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Abstract
We develop an entangled-probe scattering theory, including quantum detection, that extends the
scope of standard scattering approaches. We argue that these probes may be revolutionary in
studying entangled matter such as unconventional phases of strongly correlated systems. Our
presentation focuses on a neutron beam probe that is mode-entangled in spin and path as is
experimentally realized by Shen et al (2020 Nat. Commun. 11 930), although similar ideas also
apply to photon probes. We generalize the traditional van Hove theory (van Hove 1954 Phys. Rev.
95 249) whereby the magnetic response is written as a properly-crafted combination of two-point
correlation functions. Tuning the probe’s entanglement length allows us to interrogate spatial
scales of interest by analyzing interference patterns in the differential cross-section. Remarkably,
for a spin dimer target we find that the typical Young-like interference pattern observed if the
target state is un-entangled gets quantum erased when that state becomes maximally entangled.

1. Introduction

For more than a century, scattering techniques have been successfully employed to extract information
about structural and dynamical properties of matter. Different types of probes (x-rays, electrons, neutrons,
for example) reveal different (classical or quantum) characteristic properties of the target system depending
on the nature of the probe-target interaction. So far, no quantum probe has exploited the characteristic trait
of quantum mechanics: entanglement. Can one realize entangled-beams of particles? What information do
entangled probes extract from the target? In this work we develop an entangled-probe scattering theory that
addresses some of these issues at a fundamental level.

Recent work [1, 3, 4] has demonstrated two types of entanglers capable of preparing a beam of neutrons
in a state exhibiting mode entanglement in two (spin-path) or three (spin-path-energy) distinguishable
subsystems. These probes can (and will) be used in scattering experiments to examine condensed matter
systems in a way similar to standard neutron scattering [5]. Ideally, one would like to develop quantum
measurements that identify/detect the entanglement present in the target matter. Thus, extension of the
standard textbook theory of scattering [6–8] to include entanglement of the probe (or projectile) is
necessary. Typically, projectiles are counted by detectors arranged spatially (see figure 1). The nature of
those detectors may vary depending on the property of the projectile one is trying to unveil, and the
counting rate as a function of scattering angle from the direction of incidence defines the differential cross
section (DCS).

Mode entanglement in the state of a single particle refers to the existence of non-local correlations
between its different distinguishable subsystems (path, spin, energy, etc); alternatively, if non-local
correlations between multiple particles are present one speaks of particle entanglement [9, 10]. The latter is
realized, for instance, in beams of entangled photon pairs [11]. As we will see, these two different forms of
scattering probe entanglement differ in the type of information they extract from the target. While
mode-entangled scattering uncovers distinctively crafted two-point correlations of the sample being probed,
matrix elements in multiparticle scattering include two-body interaction operators for each particle, thus
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Figure 1. Scattering layout for the entangled probe of entanglement length ξ compared to an un-entangled wave packet, of
transverse width Δ, and a plane wave (pw), of momentum k0. Scattered waves from the target, with energies Eλ and eigenstates
|λ〉, are detected at distance r and solid angle dΩ.

contributing to a multi-point correlation function. Importantly, by tuning the probe’s entanglement one
can in principle vary the correlation function and unveil entanglement in the target system.

A main result of this paper is the formulation of a scattering theory for a mode-entangled probe. When
applied to a magnetic interaction potential, such formulation represents an extension of van Hove’s theory.
To gain understanding of the kind of information one can extract using this kind of probe, we illustrate our
findings in the case of a spin-dimer. Depending on the relation between the various length scales involved in
the scattering process, one obtains radically different responses allowing detection of entanglement in the
target material. For instance, under certain conditions, the typical Young-like interference pattern observed
when the target state is un-entangled gets quantum erased when the target state is maximally entangled. In
addition, to obtain ancillary information on the nature of entanglement in the target we propose to alter the
way one detects the outgoing scattered probe, as happens when one measures spin polarization using a
spin-echo (se) device in neutron scattering.

The paper is organized as follows. Section 2 starts with the formal introduction of a
multimode-entangled probe and then sets the scattering framework by generalization of the standard
T-matrix formalism (details of the derivation can be found in appendix A). Section 3 discusses the
particular case of magnetic interaction between the target and a neutron probe and derives the extension of
van Hove’s theory. To identify the kind of information the entangled probe can extract from a target state,
this magnetic scattering is further specialized in section 4 using the example of a spin-dimer target. In this
section, we illustrate how the DCS changes under different experimental conditions and discuss the
prospects of detecting the varied outcomes. Finally, in section 5 we summarize main results and
implications of this work. An appendix B discusses the general scattering theory for the
multiparticle-entangled fermion-probe case.

2. Entangled-probe scattering theory

For simplicity, we focus on mode entanglement and consider a coherent beam with two distinguishable
subsystems: path and spin. In distinguishing these subsystems, the full Hilbert space of our probe state is
constructed as Hprobe = Hpath ⊗Hspin. The two pathways of the probe are indistinguishable alternatives,
and given a separation in paths ξ (figure 1), a wave packet description must be employed.

We define the simplest initial, t0 < 0, single-particle entangled-probe state to be

Φin(r, t0) =
Φ0(r, t0)|χα

0 〉+Φ1(r, t0)|χα
1 〉√

2
, (1)

(see figure 2). Equivalently, in plane-wave (pw) components [12]

Φin(r, t0) =
1

L
3
2

∑
k

g̃(k)eik·r−iω(k)t0 |χk·ξ〉,

with |χk·ξ〉 =
e−

i
2 Θk |χα

0 〉+ e
i
2 Θk |χα

1 〉√
2

,

2
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Figure 2. Schematic of probe wave packets of mean momentum k0, illustrating that the spin and path subsystems are entangled.
This figure also shows the scattering to momentum k′ by a particular orientation of the dimer vector, d = |d|̂y, which is
investigated in section 4.

where �ω(k) = Ek = �
2k2/2m, m is the mass of the probe, Θk = k · ξ + 2φ, φ is a phase introduced by the

experimental apparatus (i.e. the entangler [1]), and the quantization box of the momentum p̂ states |k〉 is
taken to be of linear size L. We choose normalizations such that

〈r|k〉 = eik·r/L
3
2 , 〈k′|k〉 = δk′k, 〈r′|r〉 = δ(r′ − r).

The entangled wave packet is characterized by the distribution g̃(k) with mean momentum k0,

transverse spatial width Δ, and energy 〈Φin|Ĥp|Φin〉 = Ep, with Ĥp = p̂2

2m . The probe Φin becomes
unentangled with respect to the Hprobe decomposition if ξ = 0. The orthogonal spin-1/2 states |χα

ν 〉,
ν = 0, 1, are defined along a particular spin-quantization axis α = x, y, z,

σα|χα
ν 〉 = (−1)ν|χα

ν 〉, σ̂ = (σx,σy,σz),

with σα representing Pauli matrices. Starting from states quantized along α, the effective spinor associated
with the k component of Φin will be fully aligned along a particular direction given by

(σ̂ · χ̂α)|χk·ξ〉 = |χk·ξ〉,

where the (k · ξ)-dependent axes χ̂α are found to be

χ̂x = (0,− sin Θk, cos Θk),

χ̂y = (sin Θk, 0, cos Θk),

χ̂z = (cos Θk, sin Θk, 0).

