cette symétrie, les charges sont alors rigoureusement conservées :[Q,;,H] = [Qz, H] = 0. Mais
avec m # 0, les charges sont quasi conservées car une petite brisure de symétrie axiale entraine
une petite brisure de symétrie chirale. Le nombre de multiplets devrait donc doubler car on associe
a chaque particule un partenaire chiral de masse quasi égale et de parité opposée. En pratique ce
n’est pas le cas car, Q) ne vérifie pas la symétrie de Wigner : Q7|0 >+ 0 par opposition & Q, = I .
Sous l'action de Q?, le vide n’est donc pas invariant et la symétrie chirale, n’est apparente ni
dans I’état fondamental, ni au niveau du spectre des particules, méme si cet état possede la méme
énergie que le vide avec une symétrie vérifiée au niveau du hamiltonien : [Q}, H] = 0.
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9.2.3 Bosons de Goldstone et brisure spontanée de symétrie chirale

De maniere générale, on se base sur des théories effectives comme les modeles o linéaire et
o non-linéaire pour décrire les mécanismes a l’'origine de l'apparition des bosons de Goldstone
associés a la brisure spontanée de symétrie chirale [109].

FIGURE 9.2: Potentiel effectif V (o, 7) du modele o-linéaire. Les deux axes perpendiculaires sont
associés a I'existence des deux types de bosons o et 7. Le cercle chiral est défini par 0% + 72 = f2
et représente les minima du potentiel V (o, 7). le point A, situé dans une direction perpendiculaire
a I’axe o, est un point particulier de ce cercle.

D’apres le théoreme de Goldstone, lors de la brisure spontanée d’une symétrie continue, des
bosons de masse nulle sont générés. Pour la brisure spontanée de symétrie chirale, ces bosons
de Goldstone sont des pions de masse nulle encore appelés pions chiraux, voir partie 10.2. Les
fluctuations autour de 1’état fondamental A ne cotitent aucune énergie au systeme. Au contraire,
les fluctuations selon 'axe o se font dans le potentiel effectif V' (o, 7) [5, 110, 111]. En outre, le
parametre d’ordre mesurant la brisure spontanée de symétrie chirale est (o) = f, ~ 93 MeV, f,
étant la constante de désintégration du pion.

Avec la présence de termes dans le hamiltonien qui brisent explicitement la symétrie chirale,
la masse des pions m, =~ 140 MeV, méme si elle est petite n’est plus négligeable devant la
masse typique d'un hadron Mpy. Dans ce cas ces pions massifs sont en fait des pseudo-bosons de
Goldstone, que 1'on considere en pratique comme de véritables bosons de Goldstone. Le théoreme
de Goldstone ne s’applique pas si la symétrie brisée est une symétrie de jauge. Dans ce cas, aucun
boson de Goldstone n’est généré et les bosons de jauge deviennent massifs. On retrouve alors le
mécanisme de Higgs [8].

Le modele o-linéaire, caractérisé par V (o, m), est valide au voisinage de la transition de phase
chirale. Or, parce qu’ils sont les bosons les plus légers, les pions sont les seules particules associées
aux excitations thermiques de basses températures. Pour s’affranchir de la prise en compte du
méson o, on se tourne donc vers le modele o non-linéaire. Comme le systeme évolue sur le cercle
chiral on substitue o2 par la différence f? — 7. Dans la suite de la partie III, on écarte la particule
o et on considere le pion m comme un boson de Goldstone.
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9.3 Limite semi-classique en physique nucléaire et axes
d’étude

9.3.1 Limite semi-classique

Avec les hautes température générées dans les collisions d’ions lourds ’aspect quantique n’est
pas toujours prépondérant. De ce fait, un traitement semi-classique n’est pas dénué de sens [7].
Différentes méthodes sont utilisées pour le passage d’un traitement quantique a un traitement semi-
classique, parmi lesquelles figurent les transformations de Weil-Wigner et de Wigner-Kirkwood
[7, 8]. En pratique, pour retrouver 'espace des phases de 'approximation semi-classique a partir du
point de vue quantique, on réalise un développement de Taylor en puissances de h et on ne conserve
que le terme d’ordre le plus bas. On utilise alors les crochets de Poisson, analogues classiques des
commutateurs quantiques. Cette limite semi-classique est utilisée a 1’échelle mésoscopique pour
décrire I’hydrodynamique de la matiere nucléaire, voir partie 11.1.1.

Ainsi, a I’échelle mésoscopique, en régime hydrodynamique, les variables utilisées sont des
grandeurs moyennées. On peut donc définir par exemple les densités de charge moyenne droite et
gauche pg et pp. Ce cadre de travail permet de réaliser le traitement hydrodynamique relativiste
de la brisure de symétrie chirale dans la matiere nucléaire.

9.3.2 Axes d’étude

Le but de la partie III consiste a étudier I'influence de la prise en compte de la brisure spon-
tanée de symétrie chirale sur I’étude hydrodynamique de la matiere nucléaire. Dans la gamme
d’énergie envisagée, la production de pions est importante pendant la transition de phase entre la
matiere nucléaire et la matiere hadronique. En outre, la transition de phase quarks-gluons n’est
pas observée, il n’y a donc pas de déconfinement des quarks. De plus, on considere que le traite-
ment hydrodynamique est valide quand I’équilibre thermodynamique local est établi a 1’échelle
mésoscopique. L’échelle mésoscopique est une échelle intermédiaire grande devant 1’échelle mi-
croscopique, on peut donc réaliser des moyennes statistiques, et petite par rapport a l’échelle
macroscopique, on peut alors se placer dans 'approximation des milieux continus.

De maniere générale, pour décrire I’hydrodynamique des collisions d’ions lourds dans la matiere
nucléaire, un grand nombre d’études se basent sur le fluide relativiste idéal pour lequel la brisure
de symétrie chirale n’est alors pas prise en compte. Cette hypothese n’est pas rigoureuse au niveau
du principe mais on peut se demander si elle se justifie en pratique. Pour répondre a cette question,
on compare trois fluides relativistes différents : le fluide idéal sans brisure de symétrie, le fluide
idéal avec brisure spontanée de symétrie et le fluide dissipatif sans brisure de symétrie.

Dans le cas non dissipatif avec brisure de symétrie, on considere les pions comme de véritables
bosons de Goldstone. Ces pions chiraux sont donc de masse nulle. On se place tout d’abord a
température nulle puis a température finie.

Dans le cas dissipatif, lorsque 'on considere qu’il n’y a pas de brisure spontanée de symétrie,
pour prendre en compte la dissipation on étudie différents ordres. A 'ordre zéro on retrouve le cas
du fluide idéal sans brisure de symétrie. L’ordre un est une premiere approche pour prendre en
compte la dissipation mais a cet ordre le comportement du systeme n’est pas physique car il n’y
a pas de relaxation. Enfin, I'ordre deux est plus réaliste car a cette ordre, spécifique de la théorie
de Miiller-Israel-Steward, la relaxation du systeme vers 1’équilibre est prise en compte. Pour ces
ordres un et deux on envisage alors des pions chiraux ou des pions massifs.



Chapitre 10

Hydrodynamique et brisure de symétrie

Dans ce chapitre on rappelle en premier lieu les principales caractéristiques du traitement
hydrodynamique d’un fluide. On envisage alors la cinématique non relativiste puis la cinématique
relativiste sans brisure spontanée de symétrie. Ensuite, on aborde la cas d'une brisure spontanée de
symétrie continue avec I’exemple du superfluide relativiste afin qu’il serve de base de généralisation
au chapitre 11 pour le traitement hydrodynamique relativiste de la matiere nucléaire.

10.1 Le point de vue hydrodynamique

10.1.1 Le domaine de validité de approximation hydrodynamique

Considérons un systeme régi par les lois de la théorie classique, assimilable a un fluide. Afin
d’étudier ce systeme, on doit se donner une échelle de description. L’échelle microscopique est
techniquement inaccessible car, a cette échelle, les grandeurs caractérisant le systeme fluctuent trop
rapidement. Afin de pallier ce probleme, on réalise un processus de nivellement en se positionnant a
une échelle intermédiaire : ’échelle mésoscopique. En effet, cette échelle étant grande par rapport a
I’échelle microscopique, des moyennes statistiques ont un sens. D’autre part, I’échelle mésoscopique
est tres petite par rapport a I’échelle macroscopique, on peut alors étudier le systeme dans le cadre
de 'approximation des milieux continus : L < A, avec L, de l'ordre du libre parcours moyen, et
A, longueur caractéristique de variation des grandeurs du systeme, qui s’identifie a la longueur
d’onde pour des grandeurs périodiques [112].

Si le systeme étudié est a 1’échelle macroscopique faiblement hors équilibre, alors on considere
que celui-ci peut etre divisé en cellules mésoscopiques qui sont a ’équilibre local. Dans chaque cel-
lule on peut alors appliquer les lois valables a I’équilibre et définir des grandeurs thermodynamiques
comme par exemple la température ou le potentiel chimique. Les parametres caractérisant le
systeme sont constants dans une cellule mais varient d’une cellule a ’autre.

Les collisions assurent dans un premier temps la relaxation vers 1’équilibre local. Une fois
I’équilibre local atteint, le traitement hydrodynamique du systeme devient valide. Ce traitement
permet la compréhension d’un systeme hors équilibre quand ses propriétés ne varient pas trop
rapidement dans l'espace et le temps. Plus précisément, il faut définir une échelle de longueur
mais aussi une échelle de temps : le régime hydrodynamique correspond aux excitations de basses
fréquences et de grandes longueurs d’onde ot la fréquence angulaire w et le nombre d’onde k£ sont
alors petits.

2
wr < 1 kL:¥L<1©L<A (10.1)
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On se retrouve donc dans le cadre de 'approximation des milieux continus car les échelles de
longueur sont tres supérieures a la taille d'une cellule qui est de I'ordre du libre parcours moyen,
c’est-a-dire la distance entre deux collisions. De plus, les échelles de temps sont de I'ordre du temps
de collision 7. Du point de vue spatio-temporel, le systeme est donc proche de ’équilibre.

A cause du grand nombre de constituants dans un systeme, certains phénomenes collectifs
cohérents peuvent apparaitre comme par exemple les modes hydrodynamiques.

