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Abstract This study introduces a pioneering approach to
analyzing compact stars through Finslerian geometry, which
has not been previously explored in this context. By employ-
ing the Barthel connection within Finsler–Randers spaces,
the research derives a novel metric for compact stars, uti-
lizing the unique geometric nature of spacetime inherent in
Finslerian geometry. This offers a fresh perspective on under-
standing the structure of these stars, departing from the tradi-
tional Riemannian geometry commonly used in astrophysics.
Specifically, the investigation delves into the Randers met-
ric within Finslerian geometry to investigate the dynamics
of these celestial bodies. It defines a component of Randers
space, denoted asη(r) = a+ br2

R2 , wherea andb are constants,
r represents radial distance, and R signifies the observed
radius of the star. The research focuses on developing met-
ric potentials within the Finslerian framework, enabling a
comprehensive comparative analysis of their regularity. By
leveraging the unique physical properties of compact stars,
the study determines the values of constants “a” and “b,” as
well as those associated with metric potentials. Through an
analysis of four distinct compact stars, the research provides
valuable insights into various physical attributes based on
estimated data. Furthermore, the investigation explores ther-
modynamic quantities derived within the Finslerian frame-
work, contributing to the characterization of these compact
stars. The study emphasizes the stability inherent in the con-
figuration of compact stars under Finsler space geometry,
indicating the potential applicability of Finsler geometry in
understanding and characterizing celestial bodies in astro-
physics.
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1 Introduction

Compact stars, recognized for their extraordinary density and
small size, are the remnants of massive stars that have com-
pleted their nuclear fusion and undergone gravitational col-
lapse. Within this celestial category, white dwarfs and neu-
tron stars are observed. White dwarfs originate from stars
of low to moderate mass, while neutron stars emerge from
the cataclysmic explosions of supernovae in more massive
stellar bodies. Additionally, a hypothetical class of compact
stars exists—black holes—forming when massive stars col-
lapse beyond the neutron star phase, resulting in an entity
whose gravitational pull is so immense that not even light
can escape. Research in this field of astrophysics delves into
understanding the extremes of matter and gravity, provid-
ing invaluable insights. Furthermore, studying these com-
pact stars is crucial not only for unraveling the dynamics
within galaxies but also for understanding the broader evolu-
tion of the universe [1,2]. Exploring these compact celestial
entities extends to investigating their potential roles in phe-
nomena such as the propagation of gravitational waves and
their potential connections to the enigmatic forces of dark
matter and energy that significantly influence the universe’s
composition and evolution.

The Einstein field equations (EFE), being nonlinear differ-
ential equations, pose significant challenges in obtaining ana-
lytical solutions. However, under the assumption of spheri-
cal symmetry, various solutions have been derived for the
universe. These solutions encompass the de Sitter solutions,
Schwarzschild solutions (both exterior and interior), and Kerr
solutions. Notably, entities like wormholes, black holes, and
compact stars emerge as solutions to these complex equa-
tions. The gravitational equilibrium of perfect fluids has been
a focal point in understanding the solutions to EFEs, as evi-
denced in [3]. Compact stars, in particular, stand as solutions
within the gravitational field equations, depicting the phase
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when all thermonuclear energy sources within a sufficiently
massive star have been depleted. They persist as remnants of
continuous gravitational contraction and are characterized
by the application of the interior Schwarzschild metric [4].
Research has delved into establishing constraints for stable
compact stars in a thermodynamic equilibrium state, explor-
ing limitations related to their density, mass, and anisotropic
parameters, as outlined in [5]. These investigations are funda-
mental in understanding the stability and properties of these
intriguing celestial bodies.

Einstein’s theory of general relativity has been a cor-
nerstone in understanding the universe’s structure. Count-
less studies within the realm of general relativity (GR) have
focused on unraveling the intricacies of compact fluid spheres
[6–21]. These investigations have aimed to provide an under-
standing of the behavior and characteristics of compact stars
within the framework of GR. Moreover, there has been sig-
nificant interest in exploring the behavior of compact stars
under modified gravitational theories. Research endeavors in
this domain have expanded the scope beyond classical gen-
eral relativity, investigating how deviations or modifications
in gravitational theories influence the properties and behav-
iors of these dense celestial objects. This avenue of study
has opened new pathways to understanding gravity’s role in
shaping the structure and dynamics of compact stars, offer-
ing potential insights beyond the confines of traditional Ein-
steinian gravity [22–27]. The study of compact stars using
the Karmarkar condition has been other area of research in
compact stars [28–30].

The study of the universe within the broader context of
Finsler geometry [31–33] represents an intriguing avenue of
research that expands beyond traditional Riemannian geom-
etry [41–64]. Finslerian metrics, such as the Randers metric
and Kropina metrics [38,39], have become pivotal tools in
investigating the universe’s properties from this alternative
geometric standpoint. These metrics play a crucial role in
formulating and interpreting the theories of relativity within
the framework of Finsler geometry, enabling the derivation
of field equations that describe the dynamics and structure of
the cosmos [44–46]. One notable aspect illuminated by this
approach is the comprehension of the universe’s anisotropy
across various Finslerian backgrounds [47,48]. Researchers
have employed Finsler geometry to better grasp the inherent
directional disparities or irregularities observed throughout
the cosmos. Through this exploration, they aim to unravel
the underlying mechanisms driving these directional varia-
tions, offering a unique lens through which to understand
the fundamental principles of relativity and the nature of our
universe. Furthermore, the cosmological dynamics derived
from the Finsler structure of the universe diverge from those
obtained through the Riemannian framework. This distinc-
tion is reflected in the physical equations formulated within
the Finslerian context, offering a different perspective and set

of tools to explore and understand the fundamental structure
and evolution of the universe [49–57].

The utilization of Finsler–Randers (FR) metrics has
proven to be remarkably successful in elucidating various
facets of the universe, encompassing the structure of space-
time, the mechanisms behind inflation [54,55], and even the
characteristics of compact celestial entities like wormholes
[56–59] and compact stars [60,62]. These theories suggest
that FR metrics serve as promising candidates for explain-
ing observed universal phenomena. Moreover, they propose
that the Finsler metric stands out as a metric for understand-
ing both the isotropic and anisotropic structures within the
universe, surpassing the capabilities of the traditional Rie-
mannian metric.