Since we are interested in both elastic and inelastic scattering we must include dynamical properties of
the target Hamiltonian Ĥt of spectral representation Ĥ t|λ〉 = Eλ|λ〉. Then, the total Hamiltonian of the
probe-target system is Ĥ = Ĥ0 + V̂ , where Ĥ0 = Ĥp + Ĥt, with V̂ representing their interaction potential.
The Hilbert space of the probe-target system is Hprobe ⊗Htarget, and has basis elements denoted by
|kχλ〉 ≡ |k〉 ⊗ |χ〉 ⊗ |λ〉. We assume that the probe-target initial state is the mixed state
ρ̂in = |Φin〉〈Φin| ⊗ ρ̂t, with ρ̂t =

∑
λ pλ|λ〉〈λ|, where pλ is a Boltzmann weight if the target is in

thermodynamic equilibrium at t = t0.
We next extend the T-matrix formalism to include entanglement in the probe. In the interaction

picture the propagator obeys Û I(t, t0) = 𝟙− i
�

∫ t
t0

dt1 V̂ I(t1)ÛI(t1, t0), with ÛI(t0, t0) = 𝟙 and V̂ I(t) =

eiĤ0t/�V̂e−iĤ0t/�. The T matrix, describing the transition from the state |ψk〉 = |kχk·ξλ〉 to the basis state
|ψ′〉 = |k′χ′λ′〉, is defined by

〈ψ′|UI(t, t0)|ψk〉 = δkk′δλλ′ 〈χ′|χk·ξ〉

− i

�
T̃ψ′ψk

∫ t

t0

dt1 eiω(ψ′ ,ψk)t1+εt1 ,

in which we notate T̃ψ′ψk
= 〈ψ′|T̂|ψk〉, �ω(ψ′,ψk) ≡ Eψ′ − Eψk

, Eψ = 〈ψ|Ĥ0|ψ〉, and ε > 0 a regulator. In
the equation above we have introduced the matrix element per quantization volume L3; eventually one has
to perform the L →∞ limit. The un-scattered state is decomposed in terms of the |ψk〉 states as

|ψ〉 =
∑

k

g̃(k) |ψk〉 = |Φin〉 ⊗ |λ〉. (2)

Note that this state does not contain t-dependence explicitly, as we are working in the interaction picture.
Then,

3
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〈ψ′|UI(t,−∞)|ψ〉 = δλλ′ g̃(k′)〈χ′|χk′·ξ〉

− i

�

∑
k

T̃ψ′ψk
g̃(k)

eiω(ψ′,ψk)t+εt

iω(ψ′,ψk) + ε
.

Although the wave packet is not monoenergetic by design, the spread of g̃(k) about its central value k0

(= k0ẑ in the geometry of figure 1) is supposed to be small. As such, when measuring scattering away from
the propagation axis of the wave packet, k′ is far from k0 and so g̃(k′) ≈ 0 [6, 7]. The forward scattering
term, δλλ′ g̃(k′)〈χ′|χk′·ξ〉, is thus omitted. Using this approximation and the density of states

ρ(Ek′) =
mk′
�2

(
L

2π

)3
dΩk′ with dΩk′ the solid angle in the direction of k′, the probability of transition per

final-state energy is shown to be (see appendix A)

ρ(Ek′) lim
t→∞

∫ t

−∞
dt′ Wψ→ψ′(t′)

=
2π2

�2
ρ(Ek′)

∑
k1,k2

g̃∗(k1)g̃(k2)T̃∗
ψ′ψk1

T̃ψ′ψk2

× δ (ω(k1) − ω(k2))
[
δ
(
ω(ψ′,ψk1 )

)
+ δ

(
ω(ψ′,ψk2 )

)]
, (3)

wherein

Wψ→ψ′ (t) ≡ lim
ε→0+

d

dt
|〈ψ′|UI(t,−∞)|ψ〉|2

represents the transition rate [6, 7].
The Born approximation is effected by replacing T̂ by V̂ and these regular matrix elements are given by

T̃ψ′ψk
≈ Ṽψ′ψk

= Vψ′ψk
/L3, with

Vψ′ψk
=

∫
dr e−i(k′−k)·r 〈χ′λ′|V̂(r)|χk·ξλ〉, (4)

for a local interaction 〈r|V̂ |r′〉 = δ(r − r′)V̂(r).
To compute the total probability of scattering we sum over λ′ and χ′, and average over λ, assuming the

initial state of the target is the state ρ̂t. In taking the L →∞ limit, (L/(2π))3/2g̃(k) → g(k) and
L−3

∑
k → (2π)−3

∫
dk, and normalizing by the time-integrated average flux I = limt→∞

∫ t
−∞dt′ j̄z(t′), we

obtain the DCS

d2σ

dΩ dEk′
=

m2k′

16�4π4I

∑
λ,λ′,χ′

pλ

∫
dk1 k3

1dΛ∗
k1

dΛk2

× V∗
ψ′ψk1

Vψ′ψk2
δ(�ω + Eλ − Eλ′), (5)

where the energy transfer from the constituent, incoming pw component to the target is �ω ≡ Ek1 − Ek′

and the integration measure is dΛki = g(ki)dΩki . Note that the constraint δ (ω(k1) − ω(k2)) in equation (3)
enforces k1 = k2. The probe’s entanglement is encoded in the matrix elements Vψ′ψk

, which is enhanced in
magnitude whenever the relevant length scales of entanglement in the target match ξ. As we will see in the
application (section 4), there are subtle interference effects hidden in those matrix elements which are
linked to entanglement.

After scattering, the probe state becomes entangled with the target state, and the Lippmann–Schwinger
equation describes the resulting outgoing state [6, 7]. The outgoing scattered probe state in a given direction
is given by

ρ̂sc
probe ∝ Trλ

[
T̂ρ̂inT̂†

]
,

where Trλ is the partial trace over the target state space.
A remark on the main result, equation (5), in the standard limit of pw scattering: when ξ = 0 and the

incident state is a pw normalized in a box, the flux is uniform j̄z(t) = �k0/mL3. Examining the limit
L →∞, we impose the concurrent restriction that Δ ∼ L. This ensures that the (now un-entangled) wave
packet asymptotes to a pw while, for finite L, remaining square-integrable. Performing this calculation, the
known form of the standard pw cross section as reported e.g. in [5] is recovered(

d2σ

dΩ dEk′

)
pw

= C k′

k0

∑
λ,λ′ ,χ′

pλ
∣∣∣Vψ′ψk0

∣∣∣2
δ(�ω + Eλ − Eλ′)

4
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with C = m2/4π2
�

4.
As said at the beginning of this section, we focused on the single-particle, mode-entangled probe. For a

comparison of equivalent results when the probe is multiparticle-entangled see appendix B.

