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Abstract

The Standard Model (SM) of particle physics is a highly successful description of
observed phenomena exhibited by particles. Despite this, it su↵ers from several
shortcomings. Among the most crucial are that the SM does not provide a mech-
anism to generate neutrino masses, nor does it include dark matter. Furthermore,
several of its aspects seem ad hoc, such as the choice of gauge group, the structure
of the fermionic sector, and the cancellation of gauge anomalies.

These shortcomings can be interpreted to suggest a theory beyond the SM. Many
such models have been proposed and one of the most popular classes of models is
grand unified theories based on the SO(10) gauge group. It predicts that the three
gauge groups in the SM are embedded into one at a high energy, which contains the
SM as a subgroup. The work that comprises this thesis investigates certain aspects
of such SO(10)-based models. In particular, we investigate the constraints imposed
by the requirements of unification of the three gauge couplings of the SM and the
fact that the Yukawa sector should reproduce the measured parameter values.

The energy scale at which the gauge couplings unify is related to the rate of
proton decay. Since protons have not been observed to decay, this results in an
upper bound on the decay rate, which translates to a lower bound on the unification
scale. By solving the renormalization group equations for the gauge couplings of the
SM and comparing the predicted unification scale to the constraints from proton
decay, we can analyze which models of grand unification are viable and which are
ruled out. Those that are ruled out can be salvaged by higher-order threshold
corrections at the unification scale.

The di↵erence in energy between the electroweak scale and the unification scale
spans around 14 orders of magnitude. To relate the parameters of the SO(10)
model to those of the SM, one must solve the renormalization group equations.
Using this and numerical fits, we can investigate the ability of the SO(10) models
to accommodate the known fermion masses and mixing parameters, taking into
account thresholds at which heavy intermediate scale particles are integrated out
of the theory. Although the results depend on the details of the particular model
under consideration, there are some general results that appear to hold true. The
observables of the Yukawa sector can in general be accommodated into SO(10)
models only if the neutrino masses are normally ordered. Furthermore, we find
that numerical fits to the data favor type I seesaw over type II seesaw for the
generation of neutrino masses. When both are included, the dominant contribution
arises from the type I seesaw mechanism.

Key words: grand unified theories, renormalization group equations, neutrino
masses, threshold e↵ects, gauge coupling unification.
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Sammanfattning

Partikelfysikens standardmodell (SM) är en mycket framg̊angsrik beskrivning av
observerade fenomen. Trots detta s̊a lider den av ett antal brister. Bland de mest
framst̊aende av dessa finner vi det faktum att SM inte inneh̊aller en mekanism för
att generera neutrinomassor, samt att den inte inkluderar mörk materia. Dessutom
verkar ett antal av dess aspekter ad hoc, s̊a som valet av gaugegrupp, strukturen i
fermionsektorn och att gaugeanomalierna oväntat tar ut varandra.

Dessa brister kan tolkas som en antydan till en teori bortom SM. Ett flertal olika
s̊adana modeller har föreslagits och en av de mest populära är storförenade teorier
baserade p̊a gaugegruppen SO(10). Den förutsäger att de tre gaugegrupperna i
SM, vid hög energi, förenas i en gaugegrupp som inneh̊aller SM som en delgrupp.
Arbetet som omfattas av den här avhandlingen utforskar ett antal aspekter av
modeller baserade p̊a SO(10). Särskilt undersöker vi de olika begränsningar som
härstammar fr̊an kravet p̊a förening av gaugekopplingarna samt att Yukawasektorn
bör återge uppmätta parametervärden.

Energiskalan vid vilken gaugekopplingarna förenas kan relateras till protonens
sönderfallshastighet. Fr̊an det faktum att protonsönderfall inte har observerats kan
man härleda en övre gräns för sönderfallshastigheten vilken motsvarar en ned-
re gräns för föreningsskalan. Genom att lösa renormeringsgruppsekvationerna för
gaugekopplingarna i SM och jämföra den resulterande föreningsskalan med be-
gränsningen fr̊an protonsönderfall kan man studera vilka storförenade modeller
som är till̊atna och vilka som är uteslutna. De som är uteslutna kan till̊atas om
man tar hänsyn till tröskele↵ekter vid en högre ordning i störningsräkning vid
föreningsskalan.

Skillnaden i energiskala mellan den elektrosvaga skalan och föreningsskalan
sträcker sig över ungefär 14 storleksordningar. Därför relateras parametrarna i
SO(10)-modellen till de i SM med hjälp av renormeringsgruppsekvationer. Ge-
nom dessa och numeriska anpassningar utforskas möjligheten för SO(10)-modeller
att återge de kända fermionmassorna och blandningsparametrarna med beaktande
av trösklar vid vilka tunga partiklar med intermediär massa utintegreras ur teo-
rin. Även om resultaten beror p̊a detaljer av den särkilda modellen som studeras
s̊a erh̊alls ett antal resultat som verkar gälla allmänt. Observablerna i Yukawa-
sektorn kan allmänt sett rymmas i SO(10)-modeller endast om neutrinomassor-
na är normalt ordnade. Dessutom gynnar numeriska anpassningar till data typ
I-gungbrädemekanismen över typ II-gungbrädemekanismen för generering av ne-
utrinomassor. När b̊ada inkluderas kommer det dominanta bidraget fr̊an typ I-
mekanismen.

Nyckelord: storförenade teorier, renormeringsgruppsekvationer, neutrinomas-
sor, tröskele↵ekter, gaugekopplingsförening.
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Chapter 1

Introduction

Physics is the science through which we aim to understand the natural world.
Specifically, it deals with the study of matter, energy, space, and time, as well
as the relations between these concepts. To understand Nature means to observe
physical phenomena and describe these in mathematical models, from which one
can predict the future behavior of similar systems and verify or falsify the pre-
dictions. Furthermore, progress can be made by unifying several such models into
one more fundamental model which describes several phenomena in one framework.
Although it may seem as though this hints at an explanation rather than a descrip-
tion of Nature, it remains a description rather than an explanation since the models
originate in observations.

A historically successful guiding principle in the search for more fundamental
descriptions of Nature has been the concept of symmetries. In addition to the ob-
jective advantage of leading to more compact mathematical descriptions of several
phenomena, they also have a subjective aesthetic appeal. This combination of ob-
jective advantage and subjective appeal makes it tempting to view symmetries as
leading to fundamentally true models. However, the success of a theory always has
to be judged by how well the predictions agree with reality. As Richard Feynman
said, “It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it disagrees with experiment, it’s wrong.”

Related to symmetries is the concept of unification of various phenomena. Sir
Isaac Newton unified the celestial mechanics with the mechanics of everyday objects
that we observe on Earth by suggesting that the same mathematical descriptions
apply to both. James Clerk Maxwell unified the phenomena of electricity and
magnetism into one theory of electromagnetism. A feature of Maxwell’s theory is
symmetry under relative motion, such that two observers moving relative to each
other observe the same physics and, particularly, measure the same value of the
speed of light. This symmetry is central in Albert Einstein’s theory of relativity,
which unifies space and time into spacetime.

3



4 Chapter 1. Introduction

Particle physics is the branch of physics that deals with the description of Nature
at the shortest length scales and highest energy scales. It aims to understand the
elementary particles that make up the world around us and the processes in which
they partake. As such, it classifies the particles that have been observed and the
ways in which they interact through the electromagnetic, the strong nuclear, and
the weak nuclear forces. The electromagnetic force is responsible for electric and
magnetic phenomena such as binding electrons and nuclei into atoms and atoms into
molecules, the strong nuclear force is responsible for binding quarks into protons and
neutrons as well as binding protons and neutrons into nuclei, and the weak nuclear
force is responsible for �-decay. The fourth force, gravity, is typically not relevant
for particle physics since it is much weaker than the other forces. For example,
the electrostatic force between two electrons is about 43 orders of magnitude larger
than the gravitational force between them.

The current framework for understanding the particles and their interactions
is the Standard Model (SM). It classifies the quantum fields corresponding to the
various particles based on how they interact with the three forces. These forces are
mediated by virtual particles, which are also described in terms of quantum fields.
The mathematical model that describes these interactions relies heavily on a type
of symmetry called gauge symmetry, which is such that there exist local transfor-
mations of the quantum fields that leave the mathematical model unchanged. A
necessary consequence of gauge symmetry is that the quantum fields interact with
each other. In this way, the existence of gauge symmetries necessarily leads to
interactions between the quantum fields, which manifests itself as interactions of
matter with the fundamental forces.

In order for the gauge symmetries that give rise to the electromagnetic and
weak nuclear forces to be fully consistent with observations, these two symmetries
have to be unified into what is known as the electroweak symmetry. Through the
Higgs mechanism, the electroweak symmetry is broken to give the two separate
phenomena. In this way, the electromagnetic and weak nuclear forces are two
di↵erent manifestations of the same gauge symmetry.

Evidence for the success of the SM and its underlying principles is provided by
predictions that led to the discoveries of new particles. An example is the discovery
of the charm quark from the J/ resonance in 1974 by both SLAC and BNL [8, 9].
The strong force was further supported by the discovery of the gluon at DESY in
1979 [10, 11]. In 1995, the top quark was finally discovered at Tevatron [12, 13], thus
completing the list of quarks. In the electroweak sector, the W and Z bosons were
discovered at CERN in 1983 [14–17]. The most recent discovery, which provided
the final piece of the SM, was the Higgs boson, discovered by ATLAS and CMS at
CERN in 2012 [18, 19].

Based on the success of symmetries and unification in the SM, it is tempting
to take it further and unify the electroweak theory and the strong nuclear force
into one model with a larger and more unified symmetry as its basis. This is called
a Grand Unified Theory (GUT) and is the subject of this thesis. Unifying the
three forces into one would imply that all forces but gravity are, in fact, di↵erent
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manifestations of the same force. This would extend the SM and provide us with
phenomena beyond those predicted by the SM. The fact that gravity is not included,
however, means that grand unification does not claim to provide a final theory, but
is a step towards a theory of particle physics that appears more fundamental.

Except for the purely aesthetic motivations for unifying the SM into a GUT,
there are several more pragmatic motivations for extending our theories beyond the
SM. Despite its successes, it has several shortcomings and open questions, some of
which can be addressed naturally within the framework of GUTs.

As always, the success of a model is decided by its agreement with experiments.
Some of the data that are available are the known parameters of the SM, as well as
constraints stemming from the fact that protons have not been observed to decay.
Hence, the work that this thesis is based on has tested the viability of various
types of GUT models using numerical fits to these known parameters as well as the
constraints due to the non-observation of proton decay.

1.1 Outline

This thesis is divided into two parts. Part I contains a description of the theory
related to the research work and an introduction to the papers. This is divided
into six chapters. In Ch. 2, we introduce the main features of the SM as well as
some of its shortcomings and open questions. Next, in Ch. 3, we describe in more
detail the specifics of one of the most well-established shortcomings of the SM,
namely neutrino mass. Then, in Ch. 4, we discuss the framework of GUTs, paying
special attention to those based on the SO(10) gauge group, and motivate them as
natural extensions of the SM. Ch. 5 contains a description of renormalization as
well as some of the numerical methods used to investigate the viability of GUTs
in the research papers. Finally, in Ch. 6, we conclude this thesis. Following this
introduction to the subject, Part II contains the papers upon which this thesis is
based.





Chapter 2

The Standard Model

The Standard Model is the current description of particle physics. It has so far been
extraordinarily powerful in predicting experimental results at the LHC and other
particle physics experiments. However, there are many open questions associated
with it. This chapter will summarize the features of the SM relevant for the work
in this thesis and outline some of the open problems that suggest physics beyond
the SM.

2.1 Overview of the Standard Model

The SM is a quantum field theory (QFT) that describes the particles and inter-
actions observed in terms of interactions of quantum fields. The mathematical
formulation is in terms of a Lagrangian density LSM which is a function of the
fields and their derivatives. It is invariant under certain symmetry transformations
that are local non-Abelian gauge transformations, making the SM a Yang–Mills
(YM) theory [20]. The Lie group that this symmetry belongs to is1

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y . (2.1)

The labels C (“color”), L (“left”), and Y (hypercharge) describe the quantum
numbers relevant to each of these gauge groups, which are carried by each field.
The SU(3)C factor is responsible for the strong nuclear force through the theory of
quantum chromodynamics (QCD) [23–25]. The remaining SU(2)L ⇥ U(1)Y factor
is the electroweak theory [26–29], which is responsible for the electromagnetic and
weak nuclear forces.

1
The more general gauge group of the SM is SU(3)C ⇥ SU(2)L ⇥ U(1)Y /Z, where Z is one

of the subgroups of Z6, namely Z6, Z3, Z2, or [21]. This does not influence results of typical

particle interactions, which only rely on the local structure, but is relevant for topological defects

such as monopoles, which depend on the global group structure [22].

7



8 Chapter 2. The Standard Model

To specify the model, one must determine the particle content and the trans-
formation properties of each corresponding field under GSM. Then, the conditions
of Lorentz invariance, invariance under GSM, and renormalizability determine the
theory by dictating the allowed terms in the Lagrangian density.

2.1.1 Gauge bosons

The force carriers through which the SM gauge interactions occur correspond to
gauge bosons, which are spin-1 Lorentz vectors. In a YM theory, these are defined
from the gauge group of the model. Specifically, each generator of the gauge group
corresponds to a gauge boson.

There is one vector field Bµ corresponding to U(1)Y , since its generator acting
on a field is simply the hypercharge of that field. There are three weak gauge
bosons W i

µ
, with i 2 {1, 2, 3}, corresponding to the three generators ti = 1

2
�i of

SU(2)L, where �i are the Pauli matrices. In QCD, there are eight gauge bosons, the
gluons Ga

µ
, with a 2 {1, 2, . . . , 8}, corresponding to the eight generators ta = 1

2
�a of

SU(3)C, where �a are the Gell-Mann matrices. The normalization of the generators
for both SU(2) and SU(3) is such that

Tr (tmtn) =
1

2
�mn. (2.2)

From these vector fields, we form the gauge invariant field strength tensors2

Bµ⌫ = @µB⌫ � @⌫Bµ, (2.3)

W i

µ⌫
= @µW

i

⌫
� @⌫W

i

µ
+ g2✏

ijkW j

µ
W k

⌫
, (2.4)

Ga

µ⌫
= @µG

a

⌫
� @⌫G

a

µ
+ g3f

abcGb

µ
Gc

⌫
, (2.5)

where g2 and g3 are the SU(2)L and SU(3)C gauge coupling constants, respectively,
and ✏ijk and fabc are the structure constants of SU(2) and SU(3), respectively. The
kinetic terms in the Lagrangian density for the gauge fields are

Lgauge = �
1

4
Bµ⌫B

µ⌫
�

1

4
W i

µ⌫
W i,µ⌫

�
1

4
Ga

µ⌫
Ga,µ⌫ . (2.6)

From this and the definitions of the field strength tensors in Eqs. (2.3)–(2.5), it
is evident that, in contrast to the hypercharge gauge boson, the gluons and the
weak gauge bosons have self-interactions via cubic and quartic couplings. Group
theoretically, this is a consequence of the non-Abelian nature of these gauge groups,
resulting in the gauge bosons carrying charges under the corresponding groups.

2
We employ the slight abuse of notation that the rank-two tensor Aµ⌫ is the field strength

tensor corresponding to the vector field Aµ denoted by the same symbol. These two should not

be confused.
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2.1.2 Fermionic particle content

Matter is composed of spin-1/2 fermions, which are the quarks and leptons. They
can be organized into three generations, which have identical properties under the
SM gauge group and only di↵er in their masses. In the first generation, the leptons
are the electron and the electron neutrino, and the quarks are the up quark and the
down quark. Correspondingly, the second generation contains the muon and the
muon neutrino as well as the charm quark and the strange quark. Similarly, the
third generation contains the tau, the tau neutrino, the top quark and the bottom
quark.

Mathematically, they are described by spinors  , which may be decomposed into
left-handed and right-handed chiral components using the projection operators

PL =
� �5

2
, PR =

+ �5

2
, (2.7)

where �5 = i�0�1�2�3, in which the �µ are the Dirac matrices satisfying the Cli↵ord
algebra defined by {�µ, �⌫} = 2gµ⌫ , with gµ⌫ being the Minkowski metric. Using
these, the left- and right-handed chiral components can then be calculated as  L =
PL and  R = PR . The SM is a chiral theory, meaning that the two chiral
components of the fermions transform di↵erently under GSM.

The quarks carry quantum numbers under all three of the gauge groups of
the SM. They come in three di↵erent color charges, called red, green, and blue,
and transform as the 3 representation of SU(3)C. Under SU(2)L transformations,
the left-handed uL and dL quarks of the first generation form a doublet, QL =
(uL dL)T , while the two right-handed uR and dR are singlets. Thus, the first
generation of quarks are organized as

QL =

✓
ur

L
ug

L
ub

L

dr
L

dg
L

db
L

◆
⇠ (3,2)1/6,

(ur

R
ug

R
ub

R
) ⇠ (3,1)2/3, (dr

R
dg
R

db
R
) ⇠ (3,1)�1/3,

where the numbers within the parentheses give their representations under SU(3)C
and SU(2)L, and the hypercharge is given in the subscript. The next generation
second and third generations follow a similar pattern but with u and d replaced
with c and s or t and b.

The leptons have a similar structure, except that they are all neutral under
SU(3)C and there are no right-handed neutrinos in the SM. In the first generation,
the left-handed components of the electron e and its corresponding electron neutrino
⌫e belong to an SU(2)L doublet, while the right-handed component of e is an
SU(2)L singlet. Hence they are organized as

LL =

✓
⌫eL
eL

◆
⇠ (1,2)�1/2,

eR ⇠ (1,1)�1.
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The second and third generations again follow the same pattern, but with e and ⌫e
replaced by µ and ⌫µ or ⌧ and ⌫⌧ .

Thus, each generation of fermions in the SM contains 15 Weyl spinors, with all
right-handed fermions transforming as singlets under SU(2)L. In other words, the
weak interaction only couples to the left-handed components of the fermions. This
explains the meaning of the subscript L for “left”.

For any spinor field  , the kinetic term in the Lagrangian density is

LDirac = i �µ@µ , (2.8)

where @µ is a spacetime derivative. To make gauge invariance explicit, we write the
fermion fields as multiplets under GSM and denote them as  . Then, to maintain
gauge invariance, the term in the Lagrangian density becomes

LDirac = i �µDµ , (2.9)

where Dµ is the covariant derivative, defined as

Dµ ⌘ @µ � ig3G
a

µ
ta � ig2W

i

µ
ti � ig1Y Bµ, (2.10)

with the coe�cients g3, g2, and g1 being the coupling constants corresponding to
their respective gauge fields. In this way, we see that the gauge interactions of the
fermions are uniquely determined from the requirement of gauge invariance.

2.1.3 The Higgs mechanism

The final piece of the SM was confirmed in 2012 by the discovery of the Higgs
boson by the ATLAS [18] and CMS [19] collaborations. To allow the fermions
and electroweak gauge bosons to obtain their experimentally measured masses, the
SU(2)L symmetry must be broken. Accomplishing this requires the Higgs field [30–
33], which is a complex scalar SU(2)L doublet,

� =

✓
�+

�0

◆
⇠ (1,2)1/2.

It has a kinetic and potential term in the Lagrangian density,

LHiggs = (Dµ�)
†(Dµ�) � V (�), (2.11)

where the Higgs potential is

V (�) = �µ2(�†�) +
�

4
(�†�)2. (2.12)

Minimizing this potential gives

(�†�)min =
2µ2

�
. (2.13)

Thus, the Higgs field acquires a vacuum expectation value (vev) of h|�|i =
p

2µ2/� ⌘

v/
p
2 with v ⇡ 246GeV [34]. Perturbation expansions must then be performed with
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this value taking the place of the vacuum. Expanding about the vev, the Higgs field
may be written as

� =
1

p
2

✓
�+

v + h+ i�

◆
, (2.14)

up to SU(2)L transformations. Here, h and � are real scalar fields, which are
excitations around the (also real) vev v.

Since the vacuum is at a point in field space that is not invariant under SU(2)L
transformations, the symmetry is spontaneously broken as

SU(3)C ⇥ SU(2)L ⇥ U(1)Y ! SU(3)C ⇥ U(1)Q, (2.15)

where Q is the electric charge given by the Gell-Mann–Nihshijima formula [35, 36]

Q = T3 + Y, (2.16)

with T3 being the third generator of SU(2)L.
Out of the four generators of the electroweak gauge group, three are broken

and one combination remains unbroken, corresponding to electromagnetic U(1)Q
symmetry. Thus, there are three Nambu–Goldstone bosons [37–39], which are
the two components of the complex �+ and � in Eq. (2.14). They are absorbed
(“eaten”) by the gauge bosons corresponding to the broken generators and become
their longitudinal polarization degrees of freedom [33]. This is the mechanism
through which the gauge bosons corresponding to the broken generators acquire
mass terms.