The success of Finsler geometry in elucidating various
aspects of the universe arises from its intricate geometric
properties. Our current focus lies in investigating into the
exploration of celestial objects, particularly compact stars,
within the framework of FR backgrounds. In our research,
we employ the Barthel connection [31–38], a significant tool
within the study of Finsler spaces, to address and simplify
these intricate geometries. Leveraging the osculating Rie-
mannian approach [40], which aids in navigating the com-
plexities inherent in Finsler spaces, we utilize the Barthel
connection to streamline our analysis. This approach is the
focus of ongoing research [54–56,63,64], where the appli-
cation of such connections enables us to shed light on the
dynamics of dark energy and the evolution of the universe
within the framework of Finsler geometry. Our aim is to
extend this approach further by elucidating the structure and
properties of compact stars within the Finslerian background.
By adopting these methodologies, we seek to unravel new
insights into the nature of these dense celestial objects, lever-
aging the geometric richness of Finsler geometry to deepen
our understanding of compact stars and their role within the
broader cosmic landscape.

This paper is structured as follows: Sect. 2 provides a
concise introduction to Finsler geometry and derives the met-
ric tensor expression for the line element of compact stars.
Additionally, it presents the expressions governing the ther-
modynamic properties of the fluid that forms these compact
stars. Section 3 delves into the physical characteristics of
these stars, validating different thermodynamic aspects and
assessing their stability conditions. Finally, Sect. 4 explores
the significant findings of this study and offers a comprehen-
sive physical interpretation of the model investigated.

2 Fundamentals of Finsler geometry in compact star
analysis

Finsler geometry [31–33], as the metric extension of Rie-
mannian geometry without imposing quadratic restrictions,
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encompasses a wide range of geometric objects within the
tangent bundle of the manifold M of dimensionn. Computing
these objects poses significant challenges. To streamline our
calculations, we utilize the Barthel connection by employing
the path of the osculating Riemannian space. This approach
simplifies the computation of geometric entities in terms of
the Christoffel symbol. Essentially, this process allows us to
reduce all spatial geometry to Riemannian space geometry,
where the distinguishing factor lies in replacing the metric of
Riemannian geometry with the osculating Barthel–Finsler–
Randers metric [54–56,63,64]. This captures the inherent
anisotropic nature of Finsler geometry, intricately embedded
within the geometry of Finsler space.

We begin our exploration of compact stars within the
framework of Finsler geometry. Finsler geometry inherently
defines a metric function on the manifold M , denoted as
F , on the tangent bundle of a differentiable manifold. This
function F is instrumental in defining the Finslerian metric
tensor, gi j (xy), represented by Eq. (1)

gi j (x, y) = ∂2F2

∂yi∂y j
(1)

and (x, y) = (
xi , y j

)
are the canonical coordinates of the

tangent bundle with y = yi ∂
∂xi

for any tangent vector y at
x ∈ M . Additionally, gi j (xy) is homogeneous of degree zero
in yi .

In this study, we aim to apply the Barthel–Finsler–Randers
space to elucidate the structural characteristics of anisotropic
compact stars [19,20]. The Randers metric [38,39] comprises
the combination of a Riemannian metric α(xy) and a dif-
ferentiable 1-form β(xy). Conventionally, the Riemannian
structure represents an isotropic and spherically symmet-
ric universe, while the 1-form β encapsulates directional-
dependent anisotropy inherent in structures [47]. This Ran-
ders metric, as represented by Eq. (2), is formulated as

F (x, y) = α (x, y) + β (x, y) =
√
ai j (x) yi y j+Bi (x) y

i .

(2)

Here, the juggling of indices is carried out utilizing the Rie-
mannian metric tensor ai j (x)

2.1 Finslerian compact star model

For the study of compact stars or any stellar structure in the
context of Finslerian structure, the general consideration of
the metric function is of the form [46,60]

F2 = B (r) yt yt − A (r) yr yr − r2 F̄2(θφyθ yφ). (*)

Here, the functions A and B are dependent on the radial
distance r . And the dynamics of stellar objects have been
derived using this metric [57,59–62] But in the present work,

we have proposed a new metric for the study of stellar objects,
which we now describe in detail.

The line element describing the spacetime around a static,
spherically symmetric matter distribution in Schwarzschild
coordinates is written as [5,16–21]

ds2 = ev(r) dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (3)

Here, v(r) and λ(r) are called metric potentials (gravitational
component functions) and are functions of radial distance r .
This equation characterizes the structure of spacetime around
a spherically symmetric mass, incorporating elements for
time, radial distance, and angular coordinates. In this par-
ticular context, we are considering the Riemannian metric of
a Randers metric as

α (x, y) = ds2 = diag
(
ev(r),− eλ(r),− r2,−r2 sin2 θ

)
.

(4)

For β (x, y) , it is expressed as a vector

β (x, y) = Bi y
i , (5)

where Bi = ( γ (r) , 0, 0, 0) is a vector with compo-
nents (γ (r), 0, 0, 0), and (yi ) represents the coordinates
(yi ) = (y0, y1, y2, y3) = (t, r, θ, φ). By incorporating
the Barthel connection and considering that 1-form β (x, y)
has a nonzero time component within compact stars, using
Eqs. (2)–(5) in Eq. (1), we derive the osculating FR metric
with the approach as in [54–56,63,64], and detailed deriva-
tion has been given in the Appendix.

(
gi j (x, y)

) = diag
(
η (r) (ev(r) + η (r) − 1

)
,

−η (r) eλ(r),− η (r) r2,− η (r) r2 sin2 θ ), (6)

with η (r) = γ (r) + 1.
This metric describes the geometry of spacetime, account-

ing for the influence of the time-dependent factor γ (r) within
compact stars, modifying the elements of the metric tensor
accordingly. And this metric structure clearly differs from
the metric equation of compact stars as referred in [46,60].

In the context of the osculating Riemannian approach
[34,40] and the Barthel connection, when transitioning from
Finslerian geometry to Riemannian geometry, the Finslerian
connections and curvatures can be expressed in terms of the
Riemannian Christoffel symbols. This transition allows the
Finslerian form of the EFEs to essentially transform into
EFEs within Riemannian geometry. The distinction lies in the
replacement of Riemannian metric components with Finsle-
rian metric components, characterized by the inclusion of an
anisotropic term denoted as η(r). Consequently, the EFEs
take the form

Gi j = Ri j − 1

2
Rgi j = k Ti j , (7)
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where k = 8πG
c4 with G is the Newtonian gravitational con-

stant, and c is the speed of light. For this specific work, k has
been set to 1, gi j is the osculating FR metric, and Ti j is the
energy momentum tensor that characterizes the anisotropic
matter distribution (perfect fluid) within the compact stars
and is of the form [20–23,23,24]

T i
j = ( ρ + pt ) u

iu j − ptδ
i
j + ( pr − pt ) viv j (8)

with uiu j = −viv j = 1; uiv j = 0. Here, ui is the four-
velocity vector,vi represents unit radial vector,ρ is the energy
density, pr is the radial pressure measured in the direction of
ui , and pt is the transverse pressure of the matter that is fluid
content distributed in compact stars, which is measured in an
orthogonal direction to vi . Thus, the components of the Ti j
are given by

