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Abstract

An embedded curve in a symplectic surface ¥ C X
defines a smooth deformation space 53 of nearby embed-
ded curves. A key idea of Kontsevich and Soibelman is to
equip the symplectic surface X with a foliation in order
to study the deformation space /5. The foliation, together
with a vector space V5 of meromorphic differentials on
>, endows an embedded curve X~ with the structure of
the initial data of topological recursion, which defines a
collection of symmetric tensors on V. Kontsevich and
Soibelman define an Airy structure on Vs to be a for-
mal quadratic Lagrangian £ C T*(V3) which leads to
an alternative construction of the tensors of topological
recursion. In this paper, we produce a formal series 6 on
B which takes it values in £, and use this to produce
the Donagi-Markman cubic from a natural cubic ten-
sor on Vs, giving a generalisation of a result of Baraglia
and Huang.
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1 | INTRODUCTION

Consider a smooth algebraic curve X embedded in a symplectic algebraic surface X. The purpose
of this paper is to study the relation of the local deformation space of X to topological recursion
following Kontsevich and Soibelman [32].

The local deformation space B of X parametrises embeddings of smooth curves nearto X C X. It
is a smooth complex analytic space of dimension equal to the genus of . Represent ¥ C X by the
point [Z] € B. Over B s a flat symplectic bundle H — B with fibres H'(Z; C) and equipped with
the Gauss-Manin connection VOM, The natural linear embedding H°(Z, Ks) ¢ H'(Z; C), which
sends a holomorphic differential to its cohomology class, defines a Lagrangian subbundle of H
with fibres H(Z, Ky). The symplectic structure on X defines the exact sequence

0—-TX > TX|y — K5 — 0. @
In particular, the normal bundle vy to £ C X is isomorphic to K, and hence, the tangent space

HO(Z,vs) to Bat[Z] is isomorphic to the vector space of holomorphic differentials H(Z, K5). The
isomorphism is denoted as

¢ @ Ty B — H(Z,Ky),
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which defines an H-valued 1-form ¢ € I'(J3, Q}s ® H). One can realise ¢ via variations of a
section

[6] € T(Ug), H),
where Upy) C Bis a neighbourhood of [Z], and [6] is characterised by
¢ = VMo, [6]([Z]) = 0. (2)

A construction of [8] is given in (12) in Section 2. Hence, for [Z'] € Uy) and any v € Ty B,
P(v) = VSM[G] € H°(Z',Ky) which defines [0] uniquely up to addition of a constant section,
and the ambiguity is removed by setting [6]([Z]) = 0. One can equivalently define [0] via parallel
transport of the flat connection on H given by VSM + ¢. The property ViM[6] € H(Z',Ky/) is a
cohomological version of the property of a Seiberg-Witten differential.

Equip X with a Lagrangian foliation F, or equivalently a holomorphic sub-line-bundle Ly C
TX.More generally, the foliation may be singular at finitely many points, so Ly C TX is a subsheaf
and X is chosen to avoid these singular points. For example, if the foliation is defined by the fibres
of amorphism 7 : X — CtoacurveC, then L = ker D7 is not locally free at the critical points of
7 contained in the singular fibres. Define R C X to be those points where X meets F tangentially,
soby (1) Lr|y = K5(—R). Furthermore, we choose X so that R C X is finite and each tangent point
is simple. The simple tangency condition is an open condition hence also true of any nearby curve
¥/ in the family B and defines R’ C ¥’. A key idea of Kontsevich and Soibelman in [32] is to use
the Lagrangian foliation F to study the deformation space /3 via lifting cohomology classes in
H'(Z; C) to meromorphic differentials on T with poles at R C . Define Gy, to be the vector space
of residueless meromorphic differentials on X, holomorphicon X — R, and G — B the bundle with
fibres Gy.. The map Gy — H'(Z, C) which sends a differential to its cohomology class is surjective
and induces the surjective map of vector bundles G — H.

Topological recursion, as defined by Eynard and Orantin [20], is a recursive procedure that pro-
duces from a spectral curve S = (%, u, v, B) a symmetric tensor product of meromorphic 1-forms
wp , ON 3" for integers h > 0 and n > 1, which we refer to as correlators. Here, a spectral curve,
S = (Z,u,v, B),isacurve X equipped with two meromorphic functions u,v : £ — C holomorphic
in a neighbourhood of points where du = 0 and a bidifferential B(p,, p,) defined in (16), such that
du has only simple zeros. More generally, u and v need only to be locally defined.

A curve X C (X, F) together with a choice of a and b-cycles that form a Torelli basis
{a, ..., ag, by,...,b,} € H,(Z; Z) produces a spectral curve S = (Z,u, v, B) and hence the initial
data of topological recursion. The a and b cycles on Z uniquely determine a bidifferential B(p,, p,)
defined on T — see (16). The locally defined functions are restrictions to X of locally defined
coordinates u and v on X chosen so that the symplectic form on X is w = du A dv and the
leaves of the foliation are defined via u = constant — denoted as foliation-Darboux coordinates in
Definition 2.1.

The choice of a-cycles defines

Vz={77€Gz|7§77=0,i=1,---,g},
a;

which has trivial intersection with H(Z,Ky) C Gy, since non-trivial holomorphic differentials
cannot have zero a-periods. The choice of Torelli basis extends to a well-defined choice on a
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neighbourhood Uy C B of [Z], and hence, Vy defines a subbundle of G on Ujy;. The correla-
tor @, ,(py, P2s - » Py) is symmetric in p; and has poles only at p; € R C Z with zero residues and
vanishing a-periods. In other words, it lives in the nth symmetric power

@pn(P1> P2s e Py) € 8" (V)

where S" is the nth symmetric algebra.
For any residueless meromorphic differential 7 defined on X, denote its normalised periods by:

1
fri=mad ®)
b Tl by

For [Z] € B, the functions

define coordinates on a neighbourhood Uy C BB and also on a formal neighbourhood ]/3\[21 of
[Z] € B.

Given a curve X C (X, F) together with a choice of @ and b cycles, which determine normalised
holomorphic differentials w; € H°(Z, Ky) and correlators wy, ,,, the following theorem constructs
a formal series of meromorphic differentials that lives above the local analytic expansion of the
section [0].

Theorem 1. Define a section 6 € F(]/S’\[ZJ, Gs) by

6=zw — lzizjj{ 7{ Wg3 — lzizjzk}g jl{ jl{ W4 = s (4)
2 b Jb; 3! b Jb; Jb,

where we sum over indices in {1, ..., g}. Its cohomology class in F(BA[ZJ, M) isanalyticin z!, ..., z9 and
coincides with the analytic expansion of [6] defined in (2).

We use the convention of summation over repeated indices throughout the paper, except when
we wish to emphasise the indices. Note that the cohomology class [0] can be naturally expressed

by its periods
[6] = (% [e]’% [e] | l = 17 eeey g) E ng [[Zl’ “"Zg]]‘
a; b;

Properties of the series (4) leads to relations among residues and periods of @, j,, such as (51) and
(52).

The series 0 is a formal expansion of the Seiberg-Witten differential in the Seiberg-Witten
family of curves [34]. Similarly, in the case X = T*C, the formal series 6 is a formal expansion
of the tautological 1-form on T*C — see (46) in Section 4 for a precise statement. An analytic
expansion of the Seiberg-Witten differential or tautological 1-form would require a natural local
trivialisation of the bundle G. The foliation produces a flat connection on G, defined in Section 4;
however, this does not produce a local trivialisation since parallel transport for this connection is
not defined.
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The period matrix 7;; of £ appears in the first order terms of [0] via

7{ [6] = z/7;;|x + higher order terms,
b;

which leads to the following corollary.

Corollary 2. The variation of the period matrix of a curve £ C X is

97;; )
— = —27i @ 35
oz 5 Jo; Jo,

and more generally,

9"ty
— = 27mi @) .
dzi ... 0zin fgj{f{ 7{ o2
zZ1..0Z b; bj bil b;
n

When X = T*C, Corollary 2 was proven by Baraglia and Huang in [4], and Bertola and Korotkin
[5]. In [4], the result is proven using a Rauch variational formula for Bergman kernels, a key
ingredient in the definition of W 35 defined on Hitchin spectral curves — see Section 2.2. In [5],
the authors identify a Hitchin spectral curve with a pair (Z, v) consisting of an abelian differential v
defined on a genus ¢ curve £, and use variational formulae on the space of such pairs. In particular,
they also prove a Rauch variational formula for Bergman kernels which leads to the relation with
topological recursion above.

Corollary 2 can be packaged into an expression for an analytic expansion of the prepoten-
tial F, : B — C defined in Section 2.1, such as the Seiberg-Witten prepotential [34], in terms of
periods of the correlators:

1
zZ
Fy(z',..,z%) == )| W}é @o, 11 (5)
: T

I

The summation is over multi-indices I = (i, ..., i,,), fori; € {1, ..., g} and the integral is 95}3[ w1 =

'¢Bi1 y%in @0 (P15 - s Pn)-

Note that a choice of a-cycles on X C (X, Q) determines local coordinates {z',...,z9} on the
deformation space B of X and the prepotential F, : B — C, well defined up to quadratic terms
in z'. Moreover, F, depends (up to quadratic terms) only on the linear sub-module L, ¢ H,(Z; Z)
spanned by the a-cycles. This is reflected clearly in (5) since the difference between two choices
of b-cycles is an element of L,. The correlators w ;| in (5) vanish on L, for |I| > 3, so only the
quadratic term involving wj , detects a change in b-cycles.

The series 6 defined in (4) has a geometric interpretation which we now describe. Kontsevich
and Soibelman [32] formulated topological recursion in terms of an Airy structure which charac-
terises a quadratic Lagrangian £ C W in a symplectic vector space, that is, a sub-variety defined
by polynomials of degree < 2. A basic example is the plane conic tangent to the line y = 0:

L ={-y+ax?+2bxy+cy* =0} c C2.
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More generally, consider a finite-dimensional symplectic vector space W = C?" and a quadratic
Lagrangian £ C W containing 0, with tangent space L = T,L. Choose a Lagrangian complement
VtoLin W

W=Le@V.

Qw () L .
Note that the exact sequence L - W L produces a canonical isomorphism V = L* hence

a canonical isomorphism W = V* @V = T*(V*) so that V is a polarisation of W.

Choose Darboux coordinates {x',y;};_; y € W*, that is, Qy, = dx’ A dy;, with x' € V and
¥; € L which are naturally coordinates on the base V*, respectively, fibre V, of T*(V*). We have
L = {y; = 0} and the Lagrangian L is defined by

£={H;=0]|i=1,..,N}

1

for
- i vk 4 pk yJ Jjk P —
H; = —y; +a;;x)x" + biijyk +¢ Yy, i=1,..,N.
The coefficients of the H; are tensors on V.

B=(b§‘j)ev*®V®V,

c=(eveverv,

. . N . k 'k .
where (a; ;) 1= a; . x'x/xk, (b%) := b  xix/y, and (/) := ¢/“x!y.y, and as usual we sum over
ijk ijk ij ij Yk i i YiYk

the indices i, j, k.
The defining functions of the Lagrangian submanifold satisfy

J

{H;,H;} = g;Hy, (6)

where gik. are functions in general, but numbers here since H; are quadratic. The relation (6)
implies a collection of conditions on the tensors A, B and C. The linear term contribution to (6)
implies A € S3(V), whereas a priori A is symmetric only in its final two arguments, and it also
implies gikj = 2b;‘i — Zbg‘j. The remaining conditions, corresponding, respectively, to vanishing of
coefficients x¥x™, x¥y™ and y¥y™ in (6), are homogeneous of degree 2 in the tensors and given
explicitly in Definition 3.2.

Kontsevich and Soibelman define an Airy structure to be a collection of tensors on a vector
space V:

AeSym*(V), BeV*®@VR®V, CeSym*(V)QV,

satisfying the quadratic relationships implied by (6). An Airy structure makes sense for infinite
dimensional V. In finite dimensions, an Airy structure is equivalent to a quadratic Lagrangian
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submanifold of the symplectic vector space T*(V*), while in infinite dimensions, it corresponds
to a formal Lagrangian submanifold defined by the ideal generated by a collection of quadratic
polynomials H;, i = 1,2, .... — see Section 3.2.

A fundamental example of a formal Lagrangian subvariety in an infinite-dimensional symplec-
tic vector space arises from Virasoro relations satisfied by the Kontsevich-Witten tau function of
the Kortew-De Vries (KdV) hierarchy

Z8W(h,x1, x3,..) = exp 2 o / Hv,b (2k; + xRt |
hnE My =

which is a generating function for intersection numbers of tautological classes 3; on the moduli
space of stable curves. Define {L_,, L, L;, ...} which satisfy the Virasoro commutation relations

[L,.L,)=(m—-n)L,,, formnz-1

by
1 9 h 1 (x1)?
m = T3 3x2m+3 t2 Zn?xlaxj 2 Z ax1+2m 165’"0 + 4h 27, Om-1
=
i,j odd i odd
where the sum over i + j = 2m is empty when m = 0 or —1 and ; is the zero operator. Then

L,z (n,x',3x%,.)=0, m>-1,
which uniquely determines any intersection number recursively from the initial calculation

/Mos 1 =1 as conjectured by Witten [41] and proven by Kontsevich [31]. Define the symplectic
vector space of residueless Laurent series

W iry = {J = Z an_”% | Jo = 0,3N such thatJ, =0, n > N} @)
nez

with symplectic form
Quw(1,m,) = Res fimy, dfy=n,m eW.

There is a symplectomorphism W ;. = Spf(C[x",y.]) equipped with the Poisson bracket
{xi,y}= 5; and {x',x/} =0={y,y;},i,j=1,..,0

Example 1.1. Define the quadratic Lagrangian

L piry € Wairy = SPE(C[x", .]D
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via the ideal generated by the linear and quadratic functions

H(x",y.)=-y, kezZ

even

. —_ . a +
Hk(x,y,)—thT_3<x,h >|hi=y- keZOdd

dx* oyl 7H

[Se]
1 1 1 L 1 1 1\2
==Y +3 Z Yiyj+s3 Z iX'Yig3 + 760k + 7061 (X))
i+j=k—3 i=1
i,j odd iodd

wherey_; =0.

