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I am the person, if any, who controls the “motion of the atoms”
according to the Laws of Nature.

— Erwin Schrödinger (1887 - 1961)



Abstract

About a century ago, the field of quantum mechanics emerged when pioneering physi-
cists developed a formulation for describing the world of the very small. The theory
successfully describes physical properties at the scale of atoms and subatomic particles.
Since then, the field has undergone many breakthroughs and significant development,
and in the last few decades, a related field has been emerging from descriptive quantum
mechanics, namely quantum technologies. Rather than trying to explain and describe the
quantum world, the field of quantum technologies aims to control and engineer. Rapid
advances within this field have led to the belief that we will be able to harvest the fruits of
quantum mechanics and exploit them commercially within the next couple of years.

This dissertation explores some recent quantum technology advances within super-
conducting circuits and hybrid quantum-classical algorithms. Specifically, it outlines the
theory behind superconducting circuit design needed for tailoring quantum mechanical
systems controlled by macroscopic parameters. Following this introduction, three con-
trolled quantum gates are presented: An n-bit iToffoli gate, a controlled iSWAP gate, and a
linear controlled swapping gate. As these gates are introduced and explained, possible
implementations in superconducting circuits are also proposed.

In the ensuing chapters, we zoom out and focus on applying such quantum gates
in hybrid quantum-classical algorithms, to obtain a quantum advantage. In particular,
parameterized quantum circuits are discussed, and it is shown that the number of single-
qubit rotations can be decreased. The variational quantum eigensolver is explored as
an example of a hybrid quantum-classical algorithm, and it is used for approximating
the ground state of molecules and Heisenberg chains. The effect of entangling gates in
the variational quantum eigensolver is also considered. Lastly, a quantum version of the
highly successful generative adversarial networks is considered. It is shown that it can be
used to approximate the ground state without knowing the Hamiltonian.
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Dansk resumé

For omkring et århundrede siden opstod feltet kvantemekanik da pionerer indenfor
fysikken udviklede en formulering til at beskrive de allermindste ting i verden. Teorien
beskrev succesfuldt de fysiske egenskaber for atomer og mindre partikler. Siden da har
feltet oplevet mange gennembrudt og betydeligt udvikling. I de sidste par årtier er et
relateret felt begyndt at opstå fra den deskriptive kvantemekanik; nemlig kvanteteknologi.
Fremfor at forsøge at forklare og beskrive kvanteverdenen, så forsøger kvanteteknologi at
kontrollere og skabe. Hurtige fremskridt i dette felt har ført til troen på at man inden for de
næste par år vil kunne høste frugterne af kvantemekanikken og udnytte dem kommercielt.

Denne afhandling udforsker nogle nylige kvanteteknologi fremskridt inden for
superledende kredsløb og hybrid kvante-klassiske algoritmer. Specifikt så opridser den
teorien bag superledende kredsløbs design, som er nødvendigt for at kunne skræddersy
kvantemekaniske systemer som kan kontrolleres af makroskopiske parametre. Efter denne
introduktion præsenteres tre kontrollerede kvantemekaniske porte: en n-bit iToffoli port,
en kontrolleret iSWAP port og en lineær kontrolleret bytte port. I takt med at disse porte
bliver introduceret, forslås mulige implementation i superledende kredsløb.

I de følgende kapitler zoomer vi ud og fokusere på, hvordan man vil anvende
sådanne kvanteporte i hybrid kvante-klassiske algoritmer for at opnå en kvantefordel.
Særligt diskuteres parameteriserede kvantekredsløb og det vises at antallet af single-
qubit rotationer kan mindskes. Som et eksempel på en hybrid kvante-klassisk algoritme
udforskes den variationelle kvante-egenløser. Den bruges til at approksimere grundtil-
standene i molekyler og Heisenberg kæder. Effekten af sammenfiltringsporte i den
variationelle kvante-egenløser undersøges også. Til sidst undersøges en kvante version af
den yderst succesfulde generative modstander netværk og det vises at dette kan bruges til
at approksimere grundtilstanden af en Hamilton-funktion uden at Hamilton-funktionen
skal være kendt for netværket.
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Preface

The seeming megalomania quote by Schödinger at the cover of this thesis is taken very
much out of context. The proper quote from his book “What is Life?” [1] reads:

My body functions as a pure mechanism according to the Laws of Nature. Yet
I know, by incontrovertible direct experience, that I am directing its motions,
of which I foresee the effects, that may be fateful and all-important, in which
case I feel and take full responsibility for them. The only possible inference
from these two facts is, I think, that I – I in the widest meaning of the word,
that is to say, every conscious mind that has ever said or felt “I” – am the
person, if any, who controls the “motion of the atoms” according to the Laws
of Nature.

Schrödinger did not claim to be the one godly entity that controls all atoms. Instead, he
followed the long line of German philosophers, such as Kant and Schopenhauer. They
thought that all worldly voices referring to themselves as “I” were referring to the same
universal I, rather than independent I’s. His point was that we control the atoms since we
are the atoms and the atoms are us.

These philosophical ponderings were typical for physicists such as Schrödinger,
Einstein, or Bohr, who founded quantum mechanics. Their objective was to understand
how the world’s smallest components make sense in relation to the classical world. Today,
almost a century later, the focus has changed. Most physicists are no longer concerned
with the philosophical aspects of the quantum world – notwithstanding, I1 believe that
this is still the main appeal for young quantum physicists in spe, myself included – but
are instead focused on actually doing quantum mechanics. Due to many experimental
and technical breakthroughs since the conception of quantum mechanics, a new field
has emerged as quantum technologies. Within this field, physicists are no longer just
trying to explain and describe the world of quantum mechanics; instead, we are trying
to engineer and control. We are now able to do things quantum-mechanically that the
founding fathers of quantum mechanics through only possible in their wildest gendanken
experiments. This has also opened up for a more literal interpretation of the initial quote
in this thesis: Any quantum engineer can now, in good faith, utter the words: “I am the
person, if any, who controls the ‘motion of the atoms’ according to the Laws of Nature”,
regardless of whether these atoms are trapped ions, ultracold atoms, quantum dots, or
artificial atoms in superconducting circuits.

1Here the “I” refers to the independent author and not the universal I.
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Preface

This thesis concludes my PhD studies at the Department of Physics and Astronomy at
Aarhus University under the supervision of Nikolaj Zinner. My studies have revolved
around the theoretical aspects of quantum technologies and quantum engineering. My
initial focus was on superconducting circuits as a tool for creating quantum bits, or
qubits, and interactions among these. During this initial part of my PhD studies, I spent
a lot of time trying to engineer different circuits to do as I wanted, something I had
also done during my master’s. Therefore this thesis opens up with an introduction to
superconducting circuits in Chapter 1. This chapter is based on a tutorial written to
introduce students and researchers who are new to the field [VIII].

In the second part of this thesis, we continue the quest in superconducting circuits,
and I introduce three different controlled quantum gates, which all can be implemented in
superconducting circuits following the approach in Chapter 1. Specifically, in Chapter 2,
I introduce the n-bit iToffoli gate, which flips the state of a single qubit depending on
the state of n control qubits. The chapter is based on Ref. [V]. In Chapter 3 I discuss
the controlled iSWAP, which swaps the state of two qubits at the expense of an i phase,
depending on several control qubits. This chapter is based on Ref. [VI]. In Chapter 4,
I introduce a linear controlled swapping gate, where the swapping is dependent on a
superposition state of the control qubits. This chapter is based on Ref. [III], and is
significantly shorter than the previous two chapters as part of the work on this gate was
done during my master’s and is therefore not included here.

In the third and last part of this thesis, we change gear and consider some algo-
rithms which could be used on a near-term quantum chip. We concentrate on the concept
of hybrid quantum-classical algorithms, which, as the name suggests, combines quantum
resources with classical computational resources. In Chapter 5 I present parameterized
quantum circuits that serve as the base element in many hybrid quantum-classical al-
gorithms. I discuss how the number of single-qubit rotations can be reduced without
loss of expressibility or entangling capability, something which was first presented in Ref.
[VII]. In Chapter 6, I introduce the variational quantum eigensolver, which is a hybrid
quantum-classical algorithm, that can be used to find approximate eigenvalues. I also
present results of different simulations of a variational quantum eigensolver, some related
to Ref. [VII], and some unpublished. In Chapter 7, I present a, so far, less successful
hybrid quantum-classical algorithm, namely the quantum generative adversarial network.
The classical version of this has been quite successful, and I discuss different approaches
for the quantum version and present some unpublished simulation results.

Finally, in Chapter 8, I summarize and present some final remarks regarding the
entire work presented in this thesis and discuss points for further investigation.

In addition to the papers discussed in this thesis, I have produced four other papers,
which do not fit into the scope of this thesis. My first paper was based on my bachelor’s
thesis on Efimov physics and utterly unrelated to the subject discussed here [I]. During
my master’s thesis, I worked a bit with time crystals, and possible implementations
in superconducting circuits [II]. I have also been part of a paper discussing a possible
implementation of a coherent router in superconducting circuits [IV]. Finally, I have
helped co-supervise a master’s student, which led to a manuscript that has just been
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accepted in Physical Review Applied [IX].
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PART I

First Steps into the World of
Superconducting Circuitry





CHAPTER 1

Introduction to Superconducting Circuits

During my master’s studies, I learned the craftmanship of analyzing superconducting circuits.
This learning process was difficult since there were no introductory-level texts on the subject. As
I progressed as a PhD student, I have seen countless students having to go through the same
struggles without any suitable introduction text. Our group, therefore, decided to write such a
text, which ended up as a tutorial on superconducting circuits. While this tutorial was one of
the last things I did during my PhD studies, it does describe some of the first scientific methods I
encountered, and it lays the groundwork for much of my work during my PhD studies. I, therefore,
open this thesis with this introduction to superconducting circuits based on Ref. [VIII]. Text and
figures have been edited to fit into the thesis.

A particularly prominent platform for scalable quantum technology is superconducting
circuits that implement qubits or even higher-dimensional qudits. Compared to other
quantum technology schemes, such as trapped ions [2–7], ultracold atoms [8–12], electron
spins in silicon [13–18] and quantum dots [19–23], nitrogen vacancies in diamonds [24,
25], or polarized photons [26–29], which all encode quantum information in microscopic
systems, such as ions, atoms, electrons, or photons, superconducting circuits are quite
different. They are macroscopic in size and printed lithographically on wafers much
similar to classical computer chips [30–34]. The fact that these systems exhibit microscopic
behavior, i.e., quantum-mechanical effects, while being macroscopic in size has led to
the notion of mesoscopic physics in order to describe this intermediate scale [35–37]. A
mesoscopic advantage of superconducting circuits is that microscopic features such as
energy spectra, coupling strengths, and coherence rates depend on macroscopic circuit
parameters. This means that one can design circuits such that the properties of the
resulting quantum-mechanical system, sometimes called an artificial atom [38–42], can be
more or less tailormade to exhibit a particular behavior.

In this chapter, we aim to introduce circuit analysis of superconducting qubits
intended for researchers who are new to the field. We aim to give the tools needed for
tailoring macroscopic circuits to a desired qubit behavior. We refer to a (superconducting)
qubit as the two lowest energy levels of a superconducting circuit or subcircuit, denoted by
the Fock states |0〉 and |1〉. There are several examples of superconducting qubits which
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Chapter 1. Introduction to Superconducting Circuits

exploit higher-lying states for coupling [43] or control [44, 45]. The present chapter can be
viewed as an introduction to more advanced field reviews, such as Refs. [37, 38, 41, 46–55],
and is by no means a review of current state-of-the-art technology or practices, but rather
a detailed introduction to the theoretical methods needed to analyze superconducting
circuits to produce and manipulate qubits. We do not discuss the actual experimental
production of superconducting circuits, but limit the tutorial to theoretical analysis of such
circuits. The interested experimentalist should refer to the tutorial by Ref. [56].

The following chapter is organized as follows: First, we present the basic circuit
variables and components used in the analysis in Section 1.1. Then we present the classical
analysis used for finding the Hamiltonian of a given superconducting circuit in Section 1.2,
where we use the method of nodes. In Section 1.3 we quantize the Hamiltonian and in
Section 1.4 we recast the Hamiltonian as interacting oscillators. In Section 1.5 we discuss
time-averaged dynamics using the interaction picture. The truncation of anharmonic
oscillators is discussed in Section 1.6. The use of microwave driving for control and single-
qubit gates is presented in Section 1.7, and the simple coupling of modes is presented
in Section 1.8, where two-qubit gates are discussed as well. In Section 1.9 we introduce
a method for treating noise in open two-level quantum systems. Finally, in Section 1.10
we present a variety of examples ranging from single qubit implementations to tunable
couplers and multibody interactions. In Section 1.11 we give an overview of the methods
and presents a perspective to the rest of this thesis.

1.1 Lumped-element circuit diagrams

In this section, we introduce the dynamical variables used when analyzing superconduct-
ing circuits and then present the basic components of the circuits.

Our analysis takes its starting point in the lumped-element model. This model
simplifies the description of a spatially distributed system (in our case, a superconducting
electrical circuit) into a topology of discrete entities. We assume that the circuit attributes
(capacitance, inductance, and resistance) are idealized into electrical components (capac-
itors, inductors, and resistors) joined by a network of perfectly conducting wires. An
example of a lumped circuit can be seen in Fig. 1.1(a). We discuss the different components
in Section 1.1.2.

