

Systematic Effects in the Measurement of Vertical Aerosol Profiles at the Pierre Auger Observatory

Max Malacari

School of Physical Sciences
University of Adelaide

This dissertation is submitted for the degree of

Doctor of Philosophy

October 2016

Declaration

I, Max Malacari, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Max Malacari
October 2016

Acknowledgements

I would like to express my gratitude to all of the people who have helped me, supported me, and encouraged me during my time as a graduate student.

First and foremost I would like to thank my supervisors and mentors, Prof. Bruce Dawson and Dr. José Bellido, for their guidance and encouragement during my time as a Ph.D student. Their enthusiasm and passion for cosmic ray astrophysics and for the Pierre Auger Observatory are contagious, and I look forward to carrying that passion into the next phase of my scientific career.

It has been a pleasure to work alongside the other members of the High Energy Astrophysics research group, past and present. Everyone has been extremely friendly and always willing to lend a hand or offer advice on a technical problem. In particular I must acknowledge the help and advice given by Steven, my office mate, on all manner of issues related to my research - his problem solving skills have been invaluable at times. To the rest of the High Energy Astrophysics Group, thank you for being such a wonderful bunch of people not only to work with, but also to enjoy a drink, cook a barbecue, go to the footy, or play charades with.

It has been a tremendous learning experience to work on the Pierre Auger Observatory. Thank you to all of the Pierre Auger Collaboration researchers, the engineers, and the Observatory staff, without whom this one-of-a-kind experiment would never have been possible.

My family and friends have been a constant source of support and motivation during my studies. In particular I would like to thank my parents, Heather and David, and my brother, Camillo. They have always encouraged me to do what makes me happy, and their belief in me has kept me going during some of the most stressful times.

Last, but certainly not least, I would like to thank Denise. Her love and support have kept me sane over the past year, and having her share in this journey with me has made it that much more enjoyable.

Abstract

The Pierre Auger Observatory, located on the high plains of western Argentina, is the result of an international effort to measure the properties of the highest energy cosmic rays with an unprecedented level of precision and statistical significance. The Pierre Auger Observatory is a hybrid detector, consisting of a surface array detecting shower particles reaching ground level, as well as a fluorescence detector which observes the longitudinal development of showers in the atmosphere. One of the distinct advantages of using a hybrid method to detect cosmic ray air showers is that events detected and reconstructed by the fluorescence detector can be used to calibrate the energy determination of the nearly 100% duty cycle surface detector. As such, the fluorescence detector sets the energy scale of the entire Observatory, and it is essential that its energy determination and associated uncertainties are well understood.

In this thesis we investigate a number of systematic uncertainties in the determination of the aerosol loading in the atmosphere above the Observatory. Accurate knowledge of the vertical distribution of aerosols at the Auger site is essential for the accurate reconstruction of shower energy deposit profiles using the fluorescence technique. In this work we focus on three independent systematic effects that have a non-negligible impact on the reconstructed aerosol loading above the Observatory: the determination of nights on which the atmosphere is completely aerosol free, the aerosol scattering of light out of a vertically directed laser beam, and the multiple scattering of that laser light on molecules and aerosol particles on its way to the detector.

Table of contents

Nomenclature	xiii
Introduction	1
1 Cosmic Rays	5
1.1 A brief history	5
1.2 Energy spectrum	8
1.3 Mass composition	13
1.4 Cosmic ray acceleration mechanisms	19
1.4.1 Bottom-up acceleration of charged particles	20
1.5 Arrival directions	23
2 Detection of Ultra High Energy Cosmic Rays	27
2.1 Introduction	27
2.2 Extensive air showers	27
2.2.1 Electromagnetic component	28
2.2.2 Hadronic component	30
2.2.3 The Heitler model	31
2.2.4 Hadron initiated air showers	33
2.3 Measurement of EAS	35
2.3.1 Surface arrays	36
2.3.2 Air fluorescence detectors	38
2.3.3 Hybrid detectors	43
2.4 Past, current and future cosmic ray experiments	43
2.4.1 Volcano Ranch	44
2.4.2 Haverah Park	45
2.4.3 Sydney University Giant Air-shower Recorder (SUGAR) . . .	46
2.4.4 Yakutsk	46
2.4.5 Fly's Eye and HiRes	46
2.4.6 Akeno Giant Air Shower Array (AGASA)	48
2.4.7 The Telescope Array Experiment (TA)	50
2.4.8 JEM-EUSO	53

