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Abstract
An embedded curve in a symplectic surface Σ ⊂ 𝑋
defines a smooth deformation space of nearby embed-
ded curves. A key idea of Kontsevich and Soibelman is to
equip the symplectic surface 𝑋 with a foliation in order
to study the deformation space. The foliation, together
with a vector space 𝑉Σ of meromorphic differentials on
Σ, endows an embedded curve Σ with the structure of
the initial data of topological recursion, which defines a
collection of symmetric tensors on 𝑉Σ. Kontsevich and
Soibelman define an Airy structure on 𝑉Σ to be a for-
mal quadratic Lagrangian  ⊂ 𝑇∗(𝑉∗Σ) which leads to
an alternative construction of the tensors of topological
recursion. In this paper, we produce a formal series 𝜃 on
 which takes it values in , and use this to produce
the Donagi–Markman cubic from a natural cubic ten-
sor on 𝑉Σ, giving a generalisation of a result of Baraglia
and Huang.
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1 INTRODUCTION

Consider a smooth algebraic curve Σ embedded in a symplectic algebraic surface 𝑋. The purpose
of this paper is to study the relation of the local deformation space of Σ to topological recursion
following Kontsevich and Soibelman [32].
The local deformation space ofΣ parametrises embeddings of smooth curves near toΣ ⊂ 𝑋. It

is a smooth complex analytic space of dimension equal to the genus of Σ. Represent Σ ⊂ 𝑋 by the
point [Σ] ∈ . Over  is a flat symplectic bundle →  with fibres𝐻1(Σ; ℂ) and equipped with
the Gauss–Manin connection ∇GM. The natural linear embedding 𝐻0(Σ, 𝐾Σ) ⊂ 𝐻1(Σ; ℂ), which
sends a holomorphic differential to its cohomology class, defines a Lagrangian subbundle of 
with fibres𝐻0(Σ, 𝐾Σ). The symplectic structure on 𝑋 defines the exact sequence

0 → 𝑇Σ → 𝑇𝑋|Σ → 𝐾Σ → 0. (1)

In particular, the normal bundle 𝜈Σ to Σ ⊂ 𝑋 is isomorphic to 𝐾Σ, and hence, the tangent space
𝐻0(Σ, 𝜈Σ) to at [Σ] is isomorphic to the vector space of holomorphic differentials𝐻0(Σ, 𝐾Σ). The
isomorphism is denoted as

𝜙 ∶ 𝑇[Σ] ≅
⟶𝐻0(Σ, 𝐾Σ),
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which defines an -valued 1-form 𝜙 ∈ Γ(, Ω1 ⊗). One can realise 𝜙 via variations of a
section

[𝜃] ∈ Γ(𝑈[Σ],),
where 𝑈[Σ] ⊂  is a neighbourhood of [Σ], and [𝜃] is characterised by

𝜙 = ∇GM[𝜃], [𝜃]([Σ]) = 0. (2)

A construction of [𝜃] is given in (12) in Section 2. Hence, for [Σ′] ∈ 𝑈[Σ] and any 𝑣 ∈ 𝑇[Σ′],
𝜙(𝑣) = ∇GM

𝑣 [𝜃] ∈ 𝐻0(Σ′, 𝐾Σ′) which defines [𝜃] uniquely up to addition of a constant section,
and the ambiguity is removed by setting [𝜃]([Σ]) = 0. One can equivalently define [𝜃] via parallel
transport of the flat connection on given by ∇GM + 𝜙. The property ∇GM

𝑣 [𝜃] ∈ 𝐻0(Σ′, 𝐾Σ′) is a
cohomological version of the property of a Seiberg–Witten differential.
Equip 𝑋 with a Lagrangian foliation  , or equivalently a holomorphic sub-line-bundle 𝐿 ⊂

𝑇𝑋. More generally, the foliationmay be singular at finitelymany points, so 𝐿 ⊂ 𝑇𝑋 is a subsheaf
and Σ is chosen to avoid these singular points. For example, if the foliation is defined by the fibres
of amorphism𝜋 ∶ 𝑋 → 𝐶 to a curve𝐶, then 𝐿 = ker𝐷𝜋 is not locally free at the critical points of
𝜋 contained in the singular fibres. Define 𝑅 ⊂ Σ to be those points where Σmeets  tangentially,
so by (1) 𝐿 |Σ ≅ 𝐾Σ(−𝑅). Furthermore, we choose Σ so that 𝑅 ⊂ Σ is finite and each tangent point
is simple. The simple tangency condition is an open condition hence also true of any nearby curve
Σ′ in the family  and defines 𝑅′ ⊂ Σ′. A key idea of Kontsevich and Soibelman in [32] is to use
the Lagrangian foliation  to study the deformation space  via lifting cohomology classes in
𝐻1(Σ; ℂ) to meromorphic differentials on Σ with poles at 𝑅 ⊂ Σ. Define 𝐺Σ to be the vector space
of residuelessmeromorphic differentials onΣ, holomorphic onΣ − 𝑅, and𝔾 →  the bundlewith
fibres 𝐺Σ. The map 𝐺Σ → 𝐻1(Σ, ℂ)which sends a differential to its cohomology class is surjective
and induces the surjective map of vector bundles 𝔾 → .
Topological recursion, as defined by Eynard andOrantin [20], is a recursive procedure that pro-

duces from a spectral curve 𝑆 = (Σ, 𝑢, 𝑣, 𝐵) a symmetric tensor product of meromorphic 1-forms
𝜔ℎ,𝑛 on Σ𝑛 for integers ℎ ⩾ 0 and 𝑛 ⩾ 1, which we refer to as correlators. Here, a spectral curve,
𝑆 = (Σ, 𝑢, 𝑣, 𝐵), is a curveΣ equippedwith twomeromorphic functions 𝑢, 𝑣 ∶ Σ → ℂ holomorphic
in a neighbourhood of points where 𝑑𝑢 = 0 and a bidifferential𝐵(𝑝1, 𝑝2) defined in (16), such that
𝑑𝑢 has only simple zeros. More generally, 𝑢 and 𝑣 need only to be locally defined.
A curve Σ ⊂ (𝑋,) together with a choice of 𝑎 and 𝑏-cycles that form a Torelli basis

{𝑎1, … , 𝑎g , 𝑏1, … , 𝑏g } ⊂ 𝐻1(Σ; ℤ) produces a spectral curve 𝑆 = (Σ, 𝑢, 𝑣, 𝐵) and hence the initial
data of topological recursion. The 𝑎 and 𝑏 cycles onΣuniquely determine a bidifferential𝐵(𝑝1, 𝑝2)
defined on Σ — see (16). The locally defined functions are restrictions to Σ of locally defined
coordinates 𝑢 and 𝑣 on 𝑋 chosen so that the symplectic form on 𝑋 is 𝜔 = 𝑑𝑢 ∧ 𝑑𝑣 and the
leaves of the foliation are defined via 𝑢 = constant— denoted as foliation-Darboux coordinates in
Definition 2.1.
The choice of 𝑎-cycles defines

𝑉Σ = {𝜂 ∈ 𝐺Σ ∣ ∮𝑎𝑖 𝜂 = 0, 𝑖 = 1, … , g},

which has trivial intersection with 𝐻0(Σ, 𝐾Σ) ⊂ 𝐺Σ since non-trivial holomorphic differentials
cannot have zero 𝑎-periods. The choice of Torelli basis extends to a well-defined choice on a
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neighbourhood 𝑈[Σ] ⊂  of [Σ], and hence, 𝑉Σ defines a subbundle of 𝔾 on 𝑈[Σ]. The correla-
tor 𝜔ℎ,𝑛(𝑝1, 𝑝2, … , 𝑝𝑛) is symmetric in 𝑝𝑖 and has poles only at 𝑝𝑖 ∈ 𝑅 ⊂ Σwith zero residues and
vanishing 𝑎-periods. In other words, it lives in the 𝑛th symmetric power

𝜔ℎ,𝑛(𝑝1, 𝑝2, … , 𝑝𝑛) ∈ S
𝑛(𝑉Σ),

where S𝑛 is the 𝑛th symmetric algebra.
For any residueless meromorphic differential 𝜂 defined on Σ, denote its normalised periods by:

∮𝑏̂𝑘 𝜂 ∶= −
1
2𝜋𝑖 ∮𝑏𝑘 𝜂. (3)

For [Σ] ∈ , the functions
𝑧𝑘 = ∮𝑎𝑘 [𝜃], 𝑘 = 1,… , g

define coordinates on a neighbourhood 𝑈[Σ] ⊂  and also on a formal neighbourhood ̂[Σ] of
[Σ] ∈ .
Given a curve Σ ⊂ (𝑋,) together with a choice of 𝑎 and 𝑏 cycles, which determine normalised

holomorphic differentials 𝜔𝑖 ∈ 𝐻0(Σ, 𝐾Σ) and correlators 𝜔ℎ,𝑛, the following theorem constructs
a formal series of meromorphic differentials that lives above the local analytic expansion of the
section [𝜃].

Theorem 1. Define a section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) by
𝜃 = 𝑧𝑖𝜔𝑖 −

1
2
𝑧𝑖𝑧𝑗 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔0,3 −

1
3!
𝑧𝑖𝑧𝑗𝑧𝑘 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,4 − … , (4)

where we sum over indices in {1, … , g}. Its cohomology class in Γ(̂[Σ],) is analytic in 𝑧1, … , 𝑧g and
coincides with the analytic expansion of [𝜃] defined in (2).

We use the convention of summation over repeated indices throughout the paper, except when
we wish to emphasise the indices. Note that the cohomology class [𝜃] can be naturally expressed
by its periods

[𝜃] =

(
∮𝑎𝑖 [𝜃],∮𝑏𝑖 [𝜃] ∣ 𝑖 = 1, … , g

)
∈ ℂ2g⟦𝑧1, … , 𝑧g⟧.

Properties of the series (4) leads to relations among residues and periods of 𝜔0,ℎ, such as (51) and
(52).
The series 𝜃 is a formal expansion of the Seiberg–Witten differential in the Seiberg–Witten

family of curves [34]. Similarly, in the case 𝑋 = 𝑇∗𝐶, the formal series 𝜃 is a formal expansion
of the tautological 1-form on 𝑇∗𝐶 — see (46) in Section 4 for a precise statement. An analytic
expansion of the Seiberg–Witten differential or tautological 1-form would require a natural local
trivialisation of the bundle 𝔾. The foliation produces a flat connection on 𝔾, defined in Section 4;
however, this does not produce a local trivialisation since parallel transport for this connection is
not defined.
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The period matrix 𝜏𝑖𝑗 of Σ appears in the first order terms of [𝜃] via

∮𝑏𝑖 [𝜃] = 𝑧
𝑗𝜏𝑖𝑗|Σ + higher order terms,

which leads to the following corollary.

Corollary 2. The variation of the period matrix of a curve Σ ⊂ 𝑋 is

𝜕𝜏𝑖𝑗

𝜕𝑧𝑘
= −2𝜋𝑖 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,3,

and more generally,

𝜕𝑛𝜏𝑖𝑗

𝜕𝑧𝑖1 … 𝜕𝑧𝑖𝑛
= −2𝜋𝑖 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑖1

…∮𝑏̂𝑖𝑛
𝜔0,𝑛+2.

When𝑋 = 𝑇∗𝐶, Corollary 2was proven by Baraglia andHuang in [4], and Bertola andKorotkin
[5]. In [4], the result is proven using a Rauch variational formula for Bergman kernels, a key
ingredient in the definition of 𝜔0,3, defined on Hitchin spectral curves — see Section 2.2. In [5],
the authors identify aHitchin spectral curvewith a pair (Σ, 𝑣) consisting of an abelian differential 𝑣
defined on a genus g curveΣ, and use variational formulae on the space of such pairs. In particular,
they also prove a Rauch variational formula for Bergman kernels which leads to the relation with
topological recursion above.
Corollary 2 can be packaged into an expression for an analytic expansion of the prepoten-

tial 𝐹0 ∶ → ℂ defined in Section 2.1, such as the Seiberg–Witten prepotential [34], in terms of
periods of the correlators:

𝐹0(𝑧
1, … , 𝑧g ) = −

∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝐼 𝜔0,|𝐼|. (5)

The summation is overmulti-indices 𝐼 = (𝑖1, … , 𝑖𝑛), for 𝑖𝑘 ∈ {1, … , g} and the integral is ∮𝑏̂𝐼 𝜔0,|𝐼| =∮𝑏̂𝑖1 … ∮𝑏̂𝑖𝑛 𝜔0,𝑛(𝑝1, … , 𝑝𝑛).
Note that a choice of 𝑎-cycles on Σ ⊂ (𝑋,Ω) determines local coordinates {𝑧1, … , 𝑧g } on the

deformation space  of Σ and the prepotential 𝐹0 ∶ → ℂ, well defined up to quadratic terms
in 𝑧𝑖 . Moreover, 𝐹0 depends (up to quadratic terms) only on the linear sub-module 𝐿𝑎 ⊂ 𝐻1(Σ; ℤ)
spanned by the 𝑎-cycles. This is reflected clearly in (5) since the difference between two choices
of 𝑏-cycles is an element of 𝐿𝑎. The correlators 𝜔0,|𝐼| in (5) vanish on 𝐿𝑎 for |𝐼| ⩾ 3, so only the
quadratic term involving 𝜔0,2 detects a change in 𝑏-cycles.
The series 𝜃 defined in (4) has a geometric interpretation which we now describe. Kontsevich

and Soibelman [32] formulated topological recursion in terms of an Airy structure which charac-
terises a quadratic Lagrangian  ⊂ 𝑊 in a symplectic vector space, that is, a sub-variety defined
by polynomials of degree ⩽ 2. A basic example is the plane conic tangent to the line 𝑦 = 0:

 = {−𝑦 + 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 = 0} ⊂ ℂ2.
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More generally, consider a finite-dimensional symplectic vector space𝑊 ≅ ℂ2𝑁 and a quadratic
Lagrangian  ⊂ 𝑊 containing 0, with tangent space 𝐿 = 𝑇0. Choose a Lagrangian complement
𝑉 to 𝐿 in𝑊

𝑊 = 𝐿 ⊕ 𝑉.

Note that the exact sequence 𝐿 → 𝑊
Ω𝑊(⋅,⋅)
→ 𝐿∗ produces a canonical isomorphism 𝑉 ≅ 𝐿∗ hence

a canonical isomorphism𝑊 ≅ 𝑉∗ ⊕ 𝑉 = 𝑇∗(𝑉∗) so that 𝑉 is a polarisation of𝑊.
Choose Darboux coordinates {𝑥𝑖, 𝑦𝑖}𝑖=1,…,𝑁 ∈ 𝑊∗, that is, Ω𝑊 = 𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 , with 𝑥𝑖 ∈ 𝑉 and

𝑦𝑖 ∈ 𝐿 which are naturally coordinates on the base 𝑉∗, respectively, fibre 𝑉, of 𝑇∗(𝑉∗). We have
𝐿 = {𝑦𝑖 = 0} and the Lagrangian  is defined by

 = {𝐻𝑖 = 0 ∣ 𝑖 = 1, … ,𝑁}
for

𝐻𝑖 = −𝑦𝑖 + 𝑎𝑖𝑗𝑘𝑥
𝑗𝑥𝑘 + 𝑏𝑘𝑖𝑗𝑥

𝑗𝑦𝑘 + 𝑐
𝑗𝑘
𝑖
𝑦𝑗𝑦𝑘, 𝑖 = 1, … ,𝑁.

The coefficients of the𝐻𝑖 are tensors on 𝑉.

𝐴 = (𝑎𝑖𝑗𝑘) ∈ 𝑉 ⊗ 𝑉 ⊗𝑉,

𝐵 = (𝑏𝑘𝑖𝑗) ∈ 𝑉
∗ ⊗ 𝑉 ⊗ 𝑉,

𝐶 = (𝑐𝑗𝑘
𝑖
) ∈ 𝑉∗ ⊗ 𝑉∗ ⊗ 𝑉,

where (𝑎𝑖𝑗𝑘) ∶= 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘, (𝑏𝑘𝑖𝑗) ∶= 𝑏
𝑘
𝑖𝑗
𝑥𝑖𝑥𝑗𝑦𝑘 and (𝑐

𝑗𝑘
𝑖
) ∶= 𝑐𝑗𝑘

𝑖
𝑥𝑖𝑦𝑗𝑦𝑘 and as usual we sum over

the indices 𝑖, 𝑗, 𝑘.
The defining functions of the Lagrangian submanifold satisfy

{𝐻𝑖, 𝐻𝑗} = g𝑘𝑖𝑗𝐻𝑘, (6)

where g𝑘
𝑖𝑗
are functions in general, but numbers here since 𝐻𝑖 are quadratic. The relation (6)

implies a collection of conditions on the tensors 𝐴, 𝐵 and 𝐶. The linear term contribution to (6)
implies 𝐴 ∈ S3(𝑉), whereas a priori 𝐴 is symmetric only in its final two arguments, and it also
implies g𝑘

𝑖𝑗
= 2𝑏𝑘

𝑗𝑖
− 2𝑏𝑘

𝑖𝑗
. The remaining conditions, corresponding, respectively, to vanishing of

coefficients 𝑥𝑘𝑥𝑚, 𝑥𝑘𝑦𝑚 and 𝑦𝑘𝑦𝑚 in (6), are homogeneous of degree 2 in the tensors and given
explicitly in Definition 3.2.
Kontsevich and Soibelman define an Airy structure to be a collection of tensors on a vector

space 𝑉:

𝐴 ∈ Sym3(𝑉), 𝐵 ∈ 𝑉∗ ⊗ 𝑉 ⊗ 𝑉, 𝐶 ∈ Sym2(𝑉∗) ⊗ 𝑉,

satisfying the quadratic relationships implied by (6). An Airy structure makes sense for infinite
dimensional 𝑉. In finite dimensions, an Airy structure is equivalent to a quadratic Lagrangian
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 7 of 55

submanifold of the symplectic vector space 𝑇∗(𝑉∗), while in infinite dimensions, it corresponds
to a formal Lagrangian submanifold defined by the ideal generated by a collection of quadratic
polynomials 𝐻𝑖 , 𝑖 = 1, 2, …. — see Section 3.2.
A fundamental example of a formal Lagrangian subvariety in an infinite-dimensional symplec-

tic vector space arises from Virasoro relations satisfied by the Kontsevich–Witten tau function of
the Kortew-De Vries (KdV) hierarchy

𝑍KW(ℏ, 𝑥1, 𝑥3, …) = exp
⎛⎜⎜⎝
∑
ℎ,𝑛,𝑘

ℏℎ−1

𝑛! ∫ℎ,𝑛

𝑛∏
𝑖=1

𝜓
𝑘𝑖
𝑖
(2𝑘𝑖 + 1)!!𝑥

2𝑘𝑖+1
⎞⎟⎟⎠,

which is a generating function for intersection numbers of tautological classes 𝜓𝑖 on the moduli
space of stable curves. Define {𝐿−1, 𝐿0, 𝐿1, …} which satisfy the Virasoro commutation relations

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛, for𝑚, 𝑛 ⩾ −1

by

𝐿𝑚 = −
1
2

𝜕
𝜕𝑥2𝑚+3

+
ℏ
4

∑
𝑖+𝑗=2𝑚
𝑖,𝑗 odd

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
+
1
2

∞∑
𝑖=1
𝑖 odd

𝑖𝑥𝑖
𝜕

𝜕𝑥𝑖+2𝑚
+
1
16
𝛿𝑚,0 +

(𝑥1)2

4ℏ
𝛿𝑚,−1,

where the sum over 𝑖 + 𝑗 = 2𝑚 is empty when𝑚 = 0 or −1 and 𝜕
𝜕𝑥−1

is the zero operator. Then

𝐿𝑚𝑍
KW(ℏ, 𝑥1, 3𝑥3, …) = 0, 𝑚 ⩾ −1,

which uniquely determines any intersection number recursively from the initial calculation
∫0,3

1 = 1 as conjectured by Witten [41] and proven by Kontsevich [31]. Define the symplectic
vector space of residueless Laurent series

𝑊Airy =

{
𝐽 =

∑
𝑛∈ℤ

𝐽𝑛𝑧
−𝑛 𝑑𝑧

𝑧
∣ 𝐽0 = 0, ∃𝑁 such that 𝐽𝑛 = 0, 𝑛 > 𝑁

}
(7)

with symplectic form

Ω𝑊(𝜂1, 𝜂2) = Res
𝑧=0

𝑓1𝜂2, 𝑑𝑓1 = 𝜂1, 𝜂2 ∈ 𝑊.

There is a symplectomorphism 𝑊Airy ≅ Spf(ℂ⟦𝑥∙, 𝑦∙⟧) equipped with the Poisson bracket
{𝑥𝑖, 𝑦𝑗} = 𝛿

𝑖
𝑗
and {𝑥𝑖, 𝑥𝑗} = 0 = {𝑦𝑖, 𝑦𝑗}, 𝑖, 𝑗 = 1, … ,∞.

Example 1.1. Define the quadratic Lagrangian

Airy ⊂ 𝑊Airy = Spf(ℂ⟦𝑥∙, 𝑦∙⟧)
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8 of 55 CHAIMANOWONG et al.

via the ideal generated by the linear and quadratic functions

𝐻𝑘(𝑥
∙, 𝑦∙) = −𝑦𝑘, 𝑘 ∈ ℤ+even

𝐻𝑘(𝑥
∙, 𝑦∙) = ℏ𝐿𝑘−3

2

(
𝑥∙, ℏ

𝜕
𝜕𝑥∙

)|
ℏ 𝜕

𝜕𝑥𝑖
=𝑦𝑖

𝑘 ∈ ℤ+odd

= −1
2
𝑦𝑘 +

1
4

∑
𝑖+𝑗=𝑘−3
𝑖,𝑗 odd

𝑦𝑖𝑦𝑗 +
1
2

∞∑
𝑖=1
𝑖 odd

𝑖𝑥𝑖𝑦𝑖+𝑘−3 +
1
16
𝛿𝑘,3 +

1
4
𝛿𝑘,1(𝑥

1)2,

where 𝑦−1 = 0.

The local behaviour of the topological recursion correlators at each point of 𝑅 ⊂ Σ gives rise to
the tau function 𝑍KW(ℏ, 𝑡0, 𝑡1, …) corresponding to the quadratic Lagrangian Airy.
There are natural embeddings 𝑉Σ ⊂ 𝐺Σ ⊂ 𝑊𝑅

Airy defined by identifying 𝑊Airy with local
residue-free differentials — see (25) and (26) — and sending global meromorphic differentials
to their local expansions at each point in 𝑅 with respect to a given local coordinate. We have
𝑇∗(𝑉∗Σ) ≅ 𝑊

𝑅
Airy as symplectic vector spaces. The (formal) quadratic Lagrangian submanifold

produces an Airy structure on 𝑉Σ:

KS = 𝑅Airy ⊂ 𝑇∗(𝑉∗Σ) ⇝ (𝐴Σ, 𝐵Σ, 𝐶Σ). (8)

The dependence of the Airy structure on Σ ⊂ 𝑋 is through the polarisation of𝑊𝑅
Airy ⊃ KS. The

embedding 𝐺Σ ⊂ 𝑊𝑅
Airy is coisotropic and the quotient becomes a symplectic quotient

𝐻1(Σ; ℂ) = 𝐺Σ∕𝐺
⟂
Σ =∶ 𝑊

𝑅
Airy⫽𝐺

⟂
Σ .

The image under the quotient map of the tensor 𝐴Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ → 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ is
rather natural.
The section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) constructed in Theorem 1 takes its values in KS — see Proposi-

tion 4.5. This is used to understand the relation of the Airy structure built out of Σ ⊂ (𝑋,Ω𝑋,)
to the local geometry of the space , stated concretely in Theorem 3 below.
TheDonagi–Markman cubic [15] is the extension class defined by the exact sequence (1), which

gives rise to a tensor on :

𝐴̄Σ ∈ Ext
1(𝐾Σ, 𝑇Σ) ≅ 𝐻

0(Σ, 𝐾⊗3Σ )∨ ≅
(
𝑇∗
[Σ]

)⊗3
.

