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Nuclear clustering over the nuclear chart from a covariant EDF approach
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Abstract. Nuclear clustering has been studied with covariant Energy Density Functional approaches for more
than a decade. It recently allowed to bridge microscopically the description of cluster states in light nuclei
with the one of cluster and alpha decays in heavy ones. The proper use of theoretical tools, such as the density
and the nucleonic localization function, allows to shed light on the mechanisms of formation and identification
of clusters in nuclei. Finally, a global analysis of nuclear clustering is discussed, in order to identify control

parameters for a nuclear cluster phase.

1 Introduction

The covariant Energy Density Functional (EDF) has been
proven to describe in the same framework quantum lig-
uid and cluster states [1-4]. It allowed to show, in a sin-
gle framework, that clusterization can be induced not only
by the vicinity of the alpha emission threshold as inferred
by the famous Ikeda conjecture [5], but also by the depth
of the potential [2], the excitation energy [6], the increase
of the deformation [6], the decrease of the density [7, 8]
and the one of the nucleon number [3, 4]. This led to a
more universal picture of nuclear states, between quantum
liquid and clusterization, as validated by a good descrip-
tion of the data, namely the excitation spectrum built on
various bands in 2°Ne [9] and '2C [10]. More recently,
the covariant EDF approach has also been able to describe
dynamical processes, such as alpha emission [11], as dis-
cussed in section 2. In section 3, the recent several one-
body functions [12, 13], used to pinpoint the presence of
clusters in nuclei, raise a necessary discussion. Finally, in
section 4, we also discuss the identification of control pa-
rameters for the cluster phase in nuclei, such as the density
and the number of nucleons, to provide an overview of this
phenomenon.

2 The covariant EDF approach and
comparison with the data

An obvious difference between an alpha-emitting nucleus
and an alpha-clusterized one is that the corresponding Q
value is negative in the latter. However, it is expected that

*e-mail: elias.khan@ijclab.in2p3.fr

beyond these differences, similarities remain, such as in
the formation of the alpha particle. As discussed in the
introduction, covariant EDF approaches have been shown
to describe cluster phenomena in light nuclei, and are also
known to describe fission from a least action path [14].
Therefore, one can naturally wonder if this approach could
describe alpha decay on the same ground. Indeed, sev-
eral studies have successfully shown that covariant EDF
approaches are able to predict alpha decay with a good de-
scription of the measured alpha emission half-life, within
typically one order of magnitude [11, 15, 16]. More pre-
cisely, in such an approach, the least action path is fol-
lowed on a potential energy surface calculation. The key
point here is the deformation degrees of freedom to be con-
sidered. For instance, in the alpha emission of average
mass nuclei, it has been shown that both the quadrupole
and octupole degrees of freedom have to be considered.
However, in the case of alpha emission by heavy nuclei,
such as 2'?Po, or Ra and Rn isotopes, the hexadecapole
degree of freedom also has to be considered for the heavy
system to form a neck, useful for the alpha emission.

In the same spirit, it has also been shown that cluster
radioactivity could be described with covariant EDFs [11].
It is interesting to note that cluster emissions were first
described by Gogny EDF [17], which is non-relativistic.
However, it seems that for now, only the covariant EDF is
able to describe alpha emission. This may be due to its
good capability of describing alpha cluster states in light
nuclei. It should be noted that cluster emission can be
more difficult to describe than the alpha one for covari-
ant approaches, because the cluster, such as '*C can bring
some internal degrees of freedom, which would require a
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more advanced description than the so-called ATDHF ap-
proach [11], and also an improve of the inertial mass de-
scription. However, it should be noted that calculations
of alpha and cluster emissions are at the limit of what can
achieved by today’s nuclear structure models, in terms of
computing calculations.

Concomitantly to the alpha decay description, another
decay path has appeared in the calculations, which cor-
responds to the emission of two alpha particles at once
[11, 15]. This double alpha decay is discussed in the con-
tribution of L. Heitz to the present conference.