The local behaviour of the topological recursion correlators at each point of R C X gives rise to
the tau function ZXW(h, t,, t,, ...) corresponding to the quadratic Lagrangian £ Airy-

There are natural embeddings Vy C Gy C Wﬁiry defined by identifying W ;. with local
residue-free differentials — see (25) and (26) — and sending global meromorphic differentials
to their local expansions at each point in R with respect to a given local coordinate. We have
(Vi) = Wﬁiry as symplectic vector spaces. The (formal) quadratic Lagrangian submanifold
produces an Airy structure on V:

Lys = Eiiry C T*(Vy) » (Ag, By, Cy). ®)
The dependence of the Airy structure on ¥ C X is through the polarisation of Wﬁiry D Lgg. The

embedding G5, C Wﬁiry is coisotropic and the quotient becomes a symplectic quotient
H'(Z;C) = Gy /Gy =: Wﬁiry /Gs.

The image under the quotient map of the tensor Ay EVy @ Vs ®Vy = Vs ® Vs ® Vs is
rather natural.

The section 6 € F(ﬁ[z], Gy ) constructed in Theorem 1 takes its values in Ly — see Proposi-
tion 4.5. This is used to understand the relation of the Airy structure built out of = C (X, Qx, F)
to the local geometry of the space 13, stated concretely in Theorem 3 below.

The Donagi—-Markman cubic [15] is the extension class defined by the exact sequence (1), which
gives rise to a tensor on /3:

— ®
As € Ext!(Ky, TZ) & HO(Z’K§3)V = (TFE]B>

There is a natural isomorphism H°(Z,K5)Y = Vs where Vy is the image of Vy under the
quotient map Gy — Hs:

Vz={neH1(2;c)|7§n=o,i=1,...,g}, 9)
a;

which satisfies

H'(Z;C) = H'(Z,Ky) ® V.
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Any complement to H°(Z, Ky) is naturally isomorphic to H(Z, Ky)Y via the symplectic form on
H'(Z;C). Via this natural isomorphism, the Donagi-Markman cubic is represented by

A; €V ®Vs @ Vs.
Theorem 3. The image of the tensor As under the quotient map Vs — 72 is the tensor Ay,

Vi@Vs®Vy > Vs @V ®Vy (10)

AZ [ ad Az.

. . . . . 9ty
The Donagi-Markman cubic can be calculated via variations #, and hence, (10) can be
deduced from Corollary 2 together with the result Ay = w, ; — see Proposition 4.10. Instead, we

give a direct, geometric proof of Theorem 3. In Section 4.3, Ay, is constructed as a linear map
ToLys @ ToLgs = Vs

via covariant differentiation of a vector field on Lgg. The tensor Ay similarly arises via covari-
ant differentiation of vector fields. Any vector v € Ty B = H (2, Ky) extends locally to a unique
vector field 0 € T(Ujy}, TB)] C I'(Ujy), H) defined by requiring yfa. U to be locally constant. The

covariant derivative VSMU lives inside V5, since the derivative of constant a-periods is zero.
Hence, VSMﬁ takes in two vectors u, v € T[Z]B and defines a linear map

H°(Z,Ky) ® H'(Z,Ky) = Vs,

which is identified with Ay. Note that the Donagi-Markman cubic is independent of the extension
of a vector v to a vector field U; however, the particular choice of vector field here produces its rep-

resentative in 7? °. Thus, both Ay and Ay, are obtained via covariant differentiation with respect
to a flat connection of a tangent vector field by a tangent vector. Moreover, the vector fields and flat
connection upstairs are related to vector fields and flat connection downstairs. To implement this
idea, one needs to use the formal germ of a Lagrangian and formal vector fields upstairs, together
with the linearisation of 6 defined in Theorem 1. One consequence of Theorem 3 is that although
As is constructed only in a formal neighbourhood of a point in /3, it descends to an analytic tensor
which extends over all of 5.

It is interesting that the methods used here, following Kontsevich and Soibelman, embed 3
into a vector space of meromorphic differentials on the curve, with poles located at the branch
points on the spectral curve, while the methods used by Bertola and Korotkin to prove Corol-
lary 2 embed B into a moduli space of meromorphic differentials with poles located at the poles
of the Higgs field. They write in [5]: “This suggests a possibility of the existence of a natural simple
structure on spaces of abelian differentials which underlie the topological recursion framework
on spaces of spectral covers’. Indeed, the methods of Kontsevich and Soibelman produce topo-
logical recursion from a natural structure on the space of meromorphic differentials on a curve.
Although the meromorphic differentials differ in both cases, it would be interesting to compare
these two approaches.

In Section 2, we define topological recursion for any smooth curve embedded in a foliated
symplectic surface T C (X, Qy, F), and give examples of foliated symplectic surfaces. Topological
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recursion is related to cohomological field theories [13], and we describe its consequences for the
deformation space B of ¥ C X in Section 2.3. In Section 3, we define the approach to topological
recursion by Kontsevich and Soibelman [32]. The quadratic Lagrangian used is £ »;;, constructed
from the Kontsevich-Witten tau function. In Section 3.4.2, we instead use a quadratic Lagrangian
Lpesel built from the Brézin-Gross-Witten tau function of the KdV hierarchy. In Section 4, we
define the series 6 € F(1§[Z], Gy ) defined in any formal neighbourhood of [X] € B and prove its
properties. The Appendix contains a proof of the variation formula for the correlators w,, ,, due to
Eynard and Orantin [20] and adapted to the spectral curves arising out of 2 C (X, Qy, F).

2 | TOPOLOGICAL RECURSION APPLIED TO CURVES IN SURFACES
In this section, we apply topological recursion as defined in [20] to
2CX,Q,F)

given by a compact curve embedded inside a (holomorphic) symplectic surface (X, Qy) with
Lagrangian foliation F following Kontsevich and Soibelman [32]. We begin with a description
of the prepotential on the deformation space of X inside X. We then equip the surface X with a
Lagrangian foliation, 7, which puts the extra structure on X required to define a spectral curve
which is the initial data of topological recursion. More generally, one should be able to relax
the symplectic condition, and require only a Poisson structure, [32]. In Sections 2.4 and 2.5, we
describe the cases X = T*C and X = an elliptic K3 surface.

2.1 | Deformation space of embedded curves

Consider a symplectic surface (X, Qy) together with a smooth, embedded genus ¢ curve = C X.
The deformation space B of X inside X is a smooth complex analytic moduli space of dimension
g. The tangent space of the moduli space B at the point ¥ is naturally identified with H°(Z, vy),
the space of holomorphic sections of the normal bundle of £, which is isomorphic to H(Z, Ky),
and the space of holomorphic differentials on X via adjunction

Ks =2 Kyly @ vy & v5.

This is a particular case of the more general property for a Lagrangian subspace L of a symplectic
vector space W

Quy (-
0-L->W W—(> ) L* =0,
which produces a canonical isomorphism L* = W /L.

Over the moduli space, 3 is a symplectic vector bundle H equipped with a flat connection
The symplectic vector bundle H is given by the hypercohomology

VoM,

Hs = H(Z, Cone(dyy, : O — Q1)), (11)
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which is isomorphic to the first cohomology group H 1(z;C), and VM is the Gauss-Manin
connection. Define the H-valued 1-form ¢ € T'(53, Q}s ® H) via the composition of maps

TyB — H(Z,Ql) - H'(Z;C) = Hy.

Then ¢ is flat with respect to VOM,

Lemma 2.1. VoM¢ =0,

Proof. We will show that ¢ is locally exact, that is, there exists a well-defined local primitive, or
equivalently that ¢ integrates trivially along small loops in B. Given [Z] € 13, choose a small loop
y C Bcontaining [Z]. Choose [a] € H,(Z, Z) represented by an embedded closed curve o C X and
choose a family & of embedded closed curves representing the given homology cycle in each fibre.
This gives a torus T2 — X which bounds a solid torus M* — X when ¥ is chosen small enough.
Integration of ¢ along y gives an element of a fibre of H which evaluates on [a] by

<[@Jﬂ>=ﬂg&=o

since dQy = 0 and T? is homologically trivial. This applies to any primitive homology class [«]

hence
/ $=0.
Y

This is true of any small y, so ¢ is locally exact hence closed (as a section of the locally trivial
bundle #), that is, flat with respect to VM. O

The flat connection VSM naturally defines a complex

GM VGM VGM

Q°®HV—> QAOH - OX2QQH —
B B B

Define alocal section s € I'(Uyy), H), for Uy) C Baneighbourhood of a point [Z] € B,by VoM =
—¢. The solution to this equation is a cohomology class s([Z']) € Hj, for each [2'] € Uy well
defined up to addition of a constant independent of [Z']. To remove the constant, define [0] :
U[z] — Hy by

[61([Z'D) = s([Z]) — s([2']) € C* = M5, (12)

which is a well-defined map from the open set Upy; C B to C29. The isomorphism of cohomology
with C29 uses a choice of Torelli basis. Strictly, in (12), s([Z']) has been parallel transported from
Hs, to Hy, via the Gauss-Manin connection. By definition, the covariant derivative of [0] is given

by

voMie] =7
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for any 7 € H(Z,Ky) = Ty B. The linearisation V6™ [6] : T|yB — Hy, has image given by the
parallel transport of the Lagrangian subspace H(Z, Ky/) C Hs, so [0] defines a local Lagrangian
embedding of Uy)] C Binto Hy:

Lag.
Upg) < My = C™. (13)

Remark 2.2. Tt is important to note that [0] is related to, but not equal to, the cohomology class of
the tautological 1-form vdu|s, in the case X = T*C. It is given by

[B1(Z'D) = [vduly] — [vduls/ ] € C*.

As mentioned above, this difference uses parallel transport by the Gauss—-Manin connection. We
will see later that there exists a meromorphic differential @ which is defined only in a formal
neighbourhood of [Z] € B with cohomology class given by an analytic expansion of [0]. The
Gauss-Manin connection lifts to a connection with well-defined parallel transport on any formal
neighbourhood, but only partially defined on G.

Using the choice of a-cycles on each ¥’, [0] defines coordinates on Uy C BB by
(D = § OUZD. i=1ows (14)
a;

The coordinates satisfy z/([Z]) = 0, and coordinates defined with respect to any nearby point are
related via a constant shift z' - z' + z{.

The b-cycles on each ¥’ give rise to functions w;(z!, ..., z%) defined by w; = y§b[ [6]1([=']) fori =
1, ..., g. Their derivatives satisfy

o azjf[e fiv%[e]—yiwj 7,

i

where the second equality uses the definition of the Gauss—Manin connection. By the Riemann
bilinear relations ; j is symmetric, and hence, there exists a function, known as the prepotential,

F,:U->C
satisfying
0F,
i gs = 15 )
3 - J— J— — —
hence also al 55 = Tij and M‘;Z% = ¢; i, which defines the tensor Ay € Vs ® Vs ® V' for Vy
defined in (9)

2.2 | Foliations and topological recursion

Equip the symplectic surface (X,Qy) with a holomorphic Lagrangian foliation F. Let ¥ C
(X, Qx, F) be a compact curve embedded inside a symplectic surface (X, Qy) with Lagrangian
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foliation F. We require that X is tangent to F at finitely many points R C Z and the tangencies are
simple.

Example 2.3. A typical example is the cotangent space X = T*C of a compact curve C. The sym-
plectic surface X is foliated by fibres of the projection 7 : X — C. For an embedded compact
curve X C X, the set R is the set of ramification points of the morphism 7|5, and X is chosen to
have simple ramification points.

Definition 2.1. Define foliation-Darboux (FD) local coordinates u, v on (X, Qy, ) to be Darboux
coordinates, that is, du A dv = Qy that define the leaves of the foliation via u = constant.

For each point in X, there exists a neighbourhood with FD local coordinates. They are unique
up to the symplectic change of coordinates which preserves the foliation

v
(u,v) > (f(w), o= + g(w)), (15)
f'w)
for f'(u) # 0 in the neighbourhood of X.
The data X C (X, Qx, F) give rise to a spectral curve which is used to define topological recur-
sion. We begin with a definition of topological recursion following Eynard and Orantin [20].
Topological recursion arose out of the study of the free energy of matrix models [7].

* Spectral curve. A spectral curve (Z, u, v, B) consists of a compact Riemann surface X equipped
with two meromorphic functions u and v defined on X and a symmetric bidifferential B defined
on X X X. We assume that each zero of du is simple and does not coincide with a zero of dv.
Topological recursion produces symmetric tensor products of meromorphic differentials w), ,,
on 2" for h > 0 and n > 1 which we call correlators.

* Bergman kernel. A good choice of bidifferential B in the spectral curve is the Bergman
kernel which is a canonical normalised symmetric bidifferential B(p, p") associated to a com-

.....

/pea,- B(p,p’)=0,i=1,..., 9. Inalocal coordinate z on X, it is given by

B(p, pl) _ dz(p)dZ(P )

= m + holomorphic in (z(p), z(p")). 16)

It generalises the Cauchy kernel since it satisfies df(p) = Res _, f(p")B(p, p’), for all
meromorphic f.
* Recursion kernel. Define a kernel in a neighbourhood of any a € Z, that is, du(a) = 0, by

1 fpp B(pb : )
2 (v(p) — v(p)) du(p)’

K(p1,p) = a7n

where p — p denotes the holomorphic involution defined locally at the ramification point a €
R satistying u(p) = u(p) and p # p.

* Recursion. The correlators w), ,, are defined by

wo2(P1> P2) = B(py, P2)
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and for 2h — 2 + n > 0 recursively via:

Opn(P1Ds) = D, ReSK(pr. D) @1 n11(P.0e(P). Ps) (18)
du(a)=0

+ 2 @p, 11+1(Ps Pr) @, 71410 (P)s Py | -
hy+hy=h
IW=S
Here, we use the notation S = {2,3,...,n} and p; = {pil,piz,...,pik} for I ={iy,i,,...,ix}. The
outer summation is over the zeroes of du.

* Structure of correlators. The correlators wj, ,(p;, ..., p,) are tensor products of meromor-
phic differentials, symmetric in p;, with zero residue poles at p; = a for any zero «a of du,
and holomorphic outside the set defined by du = 0. They inherit from B(p, p’) the property
fpieak wh,n(pl’ ’pn) =0.

* Dilaton equation. The differential vdu is locally exact on Z, and we define ¢ to be a local
primitive, that is, dip = vdu. The dilaton equation, proven in [20], is:

Resa Y(Pus1)pn41(P1s s Pry1) = Rh =2+ n)wy, ,(py, ..., Pp)- 19)

du(@)=0 Pp+1=
Since wy, , 41 has zero residue at each «, the left-hand side of the dilaton equation is independent
of the choice of primitive ¢. The dilaton equation leads to the definition of the correlators for

n=0andh > 2.

1
F, =
h = on—2

Y, Resp(pwy(p), h>2. (20)
du(@=0""~

These are called symplectic invariants in [20] (which uses F}, that differs by a negative sign from
(20)).