There is a natural isomorphism 𝐻0(Σ, 𝐾Σ)
∨ ≅ 𝑉Σ where 𝑉Σ is the image of 𝑉Σ under the

quotient map 𝐺Σ → Σ:

𝑉Σ = {𝜂 ∈ 𝐻
1(Σ; ℂ) ∣ ∮𝑎𝑖 𝜂 = 0, 𝑖 = 1, … , g}, (9)

which satisfies

𝐻1(Σ; ℂ) = 𝐻0(Σ, 𝐾Σ) ⊕ 𝑉Σ.
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 9 of 55

Any complement to 𝐻0(Σ, 𝐾Σ) is naturally isomorphic to 𝐻0(Σ, 𝐾Σ)∨ via the symplectic form on
𝐻1(Σ; ℂ). Via this natural isomorphism, the Donagi–Markman cubic is represented by

𝐴̄Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ.

Theorem 3. The image of the tensor 𝐴Σ under the quotient map 𝑉Σ → 𝑉Σ is the tensor 𝐴̄Σ.

𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ → 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ (10)

𝐴Σ ↦ 𝐴̄Σ.

The Donagi–Markman cubic can be calculated via variations 𝜕𝜏𝑖𝑗
𝜕𝑧𝑘

, and hence, (10) can be
deduced from Corollary 2 together with the result 𝐴Σ = 𝜔0,3 — see Proposition 4.10. Instead, we
give a direct, geometric proof of Theorem 3. In Section 4.3, 𝐴Σ is constructed as a linear map

𝑇0KS ⊗ 𝑇0KS → 𝑉Σ

via covariant differentiation of a vector field on KS. The tensor 𝐴̄Σ similarly arises via covari-
ant differentiation of vector fields. Any vector 𝑣 ∈ 𝑇[Σ] ≅ 𝐻0(Σ, 𝐾Σ) extends locally to a unique
vector field 𝑣 ∈ Γ(𝑈[Σ], 𝑇)] ⊂ Γ(𝑈[Σ],) defined by requiring ∮𝑎𝑖 𝑣 to be locally constant. The
covariant derivative ∇GM

𝑢 𝑣 lives inside 𝑉Σ, since the derivative of constant 𝑎-periods is zero.
Hence, ∇GM

𝑢 𝑣 takes in two vectors 𝑢, 𝑣 ∈ 𝑇[Σ] and defines a linear map

𝐻0(Σ, 𝐾Σ) ⊗ 𝐻0(Σ, 𝐾Σ) → 𝑉Σ,

which is identifiedwith 𝐴̄Σ. Note that theDonagi–Markman cubic is independent of the extension
of a vector 𝑣 to a vector field 𝑣; however, the particular choice of vector field here produces its rep-
resentative in 𝑉

⊗3

Σ . Thus, both 𝐴Σ and 𝐴̄Σ are obtained via covariant differentiation with respect
to a flat connection of a tangent vector field by a tangent vector.Moreover, the vector fields and flat
connection upstairs are related to vector fields and flat connection downstairs. To implement this
idea, one needs to use the formal germ of a Lagrangian and formal vector fields upstairs, together
with the linearisation of 𝜃 defined in Theorem 1. One consequence of Theorem 3 is that although
𝐴Σ is constructed only in a formal neighbourhood of a point in, it descends to an analytic tensor
which extends over all of .
It is interesting that the methods used here, following Kontsevich and Soibelman, embed 

into a vector space of meromorphic differentials on the curve, with poles located at the branch
points on the spectral curve, while the methods used by Bertola and Korotkin to prove Corol-
lary 2 embed  into a moduli space of meromorphic differentials with poles located at the poles
of the Higgs field. They write in [5]: ‘This suggests a possibility of the existence of a natural simple
structure on spaces of abelian differentials which underlie the topological recursion framework
on spaces of spectral covers’. Indeed, the methods of Kontsevich and Soibelman produce topo-
logical recursion from a natural structure on the space of meromorphic differentials on a curve.
Although the meromorphic differentials differ in both cases, it would be interesting to compare
these two approaches.
In Section 2, we define topological recursion for any smooth curve embedded in a foliated

symplectic surface Σ ⊂ (𝑋,Ω𝑋,), and give examples of foliated symplectic surfaces. Topological
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10 of 55 CHAIMANOWONG et al.

recursion is related to cohomological field theories [13], and we describe its consequences for the
deformation space  of Σ ⊂ 𝑋 in Section 2.3. In Section 3, we define the approach to topological
recursion by Kontsevich and Soibelman [32]. The quadratic Lagrangian used is Airy constructed
from the Kontsevich–Witten tau function. In Section 3.4.2, we instead use a quadratic Lagrangian
Bessel built from the Brézin–Gross–Witten tau function of the KdV hierarchy. In Section 4, we
define the series 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) defined in any formal neighbourhood of [Σ] ∈  and prove its
properties. The Appendix contains a proof of the variation formula for the correlators 𝜔ℎ,𝑛 due to
Eynard and Orantin [20] and adapted to the spectral curves arising out of Σ ⊂ (𝑋,Ω𝑋,).

2 TOPOLOGICAL RECURSION APPLIED TO CURVES IN SURFACES

In this section, we apply topological recursion as defined in [20] to

Σ ⊂ (𝑋,Ω𝑋,)
given by a compact curve embedded inside a (holomorphic) symplectic surface (𝑋,Ω𝑋) with
Lagrangian foliation  following Kontsevich and Soibelman [32]. We begin with a description
of the prepotential on the deformation space of Σ inside 𝑋. We then equip the surface 𝑋 with a
Lagrangian foliation,  , which puts the extra structure on Σ required to define a spectral curve
which is the initial data of topological recursion. More generally, one should be able to relax
the symplectic condition, and require only a Poisson structure, [32]. In Sections 2.4 and 2.5, we
describe the cases 𝑋 = 𝑇∗𝐶 and 𝑋 = an elliptic K3 surface.

2.1 Deformation space of embedded curves

Consider a symplectic surface (𝑋,Ω𝑋) together with a smooth, embedded genus g curve Σ ⊂ 𝑋.
The deformation space  of Σ inside 𝑋 is a smooth complex analytic moduli space of dimension
g . The tangent space of the moduli space  at the point Σ is naturally identified with 𝐻0(Σ, 𝜈Σ),
the space of holomorphic sections of the normal bundle of Σ, which is isomorphic to 𝐻0(Σ, 𝐾Σ),
and the space of holomorphic differentials on Σ via adjunction

𝐾Σ ≅ 𝐾𝑋|Σ ⊗ 𝜈Σ ≅ 𝜈Σ.

This is a particular case of the more general property for a Lagrangian subspace 𝐿 of a symplectic
vector space𝑊

0 → 𝐿 → 𝑊
Ω𝑊(⋅,⋅)
→ 𝐿∗ → 0,

which produces a canonical isomorphism 𝐿∗ ≅ 𝑊∕𝐿.
Over themoduli space, is a symplectic vector bundle equippedwith a flat connection∇GM.

The symplectic vector bundle is given by the hypercohomology

Σ = ℍ0(Σ, Cone(𝑑𝑑𝑅 ∶ Σ → Ω1Σ)), (11)
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 11 of 55

which is isomorphic to the first cohomology group 𝐻1(Σ; ℂ), and ∇GM is the Gauss–Manin
connection. Define the-valued 1-form 𝜙 ∈ Γ(, Ω1 ⊗) via the composition of maps

𝑇Σ ≅
⟶𝐻0(Σ,Ω1Σ) → 𝐻1(Σ; ℂ) = Σ.

Then 𝜙 is flat with respect to ∇GM.

Lemma 2.1. ∇GM𝜙 = 0.

Proof. We will show that 𝜙 is locally exact, that is, there exists a well-defined local primitive, or
equivalently that 𝜙 integrates trivially along small loops in . Given [Σ] ∈ , choose a small loop
𝛾 ⊂  containing [Σ]. Choose [𝛼] ∈ 𝐻1(Σ, ℤ) represented by an embedded closed curve 𝛼 ⊂ Σ and
choose a family 𝛼̃ of embedded closed curves representing the given homology cycle in each fibre.
This gives a torus 𝑇2 → 𝑋 which bounds a solid torus𝑀3 → 𝑋 when 𝛾 is chosen small enough.
Integration of 𝜙 along 𝛾 gives an element of a fibre of which evaluates on [𝛼] by⟨

∫𝛾 𝜙, [𝛼]
⟩
= ∫𝑇2 Ω𝑋 = 0

since 𝑑Ω𝑋 = 0 and 𝑇2 is homologically trivial. This applies to any primitive homology class [𝛼]
hence

∫𝛾 𝜙 = 0.

This is true of any small 𝛾, so 𝜙 is locally exact hence closed (as a section of the locally trivial
bundle), that is, flat with respect to ∇GM. □

The flat connection ∇GM naturally defines a complex

Ω0 ⊗ ∇GM

→ Ω1 ⊗ ∇GM

→ Ω2 ⊗ ∇GM

→ …

Define a local section 𝑠 ∈ Γ(𝑈[Σ],), for𝑈[Σ] ⊂  a neighbourhood of a point [Σ] ∈ , by∇G𝑀𝑠 =
−𝜙. The solution to this equation is a cohomology class 𝑠([Σ′]) ∈ ′

Σ for each [Σ
′] ∈ 𝑈[Σ] well

defined up to addition of a constant independent of [Σ′]. To remove the constant, define [𝜃] ∶
𝑈[Σ] → Σ by

[𝜃]([Σ′]) ∶= 𝑠([Σ]) − 𝑠([Σ′]) ∈ ℂ2g ≅ Σ, (12)

which is a well-defined map from the open set𝑈[Σ] ⊂  to ℂ2g . The isomorphism of cohomology
with ℂ2g uses a choice of Torelli basis. Strictly, in (12), 𝑠([Σ′]) has been parallel transported from
Σ′ toΣ via the Gauss–Manin connection. By definition, the covariant derivative of [𝜃] is given
by

∇G𝑀
𝜂 [𝜃] = 𝜂
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12 of 55 CHAIMANOWONG et al.

for any 𝜂 ∈ 𝐻0(Σ, 𝐾Σ) ≅ 𝑇[Σ]. The linearisation ∇G𝑀[𝜃] ∶ 𝑇[Σ′]→ Σ′ has image given by the
parallel transport of the Lagrangian subspace 𝐻0(Σ, 𝐾Σ′) ⊂ Σ′ so [𝜃] defines a local Lagrangian
embedding of 𝑈[Σ]] ⊂  intoΣ:

𝑈[Σ]
Lag.
���→ Σ ≅ ℂ

2g . (13)

Remark 2.2. It is important to note that [𝜃] is related to, but not equal to, the cohomology class of
the tautological 1-form 𝑣𝑑𝑢|Σ′ in the case 𝑋 = 𝑇∗𝐶. It is given by

[𝜃]([Σ′]) = [𝑣𝑑𝑢|Σ] − [𝑣𝑑𝑢|Σ′ ] ∈ ℂ2g .
As mentioned above, this difference uses parallel transport by the Gauss–Manin connection. We
will see later that there exists a meromorphic differential 𝜃 which is defined only in a formal
neighbourhood of [Σ] ∈  with cohomology class given by an analytic expansion of [𝜃]. The
Gauss–Manin connection lifts to a connection with well-defined parallel transport on any formal
neighbourhood, but only partially defined on 𝔾.

Using the choice of 𝑎-cycles on each Σ′, [𝜃] defines coordinates on 𝑈[Σ] ⊂  by

𝑧𝑖([Σ′]) = ∮𝑎𝑖 [𝜃]([Σ
′]), 𝑖 = 1, … , g . (14)

The coordinates satisfy 𝑧𝑖([Σ]) = 0, and coordinates defined with respect to any nearby point are
related via a constant shift 𝑧𝑖 ↦ 𝑧𝑖 + 𝑧𝑖0.
The 𝑏-cycles on each Σ′ give rise to functions w𝑖(𝑧1, … , 𝑧g ) defined by w𝑖 = ∮𝑏𝑖 [𝜃]([Σ′]) for 𝑖 =

1, … , g . Their derivatives satisfy

𝜕w𝑖
𝜕𝑧𝑗

=
𝜕
𝜕𝑧𝑗 ∮𝑏𝑖 [𝜃] = ∮𝑏𝑖 ∇

GM
𝜕

𝜕𝑧𝑗

[𝜃] = ∮𝑏𝑖 𝜔𝑗 = 𝜏𝑖𝑗,

where the second equality uses the definition of the Gauss–Manin connection. By the Riemann
bilinear relations 𝜏𝑖𝑗 is symmetric, and hence, there exists a function, known as the prepotential,

𝐹0 ∶ 𝑈 → ℂ

satisfying

w𝑖 =
𝜕𝐹0
𝜕𝑧𝑖

, 𝑖 = 1, … , g

hence also 𝜕2𝐹0
𝜕𝑧𝑖𝜕𝑧𝑗

= 𝜏𝑖𝑗 and
𝜕3𝐹0

𝜕𝑧𝑖𝜕𝑧𝑗𝜕𝑧𝑘
= 𝑐𝑖𝑗𝑘, which defines the tensor 𝐴̄Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ for 𝑉Σ

defined in (9).

2.2 Foliations and topological recursion

Equip the symplectic surface (𝑋,Ω𝑋) with a holomorphic Lagrangian foliation  . Let Σ ⊂
(𝑋,Ω𝑋,) be a compact curve embedded inside a symplectic surface (𝑋,Ω𝑋) with Lagrangian
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 13 of 55

foliation  . We require that Σ is tangent to  at finitely many points 𝑅 ⊂ Σ and the tangencies are
simple.

Example 2.3. A typical example is the cotangent space 𝑋 = 𝑇∗𝐶 of a compact curve 𝐶. The sym-
plectic surface 𝑋 is foliated by fibres of the projection 𝜋 ∶ 𝑋 → 𝐶. For an embedded compact
curve Σ ⊂ 𝑋, the set 𝑅 is the set of ramification points of the morphism 𝜋|Σ, and Σ is chosen to
have simple ramification points.

Definition 2.1. Define foliation-Darboux (FD) local coordinates 𝑢, 𝑣 on (𝑋,Ω𝑋,) to be Darboux
coordinates, that is, 𝑑𝑢 ∧ 𝑑𝑣 = Ω𝑋 that define the leaves of the foliation via 𝑢 = constant.

For each point in 𝑋, there exists a neighbourhood with FD local coordinates. They are unique
up to the symplectic change of coordinates which preserves the foliation

(𝑢, 𝑣) ↦ (𝑓(𝑢),
𝑣

𝑓′(𝑢)
+ g(𝑢)), (15)

for 𝑓′(𝑢) ≠ 0 in the neighbourhood of 𝑋.
The data Σ ⊂ (𝑋,Ω𝑋,) give rise to a spectral curve which is used to define topological recur-

sion. We begin with a definition of topological recursion following Eynard and Orantin [20].
Topological recursion arose out of the study of the free energy of matrix models [7].

∙ Spectral curve.A spectral curve (Σ, 𝑢, 𝑣, 𝐵) consists of a compact Riemann surface Σ equipped
with twomeromorphic functions 𝑢 and 𝑣 defined on Σ and a symmetric bidifferential 𝐵 defined
on Σ × Σ. We assume that each zero of 𝑑𝑢 is simple and does not coincide with a zero of 𝑑𝑣.
Topological recursion produces symmetric tensor products of meromorphic differentials 𝜔ℎ,𝑛
on Σ𝑛 for ℎ ⩾ 0 and 𝑛 ⩾ 1 which we call correlators.

∙ Bergman kernel. A good choice of bidifferential 𝐵 in the spectral curve is the Bergman
kernel which is a canonical normalised symmetric bidifferential 𝐵(𝑝, 𝑝′) associated to a com-
pact Riemann surface equipped with a choice of 𝑎-cycles {𝑎𝑖}𝑖=1,…,g ⊂ Σ. It is normalised by∫𝑝∈𝑎𝑖 𝐵(𝑝, 𝑝′) = 0, 𝑖 = 1, … , g . In a local coordinate 𝑧 on Σ, it is given by

𝐵(𝑝, 𝑝′) =
𝑑𝑧(𝑝)𝑑𝑧(𝑝′)

(𝑧(𝑝) − 𝑧(𝑝′))2
+ holomorphic in (𝑧(𝑝), 𝑧(𝑝′)). (16)

It generalises the Cauchy kernel since it satisfies 𝑑𝑓(𝑝) = Res 𝑝′=𝑝 𝑓(𝑝
′)𝐵(𝑝, 𝑝′), for all

meromorphic 𝑓.
∙ Recursion kernel. Define a kernel in a neighbourhood of any 𝛼 ∈ Σ, that is, 𝑑𝑢(𝛼) = 0, by

𝐾(𝑝1, 𝑝) = −
1
2

∫ 𝑝
𝑝̂
𝐵(𝑝1, ⋅ )

(𝑣(𝑝) − 𝑣(𝑝̂)) 𝑑𝑢(𝑝)
, (17)

where 𝑝 ↦ 𝑝̂ denotes the holomorphic involution defined locally at the ramification point 𝛼 ∈
𝑅 satisfying 𝑢(𝑝̂) = 𝑢(𝑝) and 𝑝̂ ≠ 𝑝.

∙ Recursion. The correlators 𝜔ℎ,𝑛 are defined by

𝜔0,2(𝑝1, 𝑝2) = 𝐵(𝑝1, 𝑝2)
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14 of 55 CHAIMANOWONG et al.

and for 2ℎ − 2 + 𝑛 > 0 recursively via:

𝜔ℎ,𝑛(𝑝1, 𝑝𝑆) =
∑

𝑑𝑢(𝛼)=0

Res
𝑝=𝛼

𝐾(𝑝1, 𝑝)

[
𝜔ℎ−1,𝑛+1(𝑝, 𝜎𝛼(𝑝), 𝑝𝑆) (18)

+
∑

ℎ1+ℎ2=ℎ
𝐼⊔𝐽=𝑆

𝜔ℎ1,|𝐼|+1(𝑝, 𝑝𝐼) 𝜔ℎ2,|𝐽|+1(𝜎𝛼(𝑝), 𝑝𝐽)
]
.

Here, we use the notation 𝑆 = {2, 3, … , 𝑛} and 𝑝𝐼 = {𝑝𝑖1 , 𝑝𝑖2 , … , 𝑝𝑖𝑘 } for 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑘}. The
outer summation is over the zeroes of 𝑑𝑢.

∙ Structure of correlators. The correlators 𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛) are tensor products of meromor-
phic differentials, symmetric in 𝑝𝑖 , with zero residue poles at 𝑝𝑖 = 𝛼 for any zero 𝛼 of 𝑑𝑢,
and holomorphic outside the set defined by 𝑑𝑢 = 0. They inherit from 𝐵(𝑝, 𝑝′) the property
∮𝑝𝑖∈𝑎𝑘 𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛) = 0.

∙ Dilaton equation. The differential 𝑣𝑑𝑢 is locally exact on Σ, and we define 𝜓 to be a local
primitive, that is, 𝑑𝜓 = 𝑣𝑑𝑢. The dilaton equation, proven in [20], is:∑

𝑑𝑢(𝛼)=0

Res
𝑝𝑛+1=𝛼

𝜓(𝑝𝑛+1)𝜔ℎ,𝑛+1(𝑝1, … , 𝑝𝑛+1) = (2ℎ − 2 + 𝑛)𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛). (19)

Since𝜔ℎ,𝑛+1 has zero residue at each𝛼, the left-hand side of the dilaton equation is independent
of the choice of primitive 𝜓. The dilaton equation leads to the definition of the correlators for
𝑛 = 0 and ℎ ⩾ 2.

𝐹ℎ ∶=
1

2ℎ − 2

∑
𝑑𝑢(𝛼)=0

Res
𝑝=𝛼

𝜓(𝑝)𝜔ℎ,1(𝑝), ℎ ⩾ 2. (20)

These are called symplectic invariants in [20] (which uses 𝐹ℎ that differs by a negative sign from
(20)).

∙ Local spectral curve. The recursion depends only a neighbourhood of the zeros of 𝑑𝑢, and
hence, 𝑢, 𝑣 and 𝐵 need only be defined locally in this neighbourhood. In this case, (Σ, 𝑢, 𝑣, 𝐵)
is said to be a local spectral curve.

In this paper, 𝜔0,1 are not defined, or equivalently zero. In some conventions, 𝜔0,1 is defined to
coincide with 𝑣𝑑𝑢.
The recursive procedure of topological recursion (18) can be formulated and generalised [1, 32]

in terms of the tensors 𝐴, 𝐵 and 𝐶 from the Airy structure defined in Section 3.2.

2.2.1 Correlators of Σ ⊂ (𝑋,Ω𝑋,)
Given a compact curve embedded inside a symplectic surface with Lagrangian foliation Σ ⊂
(𝑋,Ω𝑋,), choose a collection of 𝑎-cycles on Σ ⊂ 𝑋. This choice defines an associated Bergman
kernel 𝐵 normalised over the 𝑎-cycles, and together with a choice of FD local coordinates 𝑢 and
𝑣 (see Definition 2.1), they define a local spectral curve:

Σ ⊂ (𝑋,Ω𝑋,) ⇝ (Σ, 𝑢, 𝑣, 𝐵).
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 15 of 55

Apply topological recursion, defined via (17) and (18), to this local spectral curve to produces cor-
relators𝜔ℎ,𝑛 which are tensor products of meromorphic differentials on Σ𝑛 with poles precisely at
𝑅 ⊂ Σ. The spectral curve (Σ, 𝑢, 𝑣, 𝐵)depends on a choice of (𝑢, 𝑣). The correlators are independent
of the ambiguity (15) since (𝑢, 𝑣) enters the recursion via the kernel 𝐾(𝑝1, 𝑝) as

(𝑣(𝑝) − 𝑣(𝑝̂))𝑑𝑢(𝑝) =

(
𝑣(𝑝)

𝑓′(𝑢(𝑝))
+ g(𝑢(𝑝)) −

𝑣(𝑝̂)

𝑓′(𝑢(𝑝̂))
− g(𝑢(𝑝̂))

)
𝑑𝑓(𝑝),

and the involution 𝑝 ↦ 𝑝̂ depends only on the foliation. The dilaton equation is also indepen-
dent of the ambiguity (15) since 𝜓 ↦ 𝜓 + 𝜉(𝑢) which adjusts the left-hand side of (19) by a sum
of residues of a holomorphic function in 𝑢 times the correlator. These residues vanish, that is, for
holomorphic 𝜉(𝑢) defined in a neighbourhood of 𝛼, Res𝑝=𝛼 𝜉(𝑢(𝑝))𝜔ℎ,𝑛|𝑝𝑛=𝑝 = 0 since the prin-
cipal part of 𝜔ℎ,𝑛 at 𝛼 is skew-invariant under the involution 𝑝 ↦ 𝑝̂ and it is still skew-invariant
after multiplication by an invariant function. The residue comes from the invariant part. In par-
ticular, the functions 𝐹ℎ are well defined for ℎ ⩾ 2 since they do not change under (15). In the case
𝑋 = 𝑇∗𝑋, this generalisation of a spectral curve was studied in [14].
Since the simple tangency condition on a curve Σ ⊂ (𝑋,Ω𝑋,) is an open condition and a

choice of 𝑎-cycles on Σ is a discrete choice, we can choose an open neighbourhood𝑈[Σ] of [Σ] ∈ 
consisting of nearby embeddedΣ′ ⊂ (𝑋,Ω𝑋,) satisfying the simple tangency condition andwith
a given choice of 𝑎-cycles. Thus, the correlators 𝜔ℎ,𝑛 are well defined on each nearby Σ′ and 𝐹ℎ
defines a function on a neighbourhood 𝑈[Σ] of [Σ] ∈  for each ℎ ⩾ 2.
One main motivation of [32] is to use the functions 𝐹ℎ to produce a cyclic vector for the

deformation quantisation of  ⊂ 𝐻1(Σ; ℂ) by:

exp

(
𝐹0
ℏ
+ 𝐹1 + ℏ𝐹2 +⋯ + ℏg−1𝐹g +⋯

)
.

This is annihilated up to𝑂(ℏ) by a quantisation of the local defining equations for ⊂ 𝐻1(Σ; ℂ):

−ℏ
𝜕
𝜕𝑧𝑖

+w𝑖(𝑧1, … , 𝑧g ).

Just as 𝐹0 can be calculated independently of the choice of foliation, the deformation quantisa-
tion suggests that there may be a way one could define the 𝐹ℎ independently of the choice of
foliation. This might allow 𝐹ℎ to be constructed via topological recursion using any local Darboux
coordinates (𝑢, 𝑣) of 𝑋 leading to symplectic invariance of 𝐹ℎ.

