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Abstract. In the previous Quarks 2016 conference I have presented a concise
review of description of quark-gluon plasma (QGP) formation in heavy-ion col-
lisions (HIC) within the holographic approach. In particular, I have discussed
how to get the total multiplicity and time formation of QGP in HIC that fit the
recent experimental data. For this purpose we had to use an anisotropic holo-
graphic model. There are also experimental indications that QGP formed in
HIC is anisotropic. In this talk I discuss static properties of anisotropic QGP, in
particular, phase transition and diffusion coefficients.

1 Introduction

It is my pleasure to give a talk in the Quarks 2018 Conference. I would like to thank the
organizers for the invitation. The subject of my talk is the same as in the previous Quarks
2016 Conference, it is about the holography description of quark-gluon plasma (QGP) formed
in heavy-ion collisions (HIC) [1]. Last time I have discussed how to get the total multiplicity
and time formation of QGP in HIC that fit the recent experimental data. The main point
was the use of anisotropic 5-dim metric in holographic description. The anisotropy is a
natural assumption due to geometry of HIC. There are experimental indications that QGP
formed in HIC is anisotropic [4]. In this talk I mainly discuss static properties of anisotropic
QGP formed in HIC. All details about physical picture of formation of QGP in HIC and
gauge/gravity dual approach to physical problems related to QGP the reader can find in [1–3]
and refs therein. Here I just would like to mention that I’ll use the so-called the bottom-up
holographic approach. In this approach we choose a 5-dim gravity to get phenomenologically
acceptable theory on the 4-dimensional boundary.

2 Holographic setup

2.1 Dual model [5]

The gravitational theory dual to the anisotropic field theory considered in [5] is defined by
the Einstein-Dilaton-two-Maxwell (Einstein-Dilaton-Maxwell-Maxwell) action with special
potentials V for the dilaton field φ and potentials f1 and f2 for two Maxwell fields:

S =
1

16πG5

∫
d5x
√−g

[
R − 1

4
f1(φ)F2

(1) −
1
4

f2(φ)F2
(2) −

1
2

(∂φ)2 − V(φ)
]
, (1)
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where F2
(1) and F2

(2) are the squares of the Maxwell fields.
The ansatz with the Maxwell fields F(1) µν = ∂µA(1) ν − ∂νA(1) µ, A(1) µ = At(z)δ0µ, and

F(2) = q dy1 ∧ dy2, φ = φ(z) and metric

ds2 =
L2b(z)

z2

− f (z)dt2 + dx2 +

( z
L

)2− 2
ν (

dy2
1 + dy2

2

)
+

dz2

f (z)

 , b(z) = eP(z), (2)

satisfies the equations of motion under relations between the warp factor b(z), dilaton and
Maxwell potential [5]. The ansatz (2) breaks isotropy while preserves translation and (t, x)-
boost invariances. Here f (z) is the blackening function and L is the characteristic length scale
of the geometry and we set L = 1. The 5-dim Einstein-Dilaton-Maxwell-Maxwell theory can
be considered as a truncated supergravity IIA similar to [7]. Note that the second Maxwell
field in this case can occur due to compactification. Another possible underlying theory is the
5d SO(6) gauged supergravity [8].

b(z) = exp cz2-model. In [5] the anisotropic model with a quadratic exponent as b-factor
has been considered. The advantage of this model is that in this case we can find potentials
V , f1 and f2 and the blackening function f explicitly. It is amusing to note, that this choice
corresponds to the dilaton potential that can be approximated by the sum of two exponents:

V(φ, µ, ν) = V0(ν) −C1(µ, ν)ek1(ν)φ +C2(µ, ν)ek2(ν)φ. (3)

The best fit is given by V0(4.5) = − 0.5778, k1(4.5) = 0.7897, k2(4.5) = 2.0995 with the
coefficients depending on the chemical potential µ, Fig.1.A: C1(µ, 4.5) = 23.0779+2.4236µ2,
C2(µ, 4.5) = 0.0575 + 4.9919µ2.

In isotropic case, Fig.1.B, the approximation constants are: V0(1) = − 10.8689, k1(1) =
1.0852, k2(1) = 2.4103, C1(µ, 1) = 27.2825 + 4.3749µ2, C2(µ, 1) = 0.0031 + 5.03093µ2.
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Figure 1: Scalar field potential V(φ) (solid lines) and its approximation (dashed lines) as a
sum of two exponents and a constant V0(ν) for zh = 1, c = −1 and different µ in anisotropic,
ν = 4.5, (A), and isotropic, ν = 1 (B), cases.