* Local spectral curve. The recursion depends only a neighbourhood of the zeros of du, and
hence, u, v and B need only be defined locally in this neighbourhood. In this case, (Z, u, v, B)
is said to be a local spectral curve.

In this paper, w, ; are not defined, or equivalently zero. In some conventions, w, ; is defined to
coincide with vdu.

The recursive procedure of topological recursion (18) can be formulated and generalised [1, 32]
in terms of the tensors A, B and C from the Airy structure defined in Section 3.2.

221 | Correlatorsof £ C (X, Qy, F)

Given a compact curve embedded inside a symplectic surface with Lagrangian foliation X C
(X, Qx, F), choose a collection of a-cycles on X C X. This choice defines an associated Bergman
kernel B normalised over the a-cycles, and together with a choice of FD local coordinates u and
v (see Definition 2.1), they define a local spectral curve:

2 CX,Qx,F)w (Z,u,v,B).
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Apply topological recursion, defined via (17) and (18), to this local spectral curve to produces cor-
relators wj, , which are tensor products of meromorphic differentials on =" with poles precisely at
R C X. The spectral curve (X, u, v, B) depends on a choice of (u, v). The correlators are independent
of the ambiguity (15) since (u, v) enters the recursion via the kernel K(p;, p) as

v(p) )
iy TP T Ty

and the involution p — p depends only on the foliation. The dilaton equation is also indepen-
dent of the ambiguity (15) since 3 — ¥ + &£(u) which adjusts the left-hand side of (19) by a sum
of residues of a holomorphic function in u times the correlator. These residues vanish, that is, for
holomorphic £(u) defined in a neighbourhood of «, Res,_, Eu(p))awy, | p,=p = 0since the prin-
cipal part of w), ,, at a is skew-invariant under the involution p — p and it is still skew-invariant
after multiplication by an invariant function. The residue comes from the invariant part. In par-
ticular, the functions Fj, are well defined for & > 2 since they do not change under (15). In the case
X = T*X, this generalisation of a spectral curve was studied in [14].

Since the simple tangency condition on a curve X C (X, Qy, F) is an open condition and a
choice of a-cycles on X is a discrete choice, we can choose an open neighbourhood Uyz; of [Z] € B
consisting of nearby embedded ' C (X, Qy, F) satisfying the simple tangency condition and with
a given choice of a-cycles. Thus, the correlators w), ,, are well defined on each nearby X’ and F),
defines a function on a neighbourhood Uy of [Z] € B for each h > 2.

One main motivation of [32] is to use the functions F; to produce a cyclic vector for the
deformation quantisation of B C H'(Z; C) by:

(0(p) — v(p))du(p) = ( _ g(u(p))>df(p>,

Yo L p wnF hlF
exp ( 7=+ F +hAF, + - + gt )
This is annihilated up to O(k) by a quantisation of the local defining equations for B ¢ H(Z; C):
—h% + Wl-(Zl, vy Z29).

Just as F, can be calculated independently of the choice of foliation, the deformation quantisa-
tion suggests that there may be a way one could define the F);, independently of the choice of
foliation. This might allow F, to be constructed via topological recursion using any local Darboux
coordinates (u, v) of X leading to symplectic invariance of F),.

2.3 | Cohomological field theories

A cohomological field theory (CohFT) is a pair (H,.,.)) consisting of a finite-dimensional com-
plex vector space H = CR equipped with a non-degenerate symmetric bilinear pairing (.,.) and a
sequence of S,,-equivariant maps

Qp, : H®" = H* (M, ,;C).

The maps Q,, ,, satisfy natural compatibility conditions with respect to restriction to lower dimen-

sional strata in M, , built out of ﬂhw —see [30]. It is semisimple if H is semisimple with respect
to a product on H induced from Q5 and (., .).
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A relationship between semisimple cohomological field theories and topological recursion was
proven in [13]. The correlators wy, ,, of (£, u, v, B) are polynomial in a basis of differentials {§ P lae
R C X, k € N} constructed out of the locally defined function u on ¥ and the Bergman kernel B —
see [21, 22]. Define the topological recursion partition function of the spectral curve S = (X, B, u, v)
by

h-1
Z5(h 1) = exp (Z %wh,nq&f;})).

h,n

It was proven in [13] that, under assumptions on the spectral curve, Z° coincides with the partition
function of a semisimple CohFT defined on a vector space H = CR, for R the number of zeros of
du, which stores intersection numbers of all Q, , with the tautological psi classes. Furthermore,
this decomposition coincides with a decomposition of Givental [24] for partition functions arising
out of semisimple cohomological field theories. The assumptions in [13] on the spectral curve
(Z,u, v, B) are that v is uniquely determined by its first derivatives du(p) at each of the zeros p of
du. This assumption was lifted in [10] to allow any function v on the curve ¥ C X.

The vector space H = CR defines a space of deformations of the spectral curve. A CohFT on
H = CR introduces geometric structure on H given by a flat metric, a product on its tangent
space, also H, and further structure, known as a Frobenius manifold structure, [19]. The man-
ifold CR parametrises a family of more general deformations of £ C X than those that embed into
X. Hence, the g-dimensional space B of deformations of the spectral curve inside X maps to an
|R|-dimensional Frobenius manifold. The inequality |R| < 2g — 2 holds when X = T*C with foli-
ation given by the fibres. When the locally defined functions u and v are globally defined on %,
the family of curves gives rise to Dubrovin’s superpotential associated to a semisimple Frobenius
manifold, which is related directly to topological recursion in [11].

In the following, we give an explicit description of the local embedding of B into C, and, in
particular, its linearisation. Given a curve X inside a foliated symplectic surface X anda € R C Z,
choose local coordinates (u,, v,) for X in a neighbourhood of « as follows.

Definition 2.2. Given (X,Qy,F) and a € R C X C X, define local coordinates (u,,v,) in a
neighbourhood U, C X of « satisfying:

* du, Adyu, = Qy;

* {u, = constant } defines the leaves of the foliation F;
* (Ug, U)ly = (0,0);

* u, —v2 = 0locally defines X.

The first two properties define FD coordinates — see Definition 2.1. Via the change of coor-

dinates given in (15), arbitrary FD coordinates can be transformed to satisfy the remaining two
properties. The four properties uniquely determine the coordinates up to

(g, V) P (CPuy,Cvy), ¢ =1

The locally defined function u restricts to each X' for [£'] € Uy, and we denote its critical value
by u(a’) = 2,([Z']). The set of critical values {1,(z, ..., z9) | « € R} defines a map

A Usg - CR (21)
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This map is ambiguous up to the action of ¢* = 1; nevertheless, it is locally well defined when a
choice of FD coordinates is made. The linearisation, described explicitly in (A.5) in the Appendix,

DA : H(Z,Ky) — CR
composed with the CohFT induces linear symmetric maps:
HO(Z,K5)®" — H* (M), ;). (22)

This does not define a CohFT on the vector space H(Z,Ky) — in general, the restriction of a
CohFT to a vector subspace is not a CohFT — because the pairing on H°(Z, Ky) given by

Z Res n1(P)n,(p)

N>ma) 1=
aER duoc (p)

for 1,,7, € H(Z,Ky) is not necessarily non-degenerate. For example, when X = T*C, the
tautological 1-form vdu|y, € H°(Z, Ky) pairs trivially with any n € H(Z,Ky).

The classes Q, ,(7,,®...®7,) € H*(Mh’n;c) of a CohFT consist of terms in all degrees.
Among these, the term of degree 3h — 3 4+ n is known as the primary class and measured by
fnh,n Q. (11, ® ... ® n,,). The correlator w), , € VS’”, which stores intersection numbers of the

tautological psi classes with the image of Q, ,,, also defines a linear map

. H'C,Kp)®" > C
via the natural pairing of Vy and H°(Z, Ky). This gives the primary, that is, top degree, part of
(22) since the pairing annihilates all but the primary differentials inside @), ,,. Note that primary
part of Q, ,, should not be confused with the topological part, underlying any CohFT, given by the
projection of Q) , to H O(ﬂh’n, C) = C. The projection to H O(ﬂh,n, C) defines a two-dimensional
topological field theory on (H, (., .)) which is a sequence of S,,-equivariant maps

Q) H® >cC

satisfying compatibility conditions that are equivalent to composition of multilinear maps.

2.4 | Deformation space associated with Higgs bundles

A particularly interesting class of examples of a deformation spaces of a curve inside a foliated
symplectic surface arises from the geometry of Higgs bundles defined by Hitchin in [28].

Definition 2.3. A Higgs bundle over a compact Riemann surface C is a pair (E, ¢) where E is a
rank N holomorphic vector bundle over C and ¢ € H°(C,End(E) ® K).

Associated to the pair (E, ¢) is its spectral curve

— {det(¢ — AI) = O} C T*C
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which has equation 0 = (=1)" det (¢ — AI) = AN + @, AV"! + - + ay, where g, € HO(C,K?"). If
the spectral curve is irreducible, then the pair (E, ¢) is stable, meaning that for any ¢-invariant

. ¢ (F) c1(B)
subbundle F C E, thatis, ¢(F) C F ® K5, we have —F < mnkE"

The spectral curve associated to a pair defines a map from the moduli space M = My 4 of
stable Higgs bundles of rank N and degree d on a compact Riemann surface C of genus g- > 1,

f M- B

Here, B is the space of (possibly singular) spectral curves which can be identified with the
following space:

N
B =@ HC.KZ).
j=1

Fibres of f are complex tori and they are singular in general. Let f : M"Y — 379 be the restric-
tion of f to the open subset M"Y C M consisting of smooth fibres. For any point [Z] € B"Y,
the associated spectral curve T is an irreducible curve of genus g = N%(g- — 1) + 1 (which is
calculated via dimB =1+ Zi.v:l(gc —1)(2j — 1)). The deformation space of & C T*C coincides
with B"®Y. The natural projection 7 : ¥ — C is a degree N map. The foliation is given by
fibres of the projection map 7. We consider only X such that the morphism 7 has only double
ramification points.

Fibres over B are naturally identified with Jacobians of the spectral curves X for [Z] € B
which is defined inside the cotangent bundle of the Riemann surface C. The tangent space of a
fibre is naturally identified with H!(Z, Ox). The moduli space M"Y is symplectic and the sym-
plectic form produces a non-degenerate pairing between the tangent space of the base and the
tangent base of the fibre

H'(Z,Ky) @ H'(Z,05) — C,

which coincides with Serre duality. The base space 3¢9 parametrises embedded Lagrangian Jaco-
bians in M"Y and embedded curves £ C X, which are automatically Lagrangian. It is proven in
[27] that the deformation space of a compact holomorphic Lagrangian in a holomorphic symplec-
tic Kdhler manfold naturally has a special Kdhler structure. Hence, there are two natural special
Kihler structures defined on B¢9. It is proven in [4] that the special K&hler structures coincide
— see also [26].

Denote by vdu the tautological 1-form on the cotangent bundle of C. The pair of holomorphic
coordinate systems (¢1,...,¢9) and (9y, ..., 7 ;) on Uy C B9 is obtained by integrating the 1-form
vdu over a-cycles and b-cycles of the spectral curve. More precisely,

§i=/vdu, ni=/vdu.
a; b;

1 L

Given normalised holomorphic differentials w;, i = 1, ..., g on Z, vdu — ¢‘w; is holomorphic with
zero a-periods, so it vanishes, hence:

vdu = §iwi,
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where, as stated in the introduction, we use the convention of summation over repeated indices.
The tautological 1-form gives a canonical primitive of Qy, which does not exist for more general
symplectic X, so we instead use the coordinates z' defined in (14) and the related coordinates w;.
The relation between these coordinates is as follows. For [2'] € Uy,
D =D -AED, wE'D = 9'(2'D - n'(2D).

In particular, z/(Z) = 0 = w;(Z). Note that we still have T; = aiw j since 7;; = gt e/l aii (w; +
constant) = %W i

The action of C* on fibres of T*C induces an action on 3 which preserves the conformal type
of the spectral curve, and hence, 7; j is also preserved. Under this action, vdu — Avdu for 1 € C*
hence z' = 1z' and w; —» Aw;. We have

1
Fy, = Ezlwl
since
ilziw- = lW + 1z 9 —w; = lw~ + 1zi‘[u = lW- + lzi‘r--
0zJ 2 ! 2 2" 8zi ! 27 2 & 2 0 27t
_ 1 1,0 _1 1
EWJ+EZ EWJ 2WJ+5WJ'—WJ,

where the second last equality used the fact that w; is homogeneous of degree 1 under the C*
action which is generated by z . For more general symplectic X # T*C, F, does not have the
same simple formula.

For h > 2, there is a similar formula for F,:

Fi= o 2, Res $(0)(p)

g
2h1_ 2 ; }{i ©n1(P) }’{i vdu(p) — j{ | wp,1(P) }1{ i vdu(p)

1 .
= 2—2h %bi wh,l(p)zl’

where we sum over indices i = 1, ..., g in the last expression, ¢(p) is a primitive of the restriction
of the tautological 1-form vdu(p) on T — {a;, b;} and we have used the Riemann bilinear relations.
Note also that F}, is homogeneous of degree 2 — 2h which follows from topological recursion since
inductively the recursion gives w,, ,, —» 1>~2"~"w,, , under the C* action.

2.41 | Rank one case

A rather trivial example is the rank one case which gives the deformation space of the zero
section of a cotangent bundle = C T*X. The deformation space is B = H’(Z, Ky) since any defor-
mation of the zero section remains a section. The vector space 3 is isomorphic to its tangent space
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T|5)B = B. We have ¢ € T(B,Q}, ® H) defined by ¢() = [y] € H'(Z; C) for any 7 € H(Z, Ky).

The a-periods of vdu define coordinates z*' on 3. The sum z'[w; ], with respect to the basis of nor-

malised holomorphic differentials w;, i = 1, ..., g, represents the general point in 3 and also the

restriction of the tautological 1-form. The Lagrangian embedding B — C?¢ is defined globally and
1

is simply the linear embedding H%(Z, K) — H'(Z; C). The prepotential is Fy = 5z'w; = %zizf Ty

where 7;; is a constant on 5, and the deformation tensor vanishes identically: 0 = Ay € Vs ®
Vs ® V. In order to agree with the more general construction of coordinates z for a symplectic
surface, we would shift the coordinates by a constant z! — z/([X]).

Note that for smooth symplectic structures, by Weinstein’s theorem [39], the neighbourhood
of any Lagrangian submanifold is symplectomorphic to a neighbourhood of the zero section of
the Lagrangian submanifold in its cotangent bundle equipped with its canonical symplectic struc-
ture. Unlike in the smooth category, a neighbourhood of a complex submanifold is not necessarily
biholomorphically equivalent to a neighbourhood of a complex submanifold in the total space of
its normal bundle. If a local holomorphic symplectomorphism exists between neighbourhoods of
¥ C X and X C T*%, then the prepotential of the former must coincide with the prepotential in
the rank one case above.