2.3 Cohomological field theories

A cohomological field theory (CohFT) is a pair (𝐻, ⟨., .⟩) consisting of a finite-dimensional com-
plex vector space 𝐻 ≅ ℂ𝑅 equipped with a non-degenerate symmetric bilinear pairing ⟨., .⟩ and a
sequence of 𝑆𝑛-equivariant maps

Ωℎ,𝑛 ∶ 𝐻
⊗𝑛 → 𝐻∗(ℎ,𝑛; ℂ).

ThemapsΩℎ,𝑛 satisfy natural compatibility conditions with respect to restriction to lower dimen-
sional strata inℎ,𝑛 built out ofℎ′,𝑛′ —see [30]. It is semisimple if𝐻 is semisimplewith respect
to a product on𝐻 induced from Ω0,3 and ⟨., .⟩.
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16 of 55 CHAIMANOWONG et al.

A relationship between semisimple cohomological field theories and topological recursion was
proven in [13]. The correlators𝜔ℎ,𝑛 of (Σ, 𝑢, 𝑣, 𝐵) are polynomial in a basis of differentials {𝜉𝛼𝑘 ∣ 𝛼 ∈
𝑅 ⊂ Σ, 𝑘 ∈ ℕ} constructed out of the locally defined function 𝑢 on Σ and the Bergman kernel 𝐵—
see [21, 22]. Define the topological recursion partition function of the spectral curve 𝑆 = (Σ, 𝐵, 𝑢, 𝑣)
by

𝑍𝑆(ℏ, {𝜉𝛼𝑘 }) = exp

(∑
ℎ,𝑛

ℏℎ−1

𝑛!
𝜔ℎ,𝑛({𝜉

𝛼
𝑘 })

)
.

It was proven in [13] that, under assumptions on the spectral curve,𝑍𝑆 coincideswith the partition
function of a semisimple CohFT defined on a vector space 𝐻 ≅ ℂ𝑅, for 𝑅 the number of zeros of
𝑑𝑢, which stores intersection numbers of all Ωℎ,𝑛 with the tautological psi classes. Furthermore,
this decomposition coincides with a decomposition of Givental [24] for partition functions arising
out of semisimple cohomological field theories. The assumptions in [13] on the spectral curve
(Σ, 𝑢, 𝑣, 𝐵) are that 𝑣 is uniquely determined by its first derivatives 𝑑𝑣(𝑝) at each of the zeros 𝑝 of
𝑑𝑢. This assumption was lifted in [10] to allow any function 𝑣 on the curve Σ ⊂ 𝑋.
The vector space 𝐻 ≅ ℂ𝑅 defines a space of deformations of the spectral curve. A CohFT on

𝐻 ≅ ℂ𝑅 introduces geometric structure on 𝐻 given by a flat metric, a product on its tangent
space, also 𝐻, and further structure, known as a Frobenius manifold structure, [19]. The man-
ifold ℂ𝑅 parametrises a family of more general deformations of Σ ⊂ 𝑋 than those that embed into
𝑋. Hence, the g-dimensional space  of deformations of the spectral curve inside 𝑋 maps to an|𝑅|-dimensional Frobenius manifold. The inequality |𝑅| ⩽ 2g − 2 holds when 𝑋 = 𝑇∗𝐶 with foli-
ation given by the fibres. When the locally defined functions 𝑢 and 𝑣 are globally defined on Σ,
the family of curves gives rise to Dubrovin’s superpotential associated to a semisimple Frobenius
manifold, which is related directly to topological recursion in [11].
In the following, we give an explicit description of the local embedding of  into ℂ𝑅, and, in

particular, its linearisation. Given a curve Σ inside a foliated symplectic surface 𝑋 and 𝛼 ∈ 𝑅 ⊂ Σ,
choose local coordinates (𝑢𝛼, 𝑣𝛼) for 𝑋 in a neighbourhood of 𝛼 as follows.

Definition 2.2. Given (𝑋,Ω𝑋,) and 𝛼 ∈ 𝑅 ⊂ Σ ⊂ 𝑋, define local coordinates (𝑢𝛼, 𝑣𝛼) in a
neighbourhood 𝑈𝛼 ⊂ 𝑋 of 𝛼 satisfying:

∙ 𝑑𝑢𝛼 ∧ 𝑑𝑣𝛼 = Ω𝑋 ;
∙ {𝑢𝛼 = constant } defines the leaves of the foliation  ;
∙ (𝑢𝛼, 𝑣𝛼)|𝛼 = (0, 0);
∙ 𝑢𝛼 − 𝑣

2
𝛼 = 0 locally defines Σ.

The first two properties define FD coordinates — see Definition 2.1. Via the change of coor-
dinates given in (15), arbitrary FD coordinates can be transformed to satisfy the remaining two
properties. The four properties uniquely determine the coordinates up to

(𝑢𝛼, 𝑣𝛼) ↦ (𝜁2𝑢𝛼, 𝜁𝑣𝛼), 𝜁3 = 1.

The locally defined function 𝑢 restricts to each Σ′ for [Σ′] ∈ 𝑈Σ, and we denote its critical value
by 𝑢(𝛼′) = 𝜆𝛼([Σ′]). The set of critical values {𝜆𝛼(𝑧1, … , 𝑧g ) ∣ 𝛼 ∈ 𝑅} defines a map

Λ ∶ 𝑈Σ → ℂ𝑅. (21)
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 17 of 55

This map is ambiguous up to the action of 𝜁3 = 1; nevertheless, it is locally well defined when a
choice of FD coordinates ismade. The linearisation, described explicitly in (A.5) in theAppendix,

𝐷Λ ∶ 𝐻0(Σ, 𝐾Σ) → ℂ𝑅

composed with the CohFT induces linear symmetric maps:

𝐻0(Σ, 𝐾Σ)
⊗𝑛 → 𝐻∗(ℎ,𝑛; ℂ). (22)

This does not define a CohFT on the vector space 𝐻0(Σ, 𝐾Σ) — in general, the restriction of a
CohFT to a vector subspace is not a CohFT— because the pairing on𝐻0(Σ, 𝐾Σ) given by

⟨𝜂1, 𝜂2⟩ ∶= ∑
𝛼∈𝑅

Res
𝛼

𝜂1(𝑝)𝜂2(𝑝)

𝑑𝑢𝛼(𝑝)

for 𝜂1, 𝜂2 ∈ 𝐻0(Σ, 𝐾Σ) is not necessarily non-degenerate. For example, when 𝑋 = 𝑇∗𝐶, the
tautological 1-form 𝑣𝑑𝑢|Σ ∈ 𝐻0(Σ, 𝐾Σ) pairs trivially with any 𝜂 ∈ 𝐻0(Σ, 𝐾Σ).
The classes Ωℎ,𝑛(𝜂1,⊗…⊗ 𝜂𝑛) ∈ 𝐻

∗(ℎ,𝑛; ℂ) of a CohFT consist of terms in all degrees.
Among these, the term of degree 3ℎ − 3 + 𝑛 is known as the primary class and measured by
∫ℎ,𝑛

Ωℎ,𝑛(𝜂1,⊗…⊗ 𝜂𝑛). The correlator 𝜔ℎ,𝑛 ∈ 𝑉
⊗𝑛
Σ , which stores intersection numbers of the

tautological psi classes with the image of Ωℎ,𝑛, also defines a linear map

𝜔ℎ,𝑛 ∶ 𝐻
0(Σ, 𝐾Σ)

⊗𝑛 → ℂ

via the natural pairing of 𝑉Σ and 𝐻0(Σ, 𝐾Σ). This gives the primary, that is, top degree, part of
(22) since the pairing annihilates all but the primary differentials inside 𝜔ℎ,𝑛. Note that primary
part ofΩℎ,𝑛 should not be confused with the topological part, underlying any CohFT, given by the
projection ofΩℎ,𝑛 to𝐻0(ℎ,𝑛, ℂ) ≅ ℂ. The projection to𝐻0(ℎ,𝑛, ℂ) defines a two-dimensional
topological field theory on (𝐻, ⟨., .⟩) which is a sequence of 𝑆𝑛-equivariant maps

Ω0ℎ,𝑛 ∶ 𝐻
⊗𝑛 → ℂ

satisfying compatibility conditions that are equivalent to composition of multilinear maps.

2.4 Deformation space associated with Higgs bundles

A particularly interesting class of examples of a deformation spaces of a curve inside a foliated
symplectic surface arises from the geometry of Higgs bundles defined by Hitchin in [28].

Definition 2.3. A Higgs bundle over a compact Riemann surface 𝐶 is a pair (𝐸, 𝜙) where 𝐸 is a
rank 𝑁 holomorphic vector bundle over 𝐶 and 𝜙 ∈ 𝐻0(𝐶,End(𝐸) ⊗ 𝐾𝐶).

Associated to the pair (𝐸, 𝜙) is its spectral curve

Σ = {det(𝜙 − 𝜆𝐼) = 0} ⊂ 𝑇∗𝐶,
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18 of 55 CHAIMANOWONG et al.

which has equation 0 = (−1)𝑁 det (𝜙 − 𝜆𝐼) = 𝜆𝑁 + 𝑎1𝜆𝑁−1 +⋯ + 𝑎𝑁 where 𝑎𝑘 ∈ 𝐻0(𝐶, 𝐾
⊗𝑘
𝐶
). If

the spectral curve is irreducible, then the pair (𝐸, 𝜙) is stable, meaning that for any 𝜙-invariant
subbundle 𝐹 ⊂ 𝐸, that is, 𝜙(𝐹) ⊂ 𝐹 ⊗ 𝐾Σ, we have

𝑐1(𝐹)

rank 𝐹 <
𝑐1(𝐸)

rank 𝐸 .
The spectral curve associated to a pair defines a map from the moduli space  =𝑁,𝑑 of

stable Higgs bundles of rank 𝑁 and degree 𝑑 on a compact Riemann surface 𝐶 of genus g𝐶 > 1,

𝑓 ∶→ .
Here,  is the space of (possibly singular) spectral curves which can be identified with the
following space:

 =
𝑁⨁
𝑗=1

𝐻0(𝐶, 𝐾⊗𝑗
𝐶
).

Fibres of 𝑓 are complex tori and they are singular in general. Let 𝑓 ∶𝑟𝑒g → 𝑟𝑒g be the restric-
tion of 𝑓 to the open subset 𝑟𝑒g ⊂ consisting of smooth fibres. For any point [Σ] ∈ 𝑟𝑒g ,
the associated spectral curve Σ is an irreducible curve of genus g = 𝑁2(g𝐶 − 1) + 1 (which is
calculated via dim = 1 +

∑𝑁
𝑗=1(g𝐶 − 1)(2𝑗 − 1)). The deformation space of Σ ⊂ 𝑇

∗𝐶 coincides
with 𝑟𝑒g . The natural projection 𝜋 ∶ Σ → 𝐶 is a degree 𝑁 map. The foliation is given by
fibres of the projection map 𝜋. We consider only Σ such that the morphism 𝜋 has only double
ramification points.
Fibres over 𝑟𝑒g are naturally identified with Jacobians of the spectral curves Σ for [Σ] ∈ 

which is defined inside the cotangent bundle of the Riemann surface 𝐶. The tangent space of a
fibre is naturally identified with 𝐻1(Σ,Σ). The moduli space 𝑟𝑒g is symplectic and the sym-
plectic form produces a non-degenerate pairing between the tangent space of the base and the
tangent base of the fibre

𝐻0(Σ, 𝐾Σ) ⊗ 𝐻1(Σ,Σ) → ℂ,

which coincides with Serre duality. The base space𝑟𝑒g parametrises embedded Lagrangian Jaco-
bians in𝑟𝑒g and embedded curves Σ ⊂ 𝑋, which are automatically Lagrangian. It is proven in
[27] that the deformation space of a compact holomorphic Lagrangian in a holomorphic symplec-
tic Kähler manfold naturally has a special Kähler structure. Hence, there are two natural special
Kähler structures defined on 𝑟𝑒g . It is proven in [4] that the special Kähler structures coincide
— see also [26].
Denote by 𝑣𝑑𝑢 the tautological 1-form on the cotangent bundle of 𝐶. The pair of holomorphic

coordinate systems (𝜁1, … , 𝜁g ) and (𝜂1, … , 𝜂g ) on𝑈Σ ⊂ 𝑟𝑒g is obtained by integrating the 1-form
𝑣𝑑𝑢 over 𝑎-cycles and 𝑏-cycles of the spectral curve. More precisely,

𝜁𝑖 = ∫𝑎𝑖 𝑣𝑑𝑢, 𝜂𝑖 = ∫𝑏𝑖 𝑣𝑑𝑢.

Given normalised holomorphic differentials 𝜔𝑖 , 𝑖 = 1, … , g on Σ, 𝑣𝑑𝑢 − 𝜁𝑖𝜔𝑖 is holomorphic with
zero 𝑎-periods, so it vanishes, hence:

𝑣𝑑𝑢 = 𝜁𝑖𝜔𝑖,
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 19 of 55

where, as stated in the introduction, we use the convention of summation over repeated indices.
The tautological 1-form gives a canonical primitive of Ω𝑋 , which does not exist for more general
symplectic 𝑋, so we instead use the coordinates 𝑧𝑖 defined in (14) and the related coordinates w𝑖 .
The relation between these coordinates is as follows. For [Σ′] ∈ 𝑈Σ,

𝑧𝑖([Σ′]) = 𝜁𝑖([Σ′]) − 𝜁𝑖([Σ]), w𝑖([Σ′]) = 𝜂𝑖([Σ′]) − 𝜂𝑖([Σ]).

In particular, 𝑧𝑖(Σ) = 0 = w𝑖(Σ). Note that we still have 𝜏𝑖𝑗 =
𝜕
𝜕𝑧𝑖
w𝑗 since 𝜏𝑖𝑗 =

𝜕
𝜕𝜁𝑖
𝜂𝑗 =

𝜕
𝜕𝑧𝑖
(w𝑗 +

constant) = 𝜕
𝜕𝑧𝑖
w𝑗 .

The action of ℂ∗ on fibres of 𝑇∗𝐶 induces an action on  which preserves the conformal type
of the spectral curve, and hence, 𝜏𝑖𝑗 is also preserved. Under this action, 𝑣𝑑𝑢 ↦ 𝜆𝑣𝑑𝑢 for 𝜆 ∈ ℂ∗
hence 𝑧𝑖 ↦ 𝜆𝑧𝑖 and w𝑖 ↦ 𝜆w𝑖 . We have

𝐹0 =
1
2
𝑧𝑖w𝑖

since

𝜕
𝜕𝑧𝑗

1
2
𝑧𝑖w𝑖 =

1
2
w𝑗 +

1
2
𝑧𝑖
𝜕
𝜕𝑧𝑗

w𝑖 =
1
2
w𝑗 +

1
2
𝑧𝑖𝜏𝑖𝑗 =

1
2
w𝑗 +

1
2
𝑧𝑖𝜏𝑗𝑖

=
1
2
w𝑗 +

1
2
𝑧𝑖
𝜕
𝜕𝑧𝑖

w𝑗 =
1
2
w𝑗 +

1
2
w𝑗 = w𝑗,

where the second last equality used the fact that w𝑖 is homogeneous of degree 1 under the ℂ∗
action which is generated by 𝑧𝑖 𝜕

𝜕𝑧𝑖
. For more general symplectic 𝑋 ≠ 𝑇∗𝐶, 𝐹0 does not have the

same simple formula.
For ℎ ⩾ 2, there is a similar formula for 𝐹ℎ:

𝐹ℎ =
1

2ℎ − 2

∑
𝛼

Res
𝑝=𝛼

𝜓(𝑝)𝜔ℎ,1(𝑝)

=
1

2ℎ − 2

g∑
𝑖=1

∮𝑎𝑖 𝜔ℎ,1(𝑝)∮𝑏𝑖 𝑣𝑑𝑢(𝑝) − ∮𝑏𝑖 𝜔ℎ,1(𝑝)∮𝑎𝑖 𝑣𝑑𝑢(𝑝)

=
1

2 − 2ℎ ∮𝑏𝑖 𝜔ℎ,1(𝑝)𝑧
𝑖,

where we sum over indices 𝑖 = 1, … , g in the last expression, 𝜓(𝑝) is a primitive of the restriction
of the tautological 1-form 𝑣𝑑𝑢(𝑝) on Σ − {𝑎𝑖, 𝑏𝑖} and we have used the Riemann bilinear relations.
Note also that𝐹ℎ is homogeneous of degree 2 − 2ℎwhich follows from topological recursion since
inductively the recursion gives 𝜔ℎ,𝑛 ↦ 𝜆2−2ℎ−𝑛𝜔ℎ,𝑛 under the ℂ∗ action.

2.4.1 Rank one case

A rather trivial example is the rank one case which gives the deformation space of the zero
section of a cotangent bundle Σ ⊂ 𝑇∗Σ. The deformation space is  = 𝐻0(Σ, 𝐾Σ) since any defor-
mation of the zero section remains a section. The vector space is isomorphic to its tangent space
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20 of 55 CHAIMANOWONG et al.

𝑇[Σ] = . We have 𝜙 ∈ Γ(, Ω1 ⊗) defined by 𝜙(𝜂) = [𝜂] ∈ 𝐻1(Σ; ℂ) for any 𝜂 ∈ 𝐻0(Σ, 𝐾Σ).
The 𝑎-periods of 𝑣𝑑𝑢 define coordinates 𝑧𝑖 on . The sum 𝑧𝑖[𝜔𝑖], with respect to the basis of nor-
malised holomorphic differentials 𝜔𝑖 , 𝑖 = 1, … , g , represents the general point in  and also the
restriction of the tautological 1-form. The Lagrangian embedding→ ℂ2g is defined globally and
is simply the linear embedding𝐻0(Σ, 𝐾Σ) → 𝐻1(Σ; ℂ). The prepotential is 𝐹0 =

1
2
𝑧𝑖w𝑖 =

1
2
𝑧𝑖𝑧𝑗𝜏𝑖𝑗

where 𝜏𝑖𝑗 is a constant on , and the deformation tensor vanishes identically: 0 = 𝐴̄Σ ∈ 𝑉Σ ⊗
𝑉Σ ⊗ 𝑉Σ. In order to agree with the more general construction of coordinates 𝑧𝑖 for a symplectic
surface, we would shift the coordinates by a constant 𝑧𝑖 − 𝑧𝑖([Σ]).
Note that for smooth symplectic structures, by Weinstein’s theorem [39], the neighbourhood

of any Lagrangian submanifold is symplectomorphic to a neighbourhood of the zero section of
the Lagrangian submanifold in its cotangent bundle equippedwith its canonical symplectic struc-
ture. Unlike in the smooth category, a neighbourhood of a complex submanifold is not necessarily
biholomorphically equivalent to a neighbourhood of a complex submanifold in the total space of
its normal bundle. If a local holomorphic symplectomorphism exists between neighbourhoods of
Σ ⊂ 𝑋 and Σ ⊂ 𝑇∗Σ, then the prepotential of the former must coincide with the prepotential in
the rank one case above.

2.5 K3 surfaces

A rich class of examples of foliated symplectic surfaces arise from elliptic fibrations of K3 surfaces
equipped with their unique (up to scale) holomorphic symplectic structure. Elliptic K3 surfaces
form a dense codimension one subset of the moduli space of complex K3 surfaces. Recall that a
K3 surface is called elliptic when there is a surjective morphism 𝜋 ∶ 𝑋 → ℙ1 whose generic fibre
is a smooth curve of genus one. Such morphisms are always flat, and therefore, all fibres have
arithmetic genus one. The foliation  on any such surface 𝑋 is defined by the fibres of the elliptic
fibration. The foliation is singular at a finite set of points, which can be avoided by a generic
spectral curve inside the K3 surface.
Elliptic surfaces𝑋 → ℙ1 containing amulti-sectionΣ ⊂ 𝑋 can be described by theirWeierstrass

form:

𝑦2 = 𝑥3 + 𝑓(𝑧)𝑥 + g(𝑧),

where 𝑥, 𝑦, 𝑧 are local coordinates and 𝑓(𝑧), g(𝑧) are polynomials of deg 𝑓 ⩽ 8, deg g ⩽ 12. This
equation defines an affine surface in ℂ3 with compactification 𝑋. The surface is equipped with
the holomorphic symplectic form

𝜔 =
𝑑𝑥 ∧ 𝑑𝑧
𝑦

.

For a given polynomial

𝑝(𝑧) = 𝑢0 + 𝑢1𝑧 +⋯ + 𝑢𝑚𝑧
𝑚,

one obtains a hyperelliptic curve Σ ⊂ 𝑋 defined via the equation 𝑥 = 𝑝(𝑧), or equivalently,

𝑦2 = 𝑝(𝑧)3 + 𝑓(𝑧)𝑝(𝑧) + g(𝑧).
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For 𝑚 ⩽ 4, deg 𝑓 ⩽ 2𝑚 and deg g ⩽ 3𝑚, this defines an (𝑚 + 1)-dimensional deformation space
 of genus 𝑚 + 1 curves parametrised by {𝑢0, … , 𝑢𝑚}. Examples of such families of hyperelliptic
curves can be found in [38]. A choice of 𝑎-cycles on Σ together with the foliation defines a spectral
curve as in Section 2.2.1 and Theorem 1 applies. It would be interesting to explicitly calculate the
consequences of Theorem 1.
Another family of examples of elliptic K3 surfaces arises from quartics inℙ3, such as the Fermat

quartic:

𝑋 =
{
𝑧40 + 𝑧

4
1 + 𝑧

4
2 + 𝑧

4
3 = 0

}
⊂ ℙ3.

The set of hyperplanes in ℙ3 will be used to define both the deformation space  of curves in 𝑋
and the elliptic fibration 𝑋 → ℙ1 as follows. For 𝐻 a hyperplane in ℙ3 intersecting 𝑋 generically,
let Σ = 𝐻 ∩ 𝑋 be an embedded genus 3 curve. Its deformation space  is an open set in the set of
hyperplanes ℙ3d𝑢𝑎𝑙 in ℙ

3. Consider a line in ℙ3 that is contained in𝑋, that is, 𝐿 ⊂ 𝑋. The ℙ1-family
of hyperplanes inℙ3 that contain 𝐿 defines the elliptic fibration𝑋 → ℙ1. A choice of 𝑎 and 𝑏 cycles
on Σ defines correlators on 𝜔ℎ,𝑛 on Σ. Again, Theorem 1 applies in this case.
We can replace the genus 3 curve Σ ⊂ 𝑋 in the previous example by a genus 1 curve. Instead,

choose a hyperplane in ℙ3 intersecting 𝑋 non-generically. Given two such lines 𝐿1, 𝐿2 ⊂ ℙ3 and
a hyperplane 𝐻 containing 𝐿1 define the elliptic curve Σ = 𝐻 ∩ 𝑋 − 𝐿 with a one-dimensional
deformation space , and use 𝐿2 to define a foliation on 𝑋. In other words, given two different
elliptic fibrations, we use one for the foliation and the other for the family of embedded curves.

3 AIRY STRUCTURES

In this section, we give the formulation of topological recursion due to Kontsevich and Soibelman
[32]. Given a quadratic Lagrangian ⊂ 𝑊, we describe the corresponding Airy structure which is
a collection of tensors satisfying𝐴, 𝐵 and 𝐶 on 𝑉 satisfying quadratic constraints. We then define
themain example given by the quadratic LagrangianKS defined in (8)which gives rise to abstract
topological recursion (34).

3.1 Tate spaces

We outline the algebraic background needed to define an Airy structure, on an infinite-
dimensional Tate space 𝑊, over a field 𝐤 of characteristic zero with discrete topology, from
[32]. Tate spaces can be used as a model for an infinite-dimensional symplectic (topological)
vector space.
Let 𝑉,𝑈 be topological vector spaces, with discrete toplogy, both over a field 𝐤 with discrete

topology. Let ∗ denote the topological dual. Recall the discrete topology defines all subsets as open
sets.

Definition 3.1 (Tate space). A Tate space𝑊 is the direct sum

𝑊 = 𝑉 ⊕𝑈∗.

As 𝑈 has discrete topology, 𝑈∗ has locally linearly compact topology.
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22 of 55 CHAIMANOWONG et al.