Since we expand the Higgs field about its vev as in Eq. (2.14), the covariant
derivative term in the Higgs Lagrangian density Eq. (2.11) contains the terms

LHiggs �
v2

8

⇥
g2
2
W 1

µ
W 1,µ + g2

2
W 2

µ
W 2,µ +

�
g2W

3

µ
� g1Bµ

� �
g2W

3,µ
� g1B

µ
�⇤

.

(2.17)
These mass terms can be diagonalized to give the physical vector bosons and their
masses. The three massive gauge bosons corresponding to the W+

µ
, W�

µ
, and Z0

µ

(where the superscripts refer to their electric charge) are

W±
µ

=
1

p
2

�
W 1

µ
⌥ iW 2

µ

�
, Z0

µ
=

1p
g2
1
+ g2

2

�
g2W

3

µ
� g1Bµ

�
, (2.18)

with tree-level masses

MW =
g2v

2
, MZ =

q
g2
1
+ g2

2

v

2
. (2.19)

The fourth gauge boson is the one that is orthogonal to Z0, namely

Aµ =
1p

g2
1
+ g2

2

�
g1W

3

µ
+ g2Bµ

�
. (2.20)

It remains massless and corresponds to the gauge boson of U(1)Q, which is the
photon.
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It is customary to define the mixing angle between W 3

µ
and Bµ, called the

Weinberg angle, as

tan ✓W =
g1
g2

. (2.21)

Then, the physical electrically neutral states can be written as

Z0

µ
= cos ✓WW 3

µ
� sin ✓WBµ, (2.22)

Aµ = sin ✓WW 3

µ
+ cos ✓WBµ. (2.23)

The ratio of masses between the heavy gauge bosons in terms of the Weinberg angle
is given by

MW

MZ

= cos ✓W . (2.24)

2.1.4 Fermion masses

With the introduction of the Higgs boson, we now also have the Yukawa terms which
couple the Higgs boson to the fermions. As the symmetry is spontaneously broken
and the Higgs field acquires a vev, it will generate mass terms for the fermions.
Without the Higgs field, this would not be present in the theory and the fermions
would not have mass.

With a slight abuse of notation, let i 2 {1, 2, 3} label the generation, and let Qi

L

be the left-handed quark doublets, ui

R
the vector of right-handed up, charm, and

top quarks, let di
R

the vector of right-handed down, strange, and bottom quarks.
Similarly for the leptons, let Li

L
be the lepton doublets and `i

R
the vector of right-

handed electrons, muons, and taus.
Then, the Lagrangian density for the Yukawa interactions is

LYukawa = �Y ij

d
Qi

L
�dj

R
� Y ij

u
Qi

L
e�uj

R
� Y ij

`
Li

L
�`R + h.c., (2.25)

where Y ij

d
, Y ij

u
, and Y ij

`
are dimensionless components of general complex Yukawa

coupling matrices and e� = i�2�.
As the Higgs field acquires a vev, the fermions are given masses proportional to

the Higgs vev and the Yukawa couplings. The mass matrices are

Md = Yd

v
p
2
, Mu = Yu

v
p
2
, M` = Y`

v
p
2
. (2.26)

In order to extract physical masses and mass states of the fermions, we diago-
nalize the mass matrices. Any complex matrix may be diagonalized by a bi-unitary
transformation.

Md = U†
dL
M̃dUdR , Mu = U†

uL
M̃uUuR , M` = U†

`L
M̃`U`R , (2.27)
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in which UdL , UdR , UuL , UuR , U`L , and U`R are unitary matrices in generation space
and M̃d, M̃u, and M̃` are diagonal mass matrices. We correspondingly rotate the
fermion fields as

(d0
L
)i = (UdL)

ij(dL)
j , (d0

R
)i = (UdR)

ij(dR)
j , (2.28)

(u0
L
)i = (UuL)

ij(uL)
j , (u0

R
)i = (UuR)

ij(uR)
j , (2.29)

(L0
L
)i = (U`L)

ij(LL)
j , (`0

R
)i = (U`R)

ij(`R)
j . (2.30)

Since the left-handed quark doublet QL appears in two of the terms of Eq. (2.25), we
must rotate its two components uL and dL separately in generation space, while the
lepton doublet LL only appears once, so we can rotate the whole doublet together
in generation space. Hence, the same rotation in generation space is applied to
both the ⌫L and the `L components of the LL doublet.

These rotations in generation space have a physical e↵ect on the interactions
with the W boson. The interaction current transforms under these rotations as

jµ
W

=
1

p
2
(⌫L�

µ`L + uL�
µdL) + h.c.

=
1

p
2
(⌫0

L
U`L�

µU†
`L
`L + uLUuL�

µU †
dL
dL) + h.c.

=
1

p
2
(⌫0

L
�µ`L + uLVCKM�

µdL) + h.c., (2.31)

where we have arrived at the Cabibbo–Kobayashi–Maskawa (CKM) matrix [40, 41],
defined as

VCKM = UuLU
†
dL
. (2.32)

This matrix relates the mass eigenstates of the quarks to their eigenstates in the
weak interaction basis and gives rise to the phenomenon of quark mixing in weak
interactions. Since the left-handed neutrinos and charged leptons were rotated by
the same unitary matrix, no such mixing matrix appeared in the leptonic interaction
current.

The CKM matrix is a unitary 3⇥3 matrix. It therefore has nine real parameters,
three of which are mixing angles and six of which are complex phases. However, we
have the freedom of absorbing five of these phases into the six quark fields ui

L
and di

L
.

The last phase cannot be removed in this way, since it can be taken to be a global
redefinition of the phases of the quark fields. We are thus left with one complex
phase in the CKM matrix and three real mixing angles. There are di↵erent ways
of parametrizing such a matrix, and we will use the standard parametrization [34]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A , (2.33)
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where sij ⌘ sin ✓q
ij

and cij ⌘ cos ✓q
ij

for the three mixing angles ✓q
12
, ✓q

13
, and ✓q

23
,

and � is the complex phase. This phase gives rise to CP violation in hadronic
processes, such as di↵erent decay rates for B0 and B0 mesons or mixing in the
K0

� K0 system.

2.1.5 Parameters of the Standard Model

The complete Lagrangian density may now be constructed from the di↵erent parts
discussed above,3 i.e.

LSM = Lgauge + LDirac + LHiggs + LYukawa, (2.34)

where Lgauge can be found in Eq. (2.6), LDirac in Eq. (2.9), LHiggs in Eq. (2.11),
and LYukawa in Eq. (2.25).

There are 18 parameters in total in this Lagrangian.4 These are: the three gauge
couplings, the Higgs vev and quartic coupling �, the nine Yukawa couplings of the
quarks and leptons, the three CKM mixing angles, and the CP-violating phase of
the CKM matrix. Their values are given in Tab. 2.1. The particle content of the
SM is summarized in Tab. 2.2.

2.2 Open questions and some proposed solutions

Although the SM is a highly successful theory of particles and their interactions,
there are still a number of open questions and shortcomings of the SM. They can
be divided into those that derive from disagreements with observations and those
that have a more aesthetic nature, in which the SM appears to have an accidental
property that suggests a more fundamental underlying model.

2.2.1 Observational problems

The main shortcomings of the SM are that neutrinos, while massless in the SM, are
known to be massive, that the observed dark matter abundance is not accounted for
in the SM, as well as the fact that the observed baryon asymmetry cannot be pro-
duced without extending the SM. Furthermore, there are some hints of new physics
in the muon anomalous magnetic moment and in hadronic decay observables. In
this section, we briefly review these and discuss some proposed solutions.

Neutrino masses

Due to the absence of right-handed neutrinos in the SM, there is no term in the
Yukawa Lagrangian of Eq. (2.25) through which the neutrinos obtain mass in the

3
There are also additional terms relating to gauge-fixing and ghosts, but these are not relevant

for the rest of this thesis.
4
Neglecting the QCD CP-violating parameter ✓.



2.2. Open questions and some proposed solutions 15

Parameter Value

g1 0.461

g2 0.652

g3 1.22

v 246GeV

� 0.516

ye 2.79 ⇥ 10�6

yµ 5.90 ⇥ 10�4

y⌧ 1.00 ⇥ 10�2

yu 7.80 ⇥ 10�6

yc 3.65 ⇥ 10�3

yt 0.990

yd 1.66 ⇥ 10�5

ys 3.10 ⇥ 10�4

yb 1.65 ⇥ 10�2

✓q
12

0.227

✓q
13

3.71 ⇥ 10�3

✓q
23

4.18 ⇥ 10�2

� 1.14

Table 2.1: Parameters of the SM, evaluated at the energy scale MZ in the MS scheme.
The coupling constants gi and Higgs parameters v and � are taken from Ref. [34] and the
Yukawa couplings yi are taken from Ref. [42]. The quark mixing parameters are taken
from the 2019 update of Ref. [43]. All other parameters, e.g. ✓W or the gauge boson
masses may be derived from these.

same way as the other fermions. However, the phenomenon of neutrino oscilla-
tions [44] between flavor eigenstates during their propagation requires that at least
two of the neutrino mass eigenstates have non-zero mass. These oscillations are a
result of the propagating mass eigenstates being linear combinations of the flavor
eigenstates in which production and detection of neutrinos occur. More details on
neutrino oscillations and mechanisms for generating neutrino masses can be found
in Ch. 3.
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Field Representation

Bµ (1,1)0

Gauge bosons Wµ (1,3)0

Gµ (8,1)0

Li

L
(1,2)�1/2

`i
R

(1,1)�1

Fermions Qi

L
(3,2)1/6

ui

R
(3,1)2/3

di
R

(3,1)�1/3

Scalar bosons � (1,2)1/2

Table 2.2: Particle content of the SM. The index i 2 {1, 2, 3} labels the generation of
the given fermion.

Dark matter

Another shortcoming of the SM is that it does not contain any candidate for dark
matter (DM), while its existence has been verified through several astrophysical and
cosmological observations. These include galactic rotation curves [45–48], gravita-
tional lensing [49], and the cosmic microwave background radiation [50, 51]. The
current best fit suggests a DM density of [51]

⌦DMh2
⇡ 0.12, (2.35)

where h is the Hubble constant in units of 100 km/s/Mpc. To explain this abun-
dance requires postulating a new type of particle beyond the SM. There many such
candidates, including sterile neutrinos [52], axions [53–55] (see also the strong CP

problem below), and the lightest supersymmetric partner [56].

Baryon asymmetry

Also of a cosmological origin is the baryon asymmetry of the Universe (BAU). The
asymmetry between the number density of baryons and antibaryons, normalized to
the photon number density, has been measured to be [51]

⌘B ⌘
nB � n

B

n�
⇡ 6.14 ⇥ 10�10. (2.36)

To produce such an asymmetry, there needs to exist processes that satisfy the three
Sakharov conditions [57], namely that there should be baryon number violation,
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C- and CP-violation, as well as out-of-equilibrium interactions. In particular, the
second of these is not su�ciently provided by the SM [58], making the BAU a
phenomenon of physics beyond the SM. One proposed mechanism to produce the
baryon asymmetry is through leptogenesis, in which the asymmetry is generated in
the lepton sector and then transferred to the baryon sector [59].

Other hints

There is also a discrepancy between SM predictions and measurements of the muon
anomalous magnetic moment at the level of 4.2� [60]. If this tension persists, it
would signal new physics which enters at some higher energy scale less than about
103 TeV [61], set by unitarity bounds. This may be in the form of new scalar
leptoquark bosons [62], or an additional gauge boson from a gauged U(1)Lµ�L⌧

symmetry [63, 64] to name a few proposals. It should also be noted that this tension
may decrease in the future with more precise theoretical calculations, especially
from lattice QCD [65].

Furthermore, there are a number of deviations of observables related to leptonic
B-meson decay compared to the predicted SM values. In particular the branching
ratio of decays to muons compared to electrons exhibits a tension at the level of
3.1� [66]. Similarly to the muon magnetic moment tension, it may be resolved by
new physics at a higher energy scale, which should be below about 80 TeV [67].
Examples of such physics models are (vector or scalar) leptoquarks [68] or a gauge
boson from an additional U(1) group together with additional colored fermions [69].

2.2.2 Aesthetic problems

Aside from the observational problems in the SM, there are certain features of the
SM that appear somewhat ad hoc and suggest that there exist a more fundamental
description of Nature in which these features appear naturally.

Structure of the SM

Firstly, we may ask why the gauge group SU(3) ⇥ SU(2) ⇥ U(1) is the one that
describes Nature. Secondly, there is the question of why there are three genera-
tions of fermions with identical quantum numbers and successively larger masses.
Thirdly, it is unclear why the fermions have the charges that they do, and why the
hypercharge (and hence electric charge) is quantized.

Anomaly cancellation

Since the SM is a gauge theory, the gauge anomalies [70, 71] need to vanish in order
for it to be consistent, which puts constraints on the allowed charges. With this
in mind, the hypercharges seem to conspire such that the anomalies cancel exactly.
Thus, the hypercharges appear to be chosen in such a way that the anomalies
cancel and the SM gauge group is allowed. Although anomaly cancellation in the
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SM can be related to hypercharge quantization [72–77], that does not explain why
the hypercharges take the values that they do.

The flavor puzzle

The masses of the three generations of fermions in the SM are strongly hierarchical
and span five orders of magnitude. Furthermore, the CKM matrix is close to
diagonal, while the elements of the leptonic mixing matrix are all of similar sizes.
The flavor puzzle [78–82] is then the question of the origin of the three generations
of fermions, their hierarchical masses, and the relations between elements of the
CKM and leptonic mixing matrices.

There are many proposed models to address this puzzle. One is the Froggatt–
Nielsen (FN) mechanism [83], which introduces a new symmetry, U(1)FN under
which the di↵erent generations of the fermions have di↵erent charges, as well as an
additional scalar field ⌘, known as a flavon field. Let the ith generation of fermion
 , the flavon, and the Higgs boson carry charges under U(1)FN as

FN( L,i) = niq, FN( R,i) = �niq, (2.37)

FN(⌘) = 2q, FN(�) = 0, (2.38)

for some real parameter q. A Yukawa term invariant under U(1)FN would then be

LYukawa � �ci
⇣ ⌘
⇤

⌘ni

 L,i R,i�, (2.39)

where ⇤ corresponds to some energy scale relevant for a high-energy completion of
this e↵ective operator. Assigning a vev v⌘ to the flavon, the Yukawa couplings are

yi = ci(v⌘/⇤)
ni . (2.40)

For v⌘ < ⇤, and with the parameters ni satisfying n1 > n2 > n3, we naturally
generate the hierarchy y1 < y2 < y3 without requiring any hierarchy in the coupling
constants ci. A high-energy completion of this involves the addition of a set of
fermions of mass ⇤ that mediate this interaction.

Similar to the FN mechanism is the clockwork mechanism, which adds several
global symmetries and additional fermions to generate the observed mass spec-
trum [84–86]. Many other models based on both discrete and continuous flavor
symmetries have also been proposed [87–93].

Since the mass spectrum of the fermions is a result of the Yukawa matrices,
imposing texture zeros (that is, setting certain elements to zero) is another way of
addressing the flavor puzzle [94–96]. Many of these matrix textures can be derived
from family symmetries [97]. It has also been suggested that a hierarchical spectrum
can be generated from products of random matrices with all elements O(1) [98].
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Naturalness

Another unsatisfactory feature of the SM is the apparent fine-tuning of the Higgs
mass. The problem is that quantum corrections due to physics at higher scales in the
theory, such as the Planck scale, should place the Higgs mass at that higher scale.
However, the Higgs mass has been measured to be 125 GeV [18, 19]. The hierarchy
problem [99–101] is then to understand why there is this hierarchy of scales between
the Higgs mass and the Planck scale despite large quantum corrections.

One way in which this could occur is if there were very precise cancellation of
the contributions to the quantum corrections. Such cancellation would have to oc-
cur to a precision of more than 30 significant figures, which is considered unnatural.
Another proposed solution is supersymmetry (SUSY), in which each particle has a
superpartner, such that fermions have bosonic partners and bosons have fermionic
partners. (For an introduction, see for example Ref. [102].) The high-scale con-
tributions to the Higgs mass are then canceled by opposite contributions from the
supersymmetric partners. Hence, the precise cancellation is imposed by symmetry
and no fine-tuning is necessary.

The issue of fine-tuning also occurs in the strong CP problem, which notes that
the SM Lagrangian density in general contains the term [103, 104]

LSM � ✓
g2
3

32⇡2

eGa,µ⌫Ga

µ⌫
, (2.41)

where eGa,µ⌫ = 1

2
✏µ⌫⇢�Ga

⇢�
. This term violates CP and would induce an electric

dipole moment for the neutron. However, the non-observation of the neutron elec-
tric dipole moment implies an upper bound of |✓| . 10�10 [105–107]. The problem
is thus one of fine-tuning: Is there any reason for this parameter to be so small?
One possible solution to the strong CP problem is to introduce a Peccei–Quinn
symmetry, U(1)PQ. The angle ✓ is then replaced by the axion field which is the
pseudo-Nambu–Goldstone boson associated with the spontaneous symmetry break-
ing of U(1)PQ [108–111]. In that way, there is a dynamical explanation for the
smallness of ✓ and fine-tuning is therefore not required.
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Neutrino masses

3.1 Evidence for neutrino mass

As mentioned in Ch. 2, neutrinos have been observed to have mass. In this chapter,
we review the evidence for neutrino masses and the experimental status.

3.1.1 Neutrino oscillations

If neutrinos are massive, then they appear in the Lagrangian both in a mass term
and in a gauge interaction term. In analogy with quarks, the mass and interaction
bases may be di↵erent if the two terms are not simultaneously diagonalizable. The
mismatch between them gives rise to a mixing matrix, analogous to the CKM
matrix, and is observable through the phenomenon of neutrino oscillations.

Neutrinos are produced and detected through their weak interactions, which
couple to the flavor basis states. However, they propagate as eigenstates of the
Hamiltonian, which are the mass eigenstates. The fact that the interaction and
propagation eigenbases are di↵erent causes the neutrinos to oscillate, in the sense
that the detected neutrino flavor may be di↵erent from the one that was emitted [44,
112–116].

We can relate the flavor state |⌫↵i, with ↵ 2 {e, µ, ⌧}, of a neutrino to its mass
state |⌫ii, with i 2 {1, 2, 3}, through

|⌫↵i = U⇤
↵i

|⌫ii , (3.1)

|⌫ii = U↵i |⌫↵i , (3.2)

where U↵i are the elements of a unitary mixing matrix.

21
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The mass states propagate as plane wave solutions, |⌫i(t)i = e�iEit |⌫i(t = 0)i,
such that a flavor state evolves in time as

|⌫↵(t)i = U⇤
↵i
e�iEit |⌫i(t = 0)i = U⇤

↵i
e�iEitU�i |⌫�(t = 0)i . (3.3)

This results in an amplitude for transitions from flavor � to flavor ↵ given by

A�!↵(t) = h⌫�(t = 0)|⌫↵(t)i = U⇤
↵i
e�iEitU�i (3.4)

and a transition probability

P�!↵(t) = |A�!↵(t)|
2 =

X

i,j

U⇤
↵i
U�iU↵jU

⇤
�j
e�i(Ei�Ej)t. (3.5)

Since the neutrinos are ultrarelativistic, we may write the energy as

Ei =
q

|p|2 +m2

i
' E +

m2

i

2E
, (3.6)

with E ' |p|
2. This gives the di↵erence

Ei � Ej '
�m2

ij

2E
, (3.7)

where�m2

ij
= m2

i
�m2

j
is the mass-squared di↵erence between two mass eigenvalues

mi and mj . Furthermore, we can write the propgation time as t ' L since the
neutrinos travel at almost the speed of light.

With this, the transition probability can be written as

P�!↵(t) =
X

i

|U�i|
2
|U↵i|

2 + 2
X

j<i

Re(U⇤
�i
U↵iU�jU

⇤
↵j
) cos

 
�m2

ij
L

2E

!

+ 2
X

j<i

Im(U⇤
�i
U↵iU�jU

⇤
↵j
) sin

 
�m2

ij
L

2E

!
. (3.8)

In particular, we have the survival probability

P↵!↵(t) = 1 � 4
X

j<i

|U↵i|
2
|U↵j |

2 sin2
 
�m2

ij
L

4E

!
, (3.9)

which makes it evident that it is the existence of a non-zero mass-squared di↵erence
that enables neutrino oscillations.

Under a CP transformation, each state transforms to its antiparticle. Then,
P�!↵ becomes P

�!↵
, which has the same expression except for a negative sign in

front of the imaginary part of Eq. (3.8). With this, we define the CP asymmetry
as

�CP
�!↵

⌘ P�!↵ � P
�!↵

= 4
X

j<i

Im(U⇤
�i
U↵iU�jU

⇤
↵j
) sin

 
�m2

ij
L

2E

!
, (3.10)

showing that the CP asymmetry can only be observed in transitions, and not in
measurements of the survival probability.
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3.1.2 Current results and bounds

Neutrino oscillations have been confirmed by a series of experiments [117–119].
Notably, the dependence of the oscillation probability on �m2

ij
implies that all

three neutrino mass states must be di↵erent, such that there exists two independent
mass-squared di↵erences. In e↵ect, this means that at least two neutrino mass states
must be massive, since one is still allowed to be massless. The absolute scale of the
neutrino masses cannot be probed in oscillation experiments.