Ti j = diag ( ρg00, −pr g11, −pt g22, −pt g33) . (9)

Therefore, the EFEs of line element (6) along with (9) lead
to the following set of independent equations:

ρ = ev−λ

(
r

(
η

′
r + 2η

)
− 4rη

′ − 2η
)

2r2η2 ( ev + η − 1)
+

e−λ (η − 1)
(
r
(
η

′
r + 2η

) (
λ

′ − 4η
′
r − 2η

)
+ 2η ( ev + η − 1)

)

2r2η2 ( ev + η − 1)
, (10)

pr =
eλ−v

((
v

′
r2 + 4r

)
η

′ + 2v
′
ηr + 2η

)
+ 2e−λ

(
r ( 3η − 2) η

′ + η2 − η
)

− 2η ( ev + η − 1))

2r2η2 ( ev + η − 1)
, (11)

pt = e−λ

2r
(
e2v(r) + (η (r) − 1)

(
η (r) + 2ev(r) − 1

))
η(r)2

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝ ηv

′′ − λ
′
(

η+ v
′
ηr
2 +rη

′
)

+
(
ηv

′ + 2η
′) (

v
′ + 2

)

2

⎞

⎠ e2v

⎞

⎠ + ηevr (η − 1) v
′′ +

(
−v

′
evr + ( 5η − 4)) ev + 3η2 − 5η + 2

)
η

′

+
λ

′
(

−3rη
′
(

2
3 + (5η−4)ev

3 +η2− 5η
3

)

− η (η − 1)
(

v
′
evr + 2η + 4ev − 2

))

2
+ v

′
evη (η − 1)

(
v

′
r + 1

)

⎤

⎥⎥
⎦ (12)

where the prime denotes the radial derivative of the functions.
In the context of solving the EFEs for anisotropic compact

stars within the FR geometry, the system of Eqs. (10)–(12)
involves six unknowns: ρ, pr , pt , v, λ, η. To solve this sys-
tem, choices or approximations for three variables need to be
made. Researchers often employ various approximations for
variables such as v(r) and λ(r) to discuss the structure of
compact stars among all these metric potentials in this work.
The expressions chosen for the variables are [22–24]

v (r) = Br2 + C, (13)

λ (r) = Ar2. (14)

Here, A, B and C are arbitrary constants determined by cer-
tain physical assumptions. These expressions are selected to

ensure a structure of compact stars without singularities. The
variable η (r) plays a crucial role in the solutions of the EFEs.
An expression for η(r) is suggested as

η (r) = a + br2

R2 . (15)

Here, a and b are real constants, and R is a characteris-
tic radius of the compact stars. This expression for η (r) is
proposed based on specific considerations, likely tied to the
desired properties of the spacetime geometry and matter dis-
tribution within compact stars. Choosing appropriate expres-
sions for v (r) , λ(r) and η(r) is crucial in finding solutions
to the EFEs and ensuring the physical validity of the result-
ing model for compact stars within the FR background. These
choices are often guided by physical intuition, observations,
and desired properties of the spacetime metric.

When selecting the expressions for v (r) , λ(r)) and η(r)
in the context of solving the EFEs for compact stars within the
FR geometry, several considerations come into play, which
are as follows[25–30]:

1. Singularity avoidance: The expressions for v (r) , λ(r)

and η(r) as Br2 + C Ar2, η (r) = a + br2

R2 are chosen
to ensure a singularity-free structure for compact stars.
These choices are motivated by the desire to create phys-
ically plausible solutions without encountering problem-
atic singularities in the spacetime.

2. Physical relevance The parameters A, B, C , a, and b
are determined based on physical assumptions and con-
straints derived from observed behaviors in stellar struc-
tures. These constants encapsulate properties such as
mass distribution, energy density profiles, or conditions
within compact stellar objects.

3. Metric structure: The form of the metric tensor gi j in
Eq. (6) is instrumental in defining the geometry around
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compact stars within the FR background. The expression
for η (r) as a + br2

R2 plays a crucial role in characterizing
the anisotropic effects within this metric structure derived
in a Finslerian background

4. Anisotropic influence of η(r): η(r) is a component of the
smooth vector field β, which is nonvanishing on the mani-
fold M . This 1-form β introduces anisotropy into the met-
ric, allowing for directional dependence and nonuniform
behavior within the compact star. It must be a smooth
function defined on the manifold and must be nonvan-
ishing; otherwise, the metric reduces to a Riemannian
one. Therefore, we have selected η(r) to be a nonvanish-
ing analytic function defined on M . Different forms of
η(r) can be chosen to ensure the validity of the proposed
metric structure. These choices are guided by physical
intuition, empirical observations, and desired properties
of the spacetime metric. Specifically, the expression for
η(r) is chosen to satisfy the condition η (R) = 1. This
condition ensures that our metric structure resembles the
Schwarzschild metric when matched at the boundary of
the compact stars. The term η(r) introduces anisotropic
effects into the spacetime metric, allowing for nonuni-
form behavior in different spatial directions. The con-
stants a and b in Eq. (15) potentially control how
anisotropy varies with radial distance and might influ-
ence the overall geometry and matter distribution within
compact stars. The presence of R in the denominator
of the term η likely indicates a characteristic scale for
anisotropy. This parameter might govern the extent or
range over which the anisotropic effects become signifi-
cant within the spacetime of compact stars. And we point

out that this η(r) may be the additional field or energy that
keeps the stability of the compact stars. Thus, this Finsle-
rian term may contribute additional stability to compact
structures, and it may be the cause for dark energy or
any form of other energy that may be present within the
structure of compact stars.

Physical implications

• The choice of these expressions aims to reflect physical
properties and behaviors observed or theorized within
compact stellar structures.

• The specific values of the constants (A, B, C, a, b) are
typically determined through analysis and calculations
based on physical models, observations, or phenomeno-
logical considerations.

• This choice for η(r) allows us to incorporate anisotropic
effects that vary with radial distance. The term b r2

R2

introduces dependence on r , indicating how anisotropic
effects evolve with distance from the center of the com-
pact star. The constant a represents a baseline anisotropy,
while the term b r2

R2 adds a radial dependence to the
anisotropic effects.