3. Magnetic scattering

We next extend van Hove’s theory [2, 5] to the case of an entangled probe. Consider the particular case of a
neutron probe, with spin 1

2 σ̂ and mass m = mn, interacting magnetically with electrons (of mass me) of the
target. The interaction potential is given by

V̂ = γμNμB

∑
j

[
2σ̂ · ∇ × ŝj × Rj

|Rj|3
−

{
p̂j,

σ̂ × Rj

�|Rj|3

}]
,

where {A, B} = A · B + B · A, γ = −1.913 is the neutron’s gyromagnetic ratio, μB = e�
2mec and

μN = meμB/mn are the Bohr and nuclear magnetons, respectively. The spin and momentum of the jth
electron are ŝj (eigenvalues ± 1

2 ) and p̂j, and the position vectors Rj are directed from the jth electron to the

neutron probe. Using the identity R = − R3

2π2 ∇
∫

dq 1
q2 eiq·R and completeness

∑
λ′ |λ′〉〈λ′| = 𝟙, evaluation of

the matrix elements in equation (5) yields the form

d2σ

dΩ dEk′
=

k′r2
0

4π2I

∫
dk1 k3

1 dΛ∗
k1

dΛk2 S(κ1,κ2,ω)

with scattering vector κ1,2 = k1,2 − k′, and r0 =
γe2

mec2 . Although the two momenta, k1, k2, involved in this
integration have the same magnitude, the variation in their direction generates a dependence of the
response function S(κ1,κ2,ω) on two momentum transfers, as opposed to the single transfer present in a
pw treatment. The response function is given by

S(κ1,κ2,ω) =
∑
λ

pλ
2π�

∫ ∞

−∞
dt e−iωt

× Tr
[
ρ̂αk1,k2

〈λ|σ̂ · Q̂†
⊥(κ1)σ̂ · Q̂⊥(κ2, t)|λ〉

]
, (6)

with magnetic interaction operator

Q̂⊥(κ, t) = e
iĤ0t
� Q̂⊥(κ)e

−iĤ0t
� , Q̂⊥(κ) =

∑
j

Q̂ j
⊥(κ)

Q̂ j
⊥(κ) = eiκ·rj

(
κ̃× (̂sj × κ̃) − i

�

κ̃

κ
× p̂j

)
,

and κ̃ = κ/κ. The matrix ρ̂αk1,k2
= |χk2·ξ〉〈χk1·ξ| encodes the spin states of the entangled-probe wave

packets along with the ξ-dependent phase-shift. Written in terms of the individual wave packets basis,

ρ̂αk1,k2
=

1

2

∑
ν,ν′

ei
(−1)νΘk1

−(−1)ν
′
Θk2

2 |χα
ν′ 〉〈χα

ν |, (7)

whose trace is given by

Tr[ρ̂αk1,k2
] = cos

(
k1 − k2

2

)
·ξ, (8)

and it is a pure-state density matrix when k1 = k2: ρ̂αk1
≡ ρ̂αk1,k1

= (𝟙+ σ̂ · χ̂α)/2.
Using this formalism, the trace in equation (6) gives a decomposition of S(κ1,κ2,ω) into the four

combinations of spin components involved,

S(κ1,κ2,ω) =
1

2

∑
ν,ν′

ei
(−1)νΘk1

−(−1)ν
′
Θk2

2 Sνν′(κ1,κ2,ω),

so that spin-diagonal (ν = ν ′) entries describe scattering due to each individual wave packet of the probe
while the off-diagonal (ν �= ν ′) entries describe interference between them.

5
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Figure 3. Magnetic scattering of an entangled-probe with entanglement length ξ, by a dimer of size |d|, into scattering angles
(θ,ϕ) for a general orientation of the dimer. The spin-quantization axis for the probe is α = x, i.e. |↑〉x, |↓〉x. The initial state of
the probe-target system is ρ̂in = |Φin〉〈Φin| ⊗ ρ̂t.

Similarly one can derive the polarization vector P′ [5] of the scattered neutron, defined as

P′ =
Tr[ρ̂sc

probeσ̂]

Tr[ρ̂sc
probe]

,

to be given by (
d2σ

dΩ dEk′

)
P′ =

k′r2
0

8π3�I

∫
dk1 k3

1dΛ∗
k1

dΛk2

∑
λ

pλ

×
∫ ∞

−∞
dt e−iωt Tr

[
ρ̂αk1,k2

〈λ|σ̂ ·Q̂†
⊥(κ1)σ̂σ̂ · Q̂⊥(κ2, t)|λ〉

]
. (9)

4. Uncovering entanglement from entanglement

To highlight the information entangled-probe scattering can provide, we apply our framework to the case of
a target with two motionless interacting electrons, i.e. a dimer. Electrons are positioned at rj = (−1)jd/2,
j = 0, 1 (figure 3), and their interaction is governed by the Heisenberg Hamiltonian Ĥt = −4J ŝ0 · ŝ1 with
exchange coupling J. Its Hilbert space is the direct sum of singlet and triplet subspaces: Htarget = Hs ⊕Ht ,
where

Hs = Span
{
|λs〉 =

1√
2

(|↑↓〉z − |↓↑〉z)

}
,

Ht = Span
{
|λx〉, |λy〉, |λz〉

}
, with |λα〉 = (−1)j2̂sαj |λs〉,

where | ↑〉α, | ↓〉α are spin eigenstates defined along the α spin-quantization axis. More specifically,

|λx〉 = −|↑↑〉z − |↓↓〉z√
2

, |λy〉 = i
|↑↑〉z + |↓↓〉z√

2
,

|λz〉 =
|↑↓〉z + |↓↑〉z√

2
.

These are energy eigenstates, i.e. Ĥt|λs〉 = Eλs |λs〉 and Ĥt|λα〉 = Eλt |λα〉 with Eλs = 3J and Eλt = −J.
A standard physical measure of multipartite entanglement is the purity [9, 10, 13], a pedagogical

explanation of which is found in [14]. Given a normalized state |λt〉 =
∑

α cα|λα〉 ∈ Ht , its purity is given
by

Psu(2)⊕su(2)(|λt〉) = 2
∑
α,j

〈λt |̂sαj |λt〉2 = |c∗ × c|2

with c = (cx, cy, cz) encoding the coefficients of the linear combination. A pure triplet state is maximally
entangled (un-entangled) if and only if c∗ × c = 0, i.e. c is a real-valued vector (|c∗ × c| = 1). An example

6
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of a state exhibiting partial entanglement is

|λt〉 =
|↑↑〉z +

√
3|↓↓〉z

2
,

which has coefficient vector c =
(√

3−1
2
√

2
,−i

√
3+1

2
√

2
, 0

)
and purity of 1/4. This quantification allows for a

simple identification of entanglement-induced features of the calculated cross section, as there will be terms
proportional to the purity which then vary depending on the degree of entanglement.

