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We consider the critical behavior of QED in 3 ('.) 6 dimensional space-time. We 

obtain the chiral-symmetry-breaking solutions of the Schwinger-Dyson equation in 

d-dimensional QED in the quenched ladder approximation and show that for d > 4 

the sclaing law is the mean-field type. We also study QED3 beyond the quenched 

ladder approximation and show that the scaling law is dependent of the value of 

the infrared cutoff. 

In this report, we consider the critical behavior of the d-dimensional Quantum 

Electromagnenic Dynamics ( QEDd)· (MJ Especially we study QEDd where dis not 

equal to 4 ~ . In QED!, it is well-known that in the quenched ladder approximation, 

the scaling behavior is the singurality-type or so called "Miransky scaling" _r+J Is 

this scaling cormnon irrespective of the space-time dimensions? Is this scaling also 

correct even if there is vacuum polarization included.'? Here we try to answer these 

questions in the framework of the Schwinger-Dyson equation. 

* For QED4 , see Kondo's reprot in this proceedings. 
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First, we consier the scaling law of the dynamical mass and the coupling in 

QED d in the quenched ladder approximation, that is, the vertex r µ (p, k) is bare 

and the vacuum polarization function IT(k) is zero; 

rµ(p,k) = f'µ and IT(k) = O . (1) 

We write the fermion propagator S(p) as 

(2) 

Then the Schwinger-Dyson equation for A(p2 ) and B(p2) is written by 

(3) 

(4) 

where x := p2, y := k2, € is the infrared cutoff, A the ultraviolet cutoff and 

(5) 

L4(x,y) and I\4(.x,y) are kernels. As proved in ref.[2], in quenched planar ap­

proximationan and in the Landau gauge La(x,y) is simply zero so that the wave 

renormalization function A( x) = 1. Note that this is consisitent with the Ward­

Takahashi identity. Kd( x, y )' s in 3 rv 6 dimensions are the following1 

, 2 vx+vv 
J\3(.x,y)= ;;;;-;;lnlvx-vvl' 

yXY x y 
(6) 

311" 
K!(x,y) = I I ' xtyt x-y 

(7) 

I , ( ) _ 2( x + y) _ ( x - y )2 

1 vx + v'Y 
i.5 x,y - ( )31 , n I r,;: ,_

1 
, 

xy xy 2 yx - ,;y 
(8) 



51!" [3.x - y 
K5(.x,y) = 8 ~O(.x -y) t O(y - .x)] . (9) 

We solve numerically the above SD equation ·with kernels (6) ,..., (9) to obtain the 

scalinEJ laws against the dimensionless coupling /3a, 

The dynamical mass can be writen using f3d as 

m = Af(f3a) , 

where f (f3d) is defined as the scaling function. 

The numerical results show the following scaling functions, 

1 
h(f3a) a:: f3rJ. , 

11' 

fi,(/3d) a:: exp(- Jt1d/I~~ - 1) , 

fs(f3d) a:: / f3'a - f3d ' 

f6(/3d) a:: v /3J - /1d . 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

where /3~ is the critical coupling. In QEDi, the scaling law is singularicy type. 

On the other hand, in QED3 there is no phase transition, that means that only 

symrnery-breaking phase survives. This is also confirmed by the analytical solution 

in the bifurcation method. And in QEDd(d > 4) the scaling law is the mean-field 

type. Although we have no analytical proof, in any higher dimensions than 4 the 

scaling would be the mean-field type. So these results imply that the singularify­

type scaling is rather spacial one in QED, and to confirm the scaling type we should 

study more details in QED beyond the quenched ladder approximation. 

As one of examples beyond the quenched ladder approximation, we consider 

the vacuum polarization effect in QED3. 
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QED3 is an interesting model which is superrenormalizable and have a simi­

larity with QED~. And also it seems to be related to the recent study for high Tc 

superconductor, the quark confinement and so on. Furthermore, the calculability 

of the angular integration in SD equation without any approximation makes easy 

to analyze the flavor dependence of the model. 