We assume all the circuits discussed in this chapter to be superconducting, meaning
that there is no electrical resistance in the circuit, and all magnetic fields are expelled from
the wires (the Meissner effect). We, therefore, ignore losses to the external environment in
the following analysis. In other words, we will consider closed quantum systems for most
of this chapter. However, a realistic description of any quantum system should include
some interactions with the environment, as these can never be completely ignored in an
experiment. Notwithstanding, it is an excellent description to treat losses to the external
environment as a correction to the dynamics of the system, something which we discuss
in Section 1.9.
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1.1. Lumped-element circuit diagrams
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Figure 1.1: (a) Example of a lumped-element circuit consisting of a Josephson junction and a capacitor in
parallel connected by an inductor to another Josephson junction and capacitor pair. Such a Josephson junction
and capacitor pair is considered a transmonlike qubit, see Section 1.10.1. An external flux is threading the
inductive loop of the circuit. (b) Arbitrary two-terminal component on a branch, b, between two nodes (dots).
The voltage, Vb(t), over the component is defined from the branch’s start to the branch’s end. The current,
Ib(t), through the branch is defined in the opposite direction.

1.1.1 Circuit variables

Circuit analysis aims at finding the equations of motion of an electrical circuit. Typically
this means determining the current and voltage through all circuit components. For
simplicity, we consider only circuit networks containing two-terminal components, i.e.,
components connected to two wires. Each such component is said to lie on a branch, b,
and is characterized by two variables at any given time t: The voltage, Vb(t), across it and
the current, Ib(t), through it. We define the orientation of the voltage to be opposite to
the direction of the current, see Fig. 1.1(b). Thus these two are defined by the underlying
electromagnetic field by

Vb(t) =
∫ end of b

start of b
E(t) · d`, (1.1a)

Ib(t) =
1

µ0

∮
b
B(t) · d`, (1.1b)

where µ0 is the vacuum permeability, and E andB are the electric field inside the wire
and the magnetic field outside the wire, respectively. The closed loop in the second
integral is in vacuum encircling the given element. As we describe the circuits in the
lumped-element model, the voltage and current are independent of the precise path the
fields are integrated along in the following sense. For the line integral of the electric field
in Eq. (1.1a) we take the integration path to be well outside the wire of the inductors,
meaning that the magnetic field is zero along the path. Similarly, for the loop integral
of the magnetic field in Eq. (1.1b), we take the integration path to be well outside the
dielectric of the capacitors, meaning that the electric field is zero along the path. For more
details on the integration of electromagnetic fields, see, e.g., Ref. [57].
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Chapter 1. Introduction to Superconducting Circuits

We define the branch flux and branch charge variables as

Φb(t) =
∫ t

−∞
Vb(t

′)dt′ , (1.2a)

Qb(t) =
∫ t

−∞
Ib(t
′)dt′ , (1.2b)

where it is assumed that the system is at rest at t′ = −∞ with zero voltages and currents.
As there are fewer degrees of freedom in the circuit than there are branches in the circuit,
these are, just as the currents and voltages, not completely independent but related
through Kirchhoff’s laws

∑
all b arriving

at n

Qb = qn, (1.3a)

∑
all b around l

Φb = Φ̃l , (1.3b)

where qn is the charge accumulated at node n and Φ̃l is the external magnetic flux through
the loop l. A node can be understood as a point where components, or branches, converge,
see Fig. 1.1(a), where we denote nodes with a dot. We can define any circuit as a set of
nodes and a set of branches.

The notion of nodes and branches comes from graph theory, which is the natural
mathematical language for analyzing circuits. The interested reader can find more details
of fundamental graph theory and its application to electrical circuits in Appendix A.1.

1.1.2 Circuit components

We primarily consider three components of a superconducting circuit: linear capacitors,
linear inductors, and nonlinear Josephson junctions. The two linear components should be
well known to most readers, and we, therefore, introduce them only briefly. On the other
hand, the Josephson junction is a nonlinear component that is specific to superconducting
circuits, and it is the main component when working with superconducting qubits.

As we consider superconducting circuits, we do not consider resistors or other
losses. Such dissipative components are not easily included in the Hamiltonian formalism
presented in this chapter due to their irreversible nature. However, it can be done using,
for instance, the Caldeira-Leggett model [48, 58].

Capacitors

The first component we consider is the capacitor. For a general capacitor, the charge on
the capacitor is determined as a function of the voltage, q(t) = f [V(t)]. In this chapter, we
consider only linear capacitors where the voltage is proportional to the charge stored on
the capacitor plates

V(t) =
q(t)
C

, (1.4)

where C is the capacitance of the capacitor, this linear relationship is the defining property
of the linear capacitor. In reality, this is merely an approximation, as small nonlinearities
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Figure 1.2: (a) Capacitor. (b) Linear inductor. (c) Josephson junction. (d) Simple LC-oscillator circuit. A
capacitor with capacitance C is connected in a closed circuit with an inductor of inductance L. The voltages
over the two components are VC and VL, respectively, while the currents are IC and IL. The resulting equation
of motion is a harmonic oscillator.

make C a function of q and V. These effects are usually small, and therefore it is standard
to neglect them. Equation (1.4) can be rewritten to the flux-charge relation using Eq. (1.2a)
as

Φ̇(t) = V(t) =
q(t)
C

, (1.5)

where the dot indicates differentiation with respect to t. The charge q(t) is equal to the
branch charge, and using Eq. (1.2b) we find the branch current

I(t) = CΦ̈(t). (1.6)

The energy stored in the capacitor is found by integrating the power P = V(t)I(t) from
t = −∞ to t

E =
1
2

CΦ̇2(t). (1.7)

For superconducting circuits, typical values of the capacitances are of the order 10 fF. In
lumped-circuit diagrams we denote the capacitor as a pair of parallel lines, see Fig. 1.1(a)
or Fig. 1.2(a).

Inductors

The time-dependent current flowing through a general inductor is a function of the flux
through it, I(t) = f [Φ(t)]. For a linear inductor, the current is proportional to the magnetic
flux,

I(t) = q̇(t) =
1
L

Φ(t), (1.8)

where L is the inductance of the inductor. Integrating over the power as before, the energy
stored in the inductor is then

E =
1

2L
Φ2(t). (1.9)

For superconducting qubits, typical values of linear inductances are of the order 1 nH.
In lumped-circuit diagrams, we denote the linear inductor as a coil, see Fig. 1.1(a) or
Fig. 1.2(b).

As a short clarifying example we consider the classical LC oscillator shown in
Fig. 1.2(d). From Kirchhoff’s current law in Eq. (1.3a) we know that IC = IL, where IC and
IL are the currents through the capacitor and inductor, respectively. Kirchhoff’s voltage
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Superconducting Superconducting
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Figure 1.3: Sketch of a Josephson junction. Two superconducting materials are separated by a thin insulator,
with a thickness of the order of 30 Å. If a nonsuperconducting metal is used as a separator, it can be several
micrometers wide. Cooper pairs can tunnel back and forth between the two superconducting materials.

law gives us VC = −VL, assuming no fluctuating external flux. Using Eqs. (1.2a), (1.2b),
(1.5), and (1.8) we can set up the equations of motion for the system

Φ̈(t) = − 1
LC

Φ(t), (1.10)

where we introduce Φ(t) = ΦC(t) = −ΦL(t) to get rid of the subscripts. The system
behaves as a simple harmonic oscillator in the flux. This is analogous to a spring, where
the flux is the position, and the mass and spring constants are replaced by the capacitance
and inverse inductance, respectively.

Josephson junctions

So far, we have considered only components with linear current-voltage relations. For
reasons that will become clear when we quantize the lumped circuit, constructing a
qubit from only linear components is by no means straightforward. We, therefore, need
nonlinear components which come in the form of the Josephson junction. The Josephson
junction plays a unique role in superconducting circuits, as it has no simple analog in a
nonsuperconducting circuit since it is related to charge quantization effects that occur in
superconductors. We start with a short introduction to superconductivity (see Ref. [59] for
more details).

When the temperature is decreased, some materials undergo a phase transition
where the resistivity drops to zero. With the Meissner effect, i.e., the material perfectly
expels all magnetic fields, perfect conduction is the defining property of a superconductor.

The phase transition between the nonsuperconducting phase and the supercon-
ducting phase of a material happens because the conduction electrons condense into a
so-called BCS ground state, characterized by an amplitude and a phase. A priori it might
seem impossible for electrons to condense into a single quantum state since the Pauli
exclusion principle forbids this. However, as Cooper suggested, some attractive force
between the electrons leads to the formation of electron pairs [60], which have integer
spin and thus behave like bosons. This makes it possible for these so-called Cooper pairs
to condense into a single quantum ground state, and in this state, the solid becomes
superconducting.

A Josephson junction consists of two superconducting islands separated by a thin
insulator, a nonsuperconducting metal, or a narrow superconducting wire. Cooper pairs
can then tunnel through the barrier from one island to the other, a phenomenon known
as the Josephson effect [61, 62], see Fig. 1.3. The tunneling rate (current) and the voltage
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1.1. Lumped-element circuit diagrams

between the two islands depends on the superconducting phase difference, φ, between
the islands through [63]

I(t) = Ic sin[φ(t)], (1.11)

V(t) =
h̄
2e

φ̇, (1.12)

where Ic is the critical current of the junction, which depends on the junction geometry.
Equation (1.12) allows us to relate the junction phase difference to the generalized flux
through Φ = h̄φ/2e. The charge and flux are thus related through

q̇(t) = Ic sin
(

2π
Φ(t)
Φ0

)
, (1.13)

where we define the magnetic flux quantum Φ0 = h/2e. The Josephson junction works as
a flux-dependent inductor with inductance given by [47]

L(Φ) =

(
∂I
∂Φ

)−1
=

LJ

cos
(

2π
Φ
Φ0

) , (1.14)

where we define the Josephson inductance LJ = Φ0/2π Ic, since the inductance is associ-
ated with the inertia of the Cooper pairs, it is often referred to as kinetic inductance. See
Section 1.10.2 for details on the use of sizeable kinetic inductance. For superconducting
qubits, typical values of Josephson inductances are of the order 100 nH. The energy of a
Josephson junction is also nonlinear. We have

E =
Φ2

0
(2π)2

1
LJ

[
1− cos

(
2π

Φ
Φ0

)]
, (1.15)

where we often neglect the constant term when dealing with the Lagrangian or Hamil-
tonian, as it is irrelevant for the system’s dynamics. We define the factor in front of
the bracket to be the Josephson energy of the Josephson junction, EJ = Φ2

0/(2π)2LJ =
Φ0 Ic/2π. In this thesis we denote Josephson junctions as a boxed "x" in lumped-circuit
diagrams, see Fig. 1.1(a) or Fig. 1.2(c). Sometimes, an "x" without a box is used in the
literature.

It is conventional to simplify notation so that charges and fluxes become dimen-
sionless. This is done by using units where

h̄ = 2e = 1 and thus
Φ0
2π

= 1. (1.16)

This means that we eliminate the cumbersome factor of 2π/Φ0 in the sinusoidal Josephson
junction terms. Note that in this convention, the units of capacitance and inductance
become inverse energy. Moreover, with this choice of units, the junction phase differences
are equal to the generalized flux φ = Φ, and the energy of a Josephson junction becomes
equal to the critical current, EJ = Ic.
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Junction

External magnetic field(a) (b)

Figure 1.4: A dc superconducting quantum interference device (dc SQUID). (a) Implementation of a dc
SQUID. (b) Corresponding circuit diagram.

dc SQUID

It is often desirable to tune the parameters of the circuit externally. Therefore many circuits
employ a direct current superconducting quantum interference device, or dc SQUID,
instead of a single Josephson junction. A dc SQUID consists of two Josephson junctions
on a ring, with an external magnetic field, Φ̃, through the ring [64], see Fig. 1.4(a). While
this does not change the form of the energy of the Josephson junction, it has the advantage
that it makes the front factor in Eq. (1.15) tunable. To see this consider the circuit diagram
in Fig. 1.4(b). The energy of this component must be the sum of two Josephson junctions

U = −EJ cos
(

ΦL +
Φ̃
2

)
− EJ cos

(
ΦR +

Φ̃
2

)
, (1.17)

where ΦL/R is the branch flux of the left and right branch, respectively, and we divide
the external flux equally between the two arms of the dc SQUID following Kirchhoff’s
voltage law in Eq. (1.3b). We consider symmetrical junctions here, but it is a neat exercise
to extend it to asymmetrical junctions.

Since we are considering the arms of a loop, we can write Φ = ΦL = −ΦR in
Eq. (1.17). Using the trigonometric identity 2 cos α cos β = cos(α− β) + cos(α + β) with
α = Φ̃/2 and β = Φ, we can rewrite Eq. (1.17) into the form

U = −2EJ cos
(

Φ̃
2

)
cos Φ. (1.18)

The so-called fluxoid quantization condition states that the algebraic sum of branch fluxes of
all the inductive elements along the loop plus the externally applied flux must equal an
integer number of superconducting flux quanta [55, 65, 66], i.e.,

Φ + Φ̃ = 2πk, (1.19)

where k is an integer, together with Kirchhoff’s voltage law in Eq. (1.3b) this means that
we can remove a degree of freedom. This explains how one goes from two branch fluxes,
ΦL/R, to just one branch flux, Φ, since the branch fluxes are the system degrees of freedom.
In other words we obtain, an effective Josephson energy of E′J(Φ̃) = 2EJ | cos(Φ̃/2)|,
where the Josephson energy can be dynamically tuned through the external flux, Φ̃.
This idea is often implemented in superconducting circuits instead of a single Josephson
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1.2. Equations of motion

junction so that the spacing of the energy levels can be tuned dynamically by tuning
Φ̃. However, we usually place a single Josephson junction in a circuit diagram. Due
to the sensitivity of the dc SQUID, it has many uses, especially in clinical applications
such as magnetoencephalography [67, 68], magnetocardiography, and magnetic resonance
imaging (MRI), where they are used for detecting tiny magnetic fields in living organisms
[69, 70].