Note, that in [10] an explicit isotropic solution for the dilaton potential as a sum of two
exponents and zero chemical potential has been constructed. It would be interesting to gen-
eralize this construction to the anisotropic and non-zero chemical potential cases.

UV asymptotics. The metric (2) near the boundary z→ 0 is asymptotically

ds2 ∼ L2

z2

[
−dt2 + dx2 +

( z
L

)2− 2
ν (

dy2
1 + dy2

2

)
+ dz2

]
, (4)
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it is supported by

f1(z) = z−2+ 2
ν , f2(z) ∼ c(ν)

z4/ν , φ ∼
2
√
ν − 1
ν

log
z
zh
, (5)

c(4.5) = 3.80, c(1) = 0 [9]. To embed the 4-dim space-time to the metric (2) we can assume
that we deal with the section z = a, where a is an arbitrary scale parameter. The corresponding
4-dim spacetime exhibits the scaling t → λt, x → λx, �y⊥ → λ�y 1/ν

⊥ , a → λa, which we call
L2,2-scaling. We assume that effectively such geometry takes into account the non-isotropic
geometry of HIC and has as a holographic dual a gauge theory with L2,2 scaling, that can be
understood as a continuous version of a lattice gauge theory on the anisotropic lattice [11].

We are interested in a deformation of the geometry with L2,2-scaling, that can describe
confining gauge theories and that corresponds to a nontrivial warp factor. The case of b(z) =
ecz2/2 admits the explicit solution [5] and is considered in this paper. More involved forms
of the warp factor admit only numerical solutions (compare with [6]) and perhaps will be
needed for a more realistic model.

Comparison with RT model. It is instructive to compare our anisotropic model (2) with
other popular holographic anisotropic model based on the Mateos-Trancanelli metric

ds2 =
L2b(z)

z2

[
−g(z)dt2 + e2h(z)dx2 + d�y2

⊥ +
dz2

g(z)

]
(6)

This metric is supported by the Einstein-Axion-Dilaton action

S =
1

16πG5

∫
d5x
√−g

[
R − 1

2
Z(φ)(∂χ)2 − 1

2
(∂φ)2 − V(φ)

]
, (7)

Dilaton theory can be realized in terms of D3/D7 branes in IIB string theory when V = 12
and Z = e2φ [13–15]. In this case the underlying field theory is conformal. When one is
interested in a non-conformal solution, a more generic choice of the potentials V and Z [16–
19] is suitable. For the quadratic dilaton potential the theory in the region z → ∞ exhibits a
Lifshitz-like scaling t → λt, �y⊥ → λ�y⊥, z → λz, x → λ

1
ξ x . For more complicated dilaton

potential the metric (6) has the hyperscaling violation property.

2.2 Born-Infield (BI) model for non-local observables

Wilson loops play important role in study of gauge theories, see for example [20]. In the
context of AdS/CFT the spacial Wilson loops were discussed in [21]. For anisotropic case
their have been studied in [22], but without the deformation factor b(z). To consider different
Wilson loops it is useful to consider a general BI action

S = T
2πα

∫ �
−�

M(z)
√

F(z) + z′2dx, (8)

z′ = ∂xz. The first integral has the form M(z) F(z)√
F(z)+z′2

= J and its value can be related with the

"top" point z∗, i.e. J = M(z∗) F(z∗)√
F(z∗)

. Therefore S and � can be expressed as

� = 2
∫ z∗

0

1
√

F(z)
dz√

V2(z)
V2(z∗)

− 1
, S = 2

∫ z∗

ε

V(z)
V(z∗)

M(z)dz√
V2(z)
V2(z∗)

− 1
, (9)

where V(z) = M(z)
√

F(z).
We are interested in studying the asymptotics of S at large �. There are two options to

have � → ∞.
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• The existence of a stationary point of V(z), i.e. V ′|z=zDW = 0, one calls this point as a
dynamical wall (DW) point,

M′(z)
M(z)

+
1
2

F′(z)
F(z)

∣∣∣∣
z=zDW

= 0. (10)

In this case one takes the top point z∗ equal to zDW and since near the top point
√

V2(z)
V2(zDW )

− 1
∣∣∣∣
z∼zDW=z∗

=

√
V ′′(zDW )
V(zDW )

(z − z∗) + O((z − z∗)2), (11)

one gets

� ∼
z→z∗

1
√

F(zDW )

√
V(zDW )

V ′′(zDW )
log(z − z∗), S ∼

z→z∗
M(zDW )

√
V(zDW )

V ′′(zDW )
log(z − z∗).