10.1.2 Les variables hydrodynamiques

De maniere générale, on envisage un systeme globalement hors équilibre, a cause de perturba-
tions diverses. En outre, on se place dans le cas de figure ou son évolution est régie par les lois de
I’hydrodynamique. Le retour a 1’équilibre local du systeme apres perturbation étant rapide dans
la majeure partie des situations, le temps caractéristique de relaxation associé est alors petit. Cet
équilibre local est caractérisé par les densités associées aux grandeurs conservées. Pour illustrer
notre propos, on peut prendre ’exemple du fluide normal pour lequel les grandeurs conservées
sont le nombre de particules, I’énergie et la quantité de mouvement, voir la partie 10.1.3. En effet,
I'existence d'une quantité conservée dans un systeme implique la présence d’un mode hydrody-
namique [113]. Cependant, comme on le verra ultérieurement dans la partie 10.2, la réciproque
est fausse. En outre, on peut démontrer que la constante de temps 7g, associée a la relaxation
des variables hydrodynamiques est inversement proportionnelle au carré du nombre d’onde. On en
déduit donc que 7 est proportionnelle au carré de la longueur caractéristique des inhomogénéités
spatiales, a savoir la longueur caractéristique .

1 9 )
TR OC 15 X AT = I£1_I)I(l)TR = +o00. (10.2)

Dans le régime hydrodynamique, vérifiant kL < 1 et wr < 1 avec L la dimension caractéristique
d’une cellule et 7 le temps caractéristique de collision, A et 1/w deviennent treés grandes de-
vant respectivement L et 7. Or, les transports des quantités associées aux grandeurs conservées
s’effectuent sur la longueur caractéristique A. De ce fait, quand cette longeur est tres grande, c’est-
a-dire pour les faibles gradients, les temps d’homogénéisation deviennent tres longs. A la limite
kL — 0 et wr — 0, le temps caractéristique 7z associé au mode hydrodynamique devient alors
infini. En effet, les écarts par rapport aux valeurs moyennes des quantités conservées s’atténuent
avec un temps infini, ce qui implique une durée de vie infinie du mode hydrodynamique associé.
Ce phénomene est dii au degré de collectivité élevé des modes hydrodynamiques. En outre, ces
modes possedent toute 'information sur les propriétés dynamiques macroscopiques d’un systeme.

Un nombre restreint de variables entre dans la description hydrodynamique d’un systeme. En
effet, contrairement aux temps de relaxation caractéristiques associés au petit nombre de variables
hydrodynamiques, les temps de relaxation des autres degrés de liberté restent bornés, meéme a la
limite hydrodynamique. Par exemple, si on a un exces local d’une grandeur quelconque, celle-ci
va relaxer par des processus collisionnels de temps caractéristique tres petits. La disparition de
I'inhomogénéité est alors quasi-instantanée a notre échelle.

Au contraire, un mode hydrodynamique ne vérifie pas ce processus. L’origine profonde de la
séparation des échelles de temps provient du fait que les inhomogénéités spatiales d’'une grandeur
conservée ne peuvent pas disparaitre instantanément. Le processus d’homogénéisation se fait donc
uniquement par transport, diffusif ou convectif, des régions de forte densité vers les régions de
faible densité et non par homogénéisation locale, comme c’est le cas habituellement.
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v

R

F1GURE 10.1: Processus d’homogénéisation non local d'une grandeur conservée 1 sur la longueur
caractéristique A, entre les régions R; et Rs.

Le traitement hydrodynamique développé jusqu’a présent est indépendant de la cinématique.
Nous allons maintenant inclure dans ce traitement la cinématique classique puis la cinématique
relativiste.

10.1.3 Le fluide normal non relativiste

Le fluide normal, dans un cadre classique c’est a dire non relativiste, est considéré comme un
fluide non chargé, isotrope et non superfluide. De plus, on peut montrer que ce fluide est décrit
par cinq grandeurs locales : la densité d’énergie €g, la densité particulaire ng et les composantes du
vecteur densité de quantité de mouvement py. Ces grandeurs locales sont alors associées aux cing
quantités conservées que sont 1’énergie, le nombre de particules et les composantes de la quantité
de mouvement. De ce fait, le fluide normal possede donc cing modes hydrodynamiques.

Plus précisément, les modes hydrodynamiques sont obtenus en linéarisant autour de I’équilibre
les équations de conservation associées. La modélisation des perturbations par rapport a 1’équilibre
s'effectue en utilisant un vecteur d’onde k. En outre, la fréquence des modes hydrodynamiques
permet d’accéder au type de mode, diffusif ou propagatif. Le temps de relaxation 75 est égal a
I'inverse de la partie réelle de cette fréquence. On retrouve alors le résultat général 75 o< k2, voir
la partie 10.1.2. En effectuant un développement limité & I'ordre k2, on trouve cinq modes. Parmi
ces cinq modes trois modes sont purement dissipatifs et deux modes sont propagatifs amortis.

Les trois modes purement dissipatifs, c’est a dire non propagatifs se scindent en deux modes
visqueux : w = —vk?, avec v la viscosité cinématique et un mode thermique : w = —xk?, avec
k la diffusivité thermique du milieu. L’origine des deux modes visqueux est due a la diffusion
de quantité de mouvement dans les directions transverses par rapport au vecteur k. Le mode
thermique puise son origine dans la diffusion de chaleur.

Les deux modes propagatifs amortis correspondent aux modes sonores : w = +ick — I'k?, avec
¢ la célérité du son et I, la constante d’atténuation. Leur origine réside dans l'effet combiné des
oscillations de pression et du transport de quantité de mouvement dans la direction du vecteur k.

Dans certains cas, comme les processus de haute énergie, la cinématique classique est insuff-
isante. Il faut alors se tourner vers une cinématique relativiste.

10.1.4 Le fluide normal relativiste

Dans certaines situations, les énergies mises en jeu peuvent donner lieu a ’annihilation et a la
création de particules. En outre, le fluide normal relativiste est le modele adapté a la description
de ces processus. Dans ce cadre d’étude, il n’y a, de ce fait, plus conservation stricte de la densité
particulaire. Cependant, d’autres types de grandeurs sont alors conservés. On peut citer a titre
d’exemples : le nombre leptonique, la charge baryonique, I’étrangeté...
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Dans le cadre de la relativité restreinte, l'invariance de Galilée est remplacée par I'invariance
de Lorentz. Les grandeurs indicées par 0 sont ici définies dans le référentiel propre. Comme on a
toujours cinq quantités conservées, dont les densités associées sont ¢g = 7% la densité d’énergie,
TY la composante i de la densité de quantité de mouvement ou i €{1,2,3} et ng la densité de
charge. Cette derniere grandeur correspond pour un fluide a la charge baryonique. On peut donc
leur associer cinq modes hydrodynamiques, analogues relativistes des modes du fluide normal non
relativiste. Le systeme complet des équations hydrodynamiques peut s’écrire :

™ = (e + po)uu” — pog",
a, T" = 0, 0, (nou) = 0. (10.3)

TH est le tenseur impulsion-énergie avec, €y la densité d’énergie, py la pression et ng la densité de
particules. u* = (¢, U) est le quadrivecteur vitesse du fluide, vérifiant u,u* = ¢* = 1. ¥ représente
la vitesse d’écoulement du fluide, v = (1 — (v/c)?)~'/? correspond au facteur de Lorentz et g"”
au tenseur métrique [114]. On reconnait aussi les équations de conservation de I'impulsion-énergie
et du nombre baryonique. De plus, en utilisant la différentielle dP = sodTy + nodpg, le systeme
complet (10.3) et en projetant I’équation de conservation du tenseur T*” selon la direction du
quadrivecteur u, on retrouve alors la conservation de l’entropie, sy étant la densité d’entropie :

w,0,T" =0 = 0,(su") = 0. (10.4)

Dans certains cas des degrés de liberté supplémentaires interviennent, le systeme d’équations
(10.3) devient incomplet, en particulier pour décrire des systeémes subissant des brisures spontanées
de symétrie. Il faut alors adapter la méthode de description.

10.2 La brisure spontanée d’une symétrie continue

La méthode de description précédente est insuffisante quand le systeme est soumis a la brisure
spontanée d'une symétrie continue, phénomene pouvant se produire lors d'une transition de phase,
car dans ce cas le nombre de degrés de liberté augmente.

10.2.1 Influence du parametre d’ordre

Quand le degré de symétrie du hamiltonien associé a un systeme est supérieur a celui de son
état fondamental, on peut alors dire que le systeme est soumis a une brisure de symétrie. Pour
décrire cette situation, il faut adjoindre aux degrés de liberté associés au cas de figure ou la brisure
est absente, un ou plusieurs degrés de liberté supplémentaires.

Pour décrire le nouvel état, caractérisé par la brisure spontanée de symétrie, on utilise donc
un parametre d’ordre. De maniere générale, quand ce parametre d’ordre devient non-nul, on dit
que la symétrie du systeme est brisée. Ce parametre d’ordre nous informe sur le degré d’ordre
du systeme associé a cette brisure. En outre, les échelles de temps et d’espace sur lesquelles le
parametre d’ordre varie sont comparables a celles des quantités conservées. En fonction du cas de
figure, la dimension du parametre d’ordre change. Il peut prendre la forme d’un nombre réel ou
d’un nombre complexe. Dans le cas de la superfluidité, voir partie 10.2.3, il correspond a la valeur
moyenne de la fonction d’onde de la phase superfluide et dans le cas de la supraconductivité a
celle du condensat. Il peut aussi étre défini par un vecteur comme l'aimantation pour un systeme
ferromagnétique ou un tenseur comme c’est le cas avec la transition de phase smectique-nématique
dans les cristaux liquides [115].
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De plus, de nouveaux modes collectifs, appelés modes de Goldstone, sont observés. Ces nou-
veaux modes sont la signature d’une transition de phase particuliere qui ordonne le systeme. Ce
comportement particulier du systeme, qui puise son origine dans certaines corrélations a longues
portées créatrices d’ordre, est le sujet du paragraphe suivant.

10.2.2 Hydrodynamique des modes de Goldstone

D’apres le théoreme de Goldstone [116], lorsque le systeme est soumis a une brisure spontanée
d’'une symétrie continue, il apparait alors un ou plusieurs modes collectifs, qualifiés de modes de
Goldstone. Ces nouveaux modes sont aussi appelé modes mous car ce sont des modes collectifs
de basses fréquences. Les considérations précédentes ne sont plus vraies pour la brisure spontanée
d’une symétrie discrete et pour la brisure spontanée d’une symétrie de jauge, voir partie 9.2.3.