A topological vector space 𝑉′ is linearly topologised if there is a neighbourhood basis at zero of
linear subspaces, and is Hausdorff. A linear variety 𝐴 is a subset of the form 𝑣 + 𝑈′ where𝑈′ is a
linear subspace of 𝑉′. 𝐴 is closed if 𝑈′ is closed (or respectively open). Finally, a linearly topolo-
gised vector space is linearly compact if collections of linear varieties with the finite intersection
property are non-empty [33, p. 74].
Setting𝑈 = 𝑉, there is an isomorphism 𝑉 ≅ (𝑉∗)∗ [18]. With𝑈 = 𝑉, this gives𝑊 the property

𝑊 ≅ 𝑊∗, making𝑊 a strong symplectic vector space, with a polarisation given by 𝑉.
AnAiry structure characterises a quadraticLagrangian subvariety in the polarised symplectic

vector space𝑊. Define as the zero set of the ideal generated by a collection of quadratic polyno-
mials. ChooseDarboux coordinates {𝑥𝑘 ∣ 𝑘 ∈ 𝐼} on𝑉∗ ≅ 𝐿 = 𝑇0 indexed by a set 𝐼 ⊆ ℕ, and note
𝑥𝑘 ∈ (𝑉∗)∗ ≅ 𝑉, togetherwith coordinates {𝑦𝑘 ∣ 𝑘 ∈ 𝐼} on𝑉, so that 𝑦𝑘 ∈ 𝑉∗ ≅ 𝐿. The coordinates
𝑥𝑘 and 𝑦𝑘 can also be treated as formal variables in a coordinate ring. For the main infinite-
dimensional example 𝑊 in this paper, we will choose a particular set of Darboux coordinates,
given in Definition 3.3.
When 𝑊 is infinite-dimensional and 𝐼 = ℕ, we construct the coordinate ring 𝐤[𝑊] via the

symmetric algebra:

S(𝑊∗) =
⨁

S𝑘(𝑉∗ ⊕ 𝑉) =
⨁
𝑘

⨁
𝜆⊢𝑘

S𝜆(𝑉) ⊗ S𝜆(𝑉∗) ≅ 𝐤[𝑉] ⊗ 𝐤[𝑉∗] ≅ 𝐤[𝑊],

where ⊗ is algebraic tensor product. Elements of 𝐤[𝑊] are formal combinations of variables 𝑥∙
and 𝑦∙, 𝑥𝑘 ≠ 0 only for a 𝑘 in a finite number of 𝑘 ∈ 𝐼, 𝑥∙ terms are bounded in degree and 𝑦∙
terms are bounded in degree.
Additionally, there is a natural isomorphism between completed tensor products, and a ring of

formal power series in infinite variables,

Ŝ(𝑊∗) = 𝐤⟦𝑊⟧,
where 𝐤⟦𝑊⟧ is given by completion at the maximal ideal ⟨𝑥∙, 𝑦∙⟩, allowing for formal sums of
unbounded degree in 𝑥∙ and 𝑦∙.
The symplectic structure on the vector space𝑊 corresponds naturally to a Poisson bracket on

𝐤[𝑊] and on the completion 𝐤⟦𝑊⟧. The Poisson bracket is a map
{∙, ∙} ∶ 𝐤[𝑊] × 𝐤[𝑊] → 𝐤[𝑊]

defined by the coordinates,

{𝑦𝑗, 𝑥
𝑖} ∶= 𝛿𝑖𝑗, {𝑥𝑖, 𝑥𝑗} ∶= 0, {𝑦𝑖, 𝑦𝑗} ∶= 0

and extending to polynomials and formal series via the Leibniz rule. This gives 𝑘[𝑊] the structure
of a Lie algebra.

Example 3.1. Let (Σ, 𝑅) be a curve equipped with a divisor 𝑅 ⊂ Σ. Equip Σ with a choice of 𝑎-
cycles in 𝐻1(Σ; ℤ). The main example we consider in this paper is 𝑉Σ defined in (26) to be the
vector space of residueless global meromorphic differentials on Σ, holomorphic on Σ − 𝑅 with
zero 𝑎-periods. It is equipped with the discrete topology.
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3.2 Airy structures

Consider a quadratic Lagrangian  in𝑊 defined by a (possibly infinite) collection of quadratic
polynomials, 𝐻𝑖 ∈ 𝐤[𝑊] given by

𝐻𝑖 = −𝑦𝑖 + 𝑎𝑖𝑗𝑘 𝑥
𝑗𝑥𝑘 + 2𝑏𝑘𝑖𝑗 𝑥

𝑗𝑦𝑘 + 𝑐
𝑗𝑘
𝑖
𝑦𝑗𝑦𝑘, 𝑖, 𝑗, 𝑘 ∈ 𝐼 ⊆ ℕ,

where we sum over repeated indices. Linearising𝐻𝑖 defines the tangent space at 0 by 𝑇0 = {𝑦𝑖 =
0}.
With respect to a polarisation, that is, a choice of𝑉 ⊂ 𝑊 such that𝑊 ≅ 𝑉 ⊕𝑉∗, the coefficients

naturally form tensors:

𝐴 = (𝑎𝑖𝑗𝑘) ∈ 𝑉 ⊗ 𝑉 ⊗𝑉,

𝐵 = (𝑏𝑘𝑖𝑗) ∈ 𝑉
∗ ⊗ 𝑉 ⊗ 𝑉,

𝐶 = (𝑐𝑗𝑘
𝑖
) ∈ 𝑉∗ ⊗ 𝑉∗ ⊗ 𝑉,

(23)

where (𝑎𝑖𝑗𝑘) ∶=
1
3!
𝑎𝑖𝑗𝑘𝑥

𝑖𝑥𝑗𝑥𝑘, (𝑏𝑘
𝑖𝑗
) ∶= 1

2!
𝑏𝑘
𝑖𝑗
𝑥𝑖𝑥𝑗𝑦𝑘 and (𝑐

𝑗𝑘
𝑖
) ∶= 1

2!
𝑐𝑗𝑘
𝑖
𝑥𝑖𝑦𝑗𝑦𝑘.

Any functions 𝐻𝑖 which define a Lagrangian submanifold define an ideal with respect to the
Poisson bracket — see, for example, [40]. When 𝐻𝑖 are quadratic, this produces a Lie algebra 𝔤
with structure constants g𝑘

𝑖𝑗
, given by the closure of the Poisson bracket from 𝐤[𝑊]:

{𝐻𝑖, 𝐻𝑗} = g𝑘𝑖𝑗𝐻𝑘.

The closure of this Lie bracket induces the following constraints on the tensors𝐴, 𝐵 and 𝐶 known
as an Airy structure on 𝑉.

Definition 3.2 (Airy structure). An Airy structure on 𝑉 is a collection of tensors (23) satisfying
the homogeneous constraints:

2
(
𝑏𝑘𝑗𝑖 − 𝑏

𝑘
𝑖𝑗

)
= g𝑘𝑖𝑗,

4
(
𝑎𝑗𝑘𝑠𝑏

𝑘
𝑖𝑡 − 𝑎𝑖𝑘𝑠𝑏

𝑘
𝑗𝑡

)
= g𝑘𝑖𝑗𝑎𝑘𝑠𝑡,

2
(
𝑎𝑗𝑘𝑠𝑐

𝑘𝑡
𝑖 − 𝑎𝑖𝑘𝑠𝑐

𝑘𝑡
𝑗 + 𝑏

𝑘
𝑖𝑠𝑏

𝑡
𝑗𝑘 − 𝑏

𝑡
𝑖𝑘𝑏

𝑘
𝑗𝑠

)
= g𝑘𝑖𝑗𝑏

𝑡
𝑘𝑠,

2
(
𝑏𝑠𝑗𝑘𝑐

𝑘𝑡
𝑖 − 𝑏

𝑠
𝑖𝑘𝑐

𝑘𝑡
𝑗 + 𝑏

𝑡
𝑗𝑘𝑐

𝑘𝑠
𝑖 − 𝑏𝑡𝑖𝑘𝑐

𝑘𝑠
𝑗

)
= g𝑘𝑖𝑗𝑐

𝑠𝑡
𝑘 .

Airy structures were introduced by Kontsevich and Soibelman in [32] and the homogeneous
constraints appeared in [1]. Their algebraic structure was generalised in [2, 6].
We study the Lagrangian  in formal neighbourhoods of the origin 0 ∈ 𝑊. This approach is

necessary when𝑊 is infinite-dimensional since in that case Spec(𝐤[𝑊]∕𝐼()) defines a point in
𝑊, for 𝐼() = ⟨𝐻1,𝐻2, …⟩. In a formal neighbourhood of the origin 0 ∈ 𝑊,  corresponds to a
formal scheme, which we also denote by . It is given by completion of 𝐤[𝑊]∕𝐼 along a maximal
ideal𝔪 = ⟨𝑥∙, 𝑦∙⟩ (representing zero in𝑊). The quotient of 𝐤[𝑊]∕𝐼 by𝔪𝑘+1 corresponds to the
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24 of 55 CHAIMANOWONG et al.

𝑘th formal neighbourhood. So, the colimit of the quotient gives

 = colim
𝑛

Spec
(
𝐤[𝑊]∕{𝐼,𝔪𝑛+1}

)
via the projective limit functor.
The Lagrangian is realised as a graph via a fixed-point iteration as follows. Put𝐻𝑖 = −𝑦𝑖 + 𝐻̂𝑖

so that 𝐻̂𝑖 is quadratic in {𝑥𝑗, 𝑦𝑘}. The image of  in the 𝑛th formal neighbourhood of 0 ∈ 𝑊 is
the graph:

{𝑦(𝑛)
𝑖
= 𝑎𝑖𝑗𝑘𝑥

𝑗𝑥𝑘 + 2𝑏𝑘𝑖𝑗𝑎𝑘𝓁𝑚𝑥
𝑗𝑥𝓁𝑥𝑚 +⋯ ∣ 𝑖 = 1, 2, 3, …}. (24)

where the polynomial 𝑦(𝑛)
𝑖

is obtained iteratively by

𝑦(𝑛+1)
𝑖

= 𝐻̂𝑖(𝑥
𝑗, 𝑦(𝑛)

𝑘
).

We have 𝑦(1)
𝑖
= 0 hence 𝑦(2)

𝑖
= 𝑎𝑖𝑗𝑘𝑥

𝑗𝑥𝑘 and 𝑦(3)
𝑖

is the cubic expression above. This procedure
produces 𝑦(𝑛)

𝑖
as a degree 𝑛 polynomial in 𝑥𝑗 defined in the 𝑛th formal neighbourhood of 0 ∈ 𝑊,

for any 𝑛. Since 𝑦(𝑛+1)
𝑖

and 𝑦(𝑛)
𝑖

agree up to degree 𝑛, we can drop the superscript 𝑦(𝑛)
𝑖

and write
𝑦𝑖({𝑥

∙}) when the 𝑛th formal neighbourhood is understood.

Example 3.2. Consider the conic −𝑦 + 𝑥2 + 2𝑥𝑦 + 𝑦2 = 0. Solving for 𝑦 and taking the formal
expansion of the square root gives 𝑦(𝑥) = 𝑢0(𝑥) = 𝑥2 + 2𝑥3 + 5𝑥4 +⋯ + (2𝑛)!

(𝑛+1)!𝑛!
𝑥𝑛+1 +⋯. The

coefficients are Catalan numbers, which count rooted binary trees.

Quite generally, any Lagrangian submanifold can be represented locally via a generating func-
tion. The restriction of a primitive of a symplectic form to a Lagrangian submanifold is exact
since integrals around contractible closed loops vanish by the Lagrangian condition. Apply this
to the primitive −𝑦𝑖𝑑𝑥𝑖 ofΩ in a formal neighbourhood of 0 ∈  to get a function 𝑆0 defined in a
neighbourhood in𝑊 of 0 ∈  satisfying

𝑦𝑖𝑑𝑥
𝑖 = 𝑑𝑆0({𝑥

𝑖}).

Explicitly

𝑆0(𝑥) =
1
3
𝑎𝑖𝑗𝑘𝑥

𝑖𝑥𝑗𝑥𝑘 +
1
6

(
𝑏𝑘𝑖𝑗𝑎𝑘𝓁𝑚 + 𝑏

𝑘
𝑖𝓁𝑎𝑘𝑗𝑚 + 𝑏

𝑘
𝑖𝑚𝑎𝑘𝑗𝓁

)
𝑥𝑖𝑥𝑗𝑥𝓁𝑥𝑚 +⋯

The symmetry of 𝑆0(𝑥) uses the closure under the Poisson bracket {𝐻𝑖, 𝐻𝑗} = g𝑘
𝑖𝑗
𝐻𝑘. A

consequence of the symmetry is

𝑏𝑘𝑖𝑗𝑎𝑘𝓁𝑚 + 𝑏
𝑘
𝑖𝓁𝑎𝑘𝑗𝑚 + 𝑏

𝑘
𝑖𝑚𝑎𝑘𝑗𝓁 = 𝑏

𝑘
𝑗𝑖𝑎𝑘𝓁𝑚 + 𝑏

𝑘
𝑗𝓁𝑎𝑘𝑖𝑚 + 𝑏

𝑘
𝑗𝑚𝑎𝑘𝑖𝓁 ,

which agrees with the constraints in Definition 3.2. For example, we see that

𝜕
𝜕𝑥𝑖

𝑆0,4 =
4
6
(𝑏𝑘𝑖𝑗𝑎𝑘𝓁𝑚 + 𝑏

𝑘
𝑖𝓁𝑎𝑘𝑗𝑚 + 𝑏

𝑘
𝑖𝑚𝑎𝑘𝑗𝓁)𝑥

𝑗𝑥𝓁𝑥𝑚 = 2𝑏𝑘𝑖𝑗𝑎𝑘𝓁𝑚𝑥
𝑗𝑥𝓁𝑥𝑚,

which gives the degree 3 part of 𝑦(𝑛)
𝑖

for 𝑛 ⩾ 3 as required.
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 25 of 55

3.3 Tate spaces associated to a curve in a symplectic surface

In this section, a bundle of Tate spaces is associated to curves in a symplectic surface. Following
[32], define the symplectic (Tate) vector space

𝑊Airy =

{
𝐽 =

∑
𝑛∈ℤ

𝐽𝑛𝑧
−𝑛 𝑑𝑧

𝑧
∣ 𝐽0 = 0, ∃𝑁 such that 𝐽𝑛 = 0, 𝑛 > 𝑁

}
with symplectic form

Ω𝑊Airy
(𝜂1, 𝜂2) = Res

𝑧=0
𝑓1𝜂2, 𝑑𝑓1 = 𝜂1, 𝜂2 ∈ 𝑊Airy.

The skew-symmetric bilinear form Ω𝑊Airy
is translation-invariant hence closed. It is non-

degenerate because for 𝐽 =
∑
𝑛⩾𝑘 𝐽𝑛𝑧

−𝑛 𝑑𝑧
𝑧
∈ 𝑊Airy, with 𝐽𝑘 ≠ 0, then Ω𝑊Airy

(𝐽, 𝑧𝑘 𝑑𝑧
𝑧
) ≠ 0. The

locally holomorphic differentials define𝐿Airy = {𝐽 ∣ 𝐽𝑛 = 0, 𝑛 > 0} ⊂ 𝑊Airy, which is a Lagrangian
subspace tangent to the quadratic Lagrangian Airy ⊂ 𝑊Airy defined in Example 1.1.
Given a compact curve Σ, a non-empty finite subset 𝑅 ⊂ Σ and local coordinates 𝑧𝛼 defined in

a neighbourhood of 𝛼 ∈ 𝑅, define𝑊 = (𝑊Airy)
𝑅. Each copy of𝑊Airy uses the local coordinate 𝑧𝛼.

The subspace 𝐿 = (𝐿Airy)𝑅 ⊂ 𝑊 consists of locally holomorphic differentials. Define 𝐺Σ ⊂ 𝑊 by

𝐺Σ = {𝜂 ∈ 𝐻
0(Σ,Ω1(Σ − 𝑅))meromorphic on Σ ∣ Res

𝑟∈𝑅
𝜂 = 0}, (25)

where we identify 𝐺Σ with its image under the injective map 𝐺Σ → 𝑊. Given a choice of Torelli
basis on Σ, define

𝑉Σ = {𝜂 ∈ 𝐺Σ ∣ ∮𝑎𝑖 𝜂 = 0, 𝑖 = 1, … , g}. (26)

We have 𝐿 ⊕ 𝑉Σ = 𝑊, proven in (31), and hence 𝑉Σ defines a polarisation

𝑊 ≅ 𝑉Σ ⊕ 𝑉∗Σ.

A family of pairs (Σ, 𝑅) is obtained naturally out of a foliated symplectic surface. Let (𝑋, 𝜔,)
be a symplectic surface with a Lagrangian foliation  . Consider a curve Σ ⊂ 𝑋. The curve Σ ⊂ 𝑋
and choice of Torelli basis determines 𝑉Σ ⊂ 𝑊, defined to be those residueless differentials on
Σ with zero 𝑎-periods. Recall that  → , defined in (11), is a vector bundle with fibre [Σ] =
𝐻1(Σ; ℂ) ≅ ℂ2g and 𝔾 →  is a vector bundle with fibre 𝐺Σ. Define [.] ∶ 𝔾 →  which maps a
residueless meromorphic differential to its cohomology class.
The quadratic Lagrangian KS ⊂ 𝑊 defined in a formal neighbourhood of 0 ∈ 𝑊 by (8) can

be alternatively defined via the following residue constraints [32]. Choose local FD coordinates
(𝑢𝛼, 𝑣𝛼) in a neighbourhood 𝑈𝛼 ⊂ 𝑋 of 𝛼 satisfying the properties of Definition 2.2.
A point 𝜂 ∈ KS satisfies the following residue constraints:

Res
𝛼

(
𝑣𝛼 −

𝜂

𝑑𝑢𝛼

)
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0, 𝑚 ⩾ 1, (27)

Res
𝛼

(
𝑣𝛼 −

𝜂

𝑑𝑢𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0, 𝑚 ⩾ 0. (28)
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26 of 55 CHAIMANOWONG et al.

The condition Res 𝛼 𝜂𝑢
𝑚
𝛼 = 0 for 𝑚 ⩾ 0 is equivalent to 𝜂 having skew-invariant principal part

under each local involution 𝜎𝛼 defined by  .
It is convenient to express the quadratic Lagrangian KS ⊂ 𝑊 in the form of Section 3.2 with

respect to the following choice of Darboux coordinates.

Definition 3.3. Given (Σ, 𝑅), choose Darboux coordinates {𝑥𝑖, 𝑦𝑖} on𝑊 satisfyingΩ = 𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 ,
𝑥𝑖 ∈ 𝑉Σ ⊂ 𝑊 ≅ 𝑊∗ such that

1
2𝜋𝑖 ∮𝑏𝑗 𝑥

𝑘 = 𝛿𝑗𝑘, 𝑗 ∈ {1, … , g}, 𝑘 ∈ ℕ

and 𝑦𝑖 ∈ 𝐿 ⊂ 𝑊.

The coordinates {𝑥𝑖, 𝑦𝑖} satisfy the following properties.

(1) [𝑥𝑖] = 0 for 𝑖 > g .
(2) 𝑦𝑖 = 𝜔𝑖 , the normalised holomorphic differential, for 𝑖 = 1, … , g .

The first property uses the fact that ∮𝑎𝑗 𝑥𝑖 = 0 since 𝑥𝑖 ∈ 𝑉Σ, and combined with ∮𝑏𝑗 𝑥𝑖 = 0, we
see that all periods vanish hence so does the cohomology class [𝑥𝑖].
The second property uses Ω𝑊 = 𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖 and the Riemann bilinear relations to deduce

Ω𝑊(𝜔𝑖, 𝑥
𝑗) = 𝛿𝑖𝑗 . Hence, 𝑦𝑖 = 𝜔𝑖 follows from the non-degeneracy of Ω𝑊 .

For the existence of coordinates {𝑥𝑖, 𝑦𝑖} satisfying the conditions of Definition 3.3, use the fact
that the map 𝐺Σ → 𝐻1(Σ; ℂ) is surjective. So, there exists 𝑥𝑖 , 𝑖 = 1, … , g satisfying 1

2𝜋𝑖
∮𝑏𝑗 𝑥𝑖 = 𝛿𝑖𝑗 .

Then, for 𝑖 > g , complete {𝑥𝑖 ∣ 𝑖 = 1, … , g} to a basis of meromorphic differentials; for 𝑖 = 𝑖(𝛼, 𝑛)
where 𝛼 ∈ 𝑅 and 𝑛 ∈ ℕ, let

𝑥𝑖0 = 𝑑(𝑧
−𝑛
𝛼 ) + holomorphic terms ∈ 𝑉Σ

(by the Hodge decomposition theorem) and also let

𝑥𝑖 = 𝑥𝑖0 −
g∑
𝑗=1

𝑥𝑗
1
2𝜋𝑖 ∮𝑏𝑗 𝑥

𝑖
0.

In terms of 𝑥𝑖 , we have

𝑦0𝑖 =
1
𝑛
𝑑(𝑧𝑛𝛼) +

g∑
𝑗=1

𝜔𝑗
1
2𝜋𝑖 ∮𝑏𝑗 𝑥

𝑖
0

for 𝑖 > g . Then, define

𝑦𝑖 = 𝑦
0
𝑖 −

g∑
𝑗=1

𝑦𝑗Ω𝑊(𝑦
0
𝑖 , 𝑥

𝑗).

The coordinates {𝑥𝑖, 𝑦𝑖} from Definition 3.3 are not unique, since, for example, 𝑥1 ↦ 𝑥1 + 𝑥g+1

and 𝑥𝑖 ↦ 𝑥𝑖 , 𝑖 > 1 (which induces a linear change of the variables 𝑦𝑖) also satisfies the conditions.
However, the set of vector fields

𝜕
𝜕𝑥1

,
𝜕
𝜕𝑥2

, … ,
𝜕
𝜕𝑥g

,
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is well defined independent of the ambiguity in the choice of coordinates {𝑥𝑖, 𝑦𝑖}. This can be seen
in two ways. We have

𝜕
𝜕𝑥𝑖

= 𝜔𝑖, 𝑖 = 1, … , g ,

where the normalised holomorphic differential𝜔𝑖 represents a vector field independent of coordi-
nate choices. Or more directly, the linear change 𝑥1 ↦ 𝑥1 + 𝑥g+1 and 𝑥𝑖 ↦ 𝑥𝑖 induces 𝜕

𝜕𝑥1
↦ 𝜕

𝜕𝑥1

and 𝜕
𝜕𝑥g+1

↦ 𝜕
𝜕𝑥g+1

+ 𝜕
𝜕𝑥1

leaving 𝜕
𝜕𝑥1

invariant.

3.4 Symplectic reduction

Consider a symplectic manifold (𝑀, 𝜔) that admits a proper Hamiltonian action of an abelian Lie
group 𝐺 and an invariant moment map 𝜇 ∶ 𝑀 → 𝔤∗. The moment map is characterised by

𝜔(𝜉𝑢(𝑚), ⋅) = 𝑑⟨𝜇(𝑚), 𝑢⟩, (29)

where 𝑢 ∈ 𝔤 defines the vector field 𝜉𝑢 on𝑀 by 𝜉𝑢(𝑚) =
𝑑
𝑑𝑡
(g(𝑡) ⋅𝑚)|𝑡=0 and g ′(0) = 𝑢.

For any regular value 𝑎 of 𝜇, define the symplectic quotient

𝑀⫽𝐺 ∶= 𝜇−1(𝑎)∕𝐺.

Then𝑀⫽𝐺 inherits a symplectic form (depending on 𝑎).
Apply these ideas to a symplectic vector space (𝑊,𝜔) equipped with a translation-invariant

symplectic form𝜔. Let𝑈 ⊂ 𝑊 be an isotropic subspace, so𝜔|𝑈 = 0 or equivalently𝑈 ⊂ 𝑈⟂. Then
𝑈 acts on𝑊 by translations, and hence, preserves 𝜔. The moment map 𝜇 is given by the quotient
map

0 → 𝑈⟂ → 𝑊
𝜇
→ 𝑈∗ → 0

because 𝜔(𝑢, 𝑣) = ⟨𝜇(𝑣), 𝑢⟩, ∀𝑢, 𝑣 ∈ 𝑊 agrees with (29) (since 𝑢 = 𝜉𝑢(𝑚) and 𝑑⟨𝜇(𝑚), 𝑢⟩(𝑣) =⟨𝜇(𝑣), 𝑢⟩). Hence, 𝑈⟂ = 𝜇−1(0) and the symplectic quotient is given by:
𝑊⫽𝑈 ∶= 𝑈⟂∕𝑈.