Hence S ∼ M(zDW ) ·
√

F(zDW ) · � and σDW = M(zDW )
√

F(zDW ).

• There is no stationary point of V(z) in the region 0 < z < zh and we suppose that near
horizon we have the behaviour F(z) = f · (zh − z) +O((zh − z)2), i.e. near horizon the string
stretches on the horizon. In this case we take z∗ = zh and there are the following options:

– if M(zh) � ∞ we have � → ∞, S → 0;
– if M(z) →

z→zh
∞, for example M(z) ∼

z∼zh

m(zh)√
z−zh

, we have

� ∼
z→zh

1
√
f(zh)

1√
− 2V ′(zh)

V(zh)

log(z − zh), S ∼
z→z∗
m(zh)

1√
− 2V ′(zh)

V(zh)

log(z − zh),

and therefore, σh = m(zh) f1/2(zh).

3 Wilson loops, confinement and phase diagram
In [5] (see also [23]), we have studied the temporal Wilson loops, extended in longitudinal
and transversal directions, by calculating the minimal surfaces of the corresponding probing
open string world-sheet in anisotropic backgrounds with various temperatures and chemical
potentials. We have found that DW locations depend on the orientation of the quark pairs,
that gives a crossover transition line between confinement/deconfinement phases in the dual
gauge theory. Instability of the background leads to the appearance of the critical points
(µϑ,b, Tϑ,b) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy
ions collision line. The case of arbitrary orientation has been considered in [24], see also
[25], where corresponding phase diagrams are presented.

4 Spatial Wilson loops and drag forces
As has been shown in [26, 27] the energy lost and drag forces can be calculated with the
holography and moreover, the within the duality the low momenta drag coefficients for heavy
quarks are proportional to the spatial string tension [28], see also [29]. The drag force is a
characteristic of heavy quark moving through the plasma. Now let us discuss a string attached
to an external quark that moves with speed v in the x direction. As has been noted in [28]
the quark-antiquark Q̄Q configuration with large separation is the mirror reflected solution
of single heavy probe. In [29] the drag coefficient is calculated from the momentum flow
flowing from the boundary to the horizon along the string worldsheet, as originally described
in [21] for AdS space. The main point concerning the spatial Wilson loops is that they always,
even above Tc, obey an area law. We will see this explicitly in all considered below examples.
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3 Wilson loops, confinement and phase diagram
In [5] (see also [23]), we have studied the temporal Wilson loops, extended in longitudinal
and transversal directions, by calculating the minimal surfaces of the corresponding probing
open string world-sheet in anisotropic backgrounds with various temperatures and chemical
potentials. We have found that DW locations depend on the orientation of the quark pairs,
that gives a crossover transition line between confinement/deconfinement phases in the dual
gauge theory. Instability of the background leads to the appearance of the critical points
(µϑ,b, Tϑ,b) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy
ions collision line. The case of arbitrary orientation has been considered in [24], see also
[25], where corresponding phase diagrams are presented.

4 Spatial Wilson loops and drag forces
As has been shown in [26, 27] the energy lost and drag forces can be calculated with the
holography and moreover, the within the duality the low momenta drag coefficients for heavy
quarks are proportional to the spatial string tension [28], see also [29]. The drag force is a
characteristic of heavy quark moving through the plasma. Now let us discuss a string attached
to an external quark that moves with speed v in the x direction. As has been noted in [28]
the quark-antiquark Q̄Q configuration with large separation is the mirror reflected solution
of single heavy probe. In [29] the drag coefficient is calculated from the momentum flow
flowing from the boundary to the horizon along the string worldsheet, as originally described
in [21] for AdS space. The main point concerning the spatial Wilson loops is that they always,
even above Tc, obey an area law. We will see this explicitly in all considered below examples.

4.1 Spatial Wilson loops in the background (2)

In this section we consider behaviour of different oriented spatial Wilson loops in the
background (2). We denote WLxiX j the rectangular strip Wilson loop on the (xix j) plane,
xi = {x, y1, y2}, with the assumption that this strip is infinite along the x j-direction.