2.5 | K3 surfaces

A rich class of examples of foliated symplectic surfaces arise from elliptic fibrations of K3 surfaces
equipped with their unique (up to scale) holomorphic symplectic structure. Elliptic K3 surfaces
form a dense codimension one subset of the moduli space of complex K3 surfaces. Recall that a
K3 surface is called elliptic when there is a surjective morphism 7z : X — P! whose generic fibre
is a smooth curve of genus one. Such morphisms are always flat, and therefore, all fibres have
arithmetic genus one. The foliation 7 on any such surface X is defined by the fibres of the elliptic
fibration. The foliation is singular at a finite set of points, which can be avoided by a generic
spectral curve inside the K3 surface.

Elliptic surfaces X — P! containing a multi-section £ C X can be described by their Weierstrass
form:

¥y =X+ f(2)x + g(2),

where x,y, z are local coordinates and f(z), g(z) are polynomials of deg f < 8, deg g < 12. This
equation defines an affine surface in C* with compactification X. The surface is equipped with
the holomorphic symplectic form

dx Adz
w=—7",
y

For a given polynomial
p(z)=uy+uz+ - +u,z",

one obtains a hyperelliptic curve £ C X defined via the equation x = p(z), or equivalently,

y*=p@)’ + f(2)p(2) + 9(2).
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For m < 4, deg f < 2m and deg g < 3m, this defines an (m + 1)-dimensional deformation space
B of genus m + 1 curves parametrised by {u,, ..., u,,}. Examples of such families of hyperelliptic
curves can be found in [38]. A choice of a-cycles on X together with the foliation defines a spectral
curve as in Section 2.2.1 and Theorem 1 applies. It would be interesting to explicitly calculate the
consequences of Theorem 1.

Another family of examples of elliptic K3 surfaces arises from quartics in P3, such as the Fermat
quartic:

A A A A 3
X ={z5+z]+z5+2z3=0} CP

The set of hyperplanes in P will be used to define both the deformation space B of curves in X
and the elliptic fibration X — P! as follows. For H a hyperplane in P intersecting X generically,
let £ = H n X be an embedded genus 3 curve. Its deformation space / is an open set in the set of
hyperplanes P}  in P*. Consider aline in P* that is contained in X, thatis, L C X. The P! -family
of hyperplanes in P3 that contain L defines the elliptic fibration X — P!. A choice of a and b cycles
on X defines correlators on wj, , on Z. Again, Theorem 1 applies in this case.

We can replace the genus 3 curve X C X in the previous example by a genus 1 curve. Instead,
choose a hyperplane in P* intersecting X non-generically. Given two such lines L,, L, C P? and
a hyperplane H containing L, define the elliptic curve ¥ = H n X — L with a one-dimensional
deformation space 3, and use L, to define a foliation on X. In other words, given two different
elliptic fibrations, we use one for the foliation and the other for the family of embedded curves.

3 | AIRY STRUCTURES

In this section, we give the formulation of topological recursion due to Kontsevich and Soibelman
[32]. Given a quadratic Lagrangian £ C W, we describe the corresponding Airy structure which is
a collection of tensors satisfying A, B and C on V satisfying quadratic constraints. We then define
the main example given by the quadratic Lagrangian L defined in (8) which gives rise to abstract
topological recursion (34).

3.1 | Tate spaces

We outline the algebraic background needed to define an Airy structure, on an infinite-
dimensional Tate space W, over a field k of characteristic zero with discrete topology, from
[32]. Tate spaces can be used as a model for an infinite-dimensional symplectic (topological)
vector space.

Let V, U be topological vector spaces, with discrete toplogy, both over a field k with discrete
topology. Let * denote the topological dual. Recall the discrete topology defines all subsets as open
sets.

Definition 3.1 (Tate space). A Tate space W is the direct sum
W=VeUuU".

As U has discrete topology, U* has locally linearly compact topology.
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A topological vector space V' is linearly topologised if there is a neighbourhood basis at zero of
linear subspaces, and is Hausdorff. A linear variety A is a subset of the form v + U’ where U’ is a
linear subspace of V’. A is closed if U’ is closed (or respectively open). Finally, a linearly topolo-
gised vector space is linearly compact if collections of linear varieties with the finite intersection
property are non-empty [33, p. 74].

Setting U = V, there is an isomorphism V = (V*)* [18]. With U = V, this gives W the property
W =~ W*, making W a strong symplectic vector space, with a polarisation given by V.

An Airy structure characterises a quadratic Lagrangian subvariety £ in the polarised symplectic
vector space W. Define L as the zero set of the ideal generated by a collection of quadratic polyno-
mials. Choose Darboux coordinates {x* | k € onV* ~ L = ToL indexed byasetI C N, and note
xK € (V*)* = V, together with coordinates{y, | k € I}onV,sothaty, € V* = L. The coordinates
x¥ and y, can also be treated as formal variables in a coordinate ring. For the main infinite-
dimensional example W in this paper, we will choose a particular set of Darboux coordinates,
given in Definition 3.3.

When W is infinite-dimensional and I = N, we construct the coordinate ring k[W] via the
symmetric algebra:

sw) =Psvrev)= @ @ S @MV =k[VI@k[V'] = k[W],

where ® is algebraic tensor product. Elements of k[W] are formal combinations of variables x*
and y., x¥ # 0 only for a k in a finite number of k € I, x* terms are bounded in degree and y,
terms are bounded in degree.

Additionally, there is a natural isomorphism between completed tensor products, and a ring of
formal power series in infinite variables,

Sw*) = k[w],
where k [W] is given by completion at the maximal ideal (x*,y,), allowing for formal sums of
unbounded degree in x* and y,.

The symplectic structure on the vector space W corresponds naturally to a Poisson bracket on
k[W] and on the completion k [W]. The Poisson bracket is a map

{0}  K[W]XK[W] - Kk[W]
defined by the coordinates,
{yj’xl} :=5;'9 {xlsxj} :=0’ {yuyj} =0

and extending to polynomials and formal series via the Leibniz rule. This gives k[W] the structure
of a Lie algebra.

Example 3.1. Let (Z,R) be a curve equipped with a divisor R C X. Equip X with a choice of a-
cycles in H(Z; Z). The main example we consider in this paper is Vs, defined in (26) to be the
vector space of residueless global meromorphic differentials on X, holomorphic on £ — R with
zero a-periods. It is equipped with the discrete topology.
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3.2 | Airy structures

Consider a quadratic Lagrangian £ in W defined by a (possibly infinite) collection of quadratic
polynomials, H; € k[W] given by

- j k k yj jk .
H; = —y; + a;j x'x +2bijxfyk+cl. YiYio Lj,k€ICN,

where we sum over repeated indices. Linearising H; defines the tangent space at 0 by T\ L = {y; =
0}.

With respect to a polarisation, that is, a choice of V' C W such that W =~ V @ V*, the coefficients
naturally form tensors:

B:(b@)eV*@V@V, (23)
C=ceveverv,

where (a;j,) := 3 a; jxt o x* (bkj) = bf‘x x/y, and (cjk) = 1, e Xy Y.
Any functions H; which define a Lagranglan submanlfold deflne an ideal with respect to the
Poisson bracket — see, for example, [40]. When H; are quadratic, this produces a Lie algebra g

with structure constants gllj given by the closure of the Poisson bracket from k[WT:
k

The closure of this Lie bracket induces the following constraints on the tensors A, B and C known
as an Airy structure on V.

Definition 3.2 (Airy structure). An Airy structure on V is a collection of tensors (23) satisfying
the homogeneous constraints:

0
4< jks l[ lks ) ljaks“

2( @il = @yt + BB, — BB ) = glbL
(bjk £ = by + b e = bye j{S> g

Airy structures were introduced by Kontsevich and Soibelman in [32] and the homogeneous
constraints appeared in [1]. Their algebraic structure was generalised in [2, 6].

We study the Lagrangian £ in formal neighbourhoods of the origin 0 € W. This approach is
necessary when W is infinite-dimensional since in that case Spec(k[W]/I(L)) defines a point in
W, for I(L) = (H;, H,,...). In a formal neighbourhood of the origin 0 € W, L corresponds to a
formal scheme, which we also denote by L. It is given by completion of k[ W]/I along a maximal
ideal m = (x°,y.) (representing zero in W). The quotient of k[W]/I by m**! corresponds to the
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kth formal neighbourhood. So, the colimit of the quotient gives
£ = colim Spec(k[W]/{I, m"*'})
n

via the projective limit functor.

The Lagrangian £ is realised as a graph via a fixed-point iteration as follows. Put H; = —y; + H;
so that H; is quadratic in {x/, y; }. The image of £ in the nth formal neighbourhood of 0 € W is
the graph:

{y =gq kxjx + 2bk akfmxfx’f "y li=1,2,3,.0 (24)
where the polynomial yl.(") is obtained iteratively by
Y =By,

We have yi( = 0 hence y =q kax and y ) is the cubic expression above. This procedure

produces y( as a degree n polynomial in x/ defined in the nth formal neighbourhood of 0 € W,

for any n. Since y("+1) and y?") agree up to degree n, we can drop the superscript yl.(") and write

¥;({x*}) when the nth formal neighbourhood is understood.

Example 3.2. Consider the conic —y + x? + 2xy + y? = 0. Solving for y and taking the formal

expansion of the square root gives y(x) = uy(x) = x> + 2x3 + 5x* + - + (n(f—zl)),!n,x”“ + ---. The

coefficients are Catalan numbers, which count rooted binary trees.

Quite generally, any Lagrangian submanifold can be represented locally via a generating func-
tion. The restriction of a primitive of a symplectic form to a Lagrangian submanifold is exact
since integrals around contractible closed loops vanish by the Lagrangian condition. Apply this
to the primitive —y;dx’ of Q in a formal neighbourhood of 0 € £ to get a function S, defined in a
neighbourhood in W of 0 € L satisfying

yidx' = dS,({x'}).

Explicitly
So(x) = —aukx Il xk 4 = (bk Apm + blfakjm + blmakj/> I x? Xx™ 4 .

The symmetry of S,(x) uses the closure under the Poisson bracket {H;,H j}= gl.’;.Hk. A
consequence of the symmetry is

k k k _ 1k k k
bijakfm + bifakjm + bimakjf - bjiakfm + bjfakim + bjmakif’
which agrees with the constraints in Definition 3.2. For example, we see that

9 4k k Kk j £ k j £ om
@50,4 = g(bijakfm + by, Qi jm + by, @)X XX = 2bl.jakfmxfx x™,

which gives the degree 3 part of y( " for n > 3 as required.
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3.3 | Tate spaces associated to a curve in a symplectic surface

In this section, a bundle of Tate spaces is associated to curves in a symplectic surface. Following
[32], define the symplectic (Tate) vector space

W airy = {] = Z]nz‘”% | Jo = 0,3N such thatJ, =0, n > N}

nez

with symplectic form
Qu ., (1,1m2) = Res fimy,  dfy = 01,7, € Wairy-

The skew-symmetric bilinear form Qy,  is translation-invariant hence closed. It is non-
y

degenerate because for J = 3 . an_”% € Wiry, With Ji # 0, then QWAiry(]’ zk%) # 0. The
locally holomorphic differentials define L, = {J [ J,, = 0,n > 0} C W ;. which isa Lagrangian
subspace tangent to the quadratic Lagrangian £ ,;y C Wy, defined in Example 1.1.

Given a compact curve X, a non-empty finite subset R C X and local coordinates z,, defined in
aneighbourhood of &« € R, define W = (WAiry)R. Each copy of W,y uses the local coordinate z,,.

The subspace L = (L Airy)R C W consists of locally holomorphic differentials. Define Gs C W by
Gy = {n € H°(Z, Q'(Z — R)) meromorphic on X | Res 7 = 0}, (25)
r

where we identify Gy with its image under the injective map Gy — W. Given a choice of Torelli
basis on X, define

VZZ{UEGZ}l%nzO,i:l’---’g}- (26)
4

We have L @ Vs = W, proven in (31), and hence V5 defines a polarisation
W=Vs® V;.

A family of pairs (I, R) is obtained naturally out of a foliated symplectic surface. Let (X, w, F)
be a symplectic surface with a Lagrangian foliation 7. Consider a curve ~ C X. The curve £ C X
and choice of Torelli basis determines Vs C W, defined to be those residueless differentials on
Z with zero a-periods. Recall that H — B, defined in (11), is a vector bundle with fibre Hy; =
H(Z;C) = C% and G — B is a vector bundle with fibre Gs. Define [.] : G — H which maps a
residueless meromorphic differential to its cohomology class.

The quadratic Lagrangian £y C W defined in a formal neighbourhood of 0 € W by (8) can
be alternatively defined via the following residue constraints [32]. Choose local FD coordinates
(ug,v,) in a neighbourhood U, C X of a satisfying the properties of Definition 2.2.

A point 7 € Lgg satisfies the following residue constraints:

Y m
_ = >
Ro?s <va du, )ua du, =0, mz>1, 27
" 2
Ro?s <va - dua> ul'du, =0, m>0. (28)
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The condition Res ,nu' =0 for m > 0 is equivalent to 7 having skew-invariant principal part
under each local involution o, defined by F.

It is convenient to express the quadratic Lagrangian Lyg C W in the form of Section 3.2 with
respect to the following choice of Darboux coordinates.

Definition 3.3. Given (Z, R), choose Darboux coordinates {x, y;} on W satisfying Q = dx' A dy;,
x! € Vg € W = W* such that
1

k .
—_— x“=8;, efl,...,q}, keN
i b, jk J { g}

andy, e LCW.

The coordinates {x', y;} satisfy the following properties.

@) [x!]=0fori> g.
(2) y; = w;, the normalised holomorphic differential, fori =1, ..., g.

The first property uses the fact that § x' = 0 since x' € V, and combined with #, x' =0, we
J J

see that all periods vanish hence so does the cohomology class [x'].

The second property uses Qy, = dx' Ady; and the Riemann bilinear relations to deduce
Qy(w;, x)) =6, j- Hence, y; = w; follows from the non-degeneracy of Q.