So far many pepole has been discussing this model, in the framework of the 

Schwinger-Dyson(SD) equation combined with the 1/N expansion for the vacuum 

polarization.rsNsJ There are two claims about the question, whether or not there 

exists the critical point of the fermion number Ne in QED3. Appelquist, Nash 

and Wijewardhana['l (ANW) pointed out that there exists the finite critical point, 

Ne = 32/1i2, using Appelquist et al.'s assumption[sJ that the wave function renor­

malization would be negligible in the large N limit. Matsuki et al.[
9
l also obtained 

the same result from the viewpoint of the effective potential. The existence of the 

critical point is also supported by the Monte Carlo(MC) calculation by Dagotto et 

al. [ioJ On the other hand, Pennington and Webb r71 (PW) and Atkinson, Jhonson and 

Pennington[sJ (AJP) claimed that if one takes into account the 1/N correction to 

the wave-function renormalization, the critical point Ne in the infinite cutoff limit 

goes away to infinity against ANW's result. This means that only the syrnmetry­

breaking-phase survives in QED3. 

Generally, in QED the wave-function renormalization is unavoidable if the vac­

uum polarization in photon propagator is included. This is in sharp contrast with 

the quenched planar QED in the Landau gauge. fll In fact, the one-loop correction 

to the photon propagator leads to the non-trivial wave-function renormalization 

even in the Landau gaug-e. Therefore Appelquist et al.'s assumption is not justified 

a priori, if the effect of the fermion loop is included. 

We solve the SD gap equation in QED3 combined with the 1/N expansion 

for the vacuum polariz~tion without using the Appelquist et al. 's assumption.r5
'
6
l 

Actual calculation have been done with the approximately equivalent differntial 

equationY1 We consider the leading correction in the 1/N expansion, i.e. the·one-



loop correction in the photon propagator for massless fermion, [iiJ 

TI(p) = 
a 

(16) -
' p 

where 

e'1N 
(~:=-. (17) 

8 

The SD equation for the fermion propagator in Landau gauge is written by 

[ ~2 p+k+& 
x a lnl kl ~ -a(p+k-IP-kl)+2pk p-·+o: . 

-~!P2 - kzl(P + k - IP - kl) 
a 

_2_(p2 - k2) 2{ln p + k + & - In p + k }] (18) 
&2 [p-k[+& [p-1~1' 

B(p) (19) 

We have paid special attention to the critical value Ne of the fermion flavor and 

the scaling law in the neighborhood of Ne. We showed that the scaling behavior 

of the dynamical mass is restricted by the inequality and discussed the relation 

between the scaling law and the "generalized vertex ansatz", 

(20) 

Our numerical results show that the scaling law depends on the infrared cutoff. 

Actually in the limit of the infrared cutoff i: -+ 0, we have three types of the 

scaling law depending on the vertex ansatz, i.e. the exponential type, the essential­

singularity type and the power-law type, 

f(N) ex exp(-C N) , for n < 2 , (21) 
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f(N) ex: exp(-2x) }Nc/N - 1) , for n = 2 , 

f(N) ex (Ne - N)>. for n > 2. 

(22) 

(23) 

We can give an explanation on this difference based on the concept of the effective 

coupling. The result of the exponential type would be the physical one and agrees 

with the previous result obtained by PW and AJP. Recent works by Atkinson, 

Johnson and Maris[HJ proposed the n = 2 case as the physical one from the analysis 

of the anomalous dimensions. 

On the other hand, in the presence of the finite infrared. cutoff, the scaling 

obeys the mean-field type independent of the vertex ansatz, 

f(N) ex (Ne - N)1/ 2 , (24) 

and Ne has a finite value which depends on the infrared cutoff. According to MC 

results, there exists a finite critical value for fermion flavor. It is, however, still 

an open question what the scaling type really is in QED3. It should be remarked 

that infrared cutoff introduced in our framework may correspond to the lattice size 

in MC simulation, while the ultraviolet cutoff corresponds to the lattice spacing. 

It appears that our framework provides us with a possibility, which enables us to 

explain apparently conflicting results based. on the SD equation[r.aJ and the MC 

simulation.£101 It is quite interesting that resent MC simulation by DESY group£13
l 

is fit with the analysis of the mena-field method. 

Our investigation 11ave been restiricted in the Landau gauge and quenched 

ladder apporximation or atmost including the one-loop correction in the vacuum 

polarigation. Beyond these restriction we plan to perform the numerical calculation 

of the SD equation beyond one-loop corrction [nJ to the vacuum plarizationincluding 

the improvement of the vertex. [lsJ 
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