4.1.1 Spatial WLxY

We start from WLxY and parametrize the string world-sheet as σ1 = x, σ2 = y1. Assuming
the dependence z = z(x) we get the Nambu-Goto action

SxY =
T

2πα

∫ �
−�

Vx,e f f

√
1 +

z′2

f
, Vx,e f f =

bs

z1+1/ν =
eP(z)+

√
2
3 φ(z)

z1+1/ν (12)

This is a particular case of (8), we add a subscription index for M, F and V to indicate what
case we consider. MxY =

bs(z)

z1+1/ν
√

f (z)
, FxY = f , and VxY (z) = bs(z)

z1+1/ν = Vx,e f f . As has been

explained in sect.2.2 there are two options to have � → ∞:

• the existence a stationary point zDW of VxY (z)

LHS xY (z, c, ν) ≡ P′(z) +

√
2
3
φ′(z) − 1 + 1/ν

z

∣∣∣∣
z=zDW

= 0, (13)

and then σxY,DW =
bs(zDW )
z1+1/ν

DW
= Vx,e f f (zDW ).

• we take z∗ = zh and get σxY,zh =
bs(zh)
z1+1/ν

h
= Vx,e f f (zh).

We compare these two σxY , σxY,DW and σxY,zh , in Fig.2.
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Figure 2: The dependence of the tension of the spatial Wilson loop WxY (the same is for WyX)
on zh.

4.2 Spatial WLyX

The action for the rectangular strip infinite along the x-direction is

S yX =
T

2πα

∫ �
−�

bs(z)
z2

√
z2−2/ν +

z′2

f
(14)
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This is a particular case of (8) with MyX =
bs(z)

z2
√

f
, VyX(z) = bs(z)

z1+1/ν and FyX = f (z)z2−2/ν. There

are two options to have � → ∞.

• There exists a stationary point zDW of VyX(z)

LHS yX(z, c, ν) ≡ P′(z) +

√
2
3
φ′(z) −

1
ν
+ 1
z

∣∣∣∣
z=zDW,yX

= 0 (15)

and σyX,DW =
bs(zDW )
z1+1/ν

DW
≡ VyX(zDW ) = Vx,e f f (zDW ).

• We take z∗ = zh and get σyX,zh =
bs(zh)
z1+1/ν

h

We compare these two σyX in Fig.2. It is also interesting to see the dependence of different
σ on T at different chemical potential, see Fig.3.
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Figure 3: The dependence of the tension of the spatial Wilson loop WxY (A) (the same for
WyX) on the temperature.

4.3 Spatial WLyY

It is also interesting to consider WLyY , here we denote y1 as y and y2 as Y . Choose for
parametrization of the world-sheet as σ1 = y, σ2 = Y . Taking into account z = z(y) one can
write down the action for the rectangular strip in the transversal plane as

S yY =
Y

2πα

∫ �
−�

bs(z)
z1+1/ν

√
z2−2/ν +

z′2

f
dy. (16)

In this case we get the action (8) with MyY =
bs(z)

z1+1/ν
√

f
, FyY = f z2−2/ν, VyY =

bs(z)
z2/ν . In this case

there are no solutions to the DW position equation

LHS yY (z, c, ν) ≡ P′(z) +

√
2
3
φ′(z) −

2
ν

z

∣∣∣∣
z=zDW,yY

= 0, (17)

for c < 0, see Fig.4 and we have σyY,zh =
b(zh)
z2/ν

h
.

To summarize the section, we have found that in the case of longitudinal-traversal mixed
orientations there is the phase transition: at some points on (T, µ)-plane the temperature (or
chemical potential) dependence of the string tension exhibits a jump of derivative.
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LHSyX(z, -1, 4.5)
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Figure 4: The dependence of LHS , defined in (13) (the same as (15)) and (17) for the spatial
Wilson loop WxY , WyX and WyY , on z.

5 Conclusion

To conclude, I would like to stress that holographic models are some kind of phenomeno-
logical models with few number of parameters. We have considered the anisotropic model
of HIC that describes: multiplicity, quark confinement and predicts: crossover transition line
between confinement/deconfinement phases anisotropy in hadron spectrum (for a short time
after collisions) and phase transition for drag forces in the mixed longitude-transversal direc-
tions.
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