The initial state of the entangled probe is defined by a Gaussian distribution

g(k) =

(
Δ√
2π

) 3
2

e−
Δ2

4 |k−k0|2 ,

with average momentum k0 = k0ẑ (k0 ≈ 1.5 × 104 μm−1 in [1, 4]), spatial width Δ, spin-quantization axis
α = x, and tunable entanglement vector ξ in the y-direction (25 nm < ξ < 25 μm in [1, 4], see figure 3 for
the general setup and figure 2 for the specific setup used in the plots of figures 6 and 7). We consider two
types of initial target states ρ̂t:

ρ̂t = ps|λs〉〈λs|+ pt

∑
α

|λα〉〈λα| (Thermal),

ρ̂t = |λs〉〈λs| or |λt〉〈λt | (Pure state)

(ps,t � 0, Trλ[ρ̂t] = 1). In the thermal state, ps = e
− 3J

kBT /Z and pt = e
J

kBT /Z , with Z = e
− 3J

kBT + 3e
J

kBT , are
Boltzmann factors which incorporate the effect of temperature T in the scattering cross section.
Investigation of its pure state components will permit analysis of the effect of the target’s entanglement on
the DCS.

The computed total response function is a sum of three components based on the type of transition that
occurs in the target,

S(κ1,κ2,ω) = psSs→t(κ1,κ2,ω)

+ pt (St→s(κ1,κ2,ω) + St→t(κ1,κ2,ω)) .

These terms can be factored in such a way as to isolate the information pertaining to the dimer from
that of the entanglement of the probe (k1 = k2):

Sτ→τ ′(κ1,κ2,ω) = δ(�ω + 4Jζττ ′ )Fττ ′(d)hττ ′(ξ), (10)

with ζ st = +1, ζ ts = −1, and ζ tt = 0. Conservation of energy implies k′2 = k2
1 − 2mω

�
= k2

1 +
8mJζττ ′

�2 . In the
above decomposition we have introduced real functions describing the dimer structure,

Fττ ′ (d) = 2 cos

(
κ1 − κ2

2

)
· d

− (−1)δττ ′ 2 cos

(
κ1 + κ2

2

)
· d,

and functions encoding the entanglement length of the probe,

hττ ′(ξ)=Aττ ′ cos
Θk1−Θk2

2
+iBττ ′ ·〈χk1·ξ|σ̂|χk2·ξ〉. (11)

The expressions for Aττ ′ and Bττ ′ are summarized in table 1. The entanglement length enters into hττ ′ via
the first term as well as the ξ-dependence of the matrix element

〈χk1·ξ|σ̂|χk2·ξ〉

=

(
i sin

Θk1−Θk2

2
,−sin

Θk1+Θk2

2
, cos

Θk1+Θk2

2

)
.

There are three competing length scales in the problem: |d⊥|, that is the projection of d onto the x–y
plane, ξ, and Δ (axes and dimer orientation coincide with figure 2 and entanglement vector having a
component along the z-axis). To gain intuition into the kind of additional information entangled-beam
scattering provides, we start by considering the magnetic response function of the dimer in the limit
Δ→∞, k1 = k2 = k = kẑ, and ξ � Δ can be different from 0. As Δ eclipses ξ, the wave packets overlap

7
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Table 1. Variables entering equations (11) and (12) for zero and finite temperature, T, which plays the role of adjusting the
singlet/triplet admixture of the thermal state as described in the text. The normalized scattering vector is κ̃ = κ/κ, s and t stand for
singlet and triplet, respectively, and Ãττ ′ and B̃ττ ′ represent the plane-wave limit of Aττ ′ and Bττ ′ .

τ → τ ′ Aττ ′ Bττ ′ Ãττ ′ B̃ττ ′

Any T s → t 1 + (κ̃1 · κ̃2)2 (κ̃1 · κ̃2)κ̃1 × κ̃2 2 0

T = 0
t → s

1+(c∗ · κ̃1)(c · κ̃2)(κ̃1 · κ̃2)

−(c · κ̃1)(c∗ · κ̃1) − (c · κ̃2)(c∗ · κ̃2)

c∗ × c + (c∗ · κ̃1)(c · κ̃2)(κ̃1 × κ̃2)

+ (c∗ · κ̃1)(c × κ̃1) − (c · κ̃2)(c∗ × κ̃2)
1 − |κ̃ · c|2 κ̃[κ̃ · (c∗ × c)]

t → t Ast − A∗
ts Bst − B∗

ts 1 + |κ̃ · c|2 κ̃[κ̃ · (c∗ × c)]

t → s Ast Bst 2 0
T > 0

t → t 2Ast 2Bst 4 0

creating a wave function which is almost indistinguishable from the unentangled pw, but which still has a
technical ξ dependence in the form of a phase. For this reason, we refer to this limit as the pw limit. As for
the entangled wave packet probe, the total response function can be decomposed into a sum of three
components,

S(pw)(κ,ω) = psS
(pw)
s→t (κ,ω)

+ pt

(
S(pw)

t→s (κ,ω) + S(pw)
t→t (κ,ω)

)
,

where κ = k − k′ is the momentum transfer, and

S(pw)
τ →τ ′(κ,ω) = δ(�ω + 4Jζττ ′ )sin2

(
κ·d + πδττ ′

2

)
×

[
Ãττ ′ + iB̃ττ ′ · χ̂x

]
, (12)

where expressions for Ãττ ′ and B̃ττ ′ take the simpler form shown in table 1 (B̃ττ ′ is purely imaginary). The

term sin2(
κ·d+πδττ ′

2 ) is typical of a two slit-type interference pattern, with the dimer playing the role of the
slits.

Although the initial probe is in the plane-wave limit, there is still in principle a dependence of the
scattered state on the path entanglement vector ξ. Notice, however, that when the target state is maximally
entangled its purity |c∗ × c|2 vanishes and, since B̃ττ ′ is directly proportional to the purity, the magnetic
response S(pw)

τ→τ ′ is insensitive to ξ. Thus, maximal entanglement of the target in the pw case precludes
ξ-dependence of the DCS—a dependence which is present for nonzero purity (see figure 4).