For the existence of coordinates {x', y;} satisfying the conditions of Definition 3.3, use the fact
that the map Gy — H'(Z; C) is surjective. So, there exists x, i = 1, ..., g satisfying ﬁ fbj xt=6; -
Then, for i > g, complete {x'|i=1,.., ¢} to abasis of meromorphic differentials; for i = i(a, n)
where« € Rand n € N, let

x(i) = d(z_") + holomorphic terms € Vy
(by the Hodge decomposition theorem) and also let

g
i i z il i
X =x0— X 2— xo.
=1 Tl Jp

J

In terms of x!, we have

fori > g. Then, define

g
i =Y = Xy 0w x).
j=1

The coordinates {x, y;} from Definition 3.3 are not unique, since, for example, x! — x! + x9+1
and x' — x!,i > 1 (which induces a linear change of the variables y;) also satisfies the conditions.
However, the set of vector fields
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is well defined independent of the ambiguity in the choice of coordinates {x’, y;}. This can be seen
in two ways. We have

where the normalised holomorphic differential w; represents a vector field independent of coordi-
nate choices. Or more directly, the linear change x!  x! + x9+! and x' ~ x! induces - — -

5 5 dx1 dx1
and —— +—

0 . J . .
TrorT T T T leaving 5,7 invariant.

3.4 | Symplectic reduction

Consider a symplectic manifold (M, w) that admits a proper Hamiltonian action of an abelian Lie
group G and an invariant moment map u : M — g¢*. The moment map is characterised by

w(§,(m), ) = d(u(m), u), (29)

where u € g defines the vector field &, on M by &,(m) = %(g(t) - m)|,— and ¢’(0) = u.
For any regular value a of u, define the symplectic quotient

MJG :=uYa)/G.

Then M//G inherits a symplectic form (depending on a).

Apply these ideas to a symplectic vector space (W, w) equipped with a translation-invariant
symplectic form w. Let U C W be an isotropic subspace, so w|;; = 0 or equivalently U C U+. Then
U acts on W by translations, and hence, preserves w. The moment map u is given by the quotient
map

0-Ulswihurso

because w(u,v) = (u(v),u), Yu,v € W agrees with (29) (since u = £,(m) and d{u(m),u)(v) =
(u(v),u)). Hence, UL = u~1(0) and the symplectic quotient is given by:

WU :=U*/U.
The symplectic form @ on WU is defined by @(0;, 0,) = w(v;,v,) wherev; € Ut isany lift of 0; €
U'/U. The right-hand side is independent of the lift since w(v; + u, v,) = w(v;,v,) for any u €
U. The 2-form w is closed since it is translation invariant. It is non-degenerate since w(0;, U,) =
w(v,,0,) = 0 for all 0,; hence, all v, implies that v; € U hence 0; = 0.
To apply this to Gz C W defined by the pair (%, R), we need the following.
Lemma 3.3 [32]. Gy, C W is coisotropic.

Proof. We first show that G5, and L intersect transversally, that is,
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Define
W,={JewW|J,=0,n2k},

soH=W,CcW,C..CW, CW;, C..CW =U,(W,. We have dim(W, /W, _;) = |R| and
by Riemann-Roch, this vector space can be represented by elements of Gy, since

dim(W, N Gs) —dim(W,_; N Gyx)
= dim H°(Z, K (kR)) — dim H(Z, Kx((k — 1)R))
=kIRl+1—-g—((k=DIR[+1-g)=IR|.
Hence (W) N Gx) + L = W, and (30) follows by taking the union over k > 0.

Define V5, C G to consist of those differentials with vanishing a-periods. It is easy to see that
the proof of (30) can be adjusted to yield:

Vs®L=W, (3D

since the elements of W, N G5 can be chosen to be normalised to have vanishing a-periods.

We next show that G C Vy. Let 5, + ¢ € Gy for 5, € Vs and ¢ € L by (31). Then Qu (1, +
¢,1,) = 0forall 9, € Vy since 9, + ¢ annihilates all elements of Gy, in particular those from V.
But Qy,(n,,7,) = 0 by the Riemann bilinear relations:

Z Res fim = % Z?{ 771}{ My — ?{ 772}{ m= 771] A (32)

since all a-periods vanish in the middle expression of (32). Here, df; = n, for a locally defined
function f;. Hence, Qy,(¢,7,) = 0 for all, € V5. But w is symplectic, so for any non-zero £ € L,
there is ), € V5 such that Qy,(7,,) # 0. We conclude that # = 0so 5, + £ =1, € V3, hence

Gy CVy C Gy

as required. O

Strengthening Lemma 3.3, elements of GL, are exact, that is,

={n =df, f holomorphic on X — R}.

To show this, firstly note that the inclusion of exact differentials into Gé follows from the fact that
if n; = df; for a global meromorphic function f;, then )’ Res,cg 17, = 0 since it is the sum of
the residues of the meromorphic differential f7,.

For the other direction, by Lemma 3.3, any n; € Gé lives in Gy; hence, it is (the local expansion

of) a globally defined meromorphic differential on X. The b-periods of 7, can be calculated using
(32).Letw;,i = 1, ..., g be the normalised holomorphic differentials on X, so y§a. w; = 0; j- We have
J

j{ M =jlé- wj}{ 771—}1{ 771}{ wj = Quyn,w;)=0
b; aj b; aj b;
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since w; € Gy and 7, € GZL. But the residues of z; and all of its a-periods and b-periods vanish.

Hence,
p
f(p) := / m

Po

is well defined and 7, is exact.
Thus, the symplectic quotient of W is given by

W/Gy := Gy /Gy = Hy = H'(Z;0),

where the isomorphism uses the fact that elements of Gy, define cohomology classes on %, the quo-
tient by exact differentials sends a meromorphic differential (with zero residues) to its cohomology
class, and the map is surjective. Clearly,

where V. C Hy, consists of those cohomology classes with vanishing a-periods.

3.41 | The quadratic Lagrangian L

Given a symplectic quotient
M/G :=u"\(@)/G

and a Lagrangian submanifold £ C M, if £ intersects u~!(a) transversally, then the quotient of
£ N u~(a) defines a Lagrangian submanifold of u~'(a)/G.

The intersection Lgg N Gy, is transversal since W = Gy + L = G5 + T(,Lgs Which is proven in
(30). To make sense of the quotient of L N G5 by G+, we need to treat the symplectic reduction
of (W, Qy) algebraically, since L¢g lives in a formal neighbourhood of 0 € W. The quotient

L
Gs — Gy — Hy
corresponds to the ring homomorphism

K[Hy] — k[Gy]%

(ZL,w) ~ (j}{ai,?{l),

where k = C and k[V] = P, Sk(V*) is the ring of regular functions on the vector space V. The
ring homomorphism is an isomorphism which follows from the general fact that given a group G
acting algebraically on an affine variety X, the quotient map X — X /G is equivalent to the ring
homomorphism k[X]° — k[X] of G-invariant elements inside k[X].

In terms of the coordinates defined in Definition 3.3, we have

k[Gs] = k[W]/{x' | i> g}
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since the restriction xi|GZ, for i € N depends only on its cohomology class [x'] € H'(Z;C). In
particular, the ambiguity in the choice of coordinates x!, ..., x9 in Definition 3.3 disappears under
restriction to Gs. Also,

k[Lks] = k[W]/{y; = a,-jkxjxk + bejakfmxjxfxm + -}

which is defined in a formal neighbourhood of 0 € W, where the series for y; are defined in (24).
From the commutative square

k[W] — k[Gs]
) 1
k[Lgs] — K[LgsNGyl,

we find that
k[LgsNGs] =k[W]/{y, = aijkxjxk + o, xm=0,m> g} =2 k[x',...,x7].

Compose k[Hs] — k[Gy] with the right vertical arrow in the commutative square. This sends
z! € k[Hyz] to x' € k[Gy] since the pull-back of z' acts exactly as the restriction of x! to Lgg N Gy,
— both calculate the a;-period. To understand the image of w! € k[Hy], we have w;(n) = yfbl_ 7,
whereas y; = w; fori =1, ..., g acts via

g
J’i(ﬁ)=<77,wi>22}£ 77}{ wi—}{ wij{ 77=jl{77—fzj}£ 7
j=1 b; a; b; a; b; a;

and as usual, we sum over the repeated index j. Hence,

}{77 =y1'(7’))+7ijjl{ n=ym+z;x;n), j=1..9

i aj
which shows that the pull-back of w' acts exactly as the restriction of y; + t; jXj to Lxgg N Gs. We
conclude:

k[Hs] -  Kk[LgsNGs] (33)

(Ziawi) g (xia _yi + Tijxj)’

which is a map from a formal neighbourhood of 0 € Hs to a formal neighbourhood of 0 € W.
In Section 4, it is proven that the kernel of (33) is given by the ideal {w; = w;(z}, ..., z9)}, and
hence, (33) defines an isomorphism k[B] = k[Lgs N Gs].

3.4.2 | Choice of quadratic Lagrangian

An Airy structure is equivalent to the choice of a quadratic Lagrangian. The work of Kontsevich
and Soibelman [32] is based on the quadratic Lagrangian Lyg = Eiiry where L,y is built from the
Kontsevich-Witten tau function. In place of Ly, we can use a quadratic Lagrangian L built
from the Brézin-Gross-Witten tau function of the KdV hierarchy which arises out of a unitary
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matrix model studied in [3, 25]. For m = 0, 1, ..., the operators

1 5] h 1
m = _5 dx2m+1 +7 anxlaxj 5 Z xl+2m 165”"0’
=1

i,j odd iodd

satisfy Virasoro relations
[L,.L,]=@m—-n)L,,,, form,nzDo0.
The Brézin—-Gross-Witten tau function is uniquely defined by
L,Z%V(h,x',x3,.)=0, m=0,1,2,..
and the initial condition

log zBV(x!,0,0,..) = %log(l —x1).

Analogous to Z¥W, the tau function ZB¢V is also a generating function for intersection numbers
over My, ,, conjectured in [35] and proven in [8]. The Virasoro operators give rise to the quadratic
Lagrangian Lpege; C Wy defined by the ideal:

H(x",y) ==y kez!

even’

0
Hk(x,y)_th1<x Fla >|hd—y- kEZ:dd,

axi 7t

(69
1 1 1 .0 1
==+ 3 X i+ D X Vs + 18k

i+j=k-1 i=1
i,j odd i odd
Define £ = Eﬁessel. More generally, one can also combine a product of a combination of copies

of £ jry and Lpeg - This produces topological recursion on irregular spectral curves [16] with
local behaviour at points in R giving topological recursion over the Bessel curve [17]. In the case
L= £§essel, the tensor Ay = 0 and the Airy structure consists of the tensors By and Cs. There are
residue constraints analogous to (27) which define £:

um
— m = = —_ 2—“ =
Ra?s (dvg, —muy =0 Ro?s (dv, — 1) I 0, m

(o4

WV

1.

AR R, _ . . .
fe==r Airy XSpeck Ly o Where R UR,; = R, then the residue constraints above, respectively,
the residue constraints (27), are used at a € R,, respectively, a € R;.

3.5 | Quantum Airy structures

Now let D =Kk[x,nd.[ [1] be a graded Weyl algebra with Lie bracket given by [x!,x/] =
[hai,haj] =0and [hd;,x/] = h5l.j.
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Consider the differential operators A l’ ew
PN ik k i jk
H{ = hd; + a;.x'x" + 2n b, x/0, + h’c]"0;6,.

Kontsevich and Soibleman define a quantum Airy structure as the deformation quantisation
of the classical Airy structure on the Lagrangian £. Deformation quantisation is a functor which
replaces the commutative algebra k [W] with the non-commutative Weyl algebra of differential
operators W. Firstly, the coordinates are mapped by x' — x! and y; — hd; where 9; can be identi-
fied with the vector field, or derivation, % when # is invertible. Further, the Poisson Lie algebra
g with Poisson bracket has to be identified with the Lie algebra structure of the H; with a Lie
bracket. A necessary condition to do this is that the second cohomology vanishes, H*(g,k) = 0
[32]. This is a choice of central extension of g and the Lie algebra structure of the quantum and

classical cases coincide. So,
H; - H, = A + he,
and
(A, H;] = M{H, H}ye L ye ) s, + hgikjfk~

Definition 3.4. A quantum Airy structure is the collection of H; := ﬁ: + he;, and an extra
constraint:

st st _ k
2<ajst € ~ Qs € ) = gk

When a quantum Airy structure arises from deformation quantisation, this gives rise to a wave-
function supported on L. A wavefunction is a generator of a cyclic module £ over D, given by
the quotient & = D/ D(ﬁi). This module encodes the solution to the ﬁi acting as operators on
k[x*] [A]]. The wavefunction ¥, € k[x°]] [#] is computed using the ansatz

P = exp(S(x")),
where

S = Y RIS (), Su(x) e K[x°],

h>0
and solving the differential equations
ﬁi exp(S(x*)) = 0.
Modulo %, $ - is a function on L.

Example 3.4. Consider the quantised conic with € = 0:

2
(—h 9 42t 4+ 29

ax dx 32x >1,b£(x) =0
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Computing some terms

Ye(x) = exp (% [ dx o) + o + (9(h2>>>,
with u,(x) as Example 3.2, and u;(x) = 2x + 10x? + -+ + (4" — %
tion for counting numbers of rooted two-face n-edge maps in the plane, (1-loop Feynmann
diagrams) [36], and in general rooted u;, counts h-face n-edge maps. Then

)x™ + --- a generating func-

Sh(x)=/dxuh(x).

Kontsevich and Soibelman [32] prove that the coefficients of S;, ,, of S satisfy abstract topological
recursion defined as follows. Denote Sy, ,...; = 0;S, ,,... Apply the H, to 3, and solve for 0:

aijkxjxk + z <2 hb{k Z Sh,n;jxk+
h n

ik
n’c! (Z Shnsjk + Z Sh,n;jsh,n;k) —hSp i+ h €i> =0.
n n

Gathering coefficients:

n—1

_ k
Sh,n;i,il,...,in,l =2 Z bi iaSh,n—l;k,i{l n—13/{a} (34)

P B i e

Jjk Jjk
+ ¢ Sh-tn+tjkiyei,, T Zci Shyly 1415 j.ir, ShlL 1+ 1k,
hy+hy=h
LulL={1,...,.n—1}

produces a recursive formula known as abstract topological recursion. The sum of 4 — 1 and h; +
h, = h terms gives a resemblance to topological recursion.

The symmetry of S, , for h = 0 uses the same argument as for the classical case, which uses
closure of the Poisson bracket {H;, H;} = gl.’;H - For higher genus, the argument is given in [32,
Theorem 2.4.2] for finite dimensional V' which suffices here since V is the union of finite-
dimensional subspaces graded by the degree of poles, and S), ,,, and all S, for 2h’' =2+ n <
2h — 2 + n live inside one of these finite-dimensional subspaces.