Meémes si les causes sont différentes, les temps de relaxation 7z d’'un mode de Goldstone et
d’un mode hydrodynamique associé a une grandeur conservée, voir partie 10.1.2, possedent une
forme similaire. De ce fait, a la limite des basses fréquences et des grandes longueurs d’onde, ce
qui mathématiquement se traduit par w — 0 et A — 400, le temps caractéristique d’'un mode de
Goldstone, a I'instar de celui d’'un mode hydrodynamique classique, tend donc vers I'infini.

Les modes de Goldstone sont associés a des particules de masse nulle et au comportement
grégaire, les bosons de Goldstone, excitations immédiatement accessibles a tres basse température,
dans le domaine situé au dessus de I'état fondamental. Quand on se place a température finie,
la durée de vie de ces excitations est tres grande, du fait de la grande cohérence de ces modes
collectifs. En effet, seules les corrélations a longue portée sont a l'origine de ces modes [116]. Au
contraire, les corrélations a courte portée s’opposent au processus de mise en ordre. Par exemple,
pour la transition ferro-para, ce sont les corrélations a courte portée qui écartent localement
I’aimantation de la direction < choisie > par le systeme lors de la brisure de symétrie. On a donc
localement des fluctuations d’orientation du parametre d’ordre, méme si globalement la direction
du parametre d’ordre ne change pas.

s M N2
B —
M
R:
R1 z

FiGURE 10.2: Représentation d’une fluctuation d’orientation du parametre d’ordre M sur la
longueur caractéristique A.

Les fluctuations d’orientation ne peuvent disparaitre dans la région Ry que sous ’action d’une
force de rappel, d’orientation différente, due a la région Ry. Pour que le processus soit efficace,
il faut que ces deux régions soient éloignées d’une distance supérieure ou égale a la longueur
caractéristique des inhomogénéités \. Les corrélations a longue portée sont donc bien génératrices
d’ordre.

Maintenant que 1’on considere les brisures spontanées dans le traitement du systeme, on peut
faire 'inventaire du nombre de modes hydrodynamiques correspondant. De maniere générale, les
modes hydrodynamiques peuvent étre associés aux grandeurs conservées, voir partie 10.1.2, ou
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comme on vient de le voir a une brisure spontanée de symétrie s’accompagnant de corrélations a
longue portée.

Pour résumer, le nombre total des modes hydrodynamiques est égal a la somme du nombre
de modes de Goldstone issus de la brisure spontanée et du nombre de quantités conservées [117].
Cependant, le dénombrement de ces modes ne permet pas de savoir si ces modes sont convectifs
ou diffusifs. Afin d’accéder a cette information, il faut donc approfondir I'analyse, comme on I'a
fait pour le fluide normal non-relativiste, voir 10.1.3, et se pencher sur le systeme d’équations qui
régit la dynamique du systeme. Par cette méthode, on peut par exemple aussi accéder a la nature
des modes pour le cas du superfluide relativiste, voir partie 10.2.3, ou pour la matiere nucléaire,
voir partie 11.1.3.

10.2.3 Le cas du superfluide relativiste

La transition de phase fluide-superfluide s’effectue a la température critique T et la brisure de
symétrie associée est de type U(1). Le parametre d’ordre correspondant est < ¢ >= 1)ye'®, valeur
moyenne de la fonction d’onde ¢ de la phase superfluide. Aux cinq modes hydrodynamiques du
fluide normal s’ajoute la variable hydrodynamique supplémentaire ¢, caractérisant la phase du
condensat superfluide. En effet, 1)y est une variable hydrodynamique uniquement pres de la tran-
sition de phase [118], dans cette étude on se place donc loin du point critique. Dans le superfluide,
loin de ce point critique, le nombre de modes hydrodynamiques s’éleve donc a six.

Le traitement classique de la brisure de symétrie U (1) aboutit au modele phénoménologique des
deux fluides de Landau [118, 119]. Dans ce modele, un fluide correspond au fluide normal de vitesse
U, et 'autre au superfluide, de vitesse vy = %ﬁ(ﬁ Cette séparation en deux fluides est artificielle
car dans la réalité, fluide et superfluide forment un unique fluide. Ce modele permet de donner une
interprétation de la superfluidité. Ce phénomene se manifeste par exemple par 'existence d’un
mode hydrodynamique, le second son, qui se propage de maniere cohérente, rapide et sans variation
de densité, contrairement a une onde sonore classique. La variable hydrodynamique associée est
la phase du condensat ¢. De plus, il y a changement de la nature du mode de transport de la
chaleur. En effet, le mode n’est plus diffusif mais propagatif.

Le traitement relativiste dans le cas ou la dissipation est négligée aboutit a [120, 121, 122] :

T = (e+putu’ —pg" + V2 ¢d" ¢,
9, T = 0, w0, = — o, D (nou — V2otg) = 0. (10.5)

Le tenseur T* du superfluide contient un terme de plus que son homologue du fluide normal, voir
partie 10.3, & savoir V20*¢d"¢. Ce terme tient compte explicitement de la brisure de symétrie
U(1) du superfluide relativiste. On reconnait 1’équation de conservation du tenseur impulsion-
énergie, I’équation d’évolution de la phase du condensat et I’équation de conservation de la densité
particulaire. V2 représente la densité superfluide & la limite non relativiste, jo = yu le potentiel
chimique dans le référentiel propre, avec v le facteur de Lorentz, et u* = v(1,,) la quadrivitesse
du fluide normal. La nouvelle variable hydrodynamique ¢ est reliée au potentiel chimique et figure
aussi dans ’équation de conservation du nombre de particules. D’autre part, grace a la différentielle
dP = sodTy + nodpg + %Vzd(a“qﬁ@”qb) et (10.5), on peut retrouver 1’équation de conservation de
I'entropie (10.4). Cette équation est la méme que celle du fluide parfait normal, ce qui est cohérent
avec 1’absence, par hypothese, de toute source de dissipation dans le superfluide.
Le modele hydrodynamique du superfluide relativiste est utile au chapitre 11 pour la généralisation

du modele hydrodynamique relativiste a la matiere nucléaire avec brisure de symétrie chirale

SU2), ® SU(2)r.



Chapitre 11

Brisure de symétrie chirale et matiere
nucléaire

Le but de ce chapitre consiste a établir un systeme complet d’équations hydrodynamiques
relativistes pour la matiere nucléaire prenant en compte la brisure spontanée de symétrie chirale
dans la zone centrale de collision en absence de baryons. L’intéréet de cette démarche réside dans
le fait que le systeme d’équations obtenu dans ce cadre particulier est compatible avec le domaine
de validité du modele de Bjorken, il peut donc étre utilisé au chapitre 12. Le traitement hydrody-
namique a l’échelle mésoscopique impose 'utilisation de grandeurs moyennées comme les densités
de charge moyenne droite et gauche pr et pr.

Dans un premier temps on pose les bases générales du modele hydrodynamique complet de
la matiere nucléaire. Dans un deuxieme temps on se place dans la zone centrale de collision, en
absence de baryons et on réalise un développement limité a l'ordre deux en champ de pion de la
phase du condensat chiral.

11.1 Modele hydrodynamique complet et matiere nucléaire

Pour établir le modele hydrodynamique complet, on envisage la brisure spontanée de symétrie
chirale dans le cas idéal d’un fluide relativiste parfait. Par hypothese de travail, les phénomenes
dissipatifs sont donc écartés du modele [123].

La méthode générale suivie, afin d’obtenir les équations hydrodynamiques qui décrivent la
brisure spontanée de symétrie chirale dans la matiere nucléaire, est relatée dans [122] et les prin-
cipales étapes du raisonnement sont rappelées dans [124]. Cette méthode générale est idéale pour
traiter les brisures de symétries. Par exemple, elle peut étre utilisée pour déterminer le systeme
d’équations hydrodynamiques complet du superfluide relativiste (10.5).

La démarche peut se décomposer en étapes charnieres : pour commencer, on détermine les cro-
chets de Poisson entre les variables hydrodynamiques. Il faut aussi que les symétries du probleme
soient compatibles avec le hamiltonien le plus général possible. Avec cet hamiltonien et les cro-
chets de Poisson il faut alors calculer les équations hydrodynamiques correspondantes. Par la
suite, comme la densité de moment est égale au flux d’énergie, on peut alors utiliser I'invariance
de Lorentz. Pour finir, on peut effectuer la mise en forme du systeme hydrodynamique complet.
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11.1.1 Variables hydrodynamiques et hamiltonien

On peut classer les quatorze degrés de liberté hydrodynamiques en deux groupes :

Le premier groupe correspond aux onze variables hydrodynamiques du fluide nucléaire qui sont
reliées aux densités des grandeurs conservées. Ces grandeurs sont les trois composantes 7% de la
densité de moment, la densité d’entropie s, la densité de nombre baryonique n, les trois densités
de charge droite et les trois densités de charge gauche. Dans SU(2), on peut écrire ces dernieres
sous forme matricielle & 'aide des expressions pr = pt;/2 et pr, = ph7;/2.

Le deuxieme groupe de variables est formé par les modes de Goldstone qui sont reliés a la brisure
spontanée de symétrie. En outre, pour la symétrie chirale, les bosons associés a ces trois modes
sont les pions. En coordonnées cartésiennes les champs de pions s’écrivent 7y, my, m3. Dans SU(2),
ces modes peuvent donc avoir une représentation matricielle. Plus précisément, les trois degrés
de liberté sont associés aux trois générateurs infinitésimaux de la transformation : ¥ = ™ 7/fr
qualifiée, par analogie avec le modele du superfluide, de phase du condensat chiral. En effet, la
matrice X représente la généralisation dans SU(2) de la phase du condensat superfluide ¢, avec ¢
appartenant a U(1).