These choices and expressions form the foundational assump-
tions necessary to proceed with solving the EFEs and ulti-
mately derive solutions describing the structure of compact
stars within the FR geometry.
Thermodynamic parameters

By substituting the expressions (13)–(15) in EFEs, we
have the expression for ρ, pr , pt as

ρ =
2R2

( (
a

(
Ar2 − 1

2

)
R2 + 2r2b

(
Ar2 − 5

4

))
R2e(−A+B)r2+C + R2

(
aR2+br2

)

2 eBr
2+C

)

(
eBr2+C R2 + (a − 1) R2 + br2

)
r2

(
aR2 + br2

)2 +

×
2R2

(
(a − 1) R2 + br2

) ( (
a

(
Ar2 − 1

2

)
R2 + 2r2b

(
Ar2 − 5

4

))
e−Ar2 + ar2

2 + br2

2

)

(
eBr2+C R2 + (a − 1) R2 + br2

)
r2

(
aR2 + br2

)2 , (16)

pr =
2R2

( (
a

(
Br2 + 1

2

)
R2 + 2r2b

(
Br2 + 5

4

))
R2e(−A+B)r2+C − R2

(
aR2+br2

)

2 eBr
2+C

)

(
eBr2+C R2 + (a − 1) R2 + br2

)
r2

(
aR2 + br2

)2 +

×
2R2

(((
a2−a

)
R2

2 + 4r2b
(
a − 5

8

)
R2 + 7

2b
2r4

)
e−Ar2 − (

(a − 1) R2 + br2
) (

aR2 + br2
))

(
eBr2+C R2 + (a − 1) R2 + br2

)
r2

(
aR2 + br2

)2 , (17)
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Table 1 Observed physical properties of compact stars

Name of compact star m (mass) R (radius)

Her X-1 m = 0.85 R = 8.1

Cen X-3 m = 1.74 R = 11.751

PSR J1416-2230 m = 1.97 R = 12.182

SMX X-1 m = 1.04 R = 10.067

pt = − eAr
2
R2

e2Br2+2C R4 + (
2R2eBr2+C + (a − 1) R2 + br2

) (
(a − 1) R2 + br2

) (
aR2 + br2

)2

×
{((

R4
(
a

(
B (A − B) r2 + A − 2B

)

+B (A − B) r4 + (3A − 4B) r2
))

e2Br2+2C +
(

(a − 1) a ( B − 2B) r2 + 2A − 2B
)
r2

+2A − 2B) R4 + r2b2
(
−5 + B (A − 2B) r4 + (7A − 2B) r2

)
R2eBr

2+C +
(
Aa (a − 1) R4

+5b

(
A

(
a − 5

3

)
r2 − 3a

5
+ 2

5

)
R2 +

(
4Ar4 − 3r2

)
b2

) (
(a − 1) R2 + br2

) }
. (18)

Exploring anisotropic compact star models within Finsle-
rian geometry involves considering theoretical properties for
compact stars like Her X-1, Cen X-3, PSR J1416-2230, and
SMX X-1 [28]. Theoretical mass and radius details, listed
in Table 1 and are utilized to refine and validate theoretical
models against expected astrophysical behaviors. Incorpo-
rating these theoretical properties helps align predictions in
Finslerian geometry with stellar characteristics.

3 Physical characteristics of solutions for compact stars

3.1 Matching conditions

In the process of determining the constants A, B, C, a, and
bwithin the metric function, it is crucial to note that we
encounter five unknowns constrained by three equations. To
resolve this, we leverage the concept of matching condi-
tions, ensuring equivalence between the interior and exte-
rior geometries of anisotropic stars. The principle of match-
ing boundary conditions dictates that the geometric structure
of a star, whether observed internally or externally, should
not influence the interior boundary metric. This means that
regardless of the chosen metric, its components must exhibit
continuity at the boundary, maintaining consistency across
the entire structure without being impacted by specific met-
rics or observations.

When dealing with self-gravitating compact stars, the
Schwarzschild metric characterizes the outer exterior geome-
try, defining the spacetime around the star, whereas in the case
of [46] utilizing the proposed metric, they have derived the

exterior metric in a Finsler background, which extensively
depends upon the velocity vector yi . But in the present work,
metric equation (6) represents an osculating Finsler–Barthel–
Randers metric defined on the tangent space of the manifold.
Due to the fundamental differences in the form and depen-
dencies of our interior metric and the ansatz-based exterior
metric in Ref. [46], a direct comparison is not straightfor-
ward. Thus, in order to compare the obtained metric Eq. (6)

with the exterior metric, we proceed as follows. The metric,
given by Eq. (19), is reliant on the mass M and radius r of the
compact star, where r > 2M , and it represents the exterior
metric in the Riemannian case [3,20–23],

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2dθ2 − r2 sin2 θdφ2. (19)

In the process of matching the interior metric to the vacuum
exterior solution at the boundary surface r = R, smooth con-
tinuity conditions are crucial. These conditions, outlined in
Eq. (19), ensure consistency between the interior and exte-
rior metrics at the boundary, maintaining smooth transitions
between them.

ev− |r=R = ev+ |r=R , eλ− |r=R = eλ+ |r=R ,
(

∂ev−

∂r

)

|r=R

=
(

∂ev+

∂r

)

|r=R

g−
rr (R) = g+

rr (R) ,

g−
t t (R) = g+

t t (R) ,
∂g−

t t

∂r
= ∂g+

t t

∂r
. (20)

However, the derived FR metric for the compact star involves
the presence of the special term η (r) within the metric
equation (6). To ensure seamless matching between this
anisotropic metric and the Schwarzschild metric (19), a con-
dition is chosen at the boundary r = R

η (R) = 1. (21)

The condition (21) is chosen specifically to align the
anisotropic metric with the Schwarzschild metric at the

123



Eur. Phys. J. C           (2024) 84:597 Page 7 of 19   597 

boundary. This choice not only guarantees the matching of
these metrics but also introduces an important constraint,
a + b = 1. This constraint emerges from Eq. (21), effec-
tively linking the values of the unknown constants a and b
governing the anisotropic metric. By utilizing Eq. (21) and
enforcing the continuity of metric potentials, further con-
straints on the unknown parameters can be derived. This step
is key in ensuring a smooth transition and match between the
interior anisotropic metric and the exterior Schwarzschild
metric at the boundary of the compact star.
Ultimately, these conditions and constraints are influential
in harmonizing the anisotropic interior metric, character-
ized by the presence of η (r), with the vacuum exterior
Schwarzschild metric, creating a smooth and consistent tran-
sition at the boundary of the compact star. Thus, we have,

A = 1

R2 log

(
R

R − 2M

)
, (22)

B = m

R3
(
1 − 2m

R

) , (23)

C = log

(
R − 2m

R

)
− m

R
(
1 − 2m

R

) . (24)

To evaluate the unknown constants A, B, C, a, b within
the Eqs. (16)–(19), the expressions for A, B, C are substi-
tuted accordingly. To determine a and b, standard values ofm
and R for different compact stars are employed, utilizing the
relation a = 1 − b. Using the boundary condition pr = 0 at
r = R, that is, at the boundary of the stars, the radial pressure
drops [20,28], and we obtain the expression for b as

b=−2BR2e(−A+ B)R2+C + eBR2+C − e(−A+ B)R2+C

2BR2e(−A+ B)R2+C + 2e−AR2 + 4e(−A+ B)R2+C

(25)

Once the values of A, B, C, b are derived from these equa-
tions, their substitution with the known mass m and radius
R values of the stars help calculate these five unknown con-
stants, as detailed in Table 2. This computation is followed
by the determination of thermodynamic parameters such as
density and pressure terms using the Friedmann equation.
The subsequent discussion centers on interpreting the out-
comes obtained from the proposed anisotropic star model
and understanding their physical implications in the context
of these compact stars.