Voltage and current sources

We can treat constant voltage and current sources by representing them as capacitors or
inductors. Consider a constant voltage source V. This can be represented by a huge but
finite capacitor, in which an initially large charge Q is stored such that V = Q/C in the
limit where C → ∞. Similarly, a constant current source can be represented by a huge but
finite inductor, in which an initially large flux Φ is stored, such that I = Φ/L in the limit
where L→ ∞.

1.2 Equations of motion

In order to describe the dynamics of the lumped-circuit diagrams we presented in the pre-
vious section, we now determine the equations of motion for the systems. The equations
of motion depend on the circuit components and can be written in terms of the circuit
variables using either the voltage and current in Eq. (1.1) or equivalently using the flux
and charge in Eq. (1.2). There are several ways of finding the equations of motion, and we
start from the most straightforward approach, applying Kirchhoff’s laws directly to the
circuit. From this starting point, we then progress to the method of nodes and then to the
Lagrangian and Hamiltonian.

1.2.1 Applying Kirchhoff’s laws directly

The simplest way to find the equations of motion for a given circuit is to apply Kirchhoff’s
laws. We have already done this for the simple LC oscillator example in Fig. 1.2(d), which
yielded the harmonic oscillator equation of motion in Eq. (1.10). To get a better feel for
this procedure, we will consider a few additional examples.

The next natural step is to exchange the linear inductor in Fig. 1.2(d) with a
nonlinear Josephson junction. This yields the circuit in Fig. 1.5(a). From Kirchhoff’s
current law in Eq. (1.3a) we know that IC = IJ , where IC and IJ are the currents through the
capacitor and Josephson junction, respectively. Kirchhoff’s voltage law implies VC = −VJ .
Using Eqs. (1.2a), (1.2b), (1.5), and (1.8) we can set up the equations of motion for the
system,

Φ̈(t) = − Ic

C
sin Φ(t), (1.20)

where we introduce Φ(t) = ΦC(t) = −ΦJ(t). Equation (1.20) is identical to the equation
of motion for a simple pendulum, with the critical current, Ic, playing the role of the
gravitational constant and the capacitance, C, becoming the mass of the pendulum, similar
to the case of the LC circuit, see Eq. (1.10), which is the lowest order approximation to
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Figure 1.5: (a) A Josephson junction and capacitor circuit. A capacitor with capacitance C is connected in a
closed circuit with a Josephson junction, EJ . The voltage over the two components is VC and VJ , respectively,
while the currents are IC and IJ , respectively. The resulting equation of motion is a Duffing oscillator. (b)
Example circuit of Fig. 1.1(a) with explicit directions of the voltages and currents shown. All loops are
propagated counterclockwise.

Eq. (1.20). Contrary to Eq. (1.10) this is not linear in Φ, which is an effect of the introduction
of the nonlinear Josephson junction.

We now continue to the more complicated example of Fig. 1.1(a). This time Kirch-
hoff’s voltage law gives us three equations, one for each circuit loop. We denote the left
capacitor and Josephson junction C1 and EJ,1, respectively. Similarly, we have to the right
C2, EJ,2. The connecting inductor is denoted by L12. Defining the direction of the current
and voltages as in Fig. 1.5(b), we find the following equations from Eq. (1.3b)

−ΦEJ1 −ΦC1 = 0, (1.21a)

ΦEJ2 + ΦC2 = 0, (1.21b)

ΦEJ1 −ΦEJ2 + ΦL = Φ̃, (1.21c)

where Φ̃ is the external flux in the inductor loop. We propagate all loops counterclockwise,
which yields negative signs on the terms in Eq. (1.21) when the voltage of the given branch
is in the opposite direction to the loop direction. Note that we can also include external
fluxes in the two capacitive loops. However, as we will see in Section 1.2.3, as long as we
consider only time-independent fluxes, the external fluxes will only be relevant in purely
inductive loops. From Eq. (1.21a) we define Φ1 = ΦEJ1 = −ΦC1 and Φ2 = ΦEJ2 = −ΦC2.
Using this we can also express the flux through the inductor as ΦL = Φ2 −Φ1 + Φ̃, which
significantly reduces the number of variables.

From Kirchhoff’s current law, we find the following equations

− ICn + IEJn = ∓IL, (1.22)

for n = 1, 2, where the minus is for n = 1 and the plus is for n = 2. Inserting the current
relations for the respective components, we find the following equations of motion

CnΦ̈n = ∓ 1
L12

(Φ2 −Φ1 + Φ̃)− EJ,n sin Φn, (1.23)

for n = 1, 2.
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1.2. Equations of motion

The end goal of our analysis is to quantize the circuit to treat it quantum mechan-
ically. When doing quantum mechanics, we are usually interested in the Hamiltonian
of the system, as it is closely related to the energy spectrum and time evolution of the
system. It is possible to infer the system Hamiltonian from the equations of motion. This is
usually done by finding a Lagrangian that yields the equation of motion using Lagrange’s
equations [see Eq. (1.27)] and then performing a Legendre transformation.

While applying Kirchhoff’s law directly always yields the correct equations of
motion, it quickly becomes cumbersome as the circuits increase in complexity. Therefore,
we seek a method for determining the Lagrangian directly, which can be achieved using
the method of nodes.

1.2.2 Method of nodes

This section presents the method of nodes that solves most practical problems involving
Josephson junctions. The discussion follows the method proposed by Devoret [37, 71].

When determining the Lagrangian of a given circuit, our main obstacle is to remove
superfluous degrees of freedom and determine how to include the external fluxes. As we
saw above, we can solve these problems by manipulating Kirchhoff’s law, and here we
present an alternative approach.

We have already defined a node as a point where one or more components connect.
We now further define a ground node as a node connected to ground. These nodes are
inactive since the flux through them is zero, and thus they do not contribute to the
dynamics of the system and can thus be ignored. For the remaining nodes, we distinguish
between active and passive nodes. An active node is defined as a node where at least one
capacitor and one inductor (either linear and Josephson junction) meet. A passive node is
defined as a node where only one type of component meets, either only capacitors or only
inductors. It turns out that passive nodes represent superfluous degrees of freedom and
therefore only yield constraints on the system’s dynamics. This is similar to determining
an effective capacitance for a serial or parallel collection of individual capacitances.

Considering the example circuit in Fig. 1.1(a), we can represent the circuit as a set
of branches, B, and a set of nodes, N . The set of nodes consists of three nodes; two active
nodes and a ground node. The set of branches is equal to the set of components in the
circuit, i.e., the example circuit has five branches; two capacitor branches, two Josephson
junction branches, and a single linear inductor branch.

We call such a representation consisting of a set of nodes and a set of branches
a network graph or simply a graph. With this notation, we can divide the circuit into
subgraphs. There are many possible subgraphs for a given circuit, but we focus on the
capacitive subgraph and the inductive subgraph. The capacitive subgraph contains only
branches of capacitors and the nodes connected to such branches. The inductive subgraph
contains only branches of inductors and nodes connected to such branches. In the example
circuit in Fig. 1.1(a), the two capacitor branches and all three nodes are in the capacitive
subgraph, while the inductor branch and the two Josephson junction branches are in the
inductive subgraph together with the three nodes. Notice how the nodes can be in both
subgraphs at the same time, see Fig. 1.6.

The capacitive subgraph consists only of linear capacitors, and thus we can express
the energy of a capacitive branch in terms of the voltages, i.e., the derivative of the flux,
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(a) (b)

Figure 1.6: Highlight of (a) the capacitive subgraph and (b) the inductive subgraph of the example circuit in
Fig. 1.1(a).

using Eq. (1.7). Doing this, we break the symmetry between charge and flux, and the flux
can now be viewed as the “position”. With this treatment, the capacitive energy becomes
equivalent to the kinetic energy, while the inductive energy becomes equivalent to the
potential energy.

This symmetry breaking also explains why passive nodes do not contribute to the
system’s dynamics. A passive node between two inductors does not have any kinetic
energy and can therefore be considered stationary. On the other hand, a node between
two capacitors has kinetic energy but no potential energy and can therefore be considered
a free particle that does not interact with the rest of the system.

However, any real inductor (both linear and nonlinear) will always introduce
some capacitance since a capacitance occurs whenever two conducting materials are in
close proximity to each other. Consider the Josephson junction in Fig. 1.3; it quite closely
resembles a linear plate capacitor; thus, it is expected that some parasitic capacitance will
be present in parallel with the inductor. Nonetheless, we can often make this parasitic
capacitance so small that it can be neglected in the lumped-element circuit. One should,
however, be aware of these capacitances when designing superconducting circuits.

Spanning tree

We are now ready to consider the most important subgraph of the circuits: the spanning
tree. The spanning tree is constructed by connecting every node in the circuit to each of the
other nodes by only one path. See Definition 3 in Appendix A.1 for a more mathematical
definition using graph theory. Note that there are often several choices for the spanning
tree. This is not a problem for the analysis and can be seen analogous to the choice of
a particular gauge in electromagnetic field theory or a coordinate system in classical
mechanics.

Choosing a spanning tree for a given circuit partitions the branches into two sets:
The set of branches on the spanning tree, T , and its complementary set, T̄ = B \ T , i.e.,
the branches not on the spanning tree. We call the latter set the set of closure branches
because its branches close the spanning tree loop.

We use the spanning tree to determine where to include the external fluxes of the
system. Following Kirchhoff’s laws, the flux φn of node n can be written as the sum of
incoming and outgoing branch fluxes, with a suitable sign depending on the direction of
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1.2. Equations of motion

Table 1.1: Energies of different components on either the spanning tree or a closure branch of the circuit.
The magnetic flux through the closure branch due to external fields is denoted Φ̃b. The time derivative of
the magnetic flux is included for linear capacitors on closure branches for completeness. For the rest of this
chapter, we assume time-independent external fluxes, i.e., ˙̃Φb = 0. We refer to Refs. [72, 73] for a discussion of
time-dependent fluxes.

Element Spanning tree Closure branch

Linear capacitor
C
2
(φ̇n − φ̇n′ )

2 C
2
(φ̇n − φ̇n′ +

˙̃Φb)
2

Linear inductor
1

2L
(φn − φn′ )

2 1
2L

(φn − φn′ + Φ̃b)
2

Josephson junction −EJ cos (φn − φn′ ) −EJ cos(φn − φn′ + Φ̃b)

the flux. With this in mind, we can write the branch fluxes in terms of the node fluxes

Φb∈T = φn − φn′ , (1.24a)

Φb∈T̄ = φn − φn′ + Φ̃, (1.24b)

where n and n′ are the nodes at the start and end of the given branch, respectively. Φ̃
is the external flux through the loop closed by the branch. Note that the external flux
occurs only if the branch is a closure branch. The fact that external fluxes do not appear
in every branch is due to Kirchhoff’s law in Eq. (1.3b), which eliminates the external flux
on some of the branches. One can therefore choose onto which branches these external
fluxes should be included, as long as Eq. (1.3b) is satisfied, which is precisely the choice
we make by choosing the spanning tree.

Substituting the node fluxes into the expressions for the energy of the different
components, i.e., into Eqs. (1.7), (1.9), and (1.15), we can express the energies as a function
of the node fluxes. The results can be seen in Table 1.1.

Note that if the circuit contains only time-independent external fluxes, it is often
an advantage to choose a spanning tree containing as few capacitors as possible, such
that the capacitors lie on the closure branches. The reason is that a time-independent
external flux disappears from capacitive terms since ˙̃Φ = 0. When working with time-
independent external fluxes, these are therefore only relevant in purely inductive loops.
Time-dependent external fluxes are beyond the scope of this chapter; see Refs. [72, 73]
for a general treatment of this case. In Section 3.2 we consider a special case where we
employ time-dependent external fluxes.

If we consider the example circuit in Fig. 1.1, we can choose the spanning tree in
many different ways. Since we consider only time-independent external fluxes, a partic-
ularly nice choice of spanning would be over the two Josephson junction (JJ) branches,
which means that any external flux will appear only in the linear inductor term. For this
reason, we do not need to worry about any external fluxes through the two capacitive
loops.
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Chapter 1. Introduction to Superconducting Circuits

1.2.3 Lagrangian approach

Having chosen a spanning tree for our circuit, we are now ready to determine its La-
grangian. The Lagrangian is found by subtracting the potential (inductive) energies from
the kinetic (capacitive) energies

L = T −U = Tcap −Uind −UJJ, (1.25)

where T is the kinetic energy and U is the potential energy. The subscripts indicate to
which type of element each term refers.