Interestingly, the role Θk plays in the response is effectively equivalent to a rotation of the spin
polarization of the neutron. In other words, in this plane-wave limit and from the standpoint of the DCS,
tuning the properties of the beam by manipulation of the entangler is similar to changing the polarization
of the incident neutrons. We next analyze the polarization of the scattered neutron in the pw limit. From
equation (9),

P′
τ→τ ′ =

1

Ãττ ′ + iB̃ττ ′ · χ̂x
h̃ττ ′(ξ), (13)

with

h̃st(ξ) = −2κ̃ χ̂x · κ̃, for any T

h̃tτ ′(ξ) = (−1)δtτ ′ R
[
2c⊥χ̂x · c∗⊥ − χ̂xc2

⊥
]
− iB̃tτ ′

+ δtτ ′ h̃st(ξ), for T = 0

h̃tτ ′(ξ) = δtτ ′ h̃st(ξ), for T > 0,

and c⊥ = c − κ̃(κ̃ · c). For example, if the incident polarization is in the y–z plane, i.e. χ̂x, and we restrict
k′ to the y–z plane (κ̃x = 0), then the polarization of the scattered neutron for the triplet-to-singlet
transition at T = 0 is

P′
t→s(λx → λs) = −χ̂x,

P′
t→s(λy → λs) =

2

c2
⊥

c⊥χ̂x · c⊥−χ̂x = P′
t→s(λz → λs),

8
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Figure 4. Magnetic response function (12), i.e. plane-wave limit, for the triplet |λt〉 = |↑↑〉z to singlet |λs〉 transition,
S(pw)

t→s (κ,ω), when κx = 0 assuming k = πÅ−1, d = 9 Å, J = 1/4 meV, and k′2 = k2 − 8mJ
�2 . Top panels depict the case ξ = 0,

corresponding to an incoming neutron of spin polarization in the +z direction, with forward (backward) scattering 0 � θ < π/2
(π/2 � θ � π) on the right (left). Bottom panels display the same information when, by tuning ξ (k · ξ = 3π/2, φ = 0), the
effective polarization is set along the +y direction.

with c⊥/c⊥ = (0, κ̃z,−κ̃y) and c2
⊥ = 1 − |κ̃ · c|2. The situation becomes more interesting away from the pw

limit as discussed next.
Returning to the main focus of the entangled probe, the DCS also contains three components:

d2σ

dΩ dEk′
= ps

d2σ

dΩ dEk′

∣∣∣∣
s→t

+ pt
d2σ

dΩ dEk′

∣∣∣∣
t→s

+ pt
d2σ

dΩ dEk′

∣∣∣∣
t→t

.

Figures 6 and 7 show the shape of the DCS for various parametric scenarios. The radial value of these

plots in the direction (θ,φ) gives the value of d2σ
dΩ dEk′

in that direction, as illustrated in figure 5. The axes and

dimer orientation coincide with figure 2.
The largest scattering amplitudes occur when |d⊥| ∼ ξ and Δ is small. As soon as the value |d⊥| departs

from the length ξ, the DCS starts to attenuate exponentially, at which point a large Δ is required to counter
this effect. Figure 6 compares the angular dependence of DCSs in a triplet-to-singlet transition of a thermal
initial target state ρ̂t for different competing length scales and κ̃0 = (k0−k′)/|k0−k′|. In each of these,
ξ ≈ |d⊥| �= 0 and so the beam is entangled. The case Δ > ξ does not differ qualitatively from what one
would have obtained with an un-entangled probe (ξ = 0). Indeed, the ‘flower-shape’ DCS when Δ > ξ is
reminiscent of a two-slit-type interference pattern and, as mentioned above, is also obtained in the case of a
standard probe (ξ = 0). On the other hand, the behavior of a non-overlapping entangled wave packet
(Δ < ξ ∼ |d⊥|) is different than that of an un-entangled probe: the distinct two-slit interference pattern
vanishes, leaving a DCS which is insensitive to (θ,φ) ∈ [0,π] × [0, 2π) and far stronger in magnitude. This
spherical symmetry arises from a delicate summation of contributions from the triplet states making up ρ̂t,
which do not individually exhibit this feature (for example, see the |λx〉 DCS of figure 7).

The situation is even more remarkable when the target state is pure. Then, some interference terms are
proportional to the purity Psu(2)⊕su(2)(|λt〉) of the target state and consequently the DCS can identify
entanglement in the target. Figure 7 displays the triplet-to-singlet DCS for three particular target states
using the same entangled, Δ < ξ neutron probe. Maximally entangled Bell-type states of the target show a
special shape distinct from those of un-entangled or partially entangled states. The latter depict
two-slit-type interference patterns with proper characteristics of the particular symmetry of the

9
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Figure 5. The distance from the origin to the surfaces in figures 6 and 7 represent the magnitude of the DCS as a function of
scattering direction, k′ (defined by the angles θ and ϕ).

Figure 6. Thermal state ρ̂t triplet-to-singlet DCSs d2σ/dΩ dEk′ |t→s (spherical plots (θ,ϕ)) for the case |d⊥| ≈ ξ, φ = 0,
k0 ≈ 1.5 × 104 μm−1, and the dimer aligned along the y direction. The DCS for Δ < ξ is proportional to

∑
α(1 − |κ̃0 · c|2) = 2,

with c corresponding to |λα〉. While the ordering of sizes is faithful, plots do not have the same scale for visualization purposes,
as increases in Δ achieve sharp decreases in the DCS magnitudes when |d⊥| ≈ ξ.

probe-target system, while Bell-type target states seem to forbid those two-slit-type interference patterns as
a result of their non-local correlations, i.e. their entanglement. Such ‘quantum erasure’ of the interference
pattern can be understood by realizing that orthogonality of the incident spin states corresponding to the
two paths are preserved after scattering if and only if the target state is maximally entangled. Let us expand:

In the limit Δ � ξ, |d⊥|, the neutron wave packet scatters significantly only from those scattering
centers that lie in its trajectory, i.e. the dimer spin ŝj interacts mainly with the neutron spin state |χα

j 〉.
Consider, for instance, the scattered neutron spin-dimer triplet-to-singlet transition

|χsc
j 〉|λs〉 = |λs〉〈λs|

[
Q̂ j

⊥ · ŝj|χα
j 〉|λt〉

]
= eiκ0·rjσ̂ · c⊥|χα

j 〉|λs〉,

where |χsc
j 〉 is the spin state corresponding to the jth neutron wave packet after scattering with final

momentum k′, and c⊥ = c−κ̃0 (κ̃0 · c). The path interference term in the DCS is proportional to

〈χsc
1 |χsc

0 〉 = ieiκ0·(r0−r1)(c∗⊥ × c⊥) · 〈χα
1 |σ̂|χα

0 〉.

For a maximally entangled state, c is real-valued and c∗⊥ × c⊥ vanishes identically, thus explaining the
observed quantum erasure phenomenon.

