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Abstract: We study in detail the influence of different chemical potentials (baryon, electric charge,
strange, and neutrino) on how and how fast a free gas of quarks in the zero-temperature limit
reaches the conformal limit. We discuss the influence of non-zero masses, the inclusion of leptons,
and different constraints, such as charge neutrality, zero-net strangeness, and fixed lepton fraction.
We also investigate for the first time how the symmetry energy of the system under some of these
conditions approaches the conformal limit. We find that the inclusion of all quark masses (even the
light ones) can produce different results depending on the chemical potential values or constraints
assumed. A positive or negative deviation of 10% from the pressure of free massless quarks with the
same chemical potential was found to take place as low as yp = 77 to as high as 48,897 MeV. This
illustrates the fact that the “free” or conformal limit is not a unique description. Finally, we briefly
discuss what kind of corrections are expected from perturbative QCD as one goes away from the

conformal limit.

Keywords: conformal limit; quark matter; chemical potential; symmetry energy

1. Introduction and Formalism

In the zero temperature limit, baryons start to overlap at a few times the saturation
density, and through some mechanism that is not yet understood, quarks become effectively
deconfined [1]. In this work, we discuss dense matter in terms of baryon chemical potential
up instead of baryon (number) density np, as the former (together with other chemical
potentials, such as electric charge pg or strange ys) is the fixed or independent quantity in
the grand canonical ensemble. The correspondence between np and yp is model-dependent,
but at finite temperature, the yp at which deconfinement takes place is expected to be even
lower (see, e.g., [2]), which highlights the importance of studying quark matter. We are
particularly interested in understanding the conformal limit, the asymptotically high yp at
which matter can be described by a free (non-interacting) gas of massless quarks. For this
reason, in the present work, we focus on modeling quark matter only and, for the time
being, restrict ourselves to the zero-temperature limit.

To describe the quarks, we make use of a free Fermi gas under different assumptions.
To start, we describe them simply as a massless gas, then introduce different non-zero but
constant quark masses, and vary the baryon, electric charge, and strange chemical potentials
independently. We further link the chemical potentials by imposing charge neutrality
and/or zero net strangeness. We also discuss the role played by leptons, including beta
equilibrium and the role played by neutrinos (with chemical potential y,). We investigate
large yp and different yg and yy, as these are important for astrophysical scenarios, such
as neutron stars and neutron-star mergers. On the other hand, we investigate the effects of
Us, which is important for discussions related to relativistic heavy-ion collisions and the
early universe [3].
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We also discuss the symmetry energy of quark matter for some of the constraints we
study and investigate how it changes as we approach the conformal limit. The so-called
symmetry energy (which is really the asymmetry energy) is one of the most important features
of nuclear physics in general since it is related to the ratio between the different components
of the nuclear systems [4]. Several works have addressed the symmetry energy of quark
matter [5-8]. This physical quantity is defined as the difference in energy per baryon
E/Np (or energy density per baryon density €/np) between completely isospin-asymmetric
matter § = 1 and isospin-symmetric matter § = 0:

E = = —
sym Npg Npg np ng ’

Es—1  Esj=0 _ &=1 &=0 (1)

where 4 is originally defined for matter with neutrons and protons in terms of densities #;

as

My +np

In this case and also when one is considering up and down quarks, J can also be written as
0=-2Y1=1-2Yq, 3)

for non-strange matter using the Gell-Mann-Nishijima formula [9] with fractions Y; and
Yo summing over i = baryons or quarks and defined in terms of particle isospin I; and
electric charge Q;, respectively:

_ il Yo — Y Qing
Ym0 © in

with baryon (number) density ng = }_n;, where quark densities #; are divided by 3.

However, it is important to note that, as discussed in Ref. [10] and Appendix A of
Ref. [11], in the presence of hyperons (or in our case, strange quarks), Equation (3) does not
apply. For this reason, we constrain ourselves to the discussion of symmetry energy for the
2-flavor case (with up and down quarks).

When leptons are included, we assume beta equilibrium, in which case electrons and
muons have chemical potential pe = py = —pg. In the special case that (electron and
muon) neutrinos are trapped, y, is determined by fixing the lepton fraction

Y1

(4)

Zlep Miep
Vi=——.
Xin

usually held equal to the canonical value 0.4, to simulate conditions created in supernova
explosions [12].