Also unknown is the ordering of the masses. The three mass states are defined
by the linear combinations of the flavor states through the leptonic mixing matrix.
Two of the mass-squared di↵erences have been measured, with m1 and m2 being
close together and m3 being further away. However, it remains an open question
whether the ordering is m1 < m2 < m3 or m3 < m1 < m2, i.e. whether the large
mass-squared di↵erence is between the two lightest or two heaviest neutrinos. The
two mass orderings are respectively known as normal ordering (NO) and inverted
ordering (IO).

The elements of the leptonic mixing matrix are parametrized by three mixing
angles ✓`

12
, ✓`

13
, ✓`

23
and one phase �` in analogy to the CKM parametrization in

Eq. (2.33). The values of these parameters, displayed in Tab. 3.1, depend on which
mass ordering is realized. The latest results from global fits of the various neutrino
experiments favor NO over IO at a significance of 2.7� [120].

Parameter Value

�m2

21
7.50 ⇥ 10�5 eV2

�m2

31
(NO) 2.55 ⇥ 10�3 eV2

�m2

31
(IO) �2.45 ⇥ 10�3 eV2

sin ✓`
12

0.318

sin ✓`
13

(NO) 0.0220

sin ✓`
13

(IO) 0.0223

sin ✓`
23

(NO) 0.574

sin ✓`
23

(IO) 0.578

�` (NO) 3.39

�` (IO) 4.96

Table 3.1: Central values of the neutrino parameters, derived from a global fit [120].
The abbreviations NO and IO stand for normal and inverted neutrino mass ordering,
respectively.
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Although one cannot probe the absolute scale in oscillation experiments, it is
possible to derive an upper bound on the sum of the neutrino masses from cos-
mological observations. Both the cosmic microwave background radiation and the
baryon acoustic oscillations are sensitive to the sum of the masses of the neutrinos,
resulting in a combined 95 % confidence limit of [51]

3X

i=1

mi < 0.12 eV. (3.11)

The absolute scale of neutrino masses can also be probed through �-decay ex-
periments, in which a neutron is converted into a proton and emits an electron
and an electron antineutrino. One observes an energy spectrum of the emitted
electrons, the endpoint of which depends on the mass of the neutrino. Since it is
the electron flavor state that is produced, one obtains information on the e↵ective
electron neutrino mass

m2

⌫e
=

3X

i=1

|Uei|
2m2

i
. (3.12)

Currently, the best limit is m⌫e < 0.8 eV at 90 % confidence, provided by the
KATRIN experiment [121, 122].

3.2 Neutrino mass models

3.2.1 Dirac and Majorana mass terms

In order to incorporate neutrino masses, the SM needs to be extended to include
a neutrino mass term. The simplest way to achieve that would be to add a set of
right-handed neutrinos ⌫i

R
with a Yukawa term �Y ij

⌫
Li

L
e�⌫j

R
. This would produce a

neutrino mass matrix M⌫ = Y⌫
vp
2
in analogy with the other fermions, as described

in Sec. 2.1.4. Then, the neutrino field ⌫ = (⌫L, ⌫R) would form a Dirac spinor with
⌫L and ⌫R being independent two-component spinors, in analogy with the charged
fermions.

However, the bounds on the neutrino mass from cosmology and �-decay im-
ply that the neutrino masses are six orders of magnitude smaller than the light-
est charged fermion masses. As a result, the Yukawa coupling would have to be
O(10�11). While this is not forbidden, it is unnaturally small and clearly sets the
neutrinos apart from the other fermions.

Many models of neutrino mass instead consider neutrinos to be Majorana par-
ticles, in which case the two chiral components are related by charge conjugation.
We then have ⌫R = (⌫L)c, where the superscript c denotes the charge conjugation

operator, which acts on a general spinor  as  c
⌘ C 

T

, with C being the charge
conjugation matrix satisfying C�1�µC = ��T

µ
. If neutrinos are Majorana particles,

they are their own antiparticles.
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In that case, one can write a Majorana mass terms for the neutrinos as

LMajorana = �
1

2
M ij

L
⌫i
L
⌫c
L

i + h.c. (3.13)

This is a di↵erent type of mass term compared to the other fermions and cannot be
generated by the Higgs mechanism. Instead, one can look for other ways in which
to generate such a term in a way that ensures that the masses are naturally small.

The Majorana nature of neutrinos can be tested through neutrinoless double
�-decay, which is only allowed for Majorana neutrinos. This is the process in which
two �-decays occur, and the two neutrinos annihilate each other [123–125]. Sev-
eral experiments are currently searching for this process, including GERDA [126],
NEMO-3 [127], CUORE [128], and KamLAND-Zen [129], but it has so far not been
observed. As a result, there is an upper bound on the e↵ective mass parameter [124]

hm��i ⌘

�����
X

i

U2

ei
mi

����� . 0.2 eV. (3.14)

3.2.2 Weinberg operator

The Majorana mass matrix for the neutrinos can be described by higher-dimensional
operators [130]. At dimension five, the only operator that exists is the Weinberg
operator [131]

LWeinberg = �
1

4
ij(Lc

L

i

�)(�TLc

L

j) + h.c. (3.15)

The corresponding Feynman diagram is shown in the upper left panel of Fig. 3.1.
After electroweak symmetry breaking, this operator gives the neutrino mass matrix

m⌫ = �
1

4
v2. (3.16)

Being an e↵ective operator of dimension five, the coe�cient  must be inversely
proportional to some energy scale ⇤ corresponding to the energy scale of the new
physics that realizes the Weinberg operator. Typically, this is the mass of some
heavy particle involved in the neutrino mass mechanism. This suppression by a
heavy mass scale is a common feature of e↵ective field theories and means that
the e↵ect coming from the high-energy theory is small at low energies. In the case
of neutrino masses, this suppression of the e↵ective operator provides a natural
explanation of their smallness.

3.2.3 Seesaw mechanisms

Seesaw mechanisms are tree-level realizations of the Weinberg operator involving a
heavy field. The type I seesaw mechanism [132–136] introduces three heavy right-
handed neutrinos NR with a Majorana mass term, resulting in the Lagrangian



26 Chapter 3. Neutrino masses

density

Lseesaw-I = �
1

2
M ij

R
N ci

R
N j

R
� Y ij

⌫
Li

L
e�N j

R
+ h.c. (3.17)

In a basis formed by the column vectors (⌫c
L
, NR)T , in which both ⌫L and NR are

vectors containing the three generations, the mass matrix can be written as

M⌫ =

 
0 vp

2
Y⌫

vp
2
Y T

⌫
MR

!
. (3.18)

After a bi-unitary transformation to block-diagonal form, one obtains the light
neutrino mass matrix

mI

⌫
= �

1

2
v2Y⌫M

�1

R
Y T

⌫
(3.19)

for the left-handed neutrinos. Comparing this to the Weinberg operator, one finds
that

 = 2Y⌫M
�1

R
Y T

⌫
, (3.20)

such that MR is the large energy scale that suppresses the dimension-five operator.
This explains the reason behind the name “seesaw”: the smallness of the left-handed
neutrino mass is a direct result of the largeness of MR. The Feynman diagram for
the generation of neutrino mass through the type I seesaw mechanism is shown in
the upper right panel of Fig. 3.1.

In the type II seesaw mechanism [137–139], a heavy scalar field � that trans-
forms as a triplet under SU(2)L and carries hypercharge Y = 1 is introduced, which
allows for a Yukawa coupling of the lepton doublet with itself through this triplet.
The relevant parts of the Lagrangian are

Lseesaw-II � �
1

p
2
Y ij

�
Lic

L
i�2�Lj

L
�

1

2
M2

�
Tr
�
�†�

�
�
��
p
2
�T i�2��+ h.c., (3.21)

where Y� is the Yukawa coupling matrix, M� is the mass of the triplet, and ��
is a coupling constant for the triplet to the Higgs boson. Electroweak symmetry
breaking induces a vev

v� =
��v2

M2

�

(3.22)

for the electrically neutral component of the triplet. This results in the left-handed
neutrinos obtaining a Majorana mass term

mII

⌫
=

1

2
Y�v�. (3.23)

Since v� is inversely proportional to M�, a large mass for the triplet ensures that
the light neutrino masses are small. In terms of the Weinberg operator, the type II
seesaw mechanism results in

 = �2Y�

v�
v2

. (3.24)

The Feynman diagram of this mechanism is shown in the lower left panel of Fig. 3.1.



3.2. Neutrino mass models 27

�

L

�

L

�

L

�

L

N

� �

L L

�

�

L

�

L

⌃

Figure 3.1: Feynman diagrams for the e↵ective Weinberg operator (top left) as well as
seesaw mechanisms of type I (top right), II (bottom left), and III (bottom right).

The type III seesaw mechanism [140] adds a number of heavy fermion fields ⌃i

that transforms as a triplet under SU(2)L and has neutral hypercharge. Its mass
term and coupling to the leptons is given by

Lseesaw-III � �Y ij

⌃
Lic

L
i�2⌃

j��
1

2
M ij

⌃
Tr
⇣
⌃

i

⌃j

⌘
+ h.c., (3.25)

where Y⌃ is the Yukawa coupling matrix and M⌃ the mass matrix of ⌃. Similar to
the type I mechanism, we find the light neutrino mass matrix to be given by

mIII

⌫
= �

1

2
v2Y⌃M

�1

⌃
Y T

⌃
, (3.26)

showing that a heavy triplet ⌃ leads to small neutrino masses. In terms of the
Weinberg operator, the type III seesaw mechanism leads to an e↵ective neutrino
mass matrix

 = 2Y⌃M
�1

⌃
Y T

⌃
. (3.27)

The Feynman diagram for the type III seesaw mechanism is shown in the lower
right panel of Fig. 3.1.
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3.2.4 Radiative models

Another option for generating small neutrino masses is using a radiative mecha-
nism, in which a non-zero neutrino mass matrix is generated only at loop level.
The perturbation expansion suppresses loop-order contributions relative to tree-
level, which naturally leads to the prediction that the neutrinos are lighter than
the charged leptons. Some examples of these radiative mechanisms are the Zee
model [141], the scotogenic model [142], and the Zee–Babu model [143, 144]. These
and other radiative neutrino mass models are reviewed in Refs. [130, 145].



Chapter 4

Grand unified theories and
SO(10)

One approach to address some of the problems and open questions of the SM dis-
cussed in Ch. 2 is to postulate a larger gauge group from which the SM gauge group
arises through symmetry breaking. As such, the idea of unification exemplified by
the electroweak theory is extended and the question of the choice of gauge group is
directly addressed by embedding all three gauge group factors into one larger gauge
group. This is the idea of a Grand Unified Theory (GUT).

The idea behind grand unification is that, at some higher energy, the gauge
group factors of GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y unify and we have only one
gauge group GGUT. This unification corresponds to a unification of the three forces
described by the SM. Since our observations are mostly in agreement with a model
based on the gauge group GSM, we require that GGUT has GSM as a subgroup.
Similarly to the Higgs mechanism, we assume that GGUT spontaneously breaks
to GSM at some high energy scale. Cosmologically, higher energies correspond to
earlier times, since the Universe was hotter earlier. Thus, a unified theory is more
fundamental in the sense that the SM is a result of it.

Further, GGUT should accommodate the fermion representations of the SM and
its chiral structure. It is conventional to write the fermion representations as all
left-handed spinors using the charge-conjugation matrix. In that notation, we have1

QL ⇠ (3,2)1/6, (uR)
c

⇠ (3,1)�2/3, (dR)
c

⇠ (3,1)1/3,

LL ⇠ (1,2)�1/2, (eR)
c

⇠ (1,1)1. (4.1)

Charge conjugation a↵ects the chirality of the spinor such that ( R)c = ( c)L,
meaning that all spinors in Eq. (4.1) have left-handed chirality.

1
We will in the future drop the “L” and “R” subscripts since all spinors are assumed to be

left-handed.

29
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4.1 Gauge coupling unification

In a gauge theory, each gauge group has an associated gauge coupling constant that
parametrizes the strength of the interaction. The value of this constant depends
on the energy scale involved in the interaction through the renormalization group
equation (RGE).2 They are thus said to “run” or “evolve” with the energy scale. For
the three gauge group factors in GSM to be unified into one, we require that the three
gauge couplings of the SM meet at the energy scale at which GGUT spontaneously
breaks. Hence, the scale at which the coupling constants unify defines the scale at
which the GUT is the appropriate theory [146].

Before computing the renormalization group running of the gauge couplings,
we must first consider the normalization of the hypercharges of the SM fermions.
When embedding U(1)Y into a larger group, the hypercharges must be normalized
in a way that is consistent with the other groups in the embedding. For any
representation, there is a diagonal generator—one of the Cartan generators—that
acts on each state in a representation to give the hypercharge of that state. Since
hypercharge is embedded together with SU(3)C and SU(2)L, the normalization
of the hypercharge generator must correspond to the normalization of the Cartan
generators of SU(3)C and SU(2)L. Of course, this will depend on how the fermions
are embedded into the unified gauge group. Consider a model with all SM fermions
embedded into one representation (which, as we will see, is the case for SO(10)-
based models). Then the trace of the squared T3 operator should give the same
result as the trace of the squred properly normalized hypercharge operator. The
trace of these two operators are

TrT 2

3
=

✓
1

2

◆2

· 3 +

✓
�1

2

◆2

· 3 +

✓
1

2

◆2

+

✓
�1

2

◆2

= 2, (4.2)

TrY 2 =

✓
1

6

◆2

· 6 +

✓
�2

3

◆2

· 3 +

✓
1

3

◆2

· 3 +

✓
�1

2

◆2

· 2 + (1)2 =
10

3
. (4.3)

In order to have hypercharge normalized in the same way as SU(2)L, we define the
GUT-normalized hypercharge, related to the SM hypercharge through

YGUT =

r
3

5
YSM. (4.4)

Since the hypercharge always appears in the covariant derivative together with the
gauge coupling in the combination g1Y , this product must retain its value when
altering the normalization. Thus, we also redefine the gauge coupling as

g1GUT =

r
5

3
g1SM . (4.5)

In what follows, all references to the U(1)Y gauge coupling are to be understood as
GUT-normalized. For clarity, we will continue to list the hypercharges themselves

2
Details on renormalization can be found in Sec. 5.1.
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with the familiar SM normalization and it is to be understood that they should be
normalized appropriately before being used in calculations.

The RGE for the coupling constant gi evaluated at one-loop order in perturba-
tion theory is given by

@gi
@ lnµ

= �
g3
i

16⇡2
ai, (4.6)

where ai is a coe�cient that depends on the particle content of the theory. The so-
lution to this di↵erential equation is conventionally given in terms of the parameter
↵i, defined as

↵i ⌘
g2
i

4⇡
, (4.7)

or its inverse, ↵�1

i
. With this parametrization, the solution to the RGE relating

↵�1

i
at the scale µ = M2 to the scale µ = M1 is

↵�1

i
(M2) = ↵�1

i
(M1) �

ai
2⇡

ln

✓
M2

M1

◆
. (4.8)

We therefore need the values of the gauge couplings at some given energy scale.
One convenient energy scale is the electroweak scale, MZ ' 91.1876GeV, at which
the values of the gauge couplings are [34]

g1(MZ) ' 0.461, g2(MZ) ' 0.652, g3(MZ) ' 1.22. (4.9)

The general formula for calculating the coe�cients ai can be found in Sec. 5.1.
In the SM, they are

a1 =
41

10
, a2 = �

19

6
, a3 = �7. (4.10)

In the left panel of Fig. 4.1, the renormalization group running is shown in the SM.
As can be seen, the gauge couplings are close to unifying, but do not quite do so in
the SM. They are much closer to unifying in SUSY models, which is why these are
often considered together with grand unification. In the Minimal Supersymmetric
Standard Model (MSSM), the coe�cients ai are

a1 =
33

5
, a2 = 1, a3 = �3. (4.11)

The renormalization group (RG) running in the MSSM with a SUSY-breaking scale
of 1TeV is shown in the right panel of Fig. 4.1.

The near unification is a further reason to take the idea of unification seriously.
We will focus on non-SUSY models in the rest of this thesis and consider other ways
in which to achieve precise unification of the gauge couplings. One may imagine
that in the vast so-called “desert” between MZ and MGUT spanning 14 orders of
magnitude, some new physics enters. For example, this could be particles with
masses somewhere in that interval which influence the RG running of the gauge
couplings such that precision unification is achieved, as considered in Paper II.
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Figure 4.1: Renormalization group running of the gauge couplings to one-loop order in
the SM (left) and the MSSM with a SUSY-breaking scale at 1TeV (right).

There could also be a chain of symmetry breaking between the GUT and the SM
which also modifies the RG running and produces precision unification, as consid-
ered in Paper I. This will be discussed in more details in Sec. 4.3.1. These two
scenarios are shown in Fig. 4.2 with intermediate scale particles shown in the left
panel and an intermediate symmetry breaking step shown in the right panel. In
the left panel, the RG running is modified by scalars transforming as (8,1)1 and
(8,3)0 at masses 3.1TeV and 2.34⇥ 108 GeV, respectively. The right panel has an
intermediate Pati–Salam (PS) breaking scale at 1.28 ⇥ 1011 GeV.

The solutions to the RGEs are in general altered by increasing the order in
perturbation theory to which they are computed. That should be accompanied by
the matching at some threshold being computed to a higher order, which entails the
inclusion of threshold e↵ects [147, 148]. These can considerably a↵ect the scale at
which the gauge couplings unify, and hence also the related phenomenology [149–
153], as explored in Paper IV.

4.2 Candidate gauge groups

In order to be a viable candidate for a unified gauge group, there are several re-
quirements that need to be fulfilled [154].

Rank

A unified gauge group needs to be large enough to contain GSM as a subgroup.
Since GSM is of rank four, the rank of GGUT needs to be at least four.
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Figure 4.2: Gauge coupling unification with one-loop renormalization group running
using two intermediate-scale fields (left) or an intermediate Pati–Salam gauge symmetry
in the breaking chain (right).

SM as a subgroup

To reproduce the low-energy phenomenology of the SM that has been experimen-
tally observed, the unified gauge group needs to contain GSM as a subgroup.

Chirality

Furthermore, to reproduce the chiral nature of the SM, the GUT group needs to
allow for complex representations. The reason for this is that, using the charge
conjugation matrix, the left- and right-handed fermions may be related as

 R = C c

L

T . (4.12)

Hence, if the left-handed fermions transform according to a (possibly reducible)
representation FL, then the right-handed counterparts will transform according to
a representation FR = FL. Our knowledge of the SM implies that we must have
FL 6= FL. To be concrete, in the SM we have the left-handed fermions in Eq. (4.1)
in a reducible representation

FL = (3,2)1/6 � (3,1)�2/3 � (3,1)1/3 � (1,2)�1/2 � (1,1)1. (4.13)

Thus, the right-handed counterparts transform according to FR = FL 6= FL, and
hence, the SM is chiral. This must also hold for any grand unified model.

4.2.1 Viable gauge groups

The above list of requirements narrows down the list of possible simple gauge
groups considerably [133, 155–157]. At rank four, the only possibility satisfying



34 Chapter 4. Grand unified theories and SO(10)

the constraints is SU(5), which was the original GUT proposed by Georgi and
Glashow [158]. Going to rank five, the only possibility satisfying all conditions is
SO(10), which was first proposed by Fritzsch and Minkowski [159] and indepen-
dently by Georgi [160, 161]. Turning to rank six, we find the exceptional group
E(6) [162–164] as the only possibility.

There are also some semisimple gauge groups that allow for partial unification
of GSM into a product of simple gauge groups. To be able to reprodcue the SM
hypercharge, the rank has to be at least five, which presents several possibilities.
One possibility is to enlarge the SU(5) group to SU(5) ⇥ U(1), which allows for
a so-called “flipped” embedding of hypercharge [165–169]. There are also the left-
right symmetric models SU(3)C⇥ SU(2)L⇥ SU(2)R⇥U(1)B�L [170–173], in which
the left-handed weak interaction is mirrored by a right-handed one, and the Pati–
Salam group GPS = SU(4)C ⇥ SU(2)L ⇥ SU(2)R [174], in which the leptons are
unified with the quarks as a fourth color.

Below follow some comments regarding the three most important gauge groups
for unified model building, before we focus on models based on the SO(10) gauge
group.