3 Criteria and indicators to pinpoint an
alpha cluster

With the understanding that the Ikeda conjecture was not
the only lever acting on the appearance of alpha cluster
states, such states have also been searched for in heavy
nuclei. Experimentally, this has become a hot topic with
the use of (p,pa) reactions on various nuclei over the nu-
clear chart [18, 19]. On the theoretical side, some indica-
tors have been designed to pinpoint the presence of alpha
particles. It should be noted that the mere nucleonic den-
sity, showing localization, is already a signal, as obtained
with covariant EDF in clusterized nuclei [2, 20]. How-
ever, since other approaches, such as Skyrme EDF, usually
do not predict alpha clusterization as frequently as what is
observed [2], some alternative indicators have been con-
sidered. For instance, the nucleonic localization function
(NLF) has recently been used in several works [21, 22].
Also, the alpha particle density, in a covariant framework
that explicitly includes alphas in the Lagrangian, is another
indicator [23]. More recently, the so-called local alpha re-
moval strength has also been introduced [13]. These 2 last
indicators are discussed in the contribution of the present
conference of S. Typel and T. Nakatsukasa, respectively.
Finally, one could also consider the localization parameter
[2, 3, 24], which can be calculated microscopically or in
the HO approximation, to pinpoint the presence of cluster
states in nuclei.

In a recent study, we have shown that the NLF is not
pinpointing the presence of clusters, but rather indicates
the level of purity of the nucleonic wave functions [20].
This has also been discussed in [22, 25] in the case of fis-
sion. However, the NLF could be helpful to enlighten the
alpha formation process, as it is complementaty to the co-
variant density. More precisely, in the alpha decay process,
the nucleonic wave function first gets pure as an alpha one,
and then in a second step, gets localized [20]. This sheds
a microscopic light on the alpha preformation mechanism
at work before alpha emission: an alpha cluster is not pre-
formed in the heart of the daughter nucleus at once, but
rather on its surface and with the above-mentioned two-
step mechanism.

4 Is there a cluster phase in nuclei ?

With the emergence of a global understanding of cluster-
ization over the nuclear chart within covariant EDF ap-
proaches, one could consider cluster as a transitional phase

between the less delocalized quantum liquid phase and the
more localized crystal one. Such a transitional state of lo-
calization is known to happen in different fields of physics
[26]. Dealing with phase transition, one could look for the
control parameters that drive the transition of the system.
In the case of nuclei, the number of nucleons has been
identified as a control parameter [3, 4, 27], since the lo-
calization parameter showed how alpha clusters are more
likely in light than in heavy nuclei. In these studies, it was
also realized that the crystal phase in nuclei would require
too few nucleons to exist.

Another control parameter is the nuclear density, re-
lated to the Mott transition. Here, it was shown that in
the low-density regime, which can be reached either by
diluting a nucleus [7, 8], as for instance in the last stages
of heavy ion collisions, or by analyzing the occurrence of
alpha presence in the very surface of nuclei [23], a tran-
sition from a quantum liquid to a cluster phase could be
obtained. Hence, the density shall also be a control param-
eter for the occurrence of a cluster phase in nuclei. Figure
1 displays the corresponding phase diagram in nuclei ob-
tained by a dimensionless analysis, and confirmed by both
HO and microscopic EDF calculations.
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Figure 1. Density vs nucleon number phase diagram in nuclei,
obtained in a dimensionless analysis [27]. The solid line repre-
sents the clusterization condition: nuclear state are more likely
to be clusterized below this line, and more likely to behave as
delocalized quantum liquid state above this line.

Finally, a recent work analyzed the role of the temper-
ature on nuclear clusterization, showing the disappearance
of the cluster phase in hot nuclei [28]: interestingly, pair-
ing plays an important role, by synchronizing the critical
temperatures of cluster and shape phase transitions.

5 Conclusion

Covariant EDFs provide a general and broad understand-
ing of the cluster phenomenon and its links to the quan-
tum liquid state in nuclei. Several upgrades could be made
within such an approach. For instance, including more de-
gree of freedom such as triaxiality, in the case of cluster
decay. Using four body indicators for alpha cluster identi-
fication would also be relevant. Finally, several open ques-
tions remain: the community should agree on the role and
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limitations of the various identification functions for clus-
ters in nuclei. Also, the identification of possible order
parameters of the cluster phase transition in nuclei should
be more precisely investigated.
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