De maniere générale, la méthode utilisée s’appuie sur la mécanique analytique [125]. Dans ce
cadre, on effectue le passage de 'espace de Hilbert a I’espace des phases et 1'algebre des crochets
de Poisson remplace 'algebre de Lie entre les commutateurs. De plus, les opérateurs associés a
la premiere quantification dans ’espace de Hilbert retrouvent le statut de grandeurs classiques
dans 'espace des phases. Dans cet espace, le caractere non-abélien de l'algebre de SU(2) n’est
alors plus d’origine quantique mais d’origine matricielle. Pour illustrer notre propos, on peut pren-
dre 'exemple des crochets de Poisson caractérisant la symétrie chirale. A 1’échelle mésoscopique,
les composantes des charges pr et p; forment, comme c’est aussi le cas pour leurs opérateurs
quantiques associés (9.10), avec €% le tenseur completement antisymétrique de Levi-Civita, deux
algebres fermées et séparées

{0L(@), pr(} = 0,
{Ph(@). pr(D)} = —epr(@)0°(F - 1),
{0L(@), L)} = —ep(2)8°(7 7). (11.1)

A T’échelle mésoscopique, les densités de charge pg et py, sont les générateurs des rotations chirales.
De plus, les crochets de Poisson des composantes p% et p? avec ¥ et 2T ne s’annulent pas.

(@ 2@} = —5S@FE -9, (4@ TG} = TP )

@50} = S@PE-7, (A0, 5@) =S @PE-g). 12)

On peut faire le méme constat pour les crochets de Poisson de la composante de la densité de
moment T% avec py, pr, & et 3.

{T‘,”(f),E(ﬁ)% = —0;S(X)0* & —7), {T°(),51())} = -0:5N(2)6*(Z - 7)),
{T%(@), pr(iN} = pr(E)0:0%& —4), {T(@),p(d)} = p(@)0*(F —7).  (11.3)

D’apres les symétries du systeme, le hamiltonien le plus général prend la forme :

H= /dx3T°0 (T%, s,n, p%, p3, 5,21, 0,2,0,57) . (11.4)
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Dans la définition de H, on considere la densité volumique d’énergie 7% comme une fonction des
quatorze degrés de liberté hydrodynamiques et des dérivées partielles premieres 0;3 et 9; % car on
suppose que X et 2T sont des fonctions lentement variables spatialement. Les dérivées partielles
des ordres supérieurs ne sont donc pas prises en compte. En outre, la différentielle totale de la
densité d’énergie prend la forme

dT% = Tds 4 pdn + 0'dT% + Tr [MRdPR + prdpy + oTdE + dSTo + %TdaiZ + dE)ZET%] , (11.5)

avec respectivement T', p, v%, g, pir,, o et ;, les variables thermodynamiques conjuguées a celles
déja énoncées pour le hamiltonien (11.4). Le caractere non-abélien du groupe des matrices de
SU(2) nous oblige & étre vigilant lors des permutations. Au contraire, ce n’est plus le cas a
I'intérieur d’une trace ou les éléments sont invariants par permutation circulaire. De plus, grace a
une transformation de Legendre, on peut déterminer la pression p ainsi que sa différentielle totale
dp :

p =0T +Ts+ pun + Tr [ugpr + prpr] — T, (11.6)

dp = TYdv’ + sdT + ndp + Tr | prdpg + prdpg — ofdS — Ao — 41O, S — do; Tty | . (11.7)

11.1.2 Equations hydrodynamiques et développement limité d’ordre
quadratique

La méthode générale pour établir les équations hydrodynamiques du systeme se base sur 1'u-
tilisation des relations (11.8), avec H le hamiltonien du systéme et F'(a,b, ¢, d, ...) une fonction de
plusieurs variables hydrodynamiques a, b, ¢, d,...[125] :

da OF OF OF
o = {H,a}, {F(a,b,c,d,...),a} = %{b,a} + %{c,a} + %{d,a} +.. (11.8)

Maintenant que ’on connait les crochets de Poisson associés aux variables hydrodynamiques de
la matiere nucléaire, voir partie 11.1.1, on peut alors déterminer le systeme complet d’équations
hydrodynamiques associé

atTOk: — _aleka
on = —0i(nv'), . .
_ i _ 1t ! t i t
Opr = ~0prv’) = Slm,pal + 5 Dot = 0l) — (0 = )21
Opr = —0i(prv’) = gluc, prl = 5 [(UT — 9))E = i (o - 8,%)] 7
9y = —0i9y - %(MLE — Yup), (11.9)

avec la composante spatiale du tenseur impulsion-énergie T% = pd™* 40T +Tr [%T o2+ akzw} .

L’égalité entre le flux d’énergie et la densité de moment 9,7%° = —9;T% entraine 'invariance

relativiste. Ensuite, a partir du systeme d’équations hydrodynamiques (11.9), on trouve en utilisant
la définition de T :

_Op

TV = ==
ovt

= (Ts + un + oPTOF 4 Ty [rpR + uLpL]) + Tr [vkakZT% + yjyk’@kz}

]

) [(MLET — RSNy — (S — EMR)%T} ‘ (11.10)
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A ce niveau, la seule hypothese sur la structure du hamiltonien est la lente variation spatiale
de ¥ et de X, les dérivées partielles premieres 9;% et 9;X1 étant alors petites.

Dans la suite de I’étude, on suppose aussi que les charges pgr, p; sont petites. Ces deux hy-
potheses sont plausibles car quand la symétrie chirale est vérifiée exactement X est constante et py,
pr sont nulles. De plus, les deux hypotheses précédentes sont en accord avec une lente dépendance
spatio-temporelle de Y. De ce fait, elles autorisent un développement limité au plus bas ordre en
Y2 d’ou une dépendance spatio-temporelle d’ordre quadratique en X. On en déduit que la densité
d’énergie T% est alors de la forme

TOO = €0<57n7T0i) + €1,

avec €y la densité d’énergie du fluide normal relativiste, voir la partie 10.1.4, et €; la densité
d’énergie associée aux termes chiraux de plus bas ordre par rapport & X, Xt et & leurs dérivées
spatiales respectives 9;3 et ;% donc

f2 1—2 1
€1 = Z<5ZJ - m@ U])Tl“ [8 ¥0; ET] 2f2( >T1“ [(pL _ Z/ORET)2]
U7T

Dans (11.11), v, = fs / fr représente la vitesse du pion alors que fs, f; et f, sont des fonctions
de la température T' = Ty/v et du potentiel chimique u = po/7v. Ces grandeurs peuvent étre
déterminées dans le cadre de la chromodynamique quantique, via la thermodynamique. f; et f;
correspondent aux constantes de désintégration temporelle et spatiale du pion. Si on se place a
température nulle, comme l'invariance de Lorentz est dans ce cas vérifiée a 1’échelle microscopique
alors f; = f;. Cependant, a température finie, et de maniere générale a cause de la présence d'un
bain thermique, 'invariance de Lorentz a 1’échelle microscopique n’est plus vérifiée. De ce fait, il
n’y a plus égalité entre f, et f;.

11.1.3 Systeme complet d’équations hydrodynamiques

Afin de réécrire les équations du systeme sous forme covariante, c’est-a-dire un systeme d’équa-
tions qui conserve la méme forme par changement de référentiel, 1'utilisation de combinaisons
linéaires des variables initiales s’impose. On peut donc définir deux combinaisons de potentiels
chimiques et deux combinaisons de charges, & savoir py = (ur + SupX’), pa = (ur — SprX’),
pv = (pr + ZprXl) et pa = (pr — LprXt). Dans cette opthue la mlse sous forme covariante a
I'ordre quadratique de la densité d’énergie en utilisant K =Ty-2 o T Hogo au , permet, d’écrire :

T = (K —1)po + i(K+ D(f2 = fAu'u” Ty [0,20,51] + (K — 1)iffTr [0,50"%T]
+(K + 1)}lf3Tr [(yiv)?] - (11.12)
Par transformation de Legendre, on en déduit la pression, toujours a ’ordre quadratique :
p=po+ i £2Tr [9,50"51] + i( 2 Py Tr [0,50,51] + }1 P[], (1113)

On peut donc établir la forme covariante du tenseur impulsion-énergie, a 1’aide des expressions
(11.10), (11.12) et (11.13). On obtient alors :

1
T = (e+ p)utu” —pg" + 2 fITr [0"50"5 + 0"20"ST] (11.14)
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Dans (11.14), les deux premiers termes du membre de droite de T" correspondent au tenseur
impulsion-énergie du fluide parfait relativiste, voir partie 10.3. En outre, le dernier terme du
membre de droite, proportionnel a f2, est associé & la brisure spontanée de la symétrie chirale.
Ainsi, le systeme complet est décrit par quatorze équations hydrodynamiques, le nombre de
variables hydrodynamiques étant comme on I'a déja évoqué précédement lui aussi de quatorze :

9,T" =0 O (nou) = 0, (11.15)
2
i0,(f2L0MSN + (f2 — fHuru”¥0,21) + [u30,5T, f;uv] =0, (11.16)
fa 13
0. (F ,uvu“) 2[u“28 »i ?,Ll,v] 0. (11.17)

En outre, dans les quatorze equatlons on retrouve les cing équations du fluide normal relativiste
et neuf autres équations se rapportant a ’hydrodynamique de la symétrie chirale. Ces dernieres
correspondent a 1’équation du premier ordre en ¥ (11.17) et a I’équation du second ordre en X
(11.16). De plus, on peut montrer que les neuf équations spécifiques de la symétrie chirale sont
équivalentes a ’équation du premier ordre en ¥ et aux équations 9,J) =0 et 0,J; = 0 avec

Jeo= e fZ)U“UZ’ZTa,,E—i—ffZT@“E}—i—;lu”ZTfquZ, (11.18)

»-lkl®

Jb = [(ft [ uuE0, S + f2EorET] + uﬂff,w. (11.19)

Pour finir, le systéeme hydrodynamlque étant fermé, le probleme est donc en théorie soluble.
Cependant, en pratique la démarche est ardue. D’autre part, a partir de ce systeme complet, on
peut retrouver la conservation de I'entropie par la méme démarche que celle de (10.4).

11.2 Hypotheses simplificatrices pour le systeme complet

Maintenant que les principales notions, nécessaires a la compréhension du probléeme ont été
présentées, on peut désormais aborder le probleme de maniere plus concrete. La suite de 1’étude
consiste a essayer de mettre en évidence les écarts dus a la brisure spontanée de symétrie chirale par
rapport au fluide nucléaire standard ou la symétrie chirale est vérifiée exactement. La résolution
globale du probleme étant compliquée, nous allons donc restreindre le domaine de validité.