4.2.2 The SU(5) group

Being the unique embedding of the SM at rank four, the SU(5) group is the simplest
possible candidate for a GUT [158]. The fermions of each generation are embedded
in 5 and 10, since under decomposition to GSM, they become

5F ! (3,1)1/3 � (1,2)�1/2 = dc � L, (4.14)

10F ! (3,1)�2/3 � (3,2)1/6 � (1,1)1 = uc
� Q � ec. (4.15)

Since the adjoint representation is 24, there are 24 gauge bosons in the model.
The structure of the gauge sector of the Lagrangian follows in the same manner as
for SU(3) or SU(2) discussed in Ch. 2. The 24 gauge bosons may be written in
matrix form using the generators ta, where a 2 {1, 2, . . . , 24}, of SU(5) as

Aµ = Aa

µ
ta. (4.16)

After symmetry breaking, eight of the 24 gauge bosons are identified with the gluons
Ga

µ
, three are identified with the SU(2) gauge bosons W i

µ
, and one is identified with

the hypercharge gauge boson Bµ. There remain twelve gauge bosons which acquire
masses around the symmetry breaking scale.

To break the SU(5) symmetry down to GSM, we employ a mechanism based
on the same principle as the Higgs mechanism in the SM. This is achieved by
introducing scalar fields transforming as the adjoint, 24. Using the adjoint to
spontaneously break a group conserves its rank, since the vev may be diagonalized
by the group generators, and hence commutes with the Cartan generators. Thus,
the number of unbroken Cartan generators remains the same [175].
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We therefore have 24 scalar fields �a, which can be written in matrix form

24H = �ata (4.17)

and the scalar potential is

V24(24H) = �µ2 Tr(242

H
) + �1 Tr(24

2

H
)2 + �2 Tr(24

4

H
), (4.18)

neglecting the cubic term by imposing a discrete symmetry 24H ! �24H . Mini-
mizing this potential under the assumptions �2 > 0 and �1 > �7/30�2, one finds
that 24H takes the vev

h24Hi = v diag(2, 2, 2,�3,�3), (4.19)

with v given by

v =
µ2

2(30�1 + 7�2)
. (4.20)

This achieves the desired breaking to the SM.

The scalar sector also needs to include an SU(2) doublet that will provide the
Higgs mechanism of the electroweak theory. The simplest choice is 5H , which
decomposes as

5 ! (3,1)�1/3 � (1,2)1/2. (4.21)

The latter of these can be identified with the SM Higgs, while the first one is an
extra SU(3) triplet that should have a large mass in order not to a↵ect low-energy
phenomenology. This in general requires fine-tuning of the parameters in the scalar
potential V (24H ,5H) = V24(24H) + V5(5H) + Vmix(24H ,5H) [176] and is known
as the “doublet-triplet splitting” problem. See Ref. [177] for a discussion regarding
the amount of fine-tuning necessary for this type of splitting in various models.

Fermion masses are a result of Yukawa couplings. In particular, we require
the fermions to couple to 5H and not 24H , since the SM Higgs resides in 5H . It
happens that Yukawa couplings with 24H are forbidden by SU(5) symmetry, as
required. In a compact notation (suppressing Lorentz, family, and SU(5) indices),
the Yukawa terms of the Lagrangian density is given by

LYukawa = �Y55F10F5
⇤
H

�
1

8
Y10✏510F10F5H + h.c., (4.22)

where Y5 and Y10 are the Yukawa matrices in family space and ✏5 is the 5-index com-
pletely antisymmetric tensor in SU(5)-space. Writing out the charge-conjugation
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matrix and spinor transposition explicitly, as well as the family indices (i, j) 2

{1, 2, 3} and SU(5) indices (↵,�, �, �, ✏) 2 {1, 2, . . . , 5}, we obtain

LYukawa = �(Y5)
ij(5

T

F
)i
↵
C(10F )

j

↵�
(5⇤

H
)�

�
1

8
(Y10)

ij✏↵���✏(10
T

F
)i
↵�

C(10F )
j

��
(5H)✏ + h.c. (4.23)

Expanding the SU(5) multiplication to write it in terms of the SM fields, the first
term gives

� Y5(d
c)TCQH⇤

� Y5L
TCecH⇤ (4.24)

and the second term gives

�
1

2
(Y10 � Y T

10
)(uc)TCQH. (4.25)

Therefore, the SU(5) symmetry predicts the mass relations

M` = MT

d
, Mu = MT

u
, (4.26)

the first of which is clearly false [158] and is not entirely corrected by renormalization
e↵ects [176]. They can, however, be corrected by adding an additional Higgs field
in the 45 representation [178] or taking into account Planck-scale suppressed non-
renormalizable operators [179].

4.2.3 The Pati–Salam group

The Pati–Salam model [174] of partial unification is based on the gauge group
GPS = SU(4)C ⇥ SU(2)L ⇥ SU(2)R and unifies the quarks and leptons by treating
the leptons as a fourth color. Each family of fermions is embedded as

FL =

✓
ur ug ub ⌫
dr dg db e

◆
⇠ (4,2,1), (4.27)

FR =

✓
drc dgc db

c

ec

�urc
�ugc

�ubc

�⌫c

◆
⇠ (4,1,2). (4.28)

This fermion embedding makes evident a symmetry between the left-handed and
right-handed fermions which the SM lacks. A result of this symmetry is the intro-
duction of a right-handed neutrino ⌫c.

It is possible to have a discrete symmetry called D-parity in this model [170,
172, 180–182]. It acts on the fermions as a left-right transformation such that
D(4,2,1) = (4,1,2), similar to a regular parity transformation. The scalar rep-
resentations, however, transform in a more complicated way such that one may
have two scalar representations with the same transformation properties under
SU(4)⇥ SU(2)⇥ SU(2) that have opposite D-parity. Phenomenologically, a model
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with D-parity has identical SU(2)L and SU(2)R sectors, which implies that the
corresponding gauge couplings for the two groups are equal.

The gauge bosons of SU(4)C reside in the adjoint representation (15,1,1),
which contains the eight gluons after breaking to the SM. The three gauge bosons
of SU(2)L in (1,3,1) are the same as those in the SM. Finally, SU(2)R has its
gauge bosons in (1,1,3). The hypercharge gauge boson is a linear combination of
the two (1,1)0 components in (15,1,1) and (1,1,3) such that the hypercharge is
embedded as

Y =
B � L

2
� TR,3, (4.29)

where B � L is the (suggestively named) unbroken generator of SU(4)C that does
not belong to SU(3)C and TR,3 is the third generator of SU(2)R.

The Pati–Salam symmetry can be broken directly to the SM by including scalar
bosons transforming as (10,1,3) and arranging the scalar potential such that it
takes a vev in the direction that is a singlet under the SM gauge group. However,
there are other breaking chains possible that break the symmetry to the SM in
several steps. A popular such route is via the left-right symmetric group SU(3)C ⇥

SU(2)L ⇥ SU(2)R ⇥ U(1)B�L [170–173], which is a subgroup of GPS and in turn
contains GSM as a subgroup. This can be achieved by including scalar bosons in
(15,1,1) and assigning a vev in the appropriate direction of it.

Finally, we need to include a representation of scalar bosons that contains the
SM Higgs in order to achieve the Higgs mechanism and give fermions mass. This
can be done with � ⇠ (1,2,2), which contains the SM Higgs doublet. However,
this would enable only one Yukawa term, i.e.

LYukawa = �Y FL�FR + h.c., (4.30)

which clearly gives the wrong mass relations, just like in the SU(5) model. Again,
this may be remedied by introducing multiple scalars that each take vevs and
couple to the fermions [174], for example more copies of (1,2,2) representations or
(15,2,2) representations.

4.2.4 The SO(10) group

The SO(10) group [159–161] is a popular candidate for unification for several rea-
sons. Firstly, it contains both the Pati–Salam group and SU(5)⇥U(1) (and hence
also SU(5)) as subgroups and is therefore more unified in a sense. It also embeds
all SM fermions of each generation, plus a right-handed neutrino, into one single
representation, namely 16F .

Orthogonal groups SO(N) would a priori be thought to contain only real rep-
resentations, and hence be unsuitable for embedding the SM. However, they also
contain spinorial representations which are complex for even values of N and can
therefore accommodate the SM fermions [133, 156, 157, 183, 184].
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Under decomposition to SU(5), 16 becomes

16 ! 10 � 5 � 1, (4.31)

while in the PS model, it becomes

16 ! (4,2,1) � (4,1,2). (4.32)

Since it reproduces the fermion sector of the SU(5) model and of GPS, it also
reproduces the SM fermion sector with an additional singlet.

The adjoint representation of SO(10) is 45, so there are 45 gauge bosons in
SO(10) models. As with the previous versions of GUTs discussed, when the sym-
metry is spontaneously broken, only the gauge bosons corresponding to the gener-
ators that are left unbroken remain massless. The rest of the gauge bosons acquire
masses of the order of the symmetry breaking scale MGUT.

The scalar sector of SO(10) models is very rich due to the number of possible
ways of breaking it to GSM. It may be broken either through the GPS route or
through the SU(5) route with many possibilities for intermediate gauge groups
before reaching GSM. There are also three di↵erent possibilities for embedding the
Higgs doublet into SO(10), namely 10H , 126H , and 120H , which produce di↵erent
mass relations. This will be discussed in more detail in Sec. 4.3.

4.3 Aspects of SO(10) model building

4.3.1 Symmetry breaking

Since SO(10) has rank five, which is one more than GSM, there are several possi-
bilities for symmetry breaking. On the one hand, this produces more rich features,
but on the other hand, it introduces arbitrariness into the model in terms of the
choice of scalar sector and potential. Furthermore, since the scalar masses and the
intermediate symmetry breaking steps a↵ect the RG running, the breaking chain
chosen can have an e↵ect on the unification scale and hence the related phenomenol-
ogy [185–188].

To analyze the symmetry breaking chains, we enumerate the decompositions of
di↵erent multiplets to be used in the breaking under the intermediate gauge groups.
The symmetry is broken by assigning a vev to a component of a multiplet and the
resulting symmetry group is the largest group under which that component is a
singlet, in analogy with the Higgs mechanism in the SM. Such decompositions can
be found in Tabs. A.1 and A.2 in App. A. A schematic diagram of the subgroups
and breaking chains is shown in Fig. 4.3. The di↵erent breaking chains have been
analyzed in e.g. Refs. [181, 189–199].

One can first look for patterns of symmetry breaking that occur in one step.
It turns out that this can be achieved with scalars transforming under the 144

representation [201], since it contains a singlet under GSM but not under any of the
other intermediate subgroups of SO(10).
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SO(10)

G51

G5

GPS

G421 G3221

G3211

GSM

45, 210
54, 210 45, 210

45

16, 126
210

144
16, 126

16, 126

45, 54, 210

45, 210
45

210

16, 126

45, 210

16, 126
45, 210

16, 126
16, 126

Figure 4.3: Possible breaking chains of SO(10) to GSM. The representations written
next to each arrow are the representation of SO(10) which contain multiplets that can
achieve that particular breaking. We introduce the shorthand notation for the di↵erent
groups, such that G51 = SU(5) ⇥ U(1), G5 = SU(5), GPS = SU(4)C ⇥ SU(2)L ⇥ SU(2)R,
G421 = SU(4)C⇥ SU(2)L ⇥U(1)B�L, G3221 = SU(3)C⇥ SU(2)L ⇥ SU(2)R⇥U(1)B�L, and
G3211 = SU(3)C ⇥ SU(2)L ⇥ U(1)R ⇥ U(1)B�L. This figure is based on Refs. [181, 200].
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As can be seen in Fig. 4.3, the spindle of breaking chains separates into two
separate sectors, namely the SU(5) path and the PS path. Starting with the
SU(5) path, we see that we have singlets under SU(5) ⇥ U(1) in 45 and 210. If
we have the flipped embedding, we can then break the symmetry directly to GSM

using 16 or 126. With the standard embedding, we have to go via SU(5) using the
same and then using 45, 54, or 210 to break to GSM. Alternatively, we can bypass
SU(5) ⇥ U(1) and go directly to SU(5) using 16 or 126, since the SU(5) singlets
therein have a U(1) charge, and then break it to GSM as before.

Note that if the motivation for using an intermediate symmetry is to allow for
successful gauge coupling unification, then it does not make sense to have SU(5) as
an intermediate gauge group. The reason is that it would require the three gauge
couplings to unify at the intermediate breaking scale, and therefore does not solve
the problem. However, this is not required for flipped SU(5) ⇥ U(1), so having it
as an intermediate gauge group can help achieve gauge coupling unification.

For the Pati–Salam breaking chain, we can break SO(10) to GPS by assigning a
vev to the appropriate submultiplet of 54 or 210. To break GPS, or to break SO(10)
directly to any of the subgroups of GPS, we can assign a vev to the appropriate
directions of 45 or 210. At the end of the breaking chain to GSM, either 16 or 126
needs to be assigned a vev. The reason is that those multiplets contain multiplets
that break the SU(2)R and U(1)R symmetry.

The GPS and G3221 subgroups may also have D-parity, as discussed in Sec. 4.2.3.
This is a transformation that belongs to the SO(10) algebra and hence its appear-
ance after spontaneous symmetry breaking depends on which representation is used
in the breaking [202–204]. For example, breaking SO(10) to GPS with a vev in the
54 representation leaves D-parity invariant since the direction that takes vev is
invariant under D-transformation, and we get GPS ⇥ D as a subgroup. On the
other hand, using 210 breaks D-parity. If we instead want to break the symmetry
down to G3221, the relevant vev in 210 is invariant under D-transformations [205].
Therefore, we can achieve the breaking chain SO(10) ! G3221 ⇥ D using 210, or
SO(10) ! GPS ⇥ D ! G3221 ⇥ D using 54 in the first step and 210 in the second
step. Had we instead used 45 in the second step, D-parity would not be conserved.
For more details on models based on the G3221 group, see Refs. [206, 207].

Any of the symmetry breaking chains may be achieved by assigning a vev to
the relevant component of the relevant multiplet. In order to do so, the scalar
potential needs to be constructed in such a way as to create a vev in the appropriate
direction. This may, in general, include some level of fine-tuning of the parameters
in the potential.

As an example of the vevs that cause spontaneous symmetry breaking, we can
consider breaking SO(10) to SU(5) using 16. Assigning a vev to the SU(5) singlet
component such that [189]

h16i = (0, 0, . . . , 0,�), (4.33)

with � ⇠ MGUT, breaks the SU(2)R subgroup of SO(10) and leaves the SU(5)
transformations invariant. If we instead wish to break SO(10) to GPS, we can use
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the symmetric rank-two tensorial 54 representation and assign a vev [193, 196]

h54i = ! diag

✓
�
2

5
,�

2

5
,�

2

5
,�

2

5
,�

2

5
,�

2

5
,
3

5
,
3

5
,
3

5
,
3

5

◆
, (4.34)

with ! ⇠ MGUT. Here, it is evident how the vev causes the breaking to GPS, as
it partitions the 10 ⇥ 10 matrix into two blocks of 6 ⇥ 6 and 4 ⇥ 4, representing
the breaking to SO(6) ⇥ SO(4). Since SO(6) is isomorphic to SU(4) and SO(4) is
isomorphic to SU(2) ⇥ SU(2), we see that the breaking indeed gives GPS.

It is in general possible to break the symmetry at one scale by letting several
breaking steps to occur at the same scale. For example, in a model with a two-step
breaking SO(10) ! GPS ! GSM using vevs in 54 and 126, if the two vevs coincide in
energy scale, the breaking chain e↵ectively collapses to a one-step breaking directly
to GSM. The viability of such scenarios depends on detailed considerations of the
scalar potential, which may restrict ratios of vevs [193].

4.3.2 Yukawa sector

For the Higgs mechanism of the SM, we require not only that we have an SU(2)L
doublet embedded in a representation of SO(10), but also that it couples to the
fermions, which are in 16F . Hence, we need one or more representations R such
that the coupling 16 ·R · 16 is invariant under SO(10) transformations. There are
only three possibilities for R, namely 10H , 120H , and 126H [208]. Therefore, the
Yukawa sector will contain scalars in these three representations. In a compact
notation, the Yukawa sector of the Lagrangian density can then be written as

LYukawa = �16F (Y1010H + Y120120H + Y126126H)16F + h.c., (4.35)

where Y10, Y120, and Y126 are 3 ⇥ 3 Yukawa matrices in family space. The SO(10)
structure of this coupling dictates that Y10 and Y126 are symmetric while Y120 is
antisymmetric. See App. A.3 for more details.

To write out the SO(10) index structure of this multiplication explicitly, we need
to keep in mind some facts about the spinor structure of the 16F representation.
These can be found in App. A.3. Since the elements of 16F are Lorentz spinors,
we need to have the usual Lorentz spinor structure with the transposition and
charge conjugation matrix C acting in Lorentz spinor space. We also have the 16-
dimensional space corresponding to the spinor representations of SO(10). This will
be labeled by indices (a, b, c, d, e, f, g) 2 {1, 2, . . . , 16}. The 10-dimensional space
of the tensorial representations of SO(10) will be labeled by indices (↵,�, �, �, ✏) 2

{1, 2, . . . , 10}. Family indices are labeled by (i, j) 2 {1, 2, 3}. Finally, we need the
equivalent of the charge conjugation matrix and the Dirac � matrices acting in the
space of the spinorial SO(10) representation. These will be denoted by B and �↵,
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respectively, and are 16 ⇥ 16 matrices. Then, the SO(10) structure of the Yukawa
coupling is

LYukawa = �(16T

F
)iaCBab

h
(Y10)

ij(�↵)
bg(10H)↵

+ (Y120)
ij(�↵)

bc(��)
cd(��)

dg(120H)↵��

+ (Y126)
ij(�↵)

bc(��)
cd(��)

de(��)
ef (�✏)

fg(126H)↵���✏
i
(16F )

jg + h.c. (4.36)

Since we have three di↵erent representations with Higgs doublets, one may ask
which one is the SM Higgs doublet. The components of the three representations
of scalars in the Yukawa sector under the GSM decomposition that are relevant for
fermion masses are

10H � (1,2)1/2 � (1,2)�1/2 ⌘ �d

10
� �u

10
, (4.37)

120H � (1,2)1/2 � (1,2)�1/2 � (1,2)1/2 � (1,2)�1/2

⌘ �d

120
� �u

120
� ⌃d

120
� ⌃u

120
, (4.38)

126H � (1,2)1/2 � (1,2)�1/2 � (1,1)0 � (1,3)1

⌘ ⌃d

126
� ⌃u

126
� �R ��L. (4.39)

We thus have eight di↵erent SU(2)L doublets that play the roles of � and e�
in the SM Yukawa Lagrangian Eq. (2.25). They can all develop vevs, depending
on the scalar potential of the model, and thereby provide mass to the fermions.
The light Higgs boson, which has been observed at the LHC, is in general a linear
combination of the SU(2)L doublets above. This may require some fine-tuning of
the parameters of the scalar potential.

When we decompose the Yukawa Lagrangian Eq. (4.36), we find terms that pro-
duce the fermion masses as well as some additional terms involving the additional
fields found in 10H , 120H , and 126H . These mediate exotic processes such as
proton decay, which will be discussed in Sec. 4.5. The terms that provide fermion
masses are identical to those of the SM Yukawa Lagrangian Eq. (2.25), except that
the mass matrices are now given in terms of the Yukawa matrices Y10, Y120, and
Y126 as well as the vevs of the fields in Eqs. (4.37)–(4.39). The matching conditions
between the SO(10) parameters and the SM mass matrices are [152, 209–211]

Mu = vu
10
Y10 + vu

126
Y126 + (vu

1201
+ vu

1202
)Y120, (4.40)

Md = vd
10
Y10 + vd

126
Y126 + (vd

1201
+ vd

1202
)Y120, (4.41)

M⌫ = vu
10
Y10 � 3vu

126
Y126 + (vu

1201
� 3vu

1202
)Y120, (4.42)

M` = vd
10
Y10 � 3vd

126
Y126 + (vd

1201
� 3vd

1202
)Y120, (4.43)

MR = vRY126, (4.44)

ML = vLY126, (4.45)



4.3. Aspects of SO(10) model building 43

where the vevs are defined as

vu,d
10

= h�u,d

10
i, (4.46)

vu,d
1201

= h�u,d

120
i, vu,d

1202
= h⌃u,d

120
i, (4.47)

vu,d
126

= h⌃u,d

126
i, vR = h�Ri, vL = h�Li. (4.48)

The factors of 3 and relative signs of the terms are due to Clebsch–Gordan coe�-
cients. The matrices MR and ML are the mass matrices of the heavy right-handed
neutrinos and the contribution to the light neutrino masses from type II seesaw,
respectively, as explained in Sec. 2.2.1.

Since all fields that are charged under SU(2)L couple to the SU(2)L gauge
bosons, their vevs contribute to the gauge boson masses. These have been measured
to a high degree of accuracy, meaning that there is a constraint on the sum of the
vevs, i.e.

|vu
10

|
2 + |vd

10
|
2 + |vu

1201
|
2 + |vd

1201
|
2 + |vu

1202
|
2 + |vd

1202
|
2

+ |vu
126

|
2 + |vd

126
|
2 + 2|vL|

2 = v2
SM

. (4.49)

The factor of 2 in front of |vL|
2 is due to a Clebsch–Gordan coe�cient from the

coupling of the triplet to the gauge bosons. This constraint is dependent on the
model in the sense that it depends on which SU(2)L multiplets are included. For
example, if one considers a model without 120H , then the terms |vu,d

1201,2
| should be

removed from Eq. (4.49). Likewise, if the model contains further multiplets charged
under SU(2)L, they should be added to Eq. (4.49).