With the definition of the Lagrangian and the energies of Table 1.1, we can write
the Lagrangian for the example circuit in Fig. 1.1 as

L =
C1
2

φ̇2
1 +

C2
2

φ̇2
2 −

1
2L12

(φ2 − φ1 + Φ̃)2 + EJ,1 cos φ1 + EJ,2 cos φ2, (1.26)

where Cn and EJ,n are the capacitance and Josephson energy of the capacitor and Josephson
junction, the index n = 1, 2 corresponds to the left and right side, respectively. The
inductance of the inductor is denoted L12. With the Lagrangian, one can obtain the
equations of motion from Lagrange’s equations

d
dt

∂L
∂φ̇n

=
∂L
∂φn

. (1.27)

Applying this to the example circuit, we find the equations of motion

φ̈n = ∓ 1
L12Cn

(φ2 − φ1 + Φ̃)− EJ,n

Cn
sin φn, (1.28)

where the minus is for n = 1 and the plus is for n = 2. This is identical to Eq. (1.23) written
up with node fluxes instead of branch fluxes.

Using matrices

Writing the Lagrangian as in Eq. (1.26) can be rather tedious for larger circuits since it
includes many sums. We, therefore, seek a more elegant way to write the Lagrangian.
This is achieved using matrix notation. First we list all the nodes 1 to N and define a flux
column vector φT = (φ1, . . . , φN), where T indicates the transpose of the vector. Note that
we do not include the ground node for a grounded circuit since its flux equals zero, and it
does not contribute to the true degrees of freedom in any case. We can always choose a
ground node in our circuits as one mode will always decouple from the remaining modes
for ungrounded circuits, see Section 1.2.6.

We are now ready to set up the system’s capacitive matrix C. The nondiagonal
matrix elements are minus the capacitance, Cjk, connecting nodes j and k. The diagonal
elements consist of the sum of the non-diagonal values in the corresponding row or
column, multiplied by −1, i.e., Cjj = ∑k 6=j Cjk. If a node is connected to ground via a
capacitor, this capacitance must also be added to the diagonal element. With this N × N
matrix, we can write the kinetic energy term as

T =
1
2
φ̇TCφ̇. (1.29)

16



1.2. Equations of motion

In the case of the example circuit in Fig. 1.1, the flux column vector isφT = (φ1, φ2),
and the capacitive matrix becomes

C =

[
C1 0
0 C2

]
. (1.30)

We now consider the contribution from the linear inductors. We set up the induc-
tive matrix L−1 in the same way as the capacitive matrix. The nondiagonal elements are
−1/Ljk if an inductance Ljk connects nodes j and k, and zero otherwise, while the diagonal
elements consist of the sum of values in the corresponding row or column, multiplied
by minus one, 1/Ljj = ∑k 6=j 1/Ljk. If a node is connected to the ground via an inductor,
this inductance must also be added to the diagonal element. Of course, if no inductor
is connecting two nodes, the element should be zero. We must also include the external
magnetic flux in this term. Thus the energy due to linear inductors becomes

Uind =
1
2
φTL−1φ+ ∑

b∈T̄

1
Lb

(φn − φn′ )Φ̃b, (1.31)

where we remove all irrelevant constant terms, the second term sums over all the inductive
closure branches of the circuit, where n and n′ are the nodes connected by branch b.

If we consider the example circuit again, the inductive matrix is

L−1 =

[
1/L12 −1/L12
−1/L12 1/L12

]
, (1.32)

where L12 is the inductance of the linear inductor. With this, the inductive energy of the
example circuit becomes

Uind =
1
2
φTL−1φ+

1
L12

(φ1 − φ2)Φ̃, (1.33)

where Φ̃ is the external flux through the inductive loop. When there are only a few linear
inductors, as in the example circuit, it might be more straightforward to write the energy
without the matrix notation. We do not attempt to write the Josephson junction terms
using matrix notation as they are nonlinear functions of the node flux variables.

1.2.4 Hamiltonian approach

A simple transformation of the Lagrangian can find the Hamiltonian of the circuit, which
is commonly referred to as a Legendre transformation. First, we define the conjugate
momentum to each node flux by

qn =
∂L
∂φ̇n

, (1.34)

which in vector form becomes q = Cφ̇. If the capacitance matrix is invertible, we can
express φ̇ as a function of q. We denote the conjugate momenta as node charges since they
correspond to the algebraic sum of the charges on the capacitances connected to node n.
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Chapter 1. Introduction to Superconducting Circuits

The Hamiltonian can be expressed in terms of node charges, qn, for the kinetic
energy and node fluxes, φn, for the potential energy through the Legendre transform

H = φ̇Tq −L =
1
2
qTC−1q + U(φ), (1.35)

where the potential energy is a nonlinear function of the node fluxes. Note that the
functional form of the Hamiltonian may differ depending on the choice of spanning
tree. This is because the choice of flux-node coordinates is not unique, much like the
electrodynamic potentials, which have a “gauge freedom” in which certain functions can
be added to the potentials without any change to the physics, or more concretely; without
changes to the electric and magnetic fields [57]. Here a different choice of flux variables
would correspond to a change of gauge as well, and a physical quantity like the total
energy should not change under such a transformation.

With the Hamiltonian, it is possible to find the equations of motion using Hamil-
ton’s equations

φ̇n =
∂H
∂qn

, q̇n = − ∂H
∂φn

, (1.36)

which yields results for the equations of motion that are equivalent to Lagrange’s equations
Eq. (1.27).

1.2.5 Normal modes

Lagrange’s equations tell us that for all passive nodes q̇n = 0, since for a passive note we
have ∂H

∂φn
= 0. This means that the circuit has, at most, the same number of true degrees

of freedom as the number of active nodes except the ground node. The number of true
degrees of freedom turn out to be identical to the number of normal modes of the system.
If all inductors can be approximated as linear inductors (and external fluxes are ignored),
the Lagrangian takes the form

L =
1
2
φ̇TCφ̇− 1

2
φTL−1φ. (1.37)

This simple form of the Lagrangian means that the equations of motion become

Cφ̈ = −L−1φ, (1.38)

which is essentially Hooke’s law in matrix form where the capacitances play the role of the
masses and inductances play the role of the spring constants [74]. The normal modes of
the entire systems can be found as the eigenvectors of the matrix product Ω2 = C−1L−1

associated with nonzero eigenvalues. These nonzero eigenvalues correspond to the
squared normal mode frequencies of the circuit. Note thatC−1 and L−1 can always be
diagonalized simultaneously since they are both positive definite matrices [74]. It can be
advantageous to find these eigenmodes and use them to reduce the number of couplings
between modes.
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1.2. Equations of motion

1.2.6 Change of basis

Here we present a method for changing into the normal mode basis of a circuit. Given
a circuit with N nodes and a matrix product Ω2 = C−1L−1, let v1,v2, . . . ,vn be the
orthonormal eigenvectors of Ω2, with eigenvalues χ1, χ2, . . . , χn. Let φ be the usual vector
of the node fluxes of the circuit. We can then introduce the normal modes ψ via

φ = Vψ, (1.39)

where

V =

 | | |
v1 v2 · · · vN
| | |

 , (1.40)

is a matrix whose columns are the eigenvectors of Ω2. The kinetic energy term in Eq. (1.29)
can now be written

T =
1
2
ψ̇TKψ̇, (1.41)

where we introduce the capacitance matrix in the transformed coordinatesK = VTCV .
While we assume the columns of Eq. (1.40) to be the eigenvectors of Ω2, this is not

a requirement, and one can rotate to any frame using an orthonormal basis to construct V .
However, only if one uses the eigenvectors of Ω2 will the transformed capacitance matrix,
K, be diagonal with entries λi. In terms of the canonical momenta p conjugate to ψ, the
kinetic energy takes the usual form

T =
1
2
pTK−1p, (1.42)

where the inverse ofK is trivial to find if it is a diagonal matrix, yielding the entries 1/λi.
In the above, we have assumed thatC is positive definite, which is usually the case. This
means that λi 6= 0. We comment on the case whereC is not positive definite below.

We must also consider how contributions from the higher-order terms of inductors
behave under this coordinate transformation. Even though we have approximated all
inductors as linear to find the normal modes, higher-order terms from Josephson junctions
still contribute as corrections, often leading to couplings between the modes. Such terms
transform the following way

φk − φl →∑
i
[(vi)k − (vi)l ]ψi, (1.43)

where (vi)k is the kth entry of vi. Considering, for instance, fourth-order terms in φ,
this can result in both two-body interactions and interactions beyond two-body. These
multibody interactions can complicate the equations of motion beyond what the change
of basis adds in terms of simplification. Coordinate transformations are, therefore, often
most useful in cases where the capacitors are symmetrically distributed, which results in
simple normal modes.

The center-of-mass (CM) mode plays a special role in analytical mechanics, as
it often decouples from the dynamics of the system. The same is the case for electrical
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Chapter 1. Introduction to Superconducting Circuits

circuits. The center-of-mass mode corresponds to vCM = (1, 1, . . . , 1)T/
√

N, which yields
ψCM = (φ1 + φ2 + · · ·+ φN)/

√
N. This mode is always present and it corresponds to

charge flowing equally into every node of the circuit from ground and oscillating back
and forth between ground and the nodes. Furthermore, since all its entries are identical it
always disappears in the linear combination of Eq. (1.43) [(vCM)k − (vCM)l = 0]. Hence,
this mode is completely decoupled from the dynamics.

The decoupling of this mode is related to how we can arbitrarily choose a node
in our circuit as the ground node, whose node flux does not enter into our equations, or
rather is identically set to zero. For an ungrounded circuitC is no longer positive definite
and we have λCM = 0, makingK singular. We therefore always assum

1.3 Quantization and effective energies

1.3.1 Operators and commutators

We now quantize the classical Hamiltonian to obtain a quantum-mechanical description
of the circuit. This is done through canonical quantization, replacing all the variables and
the Hamiltonian with operators

φn → φ̂n,

qn → q̂n,

H → Ĥ,

(1.44)

where φ̂n is the node flux operator corresponding to position coordinates, q̂n is the conju-
gate momentum, and Ĥ is the Hamiltonian operator. If the flux operator and the conjugate
momentum operator are not constants of motion, they obey the canonical commutator
relation

[φ̂n, q̂m] = φ̂n q̂m − q̂mφ̂n = ih̄δnm, (1.45)

where δnm is the Kronecker delta. The commutator relation in Eq. (1.45) does not hold if
a given node, n, is not a true degree of freedom. This happens if the variable does not
appear in Ĥ, implying that the commutator between the variable and the Hamiltonian will
be zero. This means that φ̂n or q̂n will be constants of motion according to Heisenberg’s
equation of motion. This is, of course, also true for the classical variables as seen in
Hamilton’s equations in Eq. (1.36).

The commutator relation can be found using the value of the classical Poisson
bracket, which determines the value of the corresponding commutator up to a factor of ih̄,
as Dirac argued [75]. Using this for the branch flux operators and the charge operators,
both defined in Eq. (1.2), we find that the Poisson bracket is

{Φb, Qb} = ∑
n

[
∂Φb
∂φn

∂Qb
∂qn
− ∂Qb

∂φn

∂Φb
∂qn

]
= ±1, (1.46)

where the sign is plus for a capacitive branch and minus for an inductive branch. Following
Dirac’s approach, we arrive at the following commutator relation

[Φ̂b, Q̂b] = ±ih̄, (1.47)
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1.4. Recasting to interacting harmonic oscillators

which is equivalent to the commutator in Eq. (1.45). In general, these branch operators are
not conjugate in the Hamiltonian. One must still find the true degrees of freedom before
quantization is applied.

1.3.2 Effective energies

Consider the generalized momentum q̂ = C ˙̂φ. The time derivative of the generalized
momentum is exactly the current through the capacitors, Î = C ¨̂φ. Note that in the
limiting case of one node, this reduces to the current over a single parallel-plate capacitor,
as it should. For this reason, it makes sense to think of the conjugate momentum as the
sum of all charges on the capacitors attached to a given node. We therefore define

n̂n = − q̂n

2e
(1.48)

as the net number of Cooper pairs stored on the nth node. If we consider the kinetic
energy of a circuit, we can write

T̂ =
1
2
q̂TC−1q̂ = 4

e2

2
n̂TC−1n̂. (1.49)

Now for each diagonal element, we have a contribution of 4EC,nn̂2
n, where we define the

effective capacitive energy of the nth node as

EC,n =
e2

2
(C−1)(n,n), (1.50)

which is equivalent to the energy required to store a single charge on the capacitor. Note
that in our dimensionless notation from Eq. (1.16) we have n̂n = −q̂n, while the effective
energy becomes EC,n = (C−1)(n,n)/8.

Similarly, we introduce the effective energies of the linear inductances and Joseph-
son junctions, EL,n and EJ,n, of each node. The effective inductive energy is the diagonal
elements of L−1, which is equivalent to the sum of the inverse inductances of the induc-
tors connected to the given node. The effective Josephson energy is found as the sum of
the Josephson energies of the junctions connected to the given node.

Returning to our example circuit in Fig. 1.1, we can now write it using operators
and effective energies. It becomes

Ĥ = 4
(

EC,1n̂2
1 + EC,2n̂2

2

)
+ EL,12(φ̂1 − φ̂2 + Φ̃)2 − EJ,1 cos φ̂1 − EJ,2 cos φ̂2, (1.51)

where the coupling energy of the linear inductor is EL,12 = 1/2L12. The effective energies
of the Josephson junctions are the Josephson energies. Note that since our example does
not include any coupling capacitors, we do not obtain any coupling term (C−1)(1,2)n̂1n̂2
sinceC is diagonal. In reality, this is rarely the case.