Finally, we briefly discuss the effects of interactions in the case that they are weak
enough to be discussed perturbatively, i.e., using perturbative Quantum Chromodynamics
(pQCD)). At large temperatures and/or quark chemical potentials, the strong coupling
becomes small enough to allow an infinite number of terms to be approximated by a
finite number of terms to describe interactions [13]. At zero temperature, QCD needs
perturbative expansions and normalization group techniques. This problem was first
addressed in the late 1970s [14-16], showing that already at the second order in «g, log-
singularities and non-trivial effects due to the renormalization scale appear. In the particular
case of beta equilibrium, first-order corrections cancel out, leading to the very simple
and popular description for neutron stars in terms of free quarks plus a constant bag
correction [17]. This description is consistent with our work, up to a bag constant (usually
fitted to phenomenology). But, even in the massless beta equilibrium case, it has been
shown that the effect of interactions is not negligible in the density or chemical potential
regime relevant for astrophysics [18].

(5)
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At zero temperature, pQCD corrections have been calculated up to next-to-next-to-
next-to-leading order (NPLO) [19,20] (see Equation (42) of [21], where our free calculations
correspond to the term of order zero in the coupling «s). With non-zero quark masses,
pQCD corrections have been calculated up to next-to-next-to-leading order (N>LO) [22-25].
In this case, the QCD running coupling constant implies running non-zero masses at finite
chemical potentials. See the recently published lecture notes of pQCD in the context of
astrophysics for more details [21]. In this work, we do not study interactions but simply
discuss different kinds of conformal limits (for free quarks) and quantify how different they
are from each other. Nevertheless, even in this simplest scenario, as a first attempt to clarify,
e.g., the influence of various chemical potentials on the conformal limit, our approach is
complementary to the study of interactions.

2. Results

We describe in detail the free Fermi gas formalism we use in this work (for quarks and
leptons) in Appendix A. We begin our discussion by ignoring the contribution of leptons
to the thermodynamical quantities (later, we include different possibilities and discuss
them). In the figures that follow, pressure P and baryon density np are normalized by
respective values of a free gas with the same number of quark flavors included, but with
quark masses m; = 0 and pg = ps = 0. Simple analytical equations for the pressure
of all the massless cases discussed in this work are derived in Appendix B. We start our
discussion considering only one chemical potential and then expand our discussion to two
and three chemical potentials.

2.1. One Chemical Potential pp

We start by comparing the quark mass effect on np versus yip in the left upper panel
of Figure 1. Because in this case j.g and g are zero, all quarks present the same chemical
potential y; = py = pq = ps = %y p- Because of our normalization (thermodynamical
quantities divided by the massless case with the respective number of flavors), all massless
cases have a constant value of one. Nevertheless, this does not mean that they are the
same (if not normalized). To discuss the effect of quark masses, we start with one flavor
with up and down quark masses m = 2.3 and m = 4.8, respectively, and then, we look at
the two-flavor case with these masses for both light quarks. After that, we look at three
flavors and use first only non-zero mass for the strange quark m = 95 MeV and then the
masses for the three quarks. The quark masses we use correspond to the Particle Data
Group (PDG [26], within the error bars of updated values [27]). From here on, we refer to
these masses as “realistic”.

normalized n
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Figure 1. Baryon density (upper panel) and pressure (lower panel) of quarks with different numbers
of flavors and different masses normalized by the respective massless cases.

We find that the introduction of realistic quark masses decreases the density for low
up, with the s-quark mass affecting the density until yp is larger (up to 621 MeV) than the
two light quarks (up to 55 MeV). To calculate these thresholds, we use the criterium of
a deviation of 10% from the black line with a value of one throughout this paper. For P
versus jig, shown in the lower panel of Figure 1, the lines are very similar in shape to the
ones in the upper panel of the figure. The introduction of realistic quark masses decreases
again P for low up, with the s-quark mass affecting the pressure until yp is larger (up to
834 MeV) than the two light quarks (up to 77 MeV).

2.2. Two Chemical Potentials yp and pg

Now, we abandon the unphysical one-flavor case and continue with two- and three-
flavor cases. The two-flavor case has recently become more relevant for dense matter
because it has been shown that the core of neutron stars can harbor three-, as well as two-
flavor quark matter [28]. For this case, we add another (electric charge) chemical potential,
breaking some of the degeneracy in the quark chemical potentials: pyp = %y B+ %yQ,
Hdown = MHstrange = % UB — % #o- Once more, we normalize thermodynamical quantities,
dividing by the respective values of the same quantity for a free gas with the same number
of quark flavors included, but with m; = 0, in addition to o = 0. Following this procedure,
we aim to determine how the conformal limit and its deviation depend on p .