11.2.1  Absence de production de baryons

Dans les collisions d’ions lourds relativistes le nombre de mésons produits est tres important.
De ce fait, lors de ce type de collision, le nombre de baryons créés dans la zone centrale de rapidité
est négligeable devant le nombre de mésons, voir partie 12.1.1. Dans la suite de 1’étude, nous
supposons donc que le nombre de baryons est nul, ce qui se traduit par puy = 0 et ng = 0. Le
systeme complet d’équations se réduit alors a

T = (€ + p)uru” — pg"’ + }1 f2Tr [0" 207 ST 4 6V S0 ST (11.20)
9,T" =0 (11.21)

p=0po+ iffTr (0,205t + i(ff — 2 u"Tr [9,50,51] (11.22)
i0,(f220"SY + (f7 = [u'u9,3h) = 0. (11.23)
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11.2.2 Développement limité en champ de pion

Le développement limité a I'ordre zéro correspond au cas de figure ou la production de pions est
nulle, la phase du condensat est alors > = 1. On se place désormais dans le cas ol le développement
limité de la phase ¥ du condensat chiral en puissances de 7.7 est vérifié, avec T vecteur dont les
composantes sont les matrices de Pauli et 7 le champ de pion classique. En se limitant a l'ordre
quadratique en 7.7 on obtient pour X

T.T T.T

¥ = exp Vf—ﬂ 1+ z;—ﬁ ! (f) +o((7.7)?). (11.24)

En réalisant le développement limité au premier ordre en 7.7 des équations (11.20), (11.21),
(11.22) et (11.23) on retrouve le systeme complet d’équations associé au fluide normal relativiste
sans baryons et sans brisure spontanée de symétrie chirale, voir partie 10.3.

Par contre, le développement limité au deuxieme ordre dans le développement en champ de
pion 7.7 de ces mémes équations permet d’aboutir a

™ = (e + p)u'u” — pg"” + i f*‘z Tr [0X(7.7)0" (7.7) + 0" (7.7)OM(7.7)] (11.25)
9, 1" =0 (11.26)

pP=pot ijo [0,(7.7)0"(7.70)] +Z(ft fo 2 i Ty [0,(7.7)0,(7.7)] (11.27)
d, ((ft 72 ) utu” 9, (7.7) + —é@“(?.ﬁ)) =0. (11.28)

Avec la méme méthode que celle utilisée pour le fluide normal (10.4), on retrouve alors la
conservation de ’entropie avec le développement limité a I’ordre deux en champ de pion.

Ces équations sont applicables pour de petites fluctuations chirales dans la zone centrale,
indépendamment de toute considération de géométrie. Dans le chapitre 12, on se place dans la
géométrie de Bjorken (1 + 1) afin de quantifier les écarts générés par la brisure spontanée de
symétrie chirale sur le fluide normal relativiste.



Chapitre 12

Applications aux réactions entre ions
lourds

Comme on I'a déja évoqué au chapitre 10, le point de vue hydrodynamique est fréquemment
utilisé pour décrire les fluides a basses fréquences et grandes longueurs d’onde. Dans ce cadre, le
systeme est décrit grace a un nombre restreint de degrés de liberté, les variables hydrodynamiques.
Dans ce chapitre, nous utilisons le systeme complet d’équations établi a la fin du chapitre 11, voir
partie 11.2.2, dans une géométrie particuliere, la géométrie de Bjorken (1 4 1).

Le but de ce chapitre consiste dans un premier temps a rappeler les grandes lignes du modele
de Bjorken pour le fluide idéal. Dans un deuxieme temps on étudie les écarts induits par la prise
en compte de la brisure spontanée de symétrie chirale sur I’évolution de la matiere nucléaire sans
dissipation. Dans un troisieme temps on s’intéresse aussi a la prise en compte de la dissipation
dans la matiere nucléaire mais cette fois sans brisure de symétrie chirale [123].

12.1 Domaine de validité du modele de Bjorken

12.1.1 Régime de transparence et zone centrale

Le modele de Bjorken est souvent associé au point de vue hydrodynamique pour décrire
la dynamique des collisions d’ions lourds ultrarelativistes. Une des particularités du modele de
Bjorken réside dans le fait que les solutions obtenues pour décrire I’évolution de la pression P,
la température T'; la densité d’énergie € et la densité d’entropie s sont analytiques, voir partie
12.1.3.

Parmi les différentes approches, certaines envisagent la collision entre deux ions lourds ultra-
relativistes identiques [126, 127]. La nature relativiste de cette collision impose la dilatation des
temps et la contraction des longueurs paralleles au mouvement par rapport aux référentiels pro-
pres des ions lourds. Avec les notations choisies, 'axe du boost de Lorentz est orienté selon z.
Les vitesses n’étant plus additives sous la transformation de Lorentz, on utilise leurs analogues

relativistes, les rapidités y.
1 E+ P,
— h -1
y = arcth(v,) 5 n(E—E)’

avec F, I'énergie, P, I'impulsion selon I'axe z d'une particule et v, = %. De plus, il faut utiliser
le temps propre T = %, temps dans le référentiel de repos d’une particule, a la place du temps t a
cause de la perte du caractere absolu de ce dernier.
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B A
2R .—» 0 4-. 2R
> >
2R 2R

Yem Yem

Fi1GURE 12.1: Collision dans le centre de masse de deux ions lourds ultrarelativistes identiques A et
B. ~em représente le facteur de Lorentz dans le référentiel du centre de masse et R correspond au
rayon propre des noyaux. Dans le référentiel du centre de masse, il y a contraction de la longueur
parallele a la direction du boost de Lorentz par rapport au référentiel propre. Figure adaptée de
[128].

Expérimentalement, on peut avoir acces au nombre de particules N, produites par unité de

rapidité %—N Pendant les collisions, un grand nombre de mésons et de baryons secondaires sont
Y

créés dans la région de rapidité entre le projectile et la cible. On peut citer par exemple les pions
7, 77,7, les kaons K+, K=, K°, voir partie 9.1.1.

En outre, le traitement hydrodynamique de 1’évolution du systeme n’est pas valide aux premiers
instants des collisions mais a partir du moment ou 1’équilibre local est atteint, c¢’est a dire pour
T > Ty lme De plus, pour les domaines de tres haute énergie comme E.,, > 100A.MeV [128],
avec A le nombre de nucléons, les échelles de temps des mécanismes d’expansion hydrodynamique
et de production de particules sont décorrélées.

A dN
dy ] baryons .
plateau | central [ | mésons

fragmentation de la 0 fragmentation du
cible projectile

FIGURE 12.2: Vision schématique de % en fonction de la rapidité y dans une collision d’ions lourds

a tres haute énergie. Trois zones sont visibles, une zone centrale et deux zones périphériques. Figure
adaptée de [128].

Le nombre de baryons est important dans les deux zones périphériques de fragmentation de la
cible et du projectile. Dans la zone centrale, correspondant a y ~ 0, la production de mésons est
tres importante tandis que les baryons sont quasi absents. De ce fait, dans la suite de I’étude on
suppose que le nombre de baryons est nul dans la zone centrale.

En outre, comme le nombre de particules produites par unité de rapidité dans cette zone
centrale présente un plateau, on peut donc en premiere approximation le considérer constant lors
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de collisions A + A de particules identiques

dN

— ~ constante. (12.1)
dyla+A

La validité de cette hypothese sur la distribution de rapidité s’appuie sur l'extrapolation de
résultats expérimentaux analogues lors des collisions p 4 p entre protons.

Contrairement au cas général, ol les observables dépendent de la rapidité y, dans la zone
centrale on peut donc adopter un traitement simplifié ou on suppose I'indépendance de ces mémes
observables par rapport a y. De plus, les mésons sont principalement des pions car, leurs énergies de
masse étant plus petites que celles des autres mésons, ils sont formés prioritairement. En pratique
ils correspondent a 90% de la totalité des mésons. Dans la suite de I’étude on suppose donc que
les pions sont les seuls mésons formés.

L’ensemble des hypotheses simplificatrices précédentes concernant la zone centrale sont in-
trinseques au modele de Bjorken.

12.1.2 Rappels sur le modele de Bjorken sans brisure de symétrie

Dans la gamme de hautes énergies E.,, > 100A.MeV [128, 129, 130] les deux noyaux ne
sont pas stoppés pour former un noyau composé chaud comme c’est le cas pour les gammes
d’énergies inférieures mais se transpercent mutuellement et sont alors transparents I'un par rapport
a I’autre. Parmi les différents modeles simples décrivant les collisions d’ions lourds, celui de Bjorken
est souvent utilisé pour décrire les collisions centrales symétriques. Plus précisément, le modele
de Bjorken est un modeéle hydrodynamique & (1 4+ 1) dimensions qui est valide dans la région
centrale de collision. D’apres les dimensions du modele, le systeme est représenté par un cylindre de
rayon tres grand. Pendant la collision I’expansion transversale est alors négligée devant 1’expansion
longitudinale car on néglige I’épaisseur longitudinale des noyaux. En outre, on suppose alors que
les coordonnées longitudinales des nucléons d’'un méme noyau sont identiques.

B A A" B

FIGURE 12.3: Schéma d’une collision d’ions lourds ultrarelativistes dans le modele de Bjorken
(14+1). A, Bet A', B représentent respectivement les noyaux avant et apres collision. La région
entre A’ et B’ représente la zone centrale de production de pions. Figure adaptée de [129].