Topological recursion of Eynard and Orantin [20] can be seen as a particular specialisation of
abstract topological recursion. Restricting to the odd H; recovers topological recursion:

odd
Sh’n - Wp -

Remark 3.5. The constructions of wj, , via the Eynard-Orantin recursion (18) and via abstract
topological recursion (34) produce different proofs of the symmetry of w), , which demonstrates
a departure between the two constructions. The proof in [20] using (18) expresses the differ-
ence wy ,(P1> P2s > Pp) — @pp n(P2s P15 - » Py) @s @ sum of a collection of terms which are shown
to vanish rather non-trivially. The rather elegant proof in [32] is a consequence of the fact that
the Hamiltonians that define a Lagrangian submanifold generate an ideal, expressed above via
{H, H}} = g4 H
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4 | FORMAL AND CONVERGENT SERIES

Let (X, Q, F) be a foliated symplectic surface, ~ C X and /3 the deformation space of ¥ in X. Recall
from (26) that X defines a polarisation Vy C W of the symplectic vector space W of locally defined
residueless meromorphic differentials on Z.

In this section, we study the following commutative diagram from [32]:

) l (35)

which shows how the quadratic Lagrangian
Ly > WV @V
defined in (8), and via residue constraints in (27) and (28), behaves under symplectic reduction
W/Gy := Gy /Gy = Hy,

where Hy = H'(Z;C). Its image is a formal neighbourhood of a point of the Lagrangian
embedding of a neighbourhood Uy C Bof [Z] € B

— —k

defined in (13). More precisely, Lgg is defined in a formal neighbourhood of 0 € W and its inter-

section with the zero level set of the moment map maps to a formal neighbourhood I§[Z] 5 Bof
[Z] € B.

An explicit section 8 € F(I§[2], Gs) of the bundle G — B with fibre Gy is constructed in Theo-
rem 4.1 below. It is given by a formal series which takes its values in L¢g N Gy and, in fact, defines
an isomorphism

with inverse producing the left vertical arrow in (35). It is proven in Theorem 4.1 that under
the quotient map G — H to the bundle H — B with fibre Hy = G5,/ GZL, the section 6 maps to

[6] =*[0] € F(ﬁ[z], H) which is the composition

A~ L 6]

Bis) — Urs) — Hlyy,» (36)
and by abuse of notation, it is given the same name as the analytic section [0] defined in (12). The
composition (36) defines the lower left horizontal arrow in (35). Hence, the formal series 6 maps
under the quotient to an analytic series [6].

For L = TyLgg C W given by the Lagrangian subspace of locally holomorphic differentials,
defined in a neighbourhood of R C Z, the symplectic form Qy;, defines a natural isomorphism
of Lagrangian subspaces L = V3. Similarly, in the symplectic quotient Hy, the symplectic form Q

defines a natural isomorphism of Lagrangian subspaces H(Z, Ky,) & 7;. Define the linear map

h:H°(Z,Ky) = L,

5L SUOWWOD aAIIeaID a|eal|dde ays Aq peutonod ake SaonJe YO ‘asn Jo Sa|NJ 104 ArIq 1T auljuQ AS|IAN UO (SUOIIPUOD-pUR-SWLLB)0Y A3 [ IM Afeiq 1 pUIUO//:Sd)Y) SUOIIIPUOD pue SWd | 8y 39S *[7202/80/60] U0 ARiqiauluQ A1 ‘6€8ZT SW|(/ZTTT OT/I0P/W0d A3 [IM Afe.d | Ul [UO"d0SYIWpUO|//:Sdny Wo.j papeojumoq ‘T ‘202 ‘0SLL697T



AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES | 350f 55

which maps a holomorphic differential to its local expansion at R C X. For any T € Hom(L ®
L,Vy), the square

L®L — L S vy

o] !

H°(Z,Ky) ® H(Z,Ky) — Vs

induces amap T + [To(h ® h)] € Hom(H’(Z,Ky5) ® H'(Z,Ky), V), where [-] is the map Vy, —
V5. This defines the right vertical arrow in the following commutative diagram:

Ve ®Vy®Vy —~ % Hom(L ® L, Vy)

! { 37)

Vi ®Vy®Vy —2% Hom(H'(Z,Ky) ® H(Z, Ky), Vy).

The section 9 allows us to associate vector fields over B to vector fields over Lig. In partic-
ular, this leads to a relationship between the tensor Ay € Vs ® Vs ® V5, which is part of the
Airy structure arising from X C (X, Q, F), and the tensor Az € Vz ® 72 ® ‘72 representing the
Donagi-Markman cubic. In general, for a Lagrangian submanifold of a polarised symplectic

vector space L C V @ V*, the tensor A is defined via the map
Tp£ (024 Tpﬁ -V

given by variation of a vector field with respect to another vector field. This uses a canonical
extension of any given vector in T, L to a local vector field so that covariant differentiation gives
a tensor, meaning that it depends only on vectors. By relating vectors, their canonical extensions
to vector fields and covariant differentiation upstairs and downstairs in (35), we prove Ay — Ay
via the map (37).

4.1 | Thesection 6 € F(ﬁ[z], Gy)

We define a section 6 € F(bA’m, Gy ) in terms of holomorphic differentials w; normalised over the
a-periods and the topological recursion correlators wy ,, calculated via (18). Represent elements of
the formal neighbourhood I/S\[ZJ with respect to the coordinates {z!, ..., z9} defined in (14) satisfy-
ing z'([Z]) = 0, and sum over indices in {1, ..., g}. For any residueless meromorphic differential 7
defined on X, we use the normalised periods defined in (3):

y{ -1
577 27i bkn'

Theorem 4.1. Define a section 6 € F(B\m, Gs) by

6 =zw — %zizj?{ ‘7{ Wp 3 — %zizjzk}{ ?{ ?{ Wo g4 = - (38)
b; Jb; ! b Jb; J by

Then, 0 satisfies the following properties.
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(1) It takes its values in Lgg.
(2) Its cohomology class [0] € F(I’S\[E],H) is analytic in z',...,z% and coincides with the local
section defined in (12).

More precisely, [0] is the restriction of an analytic section to a formal neighbourhood of [X]
given in (36). The analyticity of [0] contrasts with the formal series for 6. The proof of Theorem 4.1

is given by Propositions 4.5 and 4.7.
A cohomology class is characterised by its periods along a Torelli basis:

=(7§ e,;{ 0li=1,..,9) € C¥[z',...,27].
a; b;

The periods are:

}{Gzzi, %szi(zl,...,zg).
q; b;

1 1

Corollary 4. The Taylor expansion of w;(z, ..., z%) around {z! = 0} is:

w; —szlj——zfz ?{}Z{}l{wm——zfz 7{?{}1{7{@04 (39)
by b, Jb,

where the normalised periods (3) are used in (39) except for the first period. Hence, Corollary 4

shows that
o} .
P ‘2’”75 7{ 74 “os:
b Jb; J by

and more generally,

an—2
—a il a ; zfin—lin = —27Tl% %A‘ % CU0’|I|,
Z'1..0Z'n— bil biz bin

which proves Corollary 2 and generalises the result in [4] to £ C X for any foliated symplectic
surface (X, Q, F).

Given a normalised holomorphic differential such as w;, its cohomology class [w; ] gives rise to
a vector field on B. It corresponds to the vector field — a - with respect to the coordinates z!, ..., z9.
This maps to a vector field, [w;] = *[w;] which maintains the same name by abuse of notatlon,
on the formal neighbourhood I§ (z]- It is simply given by the Taylor expansion of [w;] at [Z]. Above

[w;] is a vector field &; = D@( ) on Lg:

b; = w; —zfjl{j{wm——zfz jéjé}l{kww—... (40)
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Again, the series for [@;] = [w;] € C?9[z!, ..., z9] is analytic in z!, ..., z9 in contrast to the formal
series for &@;. It gives the analytic expansion of a holomorphic section of the bundle

H
[@; ](\i ’
B

which takes the cohomology class of the holomorphic differential over each [X] € B normalised
to have constant a-periods. The analytic expansion is:

7§A=_Zm'7§7§§é, “o,ri+2 = Tij j{j{y{kwoa

where y§5 = 955 ...555 for I = (iy, ..., i)
For any m > 0 the series

1
1 _ VA
Tm(Z ,...,Zg)_ E _lIllﬁ CUO,|I|+m
I 2 by

is defined in the kth formal neighbourhood of [Z] € B. Its cohomology class is denoted as [T]. We
summarise the geometric meaning of T,,, for small values of m here:

I
F,=-— Z ﬁ 7{5 @o,»  Prepotential
T S

|

|
NM
~IN

— }g @o, 1141, 6] = Cohomology class defined in (12)
) 1

Z! ~
= 2 n }1{ @Wo,|11+2> [T]= Tij
I | | b]

I ~
= z ﬁ}é ®or43»  [A] = Donagi-Markman cubic.
I U0

411 | The connection V¥

Given X C (X, Q, F) and B the deformation space of X in X, let Z Z» BB be the universal family of
curves in B, which comes with a natural map Z — X which induces the map ¥ — X on each fibre
of Z over [Z] € B. The fibres of Z — Binduce a one-dimensional foliation which we call vertical.

The codimension one foliation 7 on X induces a codimension one foliation H on Z denoted by
H, CcT,Z for z € Z. It satisfies

T,Z=T,S®H, z€Z—2Z, (41)

where [2] = 7(z) and Z C Z is the codimension one set where the foliation intersects the vertical
foliation non-transversally. On Z* = Z — Zg, H, = Ty /3 and (41) defines a horizontal lift of Ty, 3
toT,Z.
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Definition 4.1. Define a connection V”" on Z* — B by the splitting (41).

The connection V7 is flat since leaves of the foliation H give local flat sections. This connection
appears in many places, often implicitly, for families of varieties such as Hurwitz spaces [12, 19],
Seiberg-Witten families of curves [34], the Rauch variational formula in the Appendix and in
the work of Eynard and Orantin [20, 32]. The connection lifts any vector in Ty B to a vector
in T,Z for z € Z* which is used to take a Lie derivative of any tensor defined on Z such as a
locally defined relative differential 7. We can allow 7 to be meromorphic. This can be achieved
either by considering V’'7 locally on patches where 7 is holomorphic and gluing, or by replacing
7 with 7 - (u — A)™, where u is a locally defined function on X that defines the foliation, and 4 is
a function on B, chosen so that 7 - (u — 4)™ is holomorphic for m large enough. Then,

Vig-w-2™=VI@m) w-)" - hmu—-22)""v-4,

which defines V7’7 in terms of the covariant derivative of local holomorphic functions. The covari-
ant derivative an naturally has poles, so the construction above allows one to take multiple
covariant derivatives. In particular, it defines a covariant derivative on sections of the bundle
W = Bx W — B. For an open neighbourhood Uy C Bof [Z] € B, and for each v € T35,

V! T(Us, W) > I(Ug, W),

which leaves I'(Usy, G) C I'(Uy, W) invariant.

For any closed contour y C %,
o [ _ [or
gén—éﬁn, (42)

where Vf = V’; . To prove (42), define a local coordinate x on Z chosen so that x = constant

defines the foligztion H induced by F. Express 7 in terms of the local coordinate x and depend-
ing on parameters z', differentiate under the integral sign, since the contour is compact, and use
Viu=o.

In particular, for 5 € I'(Us, G), its cohomology class [n] € I'(Uy, H) is determined by its
periods, and hence, (42) implies that V7T lives above the Gauss-Manin connection:

V] = veM[p]. (43)
This restricts to formal neighbourhoods to give
[V7@j] = Vo [w)]

for &; defined in (40). It is shown in Section 4.3 that the covariant derivative Vfc@ ; gives rise to
the tensor Ay € V5 ® Vs ® V5, and since VLGM [w;] gives rise to the tensor Ay, € Vs ®Vs ® Vs,
the compatibility of the covariant derivatives of vector fields is used to prove that Ay, = Ay under
the map Vs — V. This is proven in Proposition 4.9.

Note that parallel transport, hence a flat frame, on Z (or W or G) for V”" does not exist in general
due to the non-existence of solutions to ordinary differential equation at points where the foliation
does not meet the vertical fibres transversally. However, it does exist on any formal neighbourhood
of a point [Z] € B.
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Example 4.2. Define a foliated surface locally by the family parametrised by z
x=y*+z.

Leaves of the foliation x = constant define a flat connection on the fibration defined by the family.
Consider parallel transport from a general fibre to the fibre over z = 0 given by x = yé. We have

z 122
y(yo) = \/y(z) —Zz =y0\/1_z/y(2) =y0<1 “ T3 T2 —...),

which exists analytically only when |y,| > |z|, whereas it exists in C[z]/z" for any n. For example,

in C[z]/2%, y(vy) = yo — % which defines a path
0

CcC—-{0}>C
oy — 2
Yo P Yo 2y,

giving parallel transport above the first formal neighbourhood.

4.2 | Formal and convergent series

The series given in (38) and (40) are induced via the natural map between a formal neighbourhood
1/3\[2] and an actual neighbourhood Uy C Bof [X] € B

By — Uy — B.

The restriction t* sends locally defined functions to formal series. It naturally extends from locally
defined functions to locally defined sections such as (relative) meromorphic differentials. On G —
B, the holomorphic bundle with fibre Gx, C W over [Z] € B, it defines

" 1 T(Usy, G) > F(B\[Z],G),

which associates to any local section of the bundle G — B a section of the bundle G defined in the
kth formal neighbourhood of [Z] € B for each k. This map depends on the choice of connection
V7. It expresses a section of G in terms of a flat frame for G over the kth formal neighbourhood at
[%], for any k.

Lemma 4.3. Forn € I'(Uy, G), with respect to local coordinates {z*, ..., z9} defined on Uy, C B

I Z (Vi) (44)

on the kth formal neighbourhood of [£] € B for each k. The sum is over tuples of positive integers
I=(iy, i) €{1,, g% 2 =] 2%, || = Xig, V] = Vg’/a ,and V] = VF VZ.