There remains a question of how to detect the neutron after it has undergone interaction with the target.
In principle, the phase, φ, added by the entangler is determined by the experimental setup. While this phase
may be present in general, it is ubiquitous in neutron scattering experiments and may vary with neutron
wavelength in some cases [1]. In that context, to obviate the need to average the DCS over φ a se technique

10
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Figure 7. Pure state triplet-to-singlet DCSs d2σ/dΩ dEk′ |t→s (spherical plots (θ,ϕ)) for the case |d⊥| ≈ ξ, Δ < ξ, φ = 0,
k0 ≈ 1.5 × 104 μm−1, and the dimer aligned along the y direction. DCSs are to scale with each other, illustrating the effect
target-state entanglement has on the DCS interference pattern. The DCS for |λα〉 is proportional to 1 − |κ̃0 · c|2. Purity values
for the displayed maximally-, partially- and un-entangled states are 0, 1/4, and 1, respectively.

might be used to remove this phase by placing a disentangler [1, 3] after the target. This quantum detection
strategy is known as se measurement.

However, the details of the required se apparatus will depend on the target, both because the latter will
rotate the neutron polarization and because the scattering is inelastic. The neutron polarization induced by
the target, which will depend on φ, can be found from an expression identical to equation (9) with the
replacement

σ̂ ·Q̂†
⊥(κ1)σ̂σ̂ ·Q̂⊥(κ2, t) → σ̂ ·Q̂†

⊥(κ1)σ̂seσ̂ ·Q̂⊥(κ2, t),

where σ̂se = U†
φσ̂Uφ is the unitarily transformed spin operator with Uφ =

∑
ν=0,1ei(−1)νφ|χα

ν 〉〈χα
ν |, where α

is the se axis.
Only the components of the neutron polarization produced by the target that are perpendicular to the

α-axis will be modified by the se disentangler and this has to be taken into account in order to measure the
full DCS with the phase φ eliminated. In general, the final neutron polarization measured after the
disentangler will be reduced in magnitude, just as it is for conventional se measurements, and the variation
of the polarization with entanglement length ξ will contain information about the electron spin correlations
in the target, including their state of entanglement. Calculations of these effects will be the subject of a
future communication.

5. Outlook

We formalized a scattering theory for an incident probe whose quantum state is prepared in either a mode-
or multiparticle-entangled fashion. The key idea is to control the intrinsic entanglement among the
subsystems of the probe, such as its spin and pathways, to learn about the entanglement present in the
target. Exploiting such control involves several adjustable length and energy scales that compete with those
of the target. This competition may generate amplification or erasure of interference patterns that betray
information about the target’s entanglement. Together with interferometric methods of quantum detection
of the scattered wave, such as measurement in a se mode, entangled probes promise to become a powerful
tool for future investigations. Quantum imaging techniques [15–19] using light exploit the quantum nature
of the probe, including entanglement and squeezing, to achieve enhanced precision measurement [20] and
sensing, for instance. These interferometric techniques often treat the interaction between the probe and the
target in a semiclassical manner. By contrast, the quantum entangled-probe scattering studied in this paper
represents a fully quantum-mechanical treatment of the interaction allowing, for example, the
determination of spatio-temporal information about correlations in the target’s elementary constituents.

In an effort to describe and manipulate the internal degrees of freedom of the probe, one is forced to
depart from a pw description and consider a full-fledged entangled wave packet formulation wherein the

11
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Table 2. Summary of main results illustrating the DCSs, d2σ
dΩ dEk′

∣
∣
∣
τ→τ ′

, resulting from a neutron beam (with Hilbert space

Hprobe = Hpath ⊗Hspin) scattered from a motionless spin dimer target. Different scenarios emerge depending on the relation between
the relevant scales of the problem, with ξ the entanglement length, |d⊥| the dimer size, κ̃0 = (k0 − k′)/|k0 − k′|, and c characterizing
the pure target state as defined in section 4.

Neutron probe Entanglement length Wave packet size Target state d2σ
dΩ dEk′

∣
∣
∣
τ→τ ′

Comments

Unentangled ξ = 0 Δ→∞ Any Two-slit pattern
Entangled ξ > 0 Δ→∞ Thermal or entangled Two slit pattern DCS ξ-independent
Entangled ξ > 0 Δ→∞ Unentangled Two-slit pattern DCS ξ-dependent
Any Any Δ > ξ, |d⊥| Any Two-slit pattern Same as for Δ→∞
Entangled ξ > 0 Δ < ξ, |d⊥| Thermal No interference pattern Isotropic

Entangled ξ > 0 Δ < ξ, |d⊥| Entangled No interference pattern d2σ
dΩ dEk′

∣
∣
∣
τ→τ ′

∝ 1 − |κ̃0 · c|2

Entangled ξ > 0 Δ < ξ, |d⊥| Partially entangled Intermediate
Entangled ξ > 0 Δ < ξ, |d⊥| Unentangled Two-slit pattern DCS ξ-dependent

transverse coherence of the probe is an adjustable variable. When applied to magnetic scattering of
neutrons, our framework generalizes van Hove’s theory. To gain an intuition for the effect of this technique,
we analyzed the particular case of magnetic scattering of a neutron by a spin-dimer target state. We find an
enhancement in the DCS when in the regime where the transverse width of the incident wave packets is
smaller than the entanglement length (i.e. the separation between packets) and the entanglement length is
tuned to match a magnetic correlation length of the target. Remarkably, a maximally entangled target state
does not show the typical Young-like interference pattern that is present for a non-maximally entangled
dimer. This finding can be interpreted as the quantum erasing by a quantum-entangled double-slit of the
interference pattern expected from an un-entangled or classical double-slit. The reason behind such an
interesting quantum erasing effect is traced to the effect that, whenever the target state is maximally
entangled, the orthogonality between incident and scattered neutron spin states corresponding to each path
is preserved. If this is not the case then there is always some interference between the paths’ contributions to
the DCS.

We summarize our main results in table 2. While the most spectacular effects we have found relate to the
situation in which the wave packet size Δ is smaller than the probe entanglement length ξ, some effects,
such as the fact that the DCS does not depend on ξ for maximally entangled target states, also persist when
the intrinsic coherence length of the neutron (related to the wave packet size in our calculations) is larger
than ξ. Entanglement lengths up to about 25 μm have been achieved [21] but the inherent coherence length
of neutrons has been measured to be larger than this value [22, 23] in several experiments, implying that
only the first four rows of the table are immediately accessible experimentally. While it is not yet clear to
what extent our results are generally applicable to other entangled systems, we hope that this theory and
future experiments that it informs may shed light on complex phases exhibited by novel materials such as
multiferroics, unconventional superconductors, quantum spin liquids, and frustrated magnets.
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Appendix A. Calculation of transition rate

Starting from the transition amplitude measured away from the forward propagation,

〈ψ′|UI(t,−∞)|ψ〉 ≈ − i

�

∑
k

T̃ψ′ψk
g̃(k)

eiω(ψ′,ψk)t+εt

iω(ψ′,ψk) + ε
,

12
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we square this quantity to obtain the probability of specific transition ψ → ψ′ at time t

|〈ψ′|UI(t,−∞)|ψ〉|2

=
1

�2

∑
k1,k2

T̃∗
ψ′ψk1

T̃ψ′ψk2
g̃∗(k1)g̃(k2)