In this study, the stars Her X-1, Cen X-3, PSR J1416-
2230, and SMX X-1 have been denoted as CS1, CS2, CS3,
and CS4, respectively [28]. This nomenclature allows for a
streamlined and concise reference to these specific compact
stars throughout the research work.

Astrophysical behavior and characteristics of compact
stars

Validating the proposed model involves confirming key
physical conditions known to be essential for anisotropic
fluid stellar systems. Some of these crucial conditions typi-
cally considered include the following analysis:

1. Singularity analysis: Examining whether the model
predicts the presence or absence of singularities within the
stellar structure. Identifying and understanding the nature of
these singularities is pivotal in determining the validity of the
model.

2. Energy conditions: Ensuring that the energy condi-
tions such as the null, weak, strong, and dominant energy
conditions play a vital role in characterizing the behavior of
energy–momentum tensors within the model.

3. Causality conditions: Verifying that causality is pre-
served within the model, meaning that no signal or informa-
tion travels faster than the speed of light. This is fundamental
in maintaining the integrity of causal relationships.

4. Stability and perturbations: Investigating the stability
of the model against perturbations. It is crucial to ascertain
whether small disturbances lead to amplified effects or if the
system remains stable.

5. Mass–radius constraints: Comparing the predicted
mass and radius of the compact stars within the model against
observed or theoretically established constraints. Ensuring
these properties align within acceptable ranges adds credi-
bility to the model.

6. Causality and causation constraints: Verifying that
causality is maintained, and the model adheres to the causal
nature of physical laws. This involves analyzing the temporal
and causal relationships within the stellar system.

7. Physical equilibrium: Confirming that the model rep-
resents a physically plausible equilibrium state for compact
stars, ensuring that the forces within the system balance each
other satisfactorily.

These conditions are crucial benchmarks in validating the
physical realism and consistency of the proposed anisotropic
fluid stellar model. Verifying these conditions helps in estab-
lishing the credibility and applicability of our model within
the realm of astrophysical phenomena and are discussed as
below.

3.2 Metric regularity and comparative analysis:
Riemannian and Finslerian geometries

For the metric to be regular, the metric potentials must meet
specific criteria: they should remain positive, finite, and free
of singularities within the star’s interior. Additionally, at the
central point r = 0, the metric functions should adhere to
ev(0) =constant and e−λ(0) = 1, which corresponds to the
Riemannian case when η(r) equals 1 in the metric (6).
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Table 2 Values of physical constants for four different compact stars

Compact star A B C b

Her X-1 0.003590398893 0.002024272214 -0.3683785716 4.713362070 10−11

Cen X-3 0.002543218860 0.001523496900 -0.5615565171 -8.338427832 10−11

PSR J1416-2230 0.002632840029 0.001610632379 -0.6297360751 -1.249068717 10−10

SMX X-1 0.002283770241 0.001284841387 -0.3616591215 0.0000277286033

Maintaining the regularity condition for our (FR) met-
ric necessitates the regularity of η(r) across the star’s inte-
rior. The chosen form of η(r) from the expression (21)
remains regular throughout the interior, as it represents a
simple analytic function in r Additionally, it is shown that
(
η (r) ev(r)

)′
r=0 = (

η (r) eλ(r)
)′
r=0 = 0, further confirm-

ing the regularity of the metric potentials at the stellar
center. To offer a comparative perspective between Rie-
mannian and Finsler geometry through the metric poten-
tials, we have plotted these potentials for η (r) = 1 and
η (r) = a + br2

R2 , as depicted in Fig. 1a and b. These
plots substantiate the regularity of the FR metric compo-
nents gtt and grr . In the Finslerian case, we have taken
v

′
(r) = (

η (r) (ev(r) + η (r) − 1
)

λ
′
(r) = η (r) eλ(r), as

indicated in Fig. 1b. These analyses emphasize the regular
behavior of the metric functions and their adherence to phys-
ical regularity criteria within the context of the proposed
anisotropic model for compact stars.

3.3 Characteristics of energy density and pressure profiles

In a valid model, energy densities and pressures need to meet
specific criteria. Inside the star, they should stay non-negative
and finite at the center: ρ0 = ρ (0) and pr0 = pr (0). More-
over ρ0 = pr0 , as evident in Fig. 2. Energy density peaks at
the radius and decreases uniformly towards the star’s edge.
Pressure components, radial pr and tangential pt , are pivotal
for the star’s stability. They reach maximum values at the
core and taper off outwardly. Radial pressure vanishes at the
star’s boundary, defining the fluid sphere’s limit.

For stability, these quantities should peak at the cen-
ter finite ρ0 = ρ (0) and pr0 = pr (0). Moreover, ρ0 =
pr0 and decreases outward, and ρ

′≤ 0, p
′
r≤ 0, p

′
t≤ 0, and

ρ
′′ |r=0 < 0, pr |r=0 < 0, pt |r=0 < 0. Figure 2 shows gra-

dients, starting at zero at the core and becoming negative
towards the star’s boundary, confirming model stability. The
fact that energy density and pressure reach maximum values
at the core and reduce outward suggests stability within the
stellar structure. Additionally, the negative gradients of these
quantities from the core to the boundary reinforce the stabil-
ity of the model, indicating a balanced distribution of internal
forces. The gradients of energy density and pressure compo-
nents illustrate how these quantities change concerning radial

distance. Starting from zero at the star’s center, their nega-
tive values outward indicate a decreasing trend, indicative of
a stable and well-distributed pressure–energy profile.

3.4 The energy conditions

Ensuring adherence to specific energy conditions is crucial
for verifying the validity of the matter content within the
anisotropic distribution of compact stars. These conditions
define the acceptability and viability of the matter mathe-
matically and are known to characterize exotic matter content
within compact stars.