When ji( is determined by charge neutrality, the results, even for the massless case,
depend on the number of flavors. In this case, only the three-flavor case is coincidentally
equal to the g = 0 case (see the explanation following Equations (A45) to (A48) in
Appendix B). For two flavors, this is not the case, and the pressure is lower than in the
#o = 0 case, establishing a new lower conformal limit (see upper panel of Figure 2).
Expressions for the pressure for each particular chemical potential case (always keeping
m; = 0 for simplicity) can be found in Appendix B. Compare, e.g., Equations (A33) and
(A42). When adding quark masses, jio determined by charge neutrality lowers the pressure
(in comparison with the respective massless case and the massless case with g = 0) such
that it goes to the respective conformal limit at larger up. Using again the criteria of 10%
deviations from the respective conformal limit, the s-quark mass affects pressure until
up = 839 MeV and the two light quark masses until yp = 118 MeV.
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Figure 2. Pressure (upper panel) and electric charge chemical potential (middle panel) of quarks with
two chemical potentials normalized by the respective massless case with one chemical potential, yp.
The electric charge chemical potential is determined by charge neutrality. For massless three-flavor
quarks, the cases with and without yg coincide. (Lower panel): the pressure of quarks with two
chemical potentials, being 1. fixed to different values, normalized by the respective massless case

with one chemical potential, jp.

Nevertheless, one issue about this approach should be noted: we are comparing very
small values of jio with very large values of . See the middle panel of Figure 2 for
a comparison. This is particularly the case for three flavors of quarks, and (except for
extremely low pup) this behavior is independent of the quark masses. For small values
of up, both for two and three flavors, the dependence of yi and up can be predicted
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in fair agreement with Equation (A41). For this reason, next, we add a fixed electric
charge chemical potential to study how it affects the conformal limit, which translates
into an increase in pressure (see, e.g., the different lines for three-flavor quark matter with
realistic masses in the lower panel of Figure 2), especially at low values of yp. For massless
quarks and pg = —20 MeV, the pressure is always above the conformal limit for g = 0,
independent of the number of flavors. Once the quark masses are finite, the pressure
decreases, especially in the three-flavor case (but also for the two-flavor case). For larger
absolute values of 1., the pressure becomes larger, even going above the conformal case
(with and without (). For example, for the three-flavor case with realistic quark masses
and ug = —50 MeV, the pressure deviates by 10% (of the g = 0 conformal limit) at
up = 698 MeV and for ug = —100 MeV at up = 415 MeV (the latter one from above).
Finally, there is one important remark regarding the behavior of the normalized pressure: in
the lower panel of Figure 2, it is shown that this physical quantity decreases for small values
of up; however, this behavior does not mean that the pressure itself (not normalized) is not a
monotonically increasing function of yg. Here, we must remember that our normalization is
carried out by dividing the thermodynamical quantities (such as pressure) by the massless
case with the respective number of flavors and the free Fermi pressure of this system of
massless quarks used for normalization scales as y}; therefore, in those ranges of y5 where
P for massive quarks increases at a lower rate than ;1‘}3, the normalized pressure decreases
without implying any thermodynamical inconsistency.

2.3. Three Chemical Potentials g, pug, and g or py,

Going further, we can add another (strange) chemical potential and constrain it,
e.g., to strangeness neutrality. The issue is that at zero temperature, strangeness neutrality
means that there are no strange quarks, and the three-flavor case reduces to the two-flavor
case. For this reason, we fix ug instead of specific values. pg breaks the degeneracy
in the remaining quark chemical potentials: pup = %]JB + % HQ, Hdown = % up — % Mo,
Hstrange = %ﬂB - % #o + ps- Once more, we normalize thermodynamical quantities by
dividing them by the respective values of the same quantity for a free gas with the same
number of quark flavors included, but with m; = 0, in addition to p o = 0.