1.4 Recasting to interacting harmonic oscillators

We want to consider the low-energy limit of the superconducting circuit since we want to
create a qubit using the two lowest-lying states of the nonlinear oscillator quantum system.
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This can be done by suppressing the system’s kinetic energy, such that the ’position’
coordinate will be localized near the minimum of the potential. We consider a single
anharmonic oscillator (AHO) as in Fig. 1.5 but with a possible linear inductor in parallel,
which means that we can omit subscripts in this section as there is only a single mode.
The Hamiltonian we thus consider is

ĤAHO = 4EC n̂2 + ELφ̂2 − EJ cos φ̂. (1.52)

If the effective capacitive energy, EC, of the mode is much smaller than the effective
Josephson energy, EJ , the flux will be well localized near the bottom of the potential. This
is equivalent to a heavy particle moving near its equilibrium position. In this case, we can
Taylor expand the potential part of the Hamiltonian up to fourth order in φ such that the
Josephson-junction term takes the form

EJ cos φ = EJ −
1
2

EJφ2 +
1
24

EJφ4 + O(φ6). (1.53)

Throwing away the irrelevant constant term, we are left with a Hamiltonian consisting of
second- and fourth-order terms. If we require the couplings between different parts of the
superconducting circuit to be small, we can treat each mode individually as a harmonic
oscillator perturbed by a quartic anharmonicity and possibly some couplings to other
modes of the system. For each mode in our system, we have a simple harmonic oscillator
(SHO) of the form

ĤSHO = 4EC n̂2 +

(
EL +

1
2

EJ

)
φ̂2. (1.54)

The simple harmonic oscillator is well-understood quantum mechanically, and using the
algebraic approach [76] we define the annihilation and creation operators

b̂ =
1√
2

(
1√
ζ

φ̂− i
√

ζn̂
)

, (1.55a)

b̂† =
1√
2

(
1√
ζ

φ̂ + i
√

ζn̂
)

, (1.55b)

where we define the impedance

ζ =

√
4EC

EL + EJ/2
. (1.56)

When restoring dimensions and going away from the dimensionless notation defined in
Eq. (1.16) the impedance in Eq. (1.56) must be multiplied with a factor of RQ/2π, where
RQ = h/(2e)2 ' 6.45 kΩ is the resistance quantum, which emerges in the quantum Hall
effect. The annihilation and creation operators fulfill the usual commutator relation

[b̂, b̂†] = 1. (1.57)

Expressing the flux and conjugate momentum operators in terms of the annihilation and
creation operators,

φ̂ =

√
ζ

2
(b̂ + b̂†), (1.58a)

n̂ =
i√
2ζ

(b̂− b̂†), (1.58b)
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Table 1.2: Overview of the different components and corresponding operators. Subscripts are included where
appropriate and refer to different nodes. All constant terms are neglected. The impedance factor can be found in
Eq. (1.56).

Component Hamiltonian term Annihilation and
creation operators

All terms n̂2 + φ̂2 4
√

EC

(
EL + 1

2 EJ

)
b̂† b̂

Linear capacitors n̂ i√
2ζ
(b̂− b̂†)

n̂2 − 1
2ζ (b̂− b̂†)2

n̂in̂j − 1
2
√

ζiζ j
(b̂i − b̂†

i )(b̂j − b̂†
j )

Linear inductors φ̂
√

ζ
2 (b̂

† + b̂)

φ̂2 ζ
2 (b̂

† + b̂)2

φ̂iφ̂j

√
ζiζ j

2 (b̂†
i + b̂i)(b̂†

j + b̂j)

Josephson junctions φ̂4 ζ2

4 (b̂† + b̂)4

φ̂3 ζ3/2

23/2 (b̂† + b̂)3

φ̂3
i φ̂j

ζ3/2
i ζ1/2

j
4 (b̂†

i + b̂i)
3(b̂†

j + b̂j)

φ̂2
i φ̂2

j
ζiζ j

4 (b̂†
i + b̂i)

2(b̂†
j + b̂j)

2

we can rewrite the oscillator part of the Hamiltonian as

ĤSHO = 4

√
EC

(
EL +

1
2

EJ

)(
N̂ +

1
2

)
, (1.59)

where we introduce the usual number operator N̂ = b̂† b̂.

We can rewrite all quadratic and quartic interaction terms using the creation and
annihilation operators. The results are in Table 1.2 for the most commonly occurring
terms.

Returning to our example circuit in Fig. 1.1, we can write the Hamiltonian in
Eq. (1.51) using annihilation and creation operators as

Ĥ = ω1b̂†
1 b̂1 + ω2b̂†

2 b̂2 +
α1
12

(b̂†
1 + b̂1)

4 +
α2
12

(b̂†
2 + b̂2)

4

+ g12(b̂†
1 + b̂1)(b̂†

2 + b̂2) + χ1(b̂1 + b̂†
1)− χ2(b̂2 + b̂†

2),
(1.60)
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where we omit all constant terms. We further define

ωn = 4

√
EC,n

(
EL,12 +

1
2

EJ,n

)
, (1.61a)

αn = − ζ2
n

8
EJ,n, (1.61b)

g12 = −
√

ζ1ζ2EL,12, (1.61c)

χn =
√

2ζnEL,12Φ̃, (1.61d)

ζn =

√
4EC,n

EL,12 + EJ,n/2
, (1.61e)

where we refer to ωn as the frequency, αn as the anharmonicity, and g12 the oscillator
coupling strength. Note that if the effective inductive energy is zero, EL,n = 0, then the
anharmonicity in Eq. (1.61b) becomes αn = −EC,n, which is often the case.

Note that in the presence of an external flux, one should be careful in identifying
the minimum of the potential around which one can then perform the expansion, as in
Eq. (1.53).

1.5 Time-averaged dynamics

When analyzing the Hamiltonian of the circuit, it is often advantageous to consider which
terms dominate the time evolution and which terms only give rise to minor corrections.
The latter can often be neglected without changing the system’s overall behavior. It can
often be challenging to determine which terms dominate, as different scales influence the
system’s dynamics. This stems from the fact that the frequencies, ωn, of the oscillators
are usually of the order GHz while the interactions between the different oscillators are
usually much smaller, on the order of MHz. We, therefore, employ separation of scales
to remove the large energy differences of the modes from the Hamiltonian. This makes
it possible to see the details of the interactions. In order to do this, we first introduce
the concept of the interaction picture, where the interacting part of the Hamiltonian is in
focus. To summarize which terms we consider in the Hamiltonian, we divide the terms
into three categories.

• Large trivial terms: Well understood energy difference terms, such as the qubit
frequencies, which we remove using separation of scales by transforming into the
interaction picture. Usually of the order GHz.

• Smaller but interesting terms: The dominant part of the interesting interaction.
Usually of the order MHz

• Small negligible terms: The suppressed part of the interaction, which does not
contribute significantly to the time evolution. These can be removed using the
rotating-wave approximation (RWA).

Note, however, that the above categorization is only a guide, and one should always
consider each term in relation to the concrete system at hand.
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1.5. Time-averaged dynamics

1.5.1 Interaction picture

Consider the state |ψ, t〉S at time t. This state satisfies the Schrödinger equation,

i
∂

∂t
|ψ, t〉S = Ĥ |ψ, t〉S , (1.62)

where Ĥ is the Hamiltonian. The subscript S refers to the Schrödinger picture. In the
Schrödinger picture operators are time-independent, and states are time-dependent. We
wish to change into the interaction picture by splitting the Hamiltonian in a way such that
the dynamics are separated from the noninteracting part, Ĥ = Ĥ0 + ĤI,S. There are often
several ways to split depending on what interaction we want to highlight. This separation
comes at the cost that both the operators and states become time-dependent. The advan-
tage of using a specific splitting of the full Hamiltonian is that we can highlight some
desired physics while ignoring other parts that are well understood. This is analogous
to choosing a reference frame rotating with the Earth when doing classical physics in a
reference frame fixed on the surface of the Earth.

States in the interaction picture are defined as

|ψ, t〉I = eiĤ0t|ψ, t〉S, (1.63)

where the subscript I refers to the interaction picture. The operators in the interaction
picture are defined as

ÔI = eiĤ0tÔSe−iĤ0t, (1.64)

where ÔS is an operator in the Schrödinger picture.
It is then possible to show that the state satisfies the following Schrödinger equation

i
∂

∂t
|ψ, t〉I = ĤI |ψ, t〉I , (1.65)

where ĤI = eiĤ0tĤI,Se−iĤ0t is the interaction part of the Hamiltonian in the interaction
picture.

In general, one can transform a Hamiltonian to any so-called rotating frame using
the transformation rule

Ĥ → ĤR = Û (t)†Ĥ Û (t) + i
dÛ (t)†

dt
Û (t), (1.66)

where Û (t) is a unitary transformation. This transformation rule holds for any unitary
transformation and is quite useful to keep in mind. Note that Eq. (1.66) is equivalent
to transforming the Hamiltonian into the interaction picture Ĥ → ĤI when Û (t) =
exp(−iĤ0t), and Ĥ0 is the noninteracting part of the Hamiltonian, as the second term
removes the noninteracting part of the Hamiltonian.

One can also show that a Heisenberg equation of motion governs the time evolution
of the operators in the interaction picture

d
dt
ÔI = i[Ĥ0, ÔI ], (1.67)

where we assume no explicit time dependence in ÔS. Note that this implies that the
voltage of the bth branch can be calculated as V̂b = i[Ĥ, Φ̂b]. For more information about
the interaction picture, see, e.g., Ref. [76].
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1.5.2 Rotating-wave approximation

Consider now the weakly anharmonic oscillator as seen in Fig. 1.7(c), which has the
quantized Hamiltonian

Ĥ = ωb̂† b̂ +
α

12
(b̂† + b̂)4, (1.68)

where we remove all constant terms. The frequency is ω =
√

8ECEJ and the anharmonic-
ity is α = −EC where EC and EJ are the effective capacitive energy and Josephson energy,
respectively. We choose the first term as the noninteracting Hamiltonian, Ĥ0 = ωb̂† b̂. We
want to figure out how the annihilation and creation operators behave in the interaction
picture, i.e., we want to calculate Eq. (1.64) for the annihilation and creation operators.
First, we notice that Ĥn

0 b̂† = b̂†(Ĥ0 + ω)n. Using this and expanding the exponential
functions, we can prove that

eiĤ0t b̂†e−iĤ0t = b̂†eiωt. (1.69)

We find a similar expression for b̂, but with a minus in the exponential factor on the
right-hand side by taking the complex conjugate.

We now wish to consider how different combinations of the annihilation and cre-
ation operators transform in the interaction picture. Starting with the number operator
N̂ = b̂† b̂, we see the exponential factor from b̂† cancels the exponential factor from b̂,
meaning that the number operator is unaffected by the transformation. This is not surpris-
ing as the number operator chooses the noninteracting Hamiltonian exactly. However, if
we consider terms like Jb̂† b̂†, we find that in the interaction picture, they take the form
Jb̂† b̂†e2iωt. If ω is sufficiently large compared to the factor, J, in front of the term (which
is often the case in superconducting circuit Hamiltonians, where ω ∼ GHz, while other
terms are usually of the order J ∼ MHz), these terms will oscillate very rapidly on the
timescale induced by J. The time average over such terms on a timescale of τ ∼ 1/J is
zero, and we can therefore neglect them as they only give rise to minor corrections. This
is the rotating-wave approximation which is widely used in atomic physics [77, 78]. The
story is similar for b̂b̂ terms. All terms that do not conserve the number of excitations
(or quanta) of the system, i.e., terms where the number of annihilation operators is not
equal to the number of creation operators, will rotate rapidly and can therefore safely
be neglected. Note that while these individual terms are nonconserving, they always
appear in conjugate pairs in the Hamiltonian such that the full Hamiltonian conserves the
excitations, as it should.

It is important to point out that despite the naming, the ’conservation’ is not related
to a conservation law resulting from symmetry, i.e., like in Noether’s theorem. Instead, the
statement here means that the excitation conserving terms are much more critical than the
nonconserving terms as long as the conditions for using the rotating-wave approximation
are satisfied.

Now consider the anharmonicity term of Eq. (1.68). When only including excitation
conserving terms and removing irrelevant constants, the anharmonicity term takes the
form

α

12
(b̂† + b̂)4 = α

(
1
2

b̂† b̂† b̂b̂ + b̂† b̂
)
+ Nonconserving terms. (1.70)

The last term, b̂† b̂, is the number operator, and we can therefore consider it a correction to
the frequency, such that the dressed frequency becomes ω̃ = ω + α =

√
8ECEJ − EC. The
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1.5. Time-averaged dynamics

remaining (b̂† b̂† b̂b̂) term makes the oscillator anharmonic. For this reason, we call α the
anharmonicity of the anharmonic oscillator. If we remove terms that do not conserve the
number of excitation, the Hamiltonian takes the form (in the Schrödinger picture)

Ĥ = ω̃b̂† b̂ +
α

2
b̂† b̂† b̂b̂. (1.71)

Next, consider an interaction term like the one in Eq. (1.60)

(b̂†
i + b̂)i (b̂

†
j + b̂j) = b̂†

i b̂j + b̂i b̂†
j + b̂†

i b̂†
j + b̂i b̂j. (1.72)

Changing into the interaction picture, we realize that the two last terms obtain a phase
of exp [±i(ωi + ωj)t], which can be considered a fast oscillating term if the frequencies
ωi + ωj are much larger than the interaction strength, which is usually the case. We can,
therefore, safely neglect these nonconserving terms. The two first terms, on the other
hand, obtain a phase of exp(±iδt), where δ = ωi − ωj is called the detuning of the two
oscillators. Therefore, it is tempting to say that these terms only contribute if ωi ≈ ωj.
This is, however, not the whole story. More precisely, we find that

b̂†
i b̂jeiδt + b̂i b̂†

j e−iδt = (b̂†
i b̂j + b̂i b̂†

j ) cos δt + i(b̂†
i b̂j − b̂i b̂†

j ) sin δt, (1.73)

which can be useful in some situations, e.g., when driving qubits, see Section 1.7. However,
as a general rule of thumb, one can neglect these terms unless ωi ' ωj, i.e., δ = 0. For a
more general discussion on the validity of the time averaging dynamics, see Ref. [79].