(a) Strong energy conditions (SEC) if ρ + p j ≥ 0, ρ +∑
j pi ≥ 0,∀ j

(b) Dominant energy conditions (DEC) if ρ ≥ 0, ρ ± p j ≥
0, ∀ j

(c) Weak energy condition (WEC) if ρ ≥ 0, ρ + p j ≥ 0, ∀ j
(d) Null energy condition (NEC) if ρ + p j ≥ 0 ,∀ j .

Figure 3 confirms that these energy conditions are met,
validating the physical parameters’ compliance with these
conditions. This adherence implies that the matter distribu-
tion within the compact star aligns with normal fluid charac-
teristics, complying with these energy conditions. This is a
significant affirmation of the physical validity of the matter
distribution within the compact star

3.5 Anisotropic parameter

The anisotropic parameter defined as in Eq. (26) is crucial
for a stable compact star configuration. It determines the bal-
ance between radial and tangential pressures, where tangen-
tial pressure should surpass radial pressure, ensuring Δ > 0

Δ = pt − pr . (26)

A positive � indicates an attractive anisotropic force, similar
to quintessence, and signifies model compatibility and sta-
bility. In our study (Fig. 4), � starts at zero at the star’s core
and consistently increases toward the boundary, indicating an
outwardly repulsive anisotropic force. This force prevents
collapse, making compact stars stable structures [11]. The
presence of this outward force ensures stability, suggesting
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Fig. 1 a Metric potentials in the Finslerian context. b Metric potentials in the Riemannian context (with (r) = 1)

that compact stars rely on anisotropic forces to resist collapse
rather than isotropic forces.

3.6 Equation of state parameter

The equation of state (EoS) parameters ωr and ωt determine
the relationship between density and pressure in stable com-
pact stars. They are defined as

ωr = pr
ρ

, ωt = pt
ρ

. (27)

For a physically feasible matter content, the graphical repre-
sentation of EoS parameters (ωr and ωt ) must fall within the
range of 0–1. The maximum value of 1 signifies a non-exotic
nature of the matter content within the stars. In our study,
represented in Fig. 5, both ωr and ωt fall within the inter-
val [0, 1] throughout the boundaries of the compact stars.
This observation confirms that the fluid distribution com-
prises non-exotic matter, indicating a physically plausible
matter content within the compact stars.

3.7 Herrera cracking method

Stability in the context of stellar structures is crucial for
ensuring physical consistency and reliability. Herrera pro-
posed a method, known as the cracking approach, to assess
stability by analyzing the difference in sound speeds in radial
and transverse directions [9]. According to Herrera’s cri-
terion, the square of the sound speed, v2

s = dp
dρ

, must fall

within the [0, 1] interval to denote a physically stable stellar
object. In an anisotropic compact star model, we consider
two sound speeds, v2

rs = dpr
dρ

and v2
ts = dpt

dρ
, representing

the radial and tangential directions, respectively. For stabil-
ity, both v2

ts, v
2
rs should adhere to the causality condition,

lying between 0 and 1. In our study, as shown in Fig. 6, it is
evident that the causality condition is met, confirming that
the model complies with stability criteria. This observation
reinforces the stability of our structured model for anisotropic
compact stars, assuring their physical validity and structural
robustness against external fluctuations.

Stability in self-gravitating anisotropic fluid spheres hinges
on the relationship between radial and tangential sound
velocities [10]. When

∣∣ v2
sr − v2

st

∣∣ lies between 0 and 1, it sig-
nifies a potentially stable configuration. In our study, as indi-
cated in plot (7), the range −1 ≤ v2

ts − v2
rs ≤ 1 is observed,

upholding the stability of our well-structured compact stel-
lar model. This relationship between sound velocities indi-
cates that the radial sound velocity surpasses the tangential
one, ensuring the stability of the self-gravitating anisotropic
fluid sphere. The model’s adherence to this stability crite-
rion reflects its robust and stable configuration, and physical
validity (Fig. 7).

3.8 Adiabatic index

The adiabatic index � serves as a metric for the rigidity of
the equation of state (EoS) in an anisotropic fluid, denoting
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Fig. 2 Visualization of energy densities, pressure profiles, and gradients within compact stars
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Fig. 3 Assessment of energy conditions in four compact stars
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Fig. 4 The behavior of anisotropic parameters of four different com-
pact stars

how pressure changes with minor shifts in matter density [7].
It is calculated using

� =
(

1 + ρ

pr

) (
dpr
dρ

)
. (28)

Significant to stability is � > 4
3 , ensuring resilience against

infinitesimal radial adiabatic perturbations. A higher � indi-

cates increased pressure change per unit energy density shift,
illustrating a stiffer EoS. From Fig. 8, it is evident that �

consistently exceeds 4
3 , affirming the model’s stability. This

alignment implies its ability to resist collapse under radial
adiabatic variations. A higher � denotes a stiffer equation
of state, reflecting the model’s capacity to withstand com-
pression and collapse, confirming its structural and physical
consistency.

3.9 Stability under external forces

A star maintains a state of equilibrium under three distinct
forces: gravitational force, hydrostatic force, and anisotropic
force. Described by the Tolman–Oppenheimer–Volkoff (TOV)
equation [3,4], this equation defines the internal structure
of a spherically symmetric compact celestial body, initially
formulated within the context of Riemannian geometry.
Through the following calculations, we derive the FR TOV
equation as follows:
(

2ηη
′ + ev

(
η

′ + v
′
η
)

− η
′)

η(ev + η − 1)
( ρ + pr )+ dpr

dr
− 2

r
� = 0.

(29)

The above expression can be written as

Fg + Fh + Fa = 0, (30)

where

Fg =
(

2ηη
′ + ev

(
η

′ + v
′
η
)

− η
′)

η (ev + η − 1)
( ρ + pr ) , (31)

Fig. 5 EoS parameter behavior in four compact stars
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Fig. 6 Herrera’s cracking principle

Fig. 7 Plot of
∣∣ v2

sr − v2
st

∣∣

Fh = dpr
dr

, (32)

Fa = −2

r
�. (33)

Here, Fg, Fh , and Fa signify the gravitational, hydrostatic,
and anisotropic forces, respectively.

This equation illustrates the equilibrium state of a fluid
sphere due to the combined influence of these forces.
Notably, as η approaches 1, this equation relapses to the
Riemannian form. This suggests that Finslerian geometry’s
impact on the gravitational field, referred to as Finslerian
gravity, shapes the dynamics of stellar structures, influenced
by the Finslerian term η(r). The interplay of these forces is
graphically depicted in Fig. 9. The presence of η(r) intro-
duces deviations from the standard Riemannian formulation,
altering the behavior of the gravitational field within the star.
In essence, the η(r) term in the FR TOV equation signi-
fies how Finslerian geometry introduces a directional depen-
dence or anisotropic behavior within the gravitational field of
the compact star. This provides a more detailed understand-
ing of how geometry affects the dynamics and equilibrium
conditions of such celestial objects.