The symplectic form𝜔 on𝑊⫽𝑈 is defined by𝜔(𝑣1, 𝑣2) = 𝜔(𝑣1, 𝑣2)where 𝑣𝑖 ∈ 𝑈⟂ is any lift of 𝑣𝑖 ∈
𝑈⟂∕𝑈. The right-hand side is independent of the lift since 𝜔(𝑣1 + 𝑢, 𝑣2) = 𝜔(𝑣1, 𝑣2) for any 𝑢 ∈
𝑈. The 2-form 𝜔 is closed since it is translation invariant. It is non-degenerate since 𝜔(𝑣1, 𝑣2) =
𝜔(𝑣1, 𝑣2) = 0 for all 𝑣2; hence, all 𝑣2 implies that 𝑣1 ∈ 𝑈 hence 𝑣1 ≡ 0.
To apply this to 𝐺Σ ⊂ 𝑊 defined by the pair (Σ, 𝑅), we need the following.

Lemma 3.3 [32]. 𝐺Σ ⊂ 𝑊 is coisotropic.

Proof. We first show that 𝐺Σ and 𝐿 intersect transversally, that is,

𝐺Σ + 𝐿 = 𝑊. (30)
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28 of 55 CHAIMANOWONG et al.

Define

𝑊𝑘 = {𝐽 ∈ 𝑊 ∣ 𝐽𝑛 = 0, 𝑛 ⩾ 𝑘},

so 𝐻 = 𝑊1 ⊂ 𝑊2 ⊂ … ⊂ 𝑊𝑘 ⊂ 𝑊𝑘+1 ⊂ … ⊂ 𝑊 = ∪𝑘>0𝑊𝑘. We have dim(𝑊𝑘∕𝑊𝑘−1) = |𝑅| and
by Riemann–Roch, this vector space can be represented by elements of 𝐺Σ since

dim(𝑊𝑘 ∩ 𝐺Σ) − dim(𝑊𝑘−1 ∩ 𝐺Σ)

= dim𝐻0(Σ, 𝐾Σ(𝑘𝑅)) − dim𝐻
0(Σ, 𝐾Σ((𝑘 − 1)𝑅))

= 𝑘|𝑅| + 1 − g − ((𝑘 − 1)|𝑅| + 1 − g) = |𝑅|.
Hence (𝑊𝑘 ∩ 𝐺Σ) + 𝐿 = 𝑊𝑘 and (30) follows by taking the union over 𝑘 > 0.
Define 𝑉Σ ⊂ 𝐺Σ to consist of those differentials with vanishing 𝑎-periods. It is easy to see that

the proof of (30) can be adjusted to yield:

𝑉Σ ⊕ 𝐿 = 𝑊, (31)

since the elements of𝑊𝑘 ∩ 𝐺Σ can be chosen to be normalised to have vanishing 𝑎-periods.
We next show that 𝐺⟂Σ ⊂ 𝑉Σ. Let 𝜂1 + 𝓁 ∈ 𝐺⟂Σ for 𝜂1 ∈ 𝑉Σ and 𝓁 ∈ 𝐿 by (31). Then Ω𝑊(𝜂1 +

𝓁, 𝜂2) = 0 for all 𝜂2 ∈ 𝑉Σ since 𝜂1 + 𝓁 annihilates all elements of 𝐺Σ, in particular those from 𝑉Σ.
But Ω𝑊(𝜂1, 𝜂2) = 0 by the Riemann bilinear relations:

∑
Res
𝑟∈𝑅

𝑓1𝜂2 =
1
2𝜋𝑖

g∑
𝑗=1

∮𝑏𝑗 𝜂1 ∮𝑎𝑗 𝜂2 − ∮𝑏𝑗 𝜂2 ∮𝑎𝑗 𝜂1 =
1
2𝜋𝑖 ∫Σ[𝜂1] ∧ [𝜂2] (32)

since all 𝑎-periods vanish in the middle expression of (32). Here, 𝑑𝑓1 = 𝜂1 for a locally defined
function 𝑓1. Hence,Ω𝑊(𝓁, 𝜂2) = 0 for all 𝜂2 ∈ 𝑉Σ. But 𝜔 is symplectic, so for any non-zero 𝓁 ∈ 𝐿,
there is 𝜂2 ∈ 𝑉Σ such that Ω𝑊(𝓁, 𝜂2) ≠ 0. We conclude that 𝓁 = 0 so 𝜂1 + 𝓁 = 𝜂1 ∈ 𝑉Σ, hence

𝐺⟂Σ ⊂ 𝑉Σ ⊂ 𝐺Σ

as required. □

Strengthening Lemma 3.3, elements of 𝐺⟂Σ , are exact, that is,

𝐺⟂Σ = {𝜂 = 𝑑𝑓, 𝑓 holomorphic on Σ − 𝑅}.

To show this, firstly note that the inclusion of exact differentials into𝐺⟂Σ follows from the fact that
if 𝜂1 = 𝑑𝑓1 for a globalmeromorphic function 𝑓1, then

∑
Res 𝑟∈𝑅 𝑓1𝜂2 = 0 since it is the sum of

the residues of the meromorphic differential 𝑓1𝜂2.
For the other direction, by Lemma 3.3, any 𝜂1 ∈ 𝐺⟂Σ lives in𝐺Σ; hence, it is (the local expansion

of) a globally defined meromorphic differential on Σ. The 𝑏-periods of 𝜂1 can be calculated using
(32). Let𝜔𝑖 , 𝑖 = 1, … , g be the normalised holomorphic differentials onΣ, so ∮𝑎𝑗 𝜔𝑖 = 𝛿𝑖𝑗 .We have

∮𝑏𝑗 𝜂1 = ∮𝑎𝑗 𝜔𝑗 ∮𝑏𝑗 𝜂1 − ∮𝑎𝑗 𝜂1 ∮𝑏𝑗 𝜔𝑗 = Ω𝑊(𝜂1, 𝜔𝑗) = 0
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since 𝜔𝑗 ∈ 𝐺Σ and 𝜂1 ∈ 𝐺⟂Σ . But the residues of 𝜂1 and all of its 𝑎-periods and 𝑏-periods vanish.
Hence,

𝑓(𝑝) ∶= ∫
𝑝

𝑝0

𝜂1

is well defined and 𝜂1 is exact.
Thus, the symplectic quotient of𝑊 is given by

𝑊⫽𝐺⟂Σ ∶= 𝐺Σ∕𝐺
⟂
Σ ≅ Σ = 𝐻

1(Σ; ℂ),

where the isomorphismuses the fact that elements of𝐺Σ define cohomology classes onΣ, the quo-
tient by exact differentials sends ameromorphic differential (with zero residues) to its cohomology
class, and the map is surjective. Clearly,

𝑉Σ → 𝑉Σ = 𝑉Σ∕𝐺
⟂
Σ ,

where 𝑉Σ ⊂ Σ consists of those cohomology classes with vanishing 𝑎-periods.

3.4.1 The quadratic Lagrangian KS

Given a symplectic quotient

𝑀⫽𝐺 ∶= 𝜇−1(𝑎)∕𝐺

and a Lagrangian submanifold  ⊂ 𝑀, if  intersects 𝜇−1(𝑎) transversally, then the quotient of
 ∩ 𝜇−1(𝑎) defines a Lagrangian submanifold of 𝜇−1(𝑎)∕𝐺.
The intersection KS ∩ 𝐺Σ is transversal since𝑊 = 𝐺Σ + 𝐿 = 𝐺Σ + 𝑇0KS which is proven in

(30). To make sense of the quotient of KS ∩ 𝐺Σ by 𝐺⟂Σ , we need to treat the symplectic reduction
of (𝑊,Ω𝑊) algebraically, since KS lives in a formal neighbourhood of 0 ∈ 𝑊. The quotient

𝐺⟂Σ → 𝐺Σ → Σ

corresponds to the ring homomorphism

𝐤[Σ] → 𝐤[𝐺Σ]
𝐺⟂Σ

(𝑧𝑖,w𝑖) ↦

(
∮𝑎𝑖 ,∮𝑏𝑖

)
,

where 𝐤 = ℂ and 𝐤[𝑉] =
⨁

𝑘 S
𝑘(𝑉∗) is the ring of regular functions on the vector space 𝑉. The

ring homomorphism is an isomorphism which follows from the general fact that given a group 𝐺
acting algebraically on an affine variety 𝑋, the quotient map 𝑋 → 𝑋∕𝐺 is equivalent to the ring
homomorphism 𝑘[𝑋]𝐺 → 𝑘[𝑋] of 𝐺-invariant elements inside 𝑘[𝑋].
In terms of the coordinates defined in Definition 3.3, we have

𝐤[𝐺Σ] = 𝐤[𝑊]∕{𝑥
𝑖 ∣ 𝑖 > g}
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30 of 55 CHAIMANOWONG et al.

since the restriction 𝑥𝑖|𝐺Σ , for 𝑖 ∈ ℕ depends only on its cohomology class [𝑥𝑖] ∈ 𝐻1(Σ; ℂ). In
particular, the ambiguity in the choice of coordinates 𝑥1, … , 𝑥g in Definition 3.3 disappears under
restriction to 𝐺Σ. Also,

𝐤[KS] = 𝐤[𝑊]∕{𝑦𝑖 = 𝑎𝑖𝑗𝑘𝑥
𝑗𝑥𝑘 + 2𝑏𝑘𝑖𝑗𝑎𝑘𝓁𝑚𝑥

𝑗𝑥𝓁𝑥𝑚 +⋯},

which is defined in a formal neighbourhood of 0 ∈ 𝑊, where the series for 𝑦𝑖 are defined in (24).
From the commutative square

𝐤[𝑊] ⟶ 𝐤[𝐺Σ]

↓ ↓

𝐤[KS] ⟶ 𝐤[KS ∩ 𝐺Σ],

we find that

𝐤[KS ∩ 𝐺Σ] = 𝐤[𝑊]∕{𝑦𝑖 = 𝑎𝑖𝑗𝑘𝑥
𝑗𝑥𝑘 +⋯ , 𝑥𝑚 = 0,𝑚 > g} ≅ 𝐤⟦𝑥1, … , 𝑥g⟧.

Compose 𝐤[Σ] → 𝐤[𝐺Σ] with the right vertical arrow in the commutative square. This sends
𝑧𝑖 ∈ 𝐤[Σ] to 𝑥𝑖 ∈ 𝐤[𝐺Σ] since the pull-back of 𝑧𝑖 acts exactly as the restriction of 𝑥𝑖 to KS ∩ 𝐺Σ
— both calculate the 𝑎𝑖-period. To understand the image of w𝑖 ∈ 𝐤[Σ], we have w𝑖(𝜂) = ∮𝑏𝑖 𝜂,
whereas 𝑦𝑖 = 𝜔𝑖 for 𝑖 = 1, … , g acts via

𝑦𝑖(𝜂) = ⟨𝜂, 𝜔𝑖⟩ = g∑
𝑗=1

∮𝑏𝑗 𝜂 ∮𝑎𝑗 𝜔𝑖 − ∮𝑏𝑗 𝜔𝑖 ∮𝑎𝑗 𝜂 = ∮𝑏𝑖 𝜂 − 𝜏𝑖𝑗 ∮𝑎𝑗 𝜂

and as usual, we sum over the repeated index 𝑗. Hence,

∮𝑏𝑖 𝜂 = 𝑦𝑖(𝜂) + 𝜏𝑖𝑗 ∮𝑎𝑗 𝜂 = 𝑦𝑖(𝜂) + 𝜏𝑖𝑗𝑥𝑗(𝜂), 𝑗 = 1,… , g ,

which shows that the pull-back of w𝑖 acts exactly as the restriction of 𝑦𝑖 + 𝜏𝑖𝑗𝑥𝑗 to KS ∩ 𝐺Σ. We
conclude:

𝐤[Σ] → 𝐤[KS ∩ 𝐺Σ]

(𝑧𝑖,w𝑖) ↦ (𝑥𝑖, −𝑦𝑖 + 𝜏𝑖𝑗𝑥
𝑗),

(33)

which is a map from a formal neighbourhood of 0 ∈ Σ to a formal neighbourhood of 0 ∈ 𝑊.
In Section 4, it is proven that the kernel of (33) is given by the ideal {w𝑖 = w𝑖(𝑧1, … , 𝑧g )}, and

hence, (33) defines an isomorphism 𝐤[̂] ≅ 𝐤[KS ∩ 𝐺Σ].

3.4.2 Choice of quadratic Lagrangian

An Airy structure is equivalent to the choice of a quadratic Lagrangian. The work of Kontsevich
and Soibelman [32] is based on the quadratic LagrangianKS = 𝑅Airy whereAiry is built from the
Kontsevich–Witten tau function. In place ofAiry, we can use a quadratic LagrangianBessel built
from the Brézin–Gross–Witten tau function of the KdV hierarchy which arises out of a unitary
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matrix model studied in [3, 25]. For𝑚 = 0, 1, …, the operators

𝐿𝑚 = −
1
2

𝜕
𝜕𝑥2𝑚+1

+
ℏ
4

∑
𝑖+𝑗=2𝑚
𝑖,𝑗 odd

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
+
1
2

∞∑
𝑖=1
𝑖 odd

𝑖𝑥𝑖
𝜕

𝜕𝑥𝑖+2𝑚
+
1
16
𝛿𝑚,0,

satisfy Virasoro relations

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛, for𝑚, 𝑛 ⩾ 0.

The Brézin–Gross–Witten tau function is uniquely defined by

𝐿𝑚𝑍
BGW(ℏ, 𝑥1, 𝑥3, …) = 0, 𝑚 = 0, 1, 2, …

and the initial condition

log 𝑍BGW(𝑥1, 0, 0, …) =
1
8
log(1 − 𝑥1).

Analogous to 𝑍KW, the tau function 𝑍BGW is also a generating function for intersection numbers
overℎ,𝑛, conjectured in [35] and proven in [8]. The Virasoro operators give rise to the quadratic
Lagrangian Bessel ⊂ 𝑊Airy defined by the ideal:

𝐻𝑘(𝑥
∙, 𝑦∙) = −𝑦𝑘, 𝑘 ∈ ℤ+even,

𝐻𝑘(𝑥
∙, 𝑦∙) = ℏ𝐿𝑘−1

2

(
𝑥∙, ℏ

𝜕
𝜕𝑥∙

)|
ℏ 𝜕

𝜕𝑥𝑖
=𝑦𝑖

𝑘 ∈ ℤ+odd,

= −1
2
𝑦𝑘 +

1
4

∑
𝑖+𝑗=𝑘−1
𝑖,𝑗 odd

𝑦𝑖𝑦𝑗 +
1
2

∞∑
𝑖=1
𝑖 odd

𝑖𝑥𝑖𝑦𝑖+𝑘−1 +
1
16
𝛿𝑘,3.

Define  = 𝑅Bessel. More generally, one can also combine a product of a combination of copies
of Airy and Bessel. This produces topological recursion on irregular spectral curves [16] with
local behaviour at points in 𝑅 giving topological recursion over the Bessel curve [17]. In the case
 = 𝑅Bessel, the tensor 𝐴Σ = 0 and the Airy structure consists of the tensors 𝐵Σ and 𝐶Σ. There are
residue constraints analogous to (27) which define :

Res
𝛼
(𝑑𝑣𝛼 − 𝜂)𝑢

𝑚
𝛼 = 0 = Res

𝛼
(𝑑𝑣𝛼 − 𝜂)

2
𝑢𝑚𝛼
𝑑𝑢𝛼

= 0, 𝑚 ⩾ 1.

If  = 𝑅1Airy ×Spec 𝐤 𝑅2Bessel where 𝑅1 ∪ 𝑅2 = 𝑅, then the residue constraints above, respectively,
the residue constraints (27), are used at 𝛼 ∈ 𝑅2, respectively, 𝛼 ∈ 𝑅1.

3.5 Quantum Airy structures

Now let  = 𝐤⟦𝑥∙, ℏ𝜕∙⟧⟦ℏ⟧ be a graded Weyl algebra with Lie bracket given by [𝑥𝑖, 𝑥𝑗] =
[ℏ𝜕𝑖, ℏ𝜕𝑗] = 0 and [ℏ𝜕𝑖, 𝑥𝑗] = ℏ𝛿

𝑗
𝑖
.
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32 of 55 CHAIMANOWONG et al.

Consider the differential operators 𝐻̂′
𝑖
∈

𝐻̂′𝑖 = ℏ𝜕𝑖 + 𝑎𝑖𝑗𝑘𝑥
𝑗𝑥𝑘 + 2ℏ 𝑏𝑘𝑖𝑗 𝑥

𝑗𝜕𝑘 + ℏ
2𝑐𝑗𝑘
𝑖
𝜕𝑗𝜕𝑘.

Kontsevich and Soibleman define a quantum Airy structure as the deformation quantisation
of the classical Airy structure on the Lagrangian . Deformation quantisation is a functor which
replaces the commutative algebra 𝐤⟦𝑊⟧ with the non-commutative Weyl algebra of differential
operators . Firstly, the coordinates are mapped by 𝑥𝑖 → 𝑥𝑖 and 𝑦𝑖 → ℏ𝜕𝑖 where 𝜕𝑖 can be identi-
fied with the vector field, or derivation, 𝜕

𝜕𝑥𝑖
when ℏ is invertible. Further, the Poisson Lie algebra

𝔤 with Poisson bracket has to be identified with the Lie algebra structure of the 𝐻̂𝑖 with a Lie
bracket. A necessary condition to do this is that the second cohomology vanishes, 𝐻2(𝔤, 𝐤) = 0
[32]. This is a choice of central extension of 𝔤 and the Lie algebra structure of the quantum and
classical cases coincide. So,

𝐻𝑖 → 𝐻̂𝑖 = 𝐻̂
′
𝑖 + ℏ𝜀𝑖

and

[𝐻̂𝑖, 𝐻̂𝑗] = ℏ{𝐻𝑖,𝐻𝑗}𝑥∙→𝑥∙,𝑦∙→ℏ𝜕∙ + ℏg
𝑘
𝑖𝑗𝜀𝑘.

Definition 3.4. A quantum Airy structure is the collection of 𝐻̂𝑖 ∶= 𝐻̂′𝑖 + ℏ𝜀𝑖 , and an extra
constraint:

2
(
𝑎𝑗𝑠𝑡 𝑐

𝑠𝑡
𝑖 − 𝑎𝑖𝑠𝑡 𝑐

𝑠𝑡
𝑗

)
= g𝑘𝑖𝑗𝜀𝑘.

When a quantumAiry structure arises from deformation quantisation, this gives rise to a wave-
function supported on . A wavefunction is a generator of a cyclic module  over , given by
the quotient  = ∕⟨𝐻̂𝑖⟩. This module encodes the solution to the 𝐻̂𝑖 acting as operators on
𝐤⟦𝑥∙⟧⟦ℏ⟧. The wavefunction 𝜓 ∈ 𝐤⟦𝑥∙⟧⟦ℏ⟧ is computed using the ansatz

𝜓 = exp(𝑆(𝑥∙)),

where

𝑆(𝑥∙) =
∑
ℎ⩾0

ℏℎ−1𝑆ℎ(𝑥
∙), 𝑆ℎ(𝑥

∙) ∈ 𝐤⟦𝑥∙⟧,
and solving the differential equations

𝐻̂𝑖 exp(𝑆(𝑥
∙)) = 0.

Modulo ℏ, 𝜓 is a function on ̂.
Example 3.4. Consider the quantised conic with 𝜀 = 0:(

−ℏ
𝜕
𝜕𝑥

+ 𝑥2 + 2ℏ𝑥
𝜕
𝜕𝑥

+ ℏ2
𝜕2

𝜕2𝑥

)
𝜓(𝑥) = 0.
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 33 of 55

Computing some terms

𝜓(𝑥) = exp
(
1
ℏ ∫ 𝑑𝑥 (𝑢0(𝑥) + ℏ𝑢1(𝑥) + (ℏ2))

)
,

with 𝑢0(𝑥) as Example 3.2, and 𝑢1(𝑥) = 2𝑥 + 10𝑥2 +⋯ + (4𝑛 − (2𝑛)!
(𝑛!)2

)𝑥𝑛 +⋯ a generating func-
tion for counting numbers of rooted two-face 𝑛-edge maps in the plane, (1-loop Feynmann
diagrams) [36], and in general rooted 𝑢ℎ counts ℎ-face 𝑛-edge maps. Then

𝑆ℎ(𝑥) = ∫ 𝑑𝑥 𝑢ℎ(𝑥).

Kontsevich and Soibelman [32] prove that the coefficients of 𝑆ℎ,𝑛 of 𝑆 satisfy abstract topological
recursion defined as follows. Denote 𝑆ℎ,𝑛;∙∶𝑖 = 𝜕𝑖𝑆ℎ,𝑛;∙. Apply the 𝐻̂𝑖 to 𝜓 and solve for 0:

𝑎𝑖𝑗𝑘𝑥
𝑗𝑥𝑘 +

∑
ℎ

(
2 ℏ 𝑏𝑗

𝑖𝑘

∑
𝑛

𝑆ℎ,𝑛;𝑗𝑥
𝑘+

ℏ2𝑐𝑗𝑘
𝑖

(∑
𝑛

𝑆ℎ,𝑛;𝑗,𝑘 +
∑
𝑛

𝑆ℎ,𝑛;𝑗𝑆ℎ,𝑛;𝑘

)
− ℏ𝑆ℎ,𝑛;𝑖 + ℏ 𝜖𝑖

)
= 0.

Gathering coefficients:

𝑆ℎ,𝑛;𝑖,𝑖1,…,𝑖𝑛−1 = 2
𝑛−1∑
𝛼=1

𝑏𝑘𝑖 𝑖𝛼
𝑆ℎ,𝑛−1;𝑘,𝑖{1,…,𝑛−1}∕{𝛼} (34)

+ 𝑐𝑗𝑘
𝑖
𝑆ℎ−1,𝑛+1;𝑗,𝑘,𝑖1,…𝑖𝑛−1 +

∑
ℎ1+ℎ2=ℎ

𝐼1⊔𝐼2={1,…,𝑛−1}

𝑐𝑗𝑘
𝑖
𝑆ℎ1,|𝐼1|+1;𝑗,𝑖𝐼1 𝑆ℎ2,|𝐼2|+1;𝑘,𝑖𝐼2

produces a recursive formula known as abstract topological recursion. The sum of ℎ − 1 and ℎ1 +
ℎ2 = ℎ terms gives a resemblance to topological recursion.
The symmetry of 𝑆ℎ,𝑛 for ℎ = 0 uses the same argument as for the classical case, which uses

closure of the Poisson bracket {𝐻𝑖, 𝐻𝑗} = g𝑘
𝑖𝑗
𝐻𝑘. For higher genus, the argument is given in [32,

Theorem 2.4.2] for finite dimensional 𝑉 which suffices here since 𝑉Σ is the union of finite-
dimensional subspaces graded by the degree of poles, and 𝑆ℎ,𝑛, and all 𝑆ℎ′,𝑛′ for 2ℎ′ − 2 + 𝑛 <
2ℎ − 2 + 𝑛 live inside one of these finite-dimensional subspaces.
Topological recursion of Eynard and Orantin [20] can be seen as a particular specialisation of

abstract topological recursion. Restricting to the odd𝐻𝑖 recovers topological recursion:

𝑆oddℎ,𝑛 → 𝜔ℎ,𝑛.

Remark 3.5. The constructions of 𝜔ℎ,𝑛 via the Eynard–Orantin recursion (18) and via abstract
topological recursion (34) produce different proofs of the symmetry of 𝜔ℎ,𝑛 which demonstrates
a departure between the two constructions. The proof in [20] using (18) expresses the differ-
ence 𝜔ℎ,𝑛(𝑝1, 𝑝2, … , 𝑝𝑛) − 𝜔ℎ,𝑛(𝑝2, 𝑝1, … , 𝑝𝑛) as a sum of a collection of terms which are shown
to vanish rather non-trivially. The rather elegant proof in [32] is a consequence of the fact that
the Hamiltonians that define a Lagrangian submanifold generate an ideal, expressed above via
{𝐻𝑖, 𝐻𝑗} = g𝑘

𝑖𝑗
𝐻𝑘.
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34 of 55 CHAIMANOWONG et al.