Fixing ps increases the pressure, similar to fixing y.o. Compare, for example, the mass-
less three-flavor case in the upper panel in Figure 3 and lower panel in Figure 2 and note
that the pressure for a given pp is now much higher. When quark masses are added,
the similarity disappears because ys only affects the strange quarks, which do not appear
for low values of pp unless the yg value is larger than the strange quark mass, which
corresponds to our case of us = 100 MeV. For yig = 50 and pg = 100 MeV, the 10% devia-
tion from the conformal limit takes place at yp = 1743 and yup = 4227 MeV, respectively
(both from above).
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Figure 3. Cont.
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Figure 3. Pressure of quarks with two or three chemical potentials, including the strange chemical
potential, normalized by the respective massless case (with one chemical potential, yp). The electric
charge chemical potential is either zero (upper panel), determined by charge neutrality (middle
panel), or fixed (lower panel). For massless three-flavor quarks, the cases with charge neutrality and
without pg coincide.

Now, we consider the additional case in which yo # 0, determined to reproduce
charge neutrality (middle panel of Figure 3). For massless three-flavor quarks, the cases
with charge neutrality and without pg coincide. When masses are introduced, the curves
are still very similar (to the upper panel for the g = 0 case), except at very small ug,
where the quark masses are comparable to both pig and . For s = 50 and pg = 100 MeV,
the 10% deviation from the conformal limit takes place at up = 1743 and up = 4227 MeV,
respectively (both from above). When a fixed value of g is used, it increases the pressure
further, specifically at low up (see lower panel of Figure 3). For ug = ps = 50 and
1o = ps = 100 MeV, the 10% deviation from the conformal limit takes place at g = 2070
and pp = 4723 MeV, respectively (both from above).

Next, we investigate the effects of having much larger values of j.o and ps, comparable
to up, for three flavors of quarks in the upper panel of Figure 4. As expected, the changes
due to the additional chemical potentials take place at much lower up (notice the different
scale in the y-axis of the figure), and practically all the curves are above the one chemical
potential (1p) conformal limit. An exception is the case with large (negative) pg (and
us = 0) because, according to Equations (A1) and (A21), quarks can only exist after a given
up = 381 MeV, at which the momentum k; and P become finite (see Equation (A44) for the
massless case). In this case, the pressure differs from the one chemical potential conformal
limit by more than 10% until up = 10 583 MeV. In the case of large ug, quarks can exist at
any pp, and the pressure differs from the one chemical potential conformal limit by more
than 10% until up = 44 237 MeV. When we combine large ys and (the absolute value of)
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1o, the pressure differs from the one chemical potential conformal limit by more than 10%
until up = 48,897 MeV. In this case, the curve in the upper panel of Figure 4 begins only
at yp = 1000 MeV. This can be understood once more from Equations (A1) and (A21).
The same effect can also be seen (although more subtle) in the bottom panel of Figure 2,
where the fixed pg cases start at g = —pq.

200 I I I
— m=0 (3)
100 — m=2.3,4.8, 95 MeV p,=—1000 MeV
- — m=23,4.8,95MeV u=1000 MeV
i m=2.3, 4.8, 95 MeV 1,=—1000 ug=1000 MeV
o T
= 20f
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S 10
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Figure 4. (Upper panel): Pressure of quarks with two or three large chemical potentials, normalized
by the respective massless case with one chemical potential, up. (Lower panel): The pressure of
quarks and leptons with two or three chemical potentials, normalized by the respective massless
case with one chemical potential, jp. For beta equilibrium with leptons, i is determined by charge
neutrality. When neutrinos are present, their chemical potential j, is determined by fixing the lepton
fraction, Y;.

Finally, we investigate changes due to the inclusion of a free gas of leptons (electrons
and muons) in beta equilibrium (and participating in the fulfillment of charge neutrality).
As can be seen in the lower panel of Figure 4, the inclusion of leptons (which appear in very
small numbers or not at all) does not change the pressure. The picture changes, though,
when the lepton fraction is fixed. In this case, which also includes neutrinos, the pressure
is considerably higher, not because of the neutrinos themselves but because the larger
number of negative leptons forces the appearance of a large number of up quarks, changing
considerably the quark composition of the system and the stiffness of the equation of
state [29]. This same stiffening occurs with nucleons in equilibrium with a fixed fraction of
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leptons in the context of protoneutron stars and supernova explosions (see, e.g., [30,31]).
The gray full line shows a kink for yg ~ 400 MeV, when the muons appear. Note that the
difference in massless versus massive quarks is still very pronounced when Y; is fixed.