L’évolution du systeme peut étre visualisée dans un diagramme d’espace-temps caractérisé par
le temps propre 7 et la rapidité y qui sont les variables naturelles du modele de Bjorken. Dans
ce diagramme les temps propres sont représentés par des hyperboles situées a I'intérieur du cone
de lumiere. La rapidité y est la coordonnée permettant de se déplacer sur ces hyperboles. Les
conditions initiales du fluide nucléaire sont donc caractérisées par une hyperbole de temps propre
constant 7y. Les particules secondaires de cette collision possedent une distribution en vitesse et
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e . , e . ;. 1 ;e el s
leurs temps caractéristiques de désintégration vérifient 7 > 15 = % De plus, une des spécificités

de la cinématique relativiste impose des temps de vie d’autant plus longs que les vitesses des
particules sont élevées. Par exemple dans la figure 12.4 avec la convention ¢ = 1, des particules
assimilées & des particules libres, créées en (¢, z) = (0,0), se désintegrent sur I'hyperbole de temps

propre T = /12 — 22,

Comme on I’a déja évoqué pour le nombre de particules par unité de rapidité dans la zone
centrale, voir partie 12.1.1, les propriétés du systeme sont indépendantes de la rapidité le long
de I'hyperbole 7. L’invariance selon ’axe z par transformation de Lorentz est alors vérifiée pour
le systeme ainsi que pour les équations hydrodynamiques qui le caractérisent. Les propriétés du
fluide au point de coordonnée z se déduisent de celles en 0. Comme la vitesse du fluide est nulle
en z = 0, la quadrivitesse peut s’écrire u* = (1,0,0,0), ce qui en z devient ut = % = (£,0,0,2),
par transformation de Lorentz suivant 'axe z, dont la vitesse est v = 2

fragmentation
du projectile

fragmentation
delacible

projectil cible

FIGURE 12.4: Evolution dans l'espace-temps de la région centrale de rapidité dans le modele de
Bjorken. L’évolution hydrodynamique du systeme est située entre ’obtention de 1’équilibre local
en 7 et le freeze-out en 7y. Figure adaptée de [127].

Le diagramme d’espace-temps est constitué de différentes zones représentant chacune une étape
de I’évolution du systeme pendant son refroidissement [128]. Par ordre chronologique, dans la
premiere étape 7 < 79, le systeme se thermalise pour atteindre 1’équilibre local en 7 = 7y ~ 1f "
Ensuite dans la deuxieme étape, pour 7 > 7y, la symétrie du modele est réalisée. Dans le cadre
de cette théorie effective, la transition de phase du plasma de quark-gluons, si elle existe, est
incorporée dans le processus de thermalisation du systeme. Le refroidissement du systeme aboutit
alors a la phase d’hadronisation des quarks en mésons et baryons [128]. De ce fait, dans la zone
centrale le point de vue hydrodynamique du gaz de pions devient valide. Pour finir, dans la
troisieme étape le gaz de pions évolue jusqu'a 7y, temps de < freeze-out >, contemporain de la
libération des pions. Les pions peuvent alors s’échapper du milieu dense et deviennent libres dans
ce régime asymptotique.
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12.1.3 Caractéristiques du modele

De maniere générale, les grandeurs caractérisant le systeme sont des fonctions des deux vari-
ables naturelles du probleme, le temps propre 7 et la rapidité y.
De plus, on relie ces variables (7,y) aux variables (¢,z) en utilisant les relations

t(r,y) = Tcosh(y) et =z(r,y) = 7sinh(y). (12.2)

Dans la zone centrale, voir partie 12.1.1, par hypothese ces grandeurs sont indépendantes de
la rapidité. Dans le modele de Bjorken a (1 + 1) dimensions, ce cas de figure est plausible si
T < R/c~6fm/c,ou R est le rayon des noyaux. Pour des temps propres supérieurs il faut prendre
en compte ’expansion transverse et donc utiliser un modele a (3+1) dimensions [129]. Dans la zone
centrale les observables comme la densité d’énergie ¢, la pression p, la température 7', la densité
d’entropie s deviennent indépendantes les unes des autres et sont des fonctions de la seule variable
7. Le systeme est alors soluble analytiquement en se basant sur I’hydrodynamique relativiste du
fluide normal, voir partie 10.3, et les lois de la thermodynamique. Dans ce cas particulier le
nombre baryonique est nul donc dE=T'dS-pdV d’ou une enthalpie volumique w = € + p = T's.
Alinsi, on peut déterminer la dépendance en 7 de chacune de ces grandeurs.

Ziio0 s s =sm? (123)
g—f n %g —0 = T(r)=T(n) (?)1/3 (12.4)
ten o i (2)” 29
% + gg =0 = p(r)=p(n) (?)4/3- (12.6)

De plus, I'équation d’état du systeme est celle d'un gaz de Bose de masse nulle, les pions étant
ultrarelativistes. On a donc une loi de type loi de Stephan

7]_2

€
=aT* == avec a= gr—, 12.7
p 3 9730 (12.7)
olt g = 3 est la dégénérescence due aux pions 7+, 7=, 7° [128, 130]. De plus, on peut retrouver
'équation (12.6) a partir des équations (12.5) et (12.7).

En outre, pour 7y ~ lme correspondant au début de 1’évolution hydrodynamique, les conditions
initiales associées sont

€(10) = 210MeV.fm™3  P(1) ~ 70MeV.fm™3

T(7p) ~ 200MeV  s(r) =~ 1.4fm~3 (12.8)

12.2 Géométrie de Bjorken et brisure de symétrie chirale

12.2.1 Développements limités en 7.7 dans la zone centrale

Le but de cette partie consiste a essayer de généraliser le modele de Bjorken en tenant compte
de la brisure spontanée de symétrie chirale. La démarche n’est pas facile dans le cas général car
les hypotheses du modele de Bjorken standard ne sont pas toutes compatibles avec cette brisure.
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Par exemple, l'invariance par translation selon la direction z de la transformation de Lorentz est
brisée. Cette brisure de symétrie interne est visible dans le hamiltonien a cause de la présence
de termes se rapportant a la brisure de la symétrie chirale. En outre, les termes dans le tenseur
impulsion-énergie T"” qui brisent la symétrie chirale ne vérifient pas la symétrie d’espace-temps.

Les grandeurs pertinentes du systeme sont des fonctions des deux variables naturelles : temps
propre T et rapidité y. De maniere générale c¢’est la dépendance par rapport a y qui rend le probleme
difficile hors de la région centrale ou la rapidité y n’est pas nulle. Dans la suite de 1’étude on ne
considere dans la zone centrale que la dépendance par rapport a la variable 7 et on pose y = 0.
De ce fait, dans la zone centrale, on retrouve alors la symétrie de Bjorken, a savoir I'indépendance
des variables par rapport a y. Comme dans le modele de Bjorken standard, on suppose aussi que
le nombre de baryons dans cette zone centrale est nul.

On envisage maintenant le développement limité en champ de pion du condensat chiral .
Dans le développement limité au premier ordre en 7.7, les termes de brisure sont inexistants, pour
le tenseur impulsion-énergie T*" ainsi que pour les équations d’évolution des grandeurs spécifiques
du systeme. Les équations hydrodynamiques sont alors celle du fluide parfait relativiste et on
retrouve les résultats du modele de Bjorken standard, voir partie 12.1.3.

Au contraire, avec le développement limité au deuxiéme ordre en 7.7, on observe des termes
spécifiques de la brisure de symétrie chirale. Seule la forme analytique de la densité d’entropie est
identique a (12.3), obtenue pour le modele de Bjorken standard malgré la prise en compte de la
brisure de symétrie chirale.

Js s T
Z4+2=0 = s(r)=s(n)= (12.9)
or 7 T

Les autres équations concernant la densité d’énergie € et la température 1" ne sont plus a pri-

ori solubles analytiquement. Ces derniéres prennent la forme d’un systeme d’équations couplées,
constituant une généralisation des équations (12.4) et (12.5)

st 5\ 0T O (22— f2 (oFRNT) | Lf21 (0RRN?|
(— 4aT) + Tr = IE o +2sz 5 =0 (12.10)

; ar
o [1f% (077" 1721 (977"
O (Lic (OmANTY LS L AOTTAT (12.11)
or \2f2\ or 2271\ Or
De plus, la pression est déterminée a partir de la généralisation de 'équation d’état (12.7). Celle-ci
n’est alors plus celle d'un gaz de Bose ultrarelativiste.

(6;7?)2] . (12.12)

Pour finir, afin de fermer le systeme d’équations, il faut utiliser 1’équation d’évolution du champ
de pion (11.28) dans la géométrie de Bjorken

f_f@zf'.ﬁ N lf_tz N 3 f_t2 or. 7
f2 or? T2 Or \ f? or

Les termes spécifiques de la brisure interviennent sous forme de traces Tr excepté dans (12.13). Le
systeme d’équations est maintenant fermé donc soluble numériquement si on connait les formes

Oe n T's(10)7o

or T2 +1r

1 2
p:aT4+—f—tT7’

41z

= 0. (12.13)



12.2. GEOMETRIE DE BJORKEN ET BRISURE DE SYMETRIE CHIRALE 151

analytiques des constantes de désintégration f;, fs et fr = 93 MeV. La résolution de (12.13), et
la forme analytique (12.9) donnent acces a (12.10). On peut alors résoudre les équations (12.11)
et (12.12).

Comme il n’existe pas d’expressions analytiques générales pour f; et f; en fonction de la
température, on est amené a faire des hypotheses simplificatrices. On envisage ensuite deux pos-
sibilités : température nulle d’ott une indépendance de f; et f par rapport a la température et
température finie avec une dépendance en température pour f; et f, valide aux basses températures.

12.2.2 Constantes de désintégration indépendantes de la température
Systéme d’équations associé

Une hypothese simple, justifiée pour les basses températures, consiste a considérer que f; =
fs = fr. La validité de cette hypothese s’appuie sur le fait que, méme si a température finie ces
fonctions ne sont pas égales, voir partie 11.1.2, leurs corrections pour les basses températures
sont en T2 [5]. De ce fait, les corrections pour fZ, f? et f? — f2 sont alors en 7. En outre,
comme Tr[7?] = 2, avec T le vecteur dont les composantes sont les matrices de Pauli, le systéme
d’équations prend la forme

s(1) = s(m0)— (12.14)

(A0 —aar) 3 (3 1) (52 ) = 1215
(%f)Q =0 (12.16)
<%7j)2 (12.17)
(5% . %) %f 0, (12.18)

avec T' la composante cartésienne i du champ de pion 7 vérifiant ie{1,2,3}. Par hypothése 7 est
indépendante de la rapidité y et ne dépendant que du temps propre 7 dans la zone centrale.