4 FORMAL AND CONVERGENT SERIES

Let (𝑋,Ω,) be a foliated symplectic surface, Σ ⊂ 𝑋 and the deformation space of Σ in𝑋. Recall
from (26) that Σ defines a polarisation𝑉Σ ⊂ 𝑊 of the symplectic vector space𝑊 of locally defined
residueless meromorphic differentials on Σ.
In this section, we study the following commutative diagram from [32]:

KS ∩ 𝐺Σ ⟶ 𝐺Σ ⟶ 𝑉Σ ⊕ 𝑉∗Σ ≅ 𝑊

↓ ↓

̂[Σ] ⟶ Σ

≅
⟶ 𝑉Σ ⊕ 𝑉

∗

Σ,

(35)

which shows how the quadratic Lagrangian

KS →𝑊 ≅ 𝑉Σ ⊕ 𝑉∗Σ

defined in (8), and via residue constraints in (27) and (28), behaves under symplectic reduction

𝑊⫽𝐺⟂Σ ∶= 𝐺Σ∕𝐺
⟂
Σ ≅ Σ,

where Σ = 𝐻
1(Σ; ℂ). Its image is a formal neighbourhood of a point of the Lagrangian

embedding of a neighbourhood 𝑈[Σ] ⊂  of [Σ] ∈ 
𝑈[Σ] → Σ ≅ 𝑉Σ ⊕ 𝑉

∗

Σ

defined in (13). More precisely, KS is defined in a formal neighbourhood of 0 ∈ 𝑊 and its inter-
section with the zero level set of the moment map maps to a formal neighbourhood ̂[Σ] 𝜄

→  of
[Σ] ∈ .
An explicit section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) of the bundle 𝔾 →  with fibre 𝐺Σ is constructed in Theo-

rem 4.1 below. It is given by a formal series which takes its values inKS ∩ 𝐺Σ and, in fact, defines
an isomorphism

̂[Σ] ≅ KS ∩ 𝐺Σ

with inverse producing the left vertical arrow in (35). It is proven in Theorem 4.1 that under
the quotient map 𝔾 →  to the bundle  →  with fibre Σ ≅ 𝐺Σ∕𝐺

⟂
Σ , the section 𝜃 maps to

[𝜃] = 𝜄∗[𝜃] ∈ Γ(̂[Σ],) which is the composition

̂[Σ] 𝜄
⟶ 𝑈[Σ]

[𝜃]
⟶ |𝑈[Σ] , (36)

and by abuse of notation, it is given the same name as the analytic section [𝜃] defined in (12). The
composition (36) defines the lower left horizontal arrow in (35). Hence, the formal series 𝜃 maps
under the quotient to an analytic series [𝜃].
For 𝐿 = 𝑇0KS ⊂ 𝑊 given by the Lagrangian subspace of locally holomorphic differentials,

defined in a neighbourhood of 𝑅 ⊂ Σ, the symplectic form Ω𝑊 defines a natural isomorphism
of Lagrangian subspaces 𝐿 ≅ 𝑉∗Σ. Similarly, in the symplectic quotientΣ, the symplectic formΩ

defines a natural isomorphism of Lagrangian subspaces𝐻0(Σ, 𝐾Σ) ≅ 𝑉
∗

Σ. Define the linear map

ℎ ∶ 𝐻0(Σ, 𝐾Σ) → 𝐿,
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 35 of 55

which maps a holomorphic differential to its local expansion at 𝑅 ⊂ Σ. For any 𝑇 ∈ Hom(𝐿 ⊗
𝐿,𝑉Σ), the square

induces a map 𝑇 ↦ [𝑇◦(ℎ ⊗ ℎ)] ∈ Hom(𝐻0(Σ, 𝐾Σ) ⊗ 𝐻0(Σ, 𝐾Σ), 𝑉Σ), where [⋅] is the map 𝑉Σ →
𝑉Σ. This defines the right vertical arrow in the following commutative diagram:

(37)

The section 𝜃 allows us to associate vector fields over  to vector fields over KS. In partic-
ular, this leads to a relationship between the tensor 𝐴Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ, which is part of the
Airy structure arising from Σ ⊂ (𝑋,Ω,), and the tensor 𝐴̄Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ representing the
Donagi–Markman cubic. In general, for a Lagrangian submanifold of a polarised symplectic
vector space  ⊂ 𝑉 ⊕ 𝑉∗, the tensor 𝐴 is defined via the map

𝑇𝑝⊗ 𝑇𝑝→ 𝑉

given by variation of a vector field with respect to another vector field. This uses a canonical
extension of any given vector in 𝑇𝑝 to a local vector field so that covariant differentiation gives
a tensor, meaning that it depends only on vectors. By relating vectors, their canonical extensions
to vector fields and covariant differentiation upstairs and downstairs in (35), we prove 𝐴Σ → 𝐴̄Σ
via the map (37).

4.1 The section 𝜽 ∈ 𝚪(̂[𝚺], 𝑮𝚺)

We define a section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) in terms of holomorphic differentials 𝜔𝑖 normalised over the
𝑎-periods and the topological recursion correlators 𝜔0,𝑛 calculated via (18). Represent elements of
the formal neighbourhood ̂[Σ] with respect to the coordinates {𝑧1, … , 𝑧g } defined in (14) satisfy-
ing 𝑧𝑖([Σ]) = 0, and sum over indices in {1, … , g}. For any residueless meromorphic differential 𝜂
defined on Σ, we use the normalised periods defined in (3):

∮𝑏̂𝑘 𝜂 ∶=
−1
2𝜋𝑖 ∮𝑏𝑘 𝜂.

Theorem 4.1. Define a section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) by
𝜃 = 𝑧𝑖𝜔𝑖 −

1
2
𝑧𝑖𝑧𝑗 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔0,3 −

1
3!
𝑧𝑖𝑧𝑗𝑧𝑘 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,4 − … (38)

Then, 𝜃 satisfies the following properties.
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36 of 55 CHAIMANOWONG et al.

(1) It takes its values in KS.
(2) Its cohomology class [𝜃] ∈ Γ(̂[Σ],) is analytic in 𝑧1, … , 𝑧g and coincides with the local

section defined in (12).

More precisely, [𝜃] is the restriction of an analytic section to a formal neighbourhood of [Σ]
given in (36). The analyticity of [𝜃] contrasts with the formal series for 𝜃. The proof of Theorem 4.1
is given by Propositions 4.5 and 4.7.
A cohomology class is characterised by its periods along a Torelli basis:

[𝜃] = (∮𝑎𝑖 𝜃,∮𝑏𝑖 𝜃 ∣ 𝑖 = 1, … , g) ∈ ℂ
2g⟦𝑧1, … , 𝑧g⟧.

The periods are:

∮𝑎𝑖 𝜃 = 𝑧
𝑖, ∮𝑏𝑖 𝜃 = w𝑖(𝑧1, … , 𝑧g ).

Corollary 4. The Taylor expansion of w𝑖(𝑧1, … , 𝑧g ) around {𝑧𝑖 = 0} is:

w𝑖 = 𝑧𝑗𝜏𝑖𝑗 −
1
2
𝑧𝑗𝑧𝑘 ∮𝑏𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,3 −

1
3!
𝑧𝑗𝑧𝑘𝑧𝓁 ∮𝑏𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 ∮𝑏̂𝓁 𝜔0,4 − … , (39)

where the normalised periods (3) are used in (39) except for the first period. Hence, Corollary 4
shows that

𝜕
𝜕𝑧𝑖

𝜏𝑗𝑘 = −2𝜋𝑖 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,3,

and more generally,

𝜕𝑛−2

𝜕𝑧𝑖1 ..𝜕𝑧𝑖𝑛−2
𝜏𝑖𝑛−1𝑖𝑛 = −2𝜋𝑖 ∮𝑏̂𝑖1 ∮𝑏̂𝑖2

…∮𝑏̂𝑖𝑛
𝜔0,|𝐼|,

which proves Corollary 2 and generalises the result in [4] to Σ ⊂ 𝑋 for any foliated symplectic
surface (𝑋,Ω,).
Given a normalised holomorphic differential such as 𝜔𝑖 , its cohomology class [𝜔𝑖] gives rise to

a vector field on . It corresponds to the vector field 𝜕
𝜕𝑧𝑖

with respect to the coordinates 𝑧1, … , 𝑧g .
This maps to a vector field, [𝜔𝑖] = 𝜄∗[𝜔𝑖] which maintains the same name by abuse of notation,
on the formal neighbourhood ̂[Σ]. It is simply given by the Taylor expansion of [𝜔𝑖] at [Σ]. Above
[𝜔𝑖] is a vector field 𝜔𝑖 = 𝐷𝜃(

𝜕
𝜕𝑧𝑖
) on KS:

𝜔𝑖 = 𝜔𝑖 − 𝑧
𝑗 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔0,3 −

1
2
𝑧𝑗𝑧𝑘 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,4 − … (40)
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 37 of 55

Again, the series for [𝜔𝑖] = [𝜔𝑖] ∈ ℂ2g⟦𝑧1, … , 𝑧g⟧ is analytic in 𝑧1, … , 𝑧g in contrast to the formal
series for 𝜔𝑖 . It gives the analytic expansion of a holomorphic section of the bundle

which takes the cohomology class of the holomorphic differential over each [Σ] ∈  normalised
to have constant 𝑎-periods. The analytic expansion is:

∮𝑏𝑖 𝜔𝑗 = −
∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝐼 𝜔0,|𝐼|+2 = 𝜏𝑖𝑗 − 𝑧𝑘 ∮𝑏𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,3 − … ,
where ∮𝑏̂𝐼 ∶= ∮𝑏̂𝑖1 … ∮𝑏̂𝑖𝑛 for 𝐼 = (𝑖1, … , 𝑖𝑛).
For any𝑚 ⩾ 0, the series

𝑇𝑚(𝑧
1, … , 𝑧g ) =

∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝐼 𝜔0,|𝐼|+𝑚
is defined in the 𝑘th formal neighbourhood of [Σ] ∈ . Its cohomology class is denoted as [𝑇]. We
summarise the geometric meaning of 𝑇𝑚 for small values of𝑚 here:

𝐹0 = −
∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝐼 𝜔0,|𝐼|, Prepotential

𝜃 = −
∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝐼 𝜔0,|𝐼|+1, [𝜃] = Cohomology class defined in (12)

̂ =
∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝐼 𝜔0,|𝐼|+2, [̂ ] = 𝜏𝑖𝑗

𝐴 =
∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝐼 𝜔0,|𝐼|+3, [𝐴] = Donagi-Markman cubic.

4.1.1 The connection ∇

Given Σ ⊂ (𝑋,Ω,) and  the deformation space of Σ in 𝑋, let 𝑍
𝜋
→  be the universal family of

curves in, which comes with a natural map 𝑍 → 𝑋 which induces the map Σ → 𝑋 on each fibre
of 𝑍 over [Σ] ∈ . The fibres of 𝑍 →  induce a one-dimensional foliation which we call vertical.
The codimension one foliation  on 𝑋 induces a codimension one foliation𝐻 on 𝑍 denoted by

𝐻𝑧 ⊂ 𝑇𝑧𝑍 for 𝑧 ∈ 𝑍. It satisfies

𝑇𝑧𝑍 ≅ 𝑇𝑧Σ ⊕𝐻𝑧, 𝑧 ∈ 𝑍 − 𝑍𝑅, (41)

where [Σ] = 𝜋(𝑧) and𝑍𝑅 ⊂ 𝑍 is the codimension one set where the foliation intersects the vertical
foliation non-transversally. On𝑍∗ = 𝑍 − 𝑍𝑅,𝐻𝑧 ≅ 𝑇[Σ] and (41) defines a horizontal lift of 𝑇[Σ]
to 𝑇𝑧𝑍.
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38 of 55 CHAIMANOWONG et al.

Definition 4.1. Define a connection ∇ on 𝑍∗ →  by the splitting (41).

The connection∇ is flat since leaves of the foliation𝐻 give local flat sections. This connection
appears in many places, often implicitly, for families of varieties such as Hurwitz spaces [12, 19],
Seiberg–Witten families of curves [34], the Rauch variational formula in the Appendix and in
the work of Eynard and Orantin [20, 32]. The connection lifts any vector in 𝑇[Σ] to a vector
in 𝑇𝑧𝑍 for 𝑧 ∈ 𝑍∗ which is used to take a Lie derivative of any tensor defined on 𝑍 such as a
locally defined relative differential 𝜂. We can allow 𝜂 to be meromorphic. This can be achieved
either by considering ∇𝜂 locally on patches where 𝜂 is holomorphic and gluing, or by replacing
𝜂 with 𝜂 ⋅ (𝑢 − 𝜆)𝑚, where 𝑢 is a locally defined function on 𝑋 that defines the foliation, and 𝜆 is
a function on , chosen so that 𝜂 ⋅ (𝑢 − 𝜆)𝑚 is holomorphic for𝑚 large enough. Then,

∇
𝑣 (𝜂 ⋅ (𝑢 − 𝜆)

𝑚) = ∇
𝑣 (𝜂) ⋅ (𝑢 − 𝜆)

𝑚 − ℎ𝑚(𝑢 − 𝜆)𝑚−1𝑣 ⋅ 𝜆,

which defines∇
𝑣 𝜂 in terms of the covariant derivative of local holomorphic functions. The covari-

ant derivative ∇
𝑣 𝜂 naturally has poles, so the construction above allows one to take multiple

covariant derivatives. In particular, it defines a covariant derivative on sections of the bundle
𝕎 =  ×𝑊 → . For an open neighbourhood 𝑈Σ ⊂  of [Σ] ∈ , and for each 𝑣 ∈ 𝑇[Σ],

∇
𝑣 ∶ Γ(𝑈Σ,𝕎) → Γ(𝑈Σ,𝕎),

which leaves Γ(𝑈Σ, 𝔾) ⊂ Γ(𝑈Σ,𝕎) invariant.
For any closed contour 𝛾 ⊂ Σ0,

𝜕
𝜕𝑧𝑖 ∮𝛾 𝜂 = ∮𝛾 ∇


𝑖 𝜂, (42)

where ∇
𝑖
= ∇

𝜕

𝜕𝑧𝑖

. To prove (42), define a local coordinate 𝑥 on 𝑍 chosen so that 𝑥 = constant

defines the foliation 𝐻 induced by  . Express 𝜂 in terms of the local coordinate 𝑥 and depend-
ing on parameters 𝑧𝑖 , differentiate under the integral sign, since the contour is compact, and use
∇𝑢 = 0.
In particular, for 𝜂 ∈ Γ(𝑈Σ, 𝔾), its cohomology class [𝜂] ∈ Γ(𝑈Σ,) is determined by its

periods, and hence, (42) implies that ∇ lives above the Gauss–Manin connection:

[∇𝜂] = ∇GM[𝜂]. (43)

This restricts to formal neighbourhoods to give[
∇𝜔𝑗

]
= ∇GM[

𝜔𝑗
]

for 𝜔𝑗 defined in (40). It is shown in Section 4.3 that the covariant derivative ∇
𝑖
𝜔𝑗 gives rise to

the tensor 𝐴Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ, and since ∇𝐺𝑀𝑖 [𝜔𝑗] gives rise to the tensor 𝐴̄Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ,
the compatibility of the covariant derivatives of vector fields is used to prove that𝐴Σ ↦ 𝐴̄Σ under
the map 𝑉Σ → 𝑉Σ. This is proven in Proposition 4.9.
Note that parallel transport, hence a flat frame, on 𝑍 (or𝕎 or𝔾) for∇ does not exist in general

due to the non-existence of solutions to ordinary differential equation at points where the foliation
does notmeet the vertical fibres transversally. However, it does exist on any formal neighbourhood
of a point [Σ] ∈ .
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 39 of 55

Example 4.2. Define a foliated surface locally by the family parametrised by 𝑧

𝑥 = 𝑦2 + 𝑧.

Leaves of the foliation 𝑥 = constant define a flat connection on the fibration defined by the family.
Consider parallel transport from a general fibre to the fibre over 𝑧 = 0 given by 𝑥 = 𝑦20 . We have

𝑦(𝑦0) =
√
𝑦20 − 𝑧 = 𝑦0

√
1 − 𝑧∕𝑦20 = 𝑦0

(
1 −

𝑧

2𝑦20
−
1
8
𝑧2

𝑦40
− …

)
,

which exists analytically only when |𝑦0| > |𝑧|, whereas it exists inℂ[𝑧]∕𝑧𝑛 for any 𝑛. For example,
in ℂ[𝑧]∕𝑧2, 𝑦(𝑦0) = 𝑦0 −

𝑧
2𝑦0

which defines a path

ℂ − {0} → ℂ

𝑦0 ↦ 𝑦0 −
𝑧
2𝑦0

giving parallel transport above the first formal neighbourhood.

4.2 Formal and convergent series

The series given in (38) and (40) are induced via the naturalmap between a formal neighbourhood
̂[Σ] and an actual neighbourhood 𝑈Σ ⊂  of [Σ] ∈ 

̂[Σ] 𝜄
⟶ 𝑈Σ → .

The restriction 𝜄∗ sends locally defined functions to formal series. It naturally extends from locally
defined functions to locally defined sections such as (relative)meromorphic differentials. On𝔾 →
, the holomorphic bundle with fibre 𝐺Σ ⊂ 𝑊 over [Σ] ∈ , it defines

𝜄∗ ∶ Γ(𝑈Σ, 𝔾) → Γ(̂[Σ], 𝔾),
which associates to any local section of the bundle 𝔾 →  a section of the bundle 𝔾 defined in the
𝑘th formal neighbourhood of [Σ] ∈  for each 𝑘. This map depends on the choice of connection
∇ . It expresses a section of 𝔾 in terms of a flat frame for 𝔾 over the 𝑘th formal neighbourhood at
[Σ], for any 𝑘.

Lemma 4.3. For 𝜂 ∈ Γ(𝑈Σ, 𝔾), with respect to local coordinates {𝑧1, … , 𝑧g } defined on𝑈Σ ⊂ 
𝜄∗𝜂 =

∑
𝐼

𝑧𝐼|𝐼|!(∇
𝐼 𝜂

)|Σ, (44)

on the 𝑘th formal neighbourhood of [Σ] ∈  for each 𝑘. The sum is over tuples of positive integers
𝐼 = (𝑖1, … , 𝑖𝑛) ∈ {1, … , g}

𝑛, 𝑧𝐼 =
∏
𝑧𝑖𝑘 , |𝐼| = ∑

𝑖𝑘 , ∇
𝑖
= ∇

𝜕∕𝜕𝑧𝑖
and ∇

𝐼 = ∇

𝑖1
⋯∇

𝑖𝑛
.

Proof. The formula (44) is essentially a Taylor series for 𝜂. We need to explain the appearance of
the covariant derivative.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12839, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



40 of 55 CHAIMANOWONG et al.

Consider the universal family 𝜋 ∶ 𝑍 →  and an open neighbourhood 𝑉𝑍 ⊂ 𝜋−1(𝑈Σ). Then𝑍(𝑉𝑍) is a module over(𝑈Σ). For any locally defined function ℎ ∈ 𝑍(𝑈𝑍), the restriction of
ℎ to a formal neighbourhood of the fibre Σ of 𝑍 above [Σ] ∈  is defined by

𝜄∗ℎ =
∑
𝐼

𝑧𝐼|𝐼|!(∇
𝐼 ℎ

)|Σ. (45)

The functions 𝑧𝑖 ∈ (𝑈Σ) pull back to functions 𝑧𝑖 ∈ 𝑍(𝑉𝑍), with the same name by abuse of
notation. The Taylor series for ℎ ∈ 𝑍(𝑈𝑍) would normally use partial derivatives with respect
to the vector fields 𝜕

𝜕𝑧𝑖
, but these are not yet defined on 𝑍 until a full system of coordinates is

defined. Choose a locally defined function 𝑢 on 𝑍 which induces the foliation on 𝑍. The collection
{𝑢, 𝑧1, … , 𝑧g } defines local coordinates on𝑍 (when the foliation on𝑍meets the fibre transversally).
The coordinates give rise to well-defined vector fields 𝜕

𝜕𝑧𝑖
on 𝑍 (given the same name as vector

fields on ) which allow one to write out a Taylor series with ∇
𝑖
replaced by 𝜕

𝜕𝑧𝑖
in (45). The

vector fields 𝜕
𝜕𝑧𝑖

are independent of a change of coordinates {𝑢, 𝑧1, … , 𝑧g } ↦ {𝑓(𝑢), 𝑧1, … , 𝑧g }, and
hence, the Taylor series depends only on the foliation  (which induces the folation on 𝑍). The
use of the covariant derivative in (45) to signify the choice of local coordinate 𝑢 is natural since
∇
𝑖
𝑢 = 0 agrees with the definition of the vector fields from coordinates via 𝜕

𝜕𝑧𝑖
𝑢. Note that amore

general change of coordinates {𝑢, 𝑧1, … , 𝑧g } ↦ {𝑓(𝑢, 𝑧1, … , 𝑧g ), 𝑧1, … , 𝑧g }, which is equivalent to
a different choice of connection unrelated to the foliation, leads to a different right hand side in
(45), where the relation between the two different series is achieved via 𝑧𝑖-dependent coefficients
in (45)
The formula (44) follows from (45) since 𝔾 is the push-forward of the sheaf of relative

differentials on 𝑍, and hence, 𝜂 ∈ Γ(𝑈Σ, 𝔾) is built locally from ℎ ∈ 𝑍(𝑈𝑍). □

On the universal family 𝑍 → , let ℎ ∈ 𝑍(𝑈𝑍) be a locally defined function on an open set
𝑈𝑍 ⊂ 𝑍. Its image in a formal neighbourhood of a fibre Σ uses the same formula as (44) — the
difference between functions and differentials is minor since ℎ𝑑𝑢 is a locally defined differential
and ∇𝑑𝑢 = 0.
The ring homomorphism 𝜄∗ in (45) satisfies 𝜄∗1 = 1 which is visible on the right-hand side of

(45) since ∇1 = 0. The equality 𝜄∗(ℎ1ℎ2) = 𝜄∗(ℎ1)𝜄∗(ℎ2) is the combinatorial identity∑
𝐼

𝑧𝐼|𝐼|!∇
𝐼 (ℎ1ℎ2)|Σ =∑

𝐼

𝑧𝐼|𝐼|!∇
𝐼 (ℎ1)|Σ∑

𝐼

𝑧𝐼|𝐼|!∇
𝐼 (ℎ2)|Σ,

which follows from Leibniz’ formula applied to∇ . It formally coincides with the identity, show-
ing that the Taylor expansion in several variables of a product of two functions is the product of
the two Taylor expansions.
Covariant differentiation∇

𝑖
on the formal neighbourhood ̂[Σ] is simply given by 𝜕

𝜕𝑧𝑖
for each

𝑖 = 1, … , g . The map 𝜄∗ commutes with ∇ :

∇◦𝜄∗ = 𝜄∗◦∇ .

The proof that 𝜕
𝜕𝑧𝑖
𝜄∗(ℎ) = 𝜄∗(∇

𝑖
ℎ) is combinatoric and formally coincides with differentiation of

a Taylor expansion in several variables.
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Proposition 4.4. The section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) defined in (38) satisfies the following relation with
respect to local FD coordinates (𝑢, 𝑣) on 𝑋:

𝜄∗(𝑣𝑑𝑢) =
∑
|𝐼|⩾0

𝑧𝐼|𝐼|!∇
𝐼 (𝑣𝑑𝑢)|Σ = 𝑣𝑑𝑢|Σ − 𝜃. (46)

Proof. Given local FD coordinates (𝑢, 𝑣) around 𝛼 ∈ 𝑅 ⊂ Σ ⊂ 𝑋, the local differential 𝑣𝑑𝑢 pulls
back to a local relative differential on the universal space 𝑍. Hence, we can apply (44) to get the
first equality in (46). Write (46) as

𝜄∗(𝑣𝑑𝑢) = 𝑣𝑑𝑢|Σ − 𝜉, (47)

so it remains to prove that 𝜉 = 𝜃. Note that 𝜉 is invariant under a change of local FD coordinates
(𝑢, 𝑣) ↦ (𝑓(𝑢), 𝑣∕𝑓′(𝑢) + g(𝑢)) since ∇

𝑖
(g(𝑢)𝑑𝑓(𝑢)) = 0.

Each holomorphic differential 𝜂 ∈ 𝐻0(Σ, 𝐾Σ) extends to a family of normalised holomorphic
differentials 𝜂([Σ′]) ∈ 𝐻0(Σ′, 𝐾Σ′) for [Σ′] ∈ 𝑈Σ by requiring that the 𝑎-periods are constant, for
example, ∮𝑎𝑗 𝜔𝑖 = 𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, … , g . We write

∇
𝐼 𝜂 ∶=

(
∇
𝐼 𝜂

)|Σ ∈ 𝐻0(𝐾Σ(𝑚𝑅)), 𝑚 = 2|𝐼|,
where, as usual, ∇

𝐼 = ∇

𝑖1
…∇

𝑖𝑛
.