The constraint Eq. (4.49) allows for most of the vevs to be many orders of
magnitude smaller than vSM and one being of the order of vSM. However, since
the vevs of the SU(2)L doublets are versions of the SM Higgs doublet, one would
expect them to be of a similar order of magnitude. The vev vL is expected to be
very small, since it is the induced vev involved in type II seesaw. Finally, the vev
vR is expected to be large, since it is involved in the breaking chain of SO(10) to
GSM. It is thus of the order of either MGUT or a relevant intermediate breaking
scale.

In specifying a model, one must determine which of the three possible repre-
sentations of scalars to include for fermion masses. A common guiding principle in
model building is minimality, which means choosing the smallest possible number
of fields required to construct a viable model. At least two di↵erent multiplets are
needed, since otherwise the mass matrices in Eqs. (4.40)–(4.45) will all be propor-
tional, which contradicts the observation of mixing. Minimality would therefore
favor a Yukawa sector consisting of only two out of 10H , 120H , and 126H . One
of these should be 126H in order to produce the seesaw mechanisms. For the sec-
ond one, minimality would dictate that we choose 10H since it contains the fewest
number of states. This is the model considered in Papers II and III.

Since 10H is a real representation of SO(10), 10H = 10H implies that vu
10

=
vd
10
, which results in wrong predictions for the mass relations [212, 213]. It can,
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however, be complexified by adding a second 10H and forming the combination
10H = 10H,1 + i10H,2, so that we can use 10H and 10

⇤
H
. Although this solves

the problem of wrong mass relations, it decreases the minimality and predictivity
of the model, since 10H and 10

⇤
H

in general have two independent Yukawa cou-
pling matrices. This can, however, be solved by introducing a global Peccei–Quinn
symmetry U(1)PQ [108, 109] with charge assignment

16F ! ei↵16F , 10H ! e�2i↵
10H , 126H ! e�2i↵

126H , (4.50)

for some real parameter ↵. The PQ symmetry forbids 10
⇤
H

from coupling to the
fermion bilinear, meaning that we can have two di↵erent vevs vu

10
and vd

10
, while

only having one Yukawa matrix for the coupling to 10H . Additionally, the U(1)PQ

symmetry can solve the strong CP problem and provide axion dark matter, as
discussed in Sec. 2.2. For more details on axions in SO(10) models, see Ref. [214].

One can also consider more extended models which include 120H , as in Papers I
and V. Since each representation couples to a subset of the other representations
in the model, a model with more representations also contains more parameters.
This can allow for better fits to the measured parameter values of the Yukawa
sector, but it decreases the minimality of the model. Other Yukawa sectors are of
course also possible, such as 126H � 120H , or several copies of each of the three
representations. Models without 126H are also possible if one adds scalars in a 16H

representation. Then, the neutrino mass can be generated by a non-renormalizable
interaction 16F ·16H ·16H ·16F via the Witten mechanism [215], since the product
of two 16s contains 126.

4.4 Flavor models in SO(10)

The problem of flavor as discussed in Sec. 2.2.2 persists in SO(10). The existence
of three generations of fermions means that there must be three copies of 16F .
This does not have any natural origin in standard SO(10) models. Furthermore,
although the fermion masses and mixing parameters are related to each other to a
higher degree than in the SM through Eqs. (4.40)–(4.45), there is no explanation
for the observed hierarchy of masses or values of the mixing parameters. In order
to address this, one can construct models based on flavor symmetries within the
SO(10) framework.

One approach to explain the existence of three generations of fermions is to
assume a larger group with representations such that we do not need to manually
add three copies of the fermions, but instead use representations that are large
enough such that three copies of the same fermion particle content are not neces-
sary. Early proposed examples of such models are based on the groups SU(11) [154]
and SU(7) [216] (see also Refs. [217, 218]), with the objective of having as few copies
as possible of each representation. Embedding all fermions in one representation
requires a larger group such as SU(19) [219], with all fermions in a 171 repre-
sentation, which decomposes into 3 ⇥ 16 � 120 � 3 ⇥ 1 under SO(10). Other
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examples are SO(18) [220–225], with the fermions in 256, which decomposes into
(16,80)� (16,800) under SO(10)⇥SO(8) and O(14) [226–228], with the fermions in
128, which decomposes into to 4⇥16�4⇥16 under SO(10). The drawback of these
models is that there are many additional fermions, which need to have large masses
in order to avoid tension with current measurements. As a result, more fine-tuning
is required.3 For the models based on SU(N) groups, we also need to ensure that
they are anomaly-free, which can be achieved by adding conjugate representations.

There are also a number of models that, starting from SO(10), impose a flavor
symmetry, sometimes also called a horizontal or family symmetry [229, 230]. If this
group, which we can denote Gf contains a three-dimensional representation, then
the fermions are typically assigned to (16,3) under SO(10) ⇥ Gf , which explains
the existence of three generations. Examples of Gf that have been studied are
SU(3) [231, 232], SU(2) [233], U(2) [234], D3 [235–237], �(27) [238], �(75) [239],
A4 [240, 241], and S4 [242–245].

Since the SM does not contain Gf , the flavor symmetry needs to be broken. This
can be done by introducing scalar fields with non-trivial transformations under Gf ,
called flavons, which take vevs. The flavons � couple to fermions  and the Higgs
doublet � as

L �
y

⇤
� � , (4.51)

where y is a coupling constant and ⇤ some energy scale relevant for the theory. If
there are several flavons whose vevs are hierarchical and have a non-trivial flavor
structure, then coupling the flavons to the fermions can induce a mass hierarchy
between the fermion generations. Furthermore, it can produce relations among
elements of the mass matrices and set some elements to zero, leading to predictions
of the mixing parameters.

A more direct approach to explain the parameters related to masses and mixing
parameters is to impose textures on the Yukawa matrices, which is to set some
of the elements to zero [246–249]. This is useful since it limits the number of
free parameters in the Yukawa sector, that can be quite large in SO(10) models.
These zeros can originate in flavor symmetries under which the di↵erent gener-
ations of fermions transform di↵erently. For example, if the first generation of
fermions and 10H transform as 16F 1 ! ei⇡/216F 1 and 10H ! ei⇡/210H , then a
coupling 16F 110H16F 1 would be forbidden, since it acquires a non-zero phase un-
der the given transformation. If both the second and third generations transform as
16F 2,3 ! e3i⇡/416F 2,3, then these are allowed to couple to 10H . In this example,
the corresponding Yukawa matrix would have a texture given by

Y10 ⇠

0

@
0 0 0
0 ⇥ ⇥

0 ⇥ ⇥

1

A , (4.52)

3
This problem also occurs with the additional scalar and vector bosons in standard SO(10) or

SU(5) models, but now the problem occurs also for fermions. Additionally, larger groups have

larger representations, meaning that there are now many more fields at the high-energy scale.
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where ⇥ denotes a general non-zero coupling. In general, if each generation of
fermions 16F i transforms with a phase ↵i and the scalar representations �a picks
up a phase �a (with the label a enumerating the possible choices 10H , 126H , and
120H), a coupling 16F i�a16F j will result in a factor exp(i(↵i + ↵j + �a)). If
↵i +↵j + �a = 2n⇡ for some integer n, then this coupling is allowed. Otherwise, it
imposes a texture zero in the corresponding Yukawa matrix.

In Ref. [250], all possible textures and corresponding transformations were enu-
merated by starting from all possible Yukawa matrix textures and imposing that
the non-zero elements be allowed. This procedure is dependent on the choice of
Yukawa sector, with the typical one being 10H � 126H � 210H such that there
are three independent Yukawa matrices, two of which are symmetric and one of
which is antisymmetric. Some of these sets of matrices will result in models that
are equivalent. In particular, if one set of matrices is related to another by a per-
mutation of generations, then these produce the same model. This is equivalent
to saying that there is no preferred flavor basis and that a global relabeling of the
generation of all fermions does not have a physical e↵ect.

For a given model of Yukawa matrix textures, each non-zero element leads to a
constraint on the phases. For example, a non-zero element in the (2, 3) element of
Y10 leads to the constraint ↵2 + ↵3 + �10 = 2n⇡. If there are N such constraints,
they can be written in an N ⇥ 6 matrix multiplying the 6-element vector of phases
(↵1,↵2,↵3,�10,�126,�120)T . The solution to these equations can be obtained by
transforming the matrix of coe�cients to Smith normal form [250–252], which is a
diagonal form for non-square matrices of integers. The result is a set of restrictions
on the phases of the form

mi↵̃i = 2⇡ñi, (4.53)

where the ↵̃i are linear combinations of the six original phases and mi and ñi are
integer coe�cients. This allows us to read o↵ the symmetry associated with each
phase: mi = 1 corresponds to no symmetry since the phase is restricted to be a
multiple of 2⇡, mi = p > 1 corresponds to a Zp symmetry, and mi = 0 corresponds
to a U(1) symmetry since the phase is unconstrained. Finally, one U(1) symmetry
must be discarded since it corresponds to a global rephasing of the fermions by �
and the scalars by �2�. One can extend this to include non-Abelian symmetries
that can give rise to permutations of the generations or the scalar representations.

It is also possible to combine models such that several separate sets of trans-
formations are applied to the fields. This can in principle be done in all possible
combinations, but will in most cases yield symmetries that have already been found.
Furthermore, there will be several models with the same symmetry. If the set of
non-zero elements of one model is a subset of the set of non-zero elements of an-
other model with the same symmetry, then that model is not considered unique and
is thus discarded. Furthermore, there is the phenomenological constraint that no
generation decouples in the mixing matrices. This is equivalent to saying that no
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element can be the only non-zero one in both its row and column in all Yukawa ma-
trices simultaneously. Finally, Y126 cannot be singular, since its inverse is required
for the type I seesaw mechanism.4

With a scalar sector consisting of one of each of 10H , 126H , and 120H , there are
14 inequivalent models with rephasing symmetries of the Yukawa sector as described
above [249]. The symmetries of these are U(1), Z2, Z3, Z4, and Z2 ⇥ Z2. There
are no non-Abelian symmetries, since all possibilities either cause one generation
to decouple or require more than one copy of each scalar representation [250]. The
complete set of 14 models were investigated in Ref. [249] in a SUSY setting and
in Paper V in a non-SUSY setting. Furthermore, Paper V takes into account the
renormalization group running of the parameters, which allows for a consistent
integration out of intermediate scale particles. Both with and without SUSY, the
result is that a fit is only possible in two of the models, which have Z2 symmetry.
This is not surprising since Z2 is the smallest possible symmetry, and thus gives the
least restrictions on the Yukawa matrices. As a result, models with this symmetry
have more free parameters than those with larger symmetries.

There are also other approaches to flavor in SO(10) models. One such example
is the model presented in Ref. [253], in which only 10H was used in the Yukawa
sector, but a pair of vector-like fermions interacting with SM fermions were added.
This improves the predictivity of the model and allows it to reproduce measured
masses and mixing parameters. Another model is the clockwork mechanism [254],
in which the hierarchy in fermion masses is generated by each generation being
connected to a sequence of additional vector-like fermions.

4.5 Proton decay

Grand unified theories generically predict exotic interactions via their additional
gauge bosons and scalars, which can mediate proton decay [156, 255, 256]. The
gauge boson-mediated proton decay can be seen in the covariant derivative of the
fermions, in which gauge bosons in 45 of SO(10) couple to both quarks and leptons.
They are thus called “leptoquark” gauge bosons and can convert leptons to quarks.
For example, there are scalars in 10H , 120H , and 126H that do not contribute to
the fermion masses and are leptoquark scalars that can mediate proton decay. One
possible channel of proton decay with a gauge boson is illustrated in Fig. 4.4.

These leptoquark gauge and scalar bosons violate baryon number. They must
have masses around the unification scale in order to suppress the proton decay
rate. Hence, the non-observation of proton decay places a lower bound on the scale
MGUT. For low-energy phenomenology, one can integrate out the leptoquark bosons
and find e↵ective operators of dimension six that describe proton decay [131, 257–
259].

Although proton decay is a generic prediction of GUTs, there is some model
dependence in the allowed e↵ective operators, depending on which couplings are

4
In a model without the type I seesaw mechanism, this restriction may be relaxed.
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Figure 4.4: Example of a process leading to proton decay through a leptoquark gauge
boson X.

present in the full theory [165]. Furthermore, there is a di↵erence in models with
or without SUSY, since SUSY allows also for dimension-four and -five e↵ective
operators which may lead to faster proton decay [260, 261].

An order of magnitude estimate of the proton decay width with a GUT-scale
gauge mediator gives

� ⇠ ↵2

GUT

m5

p

M4

GUT

, (4.54)

where ↵GUT = g2
GUT

/4⇡, with gGUT being the gauge coupling at the scale MGUT,
and mp is the proton mass. The decay lifetime is the inverse of this, and is therefore
proportional to M4

GUT
/↵2

GUT
. As a result, a long lifetime requires a combination of

a small coupling constant ↵2

GUT
and a large scale M4

GUT
. Since the dependence on

MGUT is stronger than that on ↵GUT and since it is easier to modify MGUT than
↵GUT, the non-observation of proton decay in practice implies a lower bound on
MGUT.

In order to derive a more precise prediction of the proton lifetime, we need to
consider in more detail the various allowed channels. Since the most constraining
decay channel is through gauge bosons [255], we only consider the gauge inter-
actions. The adjoint representation 45 contains, among others, X ⇠ (3,2)�5/6,
X 0

⇠ (3,2)1/6, Y ⇠ (3,2)5/6, and Y 0
⇠ (3,2)�1/6, where the transformation prop-

erties are given under GSM. To see the interactions between the fermions and gauge
bosons that lead to proton decay, we write down the Dirac term

LDirac = i16F �
µDµ16F , (4.55)

where SO(10) indices have been suppressed and the covariant derivative contains
the adjoint representation 45 in which the gauge bosons reside. By computing this
product of representations in terms of the SM representations, we find the terms
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invloving the components X, X 0, Y , and Y 0 to be [262]

LDirac �
gGUT

2
Xµ

�
uc�µQ+Q�µec � L�µdc

�

+
gGUT

2
X 0

µ

�
dc�µQ+ L�µuc

� Q�µ⌫c
�

+
gGUT

2
Yµ

�
Q�µuc + dc�µL � ec�µQ

�

+
gGUT

2
Y 0
µ

�
Q�µdc + uc�µL � ⌫c�µQ

�
, (4.56)

where the SU(3)C, SU(2)L, and family indices have been suppressed. Integrating
out the heavy gauge bosons, either by a functional approach or by replacing them by
the solutions to their equations of motion, we find four independent dimension-six
e↵ective operators that are relevant for proton decay [131, 255, 257–259]:

OI = uc
i�

µQiecj�µQj , (4.57)

OII = uc
i�

µQidcj�µLj , (4.58)

OIII = dci�
µQiuc

j�µLj , (4.59)

OIV = dci�
µQi⌫cj�µQj , (4.60)

where i, j 2 {1, 2, 3} are family indices. The operators in Eqs. (4.57)–(4.60) are
diagonal in family space, since they are written in the interaction basis. The coe�-
cients of these operators will be proportional to g2

GUT
/M2

GUT
, as can be seen from

the fact that they are dimension-six operators and from explicitly considering their
tree-level realizations.

To derive the decay rate from these operator, several considerations need to be
taken into account. Firstly, since the proton contains physical quark mass states,
a mixing factor coming from the Yukawa sector needs to be included. Secondly, a
renormalization factor is needed to account for the fact that the relevant energy
scale for the proton is µ ' 1GeV while the operators were formed by integrating
out the gauge bosons at a scale µ ' MGUT. Thirdly, a hadronic matrix element is
needed for the projection of the initial proton state of the constituent quarks onto
the final meson state. Putting this together, we have for the decay to a pion and
a positron, which is the most restrictive one, an approximate decay width given
by [255, 263]

�(p ! e+⇡0) '
mp

64⇡f2
⇡

g4
GUT

M4

GUT

A2

L
↵2

H
Fq, (4.61)

where f⇡ ' 139MeV is the pion decay constant, AL ' 2.726 is a renormalization
factor, ↵H ' 0.012GeV3 is the hadronic matrix element, and Fq ' 7.6 is a quark-
mixing factor. This gives an estimate for the proton lifetime

⌧(p ! e+⇡0) ' (7.47 ⇥ 1035 yr)

✓
MGUT

1016 GeV

◆4✓ 0.03

↵GUT

◆2

. (4.62)

If proton decay were observed in di↵erent channels, then it would be useful to
consider the decay rates to the di↵erent channels in order to determine details of the
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underlying GUT model. However, the non-observation of proton decay to date puts
a lower bound on the proton lifetime. The current best lower bound is from Super-
Kamiokande [264–266], which results the bounds ⌧(p ! e+⇡0) > 1.67 ⇥ 1034 yr,
⌧(p ! µ+⇡0) > 7.78⇥1033 yr, and ⌧(p ! ⌫K+) > 6.61⇥1033 yr at 90 % confidence
level. The projected Hyper-Kamiokande is expected to increase these bounds to
⌧(p ! e+⇡0) > 5.5 ⇥ 1034 yr and ⌧(p ! ⌫K+) > 1.8 ⇥ 1034 yr after five years
of collecting data [267]. With a coupling ↵GUT ⇡ 0.03, the current bound on the
proton lifetime implies MGUT & 4 ⇥ 1015 GeV.

4.6 Phenomenology in SO(10) models

A large range of phenomenology can be embedded in SO(10) models, with the
scale of interest being around MGUT or some intermediate scale in the case that
symmetry breaking occurs in multiple steps.

For example, axions are naturally embedded due to the U(1)PQ symmetry, as
mentioned in Sec. 4.3.2, and can also provide a solution to dark matter. This is
an appealing option since the U(1)PQ symmetry is motivated from considerations
of the Yukawa sector. Being the psuedo-Nambu–Goldstone boson resulting from
spontaneous symmetry breaking of U(1)PQ, the decay constant of the axion will be
of the order of the energy scale at which the symmetry breaking occurs. The mass
of the axion is inversely proportional to its decay constant and is therefore naturally
very small if the symmetry breaking occurs at MGUT [152, 210, 214, 268–270].

Dark matter may also be in the form of a scalar or fermion field, which is
stabilized due to an inherent parity symmetry inside the SO(10) group struc-
ture [200, 271–280]. Another option is to have the dark matter candidate be a
pseudo-Nambu–Goldstone boson, since that naturally evades all current observa-
tional bounds [281, 282].

Since SO(10) naturally embeds a heavy right-handed neutrino, it provides the
necessary ingredients for generating the baryon asymmetry through the mechanism
of leptogenesis [138, 210, 277, 283–290]. Furthermore, due to the additional scalar
and vector leptoquarks, both SO(10) and its PS subgroup are interesting from the
point of view of the B-physics anomalies [291–294].

From the symmetry breaking of SO(10) down to the SM, the scalar fields can
form particular configurations, known as topological defects. These may be do-
main walls, cosmic strings, or magnetic monopoles, depending on the symmetry
breaking chain. Phenomenologically, these defects can have an e↵ect on cosmol-
ogy [153, 295, 296]. In particular, domain walls and magnetic monopoles are prob-
lematic in the sense that they overclose the Universe and it is therefore assumed
that inflation occurs after their production such that their abundance becomes ex-
ponentially suppressed [297]. Cosmic strings do not share this problem and can
therefore be allowed to persist [295, 298]. Furthermore, cosmic strings are pro-
duced by the symmetry breaking of U(1) while monopoles are produced by the
symmetry breaking of non-Abelian groups. Therefore, if inflation occurs between
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the symmetry breaking of SO(10) and an intermediate symmetry involving U(1),
then it is possible to dilute the monopole abundance while retaining substantial
cosmic strings. These can interact with each other, and decay away with their
energy transformed into gravitational waves [299]. With recent searches for the
stochastic gravitational wave background [300, 301], it has been possible to place
bounds on the generation of cosmic strings and hence a new window to constrain
models of grand unification has opened up [302–306].

4.7 Current status of SO(10) models

Models based on the SO(10) gauge group are still viable models for physics beyond
the SM. There are essentially only two ways in which such models could be ruled
out. The first is if they predict wrong mass relations. This is the case for the
most minimal models in which only one Higgs representation is used. However, it
is easy to generalize the model to include another Higgs representation in order to
save the mass relations. Thus, only very specific model details may be ruled out
on this ground. In fact, SO(10) models with Higgs fields in the 10H and 126H

representations are not only able to accommodate the correct mass relations, but
also the neutrino masses through the seesaw mechanism.