If we consider the example circuit in Fig. 1.1, under the assumption that |αn| �
ωn, we can time average its Hamiltonian in Eq. (1.60). We choose the noninteracting
Hamiltonian as H0 = ω1b̂†

1 b̂1 + ω2b̂†
2 b̂2, which means that the interacting part of the

Hamiltonian in Eq. (1.60) becomes

ĤI =
α1
2
(b̂†

1 b̂†
1 b̂1b̂1 + 2b̂†

1 b̂1) +
α2
2
(b̂†

2 b̂†
2 b̂2b̂2 + 2b̂†

2 b̂2)

+ g12

(
b̂†

1 b̂2eiδt + b̂1b̂†
2e−iδt + b̂1b̂2e−i(ω1+ω2)t + b̂†

1 b̂†
2ei(ω1+ω2)t

)
−

2

∑
n=1

(−1)nχn(b̂ne−iωnt + b̂†
neiωnt),

(1.74)

where we define the detuning δ = ω1 − ω2. Assuming ω1 ' ω2, i.e., δ ' 0, and if we
further assume that ωn � g12, then the coupling terms b̂1b̂2 and b̂†

1 b̂†
2 are fast oscillating

and can thus be neglected.
We can also write the Hamiltonian in the Schrödinger picture, removing terms that

do not conserve excitations. This yields

Ĥ = ω̃1b̂†
1 b̂1 + ω̃2b̂†

2 b̂2 +
α1
2

b̂†
1 b̂†

1 b̂1b̂1 +
α2
2

b̂†
2 b̂†

2 b̂2b̂2 + g12(b̂†
1 b̂2 + b̂1b̂†

2), (1.75)

where we introduce the revised frequencies ω̃n = ωn + αn. Writing the Hamiltonian
in this frame without nonconserving terms reveals the effect of the anharmonicity. In
Eq. (1.75) we also assume that ωn � χn, meaning that all terms related to the external flux
are neglected. However, since χn depends on Φ̃, which can be controlled externally, it is
possible to tune χn such that the terms involving χn are not suppressed. This can drive
the modes, i.e., to add excitations to the two degrees of freedom.
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(a) (c)

(b) (d)

C L EJC

Figure 1.7: (a) Circuit of an LC oscillator with inductance L and capacitance C. We denote the phase on the
superconducting island φ, while the ground node has phase zero. (b) Energy potential of a quantum harmonic
oscillator, as can be obtained by an LC-circuit. Here the energy levels are equidistantly spaced h̄ω apart,
where ω =

√
1/LC. (c) Josephson junction qubit circuit, where the linear inductor is replaced by a nonlinear

Josephson junction of energy EJ . (d) The Josephson junction changes the harmonic potential (blue dashed) into
a sinusoidal potential (orange solid), yielding non-equidistant energy levels.

1.6 Truncation

A harmonic oscillator, as one gets from a regular LC-circuit, has a spectrum consisting
of an infinite number of equally spaced energy eigenstates [see Fig. 1.7(b)]. This is not
desirable, as we wish to consider only the lowest states of the system in order to realize a
qubit. However, when we introduce a Josephson junction instead of a linear inductor, we
introduce an anharmonicity, compare Fig. 1.7(a) and (c). The anharmonicity stems from
the (b̂† b̂† b̂b̂) terms [see Eq. (1.71)] and can be viewed as perturbations to the harmonic
oscillator Hamiltonian if |α| � ω. This anharmonicity changes the spacing between the
energy levels of the harmonic oscillator, making it an anharmonic oscillator [see Fig. 1.7(d)].
Formally, the anharmonicity is defined as the difference between the first and second
energy gap, while we define the relative anharmonicity as the anharmonicity divided by
the first energy gap

α = E12 − E01, αr =
α

E01
. (1.76)

Note that this anharmonicity is the same factor in front of the (b̂† b̂† b̂b̂) terms mentioned
in previous sections.

In order to operate only on the two lowest levels of the oscillator, the anharmonicity
must be larger than the bandwidth of operations on the qubit. That is, if we want to drive
excitation between the two lowest levels of the anharmonic oscillator, the anharmonicity
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1.6. Truncation

Table 1.3: Overview of the different combinations of the annihilation and creation operators and their truncation
to two-dimensional Pauli operators. Subscripts are included for the interaction terms and refer to different
nodes. All constant terms are ignored.

Annihilation and
creation operators Pauli operators

b̂† − b̂ −iσy

b̂† + b̂ σx

(b̂† − b̂)2 −σz

(b̂† + b̂)2 −σz

(b̂† + b̂)3 3σx

(b̂† + b̂)4 −6σz

(b̂†
i − b̂i)(b̂†

j − b̂j) −σ
y
i σ

y
j

(b̂†
i + b̂i)(b̂†

j + b̂j) σx
i σx

j

(b̂†
i + b̂i)

3(b̂†
j + b̂j) 3σx

i σx
j

(b̂†
i + b̂i)

2(b̂†
j + b̂j)

2 σz
i σz

j − 2σz
i − 2σz

j

must be larger than the amplitude of the driving field (also known as the Rabi frequency,
see Section 1.7). If the anharmonicity is smaller than the amplitude of the driving field,
we cannot distinguish between the energy gaps of the oscillator, and we end up driving
multiple transitions in the spectrum instead of just the lowest one.

Considering this, we find that as a rule-of-thumb, the relative anharmonicity
should be at least a couple of percent for the system to make an effective qubit. In actual
numbers, this converts to an anharmonicity around 100-300 MHz for a qubit frequency
around 3-6 GHz [55, 80]. It does not matter whether the anharmonicity is positive or
negative. For transmon-type qubits, it will be negative, while it can be either positive
or negative for flux-type qubits. The relative anharmonicity is proportional to

√
EJ/EC,

which means that this ratio must be of a certain size for the anharmonicity to have an
effect. This is in contrast to what was discussed at the beginning of Section 1.4, where
we argued that we required this ratio to be as low as possible to allow for the expansion
of cosines. Thus we need to find a suitable regime for the ratio, EJ/EC. This regime is
usually called the transmon regime around 50-100.

The following section assumes that we have a sufficiently large anharmonicity
to truncate the system into a two-level system. However, nothing is stopping us from
keeping more levels, as we do in Section 1.6.2.

As an alternative to the methods for truncation presented in this thesis, black-
box quantization can help determine the effective low-energy spectrum of a weakly
anharmonic Hamiltonian [81–83]. This approach is instrumental when dealing with
impedances in the circuit but is beyond the scope of this thesis.
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1.6.1 Two-level model (qubit)

In a two-level system, which is equivalent to a qubit, we can represent the state of the
system with two-dimensional vectors

|0〉 ∼
[

1
0

]
, |1〉 ∼

[
0
1

]
. (1.77)

In this reduced Hilbert space, all operators can be expressed by the Pauli matrices,

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, (1.78)

and the identity, since these four matrices span all 2× 2 Hermitian matrices. If we view the
unitary operations as rotations in the Hilbert space, we can parameterize the superposition
of the two states using a complex phase, φ, and a mixing angle, θ

|ψ〉 = α |0〉+ β |1〉 = cos
(

θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉, (1.79)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π and |α|2 + |β|2 = 1. With this, we can illustrate the
qubit as a unit vector on the Bloch sphere, see Fig. 1.8. It is conventional to let the north
pole represent the |0〉 state, while the south pole represents the |1〉 state. These lie on the z
axis, called the longitudinal axis, representing the quantization axis for the states in the
qubit. The x and y axes are called the transverse axes.

Solving the Schrödinger equation in Eq. (1.62) for the state in Eq. (1.79) shows that
it precesses around the z axis at the qubit frequency. However, changing into a frame
rotating with the frequency of the qubit, following the approach in Section 1.5.1 makes the
Bloch vector stationary.

Unitary operations can be seen as rotations on the Bloch sphere, and the Pauli
matrices are thus the generators of rotations. Linear operators will then be represented by
2× 2 matrices as

M2[Ô] =

[ 〈0|Ô|0〉 〈0|Ô|1〉
〈1|Ô|0〉 〈1|Ô|1〉

]
. (1.80)

In general we denote the n× n matrix representation of an operator Ô with Mn[Ô].
In order to apply this mapping to the Hamiltonian, we must map each operator in

each term. As an example, we truncate the (b̂† + b̂)3 term from Table 1.3:

(b̂† + b̂)3|0〉 = (b̂† + b̂)2|1〉
= (b̂† + b̂)

(√
2|2〉+ |0〉

)
=
√

6|3〉+ 3|1〉,
(b̂† + b̂)3|1〉 = (b̂† + b̂)2

(√
2|2〉+ |0〉

)
= (b̂† + b̂)

(√
6|3〉+ 3|1〉

)
=
√

24|4〉+ 6
√

2|2〉+ 3|0〉.
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Figure 1.8: The Bloch sphere. Each point on the Bloch sphere corresponds to a quantum state, and rotations
around the sphere correspond to transformations of the state.

Using the orthonormality of the states, we obtain the representation of the operator

M2[(b̂† + b̂)3] =

[〈0|(b̂† + b̂)3|0〉 〈0|(b̂† + b̂)3|1〉
〈1|(b̂† + b̂)3|0〉 〈1|(b̂† + b̂)3|1〉

]
=

[
0 3
3 0

]
= 3σx.

Truncation of the remaining terms is presented in Table 1.3.
If we consider the example circuit in Fig. 1.1 after we remove nonconserving terms

as in Eq. (1.75) and assume an anharmonicity large enough for truncation to a two-level
system, we obtain the following Hamiltonian:

Ĥ = − ω̃1
2

σz
1 −

ω̃2
2

σz
2 + g12(σ

+
1 σ−2 + σ−1 σ+

2 ), (1.81)

where we define σ±n = (σx
n ∓ iσy

n)/2. This Hamiltonian represents two qubits that can
interact by swapping excitation between them, i.e., interacting via a swap coupling.

1.6.2 Three-level model (qutrit)

It can be desirable to truncate to the three lowest levels of the anharmonic oscillator, i.e.,
the three lowest states of Fig. 1.7(d). This can, e.g., be useful if one wants to study qutrit
systems [43, 84, 85], or the leakage from the qubit states to higher states [III, 86]. In this
case, the operators will be represented as 3× 3 matrices. The matrix representation of the
annihilation and creation operators become

M3[b̂†] =

0 0 0
1 0 0
0
√

2 0

 , M3[b̂] =

0 1 0
0 0

√
2

0 0 0

 , (1.82a)

while the number operator is

M3[b̂† b̂] =

0 0 0
0 1 0
0 0 2

 , (1.82b)
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C

Cext

EJ

V(t)

Figure 1.9: Circuit diagram of a single transmonlike superconducting qubit capacitively coupled to a microwave
drive line.

and powers of b̂† + b̂ become

M3[(b̂† + b̂)2] =

 1 0
√

2
0 3 0√
2 0 5

 , (1.82c)

M3[(b̂† + b̂)3] =

0 3 0
3 0 6

√
2

0 6
√

2 0

 , (1.82d)

M3[(b̂† + b̂)4] =

 3 0 6
√

2
0 15 0

6
√

2 0 39

 . (1.82e)

From Eq. (1.82e) it is clear to see the varying size of the anharmonicity, as the differences
15− 3 = 12 and 39− 15 = 24 between the levels changes. This pattern continues for
higher levels and means that we can distinguish between all the levels in principle.

As we are dealing with 3× 3 matrices, we can no longer use the Pauli spin-1/2
matrices as a basis for the operators. In this case, one can use the Gell-Mann matrices
as a basis. However, often it is more convenient to leave the annihilation and creation
operators as above. Three levels do not limit us, and it is possible to truncate the system
to an arbitrary number of levels, thus creating a so-called qudit.