× ei(ω(k1)−ω(k2))t+2εt

(ω(ψ′,ψk1 ) + iε)(ω(ψ′,ψk2 ) − iε)
. (A1)

These frequencies are defined in section 2. The denominator may be written as

1

(ω(ψ′,ψk1 ) + iε)(ω(ψ′,ψk2 ) − iε)

=
1

(ω(k1)−ω(k2))−2iε

(
1

ω(ψ′,ψk1 ) + iε
− 1

ω(ψ′,ψk2 ) − iε

)
. (A2)

With this substitution, we differentiate equation (A1) with respect to time in order to express the transition
rate of ψ → ψ′. This quantity, once ε→ 0+ is taken, we define in the text as

Wψ→ψ′ (t) ≡ lim
ε→0+

d

dt
|〈ψ′|UI(t,−∞)|ψ〉|2

= lim
ε→0+

i

�2

∑
k1,k2

T̃∗
ψ′ψk1

T̃ψ′ψk2
g̃∗(k1)g̃(k2)ei(ω(k1)−ω(k2))t+2εt

×
(

1

ω(ψ′,ψk1 ) + iε
− 1

ω(ψ′,ψk2 ) − iε

)
. (A3)

This limit may be resolved by using

lim
ε→0+

1

u ∓ iε
= ±iπδ(u) + P

(
1

u

)
, (A4)

in which P denotes the Cauchy principal value (PV). The parentheses in equation (A3) then become

− iπ
[
δ(ω(ψ′,ψk1 )) + δ(ω(ψ′,ψk2 ))

]
+ P

(
1

ω(ψ′,ψk1 )

)
− P

(
1

ω(ψ′,ψk2 )

)
.

The difference of PVs will cancel, as described below, so we omit them from now on.
In the wave packet context, and in contrast to the pw context, the time dependence of the transition rate

is to be expected. As the wave packet evolves with time from −∞ to t, the total probability of the specific
transition ψ → ψ′ to occur is given by

∫ t
−∞dt′ Wψ→ψ′ (t′). Because we want the cross section per final-state

energy, we multiply Wψ→ψ′ by the density of states ρ(Ek′) =
mk′
�2

(
L

2π

)3
dΩk′ . Performing this evaluation, the

probability of transition from ψ to states surrounding ψ′ after a long time t is

ρ(Ek′) lim
t→∞

∫ t

−∞
dt′ Wψ→ψ′(t′) =

2π2

�2
ρ(Ek′)

∑
k1,k2

g̃∗(k1)g̃(k2)T̃∗
ψ′ψk1

T̃ψ′ψk2

× δ(ω(k1) − ω(k2))
[
δ(ω(ψ′,ψk1 )) + δ(ω(ψ′,ψk2 ))

]
=

4π2

�
ρ(Ek′)

∑
k1,k2

g̃∗(k1)g̃(k2)T̃∗
ψ′ψk1

T̃ψ′ψk2

× δ(ω(k1) − ω(k2))δ(�ω + Eλ − Eλ′), (A5)

where we have used Ek1 = Ek2 from the first delta function. This same condition is the reason for
cancellation of the PVs, as it fixes ω(ψ′,ψk1 ) = ω(ψ′,ψk2 ). The time integration used

∫ ∞
−∞dt′ eiut′ = 2πδ(u)

for a frequency u. The energy transferred �ω = Ek1 − Ek′ is equal to the energy acquired by the target,
Eλ′ − Eλ. Thus equation (3) has been recovered, as well as the subsequent form of the energy-conserving
delta function in equation (5).
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Appendix B. Scattering of multipartite entangled probe

B.1. Incoming particle-entangled state
The main manuscript deals primarily with a single-particle probe prepared in a mode-entangled state. This
is distinct from a setup involving probe states with multiple entangled particles: the latter may lead to a
higher-order correlation function due to the additional instances of single-particle interactions with the
target. There are several quantitative adjustments which effect this difference in the case of multiparticle
scattering.

First, the Hilbert space of the system is extended to accommodate the momentum and spin states of the
second particle. Indistinguishable particles impose an additional superselection rule on the state space, that
is, the exchange statistics symmetry. Here, we only focus on fermionic probes. Indexing the two particle
orbitals by A and B, we notate a basis for the state of two spin- 1

2 particles of momenta kA and kB and
entanglement vector ξ:

B =
{

aξkAkB
(xA, xB), bξkAkB

(xA, xB), cνkAkB
(xA, xB)

}
,

where xi = (ri,σi) labels the position and spin of the particle i = A, B, and ν = 0, 1. These basis functions
obey the fermionic superselection rule, antisymmetry under exchange xA ↔ xB, and are defined by

aξkAkB
(xA, xB) =

1

2L3
√

1 + δkAkB

×
[
ei(kA·rA+kB·rB)D−(kA,σA, kB,σB, ξ) + (kA ↔ kB)

]
,

bξkAkB
(xA, xB) =

1

2L3

×
[
ei(kA·rA+kB·rB)D+(kA,σA, kB,σB, ξ) − (kA ↔ kB)

]
,

cνkAkB
(xA, xB) =

1√
2L3

×
[
ei(kA·rA+kB·rB)χα

ν (σA)χα
ν (σB) − (kA ↔ kB)

]
,

with

D±(kA,σA, kB,σB, ξ)

= e−
i
2 (kA−kB)·ξχα

0 (σA)χα
1 (σB)

± e
i
2 (kA−kB)·ξχα

1 (σA)χα
0 (σB).

It is worth noting that bξkk = cνkk = 0 and so are not included in this basis. χα
ν (σi) is the spinor of the i

particle aligned up (ν = 0) or down (ν = 1) along the α quantization axis.
To illustrate the effect of particle entanglement we define an example initial state from the basis vectors

to be

〈xA, xB|Ψin〉 =
1

2

∑
kA,kB

g̃(kA)g̃(kB)aξkA ,kB
(xA, xB).

Hp = − �
2

2m (∇2
rA
+∇2

rB
) is the Hamiltonian of the free probes with momenta kA and kB.