The second way in which SO(10) models and GUT models in general may be
ruled out is by constraints on the unification scale, coming from proton decay or
gravitational waves from cosmic strings. At the time of writing this thesis, proton
decay has not yet been observed. If this non-observation continues, then it will
keep increasing the lower bound on the proton lifetime. This, in e↵ect, increases
the minimum value of MGUT allowed. The constraints that can be derived from
gravitational waves are typically related to intermediate symmetry breaking scales
and depend on the details of the symmetry breaking chain. Constraints on MGUT

can rule out the simplest models, but more freedom can always be introduced by
adding intermediate symmetry breaking scales or extra fields that alter the RG
running. Due to the freedom in model building, grand unification is still a viable
source for physics beyond the SM.





Chapter 5

Renormalization group
running and numerical
methods

In order to compare models of grand unification to observations, we need to relate
the physics at the unification scale to the physics at energy scales accessible in
experiments, which corresponds to a di↵erence in energy of around 14 orders of
magnitude. This leads to significant renormalization group e↵ects between the two
scales, as demonstrated for gauge couplings in Sec. 4.1. Further, there may be
intermediate scale physics to take into account when solving the renormalization
group running, such as fields with masses between the two scales of interest or
intermediate symmetry breaking steps. This needs to be appropriately taken into
account in renormalization group running.

An important viability test of GUT models is if they can accommodate the
measured observables of the SM, namely masses and mixing parameters. There
are two components required to be able to test this. The first is a way to relate
the parameters at MGUT to the observables measured in experiments, which is
provided by renormalization group running. The second is a method to explore
the parameter space of the model being tested, for which a numerical optimization
algorithm is required.

This chapter deals with the methods involved in relating the high energy phe-
nomenology of SO(10) models to the measured values of the parameters. This
includes the masses and mixing parameters in the Yukawa sector as well as the
gauge couplings. We start with a general description of renormalization and in par-
ticular the renormalization group running of gauge couplings. Then, we describe
the process of integrating out intermediate particles such as the heavy right-handed
neutrinos (RHNs) between MGUT and MZ . Finally, we describe the algorithm used
in performing the numerical fits.

53
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5.1 Renormalization group running

A key feature of QFTs is renormalization. Calculations performed in perturbation
theory su↵er from infinities that arise from divergent momentum integrals when
computing Feynman diagrams. In order to extract meaningful finite results, one
has to regularize these divergences, which can be performed in a number of ways
and typically introduces a dependence on some energy scale. Since the physics
of the original theory must be invariant under changes of that energy scale, the
parameters of the Lagrangian must change accordingly to counter the e↵ect of
changes in the scale. This gives the renormalized parameters of the theory, which
depend on the energy scale through the RGEs. More details on this process may
be found in numerous resources, for example Refs. [307–309].

5.1.1 Regularization

There are several ways to regularize the integrals that arise from loops in Feynman
diagrams. As an example, consider the integral over a scalar propagator in a loop,
i.e. Z

d4k

k2 � m2 + i✏
, (5.1)

where the integral runs over the whole range of four-momentum k. By dimensional
analysis, one observes that the contributions from arbitrarily large four-momenta
will cause the integral to diverge. Regularization is the procedure in which we
extract a meaningful answer from integrals such as Eq. (5.1).

An intuitively simple procedure is to introduce a momentum cuto↵ ⇤ as the
upper limit of the integral, such that

Z 1

0

d4k

k2 � m2 + i✏
!

Z
⇤

0

d4k

k2 � m2 + i✏
, (5.2)

which is finite. The parameter ⇤ parametrizes the divergence and the original
integral is recovered in the limit ⇤ ! 1.

Another procedure of regularization is the Pauli–Villars procedure [310], which
involves modifying the integrand as

1

k2 � m2 + i✏
!

1

k2 � m2 + i✏
�

1

k2 � ⇤2 + i✏
. (5.3)

Here, ⇤ is the parametrization of the divergence and the original expression is
again recovered in the limit ⇤ ! 1. The second term may be interpreted as the
contribution of a fictitious particle with the wrong sign of the propagator.

The most widely used procedure of regularization is dimensional regulariza-
tion [311], in which the number of spacetime dimensions is altered from d = 4 to
non-integer d = 4 � ✏, such that the original divergent expression is recovered in
the limit ✏ ! 0. We must similarly modify all expressions that depend on the
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number of spacetime dimensions, such as spinor algebra and surface integrals, to
their equivalents in non-integer spacetime dimensions.

Requiring that the action

S =

Z
ddxL (5.4)

be dimensionless and that the mass parameters have dimensions of energy, we find
that the dimensions of scalar, vector, and spinorial fields are

[�] = [Aµ] =
d � 2

2
, [ ] =

d � 1

2
. (5.5)

In order to keep the coupling constants dimensionless, we redefine them by ex-
tracting the relevant mass dimension. For the gauge, Yukawa, and scalar quartic
couplings, we find

g ! µ✏/2g, Y ! µ✏/2Y, � ! µ✏�, (5.6)

where µ is some arbitrary parameter of mass dimension 1.
Within this scheme, the loop corrections to quantities may be calculated and

the divergences are encapsulated in poles as ✏ ! 0. For example, consider the
integral

I =

Z
d4k

(2⇡)4
g2

k2 � m2 + i✏
! µ✏

Z
ddk

(2⇡)d
g2

k2 � m2 + i✏
, (5.7)

which evaluates to [307]

I =
�ig2

16⇡2
m2

µ✏(4⇡)✏/2

(m2)✏/2
�
⇣ ✏
2

� 1
⌘
, (5.8)

where � is the gamma function with �(n) = (n � 1)! for integers and in general it
holds that �(x+ 1) = x�(x). By expanding in powers of ✏, the result is

I =
ig2m2

16⇡2


2

✏
+ 1 � �E + ln(4⇡) + ln

✓
µ2

m2

◆
+ O(✏)

�
, (5.9)

where �E ' 0.577 is the Euler–Mascheroni constant. As shown in this result,
dimensional regularization separates the divergence as ✏ ! 0 from the finite part
of the integral. Furthermore, the dependence on the arbitrary energy scale µ is
made clear. These calculations are implemented in several software packages such
as FeynCalc [312–314] and Package-X [315].

5.1.2 Renormalization

After regularizing the loop integrals, the next step is renormalization, which cor-
responds to removing the divergent parts of the result so that we are left with a
meaningful physical quantity. This is done by adding to the original (called “bare”)



56 Chapter 5. Renormalization group running and numerical methods

Lagrangian counterterms that are constructed so as to cancel the divergences in cal-
culated physical quantities, i.e.

L = L0 + Lct, (5.10)

where L0 is the bare Lagrangian, Lct contains the counterterms, and L is known as
the renormalized Lagrangian, from which finite physical quantities may be derived.
The counterterm Lagrangian adds a number of additional Feynman rules, which
give rise to divergent contributions of the same magnitude and opposite sign to the
original divergences. In this way, the final result is finite.

Since there are many ways to divide a divergent integral into a convergent
part and divergent part, there is freedom in choosing a convenient method. One
convenient renormalization scheme is the “modified minimal subtraction” scheme,
MS [316], which subtracts the 1/✏ pole as well as extra constants ln 4⇡ � �E that
often arise. This is in contrast to the minimal subtraction scheme, MS [317, 318],
which subtracts only the 1/✏ pole. Both of these schemes require the regularization
to be performed using dimensional regularization.

In the process of dimensional regularization, the energy scale µ was introduced.
Any quantity computed in renormalized perturbation theory will, in general, de-
pend on this scale. However, the original bare quantities are independent of it.
Thus, we can relate the bare and renormalized quantities to each other and impose
the condition that the bare quantity is independent of µ. As a result, the depen-
dence of the renormalized quantity on µ is absorbed into the renormalized coupling
constants.

Consider an (n+m)-point Green’s function involving n fermion fields  and m
scalar fields � with a coupling y. The bare and renormalized Green’s functions will
be related via a field rescaling, namely

G(n,m)

0
({xi}, y0) = Zn/2

 
Zm/2

�
G(n,m)({xi}, y, µ), (5.11)

where y0 is the bare coupling. The bare Green’s function must be independent of
µ, since the scale µ is an artifact of the renormalization process and not a part of
the bare theory. In other words, we find that

0 = µ
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G(n,m)({xi}, y, µ).

(5.12)

This is the Callan–Symanzik equation [319–321], from which we define the � func-
tion for the coupling y as

�y ⌘ µ
@y

@µ
. (5.13)

If the Green’s function depends on several couplings ci, then there are more terms
like the last one in Eq. (5.12) with y replaced by ci and each one has a corresponding
� function.
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By computing the Green’s functions and counterterms perturbatively, one can
solve the Callan–Symanzik equation for the � function. This gives the RGE for the
coupling y, which determines its running behavior, meaning that its value depends
on the center-of-mass energy of the interaction. There are standard formulas for
the � functions of the gauge couplings in non-Abelian gauge theories as well as the
Yukawa couplings and the scalar quartic couplings [322–328].

The gauge coupling gi of a non-Abelian theory with group Gi has � function to
two-loop order given by [326, 329, 330]

�(gi) = �
g3
i
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g3
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(4⇡)4

2

4
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j
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j
bij + 2FY4(Fi)

3

5 , (5.14)

where
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C2(Gj)�ij

�
S2(Fi)

� S


4C2(Sj) +

2

3
C2(Gj)�ij

�
S2(Si). (5.16)

Here, C2(r) and S2(r) are the quadratic Casimir and Dynkin indices, respectively,
of the representation r. The representations Gi, Fi, and Si denote the adjoint,
fermion, and scalar representations, respectively, under the gauge group Gi, summed
over all degrees of freedom in the model. The coe�cient F is 1 ( 1

2
) for Dirac (Weyl)

fermions and S is 1 ( 1
2
) for complex (real) scalars. The sum over j runs over all

gauge group factors in the semisimple group G1 ⇥ G2 ⇥ · · · ⇥ Gn. Finally, we have

Y4(Fi) =
1

d(Gi)

X

a

C2(f
a

i
) Tr

⇣
Y aY a†

⌘
, (5.17)

where the sum over a runs over the various Yukawa coupling matrices in the theory
and f

a

i
denotes the particular fermion representations involved in the Yukawa cou-

pling Y a. In practice, the term with the Yukawa couplings is often neglected when
analyzing the RG running of gauge couplings, since it is highly model dependent
and is usually small compared to the rest of the two-loop contribution.

Inserting the SM field content into Eqs. (5.15)–(5.16), we find the one-loop
coe�cients ai and the two-loop coe�cients bij given by

ai =
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◆
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In the left panel of Fig. 5.1, we show the two-loop RG running in the Pati–
Salam model with the one-loop result shown by the dashed lines. In particular, we
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Figure 5.1: Gauge coupling unification wiht Pati–Salam intermediate symmetry using
two-loop RG running (left) and two-loop RG running with one-loop threshold corrections
(right). The dashed lines in both panels show the result for one-loop RG running without
threshold corrections. Vertical lines denote the intermediate energy scale and MGUT

see that the di↵erence between one- and two-loop order is larger in the PS model
than in the SM. The intermediate energy scale is lowered when including two-loop
RGEs, while MGUT is increased by only a small amount.

The general formulas for the � functions of the Yukawa and scalar quartic
couplings are somewhat more complicated, and we refer the reader to Refs. [326–
328, 331, 332]. They are also implemented in several software packages, such as
PyR@TE [331] and SARAH [333].

The total set of RGEs that are needed to perform the RG running from MGUT

to MZ are given in App. B. These are the � functions for the gauge couplings, the
Yukawa coupling matrices, the right-handed neutrino mass matrix, and the Higgs
quartic self-coupling.

5.2 E↵ective field theory and thresholds

In general, there are several scales involved in a theory, for example MZ and MGUT.
These scales are highly separated and one would expect the physics at MZ to be
largely independent of the physics at MGUT. This separation of scales is described
by the Appelquist–Carazzone theorem [334], which states that a high-energy theory
may be described by an e↵ective field theory that coincides with the high-energy
theory in the limit of small momenta. The e↵ect of a particle in the high-energy
theory with massM contributes to the amplitudes with a suppression factor p2/M2.
Hence, heavy particles decouple in the limit p2 ⌧ M2. The theorem was proven
in an on-shell renormalization scheme, but also holds in mass-independent schemes
such as MS [335–337]. In such schemes, the particles need to be removed from the
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theory (integrated out) by hand, and the suppressed low-energy corrections from
the high-energy theory enter as higher-dimensional operators and finite shifts of the
parameters of the theory. Below the scale in question, one considers an e↵ective
field theory in which the heavy particles do not enter [338].

A familiar example is Fermi’s four-fermion interaction, which is an e↵ective
theory valid at energies well below the electroweak scale. After integrating out the
electroweak gauge bosons, one ends up with an e↵ective four-fermion interaction.
In the e↵ective theory, this is a non-renormalizable dimension-six operator, with
coe�cient proportional to 1/M2

Z
.

During the renormalization group running over some energy range, one may
encounter several such mass thresholds that separate two theories from each other.
This can be due to symmetry breaking, which gives rise to massive gauge bosons,
or due to other massive particles in the theory. One example is the spontaneous
symmetry breaking of a GUT to its subgroup at the scale MGUT, at which scale
some gauge and scalar bosons receive masses at the breaking scale. Another exam-
ple is the mass scale of heavy right-handed neutrinos, which results in the e↵ective
neutrino mass operator described in Sec. 3.2.2

5.2.1 Symmetry breaking and matching of gauge couplings

At an energy scale where spontaneous symmetry breaking occurs, the gauge coup-
lings of the theory below that scale need to be matched to those of the theory above
it. It is typically the case that a number of fields have masses around the energy
scale at which the gauge couplings are to be matched. Those heavy fields then need
to be integrated out of the theory.

The integration out of the heavy fields a↵ects the matching of the gauge cou-
plings, which can be derived by comparing the gauge boson two-point function in
the full and the e↵ective theories [147, 148, 336, 337]. By considering this for one
of the gauge bosons, one finds loop corrections in the full theory that do not exist
in the e↵ective theory. As an e↵ect, one obtains a redefinition of the fields, which
also leads to an e↵ective coupling constant that di↵ers from the direct tree-level
matching.

At an energy scale Mm!n at which a group Gm breaks to Gn, the matching of
the inverse squared gauge couplings to one-loop order may be written as [147, 148]
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◆
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kFi ln

✓
MFi

Mm!n

◆)
, (5.19)

where each sum runs over the fields that are integrated out around the scale Mm!n,
S2 is the Dynkin index, ki is the multiplicity of the field i taking into account the
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dimensions of the representation under the other gauge groups, and Si is 1 (2) for
real (complex) scalar fields.

As such, the matching at loop order receives threshold corrections that depend
on the particle content that lies around the matching scale. Typically, the gauge
bosons have masses around the matching scale, so the last term on the first line of
Eq. (5.19) can be ignored. Furthermore, most standard SO(10) models do not have
any fermions around the matching scale, in which case the only dependence on the
masses comes from the spectrum of the scalar fields through the first term in the
second line.

As is typical for SO(10) models, if there is a large number of fields around
the matching scale, this can lighten the restrictions of gauge coupling unification.
Additionally, threshold corrections can modify the scale of unification and hence
allow models that were previously ruled out by constraints from proton decay. As
an example, the right panel of Fig. 5.1 shows the RG running of the gauge couplings
in the Pati–Salam model at two-loop order with one-loop threshold corrections. The
one-loop RG running is shown in dashed lines for comparison. Due to the threshold
corrections, the gauge couplings do not meet at a single point at MGUT, but they
are still unified. A similar e↵ect can be seen in the matching of ↵�1

2L
between the

two theories, as well as the matching of ↵�1

3C
to ↵�1

4C
. As a result, MGUT is increased

from 3.85 ⇥ 1016 GeV to 3.33 ⇥ 1017 GeV.

5.2.2 Neutrino e↵ective field theory

Another important application of e↵ective field theories in the RG running between
MZ and MGUT is the integrating out of the heavy right-handed neutrinos, which
are relevant for generating neutrino masses through the type I seesaw mechanism.
When integrating them out, they are no longer part of the theory, but contribute
to the e↵ective dimension-five operator [258], which generates neutrino masses.
Therefore, as they are integrated out, their couplings to the light neutrinos are
removed and their contribution to the neutrino masses is encoded by altering the
coe�cient of the e↵ective operator, as mentioned in Ch. 3.

The relevant quantities for this procedure are the Dirac neutrino Yukawa ma-
trix Y⌫ , the right-handed Majorana mass matrix MR, and the e↵ective neutrino
mass matrix . In the full theory, they are all 3 ⇥ 3 matrices with  being zero.
At the threshold corresponding to the heaviest RHN N3, the relevant coe�cients
are removed from Y⌫ and MR and added to , following the process outlined in
Refs. [339, 340]. Thus, the last row of Y⌫ is removed and it becomes a 2⇥3 matrix.
The last row and column of MR are removed and it becomes a 2 ⇥ 2 matrix. The
e↵ective neutrino mass matrix  is updated to

 ! +
2

M3

⇣
Y (3)

⌫

⌘T ⇣
Y (3)

⌫

⌘
, (5.20)
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where Y (3)

⌫ is the last row of Y⌫ , which was removed, and M3 is the mass of N3. On
the right-hand side of Eq. (5.20),  is typically zero, but it may be non-zero if it re-
ceived some other contribution at an energy above this. The procedure of removing
rows or columns from matrices is clearly basis-dependent. It is therefore important
to transform to a basis in which MR is diagonal and apply the corresponding basis
transformation to Y⌫ before applying this procedure.

The matching procedure at the second heaviest RHN N2 follows the same
method. The last row is removed from Y⌫ such that it becomes a 1 ⇥ 3 matrix
and the last row and last column of MR are removed such that it becomes a 1 ⇥ 1
matrix. The e↵ective neutrino mass matrix is updated according to

 ! +
2

M2

⇣
Y (2)

⌫

⌘T ⇣
Y (2)

⌫

⌘
. (5.21)

At the last threshold, the lightest RHN N1 is integrated out and the matching is

 ! +
2

M1

⇣
Y (1)

⌫

⌘T ⇣
Y (1)

⌫

⌘
. (5.22)

The di↵erence now is that all entries in the matrices Y⌫ and MR have been removed
and these quantities are no longer present in the theory.

If there is also a scalar triplet causing the type II seesaw mechanism, it needs to
be integrated out at its mass scale. This is considerably more straightforward than
integrating out the RHNs, since there is only one mass threshold. After solving
the RGEs down to the mass scale of the scalar triplet, it is integrated out from the
theory and the e↵ective neutrino mass matrix is updated to [341]

 ! � 4
vL
v2
SM

YL, (5.23)

where YL is the Yukawa matrix of the coupling between the neutrinos and the scalar
triplet, which in the case of an SO(10) model is Y126.

The above matching conditions to  are at tree level. At loop level, there will
be an additional contribution to the matching condition, which is generated from
loop-level e↵ects due to the heavy fields that have been integrated out, in the same
way that the gauge couplings receive threshold corrections as described in Sec. 5.2.1.
This has been computed both in SUSY [342] and non-SUSY [343] models.

5.3 Numerical fitting procedure

To numerically fit the parameters of the SO(10) model to the measured observables
of the SM and the neutrino sector, we have to solve the RGEs, taking into account
the RHN mass thresholds. Since the matching conditions Eqs. (5.20)–(5.22) contain
more parameters on the right-hand side than the left-hand side, the matching can
only be performed from high energy to low energy and one must solve the system



62 Chapter 5. Renormalization group running and numerical methods

of RGEs from MGUT down to MZ . The opposite approach involves extrapolating
the observables up to MGUT, at which scale the fitting can be performed. Since
the matching at the RHN thresholds cannot be performed upwards in a unique
way, this procedure must necessarily rely on an approximate RG running for the
neutrinos. Particularly, the predicted values for the neutrino masses and leptonic
mixing parameters are substantially a↵ected by the details of the RG running and
matching [339]. Nevertheless, it provides an indication of whether an SO(10) model
is viable and has therefore been used extensively in numerical fits [152, 209, 210,
246, 247, 253, 344–347].

In the work that comprises Papers I, II, III, and V, we perform the RG running
from the high-energy theory down to the experimentally accessible energy at MZ , as
this enables a consistent analysis of the e↵ects of RG running and matching at RHN
and scalar triplet thresholds and symmetry breaking scales. The solution of the
RGEs in numerical fits has been done previously in some models, for example [42,
211, 348, 349].

5.3.1 Parametrization

For simplicity, consider a model with a Higgs sector consisting of a complexified
10H and a 126H , and with a U(1)PQ symmetry as discussed in Sec. 4.3.2. In-
cluding 120H as in Papers I and V leads to the same logic, but only adds more
parameters. Assume that the neutrino masses are generated purely by the type I
seesaw mechanism such that we can ignore any contributions from the scalar triplet
that leads to the type II seesaw mechanism.