Proof. The formula (44) is essentially a Taylor series for 7. We need to explain the appearance of
the covariant derivative.
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Consider the universal family 7 : Z — B and an open neighbourhood V, C 77(Uy). Then
04(V,) is amodule over O»(Usy). For any locally defined function h € ©,(U,), the restriction of
h to a formal neighbourhood of the fibre X of Z above [Z] € B is defined by

1
h= Z ﬁ(vfh)b (45)

The functions z' € @x(Uy) pull back to functions z' € ©,(V,), with the same name by abuse of
notation. The Taylor series for h € ©,(U,) would normally use partial derivatives with respect
to the vector fields %, but these are not yet defined on Z until a full system of coordinates is
defined. Choose a locally defined function u on Z which induces the foliation on Z. The collection
{u,z',...,z9} defines local coordinates on Z (when the foliation on Z meets the fibre transversally).
The coordinates give rise to well-defined vector fields % on Z (given the same name as vector

fields on B) which allow one to write out a Taylor series with Vl.r replaced by % in (45). The

vector fields % are independent of a change of coordinates {u, zl,..,z9 - { fu), z!,...,z9}, and
hence, the Taylor series depends only on the foliation 7 (which induces the folation on Z). The
use of the covariant derivative in (45) to signify the choice of local coordinate u is natural since
Vfu = 0 agrees with the definition of the vector fields from coordinates via %u. Note that a more
general change of coordinates {u, z', ...,z9} » {f(u, 2}, ..., z9),z!, ..., 29}, which is equivalent to
a different choice of connection unrelated to the foliation, leads to a different right hand side in
(45), where the relation between the two different series is achieved via z'-dependent coefficients
in (45)

The formula (44) follows from (45) since G is the push-forward of the sheaf of relative
differentials on Z, and hence, 7 € I'(Us, G) is built locally from h € O,(U;,). O

On the universal family Z — B, let h € O,(U,) be a locally defined function on an open set
U, C Z. Its image in a formal neighbourhood of a fibre £ uses the same formula as (44) — the
difference between functions and differentials is minor since hdu is a locally defined differential
and V7 du = 0.

The ring homomorphism ¢* in (45) satisfies t*1 = 1 which is visible on the right-hand side of
(45) since VF'1 = 0. The equality ¢*(hyh,) = t*(hy)t*(h,) is the combinatorial identity

Z_yr =V Z_yr Z grF
; VT Gl = ; V1 ()l ; V)l

which follows from Leibniz’ formula applied to V”". It formally coincides with the identity, show-
ing that the Taylor expansion in several variables of a product of two functions is the product of
the two Taylor expansions.

Covariant differentiation Vf on the formal neighbourhood 3[2] is simply given by 2

5,7 for each

i=1,..,9. The map (* commutes with V*":
VFor* = *oV7.

The proof that %l*(h) = z*(Vl.rh) is combinatoric and formally coincides with differentiation of
a Taylor expansion in several variables.
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Proposition 4.4. The section 6 € F(ﬁlzj, Gy ) defined in (38) satisfies the following relation with
respect to local FD coordinates (u,v) on X:

F(odu) = ) lII'VF(vdu)lz = vduly — (46)
|10

Proof. Given local FD coordinates (u,v) around o € R C £ C X, the local differential vdu pulls
back to a local relative differential on the universal space Z. Hence, we can apply (44) to get the
first equality in (46). Write (46) as

*(vdu) = vduly, — &, (47)

so it remains to prove that & = 6. Note that & is invariant under a change of local FD coordinates
(w,v) = (F ), v/ (W) + g(w) since V7 (g(u)df W) = 0.

Each holomorphic differential 77 € H°(Z, Ky) extends to a family of normalised holomorphic
differentials 7([2']) € H(Z',Ky,) for [£'] € Uy, by requiring that the a-periods are constant, for

example, 55 @; = 8,1, =1,..., 9. We write

Vim = (V] 7)lz € H'(Kz(mR)), m=2|I|,

where, as usual, VP VP Vr

By definition, although vdu is locally defined on the fibre %, its covariant derivative is globally
defined:

Vir(vdu) = —@;. (48)
From (47) and (48), we have
1 i juF 1 i j kgFyF
£ = 7w +Zsz wj +3zsz Vi (w) + -

where V] w, € H(Ky(mR)) for m = 2[I|.
We have yfb w,, = —w;, and the correlators satisfy the following variational formula due to
Eynard and Orantin [20]:

Vl.rcoh,n(pl, wsDp) = 7{ @y p41(P1s s Pps Ppy1)s 1> 0. (49)
Pn+1 Ebi
The formula (49) is proven in the Appendix inductively. Applied to h = 0, we have
Virwo,n = % Wope1, N2 2
hence

Foo_
Vi = —}’{ j{ @, |1]+2-
b J b,

i

Thus, £ = 6 and the proposition is proven. [
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Proposition 4.5. The section 6 € F(f)’\m, Gs) defines a map
6 . B[Z] b EKS’

where Ly C W is the quadratic Lagrangian defined in (27) and (28).

Proof. We need to check (27) and (28) for 7 = 6 with respect to the FD coordinates (u,,v,) from
Definition 2.2.

0
Res <va ~ >u;"dua = Res (v uldu, —6ull')

Res (v uldu, + Z Wu?er(U dua)>

1I1>0

s (vaug‘dua + Z |II'Vr(v umdua)>

|I|>0
=0

for any m > 0 where the second equality uses (46). The final equality uses the fact that
v, Uy du, is holomorphic at a and hence has zero residue. Furthermore, it has zero residue in
a neighbourhood, so its higher derivatives also vanish to give

Res Vr(v uy'du,) = —_— Res(v ul'du,) = 0. (50)
|I|Z>0 1! “ |I|z>:0 |I|'5 I

Hence, 6 satisfies the first of the residue constraints (27).
Let p be any locally analytic function. A consequence of the ring homomorphism property is:

* _ * _ _ i
L p(va) = P(l (va)) = p<va dua>'

In particular,

Vr(vzumdua)

2
0 "
<U°‘ B dua> gt = (0 Y duty = Z T

and

2
]
Roes <va ~ T > Z W_ Res (yzumdua) =0

a

since vZu™du, is holomorphic in a neighbourhood of a € %, C X. Hence, 6 also satisfies the
second of the residue constraints (28) and the proposition is proven. O

Remark 4.6. In the proof of Proposition 4.5, it is shown that 6 satisfies

o\
Roes (va—d > ul'du, =0

Uy

for k = 1,2 and for all m > 0. The proof easily generalises to allow all k >
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Proposition 4.5 yields a collection of relations among periods and residues of w), ,,. Here, we list
a few of them. We have

_ o m _ m _ z! m
0= Res (va - E)% du,, = — Res Ou,’ = ; m Res u, 5, @o,|rl+1>

which implies that the principal part of 955[ @, 7j+1 is skew-invariant under the local involution
defined by the 7. The quadratic relation

0= Res (v, — 0 2u’"du =—-2Resv Gum+e.eu2‘n
T a * du,) *C « e du,,
yields a sequence of relations. When m = 0, the first two relations are:
R W;@; R
es =—Resv , 51
o dua o a éi éj 0,3 ( )

and

Res wi}l{}l{a) +wjjl{?{co +wk}Z{7§w (52)
03t 57— P P Dozt —— @ P Wg3
a |\ dug, b; J by duy Jb, Jo, dug Jp, b;
-1 Res vaj]{ jl{ % Wo4-
3 @ b Jb; /b,

An interpretation of (51) via the relation to a CohFT and Frobenius manifold described in Sec-
tion 2.3 is as follows. For a general CohFT Q _ ,,, the relation of its product with the metric 7 on
the underlying vector space is given by

g,n’

Qp3(1 ® v; ® vy) =1(vy,0,) (53)

where 1 is the unit vector with respect to the Frobenius manifold product. Take two vector fields
on B and using the Frobenius manifold product, take their product which is no longer a vector
field on B, rather a vector field on the related Frobenius manifold. The left-hand side of (51) gives
a component of the product, with respect to a basis of local vector fields of the Frobenius manifold
known as the normalised canonical basis as described in [12]. The right-hand side of (51) gives the
relation (53) since va represents the unit 1, again described in [12].

Proposition 4.7. The cohomology class of 0 € F(B\[z], Gy ) defined in (38) is the local section [6] €
I'(Us, H) defined in (12).

Proof. The symplectic form Qy = —d(v,du,) on X defines a bundle-valued 1-form w; ® dz’ :
Tjx)B = H°(Z, Ky) which is a section of Q); ® G that lives over the 1-form ¢ € T(Q}, ® H) via the
quotient G — H. Hence, V' (v, du,) = w; ® dz' lives over VEMs = ¢ where s € T'(Us,, H) defines
[O1(='D :=s([Z']D — s([Z]) € C* = Hy.

By (43), V7' lives above V™ so each higher covariant derivative V] (v,du,) lives over the
cohomology class V?M [6]. Hence, by (46), the series 6 lives above the Taylor series for [6] which
completes the proof. O
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421 | Higher genus

For g > 0, analogous to (38) define 6, € F(l§[2], Gs) by

; 1 1 i ik
— L Zole] el _
Gg—wg,1+27{a)g’2+zzz 7{7{@9,3+3'zzz }{7{ 7{ Wyg = -
b; b; J b; : b Jb; J by

Then, the cohomology class [0 g] IS F(I/S\[E],H) is analytic in z',...,z% and coincides with the
analytic expansion of [w, ;] due to the following lemma which generalises (49) to the case n = 0.

Lemma 4.8. For h > 2, the function F), defined in (20) satisfies the relation

3F,

- = O wpq-
Proof. The proof of (49) uses (18) which is not available in the case of n = 0. Instead, we must use

the definition of F), given in (20) for h > 1 by

1

Fu=3p—3 X Resw(Pwn,(p)
du(a)=0

where dy = vdu.
Note thatsince V/'dy = —w;, then V'3 = —f; where f; is a primitive of the holomorphic differ-
ential w; on £ — {a;, b;}, that is, d f; = ;. Importantly, although di = vdu is only locally defined

on Z, its variation can be represented by a global holomorphic differential which allows us to take
periods along global cycles in . Then:

dF
(2h — 2)6—; = % D Res ¥(p)wy,1(p)
= Z lpifs [(szp(p))cuh,l(p) + IP(P)(ViPC‘-‘hJ(P))]
= 2, Res [fi(p)wh,l(p) +9(p) 7{ wh,z(P’Pl)]

—@h-1) 7{ on () + 3, Res (P (p)
g
= (2h - ' (p) — .
(2h—1) }z{ i (p) + ,Z ( 75 i (P) 7%,. () 7%,. s (P) 75 w,<p>>

—(2h-2) 7{ 0 (D),

where the third equality uses (49) and the final two equalities use the Riemann bilinear relations
and vanishing of a-periods of w, ;. 1
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Together with the variational formula, Lemma 4.8 implies the relation

3;, .0, F, = / / Op (P15 e s P)-
p1€b;; Pn€b;,

Just as the symmetry of derivatives of the periods of 8, given by —Wj =1;;, leads to the

potential F,,, the same mechanism yields F,. Applied to (h,n) = (1,1), the variational formula

yields
79,90 4, @ g o

since w , is symmetric. Hence, there exists a potential F; defined up to a constant by

oF,;
o = P @
0z b;

We have seen that F), is defined via a variational formula and via topological recursion together
with the dilaton equation for h > 2. These definitions are fundamentally different since the vari-
ational approach requires knowledge of F}, in a neighbourhood U C 13, whereas the topological
recursion definition requires only knowledge at a point b € B.

4.3 | Geometry of the tensor Ay

The Lagrangian L¢q C W is defined in a formal neighbourhood of 0 € W. A vector field on Lig
is a derivation given by a linear combination of - and — ay with coefficients defined in a formal
neighbourhood of 0 € W. We present here exphclt formulae for vector fields on Lgg and relate
them to normalised holomorphic differentials w; and &; € F(B (z]» Gx) defined in (40).
Coordinates {x'} on L are the restriction of those given in Definition 3.3. Dual to {dx'} are the

following vector fields on Lgg

d

§i=ﬁ

# 5 = Ol | i) G4

defined in any formal neighbourhood of 0 € W. The coefficients f;; are functions of {x*} defined
in each formal neighbourhood of 0 € W. They satisfy the linear system:

0= &) = &) = (5 + Fiezor )
= 2aijkxk + bejyk + (=6 + be‘fxf + Zkayf).

They can be calculated in the kth formal neighbourhood of 0 € W, for any k, using the recursive
procedure described in (24), hence expressing L¢g as the image of S(x) = (x, y(x)). Linearise this
to produce

d
&= DS(ax > > fij = 2al]kx +(4b it +2b;’l7akfm)xkxf + -
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Proposition 4.9. The vector fields on L satisfy the following:

gi = C/U\l’, l = 1, » g (55)
F GM
V@icoj - V[wi][cuj] (56)

Proof. The map h : H°(Z,Ky) — L maps holomorphic differentials normalised over a-periods
{w;|i=1,..., 9} to its local expansion at R C X. h has a natural image with respect to the
coordinates {x', y;}:

% =h(w;), i=1,..,9 (58)

xi

To see this note that {aixi} are dual to the differentials {dx'}, so one needs to calculate the action
of h(w;) on dx/. Since x/ is linear, any vector acts by (v, dx/) = v - x/ = Q;;,(v, x/). Now

g
QW(wiﬁxj) = Z (% wi% xj _% wi% x]) = 51']'7
k=1 \Y % by by a

proving h(w;) = %, i=1,..,g9. Since the map h coincides with the linearisation of the sec-

tion 6 € F(gm, Gy) evaluated at the point [X] € B, (58) is the specialisation of (55) to the first
formal neighbourhood.

The functions z! on Hy and x! on W are related as follows. Under the symplectic quotient, z*
maps to x |G20 fori =1,..., g since for € Gy, by the Riemann bilinear relations (x,7) = fai 7=

z!([n]). In a formal neighbourhood of [Z] € B, the linearisation D& sends the vector field %,
defined on B and hence on the formal neighbourhood of [X] € B, to

36 ~ z! ;
— =0, = ) — W 142 = @; + 2 wWoz + e
ozt Z,“ i J, Ji, om =TSR R

Hence, the image of &; is obtained by replacing z! by x/ in 6 to give

C/U\ilzj:xj = gileﬁ
which is (55). The first two terms of (55) are

d 0
gi_ﬁ'*'fijﬁ

for fij =q; jkxk + - the first terms w; and % agree by (58) and the second terms x/ yfbi yfb]_ W3

and q;; Xk % also agree by the following. +
A variation of the vector field is given by

0 d d
agi = (0,...,0, | @fil’ Efiz,...) (S VZ‘
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Differentiate the expression for f;; by xk and take the constant term to get

0
dxk

In other words, the tensor Ay gives the map

f 2a1]k

ToLygs @ ToLygs = Vs

defined by variation of a vector field of L with respect to a vector. It is a tensor because any vector
in T\)Lgg canonically extends to a vector field via (54). The canonical isomorphism T(Lgg = V3
means that Ay € Vs @ Vs @ V.

The Lagrangian L¢g C W is a formal germ, and its vector fields are derivations on W’ that anni-
hilate the defining ideal of L. The tensor Ay is defined via the covariant derivative V! v of vector
fields v € I(T Lgg) by vectors u € L = T, L g with respect to the flat connection V¥ induced by
the foliation F. It defines a tensor on L ® L because any vector v € L extends canonically to a
vector field — v is a linear combination of % which are mapped to % — &; defined by (54). [

An alternative, non-geometric proof of Theorem 3 can be obtained from Corollary 2 combined
with the following result.

