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ABSTRACT

We consider the critical behavior of QED in 3 ~ 6 dimensional space-time. We
obtain the chiral-symmetry-breaking solutions of the Schwinger-Dyson equation in
d-dimensional QED 1n the quenched ladder approximation and show that for d > 4
the sclaing law 1s the mean-field type. We also study QED3 beyond the quenched
ladder approximation and show that the scaling law is dependent of the value of

the infrared cutoff.

In this report, we consider the critical behavior of the d-dimensional Quantum
Electromagnenic Dynamics (QEDd).IMJ Especially we study QEDy where d is not
equal to 4" . In QEDy, it is well-known that in the quenched ladder approximation,
the scaling behavior 1s the singurality-type or so called "Miransky scaling” " Is
this scaling common irrespective of the space-time dimensions? Is this scaling also
correct even if there is vacuum polarization included? Here we try to answer these

questions in the framework of the Schwinger-Dyson equation.

x For QED,, see Kondo’s reprot in this proceedings.
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First, we consier the scaling law of the dynamical mass and the coupling in
QEDy n the quenched ladder approximation, that 1s, the vertex I'y(p, k) is bare

and the vacuum polarization function TI(k) is zero;
Tu(p,k) = 7« and II(k) = 0. (1)
We write the fermion propagator S(p) as
S(p)™" = A(s") ¥ + B(p") - (2)

Then the Schwinger-Dyson equation for A(p?) and B(p?) is written by
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where z := p?,y := k?, ¢ is the infrared cutoff, A the ultraviolet cutoff and
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Li(=z,y) and Kg(z,y) are kernels. As proved in ref.[2], in quenched planar ap-
proximationan and in the Landau gauge Ly(z,y) is simply zero so that the wave
renormalization function A(z) = 1. Note that this is consisitent with the Ward-
Takahashi identity. K4(z,y)'s in 3 ~ 6 dimensions are the following,
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Ks(z,y) = %5[32; L0(z ~y) +6(y ~ 2)] .
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We solve numerically the above SD equation with kernels (6) ~ (9) to obtain the

scaling laws against the dimensionless coupling 3y,

qi—d

The dynamical mass can be writen using f3; as

where f(f3) 1s defined as the scaling function.

The mumerical results show the following scaling functions,
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where 8¢ is the critical coupling. In QEDj, the scaling law is singularity type.

On the other hand, in QEDj3 there is no phase transition, that means that only

symmery-breaking phase survives. This is also confirmed by the analytical solution
in the bifurcation method. And in QEDg4(d > 4) the scaling law is the mean-field

type. Although we have no analytical proof, in any higher dimensions than 4 the

scaling would be the mean-field type. So these results imply that the singulanity-

type scaling is rather spacial one in QED, and to confirm the scaling type we should

study more details in QED beyond the quenched ladder approximation.

As one of examples beyond the quenched ladder approximation, we consider

the vacuum polarization effect in QED;.
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QED; 1s an interesting model which is superrenormalizable and have a simi-
larity with QED,. And also 1t seems to be related to the recent study for hugh T,
superconductor, the quark confinement and so on. Furthermore, the calculability
of the angular integration in SD equation withont any approximation makes easy

to analyze the flavor dependence of the model.

So far many pepole has been discussing this model, in the framework of the
Schwinger-Dyson(SD) equation combined with the 1/N expansion for the vacuum

. . S
polanzatlon.[ :

There are two claims about the question, whether or not there
exists the critical point of the fermion number N, mn QEDj3;. Appelquist, Nash
and Wijewardhana' (ANW) pointed out that there exists the finite critical point,
N, = 32/x?, using Appelquist et al.’s assumption[sl that the wave function renor-
malization would be negligible in the large N limit. Matsuki et al.”? also obtained
the same result from the viewpoint of the effective potential. The existence of the
critical point is also supported by the Monte Carlo(MC) calculation by Dagotto et
al."" On the other hand, Pennington and Webb™ (PW) and Atkinson, Jhonson and
Pennington' (AJP) claimed that if one takes into account the 1/N correction to
the wave-function renormalization, the critical point N, in the mnfimite cutoff limit
goes away to infinity against ANW's result. This means that only the symmetry-

breaking-phase survives in QEDj3.

Generally, in QED the wave-function renormalization is unavoidable if the vac-
uum polarization in photon propagator is included. This is in sharp contrast with
the quenched planar QED in the Landau gauge.m In fact, the one-loop correction
to the photon propagator leads to the non-trivial wave-function renormalization
even in the Landau gauge. Therefore Appelquist et al.’s assumption is not justified

a priors, if the effect of the fermion loop is included.

We solve the SD gap equation in QEDj3 combined with the 1/N expansion
for the vacuum polariz&tion without using the Appelquist et al.'s assumption.””
Actual calculation have been done with the approximately equivalent differntial

equation.” We consider the leading correction in the 1/N expansion, i.e. the one-




loop correction in the photon propagator for massless fermion,"”
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where
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The SD equation for the fermion propagator in Landau gauge is written by
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We have paid special attention to the critical value N, of the fermion flavor and
the scaling law in the neighborhood of N.. We showed that the scaling behavior
of the dynamical mass is restricted by the inequality and discussed the relation

between the scaling law and the “generalized vertex ansatz”,
Tu(p, k) = mA(R)" . (20)

Our numerical results show that the scaling law depends on the infrared cutoff.
Actually in the limit of the infrared cutoff ¢ — 0, we have three types of the
scaling law depending on the vertex ansatz, i.e. the exponential type, the essential-

singularity type and the power-law type,

F(N) x exp(-CN) , forn <2, (21)
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F(N) exp(«?x/\/ N/N -1}, forn =2 (22)
f(N) x (N, - N)* forn >2. (23)

We can give an explanation on this difference based on the concept of the effective
coupling. The result of the exponential type would be the physical one and agrees
with the previous result obtained by PW and AJP. Recent works by Atkinson,
Johnson and Maris'" proposed the n = 2 case as the physical one from the analysis

of the anomalous dimensions.

On the other hand, in the presence of the finite infrared cutoff, the scaling

obeys the mean-field type independent of the vertex ansatsz,
() ox (N = N2 (24)

and N has a finite value which depends on the infrared cutoff. According to MC
results, there exists a finite critical value for fermion flavor. It is, however, still
an open question what the scaling type really is in QEDj. It should be remarked
that infrared cutoff introduced in our framework may correspond to the lattice size
m MC simulation, while the ultraviolet cutoff corresponds to the lattice spacing.
It appears that our framework provides us with a possibility, which enables us to
explain apparently conflicting results based on the SD equation”'” and the MC
simulation."" It is quite intefesting that resent MC simulation by DESY gtoupm]
1s fit with the analysis of the mena-field method.

Our investigation have been restiricted in the Landau gauge and quenched
ladder apporximation or atmost including the one-loop correction in the vacuum
polarigation. Beyond these restriction we plan to perform the numerical calculation
of the SD equation beyond one-loop corrction"™” to the vacuum plarization including

the improvement of the vertex."
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