The first step is to sample the parameters of the SO(10) model, which are the
elements of the Yukawa coupling matrices Y10 and Y126, as well as the vevs vu,d

10,126

and vR. It is convenient to rescale the parameters such that [211, 246]
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1
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126
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126

=
vd
10
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10
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126

vd
126

, rR ⌘ vR
vSM
vd
126

,

(5.24)

and sample these instead. Here, vSM = v/
p
2, with v being the vev as given in

Sec. 2.1.3. The matching conditions for this model to the SM Yukawa matrices
Eqs. (4.40)–(4.44) are then more simply written as

Yu = r(H + sF ), (5.25)

Yd = H + F, (5.26)

Y⌫ = r(H � 3sF ), (5.27)

Y` = H � 3F, (5.28)

MR = rRF. (5.29)
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The Yukawa matrices Y10 and Y126 are in general complex symmetric 3 ⇥ 3
matrices. One may, however, choose a basis in which Y10 (and hence H) is real and
diagonal. This means that there are three parameters in H and twelve parameters
in F . Since r and rR are overall multiplicative factors, their complex phases will
have no e↵ect on the fermion observables, so they can be taken to be real. Finally,
the complex phase of s will have an e↵ect and thus it remains complex. The total
number of parameters in this model is thus 3(H)+12(F )+1(r)+2(s)+1(rR) = 19.

The fitting procedure is performed by first sampling these 19 parameters accord-
ing to some priors that reflect the expected orders of magnitude of these parameters.
For example, we expect the elements of the Yukawa couplings to be between 10�6

and 1, while we expect rR to lie around MGUT. For parameters that can vary over
several orders of magnitude, it is reasonable to assume a logarithmic prior such
that we sample the base-10 logarithm uniformly.

We can rewrite the constraint in Eq. (4.49) in terms of the newly introduced
parameters. Neglecting vL and the vevs from 120H , this gives

✓
vd
10

vSM

◆2

(1 + r2) +

✓
vd
126

vSM

◆2

(1 + r2s2) = 1. (5.30)

Since the sampled parameters are r and s, we have some freedom in choosing vd
10

and vd
126

such that the constraint in Eq. (5.30) is satisfied. The only lower bound on
the vevs is that the Yukawa couplings are perturbative. Taking Y10 = vSMH/vd

10


4⇡ and Y126 = vSMF/vd
126

 4⇡ as the perturbativity bound, the constraint in
Eq. (5.30) reads

max |H|
2(1 + r2) + max |F |

2(1 + r2s2)  16⇡2, (5.31)

where max |M |
2 denotes the largest squared element of the matrix M . Although

typical parameter values satisfy this inequality, it should be checked explicitly after
each fit.

5.3.2 RG running

After the parameter values have been sampled, they are transformed to the Yukawa
couplings of the SM using the matching conditions Eqs. (5.25)–(5.29). Then, they
are evolved down from MGUT to M3 by solving the RGEs. There, N3 is integrated
out following the procedure outlined in Sec. 5.2.2. This modifies Y⌫ and MR and
introduces  into the theory. Thereafter, the RGEs are solved from M3 down to
M2, where N2 is integrated out. From there, the RGEs are solved from M2 to M1

where N1 is integrated out. Then, Y⌫ and MR are no longer part of the theory, so
they have no corresponding RGEs. Finally, the RGEs are solved from M1 down to
MZ . This procedure is depicted in Fig. 5.2.

If we wish to include the type II seesaw mechanism, we simply have to include an
extra step in the procedure, by integrating out the scalar triplet at the appropriate
energy scale. In that case, we must first identify the mass of the scalar triplet in



64 Chapter 5. Renormalization group running and numerical methods

Sample the

parameters

Integrate out N3

Integrate out N2

Integrate out N1

Compare to data

RGEsMGUT to MN3

RGEsMN3 to MN2

RGEsMN2 to MN1

RGEsMN1 to MZ

Figure 5.2: Flowchart showing the procedure used in performing the numerical fits for a
model with the type I seesaw mechanism. The type II seesaw mechanism may be added by
introducing another threshold at which the scalar triplet is integrated out. The procedure
is coupled to a sampling algorithm, which samples new sets of parameter values based on
the output �2.
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relation toM1, M2, andM3 in order to integrate it out at the correct step. Similarly,
the procedure has to be appropriately modified if there are other intermediate
particles or an intermediate symmetry breaking step.

5.3.3 Fitting

Once we have the SM parameters at MZ , they are transformed to fermion masses
and mixing parameters. These are then compared to the data through a �2

goodness-of-fit function, defined as

�2 =
NX

i=1

(xi � Xi)2

�2

i

, (5.32)

where xi denotes the predicted value of the ith observable obtained from the RG
running and Xi denotes the actual value with corresponding error �i. Note that
we do not assign any statistical meaning to the �2 function and merely use it
as a measure of the goodness of fit in order to compare models. As noted in
Refs. [42, 245, 350], it is unclear how to define the number of degrees of freedom for
a model in which the output parameters are non-linear in the input parameters, and
especially if the number of input parameters is larger than the number of output
parameters.

The program that takes as input the set of parameter values, performs the RG
running and outputs the �2 value is linked to a sampling algorithm which performs
the minimization of the �2 function and returns an optimal set of parameter values.
There are many possible optimization algorithms and packages available to choose
from. One is MultiNest [351–353], which is a nested sampling algorithm with ca-
pabilities to perform Bayesian inference. This was used in Paper I. Another one is
Diver [354], which is part of the ScannerBit package from the GAMBIT collabo-
ration. It is a di↵erential evolution algorithm and has been shown to outperform
MultiNest in high-dimensional parameter spaces such as the one in our problem.
This was used in Papers II, III, and V.

The sampling algorithm was run on a computational cluster, utilizing up to
240 CPU cores. This was repeated several times in order to increase confidence
that the minimum was a global one. After reasonable convergence, another local
minimization procedure was used, such as the basin-hopping algorithm [355] from
the Scipy library [356], which perturbs the point around the starting point in pa-
rameter space, and a Nelder–Mead simplex algorithm [357], which further improves
the best-fit point by traversing the �2 manifold downhill. Despite this, it is not, in
general, possible to guarantee that the set of parameter values found corresponds to
the true optimum. This is a general feature of optimization of non-linear functions
with a large number of parameters, as in our problem. Nevertheless, repeating
the computation several times with similar results increases the confidence that no
better optimum can be found.





Chapter 6

Summary and conclusions

In Part I of this thesis, we introduced the background material relevant to the
papers included in Part II. We started in Ch. 2 with the SM of particle physics
and the reasons for investigating theories beyond it. These include shortcomings
such as the massless nature of neutrinos according to the SM, the lack of a dark
matter candidate, and the unknown mechanism for producing a matter-antimatter
asymmetry of the Universe. Certain aesthetic shortcomings are also suggestive of
a theory beyond the SM, including the origin of the gauge group of the SM, the
underlying reasons for anomaly cancellation and charge quantization, as well as
problems related to naturalness.

In Ch. 4, we introduced GUTs as an extension of the SM and a possible solution
to some of the issues discussed in the preceding chapter. Apart from addressing
some of the aesthetic shortcomings of the SM, there is the tantalizing clue of ap-
proximate gauge coupling unification at a high scale. We discussed some general
features of GUTs and the requirements that a gauge group has to fulfill in order
to be a viable GUT. Some of the popular candidates are SU(5), the Pati–Salam
group, and SO(10), the features of which we outlined. Being central to this thesis,
we focused on the properties of models based on SO(10), including the generation
of fermion masses, the many paths through which to recover the SM from SO(10)
through spontaneous symmetry breaking, and the constraints due to proton decay.
Finally, we commented on some of the phenomenology that SO(10) models may
exhibit, including axions, dark matter, and gravitational waves due to cosmological
defects.

Finally, in Ch. 5, we discussed how to relate the physics at MGUT to that ac-
cessible to us through observations and experiments. This involves solving the
renormalization group equations for the parameters of the model. We also dis-
cussed how to match the parameters of theories above and below some energy
scale. For the gauge couplings, integrating out heavy degrees of freedom can, at
the loop level, give rise to threshold corrections, which lighten the constraints of
gauge coupling unification. For neutrinos, the seesaw mechanisms imply that there

67
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exist heavy fields such as right-handed neutrinos or a scalar triplet. Interating those
out gives rise to the e↵ective neutrino mass operator. In order to properly treat
the thresholds due to heavy fields, one must perform the RG running from MGUT

down to MZ rather than the other way around. Since this is comparatively more
complex, most previous works have used the approximation of extrapolating the
measured observables up to MGUT and fitting at that scale. This is a significant
approximation and has a large e↵ect on the parameters of the neutrino sector.

In Paper I, we investigated the RG running of fermion observables in an SO(10)
model with intermediate symmetry breaking via the PS group. In this paper, we
made the assumption that the heavy RHNs all have masses around the interme-
diate scale such that they are all integrated out at that scale. We compared two
di↵erent models, namely the minimal model which has a Yukawa sector consist-
ing of scalars in only the 10H and 126H representations, and the extended model
which additionally has scalars in the 120H representation. It was found that it is
di�cult to find a good fit with the minimal model, while the extended model is able
to accommodate the fermion observables. Fits to neutrino masses were performed
both for normal and inverted ordering and it was found that it is only possible
to accommodate normal neutrino mass ordering. The di�culty in finding a good
fit comes predominantly from the value of the leptonic mixing angle ✓`

23
, since the

model consistently favored values smaller than the actual value.
In Paper II, we considered a model with symmetry breaking of SO(10) to the

SM occurring in one step. Gauge coupling unification is achieved by including
extra scalars originating in 210H with masses between MZ and MGUT, as shown
in the left panel of Fig. 4.2. An analysis of gauge coupling unification resulted
in a correlation between the masses of these intermediate scalars and the proton
lifetime. If proton decay is not observed at Hyper-Kamiokande within five years of
the start of operations, the resulting bound on the proton lifetime would, together
with LHC bounds on the mass of the extra scalars, rule out this model. The Yukawa
sector contained scalars in the 10H and 126H representations only. It was found
that the model can accommodate the fermion observables well, and also that the
presence of the intermediate-scale scalars help to stabilize the vacuum. Again, the
largest source of di�culty in fitting the fermion observables is a too low predicted
value of ✓`

23
.

In Paper III, we considered a generic set of SO(10) models with one-step sym-
metry breaking. In order to remain agnostic about the mechanism for achieving
gauge couplings unification, we did not impose gauge coupling unification, but in-
stead tested the sensitivity of the results to changes in MGUT. The Yukawa sector
contained scalars in the 10H and 126H representations and neutrino masses were
generated by the type I or type II seesaw mechanisms, or a combination of both.
The results showed that a pure type II seesaw mechanism is disfavored by the fits
and that when both were combined, the type I mechanism is the dominant contrib-
utor to neutrino masses. As in Paper I, neutrino masses can only be accommodated
with normal ordering and not with inverted ordering. It was seen that the results
of the fit are fairly insensitive to changes in MGUT within an order of magnitude,
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showing that the problem of determining the unification scale is, to some extent, de-
coupled from the parameters in the fermion sector. Once again, it was consistently
observed that the largest di�culty in finding a good fit comes from the favored
value of ✓`

23
being too low compared to the actual value.

Paper IV, dealt in detail with gauge coupling unification and the constraints
placed on models by the proton lifetime. We considered RG running of the gauge
couplings at the two-loop level and included the threshold corrections at the sym-
metry breaking scale, as discussed in Sec. 5.2.1. For all possible models with either
direct symmetry breaking to the SM or one intermediate symmetry, we computed
the threshold corrections assuming minimal particle content. We then investigated
the required sizes of threshold corrections, parametrized by the largest deviation of
a heavy field from the energy scale of symmetry breaking, in order to satisfy the
proton lifetime constraint. The results showed that only GPS and G3221 are allowed
if all heavy fields have masses at precisely the symmetry breaking scale. Allowing
the logarithmic deviation of the masses to be within [�1,+1], we also found that
G422D and G3221D are allowed. Increasing this to [�2,+2] allows also the model
with direct symmetry breaking to the SM.

Finally, in Paper V, we considered models of flavor in SO(10) based on phase
transformations of the fermion and scalar fields that result in Yukawa matrix tex-
tures, as discussed in Sec. 4.4. These models had been derived in previous works
and investigated in a SUSY setting. We performed fits to their non-SUSY coun-
terparts, properly taking into account the RG running and integrating out heavy
degrees of freedom, as done in Papers II and III. Out of the 14 models, only two,
which have a Z2 symmetry, resulted in acceptable fits. These were the same as in
the SUSY case. The neutrino masses were generated by a combination of type I
and type II seesaw mechanisms and we found that the dominant contribution is
from the type I seesaw mechanism, as in Paper III. In contrast with the previous
fits, the largest tension comes from the fermion masses, rather than the mixing
parameters.

The work in this thesis has focused on the Yukawa sector of non-SUSY SO(10)-
based GUT models. The question that has led this research is: Is SO(10) a viable
model for the fermion masses and mixing parameters, taking into account the RG
running between MGUT and MZ? The answer is: Yes, depending on the details of
the model. Since a proper treatment of the RGEs and thresholds of heavy RHNs
have a large impact on the neutrino observables, it is important to deal with these
correctly.

SO(10) in particular and grand unification in general continue to provide a
promising framework for physics beyond the SM. In addition to providing more
structure behind some of the arbitrary aspects of the SM, it can incorporate a
wide range of phenomenology that addresses some of the current open questions
in particle physics. The criticism against grand unification is primarily that the
unification scale is much higher than will be reachable in the near future and that
it is thus not testable. While it is true that the unification scale will most likely not
be reachable in colliders in the foreseeable future, there are still some signatures of
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grand unification that can be observed. The most notable of these is proton decay,
the detection of which may still be possible in future experiments. We can also test
particular models of grand unification through fits to the parameters of the Yukawa
sector. As the simple models become ruled out, we can construct increasingly more
complicated ones that are able to accommodate the measured parameters.

The arguments in favor of grand unification are based on simplicity and math-
ematical elegance. This is now in tension with the complexity required of specific
models in order to accommodate the known parameters.



Appendix A

Group theory

This appendix briefly summarizes some aspects of group and representation theory
that are relevant to the study of GUTs. Further details about group theory can be
found in textbooks such as Ref. [358] or the review Ref. [157], which contains numer-
ous tables that are useful for model building. There are several software packages
that are capable of performing group theoretic calculations, such as Susyno [359]
or LieART [360].

A.1 Basics of Lie groups, Lie algebras, and
representations

A Lie group is a group in which the elements depend on a set of continuous para-
meters. Elements can be written in terms of the generators ta of the group via the
exponential map, namely

g(↵) = exp(i↵ata). (A.1)

The generators form a Lie algebra with the Lie bracket

[ta, tb] = ifabctc, (A.2)

where fabc are the structure constants of the Lie algebra.
We may define a representation of the group as a map from the group elements to

square matrices such that the elements of the group representation act on elements
of a vector space. The representation of the group is also a representation of the
algebra, in the sense that the representation matrices of the algebra generate the
representation matrices of the group via the exponential map. The dimension of
the representation is the number of dimensions of the vector space on which the
representation matrices act. Thus, a representation with matrices of size 3 ⇥ 3 is
3-dimensional.

71
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We are usually interested in irreducible representations, which are representa-
tions with no invariant subspaces. In contrast, reducible representations contain
invariant subspaces and may therefore be decomposed into direct products of irre-
ducible representations.

For each representation, there exists a set of mutually commuting Hermitian
generators. The matrices that form the largest such set are called the Cartan gen-
erators. They are useful because they can be simultaneously diagonalized. Hence,
they can be used to assign quantum numbers to states within a representation, such
as the T3 generator of SU(2)L in the Gell-Mann–Nishijima formula in Eq. (2.16).
This becomes particularly relevant in symmetry breaking, since the Abelian charges
will be combinations of these quantum numbers. The number of Cartan generators
of an algebra is known as its rank.

Since the SM contains an SU(2) and an SU(3) group, SU(N) is highly relevant
for particle physics. This is the group defined by N ⇥ N special unitary matrices.
That is, its elements in the defining representation are N⇥N unitary matrices with
determinant 1. There are N2

� 1 such matrices, meaning that there are N2
� 1

generators of SU(N). These are N ⇥ N traceless Hermitian matrices.
Relevant for GUT model building are also the SO(N) groups. The defining

representation of these are the set of N ⇥N orthogonal matrices with determinant
1, of which there are N(N � 1)/2. Hence the generators in this representation are
antisymmetric traceless N ⇥ N matrices.

Two useful constants for calculations of �-functions are the quadratic Casimir
and the Dynkin index. The quadratic Casimir C2(r) is defined for a representation
r of a Lie algebra as

tar t
a

r = C2(r) , (A.3)

where the index a is summed over the generators of that representation. The
Dynkin index S2(r) is defined as

Tr(tar t
b

r) = S2(r)�
ab. (A.4)

The two are related by the relation

S2(r) =
dim(r)

dim(G)
C2(r), (A.5)

where dim(r) is the dimension of representation r and G denotes the adjoint rep-
resentation.

A.2 Decompositions of some SO(10)
representations

To construct a model beyond the SM, we need to make sure that it can reproduce
the SM. Thus, the GUT symmetry needs to be broken down to GSM. Therefore, it
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is useful to know how the di↵erent representations of SO(10) decompose under its
di↵erent subgroups. This is necessary both for the study of how to produce each
breaking chain by looking for the singlets under the di↵erent subgroups and also
for tracking how a given representation traverses the breaking chain down to GSM.
Thus, we give the decompositions of the representations up to dimension 210 in the
SU(5) breaking chain in Tab. A.1 and the PS breaking chain in Tab. A.2, computed
using Susyno [359].

SO(10) G51 GSM

10 5�2 (3,1)�1/3 � (1,2)1/2

52 (3,1)1/3 � (1,2)�1/2

16 101 (3,2)1/6 � (3,1)�2/3 � (1,1)1

5�3 (3,1)1/3 � (1,2)�1/2

15 (1,1)0

45 240 (8,1)0 � (3,2)�5/6 � (3,2)5/6 � (1,3)0 � (1,1)0

10�4 (3,2)1/6 � (3,1)�2/3 � (1,1)1

104 (3,2)�1/6 � (3,1)2/3 � (1,1)�1

10 (1,1)0

54 240 (8,1)0 � (3,2)�5/6 � (3,2)5/6 � (1,3)0 � (1,1)0

15�4 (6,1)�2/3 � (3,2)1/6 � (1,3)1

154 (6,1)2/3 � (3,2)�1/6 � (1,3)�1

120 45�2 (8,2)1/2 � (6,1)�1/3 � (3,3)�1/3 � (3,2)�7/6

�(3,1)�1/3 � (3,1)4/3 � (1,2)1/2

452 (8,2)�1/2 � (6,1)1/3 � (3,3)1/3 � (3,2)7/6
�(3,1)1/3 � (3,1)�4/3 � (1,2)�1/2

106 (3,2)1/6 � (3,1)�2/3 � (1,1)1

10�6 (3,2)�1/6 � (3,1)2/3 � (1,1)�1

5�2 (3,1)�1/3 � (1,2)1/2

52 (3,1)1/3 � (1,2)�1/2
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126 502 (8,2)�1/2 � (6,3)1/3 � (6,1)�4/3 � (3,2)7/6
�(3,1)1/3 � (1,1)2

45�2 (8,2)1/2 � (6,1)�1/3 � (3,3)�1/3 � (3,2)�7/6

�(3,1)�1/3 � (3,1)4/3 � (1,2)1/2

15�6 (6,1)2/3 � (3,2)�1/6 � (1,3)�1

106 (3,2)1/6 � (3,1)�2/3 � (1,1)1

52 (3,1)�1/3 � (1,2)�1/2

110 (1,1)0

144 45�3 (8,2)1/2 � (6,1)�1/3 � (3,3)�1/3 � (3,2)�7/6

401 (6,2)1/6 � (8,1)1 � (3,3)�2/3 � (3,2)1/6
�(3,1)�2/3 � (1,2)�3/2

245 (8,1)0 � (3,2)�5/6 � (3,2)5/6 � (1,3)0 � (1,1)0

151 (6,1)�2/3 � (3,2)1/6 � (1,3)1

101 (3,2)1/6 � (3,1)�2/3 � (1,1)1

5�7 (3,1)�1/3 � (1,2)1/2

5�3 (3,1)1/3 � (1,2)�1/2

210 750 (8,3)0 � (6,2)�5/6 � (6,2)5/6 � (8,1)0 � (3,2)�5/6

�(3,2)5/6 � (3,1)5/3 � (3,1)�5/3 � (1,1)0

40�4 (6,2)1/6 � (8,1)1 � (3,3)�2/3 � (3,2)1/6

404 (6,2)�1/6 � (8,1)�1 � (3,3)2/3 � (3,2)�1/6

240 (8,1)0 � (3,2)�5/6 � (3,2)5/6 � (1,3)0 � (1,1)0

10�4 (3,2)1/6 � (3,1)�2/3 � (1,1)1

104 (3,2)�1/6 � (3,1)2/3 � (1,1)�1

58 (3,1)�1/3 � (1,2)1/2

5�8 (3,1)1/3 � (1,2)�1/2

10 (1,1)0

Table A.1: Decompositions of representations of SO(10) up to 210 dimensions under the
SU(5) breaking chain. Here, G51 = SU(5) ⇥ U(1). We assume the standard hypercharge
embedding in SU(5) ⇥ U(1). For the flipped hypercharge embedding, the hypercharge
should be Y = 1