3.10 Effective mass and compactness

The mass function, m(r), within a radius r is calculated
through the integral

m (r) =
∫ r

0
4πr2ρ(r) dr. (34)

It is essential to note that the density here is a function of
η(r). By substituting the expression for ρ(r) into the above
equation, the resulting expression for m(r) becomes com-
plex. This expression, depicted below, encapsulates various
parameters and their dependence on the radial distance r :
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Fig. 8 Adiabatic index

m (r) = 4π

∫ r

0
r2

⎛

⎜⎜
⎝

2R2
( (

a
(
Ar2 − 1

2

)
R2 + 2r2b

(
Ar2 − 5

4

))
R2e(−A+B)r2+C + R2

(
aR2+br2

)

2 eBr
2+C

)

(
eBr2+C R2 + (a − 1) R2 + br2

)
r2

(
aR2 + br2

)2

+
2R2

(
(a − 1) R2 + br2

) ( (
a

(
Ar2 − 1

2

)
R2 + 2r2b

(
Ar2 − 5

4

))
e−Ar2 + ar2

2 + br2

2

)

(
eBr2+C R2 + (a − 1) R2 + br2

)
r2

(
aR2 + br2

)2

⎞

⎠ dr . (35)

Figure 10 portrays the monotonic nature of the mass func-
tion, showcasing its minimum value at the center of the stars.
Additionally, the graph demonstrates that as r approaches
0, m(r) tends towards 0, indicating the regularity of the mass
function at the origin.

The behavior of the mass function also conveys insights
into the compactness of the star. Compactness, often charac-
terized by the ratio of mass to radius, provides a measure of
how densely packed the stellar matter is. In the context of the
mass function, the behavior of m(r) near the origin signifies
a regular distribution of mass, which is essential for a stable
and well-defined compact object.

Compactness is defined as u(r), and the compactness of
a star at a given radius r is expressed as the ratio of the mass
function , m(r), to the radius r :

u (r) = m (r)

r
. (36)

The plot for u(r) is generated using the expression for m(r)
obtained earlier, showcasing the variation of compactness
across different radii within the star. Figure 11 illustrates this
relationship, providing a visual representation of how the

compactness changes as one moves radially from the star’s
center towards its surface. The compactification parameter,
often signified by the limit of the redshift function zs< 4.77,
is a critical measure in understanding the stability and behav-
ior of compact stars. This parameter is intimately linked to
the redshift function zs derived from the expression

zs = 1
√

1 − 2m(r)
r

− 1 . (37)

The limit on zs sets a crucial constraint on the compactness
of the star. This boundary condition ensures the stability and
viability of the compact object. Exceeding this limit may
lead to gravitational collapse or other extreme phenomena
that could destabilize the star’s structure.

Buchdahl’s proposal imposes a critical constraint on com-
pact stars; the surface redshift must not exceed 5 to main-
tain stability [5]. Figure 12 confirms that the surface redshift
zs remains below this limit, validating the credibility of the
anisotropic compact star model. This adherence to Buch-
dahl’s criterion reaffirms the model’s accuracy in represent-
ing the gravitational behavior of compact, self-gravitating
objects.

4 Results and physical discussion of the model

In our investigation, we explored the construction of anisotropic
compact stars within the Finslerian context, employing the
Barthel connection. This significant approach treats each
point in the Finsler manifold as a space point, simplifying
the complex Finsler structure into a more manageable oscu-
lating Riemannian-like structure. Through this method, we
derived equations that describe intricate Finslerian geomet-
ric properties in terms of simpler Christoffel symbols �i

jk .
Remarkably, these equations seamlessly transform into Rie-
mannian structures as η approaches 1. This utilization of
Finsler geometry offers a unique lens to discuss the dynam-
ics of stellar objects, unveiling intriguing insights into their
nature and behavior.

As mentioned earlier, the metric tensor’s configuration
deviates from the conventional Riemannian geometry due
to the presence of an anisotropic term. To complement this
structure with the exterior Schwarzschild metric, a specific
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Fig. 9 Equilibrium conditions in anisotropic stars shaped by three forces

substitution for η was employed, elaborated in (15). This
specific form unveils the anisotropic property of the space-
time (universe), which helps to understand the low-scale
anisotropy in the cosmic microwave background (CMB). In
order to study such observation in a Finslerian background
we plot the base structure through analysis of stellar objects
in a Finslerian geometric background. In this regard, to eval-
uate the proposed model’s effectiveness, we explored four
distinct compact stars, each accompanied by their respective

physical characteristics outlined in Table 1. Through strate-
gic selections of metric potentials, we computed essential
physical constants. Evaluating the model’s stability involved
a thorough analysis of regularity conditions and the intrin-
sic physical properties embedded within the metric structure,
detailed below.

1. Figures 1 and 2 offer visual representations of the met-
ric potentials and the key matter variables ρ, pr , pt .
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Fig. 10 Mass function (m(r))

Fig. 11 Compactness parameter (u(r))

These graphics effectively portray the declining trend
observed in the distribution of matter, a vital characteris-
tic expected within stellar configurations. Furthermore,
our analysis of the radial derivative plots of matter densi-
ties unveils that derivatives gradually decrease and van-
ish at the center of the stars. This observation highlights
an essential aspect of stellar composition, emphasizing
the importance of the central regions within the overall
structural integrity of the stars. The decrease in pressure

Fig. 12 Redshift parameter (Z(r))

signifies the diminishing compressive forces acting on
the star’s material layers. These physical details offer
insights into the internal dynamics and stability of the
proposed compact star model. The behavior of energy
densities and pressures within the star elucidates the dis-
tribution of forces and material properties critical for the
star’s equilibrium.

2. The investigation of energy conditions involved plotting
graphs, depicted in Fig. 3, to assess the model’s adher-
ence to these fundamental principles. The observed posi-
tive behavior not only confirms the satisfaction of energy
conditions by the matter constituting the compact star
but also highlights an essential aspect of physical stabil-
ity. This compliance with energy conditions is pivotal,
as it signifies the absence of negative energy densities
or exotic matter, ensuring the physical stability of the
compact star. By upholding these energy conditions, the
model demonstrates a coherent and physically plausible
structure, reinforcing its credibility as a stable and real-
istic representation of a compact stellar object.

3. In Fig. 4, the plot illustrating the anisotropic parameter
showcases a smooth and consistent behavior spanning
from the core to the outer boundaries of the stars. This
force maintains stability, suggesting that compact stars
rely on anisotropic forces to resist collapse, contributing
to their structural integrity.