By definition, although 𝑣𝑑𝑢 is locally defined on the fibre Σ, its covariant derivative is globally
defined:

∇
𝑖 (𝑣𝑑𝑢) = −𝜔𝑖. (48)

From (47) and (48), we have

𝜉 = 𝑧𝑖𝜔𝑖 +
1
2
𝑧𝑖𝑧𝑗∇

𝑖 𝜔𝑗 +
1
3!
𝑧𝑖𝑧𝑗𝑧𝑘∇

𝑖 ∇

𝑗 (𝜔𝑘) +⋯ ,

where ∇
𝐼 𝜔𝑘 ∈ 𝐻

0(𝐾Σ(𝑚𝑅)) for𝑚 = 2|𝐼|.
We have ∮𝑏̂𝑖 𝜔0,2 = −𝜔𝑖 , and the correlators satisfy the following variational formula due to

Eynard and Orantin [20]:

∇
𝑖 𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛) = ∮𝑝𝑛+1∈𝑏̂𝑖 𝜔ℎ,𝑛+1(𝑝1, … , 𝑝𝑛, 𝑝𝑛+1), 𝑛 > 0. (49)

The formula (49) is proven in the Appendix inductively. Applied to ℎ = 0, we have

∇
𝑖 𝜔0,𝑛 = ∮𝑏̂𝑖 𝜔0,𝑛+1, 𝑛 ⩾ 2

hence

∇
𝐼 𝜔𝑖 = −∮𝑏̂𝑖 ∮𝑏̂𝐼 𝜔0,|𝐼|+2.

Thus, 𝜉 = 𝜃 and the proposition is proven. □
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42 of 55 CHAIMANOWONG et al.

Proposition 4.5. The section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) defines a map
𝜃 ∶ ̂[Σ] → KS,

where KS ⊂ 𝑊 is the quadratic Lagrangian defined in (27) and (28).

Proof. We need to check (27) and (28) for 𝜂 = 𝜃 with respect to the FD coordinates (𝑢𝛼, 𝑣𝛼) from
Definition 2.2.

Res
𝛼

(
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)
𝑢𝑚𝛼 𝑑𝑢𝛼 = Res

(
𝑣𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼 − 𝜃𝑢

𝑚
𝛼

)
= Res

𝛼

(
𝑣𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼 +

∑
|𝐼|>0

𝑧𝐼|𝐼|!𝑢𝑚𝛼 ∇
𝐼 (𝑣𝛼𝑑𝑢𝛼)

)

= Res
𝛼

(
𝑣𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼 +

∑
|𝐼|>0

𝑧𝐼|𝐼|!∇
𝐼 (𝑣𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼)

)
= 0

for any 𝑚 ⩾ 0 where the second equality uses (46). The final equality uses the fact that
𝑣𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼 is holomorphic at 𝛼 and hence has zero residue. Furthermore, it has zero residue in

a neighbourhood, so its higher derivatives also vanish to give

Res
𝛼

∑
|𝐼|>0

𝑧𝐼|𝐼|!∇
𝐼 (𝑣𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼) =

∑
|𝐼|>0

𝑧𝐼|𝐼|! 𝜕𝜕𝑧𝐼 Res𝛼 (𝑣𝛼𝑢
𝑚
𝛼 𝑑𝑢𝛼) = 0. (50)

Hence, 𝜃 satisfies the first of the residue constraints (27).
Let 𝑝 be any locally analytic function. A consequence of the ring homomorphism property is:

𝜄∗𝑝(𝑣𝛼) = 𝑝(𝜄
∗(𝑣𝛼)) = 𝑝

(
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)
.

In particular, (
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 = 𝜄

∗(𝑣𝛼)
2𝑢𝑚𝛼 𝑑𝑢𝛼 =

∑
𝐼

𝑧𝐼|𝐼|!∇
𝐼 (𝑣

2
𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼)

and

Res
𝛼

(
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 =

∑
𝐼

𝑧𝐼|𝐼|! 𝜕𝜕𝑧𝐼 Res𝛼 (𝑦2𝛼𝑢
𝑚
𝛼 𝑑𝑢𝛼) = 0

since 𝑣2𝛼𝑢
𝑚
𝛼 𝑑𝑢𝛼 is holomorphic in a neighbourhood of 𝛼 ∈ Σ0 ⊂ 𝑋. Hence, 𝜃 also satisfies the

second of the residue constraints (28) and the proposition is proven. □

Remark 4.6. In the proof of Proposition 4.5, it is shown that 𝜃 satisfies

Res
𝛼

(
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)𝑘
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0

for 𝑘 = 1, 2 and for all𝑚 ⩾ 0. The proof easily generalises to allow all 𝑘 ⩾ 1.
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Proposition 4.5 yields a collection of relations among periods and residues of 𝜔ℎ,𝑛. Here, we list
a few of them. We have

0 = Res
𝛼

(
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)
𝑢𝑚𝛼 𝑑𝑢𝛼 = − Res

𝛼
𝜃𝑢𝑚𝛼 =

∑
𝐼

𝑧𝐼|𝐼|! Res𝛼 𝑢𝑚𝛼 ∮𝑏̂𝐼 𝜔0,|𝐼|+1,
which implies that the principal part of ∮𝑏̂𝐼 𝜔0,|𝐼|+1 is skew-invariant under the local involution
defined by the  . The quadratic relation

0 = Res
𝛼

(
𝑣𝛼 −

𝜃
𝑑𝑢𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 = −2 Res𝛼

𝑣𝛼𝜃𝑢
𝑚
𝛼 +

𝜃 ⋅ 𝜃𝑢𝑚𝛼
𝑑𝑢𝛼

yields a sequence of relations. When𝑚 = 0, the first two relations are:

Res
𝛼

𝜔𝑖𝜔𝑗
𝑑𝑢𝛼

= − Res
𝛼
𝑣𝛼 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔0,3 (51)

and

Res
𝛼

(
𝜔𝑖
𝑑𝑢𝛼 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,3 +

𝜔𝑗
𝑑𝑢𝛼 ∮𝑏̂𝑘 ∮𝑏̂𝑖 𝜔0,3 +

𝜔𝑘
𝑑𝑢𝛼 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔0,3

)
(52)

= −
1
3
Res
𝛼
𝑣𝛼 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔0,4.

An interpretation of (51) via the relation to a CohFT and Frobenius manifold described in Sec-
tion 2.3 is as follows. For a general CohFT Ωg ,𝑛, the relation of its product with the metric 𝜂 on
the underlying vector space is given by

Ω0,3(11 ⊗ 𝑣1 ⊗ 𝑣2) = 𝜂(𝑣1, 𝑣2) (53)

where 11 is the unit vector with respect to the Frobenius manifold product. Take two vector fields
on  and using the Frobenius manifold product, take their product which is no longer a vector
field on , rather a vector field on the related Frobenius manifold. The left-hand side of (51) gives
a component of the product, with respect to a basis of local vector fields of the Frobeniusmanifold
known as the normalised canonical basis as described in [12]. The right-hand side of (51) gives the
relation (53) since 𝑣𝛼 represents the unit 11, again described in [12].

Proposition 4.7. The cohomology class of 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) defined in (38) is the local section [𝜃] ∈
Γ(𝑈Σ,) defined in (12).
Proof. The symplectic form Ω𝑋 = −𝑑(𝑣𝛼𝑑𝑢𝛼) on 𝑋 defines a bundle-valued 1-form 𝜔𝑖 ⊗ 𝑑𝑧𝑖 ∶
𝑇[Σ]→ 𝐻0(Σ, 𝐾Σ)which is a section ofΩ1 ⊗𝔾 that lives over the 1-form 𝜙 ∈ Γ(Ω1 ⊗) via the
quotient𝔾 → . Hence,∇ (𝑣𝛼𝑑𝑢𝛼) = 𝜔𝑖 ⊗ 𝑑𝑧𝑖 lives over∇G𝑀𝑠 = 𝜙where 𝑠 ∈ Γ(𝑈Σ,) defines
[𝜃]([Σ′]) ∶= 𝑠([Σ′]) − 𝑠([Σ]) ∈ ℂ2g ≅ Σ.
By (43), ∇ lives above ∇G𝑀 so each higher covariant derivative ∇

𝐼 (𝑣𝛼𝑑𝑢𝛼) lives over the
cohomology class ∇G𝑀

𝐼 [𝜃]. Hence, by (46), the series 𝜃 lives above the Taylor series for [𝜃] which
completes the proof. □
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44 of 55 CHAIMANOWONG et al.

4.2.1 Higher genus

For g > 0, analogous to (38) define 𝜃g ∈ Γ(̂[Σ], 𝐺Σ) by

𝜃g = 𝜔g ,1 + 𝑧
𝑖 ∮𝑏̂𝑖 𝜔g ,2 +

1
2
𝑧𝑖𝑧𝑗 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔g ,3 +

1
3!
𝑧𝑖𝑧𝑗𝑧𝑘 ∮𝑏̂𝑖 ∮𝑏̂𝑗 ∮𝑏̂𝑘 𝜔g ,4 − …

Then, the cohomology class [𝜃g ] ∈ Γ(̂[Σ],) is analytic in 𝑧1, … , 𝑧g and coincides with the
analytic expansion of [𝜔g ,1] due to the following lemma which generalises (49) to the case 𝑛 = 0.

Lemma 4.8. For ℎ ⩾ 2, the function 𝐹ℎ defined in (20) satisfies the relation

𝜕𝐹ℎ
𝜕𝑧𝑖

= ∮𝑏𝑖 𝜔ℎ,1.

Proof. The proof of (49) uses (18) which is not available in the case of 𝑛 = 0. Instead, we must use
the definition of 𝐹ℎ given in (20) for ℎ > 1 by

𝐹ℎ =
1

2ℎ − 2

∑
𝑑𝑢(𝛼)=0

Res
𝑝=𝛼

𝜓(𝑝)𝜔ℎ,1(𝑝),

where 𝑑𝜓 = 𝑣𝑑𝑢.
Note that since∇

𝑖
𝑑𝜓 = −𝜔𝑖 , then∇

𝑖
𝜓 = −𝑓𝑖 where𝑓𝑖 is a primitive of the holomorphic differ-

ential 𝜔𝑖 on Σ − {𝑎𝑖, 𝑏𝑖}, that is, 𝑑𝑓𝑖 = 𝜔𝑖 . Importantly, although 𝑑𝜓 = 𝑣𝑑𝑢 is only locally defined
on Σ, its variation can be represented by a global holomorphic differential which allows us to take
periods along global cycles in Σ. Then:

(2ℎ − 2)
𝜕𝐹ℎ
𝜕𝑧𝑖

=
𝜕
𝜕𝑧𝑖

∑
Res
𝑝=𝛼

𝜓(𝑝)𝜔ℎ,1(𝑝)

=
∑

Res
𝑝=𝛼

[(
∇
𝑖 𝜓(𝑝)

)
𝜔ℎ,1(𝑝) + 𝜓(𝑝)

(
∇
𝑖 𝜔ℎ,1(𝑝)

)]
=

∑
Res
𝑝=𝛼

[
𝑓𝑖(𝑝)𝜔ℎ,1(𝑝) + 𝜓(𝑝)∮𝑏2 𝜔ℎ,2(𝑝, 𝑝

′)

]
= (2ℎ − 1)∮𝑏2 𝜔ℎ,1(𝑝

′) +
∑

Res
𝑝=𝛼

𝑓𝑖(𝑝)𝜔ℎ,1(𝑝)

= (2ℎ − 1)∮𝑏2 𝜔ℎ,1(𝑝
′) +

g∑
𝑗=1

(
∮𝑎𝑗 𝜔ℎ,1(𝑝)∮𝑏𝑗 𝜔𝑖(𝑝) − ∮𝑏𝑗 𝜔ℎ,1(𝑝)∮𝑎𝑗 𝜔𝑖(𝑝)

)

= (2ℎ − 2)∮𝑏2 𝜔ℎ,1(𝑝
′),

where the third equality uses (49) and the final two equalities use the Riemann bilinear relations
and vanishing of 𝑎-periods of 𝜔ℎ,1. □
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Together with the variational formula, Lemma 4.8 implies the relation

𝜕𝑖1 … 𝜕𝑖𝑛𝐹ℎ = ∫𝑝1∈𝑏𝑖1
⋯∫𝑝𝑛∈𝑏𝑖𝑛

𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛).

Just as the symmetry of derivatives of the periods of 𝜃, given by 𝜕
𝜕𝑧𝑖
w𝑗 = 𝜏𝑖𝑗 , leads to the

potential 𝐹0, the same mechanism yields 𝐹1. Applied to (ℎ, 𝑛) = (1, 1), the variational formula
yields

𝜕
𝜕𝑧𝑗 ∮𝑏𝑖 𝜔1,1 = ∮𝑏𝑖 ∮𝑏𝑗 𝜔1,2 =

𝜕
𝜕𝑧𝑖 ∮𝑏𝑗 𝜔1,1

since 𝜔1,2 is symmetric. Hence, there exists a potential 𝐹1 defined up to a constant by

𝜕𝐹1
𝜕𝑧𝑖

= ∮𝑏𝑖 𝜔1,1.

We have seen that 𝐹ℎ is defined via a variational formula and via topological recursion together
with the dilaton equation for ℎ ⩾ 2. These definitions are fundamentally different since the vari-
ational approach requires knowledge of 𝐹ℎ in a neighbourhood 𝑈 ⊂ , whereas the topological
recursion definition requires only knowledge at a point 𝑏 ∈ .

4.3 Geometry of the tensor 𝑨𝚺

The Lagrangian KS ⊂ 𝑊 is defined in a formal neighbourhood of 0 ∈ 𝑊. A vector field on KS
is a derivation given by a linear combination of 𝜕

𝜕𝑥𝑖
and 𝜕

𝜕𝑦𝑖
with coefficients defined in a formal

neighbourhood of 0 ∈ 𝑊. We present here explicit formulae for vector fields on KS and relate
them to normalised holomorphic differentials 𝜔𝑖 and 𝜔𝑖 ∈ Γ(̂[Σ], 𝐺Σ) defined in (40).
Coordinates {𝑥𝑖} onKS are the restriction of those given in Definition 3.3. Dual to {𝑑𝑥𝑖} are the

following vector fields on KS

𝜉𝑖 =
𝜕
𝜕𝑥𝑖

+ 𝑓𝑖𝑗
𝜕
𝜕𝑦𝑗

= (0, … , 1, … ∣ 𝑓𝑖 1, 𝑓𝑖 2, …) (54)

defined in any formal neighbourhood of 0 ∈ 𝑊. The coefficients 𝑓𝑖𝑗 are functions of {𝑥𝑘} defined
in each formal neighbourhood of 0 ∈ 𝑊. They satisfy the linear system:

0 = 𝑑𝐻𝑖(𝜉𝑗) = 𝜉𝑗(𝐻𝑖) =

(
𝜕
𝜕𝑥𝑗

+ 𝑓𝑗𝑘
𝜕

𝜕𝑦𝑘

)
𝐻𝑖

= 2𝑎𝑖𝑗𝑘𝑥
𝑘 + 2𝑏𝑘𝑖𝑗𝑦𝑘 + 𝑓𝑗𝑘(−𝛿𝑖𝑘 + 2𝑏

𝑘
𝑖𝓁𝑥

𝓁 + 2𝑐𝓁𝑘𝑖 𝑦𝓁).

They can be calculated in the 𝑘th formal neighbourhood of 0 ∈ 𝑊, for any 𝑘, using the recursive
procedure described in (24), hence expressing KS as the image of 𝑆(𝑥) = (𝑥, 𝑦(𝑥)). Linearise this
to produce

𝜉𝑖 = 𝐷𝑆

(
𝜕
𝜕𝑥𝑖

)
⇒ 𝑓𝑖𝑗 = 2𝑎𝑖𝑗𝑘𝑥

𝑘 + (4𝑏𝑚𝑗𝑘𝑎𝑖𝓁𝑚 + 2𝑏
𝑚
𝑗𝑖 𝑎𝑘𝓁𝑚)𝑥

𝑘𝑥𝓁 +⋯ .
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Proposition 4.9. The vector fields on KS satisfy the following:

𝜉𝑖 = 𝜔𝑖, 𝑖 = 1, … , g (55)

∇̂
𝜔𝑖
𝜔𝑗 ↦ ∇GM

[𝜔𝑖]
[𝜔𝑗] (56)

𝐴Σ ↦ 𝐴̄Σ. (57)

Proof. The map ℎ ∶ 𝐻0(Σ, 𝐾Σ) → 𝐿 maps holomorphic differentials normalised over 𝑎-periods
{𝜔𝑖 ∣ 𝑖 = 1, … , g}, to its local expansion at 𝑅 ⊂ Σ. ℎ has a natural image with respect to the
coordinates {𝑥𝑖, 𝑦𝑖}:

𝜕
𝜕𝑥𝑖

= ℎ(𝜔𝑖), 𝑖 = 1, … , g . (58)

To see this note that { 𝜕
𝜕𝑥𝑖
} are dual to the differentials {𝑑𝑥𝑖}, so one needs to calculate the action

of ℎ(𝜔𝑖) on 𝑑𝑥𝑗 . Since 𝑥𝑗 is linear, any vector acts by ⟨𝑣, 𝑑𝑥𝑗⟩ = 𝑣 ⋅ 𝑥𝑗 = Ω𝑊(𝑣, 𝑥𝑗). Now
Ω𝑊(𝜔𝑖, 𝑥

𝑗) =
g∑
𝑘=1

(
∮𝑎𝑘 𝜔𝑖 ∮𝑏̂𝑘 𝑥

𝑗 − ∮𝑏̂𝑘 𝜔𝑖 ∮𝑎𝑘 𝑥
𝑗

)
= 𝛿𝑖𝑗,

proving ℎ(𝜔𝑖) =
𝜕
𝜕𝑥𝑖
, 𝑖 = 1, … , g . Since the map ℎ coincides with the linearisation of the sec-

tion 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) evaluated at the point [Σ] ∈ , (58) is the specialisation of (55) to the first
formal neighbourhood.
The functions 𝑧𝑖 on Σ and 𝑥𝑖 on𝑊 are related as follows. Under the symplectic quotient, 𝑧𝑖

maps to 𝑥𝑖|𝐺Σ0 for 𝑖 = 1, … , g since for 𝜂 ∈ 𝐺Σ, by the Riemann bilinear relations ⟨𝑥𝑖, 𝜂⟩ = ∮𝑎𝑖 𝜂 =
𝑧𝑖([𝜂]). In a formal neighbourhood of [Σ] ∈ , the linearisation 𝐷𝜃 sends the vector field 𝜕

𝜕𝑧𝑖
,

defined on  and hence on the formal neighbourhood of [Σ] ∈ , to
𝜕𝜃
𝜕𝑧𝑖

∶= 𝜔𝑖 =
∑
𝐼

𝑧𝐼|𝐼|! ∮𝑏̂𝑖 ∮𝑏̂𝐼 𝜔0,|𝐼|+2 = 𝜔𝑖 + 𝑧𝑗 ∮𝑏̂𝑖 ∮𝑏̂𝑗 𝜔0,3 +⋯ .

Hence, the image of 𝜔𝑖 is obtained by replacing 𝑧𝐼 by 𝑥𝐼 in 𝜃 to give

𝜔𝑖|𝑧𝑗=𝑥𝑗 = 𝜉𝑖|𝐺Σ,
which is (55). The first two terms of (55) are

𝜉𝑖 =
𝜕
𝜕𝑥𝑖

+ 𝑓𝑖𝑗
𝜕
𝜕𝑦𝑗

for 𝑓𝑖𝑗 = 𝑎𝑖𝑗𝑘𝑥𝑘 +⋯ the first terms 𝜔𝑖 and
𝜕
𝜕𝑥𝑖

agree by (58) and the second terms 𝑥𝑗 ∮𝑏𝑖 ∮𝑏𝑗 𝜔0,3
and 𝑎𝑖𝑗𝑘𝑥𝑘

𝜕
𝜕𝑦𝑗

also agree by the following. +
A variation of the vector field is given by

𝜕
𝜕𝑥𝑗

𝜉𝑖 = (0, … , 0, … ∣
𝜕
𝜕𝑥𝑗

𝑓𝑖 1,
𝜕
𝜕𝑥𝑗

𝑓𝑖 2, …) ∈ 𝑉Σ.
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Differentiate the expression for 𝑓𝑖𝑗 by 𝑥𝑘 and take the constant term to get

𝜕

𝜕𝑥𝑘
𝑓𝑗𝑖 = 2𝑎𝑖𝑗𝑘.

In other words, the tensor 𝐴Σ gives the map

𝑇0KS ⊗ 𝑇0KS → 𝑉Σ

defined by variation of a vector field ofKS with respect to a vector. It is a tensor because any vector
in 𝑇0KS canonically extends to a vector field via (54). The canonical isomorphism 𝑇0KS ≅ 𝑉

∗
Σ

means that 𝐴Σ ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ.
The LagrangianKS ⊂ 𝑊 is a formal germ, and its vector fields are derivations on𝑊 that anni-

hilate the defining ideal ofKS. The tensor𝐴Σ is defined via the covariant derivative∇
𝑢 𝑣 of vector

fields 𝑣 ∈ Γ(𝑇KS) by vectors 𝑢 ∈ 𝐿 = 𝑇0KS with respect to the flat connection ∇ induced by
the foliation  . It defines a tensor on 𝐿 ⊗ 𝐿 because any vector 𝑣 ∈ 𝐿 extends canonically to a
vector field— 𝑣 is a linear combination of 𝜕

𝜕𝑥𝑖
which are mapped to 𝜕

𝜕𝑥𝑖
↦ 𝜉𝑖 defined by (54). □

An alternative, non-geometric proof of Theorem 3 can be obtained from Corollary 2 combined
with the following result.

Proposition 4.10 [32]. Given Σ ⊂ (𝑋,Ω,), we have
𝐴Σ = 𝜔0,3 ∈ 𝑉Σ ⊗ 𝑉Σ ⊗ 𝑉Σ.

Proof. The element 𝜂 ∈ 𝑊 lives in KS if it satisfies the residue constraints (27). For 𝑢𝛼 = 𝑧2𝛼,
𝑣𝛼 = 𝑧𝛼:

Res

(
𝜂

𝑑𝑢𝛼
− 𝑣𝛼

)
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0, 𝑚 ⩾ 1,

Res

(
𝜂

𝑑𝑢𝛼
− 𝑣𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0, 𝑚 ⩾ 0.

To analyse these, we choose a new basis of𝑊:

{𝑥𝑘,𝛼, 𝑦𝑘,𝛼 ∣ 𝑘 ∈ ℕ, 𝛼 ∈ 𝑅},

where 𝑥𝑘,𝛼 has a pole of order 𝑘 at 𝛼 ∈ Σ and is holomorphic on Σ − 𝛼 and 𝑦𝑘,𝛼 = 𝑧𝑘𝛼 is defined
only locally near 𝛼 via the local coordinate 𝑧𝛼.
The first residue constraint implies

0 = Res
𝛼

(
𝜂

𝑑𝑢𝛼
− 𝑣𝛼

)
𝑢𝑚𝛼 𝑑𝑢𝛼 = Res

𝛼
𝜂𝑢𝑚𝛼 = −2𝑚⟨𝑦2𝑚−1,𝛼, 𝜂⟩,

where the last equality uses 𝑢𝛼 = 𝑧2𝛼 and 𝑑(𝑢
𝑚
𝛼 ) = 2𝑚𝑦2𝑚−1,𝛼.

The second implies

0 = Res

(
𝜂

𝑑𝑢𝛼
− 𝑣𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 = Res

𝛼

𝜂 ⋅ 𝜂
𝑑𝑢𝛼

𝑢𝑚𝛼 − 2 Res𝛼
𝜂𝑧𝛼𝑢

𝑚
𝛼

= Res
𝛼

𝜂 ⋅ 𝜂
𝑑𝑢𝛼

𝑢𝑚𝛼 − 2⟨𝑦2𝑚,𝛼, 𝜂⟩,
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48 of 55 CHAIMANOWONG et al.

which is a linear term 𝑦2𝑚,𝛼 plus a quadratic term

Res
𝛼

𝜂 ⋅ 𝜂
𝑑𝑥

𝑥𝑚 = 𝑎𝛼𝛽𝛾
𝑖𝑗𝑘
𝑥𝑗,𝛽𝑥𝑘,𝛾 + 𝑏𝛼𝛽𝑘

𝑖𝑗𝛾
𝑥𝑗,𝛽𝑦𝑘,𝛾 + 𝑐

𝛼𝑗𝑘
𝑖𝛽𝛾
𝑦𝑗,𝛽𝑦𝑘,𝛾.