2.4. Symmetry Energy

As already discussed, we calculate the symmetry energy only for the two-flavor case,
for which it was originally defined. The symmetry energy can be defined for strange matter,
but the problem in this case is that it becomes ambiguous, as the two sides that appear in
Equation (3) (in terms of Y} or Y) become different because of the Gell-Mann-Nishijima
formula. Instead of choosing one particular definition for strange matter, we prefer not to
use it. For more details regarding the treatment of the symmetry energy for strange matter,
see, e.g., [5].

To perform the calculation, we fix np in this case (instead of ;g as we have been doing)
because the symmetry energy is defined for a given np but limit the x-axis to approximately
the corresponding range from the previous figures. The upper panel of Figure 5 shows
that the curves are a monotonically increasing function of density and that the light quark
masses do not affect the results. Indeed, the effect of the mass is expected to be negligible
in the symmetry energy of a free quark gas since the quark masses are taken as very small
at any density, while physically, they should increase as density decreases. At very high
density, much above the range shown in Figure 5, when the interactions are so weak that
they can be neglected, the independence observed on the quark mass means that it is
correct to consider the conformal (or massless) limit for the high density limit of QCD
because massless quarks or quarks with physical masses of the order of the MeV are
basically equivalent. This feature is reinforced by the clear overlapping of the equations
of state P(e) for the corresponding two-flavor cases here analyzed, as shown in the lower
panel of Figure 5. In this plot, the range of i is the same as in the previous figures (running
from 0 to approximately 1400 MeV). Notice that the independence on the light quark
masses applies to every thermodynamical quantity that is not normalized by the respective
conformal limit (and does not include derivatives). Numerically, we define § = 0 as the
two-flavor pio = 0 case (corresponding to the two-flavor lines in Figure 1) and 6 = 1 as the
two-flavor Y5 = 0 case (with o # 0 corresponding to the two-flavor lines in the top and
middle panels of Figure 2).
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Figure 5. Cont.
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Figure 5. (Upper panel) Symmetry energy of two flavors of quarks as a function of baryon density
for different masses. The two curves overlap. (Lower panel) Equation of state (pressure vs. en-
ergy density) for the two extreme cases subtracted in the panel above, isospin-symmetric matter
6 = 0 and charge neutral matter § = 1, shown for realistic or zero quark masses. In this scale,
the four curves overlap.

3. Discussion and Conclusions

Perturbative corrections to a free gas of quarks due to interactions always bring down
the pressure to lower values. Although these corrections have been calculated to higher
orders for massless and massive (strange) quarks, they cannot directly be carried out to low
baryon chemical potentials pp (or, interchangeably, low baryon densities np in the zero-
temperature limit). This stems from the fact that matter in this regime is not perturbative,
and at some point, a phase transition to hadronic matter takes place. As a result, for the
relevant regime of densities inside neutron stars, yp < 1500 MeV, pQCD predicts that the
pressure is lower than 80% of the free gas value (see, for example, Figure 1 of Ref. [24]), but
with a very large band going all the way to P = 0. It is important to clarify that this band
is not an error bar but the envelope considering the different scenarios of strange quark
mass proposed in [23] and a variation of the renormalization parameter A (see [22,32,33]
for more details).

Note that pQCD figures are usually shown normalized by the same case, i.e., same
massless quark and chemical potential conditions, only turning off the interactions (in
Ref. [24], the effect of masses are highlighted, but the chemical potential conditions are
kept the same). Their intention is to show the changes in the equation of state due to the
interactions. Our approach is different and, in our view, complementary: we are only
looking at free quarks, but we are normalizing our figures to different quark masses and,
most importantly, chemical potential values or conditions. Our intention is to measure how
much these masses and chemical potentials affect the equation of state.

To do so, in this work, we investigate the equation of state of a free gas of quarks,
focusing on how the conformal limit is reached when different chemical potentials are
varied and different constraints (e.g., for laboratory vs. astrophysics) are considered. This
is achieved by using combinations of one, two, or three chemical potentials out of the four
we consider, each related to a possible conserved quantity: baryon number B (), electric
charge (jp), strangeness (), and lepton number (y,). We also derive expressions for
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massless quarks under different conditions and use the proportionality between the results
to illustrate our discussion.