1.7 Microwave driving

Single-qubit rotations in superconducting circuits can be achieved by capacitive mi-
crowave driving. This section goes through the steps of analyzing a microwave-controlled
transmonlike qubit and then generalizing to a d-level qudit. To this end, we consider
the superconducting qubit seen in Fig. 1.9, which is capacitively coupled to a microwave
source. Using the approach presented in Section 1.2.2, the Lagrangian of this circuit
becomes

L =
C
2

φ̇2 + EJ cos φ +
Cext

2
(V(t)− φ̇)

2 , (1.83)

where φ is the node flux. Expanding the last term, we obtain

L = L0 +
Cext

2

(
V(t)2 + φ̇2 − 2V(t)φ̇

)
, (1.84)
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where L0 is the static part of the Lagrangian, i.e., the two first terms of Eq. (1.83). The
first term in the parenthesis is an irrelevant offset term, the second term is a change of the
capacitance of the node, and the last term is our driving term. We throw away the offset
term and rewrite

L =
C + Cext

2
φ̇2 + EJ cos φ− CextV(t)φ̇. (1.85)

The conjugate momentum of the node flux, φ, is then

q = (C + Cext)φ̇− CextV(t). (1.86)

Doing the usual Legendre transformation, our Hamiltonian takes the form

H =
1
2

1
C + Cext

q2 − EJ cos φ︸ ︷︷ ︸
HAHO

+
Cext

C + Cext
V(t)q︸ ︷︷ ︸

Hext

, (1.87)

where we denote the anharmonic oscillator part of the HamiltonianHAHO and the external
driving part Hext. We are now ready to perform the quantization, and the driving part
becomes

Ĥext =
i√
2ζ

Cext

C + Cext
V(t)(b̂† − b̂). (1.88)

Assuming a large enough anharmonicity, we can truncate the Hamiltonian into the two
lowest levels

Ĥ = −1
2

ωσz + ΩV(t)σy, (1.89)

where ω is the qubit frequency and Ω = Cext/[
√

2ζ(C + Cext)] is the Rabi frequency of
the transition between the ground state and the excited state. Note that the size of the
Rabi frequency is limited by the size of the anharmonicity, as discussed in Section 1.6. The
name Rabi frequency may confuse first as it is not the frequency of the driving microwave
but rather the amplitude. However, the Rabi frequency is named so since it is equal to
the frequency of oscillation between the two states in a qubit when the driving frequency,
ωext, is equal to the qubit frequency, ω, i.e., when we drive the qubit ’on resonance’ [78].

We now change into a frame rotating with the frequency of the qubit, also known
as the interaction frame as discussed in Section 1.5. In particular we use H0 = −ωσz/2
for the transformation in Eq. (1.66). In this frame, the Hamiltonian becomes

ĤR = ΩV(t) (cos(ωt)σy − sin(ωt)σx) , (1.90)

which is equivalent to the external driving part of the Hamiltonian in the interaction
picture, i.e.,HR = HI

ext. We assume that the driving voltage is sinusoidal

V(t) = V0η(t) sin(ωextt + ϕ)

= V0η(t) [cos(ϕ) sin(ωextt) + sin(ϕ) cos(ωextt)] ,
(1.91)

where V0 is the amplitude of the voltage, η(t) is a dimensionless envelope function, ωext
is the external driving frequency, and ϕ is the phase of the driving. One usually defines
the in-phase component I = cos(ϕ) and the out-of-phase component Q = sin(ϕ) [55].
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Inserting the voltage in Eq. (1.91) into the Hamiltonian in Eq. (1.90) and rewriting we
obtain

ĤR =
1
2

ΩV0η(t)
{
− [Q sin(δt) + I cos(δt)] σx + [Q cos(δt)− I sin(δt)] σy}, (1.92)

where δ = ω − ωext is the difference between the qubit frequency and the driving fre-
quency and we neglect fast oscillating terms, i.e., terms with ω + ωext, following the
rotating-wave approximation. This Hamiltonian can be written very simple in matrix
form

ĤR = −1
2

ΩV0η(t)

[
0 e−i(δt−ϕ)

ei(δt−ϕ) 0

]
. (1.93)

From this, we conclude that if we apply a pulse at the qubit frequency, i.e., ωext = ω, we
can rotate the state of the qubit around the Bloch sphere in Fig. 1.8. By setting ϕ = 0, i.e.,
using only the I component, we rotate about the x axis. By setting ϕ = π/2, i.e., using
only the Q component, we rotate about the y axis.

1.7.1 Single-qubit gates

One of the objectives of using superconducting circuits is to be able to perform high-quality
gate operations on qubit degrees of freedom [87]. Microwave driving of the qubits can
be used to perform single-qubit rotation gates. To see how this works, we consider the
unitary time-evolution operator of the driving Hamiltonian. At qubit frequency, i.e., δ = 0,
it takes the form

Û (t) = exp
[
−i
∫ t

0
ĤR(t′)dt′

]
= exp

[
i
2

Θ(t)(Iσx −Qσy)

]
,

(1.94)

where we take the Pauli operators outside the integral as there is no time dependence other
than on the envelope η(t), note that this holds only for δ = 0, as here the Hamiltonian
commutes with itself at different times. For nonzero δ, one needs to solve the full Dyson’s
series in principle [76]. Equation (1.94) is known as Rabi driving and can be used for
engineering efficient single-qubit gate operations. The angle of rotation is defined as

Θ(t) = ΩV0

∫ t

0
η(t′)dt′ , (1.95)

which depends on the circuit’s macroscopic design parameters, via the coupling Ω, the
envelope of the pulse, η(t), and the amplitude of the pulse, V0. The latter two can be
controlled using arbitrary wave generators (AWGs). If one wishes to implement a π pulse,
one must adjust these parameters such that Θ(τ) = π, where τ is the driving pulse length.

Consider a π pulse. For the in-phase case, i.e., ϕ = 0, the time-evolution operator
takes the form

ÛX(τ) = exp
[

i
2

πσx
]
=

[
0 1
1 0

]
, (1.96)

which is a Pauli-X gate, also known as a NOT-gate, which maps |0〉 to |1〉 and vice versa
[88–90], see Chapter 2 for an example of how to create a controlled version of such a gate.
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This corresponds to a rotation by π radians around the x axis of the Bloch sphere. By
changing the value of Θ(τ), it is possible to change the rotation angle. Had we instead
considered the out-of-phase case, i.e., ϕ = π/2 then we would have obtained a Pauli-Y

gate which maps |0〉 to i |1〉 and |1〉 to −i |0〉, corresponding to a rotation around the y
axis of the Bloch sphere.

A Pauli-Z gate can be implemented in one of three ways:

• By detuning the qubit frequency with respect to the driving field for some finite
amount of time. This introduces an amplified phase error, which can be modeled as
effective qubit rotations around the z axis [91].

• Driving with an off-resonance microwave pulse. This introduces a temporary Stark
shift, which causes a phase change, corresponding to a rotation around the z axis.

• Virtual Z gates where a composition of X and Y gates rotates the qubit state around
the x and y axes, which is equivalent to a rotation around the z axis [92]. This can be
achieved very effectively simply by adjusting the phases of subsequent microwave
gates [93].

Finally, we note that the Hadamard gate can be performed as a combination of two
rotations: a π rotation around the z axis and a π/2 rotation around the y axis.

1.7.2 Generalization to qudit driving

Now let us generalize the discussion to a d-dimensional qudit. Quantizing and truncating
the anharmonic oscillator part of the Hamiltonian in Eq. (1.87) to d levels, the qudit
Hamiltonian becomes

Ĥosc =
d−1

∑
n=0

ωn |n〉〈n| , (1.97)

where ωn is the energy of qudit state |n〉. This is a rewriting of the ωb̂† b̂ term and the
anharmonicity term, where the anharmonicity has been absorbed into the set of ωn.
Starting from Eq. (1.88) and for simplicity setting the phase in Eq. (1.91) to π/2 such that
V(t) = V0 cos(ωextt), we can move to the rotating frame as was also done above for the
qubit using Eq. (1.66). We choose the frame rotating with the external driving frequency

H0 =
d−1

∑
n=0

n ωext |n〉〈n| , (1.98)

which is contrary to for the qubit, where we rotated into a frame equal to the qubit
frequency. We see that for a qubit (d = 2) we getH0 = −ωextσz/2 up to a global constant,
which we could have also chosen to use above, instead of the qubit frame.

Applying Eq. (1.66) to the qudit Hamiltonian in Eq. (1.97), we get

Ĥosc,R =
d−1

∑
n=0

(ωn − nωext) |n〉〈n| . (1.99)
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The same transformation is performed on Hext by using the standard expansion of the
bosonic operators. By expanding the cosine in the voltage drive using Euler’s formula,
the total Hamiltonian in the rotating frame can be found. It becomes

ĤR =
d−1

∑
n=0

δn |n〉〈n|+ iΩn (|n + 1〉〈n| − |n〉〈n + 1|) , (1.100)

where δn = ωn − nωext is the detuning of the nth state relative to the ground state driven
by the external field and

Ωn =
√

n + 1Ω =
√

n + 1
Cext

C + Cext

V0√
2ζ

(1.101)

is the Rabi frequency of the nth transition. Thus, we achieve great control over this specific
qudit transition by using a single drive. Transitions between neighboring qudit states
can be performed simultaneously using a multimode driving field. Note that the i in the
second term of Eq. (1.100) comes from the choice of ϕ = π/2, which can, of course, be
changed if desired.

The external field enables transitions between two states in the qudit if the effective
detuning, ∆n,n+1, is small compared to the size of the Rabi frequency, Ωn. The effective
detuning between the nth and (n + 1)th states is the difference between the detuning of
the two states:

∆n,n+1 = δn+1 − δn = ωn+1 −ωn −ωext, (1.102)

from which we see that the frequency of the external field, ωext, has to match the energy
difference between the two states, ωn+1 −ωn, for the driving to be efficient.

As mentioned in Section 1.6, leakage to other states when driving between two
states depends on the size of the anharmonicity. This can be understood from Eq. (1.102).
For a small anharmonicity, ∆n,n+1 is approximately the same for all n since ωn will be ap-
proximately the same for all n; thus, it becomes difficult to single out the desired transition
we want to drive since the driving frequency, ωext, will overlap with multiple transition
frequencies. Luckily, tailored control pulse methods such as derivative removal by adi-
abatic gate (DRAG) and its improvements [90, 94] can reduce this leakage significantly,
which allows for relative anharmonicities of just a couple of percent. The topic of tailored
control pulses is beyond the scope of this discussion, and we refer to the cited works.

1.8 Coupling of modes

In our central example of Fig. 1.1, we considered direct inductive coupling. While this cou-
pling is relatively straightforward theoretically, it is not easy to implement experimentally.
We, therefore, now consider more straightforward ways to couple qubits. By coupling
qubits, we also open up the possibility of implementing two-qubit gates. Examples of
more sophisticated approaches to coupling qubits are discussed in Section 1.10.3.

1.8.1 Capacitive coupling

The simplest form of coupling, both experimentally and theoretically, is arguably capac-
itive coupling. Consider two transmonlike qubits coupled by a single capacitor with
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EJ,1C1

Cg

EJ,2C2

(a)

LCrEJCq

Cg

(b)

Figure 1.10: (a) Two transmonlike qubits coupled by a single capacitor with capacitance Cg, resulting in a
static coupling between the modes. (b) A transmonlike qubit coupled to a linear resonator via a capacitor of
capacitance Cg.

capacitance Cg, as seen in Fig. 1.10(a). Note the similarities between this coupling and
the circuit in Fig. 1.1. As we see, the resulting Hamiltonian of Fig. 1.10(a) is close to
the Hamiltonian in Eq. (1.75). However, capacitive coupling is much simpler to achieve
experimentally.

The Hamiltonian is easily found following the approach in Section 1.2.2

H =
1
2
qTC−1q − EJ,1 cos φ1 − EJ,2 cos φ2, (1.103)

where q = (q1, q2)
T is the vector of conjugate momentum and the capacitance matrix is

C =

[
C1 + Cg −Cg
−Cg C2 + Cg

]
, (1.104)

which is invertible

C−1 =
1

CΣ

[
C2 + Cg Cg

Cg C1 + Cg

]
'
[

1
C1

Cg
C1C2

Cg
C1C2

1
C2

]
, (1.105)

where CΣ = det(C) = C1C2 + C1Cg + C2Cg. In the approximation of the second step
above, we assume that the shunting capacitances are larger than the coupling capacitance,
Cn � Cg, as is usually the case. After rewriting to interacting harmonic oscillators, the
diagonal elements ofC−1 contribute to the respective modes with the frequencies

ωn =
√

EC,nEJ,n + αn, (1.106)

where the effective capacitive energy is EC,n = (Cn + Cg)/CΣ and the anharmonicity is
αn = −EC,n. The off-diagonal elements on the other hand contribute to the interaction.
The interaction term of the Hamiltonian is

Hint =
Cg

CΣ
q1q2. (1.107)

Quantizing the Hamiltonian and changing into annihilation and creation operators the
interaction part takes the form

Hint = g12

(
b̂†

1 b̂2 + b̂2b̂†
1

)
, (1.108)
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where we remove terms that do not conserve the total number of excitations by using the
RWA. The coupling strength is

g12 =
Cg

2CΣ
√

ζ1ζ2
, (1.109)

where ζn is the impedance in Eq. (1.56). Note the similarity with Eq. (1.61c) if one defines
EC,12 = Cg/2CΣ. This is called a transverse coupling since the interaction Hamiltonian
only has nonzero matrix elements in off-diagonal entries. This is contrary to the longitudi-
nal coupling discussed in Section 1.8.4.

1.8.2 Two-qubit gates

As with the single-qubit gates in Section 1.7.1, we can calculate the time-evolution operator,
as in Eq. (1.94) of the interacting Hamiltonian in order to determine the gate operation.
However, contrary to microwave driving, we cannot directly turn the interaction on and
off. Luckily there are several approaches to this problem, the simplest being tuning the
two qubits in and out of resonance such that the interaction terms time average to zero
due to the RWA discussed in Section 1.5. Examples of more complex and tunable coupling
schemes are discussed Section 1.10.3.