5 (X � Y 0), where Y 0 is the Abelian charge from within the SU(5) group
and X is the charge of the external Abelian group. For the decomposition under G5,
simply remove the U(1) charge from the G51 representations.
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SO(10) GPS G3221 G3211 GSM

10 (6,1,1) (3,1,1)�2/3 (3,1)0,�2/3 (3,1)�1/3

(3,1,1)2/3 (3,1)0,2/3 (3,1)1/3

(1,2,2) (1,2,2)0 (1,2)1/2,0 (1,2)�1/2

(1,2)�1/2,0 (1,2)1/2

16 (4,2,1) (3,2,1)1/3 (3,2)0,1/3 (3,2)1/6
(1,2,1)�1 (1,2)0,�1 (1,2)�1/2

(4,1,2) (3,1,2)�1/3 (3,1)�1/2,�1/3 (3,1)1/3
(3,1)1/2,�1/3 (3,1)�2/3

(1,1,2)1 (1,1)1/2,1 (1,1)1
(1,1)�1/2,1 (1,1)0

45 (6,2,2) (3,2,2)�2/3 (3,2)1/2,�2/3 (3,2)�5/6

(3,2)�1/2,�2/3 (3,2)1/6
(3,2,2)2/3 (3,2)1/2,2/3 (3,2)�1/6

(3,2)�1/2,2/3 (3,2)5/6

(15,1,1) (8,1,1)0 (8,1)0,0 (8,1)0
(3,1,1)4/3 (3,1)0,4/3 (3,1)2/3
(3,1,1)�4/3 (3,1)0,�4/3 (3,1)�2/3

(1,1,1)0 (1,1)0,0 (1,1)0

(1,3,1) (1,3,1)0 (1,3)0,0 (1,3)0

(1,1,3) (1,1,3)0 (1,1)1,0 (1,1)�1

(1,1)0,0 (1,1)0
(1,1)�1,0 (1,1)1

54 (200,1,1) (8,1,1)0 (8,1)0,0 (8,1)0
(6,1,1)4/3 (6,1)0,4/3 (6,1)2/3
(6,1,1)�4/3 (6,1)0,�4/3 (6,1)�2/3

(6,2,2) (3,2,2)�2/3 (3,2)1/2,�2/3 (3,2)�5/6

(3,2)�1/2,�2/3 (3,2)1/6
(3,2,2)2/3 (3,2)1/2,2/3 (3,2)�1/6

(3,2)�1/2,2/3 (3,2)5/6

(1,3,3) (1,3,3)0 (1,3)1,0 (1,3)�1

(1,3)0,0 (1,3)0
(1,3)�1,0 (1,3)1

(1,1,1) (1,1,1)0 (1,1)0,0 (1,1)0
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120 (15,2,2) (8,2,2)0 (8,2)1/2,0 (8,2)�1/2

(8,2)�1/2,0 (8,2)1/2
(3,2,2)4/3 (3,2)1/2,4/3 (3,2)1/6

(3,2)�1/2,4/3 (3,2)7/6
(3,2,2)�4/3 (3,2)1/2,�4/3 (3,2)�7/6

(3,2)�1/2,�4/3 (3,2)�1/6

(1,2,2)0 (1,2)1/2,0 (1,2)�1/2

(1,2)�1/2,0 (1,2)1/2

(6,3,1) (3,3,1)�2/3 (3,3)0,�2/3 (3,3)�1/3

(3,3,1)2/3 (3,3)0,2/3 (3,3)1/3

(6,1,3) (3,1,3)�2/3 (3,1)1,�2/3 (3,1)�4/3

(3,1)0,�2/3 (3,1)�1/3

(3,1)�1,�2/3 (3,1)2/3
(3,1,3)2/3 (3,1)1,2/3 (3,1)�2/3

(3,1)0,2/3 (3,1)1/3
(3,1)�1,2/3 (3,1)4/3

(10,1,1) (6,1,1)2/3 (6,1)0,2/3 (6,1)1/3
(3,1,1)�2/3 (3,1)0,�2/3 (3,1)�1/3

(1,1,1)�2 (1,1)0,�2 (1,1)�1

(10,1,1) (6,1,1)�2/3 (6,1)0,�2/3 (6,1)�1/3

(3,1,1)2/3 (3,1)0,2/3 (3,1)1/3
(1,1,1)2 (1,1)0,2 (1,1)1

(1,2,2) (1,2,2)0 (1,2)�1/2,0 (1,2)1/2
(1,2,2)0 (1,2)1/2,0 (1,2)�1/2

126 (15,2,2) (8,2,2)0 (8,2)1/2,0 (8,2)�1/2

(8,2)�1/2,0 (8,2)1/2
(3,2,2)4/3 (3,2)1/2,4/3 (3,2)1/6

(3,2)�1/2,4/3 (3,2)7/6
(3,2,2)�4/3 (3,2)1/2,�4/3 (3,2)�7/6

(3,2)�1/2,�4/3 (3,2)�1/6

(1,2,2)0 (1,2)1/2,0 (1,2)�1/2

(1,2)�1/2,0 (1,2)1/2
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(10,1,3) (6,1,3)�2/3 (6,1)1,�2/3 (6,1)�4/3

(6,1)0,�2/3 (6,1)�1/3

(6,1)�1,�2/3 (6,1)2/3
(3,1,3)2/3 (3,1)1,2/3 (3,1)�2/3

(3,1)0,2/3 (3,1)1/3
(3,1)�1,2/3 (3,1)4/3

(1,1,3)2 (1,1)1,2 (1,1)0
(1,1)0,2 (1,1)1
(1,1)�1,2 (1,1)2

(10,3,1) (6,3,1)2/3 (6,3)0,2/3 (6,3)1/3
(3,3,1)�2/3 (3,3)0,�2/3 (3,3)�1/3

(1,3,1)�2 (1,3)0,�2 (1,3)�1

(6,1,1) (3,1,1)�2/3 (3,1)0,�2/3 (3,1)�1/3

(3,1,1)2/3 (3,1)0,2/3 (3,1)1/3

144 (20,1,2) (8,1,2)�1 (8,1)1/2,�1 (8,1)�1

(8,1)�1/2,�1 (8,1)0
(6,1,2)1/3 (6,1)1/2,1/3 (6,1)�1/3

(6,1)�1/2,1/3 (6,1)2/3
(3,1,2)1/3 (3,1)1/2,1/3 (3,1)�1/3

(3,1)�1/2,1/3 (3,1)2/3
(3,1,2)5/3 (3,1)1/2,5/3 (3,1)1/3

(3,1)�1/2,5/3 (3,1)4/3

(20,2,1) (8,2,1)1 (8,2)0,1 (8,2)1/2
(6,2,1)�1/3 (6,2)0,�1/3 (6,2)�1/6

(3,2,1)�5/3 (3,2)0,�5/3 (3,2)�5/6

(3,2,1)�1/3 (3,2)0,�1/3 (3,2)�1/6

(4,3,2) (3,3,2)1/3 (3,3)1/2,1/3 (3,3)�1/3

(3,3)�1/2,1/3 (3,3)2/3
(1,3,2)�1 (1,3)1/2,�1 (1,3)�1

(1,3)�1/2,�1 (1,3)0

(4,2,3) (3,2,3)�1/3 (3,2)1,�1/3 (3,2)�7/6

(3,2)0,�1/3 (3,2)�1/6

(3,2)�1,�1/3 (3,2)5/6
(1,2,3)1 (1,2)1,1 (1,2)�1/2

(1,2)0,1 (1,2)1/2
(1,2)�1,1 (1,2)3/2

(4,1,2) (3,1,2)1/3 (3,1)1/2,1/3 (3,1)�1/3

(3,1)�1/2,1/3 (3,1)2/3
(1,1,2)�1 (1,1)1/2,�1 (1,1)�1

(1,1)�1/2,�1 (1,1)0
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(4,2,1) (3,2,1)�1/3 (3,2)0,�1/3 (3,2)�1/6

(1,2,1)1 (1,2)0,1 (1,2)1/2

210 (15,3,1) (8,3,1)0 (8,3)0,0 (8,3)0
(3,3,1)4/3 (3,3)0,4/3 (3,3)2/3
(3,3,1)�4/3 (3,3)0,�4/3 (3,3)�2/3

(1,3,1)0 (1,3)0,0 (1,3)0

(15,1,3) (8,1,3)0 (8,1)1,0 (8,1)�1

(8,1)0,0 (8,1)0
(8,1)�1,0 (8,1)1

(3,1,3)4/3 (3,1)1,4/3 (3,1)�1/3

(3,1)0,4/3 (3,1)2/3
(3,1)�1,4/3 (3,1)5/3

(3,1,3)�4/3 (3,1)1,�4/3 (3,1)�5/3

(3,1)0,�4/3 (3,1)�2/3

(3,1)�1,�4/3 (3,1)1/3
(1,1,3)0 (1,1)1,0 (1,1)�1

(1,1)0,0 (1,1)0
(1,1)�1,0 (1,1)1

(10,2,2) (6,2,2)2/3 (6,2)1/2,2/3 (6,2)�1/6

(6,2)�1/2,2/3 (6,2)5/6
(3,2,2)�2/3 (3,2)1/2,�2/3 (3,2)�5/6

(3,2)�1/2,�2/3 (3,2)1/6
(1,2,2)�2 (1,2)1/2,�2 (1,2)�3/2

(1,2)�1/2,�2 (1,2)�1/2

(10,2,2) (6,2,2)�2/3 (6,2)1/2,�2/3 (6,2)1/6
(6,2)�(1/2),�2/3 (6,2)�5/6

(3,2,2)2/3 (3,2)1/2,2/3 (3,2)�1/6

(3,2)�1/2,2/3 (3,2)5/6
(1,2,2)2 (1,2)1/2,2 (1,2)1/2

(1,2)�1/2,2 (1,2)3/2

(6,2,2) (3,2,2)�2/3 (3,2)1/2,�2/3 (3,2)�5/6

(3,2)�1/2,�2/3 (3,2)1/6
(3,2,2)2/3 (3,2)1/2,2/3 (3,2)�1/6

(3,2)�1/2,2/3 (3,2)5/6

(15,1,1) (8,1,1)0 (8,1)0,0 (8,1)0
(3,1,1)4/3 (3,1)0,4/3 (3,1)2/3
(3,1,1)�4/3 (3,1)0,�4/3 (3,1)�2/3

(1,1,1)0 (1,1)0,0 (1,1)0

(1,1,1) (1,1,1)0 (1,1)0,0 (1,1)0
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Table A.2: Decompositions of the representations of SO(10) up to 210 dimensions under
the PS breaking chain. Note that the decomposition under G421 is not shown since it is
easy to obtain from GPS. The hypercharge is related to B � L and the third SU(2)R
generator by Y = B�L

2 � TR,3.

A.3 Spinorial representations

A feature of SO(N) groups is that, in addition to the tensorial representations,
they also contain spinorial representations. These di↵er for even and odd values of
N . We will therefore first discuss the case for N = 2n and then comment on how
this construction is modified for the case of N = 2n � 1.

In particular, there exists a representation that is generated by

⌃ij =
i

2
[�i,�j ], (A.6)

where the N matrices �i are Hermitian and satisfy the Cli↵ord algebra

{�i,�j} =
1

2
�ij . (A.7)

The proof of their existence follows most easily from their explicit construction,
starting with two of the Pauli matrices for n = 1 and iteratively extending the
matrices for n. Concretely, we can take [184]

�(n=1)

1
=

✓
0 1
1 0

◆
, �(n=1)

2
=

✓
0 �i
i 0

◆
, (A.8)

and build up larger representations according to

�(n+1)

i
=

 
�(n)
i

0

0 ��(n)
i

!
for i 2 {1, . . . , 2n},

�(n+1)

2n+1
=

✓
0

0

◆
, �(n+1)

2n+2
=

✓
0 �i
i 0

◆
.

(A.9)

These can be verified to satisfy the Cli↵ord algebra Eq. (A.7). Hence, we have
constructed the 2n + 2 matrices with dimension 2n+1 for SO(2n + 2). We thus
see that the spinorial representation that is generated by ⌃ij is 2n-dimensional.
However, it is not an irreducible 2n-dimensional representation, but splits into
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two irreducible 2n�1-dimensional representations, in analogy with the chirality of
Lorentz spinors. This can be done by defining an additional �-matrix by

�0 = (�i)n(�1�2 · · ·�2n), (A.10)

in analogy to the Dirac �5 matrix. The matrix �0 satisfies

�2
0
= , [�0,⌃ij ] = 0, {�0,�i} = 0. (A.11)

The existence of this matrix which commutes with all the generators shows that
the representation is reducible. Defining the projection operators

P± =
1

2
( ± �0), (A.12)

we can split the 2n-dimensional spinor representation into two 2n�1-dimensional
irreducible representations.

Specifying to SO(10), i.e. n = 5, we find that there are two irreducible 2n�1 =
16-dimensional spinorial representations with opposite eigenvalues of �0. This is
the representation in which all fermions of one generation of the SM fit.

In order to write down fermion mass terms, we need a bilinear in 16F which we
can use to couple the fermions to the scalars. The simplest version would be

16
T

F
16F , (A.13)

but this is not invariant since 16T

F
does not transform like a conjugate spinor [183].

To solve this, we introduce a matrix B, which is analogous to the charge conjugation
matrix for Lorentz spinors. If this matrix satisfies

B�1⌃T

ij
B = �⌃ij , (A.14)

then the bilinear 16T

F
B16F is invariant under SO(10) transformations. An explicit

construction is to start with

B(n=1) =

✓
0 1

�1 0

◆
, (A.15)

and iteratively build up the matrix for larger n by

B(n+1) =

✓
0 B(n)

(�1)n+1B(n) 0

◆
, (A.16)

from which one can also deduce the properties

B�1�T
i
B = (�1)n�i, B�1�0B = (�1)n�0. (A.17)

Using this, we can build the fermion bilinears. One can show that the bilinear

16
T

F
B�i1 · · ·�ik16F (A.18)

transforms as a k-index tensor under SO(10) transformations. Using the properties
of the charge conjugation matrix and the fact that 16F is an eigenstate of �0, one
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can show that Eq. (A.18) is zero unless k is odd. This is the case for 10, 120, and
126, which are the ones that have an invariant coupling to two 16s.

To find whether the Yukawa couplings should be symmetric or antisymmetric,
we write down the coupling

16
T

F
CB�i1 · · ·�ik16F , (A.19)

where C is the Lorentz charge conjugation matrix. Taking the transpose of this and
using the facts that the fermion fields are anticommuting, CT = �C and BT = �B,
we find

� 16
T

F
�T
ik

· · ·�T
i1
BC16F = �16

T

F
BB�1�T

ik
B · · ·B�1�T

i1
BC16F , (A.20)

where in the last equality we have inserted factors of BB�1 = between each
�-matrix. Using Eq. (A.17), we can write the sequence of �-matrices as

BB�1�T
ik
B · · ·B�1�T

i1
B = (�1)kB�ik · · ·�i1 . (A.21)

The scalar representations that couple to the bilinear all have antisymmetric indices
or just one index in the case of the 10, meaning that the sequence of �-matrices must
all be di↵erent. Thus, we can use the Cli↵ord algebra to permute the �-matrices as

�ik · · ·�i1 = (�1)k(k�1)/2�i1 · · ·�ik . (A.22)

Overall, we have, with the Yukawa coupling matrix Y ,

Y 16
T

F
CB�i1 · · ·�ik16F = (�1)k+k(k�1)/2+1Y T

16
T

F
CB�i1 · · ·�ik16F . (A.23)

In order for this equality to hold, we must have Y T = ±Y , with the sign being the
same as the factor (�1)k+k(k�1)/2+1. For k = 1, i.e. 10, we find Y10 = Y T

10
, for

k = 3, i.e. 120, Y120 = �Y T

120
, and for k = 5, i.e. 126, Y126 = Y T

126
.

If we are instead interested in odd N = 2n � 1, we find that the irreducible
spinor representation still has dimension 2n�1, just like N = 2n [184]. The same
procedure for constructing the representation applies as for N = 2n, but we omit
the matrix �2n. The matrix �0 can be taken to be the same as for N = 2n.

A.4 Anomalies

Computation of the triangle anomalies [70, 71], mentioned in Sec. 2.2.2, involves a
group-theoretic factor

A
abc = Tr({ta, tb}tc), (A.24)

where ta are the generators of the representation to which the fields in the triangle
diagram belong and {·, ·} denotes anti-commutator. The question of anomalies of
a model therefore lends itself to a group-theoretic consideration [361–363].
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For SO(N), we may label the N(N � 1)/2 generators by two indices i, j 2

{1, 2, . . . , N}, such that tij = �tji are N ⇥ N matrices. That is, the indices i and
j label the generator and are not matrix indices. Then, the anomaly factor

A
ijklmn = Tr({tij , tkl}tmn) (A.25)

is a six-index object. The SO(N) algebra implies that it must be antisymmetric
under the exchange of indices i $ j, k $ l, and m $ n, while the structure of the
anomaly factor implies that it must be symmetric under the exchange of pairs ij $

kl, kl $ mn, and ij $ mn. However, these two requirements are incompatible,
since the most general object consistent with the antisymmetry requirement is

A
ijklmn

/ (�ik�lm�jn � �jk�lm�in � �il�km�jn + �jl�km�in

� �ik�ln�jm + �jk�ln�im + �il�kn�jm � �jl�kn�im). (A.26)

However, under the interchange ij $ kl, this is antisymmetric. Hence, it must
vanish and these algebras are identically anomaly-free.

For SO(6), this is not the most general six-index object due to the existence of
the antisymmetric tensor ✏ijklmn, which is invariant under the exchange ij $ kl.
The anomaly factor may be proportional to this, which means that SO(6) is not
automatically anomaly-free. The same applies to SO(N) algebras with N < 6,
since their N -index totally antisymmetric tensors ruin this proof. However, SO(5)
is anomaly-free since one cannot construct a six-index object from its five-index
antisymmetric tensor and Kronecker deltas.



Appendix B

Renormalization group
equations

In this appendix, we list the RGEs that are required to perform the RG running
fromMGUT toMZ at the one-loop order. The relevant parameters that run are: the
gauge couplings gi, the Higgs quartic self-coupling �, the Yukawa coupling matrices
for the up-type quarks Yu, down-type quarks Yd, neutrinos Y⌫ , charged leptons Y`,
scalar triplet Y� (for type II seesaw), the right-handed neutrino Majorana mass
matrix MR, and the e↵ective neutrino mass matrix . Note that the �-functions
for the gauge couplings g1 and g2 include contributions from the scalar triplet. If
the scalar triplet is not in the model, or below its mass threshold, one should use
only the first terms of Eqs. (B.1) and (B.2), as well as removing any contribution
from Y�. For details on the numerical procedure used in solving the RGEs and
integrating out heavy right-handed neutrinos and the scalar triplet, see Ch. 5. To
one-loop order, the complete set of RGEs used are [211, 326–328, 339–341, 364]

16⇡2�g1 =
41

10
g3
1
+

3

5
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1
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47

10
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, (B.1)

16⇡2�g2 = �
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2
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, (B.2)
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16⇡2�Yu = Yu
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[172] G. Senjanović and R. N. Mohapatra, Exact Left-Right Symmetry and Spon-
taneous Violation of Parity, Phys. Rev. D 12, 1502 (1975).
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[177] R. N. Mohapatra and G. Senjanović, Higgs boson e↵ects in grand unified
theories, Phys. Rev. D 27, 1601 (1983).

[178] H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified
theory, Phys. Lett. B 86, 297 (1979).

[179] J. R. Ellis and M. K. Gaillard, Fermion masses and Higgs representations in
SU(5), Phys. Lett. B 88, 315 (1979).

[180] D. Chang, R. N. Mohapatra and M. K. Parida, Decoupling of Parity and
SU(2)R-Breaking Scales: A New Approach to Left-Right Symmetric Models,
Phys. Rev. Lett. 52, 1072 (1984).

[181] D. Chang et al., Experimental tests of new SO(10) grand unification, Phys.
Rev. D 31, 1718 (1985).

[182] D. Chang, R. N. Mohapatra and M. K. Parida, New approach to left-right
symmetry breaking in unified gauge theories, Phys. Rev. D 30, 1052 (1984).

[183] R. N. Mohapatra and B. Sakita, SO(2N) grand unification in an SU(N) basis,
Phys. Rev. D 21, 1062 (1980).



BIBLIOGRAPHY 97

[184] F. Wilczek and A. Zee, Families from spinors, Phys. Rev. D 25, 553 (1982).

[185] H. Georgi and D. V. Nanopoulos, Masses and mixing in unified theories,
Nucl. Phys. B 159, 16 (1979).
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