Expression analytique du champ de pion 7 et matrice densité

La forme analytique de la composante 7*(7) du champ de pion se détermine par intégration
de I’équation (12.18) correspondant au laplacien a une dimension en coordonnées cylindriques. La
condition initiale est 7'(75) = 0 car les pions sont inexistants pour 7 < 7.

ort A , T
=— = m =Ah <—) : (12.19)

or T To

Dans le systeme complet d’équations, seule la dérivée du champ de pion par rapport au temps
propre intervient. L’évolution du systeme est donc indépendante de la condition initiale pour le
champ de pion 7(7g). Ainsi, seule la connaissance de A est nécessaire. A est en fait une variable
aléatoire car on ne peut pas déterminer la valeur exacte de A, la vitesse des pions formés en
T=Ty pouvant varier. Pour aller plus loin, on détermine la distribution des valeurs de A en 7 car,
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avec ces conditions initiales différentes, on peut procéder a des moyennes. On peut ainsi établir
la distribution de la variable aléatoire A en 7y et déterminer le comportement du systeme dans la
limite des grands nombres.

Dans la densité d’énergie le terme caractérisant la brisure spontanée (11.11) peut s’écrire

1= [0r\”
@ =3 Z (87) . (12.20)

La matrice densité du systeme p est alors
2
) ) : (12.21)

3 i
o= (o frar) oo ) o (5 f 5 (5

Si on considere la symétrie d’isospin vérifiée on a g, = 3 et la constante d’intégration A devient
indépendante de 7. La matrice densité peut donc s’écrire

p X exp (—gé/d% <§>2> : (12.22)

De plus, pour 7=7y, la matrice densité est une gaussienne centrée en 0 dont il faut déterminer
la variance. Si Vj est le volume initial dans le référentiel du centre de masse et 7., le facteur de
Lorentz assurant le passage entre les deux référentiels alors Vg /7., est le volume initial du systéme
dans le référentiel du laboratoire

p(70)  exp (—ggigﬁ (%)2> — exp <—20f—(270)> . (12.23)

Le volume initial est supposé de la forme Vy = 7wR2.2cry avec R ~ 5fm le rayon des noyaux
projectile et cible comme on peut le voir dans la figure 12.1 et 2c7y = 2 fm la distance de séparation
entre le projectile et la cible, ¢ étant la célérité de la lumiere dans le vide. De plus, le facteur de
Lorentz assure le passage entre le centre de masse des deux noyaux en collision et le référentiel du
laboratoire est estimé a 7., >~ 10. De ce fait, pour 7 = 7y la variance de la distribution gaussienne
de A centrée en 0 est

T(TO)TO’ch

Sy I ~ 4.25MeV.fm ™. (12.24)
g

o?(ry) =

Résolution analytique

Le cadre dans lequel le systeme d’équations est valide s’appuie donc sur les hypotheses sui-
vantes : on suppose que dans la zone centrale, ou les baryons sont négligés, les grandeurs du
systeme ne dépendent que du temps propre et sont indépendantes de la rapidité, on pose alors
y = 0. De plus, on réalise un développement limité au deuxieme ordre en champ de pion de la
phase du condensat chiral, avec f; = f, = fr = 93 MeV et on considere que la symétrie d’isospin
est vérifiée. Avec les hypotheses que nous venons de rappeler, on trouve le systéeme suivant, dont
la résolution est analytique

s(t) = 3(70)? (12.25)

<s(To)To B 4aT3) o _, o T(r) = T(n) (%)1/3 (12.26)

T or
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de  Ts(10)70 A2 B T0\*3 g A% (702
Tt Hm=0 = d)=edn) (?) 27 (?) (12.27)
T0\¥3  gx A (702
_ o gn A7 (T0* 12.2
) =) (7)) + 55 (7) (12.28)

Dans la suite de I’étude, on remplace pour 7 = 79, A% par < A% >= 0%(7y) dans € et p.
Cette démarche a pour but la détermination de 'importance des termes spécifiques de la brisure
spontanée de symétrie chirale au deuxieme ordre en champ de pion par rapport aux termes du cas
idéal sans brisure. On estime avec (12.8) un écart de 'ordre de 1% par rapport au cas idéal pour
la densité d’entropie, la densité d’énergie, la pression et la température. En effet, comme on peut
le voir avec la figure (12.5), dans tous les cas les deux catégories de courbes se superposent pour
chacune des quatre grandeurs

1 ] I

— T, 1
-- sls
0811\ 0 o]
a e/e, etp/p,

0,6 | \\\ —]
0,4 | \\\ |
02 \“‘-~~_~_\___\_\ _

0 | | | |
1 2 3 4 5 6

FI1GURE 12.5: Les grandeurs adimensionnées du cas avec brisure spontanée de symétrie chirale au
deuxieme ordre en champ de pion et du cas idéal sont superposées.

En conclusion, on peut dire que I'approximation qui consiste a négliger la brisure spontanée de
symétrie chirale dans le traitement hydrodynamique du systéme semble étre vérifiée. En pratique,
on peut donc déterminer I’évolution du systeme avec le modele du fluide parfait relativiste. Cepen-
dant, I’hypothese ou les constantes de désintégration f; = fs = fr = 93 MeV sont indépendantes
de la température est peut-étre trop simpliste. Dans le paragraphe suivant nous introduisons donc
une dépendance en température.

12.2.3 Constantes de désintégration dépendantes de la température

Avec une dépendance explicite en température du type fZ = f2 = f2[1 — T?/(6f2)], valide
a basse température [107], la résolution analytique compléte n’est plus possible pour toutes les
grandeurs. En outre, le terme spécifique de la brisure de symétrie chirale dans la matrice densité

(11.11) prend la forme
3 2
€ = 1= TQ/ 6/2)] Z ( ) : (12.29)
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De ce fait, en utilisant la méthode de la variation de la constante, la solution de l’équation
d’évolution du champ de pion (12.13) s’écrit

or  A[L=T3/(6/2) A0, (1), (12.30)

or _Tn-m6rz)] " n=r/6) " \n

Ensuite par la méme méthode de résolution que dans la partie 12.2.2 et en posant Ty = T'(79), le
systeme d’équations (12.9), (12.10), (12.11), (12.12) devient

To

s(1) = s(m0) =

T

(A0 g g, AU TIOREY 0T BUZTORE 1y

(12.31)

v 6f2 7 [1=T2/(6f2)7 e h =T 6]
de  Ts(ro)ro Irts (T ) 201 = T3/(6/2))?/ (1 = T2/(612)]*) _
or M 1+ (S(TO)TOT —4aT372)[1 — T2/(6L]"72)]2/(g776f2 A2[1 —T2/(6£2)]?) 0 (1233)
_ i, 9 AL =TR/(6£7)]? (702
p=al S T G (—) . (12.34)

En 7 = 79, la variance de la distribution gaussienne pour la variable aléatoire A centrée en 0 est
maintenant 0% (1) telle que 02 (79) =< A% >= o%(79)/([1 — T¢/(6f2)]).

T,

05
1

FIGURE 12.6: Evolution de la température en fonction du temps propre. Ligne continue : fluide
sans brisure de symétrie chirale et ligne pointillée : fluide avec brisure spontanée de symétrie.

L’estimation de l'ordre de grandeur des termes correctifs avec fZ2 = f2 = f2[1 — T?/(6f2)]
s’effecue par le remplacement pour 7 = 75 de A% par < A% >. On aboutit cette fois-ci & un
écart de 5% par rapport au cas idéal. De ce fait, I'utilisation du fluide idéal dans le traitement
hydrodynamique de la matiere nucléaire constitue donc une bonne approximation. Par exemple,
pour T'(19) = 200 MeV onaen7/17 =6, T(679) = 105 MeV pour le fluide avec brisure spontanée
de symétrie chirale et T'(67y) = 110 MeV pour le fluide idéal.
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12.3 Le fluide visqueux

Jusqu’a présent, toute source de dissipation a été sciemment écartée. Un traitement plus réaliste
doit tenir compte de cet aspect. Dans la suite de I’étude on s’intéresse a une source particuliere
de dissipation : la viscosité, le but étant de quantifier les écarts par rapport au fluide idéal.

12.3.1 Pions de masse nulle : pions chiraux

Par hypothese, on considere que dans la suite de I’étude la symétrie chirale est vérifiée. Plus
précisément, on se place dans le méme cadre d’étude que celui de la référence [106]. On considere
donc la géométrie de Bjorken a (1+1) dimensions dans laquelle on étudie le comportement hydro-
dynamique d'un gaz de pions ultrarelativistes vérifiant m, = 0. En outre, comme pour le fluide
avec brisure spontanée de symétrie chirale, dans la zone centrale s, T', € et P ne dépendent que
du temps propre 7. De plus, les relations entre ces grandeurs sont

s=4aT® €=3aT* P =al", (12.35)

avec a = ¢,72/90 et g, = 3 la dégénérescence du champ de pion. De mani¢re générale, pour les
particules de masse nulle, la viscosité de compression ( s’annule. la seule viscosité prise en compte
est la viscosité de cisaillement n = b/T, avec b = 7 f2/8. La forme de I'équation d’évolution de la
densité d’énergie varie en fonction de la forme analytique du tenseur des contraintes visqueuses ®

Oe éi P

— = —. 12.36
or 37 T ( )
On envisage trois cas de figure correspondant aux trois situations suivantes :
o =0 cas idéal
4n .
o —— premier ordre
s 0Ty
T = —®+ -2 deuxitme ordre (12.37)
or 3T

-A Tordre zéro, n = 0 : on retrouve le systeme d’équations du fluide parfait idéal.

-A T'ordre un, ordre ou I’on se place habituellement pour les lois phénoménologiques de Fourier et
Fick par exemple, la viscosité de cisaillement est prise en compte. Cependant, cet ordre n’est pas
< réaliste > car le temp de relaxation associé est infini.

-A T'ordre deux, on pallie le probleme du temps de relaxation de I'ordre un par 'intermédiaire du
temps de relaxation 7, = 31/2p, qui cette fois-ci est fini, selon la théorie de Miiller-Israel-Steward.

La méthode de résolution est la méme pour les trois ordres. Dans un premier temps, € et ¢
sont déterminés, avec (12.36) et (12.37). Dans un deuxiéme temps, on peut alors trouver 7', s et P
avec l'aide de (12.35). La dépendance en température de la viscosité implique que, pour les ordres
un et deux, il n’existe pas de solution analytique. D’apres la résolution numérique on montre que,
contrairement aux résultats de [106], les écarts au fluide idéal dus a la viscosité sont minimes. Les
résultats obtenus sont en accord avec l'auteur de [106, 131, 132].