3 The Pierre Auger Observatory	57
3.1 Introduction	57
3.2 Surface detector	59
3.2.1 Hardware	59
3.2.2 Calibration	60
3.2.3 SD local trigger system	61
3.3 Fluorescence detector	62
3.3.1 Hardware	62
3.3.2 FD electronics and triggering	64
3.3.3 Calibration	66
3.3.4 Operation	68
3.4 Communications system and CDAS	68
3.5 The <u>Offline</u> software framework	71
3.6 Event reconstruction	72
3.6.1 Surface detector	72
3.6.2 Fluorescence detector	78
3.7 Enhancements and future upgrades	89
4 Atmospheric Attenuation at the Pierre Auger Observatory	93
4.1 Introduction	93
4.2 Atmospheric attenuation processes	93
4.2.1 Rayleigh scattering	94
4.2.2 Aerosol scattering	96
4.3 Atmospheric aerosol monitoring instruments	100
4.3.1 Central Laser Facility and eXtreme Laser Facility	101
4.3.2 Aerosol Phase Function monitors	101
4.3.3 Horizontal Attenuation Monitor	103
4.3.4 Photometric Robotic Atmospheric Monitor	103
4.3.5 LIDARs	104
4.4 Vertical Aerosol Optical Depth Determination	104
4.4.1 Data Normalized (DN) method	105
4.4.2 Laser Simulation (LS) method	113
4.4.3 Comparing the methods	116
5 Study of the Energy Balance Using Stereo Events	119
5.1 Motivation	119
5.2 The stereo energy balance technique	119
5.3 Data selection	122
5.4 Results	124
5.5 Quantifying the associated VAOD discrepancy	125
5.5.1 Result	129
5.6 Comparison with Raman LIDAR data	134
5.7 Conclusions	137

6 The Data Normalized Aerosol Scattering Correction	141
6.1 Motivation	141
6.2 Expected effect on VAOD profiles	142
6.2.1 Effect on shower profiles	143
6.3 The aerosol phase function	148
6.3.1 APF monitor data analysis	154
6.3.2 Extracting the phase function	155
6.4 Aerosol scattering correction implementation	164
6.4.1 Test on simulated and real lasers	168
6.5 Effect on reconstructed air showers	174
6.5.1 Uncertainty	179
6.6 Conclusions	182
7 The Effect of Multiple Scattering on the Aerosol Analysis	183
7.1 Motivation	183
7.2 Previous multiple scattering studies	183
7.3 Photon-by-photon simulation of a vertical laser beam	185
7.3.1 Atmosphere description	186
7.3.2 Propagating a photon	187
7.4 Simulation parameters	191
7.5 Simulation results	193
7.5.1 Verifying the simulation	194
7.5.2 Properties of multiple scattered light from a laser source	196
7.6 Effect of multiple scattering on reconstructed aerosol profiles	200
7.6.1 Procedure	200
7.6.2 Systematic introduced by multiple scattering	202
7.7 Conclusion	207
8 Parameterizing the Multiple Scattered Light from a Vertical Laser Beam	211
8.1 Motivation	211
8.2 Parameterizing the multiple scattered fraction	211
8.2.1 Comparison with an isotropic light source	214
8.3 The optical spot	217
8.4 Camera pixelization	223
8.5 Application to the aerosol analyses	230
8.5.1 DN analysis	231
8.5.2 LS analysis	234
8.6 Effect on reconstructed air showers	236
8.7 Conclusions	239
9 The Fluorescence Detector Array of Single-pixel Telescopes	243
9.1 Overview	243
9.2 Simulation studies	244
9.3 Field test at the Telescope Array site	246

9.4 Current status	248
10 Concluding Remarks	251
References	255

Nomenclature

$\tau_{a,A}$	Vertical aerosol optical depth
τ_{aer}	Vertical aerosol optical depth
H_A	Aerosol atmosphere scale height
H_M	Molecular atmosphere scale height
L_A	Aerosol horizontal attenuation length at ground level
L_M	Molecular horizontal attenuation length at sea level
APF	Aerosol phase function
Auger	The Pierre Auger Observatory
CLF	Central laser facility
DN	Data Normalized
FRAM	Photometric robotic attenuation monitor
HAM	Horizontal attenuation monitor
HEAT	High-elevation Auger telescopes
LS	Laser Simulation
MS	Multiple scattering
TA	The Telescope Array experiment
UHECRs	Ultra-high energy cosmic rays
VAOD	Vertical aerosol optical depth
XLF	Extreme laser facility