Proposition 4.10 [32]. Given £ C (X, Q, F), we have

Proof. The element n € W lives in L if it satisfies the residue constraints (27). For u, =
)

2
a’
=Z.,.

a a*

n
Res <d_ua - va>u:’dua =0, m>1,

2
Res (dz —va> ug‘dua =0, m=0.
a

To analyse these, we choose a new basis of W:

{xk’“,yk’a | k EN,a € R},

where x¥ has a pole of order k at a € £ and is holomorphic on £ — o and y; , = zlo“ is defined
only locally near « via the local coordinate z,.
The first residue constraint implies

Ui
0= RaeS (dua - Ua>u;ndua = RO?S 77“? —2m(Yopm—1,4>M)>

where the last equality uses u, = zé and d(ul}) = 2my,,,_; ,-
The second implies

2
0 = Res ( a> ul'du, = Res Zluz u -2 Res nzqul
n- 77
= RO( 2<y2m aaﬂ)

a
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which is a linear term y,,, , plus a quadratic term

N0 m_  aBr_jB. ky apk_j,p ajk
Rof:s i X" =a X x +bl.jy Xy, +ciﬁy YipViy

The right-hand side is the most general quadratic term with respect to the coordinates xé = (xé, 7)

and y@ = (y.ﬁ , 7). The coefficients a*, b* and c* are m-dependent. To determine the coefficient of
: i i EN e *

k
14

y;, that s, (y;.e ,7) = 0. When 7 is locally holomorphic

xéx simply evaluate on any differential » which is locally holomorphic since such # annihilates
Res ~—Zx =0, form>0

since x™ /dx = z>"~! /dz has no pole, and nor does each factor of 7. Hence, we are left with the
casem =0

n-n_ _Br,ik
Rgs i XXy +
S0 aiﬁj};{ = idijdikéaﬁéay. Hence, Ay = iZa x! ® x} ® x! which agrees with the following

formula for w 3:

B(p, P1)B(P’ Pz)B(P’ P3)
du(p)dv(p) ' O

@o3(P1> P2> P3) = 2 E:eg
a

4.4 | Analytical construction of 6

The section [0] € T(Us, H) in (12) together with parallel transport by the Gauss-Manin
connection VoM on H defines a local embedding

Us < Hs.

The cohomology classes in Hy are represented by meromorphic differentials on X which is
encoded by the surjective map Gy — Hsy. The section 6 € F(ﬁ[z], Gy ) in (38) defines a map on
a formal neighbourhood of [Z] € B. The failure to lift the embedding Uy < Hsy to an embedding
Us, — Gs is due to the failure of parallel transport for the connection V”'. Following Kontsevich
and Soibelman [32], one can regain parallel transport for the connection V’* on a bundle G° related
to G.

LetX C (X,Q,F)and Us C Baball neighbourhood of [Z] € B. Choose a union of open balls in
the universal space Dy C Z, containing the points R C £ C X where F does not meet X transver-
sally, such that Dy = Uy x D? and Uy, X dD? is tangent to the foliation on Z induced by F. The
balls are chosen small enough that each component of Dy contains a single point in R.

Definition 4.2. Define the vector space

G = {;7 € H(QY(Z - Dy)) | 7{77 =0, Vclosedy c 3(Z —DR)}. (59)
/4

Here, y C (X — Dg) means that y C £ — Dy and it is homotopic to a boundary component.
On the level of cohomology, Gg behaves like Gy. In particular, there is a surjective linear map
G — My, obtained by taking the cohomology class 7 + [1]. The vector space Gy lives inside a

5L SUOWWOD aAIIeaID a|eal|dde ays Aq peutonod ake SaonJe YO ‘asn Jo Sa|NJ 104 ArIq 1T auljuQ AS|IAN UO (SUOIIPUOD-pUR-SWLLB)0Y A3 [ IM Afeiq 1 pUIUO//:Sd)Y) SUOIIIPUOD pue SWd | 8y 39S *[7202/80/60] U0 ARiqiauluQ A1 ‘6€8ZT SW|(/ZTTT OT/I0P/W0d A3 [IM Afe.d | Ul [UO"d0SYIWpUO|//:Sdny Wo.j papeojumoq ‘T ‘202 ‘0SLL697T



AIRY STRUCTURES AND DEFORMATIONS OF CURVES IN SURFACES | 49 of 55

weakly symplectic vector space W? of differentials defined in annuli around each point of R C =
with zero contour integrals around boundary circles. Further details are in [9].

Define a bundle G° — Uy, with fibre over [£'] € Uy, given by Gg, defined by (59) although using
Dy for R C X rather than '. The covariant derivative V” acts on sections of G°. Parallel transport
of V”" is well defined on G° by construction. On the bundle G, parallel transport is not defined due
to the non-existence of solutions to the ordinary differential equation at points where 7 meets the
curve ¥’ non-transversally, and G° simply removes those points.

Define 6° € T'(Uy, G°) analogously to the definition of 0 in (46).

90([2,]) = vocdualE’ - gl"(vocducc)’

where gr : G — GY, is defined by parallel transport with respect to V" along a path T C Uy
joining [Z] and [Z'].

The residue constraints (27) and (28) also make sense in the analytic setting and they
define a quadratic Lagrangian E%s C WP. Choose local FD coordinates (u,,v,) in X. For any
closed boundary component y C 6(X — Dy), define E?(s c WP to consist of differentials 7 € W°
satisfying:

7
j{/ <va - Qu >u;”dua =0, m>1, (60)

2
% n m
Y <va dua) ua e ( )

An analogue of Theorem 4.1 holds.

Proposition 4.11. The section 6° € T'(Uy, G°) satisfies the following properties.

(1) It takes its values in L.
(2) Its cohomology class [6°] € T'(Uy, H) coincides with [0] defined in (12).

Proof.

60 \*
y{(va - 5) wdu, = 7{ (g v du, = 7{ okumdu, =0,
a

where y’ C ¥/ is obtained by parallel transporting y C X via the foliation. The final equality uses
the holomorphicity of vgu;"dua. Parallel transport to a holomorphic differential defined along a
different fibre is an analogous mechanism to equation (50) in the proof of Proposition 4.5. O

APPENDIX: VARIATIONAL FORMULAE
Recall from Section 2.2 that correlators of a curve embedded in a foliated symplectic surface = C
(X, Qx, F) are defined recursively via (18) given by

Opn(P1Ds) = D, ReSK(Py, p)|@h 1 n41(P: 0e(P), Ds) (A1)
du(a)=0

+ Z @p, 1141(P> Pr) @n, 171410 (D), Py | »
hy+hy=h
I=s
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where X enters via the recursion kernel K = K(p,, p) for p; € £ and p in the vicinity of a
ramification point defined by

p'=p
_l fp =o,(p) C()0,2(pl, P’)
2w;(p) - wo,l(%(l)))’

K(p;,p) :=

which is globally defined in p; in p. It satisfies

1_B(p;,p)
2 dv(p)du(p)

In this appendix, we prove a variational formula for the topological recursion correlators with
respect to vector fields on /3. We begin first with the Rauch variational formula.

K(p1,P) ~pra — + holomorphic. (A.2)

A.1 | Rauch variational formula
Let B be a family of curves ~ embedded in a foliated symplectic surface (X, Qy, 7). Choose FD
coordinates (¢, v) on X in a neighbourhood of « € R C T C X satisfying (1, v)(«) = (0, 0).

Lemma A.1. Thevariation of the Bergman kernel B(p, q) on a curve X in the family B is given by

wi(r)B(p’ V)B(}’, Q)

du(r)du(r) (A3)

r __
v/, B(p.q) =~ ) Res

azt aER

This formula has appeared in various forms before [4, 20, 23, 29] and we will provide a proof
here which fits with the setting of a family of curves embedded in a foliated symplectic surface.

Proof. A local Rauch variational formula gives the variation of the Bergman kernel with respect
to critical values of a locally defined function. Choose local FD coordinates (u,,v,) in a neigh-
bourhood U, C X of « satisfying the properties of Definition 2.2. Recall the map A : Uy, — CR
defined in (21). For [£'] € Uy, define a local coordinate z, (up to +1) on ¥’ by

ulzl = Zi + /106 (A4)
so that v|yy = v(z,). Then
F F F F F
0=V, u=2z,Viz, +V; 1y, =V 1,=-22,V; z,.
Hence, the normalised holomorphic differential satisfies

v'(z,) 04, oA

F F F
w; = =V (vdu) = —=(V; v)du = —v'(z,)(V] z,)du = 2. 7 2z,dz, = a—;dv.
Thus, the linearisation DA : C? — CR is given by
9 1 0y = (2L
a2 2) = ( dv)(a). (A.5)

The local Rauch variational formula [29, 37] is

V7, B(p.q) = Res Bp.nBC. q) (A.6)

g =a du,(r)
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hence
VB =) dal))i(::) Res B(p;ir:fr()r’ 2
ozt aerR "ra
and since the zero du(a) = 0 is simple, (A.3) follows. O
A.2 | Variation of correlators

Eynard and Orantin proved a formula for the variation of topological recursion correlators wy, ,,
in [20]. We include the proof here for completeness because the definition of a spectral curve in
this paper is slightly different to that in [20].

Proposition A.2. ForX C X and r € Ty B:

1

Vra CUh,n(pl""’pn) = _2_7_” % wh,n+1(pls'"’pn’ pn+1)' (A7)
= Pnt1€b;

Proof. The proof of this formula uses the Rauch variational formula in Lemma A.1 and follows
exactly the proof in [20, Theorem 5.1]. We will prove it by induction on 2k — 2 + n. The basic
idea is simple — apply V*, = Vl.r to (A.1). Most terms of the covariant derivative are obtained

ozt
immediately from the inductive hypothesis and it remains to understand variations of the kernel

K(pb p)
Rewrite (A.3) as follows:

o _Bp.n)
V: B(p,q) = % Res do(r)du(r)

_Blp,r)
= 2 Res B D)

B(V, Q)a’i(”)

=2 2 Ir{:eg K(p,r)B(o,(r), @)w;(r)

aER

=~ D Res K(p,)(B(0,(r), 9)wy(r) + B(r, )i (0 ().

a€ER

where the second equality uses the fact that B(r,q) + B(o,(r),q) vanishes at r = a which
cancels the simple pole of the integrand, the third equality uses Res,_, dvlsr(ii;)(r) fr) =
—2 Res,_, K(p,r)f(r) for f holomorphic at « and the final equality uses symmetry.

To simplify the notation, in a neighbourhood of a € %, define

’

q9=q
B =g [ o) 0 = i) —udu(o.(p)

so that K(p,q) = Q(q) By integrating (A.3) from q’ = o,(q) to ¢’ = q along a contour that does

not intersect the ramification point r,, we have
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VIEy(p) =2 ) Res K(p,NE,(rw,(r)

a€ER

== 2 Res K(p,r)(Ey(0,(r)ai(r) + Eg(Nw (0, ().

a€ER

If f = f(q) is any function, then we have [20, Lemma 5.1]

aER

E,(p)
VF(;& Res K(p, (J)f(q)> D Res &q) v f@

E(p) Eq(r) _ B B
+o§€§_es< ﬁ% Res 2t 2@ @~ e @@ Col-(cra(cz)))f(q))

P (wi(q) — wi(a(@Nf(q)

= Z Res q(P)fo(q)_ Z Res

2 4% () 25 gy
E.(p) E4(r)
+2 Z Res Res — Res Res — Res Res +(P) % w; (1) f(q)
dok \fok 7P 0=% a=w r=q a=a r=oy(g) | Q(r) Q(q)

= 2, Res K(p.q)V/f(@)+2 D, Res Res K(p.K(r.q),(1)f (@)

oceR a,fER

= 2 Res K(p,@)V/ f(@)
aeR

= 2, Res Res (K(p.)(K(05(r), o (r) + K(r, e (05(r) f(@).
a,fER -

We are now ready to prove the variational formula (A.7), which we will do so by induction on
2h — 2 + n. The base case (h, n) = (0, 2) uses the Rauch variational formula:

@;(r)B(r, p1)B(r, p,)
dug (r)dv,(r)

V7 @0a(p1spy) = V] B(p1,py) = — ), Res

aER

1
=-2 Z 1}30{8 K(py, 1w (1, Pz)(z—m jiebi o (7, P3)>

aER

=L @y 3(P1> P2> P3)
- - . 0,3\F1> 2> F3/>
271 J pseb;

where we have used (A.2) together with the recursive formula for wj 5 in the second-last and last
equalities, respectively.

Proceeding via induction, given (h, n), we shall assume that (A.7) holds for all (h’, n") such that
2h' — 2+ n’ < 2h — 2 + n. Then, by applying Vir to (A.1), we have

1
Vfwh,n(pl,---,pn)=—2—m > Res Rgg K(py,1)
a,BER p=
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x <K(oa(r>, p) ?f
D,

X <a’h—1,n+1(P» 04(P)s P25 s Pn) "‘z‘f"hl,1+|[1|(l’,PI1 )0n, 141,19 (D), P12)>

CL)0,2("‘! pn+1) + K(I", P)}{

pn+lebi

wo,z(%(")»PnH))

n+1 ebi

hy+hy=h
I [ 1,={2...n}
1
—5— 2, Res K(pl,p)< 7{ @p-1,142(9(P)s P> P2s s Pps Prt1)
27 o%% p=a Pn+1€b;
+ 75 @p, 11, 1+2(P5 Pry» Puy1)@n, 11,1410 (P): P1,)
hy+hy=h < Pr+1€Db;
L [ 1={2,..n}
+ Z wh1,|11|+1(p,l311)7{ wh2,|12|+2(0a(p)’plz’pn+1)>
hy+hy=h Pn+1€D;
L []1L,={2,...,n}
1
=== j{) o D, Res K(pl,p)(wh_l,n+z(%(p),p,pz,---,pn,pn+1)
n+1€9% aeR

+ @ n(04(D)s D25 e » P)D0 2(Ds Prv1) + @ (D5 Pas o s Pr) @0 2(0 0 (D)5 Prut1)
*

+ 2 wh1,|11|+1(P,sz)wh2,|12|+1(0a(P),P12)>
hy+hy=h
I 11 ,={2,....n,n+1}

_ 1
= o ©pn41(P1> > Pps Prs)s
Pn+1€bi
where }," indicates that we exclude all terms involving @, ,(., p,;,) from the summation. O
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