Dans ce cas de figure, 'approximation fluide parfait est donc aussi réaliste. Ainsi, le traitement
hydrodynamique relativiste de la matiere nucléaire en considérant des pions de masse nulle est
une bonne approximation dans le cas non dissipatif avec brisure spontanée de symétrie chirale et
quand on prend en compte la viscosité avec la symétrie chirale respectée. Cependant, ce constat se
base sur les hypotheéses de [106] qui ne sont plus viables pour les formes analytiques de la viscosité
1 et du temps de relaxation 7, quand on considere des pions massifs.
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12.3.2 Pions massifs et pions chiraux

Quand on considere que les pions ne sont plus de masse nulle comme c’est le cas pour les
pions chiraux mais qu’ils sont massifs, il faut revoir le systeme complet d’équations du systeme.
Les équations hydrodynamiques associées aux grandeurs conservées restent les mémes que pour
I’étude de la brisure spontanée de symétrie chirale. Par contre, dans cette section, on considere
pour les pions massifs d’autres équations de transports que celles de la section 12.3.1 ou les pions
sont chiraux. En outre, pour les pions massifs on considere une section efficace m — m expérimentale
au lieu d'une section efficace m — m déduite de I'algebre des courants comme c’est le cas pour les
pions chiraux. La viscosité n et le temps de relaxation 7, en fonction de la température 7T sont
plus importants pour les pions massifs que pour les pions chiraux [133].

1 N T T T I T T
N\
N '\ — cas idéal i
AN ---- 1% ordre (n pions chiraux)
™ \\ ...... eme . .
09 ~ N 27" ordre (n et T_ pions chiraux) —
N --- 1% ordre (n pions massifs)
\;'\"\.,\\\\ - 2°™ ordre (n et T_ pions massifs)
08| |
o ) Tes \_:\\
~ - 3 ~ < —
— S s
07} N T |
06~ .
05 1 I 1 I 1 I 1 I 1
"1 2 3 4 5 6
/T,

FiGURE 12.7: Evolution de la température en fonction du temps propre pour le cas idéal et les
deux ordres de la théorie dissipative avec des pions massifs et des pions chiraux. Figure adaptée
de [134].

Les profils d’évolution des pions massifs sont similaires pour les deux ordres dissipatifs. En
outre, quand les pions sont massifs, le refroidissement est plus lent que pour le cas idéal ou le cas
des pions chiraux. Pour 7/79 = 6 la température des pions massifs est 20% plus importante que
pour le cas idéal ou les deux ordres dissipatifs des pions chiraux. Par exemple, pour T'(75) = 200
MeV on aen 7/19 = 6, T(679) = 140 MeV pour le fluide dissipatif et T'(679) = 110 MeV pour
le fluide idéal. De ce fait, lors du traitement des collisions d’ions lours, ’aspect dissipatif doit étre
pris en compte [135].
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Dans cette partie I, on a effectué le traitement hydrodynamique de la matiere hadronique
produite lors de collisions d’ions lourds ultrarelativistes. Le but de la démarche consiste a estimer
quantitativement les écarts par rapport au fluide relativiste idéal dans la zone centrale de col-
lision, en se plagant dans une géométrie simple, la géométrie de Bjorken (1 + 1). Pour cela, on
réalise différentes approximations. Dans la zone centrale, les particules produites sont des mésons,
essentiellement des pions, la densité baryonique est donc négligée. En outre, les grandeurs ne sont
fonctions que du temps propre, la rapidité est alors supposée nulle. De plus, on suppose I'invariance
de Lorentz a l’échelle microscopique. Bien que ces approximations soient parfaitement justifiées
d'un point de vue phénoménologique, il n’en reste pas moins qu’il serait souhaitable de s’en af-
franchir. Cela aurait cependant pour conséquence d’alourdir énormément le traitement analytique
et numérique sans pour autant forcément changer de maniere significative les écarts par rapport
au fluide idéal.

Une extension pour aller au-dela du fluide idéal consiste a prendre en compte la brisure spon-
tanée de symétrie chirale. Pour ce faire, on réalise un développement limité de la phase du con-
densat chiral au deuxieme ordre en champ de pion. Dans ce cadre on étudie deux cas de figure.
Dans le premier cas, on considere que les constantes de désintégration temporelle et spatiale du
pion ne dépendent pas de la température. On estime alors un écart du profil de température
de 1% par rapport au cas idéal. Dans le second cas, on considére une dépendance temporelle
pour les constantes de désintégration du pion dans ’approximation des basses températures. On
en déduit alors 5% d’écart par rapport au cas idéal. De ce fait, en premicre approximation le
traitement hydrodynamique de la brisure de symétrie avec le fluide relativiste idéal est une bonne
approximation.

Une autre extension pour aller au-dela du fluide idéal prenant cette fois en compte de maniere
simple les effets dissipatifs aux ordres un et deux a été également développée pour les pions chiraux,
c’est-a-dire de masse nulle. Les écarts au cas idéal obtenus sont également petits. A priori, cela
signifie que 'approximation du fluide idéal dans les collisions d’ions lourds s’avere étre dans ce
cas aussi une bonne approximation. Cependant, avec un traitement plus réaliste de la viscosité
de cisaillement, du temps de relaxation, de la section efficace m — 7 et en considérant les pions
massifs le constat est tout autre. En effet, on constate que le refroidissement est ralenti de 20%
par rapport au cas idéal. Un traitement réaliste des collisions d’ions lourds doit donc tenir compte
impérativement des effets dissipatifs.

Il faut également signaler que les équations hydrodynamiques présentées dans cette partie 111
peuvent étre utilisées a d’autres desseins au premier rang desquels figure la relaxation des DCC,
< Disoriented Chiral Condensates >, produits lors des collisions d’ions lourds.

Depuis cette étude le traitement dissipatif et en particulier le calcul de la viscosité ont été
développés pour la géométrie (1 + 1) [135, 136]. En outre, une étude a été réalisée en géométrie
(34 1) [137].
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Conclusion générale

Cette these porte sur I'étude de différents aspects de la physique nucléaire depuis les basses
énergies jusqu’aux énergies intermédiaires. Pour les basses énergies, ou la matiere nucléaire est
essentiellement constituée de nucléons en interaction, les themes abordés traitent d’une part de la
fusion-fission des éléments super-lourds et d’autre part des regles de somme associées aux interac-
tions tensorielles de type Skyrme. Pour les énergies intermédiaires, la matiere issue des collisions
d’ions lourds ultrarelativistes étant alors considérée comme une phase hadronique principalement
constituée de pions, on se focalise sur 'hydrodynamique avec brisure de symétrie chirale.

Dans la continuité des conclusions relatives a chacune des trois parties de cette these, nous
rappelons maintenant les principaux résultats et constatations qui en découlent ainsi que les
différentes perspectives d’étude.

Partie I - Fusion-fission des éléments super-lourds

Dans le cadre de la fusion-fission de noyaux super-lourds, les effets de mémoire doivent étre
pris en compte dans la dynamique de formation d’un noyau super-lourd. La grande majorité
des études sur la fusion des noyaux super-lourds sont réalisées dans un cadre markovien. Une
piste d’investigation possible consisterait a tenir compte des effets de mémoire dans le phénomene
d’entrave a la fusion des noyaux super-lourds.

Dans la phase de désexcitation d’un noyau super-lourd, I'existence d’un puits isomérique dans
la barriere de potentiel, méme s’il change la dynamique de désexcitation et augmente les temps
de fission, ne permet pas d’expliquer les résultats des expériences menées au GANIL par blocage
cristallin. En revanche, cette étude pourrait étre utile a I’étude de la dynamique de la fission des
actinides.

Partie II - Regles de somme et interactions tensorielles de type Skyrme

Dans cette partie II, on a utilisé les interactions phénoménologiques effectives de type Skyrme
afin de déterminer les regles de somme M, et M3. Pour M; on a intégré le terme tensoriel et pour
M3 on a utilisé le terme central uniquement.

La connaissance de M; et M3 a tout d’abord permis de vérifier numériquement les intégrales
des réponses. Mais l'intérét des moments ne se limite pas a cela : une étude est actuellement en
cours pour la détection systématique des instabilités des paramétrisations de la force de Skyrme.
En effet, il se trouve que la violation des regles de somme coincide avec un pole dans la réponse
et donc a une instabilité. Ce genre d’approche présente donc un avantage indéniable en raison de
son caractere prédictif.
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Partie III - Hydrodynamique nucléaire et brisure de symétrie chirale

Dans cette partie III, on a réalisé 1’étude hydrodynamique relativiste de la matiere nucléaire
pour les énergies intermédiaires. On se place alors dans la géométrie (1 + 1) de Bjorken afin
d’étudier les collisions d’ions lourds ultrarelativistes, en se focalisant plus particulierement sur la
zone centrale de collision. Dans cette zone centrale la production d’'un grand nombre de pions,
considérés comme des bosons de Goldstone ou des pseudo-bosons de Goldstone suivant qu’ils
soient respectivement non-massiques ou massiques, est associée a la brisure spontanée de symétrie
chirale.

Les écarts par rapport au modele du fluide parfait ultrarelativiste qui sont dus a la brisure
de symétrie chirale sont ténus, de l'ordre de 5%, contrairement aux écarts d’origine dissipative
qui eux peuvent étre plus importants, de l'ordre de 20%. De ce fait dans un traitement réaliste
de 'hydrodynamique nucléaire ultrarelativiste on peut s’affranchir, en premiere approche, de la
brisure de symétrie chirale mais pas de ’aspect dissipatif. Ces considérations s’appliquent au profil
de température utilisé dans les collisions d’ions lourds.

Pour I'instant, toutes les études de cette partie I1I ont été effectuées loin du point critique. Dans
la transition de phase fluide-superfluide loin du point critique, seule la phase du condensat est une
variable hydrodynamique. Par contre, pres du point critique, 'amplitude du condensat devient
aussi une variable hydrodynamique. De ce fait, pres du point critique, le systeme complet des
équations hydrodynamiques est modifié. Cette étude est réalisée pour le superfluide non relativiste
dans le cadre du modele de Landau des deux fluides [138, 139, 140]. La trame de la démarche
consiste donc en premier lieu a généraliser ce systeme d’équations au cas du superfluide relativiste
pres du point critique. Ensuite, a partir du systeme d’équations ainsi obtenu, 1’étape suivante
consiste a trouver un systeme complet d’équations hydrodynamiques pour la matiere nucléaire
pres du point critique.
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