The right-hand side is themost general quadratic termwith respect to the coordinates𝑥𝑖
𝛽
= ⟨𝑥𝑖

𝛽
, 𝜂⟩

and 𝑦𝛽
𝑖
= ⟨𝑦𝛽

𝑖
, 𝜂⟩. The coefficients 𝑎∗∗ , 𝑏∗∗ and 𝑐∗∗ are𝑚-dependent. To determine the coefficient of

𝑥𝑗
𝛽
𝑥𝑘𝛾 simply evaluate on any differential 𝜂 which is locally holomorphic since such 𝜂 annihilates

𝑦𝑖 , that is, ⟨𝑦𝛽𝑖 , 𝜂⟩ = 0. When 𝜂 is locally holomorphic

Res
𝛼

𝜂 ⋅ 𝜂
𝑑𝑥

𝑥𝑚 = 0, for𝑚 > 0

since 𝑥𝑚∕𝑑𝑥 = 𝑧2𝑚−1∕𝑑𝑧 has no pole, and nor does each factor of 𝜂. Hence, we are left with the
case𝑚 = 0

Res
𝛼

𝜂 ⋅ 𝜂
𝑑𝑥

= 𝑎𝛽𝛾
𝑖𝑗𝑘
𝑥𝑗
𝛽
𝑥𝑘𝛾 +⋯

so 𝑎𝛽𝛾
𝑖𝑗𝑘
= 1

4
𝛿𝑖𝑗𝛿𝑖𝑘𝛿𝛼𝛽𝛿𝛼𝛾. Hence, 𝐴Σ =

1
4

∑
𝛼 𝑥

1
𝛼 ⊗ 𝑥1𝛼 ⊗ 𝑥1𝛼 which agrees with the following

formula for 𝜔0,3:

𝜔0,3(𝑝1, 𝑝2, 𝑝3) =
∑
𝛼

Res
𝑝=𝛼

𝐵(𝑝, 𝑝1)𝐵(𝑝, 𝑝2)𝐵(𝑝, 𝑝3)

𝑑𝑢(𝑝)𝑑𝑣(𝑝)
. □

4.4 Analytical construction of 𝜽

The section [𝜃] ∈ Γ(𝑈Σ,) in (12) together with parallel transport by the Gauss–Manin
connection ∇GM on defines a local embedding

𝑈Σ ↪ Σ.

The cohomology classes in Σ are represented by meromorphic differentials on Σ which is
encoded by the surjective map 𝐺Σ → Σ. The section 𝜃 ∈ Γ(̂[Σ], 𝐺Σ) in (38) defines a map on
a formal neighbourhood of [Σ] ∈ . The failure to lift the embedding𝑈Σ ↪ Σ to an embedding
𝑈Σ → 𝐺Σ is due to the failure of parallel transport for the connection ∇ . Following Kontsevich
and Soibelman [32], one can regain parallel transport for the connection∇ on a bundle𝔾0 related
to 𝔾.
Let Σ ⊂ (𝑋,Ω,) and𝑈Σ ⊂  a ball neighbourhood of [Σ] ∈ . Choose a union of open balls in

the universal space 𝐷𝑅 ⊂ 𝑍, containing the points 𝑅 ⊂ Σ ⊂ 𝑋 where  does not meet Σ transver-
sally, such that 𝐷𝑅 ≅ 𝑈Σ × 𝐷2 and 𝑈Σ × 𝜕𝐷2 is tangent to the foliation on 𝑍 induced by  . The
balls are chosen small enough that each component of 𝐷𝑅 contains a single point in 𝑅.

Definition 4.2. Define the vector space

𝐺0Σ =

{
𝜂 ∈ 𝐻0(Ω1(Σ − 𝐷𝑅)) ∣ ∮𝛾 𝜂 = 0, ∀ closed 𝛾 ⊂ 𝜕(Σ − 𝐷𝑅)

}
. (59)

Here, 𝛾 ⊂ 𝜕(Σ − 𝐷𝑅) means that 𝛾 ⊂ Σ − 𝐷𝑅 and it is homotopic to a boundary component.
On the level of cohomology, 𝐺0Σ behaves like 𝐺Σ. In particular, there is a surjective linear map
𝐺0Σ → Σ obtained by taking the cohomology class 𝜂 ↦ [𝜂]. The vector space 𝐺0Σ lives inside a
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AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES 49 of 55

weakly symplectic vector space𝑊0 of differentials defined in annuli around each point of 𝑅 ⊂ Σ
with zero contour integrals around boundary circles. Further details are in [9].
Define a bundle𝔾0 → 𝑈Σ with fibre over [Σ′] ∈ 𝑈Σ given by𝐺0Σ′ defined by (59) although using

𝐷𝑅 for 𝑅 ⊂ Σ rather than Σ′. The covariant derivative∇ acts on sections of 𝔾0. Parallel transport
of∇ is well defined on𝔾0 by construction. On the bundle𝔾, parallel transport is not defined due
to the non-existence of solutions to the ordinary differential equation at points where meets the
curve Σ′ non-transversally, and 𝔾0 simply removes those points.
Define 𝜃0 ∈ Γ(𝑈Σ, 𝔾0) analogously to the definition of 𝜃 in (46).

𝜃0([Σ′]) = 𝑣𝛼𝑑𝑢𝛼|Σ′ − gΓ(𝑣𝛼𝑑𝑢𝛼),

where gΓ ∶ 𝐺
0
Σ → 𝐺0

Σ′
is defined by parallel transport with respect to ∇ along a path Γ ⊂ 𝑈Σ

joining [Σ] and [Σ′].
The residue constraints (27) and (28) also make sense in the analytic setting and they

define a quadratic Lagrangian 0KS ⊂ 𝑊0. Choose local FD coordinates (𝑢𝛼, 𝑣𝛼) in 𝑋. For any
closed boundary component 𝛾 ⊂ 𝜕(Σ − 𝐷𝑅), define 0KS ⊂ 𝑊0 to consist of differentials 𝜂 ∈ 𝑊0

satisfying:

∮𝛾
(
𝑣𝛼 −

𝜂

𝑑𝑢𝛼

)
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0, 𝑚 ⩾ 1, (60)

∮𝛾
(
𝑣𝛼 −

𝜂

𝑑𝑢𝛼

)2
𝑢𝑚𝛼 𝑑𝑢𝛼 = 0, 𝑚 ⩾ 0. (61)

An analogue of Theorem 4.1 holds.

Proposition 4.11. The section 𝜃0 ∈ Γ(𝑈Σ, 𝔾0) satisfies the following properties.

(1) It takes its values in 0KS.
(2) Its cohomology class [𝜃0] ∈ Γ(𝑈Σ,) coincides with [𝜃] defined in (12).
Proof.

∮𝛾
(
𝑣𝛼 −

𝜃0

𝑑𝑢𝛼

)𝑘
𝑢𝑚𝛼 𝑑𝑢𝛼 = ∮𝛾 (gΓ(𝑣𝛼))

𝑘𝑢𝑚𝛼 𝑑𝑢𝛼 = ∮𝛾′ 𝑣
𝑘
𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼 = 0,

where 𝛾′ ⊂ Σ′ is obtained by parallel transporting 𝛾 ⊂ Σ via the foliation. The final equality uses
the holomorphicity of 𝑣𝑘𝛼𝑢

𝑚
𝛼 𝑑𝑢𝛼. Parallel transport to a holomorphic differential defined along a

different fibre is an analogous mechanism to equation (50) in the proof of Proposition 4.5. □

APPENDIX: VARIATIONAL FORMULAE
Recall from Section 2.2 that correlators of a curve embedded in a foliated symplectic surface Σ ⊂
(𝑋,Ω𝑋,) are defined recursively via (18) given by

𝜔ℎ,𝑛(𝑝1, 𝑝𝑆) =
∑

𝑑𝑢(𝛼)=0

Res
𝑝=𝛼

𝐾(𝑝1, 𝑝)

[
𝜔ℎ−1,𝑛+1(𝑝, 𝜎𝛼(𝑝), 𝑝𝑆) (A.1)

+
∑

ℎ1+ℎ2=ℎ
𝐼⊔𝐽=𝑆

𝜔ℎ1,|𝐼|+1(𝑝, 𝑝𝐼) 𝜔ℎ2,|𝐽|+1(𝜎𝛼(𝑝), 𝑝𝐽)
]
,
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50 of 55 CHAIMANOWONG et al.

where Σ enters via the recursion kernel 𝐾 = 𝐾(𝑝1, 𝑝) for 𝑝1 ∈ Σ and 𝑝 in the vicinity of a
ramification point defined by

𝐾(𝑝1, 𝑝) ∶= −
1
2

∫ 𝑝′=𝑝
𝑝′=𝜎𝛼(𝑝)

𝜔0,2(𝑝1, 𝑝
′)

𝜔0,1(𝑝) − 𝜔0,1(𝜎𝛼(𝑝))
,

which is globally defined in 𝑝1 in 𝑝. It satisfies

𝐾(𝑝1, 𝑝) ∼𝑝≈𝛼 −
1
2

𝐵(𝑝1, 𝑝)

𝑑𝑣(𝑝)𝑑𝑢(𝑝)
+ holomorphic. (A.2)

In this appendix, we prove a variational formula for the topological recursion correlators with
respect to vector fields on . We begin first with the Rauch variational formula.
A.1 Rauch variational formula
Let  be a family of curves Σ embedded in a foliated symplectic surface (𝑋,Ω𝑋,). Choose FD
coordinates (𝑢, 𝑣) on 𝑋 in a neighbourhood of 𝛼 ∈ 𝑅 ⊂ Σ ⊂ 𝑋 satisfying (𝑢, 𝑣)(𝛼) = (0, 0).

Lemma A.1. The variation of the Bergman kernel 𝐵(𝑝, 𝑞) on a curve Σ in the family is given by

∇
𝜕

𝜕𝑧𝑖

𝐵(𝑝, 𝑞) = −
∑
𝛼∈𝑅

Res
𝑟=𝛼

𝜔𝑖(𝑟)𝐵(𝑝, 𝑟)𝐵(𝑟, 𝑞)

𝑑𝑢(𝑟)𝑑𝑣(𝑟)
. (A.3)

This formula has appeared in various forms before [4, 20, 23, 29] and we will provide a proof
here which fits with the setting of a family of curves embedded in a foliated symplectic surface.

Proof. A local Rauch variational formula gives the variation of the Bergman kernel with respect
to critical values of a locally defined function. Choose local FD coordinates (𝑢𝛼, 𝑣𝛼) in a neigh-
bourhood 𝑈𝛼 ⊂ 𝑋 of 𝛼 satisfying the properties of Definition 2.2. Recall the map Λ ∶ 𝑈Σ → ℂ𝑅

defined in (21). For [Σ′] ∈ 𝑈Σ, define a local coordinate 𝑧𝛼 (up to ±1) on Σ′ by

𝑢|Σ′ = 𝑧2𝛼 + 𝜆𝛼 (A.4)

so that 𝑣|Σ′ = 𝑣(𝑧𝛼). Then
0 = ∇

𝑖 𝑢 = 2𝑧𝛼∇

𝑖 𝑧𝛼 + ∇


𝑖 𝜆𝛼, ⇒ ∇

𝑖 𝜆𝛼 = −2𝑧𝛼∇

𝑖 𝑧𝛼.

Hence, the normalised holomorphic differential satisfies

𝜔𝑖 = −∇

𝑖 (𝑣𝑑𝑢) = −(∇


𝑖 𝑣)𝑑𝑢 = −𝑣

′(𝑧𝛼)(∇

𝑖 𝑧𝛼)𝑑𝑢 =

𝑣′(𝑧𝛼)

2𝑧𝛼

𝜕𝜆𝛼
𝜕𝑧𝑖

2𝑧𝛼𝑑𝑧𝛼 =
𝜕𝜆𝛼
𝜕𝑧𝑖

𝑑𝑣.

Thus, the linearisation 𝐷Λ ∶ ℂg → ℂ𝑅 is given by

𝜕
𝜕𝑧𝑖

𝜆𝛼(𝑧
1, … , 𝑧g ) =

( 𝜔𝑖
𝑑𝑣

)
(𝛼). (A.5)

The local Rauch variational formula [29, 37] is

∇
𝜕
𝜕𝜆𝛼

𝐵(𝑝, 𝑞) = Res
𝑟=𝛼

𝐵(𝑝, 𝑟)𝐵(𝑟, 𝑞)

𝑑𝑢𝛼(𝑟)
(A.6)
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hence

∇
𝜕

𝜕𝑧𝑖

𝐵(𝑝, 𝑞) =
∑
𝛼∈𝑅

𝜔𝑖(𝑟)

𝑑𝑣𝛼(𝑟)
Res
𝑟=𝛼

𝐵(𝑝, 𝑟)𝐵(𝑟, 𝑞)

𝑑𝑢(𝑟)

and since the zero 𝑑𝑢(𝛼) = 0 is simple, (A.3) follows. □

A.2 Variation of correlators
Eynard and Orantin proved a formula for the variation of topological recursion correlators 𝜔ℎ,𝑛
in [20]. We include the proof here for completeness because the definition of a spectral curve in
this paper is slightly different to that in [20].

Proposition A.2. For Σ ⊂ 𝑋 and 𝜕
𝜕𝑧𝑖

∈ 𝑇[Σ]:

∇
𝜕

𝜕𝑧𝑖

𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛) = −
1
2𝜋𝑖 ∮𝑝𝑛+1∈𝑏𝑖 𝜔ℎ,𝑛+1(𝑝1, … , 𝑝𝑛, 𝑝𝑛+1). (A.7)

Proof. The proof of this formula uses the Rauch variational formula in Lemma A.1 and follows
exactly the proof in [20, Theorem 5.1]. We will prove it by induction on 2ℎ − 2 + 𝑛. The basic
idea is simple — apply ∇

𝜕

𝜕𝑧𝑖

= ∇
𝑖
to (A.1). Most terms of the covariant derivative are obtained

immediately from the inductive hypothesis and it remains to understand variations of the kernel
𝐾(𝑝1, 𝑝).
Rewrite (A.3) as follows:

∇
𝑖 𝐵(𝑝, 𝑞) = −

∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐵(𝑝, 𝑟)

𝑑𝑣(𝑟)𝑑𝑢(𝑟)
𝐵(𝑟, 𝑞)𝜔𝑖(𝑟)

=
∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐵(𝑝, 𝑟)

𝑑𝑣(𝑟)𝑑𝑢(𝑟)
𝐵(𝜎𝛼(𝑟), 𝑞)𝜔𝑖(𝑟)

= −2
∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐾(𝑝, 𝑟)𝐵(𝜎𝛼(𝑟), 𝑞)𝜔𝑖(𝑟)

= −
∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐾(𝑝, 𝑟)(𝐵(𝜎𝛼(𝑟), 𝑞)𝜔𝑖(𝑟) + 𝐵(𝑟, 𝑞)𝜔𝑖(𝜎𝛼(𝑟))),

where the second equality uses the fact that 𝐵(𝑟, 𝑞) + 𝐵(𝜎𝛼(𝑟), 𝑞) vanishes at 𝑟 = 𝛼 which
cancels the simple pole of the integrand, the third equality uses Res 𝑟=𝛼

𝐵(𝑝,𝑟)
𝑑𝑣(𝑟)𝑑𝑢(𝑟)

𝑓(𝑟) =

−2 Res 𝑟=𝛼 𝐾(𝑝, 𝑟)𝑓(𝑟) for 𝑓 holomorphic at 𝛼 and the final equality uses symmetry.
To simplify the notation, in a neighbourhood of 𝛼 ∈ Σ, define

𝐸𝑞(𝑝) ∶= −
1
2 ∫

𝑞′=𝑞

𝑞′=𝜎𝛼(𝑞)
𝜔0,2(𝑝, 𝑞

′), Ω(𝑝) ∶= 𝑣𝑑𝑢(𝑝) − 𝑣𝑑𝑢(𝜎𝛼(𝑝))

so that 𝐾(𝑝, 𝑞) = 𝐸𝑞(𝑝)

Ω(𝑞)
. By integrating (A.3) from 𝑞′ = 𝜎𝛼(𝑞) to 𝑞′ = 𝑞 along a contour that does

not intersect the ramification point 𝑟𝛼, we have
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52 of 55 CHAIMANOWONG et al.

∇
𝑖 𝐸𝑞(𝑝) = 2

∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐾(𝑝, 𝑟)𝐸𝑞(𝑟)𝜔𝑖(𝑟)

= −
∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐾(𝑝, 𝑟)(𝐸𝑞(𝜎𝛼(𝑟))𝜔𝑖(𝑟) + 𝐸𝑞(𝑟)𝜔𝑖(𝜎𝛼(𝑟))).

If 𝑓 = 𝑓(𝑞) is any function, then we have [20, Lemma 5.1]

∇
𝑖

(∑
𝛼∈𝑅

Res
𝑞=𝛼

𝐾(𝑝, 𝑞)𝑓(𝑞)

)
=

∑
𝛼∈𝑅

Res
𝑞=𝛼

𝐸𝑞(𝑝)

Ω(𝑞)
∇
𝑖 𝑓(𝑞)

+
∑
𝛼∈𝑅

Res
𝑞=𝛼

(
2
∑
𝛽∈𝑅

Res
𝑟=𝛽

𝐸𝑟(𝑝)

Ω(𝑟)

𝐸𝑞(𝑟)

Ω(𝑞)
𝜔𝑖(𝑟)𝑓(𝑞) −

𝐸𝑞(𝑝)

(Ω(𝑞))2
(𝜔𝑖(𝑞) − 𝜔𝑖(𝜎𝛼(𝑞)))𝑓(𝑞)

)

=
∑
𝛼∈𝑅

Res
𝑞=𝛼

𝐸𝑞(𝑝)

Ω(𝑞)
∇
𝑖 𝑓(𝑞) −

∑
𝛼∈𝑅

Res
𝑞=𝛼

𝐸𝑞(𝑝)

(Ω(𝑞))2
(𝜔𝑖(𝑞) − 𝜔𝑖(𝜎𝛼(𝑞)))𝑓(𝑞)

+ 2
∑
𝛼∈𝑅

(∑
𝛽∈𝑅

Res
𝑟=𝛽

Res
𝑞=𝛼

− Res
𝑞=𝛼

Res
𝑟=𝑞

− Res
𝑞=𝛼

Res
𝑟=𝜎𝛼(𝑞)

)
𝐸𝑟(𝑝)

Ω(𝑟)

𝐸𝑞(𝑟)

Ω(𝑞)
𝜔𝑖(𝑟)𝑓(𝑞)

=
∑
𝛼∈𝑅

Res
𝑞=𝛼

𝐾(𝑝, 𝑞)∇
𝑖 𝑓(𝑞) + 2

∑
𝛼,𝛽∈𝑅

Res
𝑟=𝛼

Res
𝑞=𝛽

𝐾(𝑝, 𝑟)𝐾(𝑟, 𝑞)𝜔𝑖(𝑟)𝑓(𝑞)

=
∑
𝛼∈𝑅

Res
𝑞=𝛼

𝐾(𝑝, 𝑞)∇
𝑖 𝑓(𝑞)

−
∑
𝛼,𝛽∈𝑅

Res
𝑟=𝛼

Res
𝑞=𝛽

(
𝐾(𝑝, 𝑟)

(
𝐾(𝜎𝛽(𝑟), 𝑞)𝜔𝑖(𝑟) + 𝐾(𝑟, 𝑞)𝜔𝑖(𝜎𝛽(𝑟))

)
𝑓(𝑞)

)
.

We are now ready to prove the variational formula (A.7), which we will do so by induction on
2ℎ − 2 + 𝑛. The base case (ℎ, 𝑛) = (0, 2) uses the Rauch variational formula:

∇
𝑖 𝜔0,2(𝑝1, 𝑝2) = ∇


𝑖 𝐵(𝑝1, 𝑝2) = −

∑
𝛼∈𝑅

Res
𝑟=𝛼

𝜔𝑖(𝑟)𝐵(𝑟, 𝑝1)𝐵(𝑟, 𝑝2)

𝑑𝑢𝛼(𝑟)𝑑𝑣𝛼(𝑟)

= −2
∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐾(𝑝1, 𝑟)𝜔0,2(𝑟, 𝑝2)

(
1
2𝜋𝑖 ∮𝑝3∈𝑏𝑖 𝜔0,2(𝑟, 𝑝3)

)

= −
1
2𝜋𝑖 ∮𝑝3∈𝑏𝑖 𝜔0,3(𝑝1, 𝑝2, 𝑝3),

where we have used (A.2) together with the recursive formula for 𝜔0,3 in the second-last and last
equalities, respectively.
Proceeding via induction, given (ℎ, 𝑛), we shall assume that (A.7) holds for all (ℎ′, 𝑛′) such that

2ℎ′ − 2 + 𝑛′ < 2ℎ − 2 + 𝑛. Then, by applying ∇
𝑖
to (A.1), we have

∇
𝑖 𝜔ℎ,𝑛(𝑝1, … , 𝑝𝑛) = −

1
2𝜋𝑖

∑
𝛼,𝛽∈𝑅

Res
𝑟=𝛼

Res
𝑝=𝛽

𝐾(𝑝1, 𝑟)
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×

(
𝐾(𝜎𝛼(𝑟), 𝑝)∮𝑝𝑛+1∈𝑏𝑖 𝜔0,2(𝑟, 𝑝𝑛+1) + 𝐾(𝑟, 𝑝)∮𝑝𝑛+1∈𝑏𝑖 𝜔0,2(𝜎𝛼(𝑟), 𝑝𝑛+1)

)

×

(
𝜔ℎ−1,𝑛+1(𝑝, 𝜎𝛼(𝑝), 𝑝2, … , 𝑝𝑛) +

∑
ℎ1+ℎ2=ℎ

𝐼1
∐
𝐼2={2,…,𝑛}

𝜔ℎ1,1+|𝐼1|(𝑝, 𝑝𝐼1)𝜔ℎ2,1+|𝐼2|(𝜎𝛼(𝑝), 𝑝𝐼2)
)

−
1
2𝜋𝑖

∑
𝛼∈𝑅

Res
𝑝=𝛼

𝐾(𝑝1, 𝑝)

(
∮𝑝𝑛+1∈𝑏𝑖 𝜔ℎ−1,𝑛+2(𝜎𝛼(𝑝), 𝑝, 𝑝2, … , 𝑝𝑛, 𝑝𝑛+1)

+
∑

ℎ1+ℎ2=ℎ
𝐼1

∐
𝐼2={2,…,𝑛}

∮𝑝𝑛+1∈𝑏𝑖 𝜔ℎ1,|𝐼1|+2(𝑝, 𝑝𝐼1 , 𝑝𝑛+1)𝜔ℎ2,|𝐼2|+1(𝜎𝛼(𝑝), 𝑝𝐼2)

+
∑

ℎ1+ℎ2=ℎ
𝐼1

∐
𝐼2={2,…,𝑛}

𝜔ℎ1,|𝐼1|+1(𝑝, 𝑝𝐼1)∮𝑝𝑛+1∈𝑏𝑖 𝜔ℎ2,|𝐼2|+2(𝜎𝛼(𝑝), 𝑝𝐼2 , 𝑝𝑛+1)
)

= −
1
2𝜋𝑖 ∮𝑝𝑛+1∈𝑏𝑖

∑
𝛼∈𝑅

Res
𝑟=𝛼

𝐾(𝑝1, 𝑝)

(
𝜔ℎ−1,𝑛+2(𝜎𝛼(𝑝), 𝑝, 𝑝2, … , 𝑝𝑛, 𝑝𝑛+1)

+ 𝜔ℎ,𝑛(𝜎𝛼(𝑝), 𝑝2, … , 𝑝𝑛)𝜔0,2(𝑝, 𝑝𝑛+1) + 𝜔ℎ,𝑛(𝑝, 𝑝2, … , 𝑝𝑛)𝜔0,2(𝜎𝛼(𝑝), 𝑝𝑛+1)

+
∗∑

ℎ1+ℎ2=ℎ
𝐼1

∐
𝐼2={2,…,𝑛,𝑛+1}

𝜔ℎ1,|𝐼1|+1(𝑝, 𝑝𝐼2)𝜔ℎ2,|𝐼2|+1(𝜎𝛼(𝑝), 𝑝𝐼2)
)

= −
1
2𝜋𝑖 ∮𝑝𝑛+1∈𝑏𝑖 𝜔ℎ,𝑛+1(𝑝1, … , 𝑝𝑛, 𝑝𝑛+1),

where
∑∗ indicates that we exclude all terms involving 𝜔0,2(., 𝑝𝑛+1) from the summation. □
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