We study the effects of using different quark masses (including PDG values), numbers
of flavors, and different ways to fix the various chemical potentials considered. The lat-
ter procedure implies enforcing charge neutrality and, when leptons are included, beta
equilibrium. When leptons (electrons, muons, and their respective neutrinos) are present,
the pressure is not altered. An exception is the case in which the lepton fraction is fixed.
For different cases, we quantify the deviation from the one-chemical-potential (massless)
conformal limit by verifying at which pp the pressure deviates by more than 10%. This
value varies from yup = 77 to 48,897 MeV. Depending on the values of chemical poten-
tials, e.g., jio, even the light quark masses can become relevant at large yg. This shows
that one must be careful about making statements concerning comparisons with “the”
conformal limit.

Finally, we show that the behavior of the symmetry energy is monotonically increasing
and does not depend on the light quark masses.
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Appendix A. General Expressions

For each particle i, we can write its chemical potential as the combination of the
independent chemical potentials of the system (each associated with a conserved quantity)
weighted by the respective particle quantum number. In our case, of conserved baryon
number, electric charge, and strangeness, we have

ni = Qppp + Qi + Qs Us, (A1)

where the baryon number for quarks is Qp = 1/3 and Q; and Qs, are the electric charge
and strangeness of each quark, respectively. Here, 1ip, g, and g are the baryon, electric
charge, and strange chemical potentials of the system, respectively. In our formalism,
the isospin chemical potential yi; = pg [10].

Alternatively, Equation (A1) can be derived from the principles of thermodynam-
ics. One may start considering the additive property of the internal energy U for an
n-component system:

U(AS,AV,ANy,...AN,) = AU(S,V,Ny,...N,), (A2)
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where A is arbitrary and S, V, and N; denote the entropy, the volume, and the number
of particles of a given component i, respectively. Let us differentiate this “extensivity
condition” with respect to A:

AU(AS,...) (AS) AUV,..)aAV)  AUAN,,...) IANY)
A0S or T T awv)  ar T T amnN)  ar T
QU(AN,,..) IAN,)
S g = U(S, VNN (A3)

Setting A = 1 in the above equation, we obtain

au . au. U au
355+ oV an Mt g Ne = U (A4)

Now, using the definition of the intensive parameters T (temperature), P (pressure), and y;
(chemical potential), we arrive at the Euler equation:

U=TS—PV+uNi+... +unNy. (A5)

Inserting the above equations into the expression for the Gibbs energy G = U + PV — TS,
we have

n
G=TS—PV+uNi+... +uuNy + PV —TS = G =) uN;, (A6)
i=1

which is known as the Gibbs—Duhem relation. In the condition of chemical equilibrium,
the Gibbs energy must be minimized with respect to one of the quantities N;. For constant
temperature and pressure, this condition reads as

"/ 9G dN;
) (am) 0. (A7)

i=1 T,P,N;; aN;

Now, let 77; stand for the coefficient that gives the proportion of the component j with
respect to the other components of the system. If the component j suffers a variation
dN; = 1j;, all the other components must also have a variation given by dN; = (7;/7;)#; in
order to keep the balance between the components implied by the condition of chemical
equilibrium. Therefore, dN;/dN; = 7;/7;. Additionally, according to Equation (A6),

oG
Hi = (BN) . (A8)
i/ TPNiy,

As a result, Equation (A7) can be written as

n
Y mipi =0. (A9)
i=1

Considering that baryon number Qp, electric charge Q, and strangeness Qg are conserved
quantities, the three conservation laws can be respectively written as

n n n
Y Qg =0, Y 7,Q;=0 and ) #:Qs, =0. (A10)
i=1 i=1 i=1

As long as we have n variables and three equations, it is possible to write three of the #; as
functions of the other n — 3, as follows:

n

mQp, +172Q8, +13Q8, = — Y 7iQs,, (A11)
i£1,2,3
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n
mQ1+mQ+13Q3=— Y. 7:Q;, (A12)
i#£1,23
n
mQs, +1Qs, +13Qs; = — Y 7iQs;- (A13)
i£1,2,3