We next describe the final state which is detectable by the set-up of figure 8: two detectors separated in
space are polarized to only detect up or down (ν, ν ′ = 0, 1) as seen along the axes β and γ:

〈xA, xB|Ψout〉 =
1

L3
√

2

(
ei(k′A ·rA+k′B·rB)χβ

ν (σA)χγ
ν′(σB)

− ei(k′B·rA+k′A ·rB)χγ
ν′(σA)χβ

ν (σB)
)
. (B1)

A spinor written in the basis along the axis β = (θ′, φ′) is connected to the α = (θ,φ) basis by the
rotation

χβ
ν = Rβ

ν0χ
α
0 +Rβ

ν1χ
α
1 ,

with rotation matrix

Rβ =

(
cθ′cθ + ei(φ′−φ)sθ′sθ −cθ′sθ + ei(φ′−φ)sθ′cθ
−sθ′cθ + ei(φ′−φ)cθ′sθ sθ′ sθ + ei(φ′−φ)cθ′cθ

)
14
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Figure 8. We have two detectors D1 and D2, spin-resolved along the β and γ spin quantization axes. Neutrons are counted when
neutrons hit the different detectors simultaneously.

and χα
0 =

(
cθ

eiφsθ

)
, χα

1 =

(
−sθ
eiφcθ

)
, sθ ≡ sin θ

2 and cθ ≡ cos θ
2 . Substituting these expressions in

equation (B1) we find that this out state can be written in terms of ξ = 0 basis functions as

〈xA, xB|Ψout〉 =
∑
μ=0,1

Rβ
νμR

γ
ν′μcμkAkB

(xA, xB)

+
1√
2

(
Rβ

ν0R
γ
ν′1

(
a0

kAkB
+ b0

kAkB

)
+Rβ

ν1R
γ
ν′0

(
b0

kAkB
− a0

kAkB

))
.

The interaction potential is now extended to include a symmetric interaction V̂ between the two
particles. Additionally, we take it to obey the locality condition

〈r′A, r′B|V̂ |rA, rB〉 = δ(r′A − rA)δ(r′B − rB)V̂(xA, xB)

with V̂(xA, xB) = V̂(xB, xA), i.e. a symmetric potential. Calculating the potential matrix element between
our initial and final states,

〈Ψout |V̂ |Ψin〉 =
∫

drA drB〈Ψout |rA, rB〉〈rA, rB|V̂ |rA, rB〉〈rA, rB|Ψin〉

=
1

4L6

∑
kA ,kB

g̃(kA)g̃(kB)

2
1+δkAkB

2

∫
drA drB〈. . . |V̂ | . . .〉

×
[

e−i(k′A ·rA+k′B·rB)χβ
ν (σA)†χγ

ν′(σB)† − e−i(k′B·rA+k′A·rB)χγ
ν′(σA)†χβ

ν (σB)†
]

×
[

ei(kA·rA+kB·rB)
(

e−
i
2 (kA−kB)·ξχα

0 (σA)χα
1 (σB) − e

i
2 (kA−kB)·ξχα

1 (σA)χα
0 (σB)

)
+ (kA ↔ kB)

]
=

1

4L6

∑
kA ,kB

g̃(kA)g̃(kB)

2
1+δkAkB

2

∫
drA drB〈. . . |V̂ | . . .〉

×
[

ei((kA−k′A)·rA+(kB−k′B)·rB)e−
i
2 (kA−kB)·ξ (

χβ†
ν χα

0 (σA)
)(

χγ†
ν′ χ

α
1 (σB)

)
+ ei((kA−k′B)·rA+(kB−k′A)·rB)e

i
2 (kA−kB)·ξ

(
χγ†
ν′ χ

α
1 (σA)

) (
χβ†
ν χα

0 (σB)
)

− ei((kA−k′B)·rA+(kB−k′A)·rB)e−
i
2 (kA−kB)·ξ

(
χγ†
ν′ χ

α
0 (σA)

) (
χβ†
ν χα

1 (σB)
)

− ei((kA−k′A)·rA+(kB−k′B)·rB)e
i
2 (kA−kB)·ξ (

χβ†
ν χα

1 (σA)
) (

χγ†
ν′ χ

α
0 (σB)

)
+ (kA ↔ kB)

]
≡ 1

4L6

∑
kA ,kB

g̃(kA)g̃(kB)

2
1+δkAkB

2

Vνν′
out,kAkB

.
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The spin components of expressions such as this will be determined by the initial and final
configurations, averaged and summed over as usual in the cross-section.

B.2. Final two-fermions cross-section
The amplitude for transition from the initially prepared probe to a final basis state, again measuring away
from the forward direction, is

〈Ψout |UI(t,−∞)|Ψin〉 ≈ − 1

4L6

i

�

∑
kA,kB

g̃(kA)g̃(kB)

2
1+δkAkB

2

Vνν′
out,kAkB

∫ t

−∞
dt eiωΨout ,(kA ,kB)t+εt

with

�ωΨout ,(kA ,kB) = (Eλ′ − Eλ) +
�

2

2m
(k′2

A + k′2
B − k2

A − k2
B) = (Eλ′ − Eλ) + �ω(k′A,k′B),(kA ,kB).

Following the same procedure as in appendix A from here, the probability of transition from Ψin to
states surrounding Ψout per final state energies Ek′A

and Ek′B
after a long time t is

ρ(Ek′A
)ρ(Ek′B

) lim
t→∞

∫ t

−∞
dt′ WΨin→Ψout(t′)

with now

WΨin→Ψout ≡ lim
ε→0+

d

dt
|〈Ψout|UI(t,−∞)|Ψin〉|2

and the density of states being for a pair of pws of individual energies

ρ(Ek′A
)ρ(Ek′B

) =
m2k′Ak′B

�4

(
L

2π

)6

dΩk′A
dΩk′B

.

The flux, now, is the combined contribution to the time-integrated flux by the two probes A and B
averaged over a characteristic area: IA + IB =

∫ ∞
−∞dt(jA + jB). Taking also the sum over final target and spin

states and averaging over initial target states, the two-particle cross section is now

d4σ

dEk′A
dEk′B

dΩk′A
dΩk′B

= C̃
∑
λ,λ′

ν, ν ′

pλ

∫
dΛA1 dΛB1 dΛ∗

A2 dΛ∗
B2 δ(�ωΨout ,(kA1,kB1))δ(�ω(kA1,kB1),(kA2,kB2))

× Vνν′∗
out,kA2kB2

Vνν′
out,kA1kB1

= C̃
∑
λ,λ′

ν, ν ′

pλ

∫
dΛA1 dΛB1 dΛ∗

A2 dΛ∗
B2 δ(�ωΨout ,(kA1,kB1))δ(�ω(kA1,kB1),(kA2,kB2))

×
∫

drA1 drB1 drA2 drB2 Gν,ν′
λ,λ′,ξ(xA1, xB1, xA2, xB2) (B2)

with C̃ =
m2k′Ak′B

16(2π)4�2(IA+IB) , dΛi ≡ g(ki)dki (which differs from the main text in that it includes also the
magnitude integration) and the four-point spatial correlation function given by

Gν,ν′
λ,λ′ ,ξ(xA1, xB1, xA2, xB2)

= a0
k′A,k′B

(xA2, xB2)†a0
k′A ,k′B

(xA1, xB1)aξkA2,kB2
(xA2, xB2)†aξkA1,kB1

(xA1, xB1)

× Vνν′∗
out,kA2kB2

(xA2, xB2)Vνν′
out,kA1kB1

(xA1, xB1). (B3)
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