4. The model’s stability was examined, utilizing EoS
parameters graphed in Fig. 5. This visualization not only
highlights the EoS parameter’s consistent range within
(0, 1), but also crucially addresses the physical stability
aspect. The range of EoS parameters serves as a funda-
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mental indicator of stability within physically acceptable
boundaries. This adherence emphasizes the absence of
negative energy densities or exotic matter, essential fac-
tors ensuring the physical stability of the compact star
model.

5. Our investigation into the model’s stability used Herrera’s
cracking condition, as in Figs. 6 and 7. The results indi-
cate that 0 < v2

rs, v2
ts < 1, and

∣
∣v2

st − v2
rs

∣
∣ < 1. These

findings assure that the fluid within the stellar configura-
tion remains stable, even after disturbances, suggesting
resilience when external forces vanish from the system.
This stability underscores the model’s reliability in rep-
resenting a stable compact stellar structure. A positive
difference v2

st − v2
rs between sound velocities denotes

stability. This condition ensures that perturbations prop-
agate outwardly slower in the tangential direction com-
pared to the radial direction, maintaining stability against
collapse.

6. The adiabatic index, as depicted in Fig. 8, signifies the
relationship between pressure and density variations
within the star. It shows the star’s ability to maintain
stability despite compression or expansion without heat
exchange with its surroundings. Physically, this stability
implies that as the star’s material compresses or expands,
its internal energy remains constant, without significant
alterations in its internal energy, contributing to the over-
all stability and resilience of the stellar structure.

7. The TOV equation (29) was adapted to FR background by
leveraging the Riemannian equation and deriving expres-
sions for three distinct forces Fg, Fh , and Fa . These
force expressions were plotted in Fig. 9, revealing that the
gravitational force precisely counterbalances the other
two forces, ensuring stability within the compact star
structure.

8. Figures 10, 11, and 12 depict the mass functions, com-
pactness, and redshift, respectively. These plots exhibit a
consistent increase with radius, reaching a maximum at
the star’s surface. The rising mass functions signify the
accumulation of mass toward the star’s outer layers, while
increasing compactness indicates higher density towards
the surface. Additionally, the ascending redshift values
signify an intensified gravitational effect closer to the
star’s boundary. These trends collectively provide essen-
tial insights into the physical characteristics and dynam-
ics governing the structure of the compact star.

Exploring anisotropic stars through the lens of Finsle-
rian geometry unveils a unique perspective that transcends
traditional differential geometry. This alternative geometric
approach not only enhances our understanding of anisotropic
stars but also opens pathways to contemplate various celestial
bodies within the broader scope of Finsler geometry. The uti-
lization of Finsler geometry to explore celestial bodies, par-

ticularly anisotropic stars, serves as a stepping stone towards
broader applications and future research directions.

In future works we anticipate expanding this geometric
approach to investigate a wider array of cosmic phenom-
ena, such as neutron stars, black holes, or even the larger
cosmic structures like galaxies and galaxy clusters. Explor-
ing these diverse astronomical entities within the frame-
work of Finsler geometry could unveil novel understand-
ings of their formations, dynamics, and interactions. More-
over, researchers might delve deeper into the intricate inter-
play between Finsler geometry and fundamental physical
theories, like general relativity or quantum mechanics. This
exploration could lead to the development of more compre-
hensive and unified theories that integrate geometric concepts
from Finslerian frameworks into the understanding of fun-
damental physical laws.
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Appendix

In our approach to study compact stars in the Finsle–Rander
background, we utilize the osculating Riemannian method,
and by employing the Barthel connection, we proceed as in
[54,55,63,64]. Let the nonvanishing vector field be denoted
as Y = B, defined on M , where Bi = ai j B j . The global
nonvanishing nature of the vector field B on M implies that
β has nonzero points on M . This enables the application of
the osculating Riemannian approach explore the structure of
black holes within the context of Finsler geometry, empha-
sizing the necessity of a nonvanishing vector field for the
black hole. Let b be the length of the vector field B with
respect to α. Then, by the approach of osculation, we have

b2 = ai j (x) B
i B j = Bi B

i = α2 (x, y) , (A1)

and for β (x, y) 0 is expressed as a vector

β (x, y) = Bi y
i . (A2)

Here, Bi = ( γ (r) , 0, 0, 0) is a vector with compo-
nents (γ (r), 0, 0, 0), and (yi ) represents the coordinates
(yi ) = (y0, y1, y2, y3) = (t, r, θ, φ). We incorporate
the Barthel connection and consider that the 1-form β (x, y)
has a nonzero time component within compact stars. By this
background using Eqs. (2)–(5) in Eq. (1), we derive the oscu-
lating FR metric (FR) metric as follows [54–56]:

β (x, B) = b2 and Yi (x, B) = Bi . (A3)

Then the B osculating Riemannian metric becomes

gi j =
(

F

α

)

y=B(x)
ai j (x) +

(
1

α

(
Bi y j + Bj yi

)

− β

α3 yi y j + Bi B j

)

y=B(x)
, (A4)

where yi = ai j y j .
The Randers metric is a combination of the Riemannian

metric tensor, denoted as α (x, y), and the 1-form β (x, y),

defined by α (x, y) =
√
ai j (x) yi y j and β (x, y) =

bi (x) yi . Thus,

F = α (x, y) + β (x, y) , (A5)

where ai j (x) represents the metric components of the Rie-
mannian metric which is defined on the tangent space of
each point of the manifold M , and bi (x) is the nonvanishing
vector field. In this context, the Riemannian metric α (x, y)
characterizes the isotropic and spherically symmetric nature
of the universe’s metric. The metric tensor

(
ai j

)
of the Ran-

ders metric is expressed as follows:

ai j (x) = diag
(
eν(r),−eλ(r),−r2,−r2 sin2 θ

)
. (A6)

Substituting above expressions (A3) and (A6) in Eq. (A4)
it can be shown that the above complex metric structure (A4)
reduces to a less complex structure,

gi j (x) = (1 + α)

(
ai j + Bi B j

α

)
. (A7)

Then the metric components are given by

goo (x) = (1 + γ (r)) (a00 + γ (r)) , (A8)

goj (x) = (1 + γ (r))

(
a00 + BoB j

α

)
, (A9)

gi j (x) = (1 + γ (r)) ai j , where, i j ∈ {1, 2, 3}. (A10)

The resulting metric structure called an osculating Barthel–
Finsler wormhole structure is given by
(
gi j (x)

) = diag
(
(γ + 1)

(
eν(r) + γ

)
,

− (γ+1) eλ(r) , (γ+1) r2,− (γ+1) r2 sin2 θ
)

.
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