Clearly, the three independent components chosen to construct the above relations are
completely arbitrary. As a consequence, we may consider a certain species 1, such that
Qp, = 1,01 = 0,and Qs, = 0; a certain species 2, such that Qp, =0, Q> = 1, and Qs, = 0;
and a certain species 3, such that Qp, = 0, Q3 = 0, and Qgs, = 1. In this case, the above
equations are simplified to

n n n
Y niQs, m=-— Y, 7iQ; and 5z=— Y 7Qs,. (A14)

i£1,2,3 i#£1,2,3 i#£1,2,3

Plugging Equation (A14) into Equation (A9), we find

n n n n
Z Miki = Z i QB ;l’ll + Z i Q1V2 + Z i QS “l/l3 (A15)

i#£1,2,3 i£1,2,3 i#1,2,3 i#1,2,3

Defining y; = pp (the baryon chemical potential), u» = i (the electric charge chemi-
cal potential), and y3 = g (the strange chemical potential), the above equation can be
rewritten as

n n n n
Yo mipi=Y, ni(Qeus)+ Y, ni(Qing)+ Y, 7i(Qs;us) (Al6)

i#1,.2,3 i#1,.2,3 i#£1,2,3 i#£1,2,3

Finally, since all the factors #; are independent, the above equation only holds if the
coefficients are equal, i.e.,

ui = Qp.up + Qi + Qs Us, (A17)

which precisely corresponds to Equation (A1) if we consider that all quarks have an
identical baryon number Qp, such that Qp, = Qp = 1/3.

The general expressions for energy density and pressure of a relativistic free Fermi
gas of particles i can be derived from the Dirac Lagrangian density extracting the diagonal
components of the energy-momentum tensor (assuming an ideal fluid). The (number)
density is simply the integral of the distribution function. Using the natural system of units,
they are

m= S [k — ), (A18)
i i(fi+ +fi7)r (A19)

_ls

p=33 / it L(f ) (A20)

where g; = 6 is the spin and color degeneracy factor; k; is the momentum;

Ei=\/k}+m? >0 (A21)

is the energy of the state; m; the mass; f+ is the distribution function of particles and
antiparticles f;, = (e(Ei¥#)/T 11)~1 with y; being the particle chemical potential; and T
the temperature.
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In the T = 0 limit, antiparticles provide no contribution; f- = 0 and f+ = 1 up to
the Fermi momentum; k; = kf, E; = y;; and the integrals for the above thermodynamic
quantities are evaluated analytically:

_ & 3
ni= S, (A22)
kg, + /m? + k3
Si |(1 2 Lis) / 1 o4y h i hH
k. + /m? + k2
1 g 1 3 3 2 3 4 FI 1 Pi
P = 527_;2 [<4kﬂ - Smikﬂ.) \ /mlz +k%i + gmi IHT . (A24)
Appendix B. Massless Quarks
For the massless particle case, the expressions above further reduce to
ni= S = S, (A25)
g = 85;2 k%]_ = 8%2 y?, (A26)
1 ¢; 1 ¢;
P = 8i k4 _ 8i 4 (A27)

T 3gm2 h T 3gm2li
reproducing ¢; = 3P;.
Note that in the case of massless free quarks, we can also write yi; = k;. Therefore, we
can write the chemical potential for each quark flavor using Equation (Al):

1 2
Hu = gﬂB+§,‘uQ =ky, (A28)
1 1
i = zHB— 3HQ = kg, (A29)
1 1
Ms = 3MB— gHQ+Hs =ks. (A30)

We use the convention that both the strangeness and yg are positive. Alternatively, one can
use both as negative without changing the results. Equations (A28) and (A29) are equal if
uo = 0. Equations (A28)-(A30) are equal if 1o = 0 and pug = 0. The density and pressure
of each quark flavor can be written further as

3 3
_W K
ni—;’z—;’z, (A31)
4 4
Hi ki
A2 T A2 (A32)

Next, we discuss the pressure for specific conditions concerning the number of flavors and
chemical potential constraints (not including leptons):

*  Two-flavor, pg = 0:
4

_ R s R )
P=horba=2P= 10 = {6072 = 159888 - (A33)

e Three-flavor, ug =0, ug = 0:

PP PP —3p, = M M I (A34)
WA s T 4m2 T 10872 1065.92

*  Two-flavor, pq fixed:
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1 1 (/1 2 \* /1 1 \*
P=P +P;, = — (44 4y~ ([ Zyp+ = Sy — =
it P = g () 4n2[<3HB+3VQ) +(3”B 3”9) 1
_(mb wRomo e G s Brg | 160
© 4m2\ 81 27 3 9 9 3 27 81
4 48 612 1> 3 4
LM Ambpo  GMBMO dmslo KO
81 27 3 9 9 3 27 81
1
= Sou |2k + g + 300ty + 2Busidy + 17uf) (A35)
*  Two-flavor, pg from charge neutrality:
Starting from ) ; Q;n; =0,
2 1
g?’lu — gnd =0 , (A36)
20 1p
Zrhu 2 FPd A37
312 37?2 0, (A37)
2ud =3, (A38)
1 2\ 1\
oL, 2 (L, ) A39
<3ﬂ3+3ﬂQ> <3P‘B 3,”Q> (A39)
11 1 12 1
2331 — zHB = —233Q ~ 3HQ, (A40)
Ho = ————— = —0.0738 g . (A41)
23 41
We can then use Equations (A38) and (A41) to calculate the pressure:
1 4 4 1 4 44
P = PM"‘Pd:?(.uu_"yd):H(ﬂu+23?’lu)
1 4\ 4 4\ (1 2 4
= (142 )= s (1+2) (3"3 + 3VQ>
1 1 2f25-1 !
4 3 —
= 14+23)|zug—
47(2( + ) 3}43 3<2§+1HB>1
1 28 1123 42]"
4 _
= 5(1+29) . i
4 3(23 +1)
4
4 PB
= = . A42
422k 413 B 172159 (A42)
*  Three-flavor, pq fixed, us = 0:
1 1
P = Pyt Pyt Po= g (i + g + 1) = g (b + 219) (A43)
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because y; = ys are equal, resulting in

2 N N
42 | \3M'E T 310 3~ 3Me

2 4
U (1 4wp2ig  6pgArg  dus 8 | Lo
a2\81 " 27 3 "9 9 T3 w s

p

4
TRy e 1 N L R T Y e RN o
T2y s 299 23w tm

1
= Spam (3w + 36ubud + 24muy + 18 (Ad4)

e Three-flavor, g from charge neutrality, s = 0:
Starting again from ) _; Q;n; =0,

2 1 1

g]’lu - gnd - gns = O ’ (A45)

2y 11 i
< HBu | Zd 55 =0, A46
3 <n2> 3 ( 3 \n2 (A46)
2y —py— 13 =0, (A47)

but since in this case yu; = ys, we have

Ha = Mg, (A48)

which implies (from Equations (A28) and (A29) ug = 0 and reproduces the three-flavor
case with g =0, g = 0.

e Three-flavor, zero net strangeness:

Starting from }- Qs,n; = 0,at T = 0, this implies s = 0, no matter if ug = 0 or ug # 0.
As a consequence, this case reproduces the respective two-flavor case.

*  Three-flavor, ug fixed, pg fixed:

1
P = PutPi+Pi=, 5 (i + g+ s

1 (/1 2 \* (1 ton 1 4
= 2 KS#B + BVQ> + <3VB - BVQ> + <3#B ~3HQ + y5> ] . (A49)
Using the result from Equation (A44),
1
Po= oo (3uh + B6uhud + 24pnndy + 184
Vfa_4 3 4 5. 4 3 4 3
T iz (P‘s ~ Sy HQls = 3HQHs T 3HBHs + 5o HBHS
6 6 12 , 12 5 12 2
+ GHOMS T+ GHEIS — 5o HBHQHS + oo HBHHS = 5 HBHQNS | - (AS0)

e Three-flavor ug = 0, s fixed:
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Using Equation (A50) with ug =0,
_ 1 1 P‘s 3 155

*  Three-flavor, ji from charge neutrality, ys fixed:
Starting from ) Q;n; =0,

2 1 1
gnu - gnd - gns = O 7 (A52)
25— py— 4 =0, (A53)

1 2\ /1 1\ /1 1 3
2<3.”B + 3VQ) - (SﬂB - 3P‘Q) - <3VB — 30 + Vs) =0, (A54)

2 3 2
2up  2ugug  Mpsig 16K 2uy  6ugpg MG

27 27 27 27 27 27 27
2 32 6 3upks 3
“rQ 3 OHBHs HBHQHs  °HQMS VBVS 3
T T g g 5 M5 Jugid =0, (A%)
2 2 2 B 2 2 3 2 2 2 S
Hoto R0 Ty Melts | Febols PO 2t gk =0, (ase)

In the above expression, we still need to isolate yo and replace in Equation (A50).
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