Consider the interaction part of the Hamiltonian in Eq. (1.108); we calculate the
time-evolution operator of the two-level truncation of this

Û (t) = exp
[

i
∫ t

0
η(t′)Ĥintdt′

]
= exp

[
iΘ(t)(σ+

1 σ−2 + σ−1 σ+
2 )
]

=


1 0 0 0
0 cos Θ(t) −i sin Θ(t) 0
0 −i sin Θ(t) cos Θ(t) 0
0 0 0 1

 ,
(1.110)

where η(t) is the envelope constructed to correspond to tuning the two qubits in and out
of resonance, and we assume that this is the only part of the integral with time dependence.
We also assume that the Hamiltonian commutes with itself at different times. The coupling
angle is given as

Θ(t) = g
∫ t

0
η(t′)dt′, (1.111)

which depends on the coupling strength, g, and the envelope η(t). By setting Θ(τ) = π/2
we obtain the iSWAP gate from Eq. (1.110) and taking Θ(τ) = π/4 we find the

√
iSWAP

gate.
Note that a similar procedure to the iSWAP gate can be used to create a CZ gate [95].

1.8.3 Linear resonators: control and measurement

So far, we have considered how to engineer anharmonic oscillators and truncate them into
qubits and how to drive the qubits. However, for a qubit to be useful, we must also be able
to control it and perform measurements on it [96]. These two things can be accomplished
by coupling the qubit to a linear resonator, which is a simple harmonic oscillator [97].
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Consider, therefore, the circuit presented in Fig. 1.10(b) consisting of a transmonlike
qubit capacitively coupled to an LC oscillator or linear resonator. This circuit is similar to
the example circuit presented in Fig. 1.10(a) and the analysis up until truncation is identical
with 1→ q, 2→ r, and only one anharmonicity meaning that we must change−EJ,2 cos φ2
to φ2

r /2L in Eq. (1.103). Thus, we can truncate only the mode with the anharmonicity,
which results in the following Hamiltonian

ĤJC = ωr b̂† b̂ +
1
2

ωqσz + g
(

σ+ b̂ + σ− b̂†
)

, (1.112)

where b̂† and b̂ are the creation and annihilation operators for the linear resonator, σz is
the z Pauli operator of the qubit, and σ± represents the process of exciting and de-exciting
the qubit. The qubit frequency is given as in Eq. (1.106), the resonator frequency is given
by

ωr =
√

EC,r/L, (1.113)

and the coupling strength is given as in Eq. (1.109)
The Hamiltonian in Eq. (1.112) is known as the Jaynes-Cummings (JC) Hamil-

tonian, which was initially used in quantum optics to describe a two-level atom in a
cavity [98–100]. Since then, the model has found application in many areas of physics,
including superconducting electronic circuits, where a qubit is typically coupled to a trans-
mission line resonator [101–109]. Because the Jaynes-Cummings Hamiltonian comes from
quantum optics and cavity quantum electrodynamics (cavity QED), coupling between
superconducting circuits and linear resonators is often denoted circuit QED.

Consider the limit where the qubit frequency is far detuned from the resonator
frequency compared to the coupling rate and resonator linewidth κ = ωr/Q, where Q
is the quality factor of the resonator, i.e., ∆ = |ωr − ωq| � g, κ. This is known as the
dispersive limit since there is no direct exchange of energy between the two systems, i.e.,
only dispersive interactions between the resonator and the qubit occur. Using second-
order perturbation theory, we see that the qubit and the resonator change each other’s
frequencies [110–112].

In the dispersive regime the Jaynes-Cummings Hamiltonian can be approximately
diagonalized using the unitary transformation eŜ where Ŝ = λ(σ+ b̂− σ− b̂†) and λ = g/∆
is a small parameter. This transformation is called a Schrieffer-Wolff transformation
[113]. Using the Baker-Campbell-Hausdorff formula [76] to second order in λ we find the
Hamiltonian in the dispersive regime becomes

Ĥdisp = eŜĤJCe−Ŝ = (ωr + χσz)b̂† b̂ +
1
2

ω̃qσz, (1.114)

where we define χ = g2/∆ as the qubit dependent frequency shift or dispersive shift. The
qubit frequency is Lamb shifted to ω̃q = ωq + χ, induced by the vacuum fluctuations
in the resonator. Note that Eq. (1.114) is derived for a two-level atom/qubit. Taking the
second excited state into account modifies the expression for the shift into

χ = − g2
01
∆

(
1

1 + ∆/α

)
, (1.115)
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Figure 1.11: Mutual inductive coupling between two modes.

where g01 is the coupling rate between the 0 and 1 state of the qubit and α is the anhar-
monicity of the qubit, Eq. (1.76).

One can interpret the dispersive qubit-resonator interaction in two ways. Either as
a shift of the qubit frequency by a quantity proportional to the photon population of the
resonator 2χ〈b̂† b̂〉 or as a qubit-dependent pull of the resonator frequency, ωr → ωr ± χ.

In the first interpretation, the bare qubit frequency is modified by a Lamb shift and
an additional amount proportional to the number of photons populating the resonator.
This is known as the ac Stark shift. It has the consequence that fluctuations in the photon
number of the resonator induce small shifts in the qubit frequency, which brings it slightly
out of its rotating frame and causes dephasing [114–120]. Therefore, in an experiment, it is
vital to reduce photon-number fluctuations of the resonator, e.g., by keeping the process
properly thermalized.

In the second interpretation, the resonator frequency depends on the qubit’s state.
This means that it is possible to make a quantum nondemolition (QND) measurement of
the qubit by shinning microwaves into the resonator at a frequency close to ωr and then
measuring the transmitted signal using standard homodyne techniques [121]. However,
the approximation in Eq. (1.114) is only valid in the small-photon limit, i.e., when the
resonator photon number, N̂ = b̂† b̂ is less than the critical photon number Nc = ∆2/4g2.
This sets an upper limit to the resonator power as a probe while maintaining the conditions
for a QND measurement. However, this is not the whole story; Ref. [108] has shown that
level crossings with other states of the qubit-resonator system induce state transitions
which the Jaynes-Cummings model can explain. This is beyond the scope of our discussion,
and we refer to the cited work for more information.

In the other limit, when the detuning between the qubit and the resonator frequency
is small compared to the coupling rate, i.e., ∆� g, we obtain a hybridization of the energy
levels of the two systems. This opens up for a Rabi mode splitting, where each transition
between the qubit and the resonator splits into two states with distance

√
Ng/π where

N denotes the resonator mode, i.e., the photon number. Thus excitation is coherently
swapped between the two systems. While this cannot be used to perform measurements
on the qubit, it can be used to mediate couplings between two qubits by coupling another
qubit to the resonator [122, 123]. We do not dive deeper into the details of measurements
and couplings to linear resonators. For an experimental-minded review, see, e.g., Ref. [55].
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1.8.4 Inductive coupling

So far, we have considered only direct inductance to coupling two qubits. This section
considers the mutual inductance of two modes to couple the modes. Consider, therefore,
the two circuits in Fig. 1.11, consisting of a Josephson junction, a capacitor, and a linear
inductor. Such circuits are known as rf SQUIDs [124]. Each of the circuits has the following
Hamiltonian

Ĥj = 4EC,jn̂2
j +

1
2Lj

φ̂2
j − EJ,j cos(φ̂j + Φ̃j). (1.116)

If two such circuits are brought into proximity of each other, they will share a mutual
inductance, yielding an interaction Hamiltonian

Ĥint = M12 Î1 Î2 = M12 Ic1 sin(φ̂1 + Φ̃j)I2c sin(φ̂2 + Φ̃j), (1.117)

where Îj is the current operator of the Josephson junction, see Eq. (1.11). The mutual
inductance M12 between the two circuits depends on the relative geometrical placement
of the circuits. This can be increased, e.g., by overlapping the circuits [125] or by letting
them share the same wire or Josephson-junction inductor [126–129].

Consider now the case of no external flux, i.e., Φ̃ = 0. If we expand the potential to
fourth-order, the interaction Hamiltonian takes the form

Ĥ = M12

[
φ̂1φ̂2 −

1
36

(φ̂1φ̂3
2 + φ̂3

1 φ̂2)

]
. (1.118)

Truncating into a two-level model using Tables 1.2 and 1.3 we find that the coupling
becomes transverse

Ĥint = gxσx
1 σx

2 , (1.119)

where the coupling constant is

gx =
1
2

M12
√

ζ1ζ2

[
1− 1

24
(ζ1 + ζ2)

]
, (1.120)

with impedances given by Eq. (1.56).
Consider now an external flux of Φ̃ = π/2. In this case, the sine terms obtain a

phase, effectively changing the terms into cosines. Expanding these to second-order yields

Ĥint =
M12

4

[
−(φ̂2

1 + φ̂2
2) +

1
144

(φ̂4
1 + φ̂4

2) + φ̂2
1 φ̂2

2

]
, (1.121)

where we recognize the two first terms as corrections to the qubit frequencies, the following
two terms as corrections to the anharmonicities, and finally, the last term is the interaction
term. Considering only the last term and truncating into a two-level model we find (see
Tables 1.2 and 1.3)

Ĥ′int = gz(σ
z
1 σz

2 − 2σz
1 − 2σz

2 ). (1.122)

The first term is a longitudinal coupling between the two qubits with coupling constant

gz =
1
16

M12ζ1ζ2. (1.123)
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It is called longitudinal because all off-diagonal matrix elements are zero, contrary to
transverse coupling. Longitudinal coupling can be used to create entanglement without
exchanging energy between the modes by enabling a so-called phase gate [55, 122, 130].
From the last two terms in Eq. (1.122), we see that we obtain further corrections to the
qubit frequencies.

1.9 Noise and decoherence

So far, we have considered only closed quantum systems, i.e., systems without interaction
with the environment. This is usually a good approximation as we are dealing with cryo-
genic and thus isolated superconducting circuits. However, even in the best experimental
setups, random and uncontrollable processes in the environment surrounding the system
do occur. These are sources of noise and lead to decoherence of the quantum system. It is,
therefore, necessary to develop a formalism to treat this theoretically as well. We assume
that the Hamiltonian of the system and the environment is separable and has the form

Ĥ = Ĥsys + Ĥenv + νŜ · λ̂, (1.124)

where Ĥsys is the Hamiltonian of the system, Ĥenv is the Hamiltonian of the environment.
The interaction strength between the system and the environment is given by ν. In
contrast, Ŝ is an operator within the system Hamiltonian Ĥsys and λ̂ represents the noisy
environment which produces fluctuations δλ.

The treatment of open quantum systems is a whole subject on its own, and a
complete treatment is beyond the scope of this thesis. We, therefore, present only a
method for modeling noise in qubit systems. For a more extensive treatment of open
quantum systems, see, e.g., Ref. [131], and for an introduction on how to treat noise in an
experiment see, e.g., Ref. [55].

1.9.1 Bloch-Redfield model

Consider an arbitrary state on the Bloch sphere as in Eq. (1.79). The density matrix for
such a pure state is [87]

ρ = |ψ〉〈ψ| = 1
2
(I + a ·σ) =

[|α|2 αβ∗

α∗β |β|2
]

, (1.125)

where I is the identity matrix, a is the Bloch vector, and σ = (σx, σy, σz) is the vector of
Pauli spin matrices. If ρ represents a pure state, ψ, then tr ρ2 = 1 and the Block vector
becomes a unit vector, a = (sin θ cos φ, sin θ sin φ, cos θ), where θ and φ are the angles of
the Bloch vector. If, on the other hand, |a| < 1 the density matrix ρ represents a mixed
state with tr ρ2 < 1. In this case the Bloch vector terminates at points inside the unit
sphere.

In the Bloch-Redfield formulation of two-level systems, sources of noise are weakly
coupled to the system with short correlation times compared to the system dynamics
[131–134]. The noise in this formulation is determined by the longitudinal relaxation rate
and the transverse relaxation rate.
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Figure 1.12: Bloch-sphere representation of noise. (a) Longitudinal relaxation is the result of energy
exchange between the qubit and the environment. Transverse noise couples to the qubit and drives a rotation
(transition) around an axis in the x-y plane. Longitudinal relaxation is driven by energy emission to the
environment, Γ− and absorption of energy from the environment, Γ+. For a typical superconducting qubit,
the temperature is much lower than the qubit’s frequency, kBT � h̄ω, which suppresses the absorption rate,
such that Γ1 ' Γ−. (b) Pure dephasing is the result of longitudinal noise that drives a rotation around the z
axis. Due to stochastic frequency fluctuations, a Bloch vector will diffuse both clockwise and counterclockwise
around the z axis parallel to the equator.

Longitudinal relaxation

The longitudinal relaxation rate, Γ1 = 1/T1, describes depolarization along the qubit
quantization axis, often referred to as “energy decay” or “energy relaxation”, which is
why it is often referred to as the relaxation time. Longitudinal relaxation is caused by
transverse noise, via the x or y axis on the Bloch sphere, see Fig. 1.12(a). Depolarization of
the superconducting circuit occurs due to the exchange of energy with the environment,
leading both to excitation and relaxation of the qubits, meaning that one can write

Γ1 = Γ+ + Γ−. (1.126)

Due to Boltzmann statistics and the fact that superconducting qubits are operated at
low temperatures (T . 20 mK) and with a qubit frequency in the GHz regime, the qubits
generally lose energy to the environment, meaning that the excitation rate Γ+ is suppressed
exponentially as

Γ+

Γ−
= e−βω , (1.127)

where β = 1/kBT is the inverse of the Boltzmann constant multiplied with the temperature.
Note, however, that empirically we often see a stray population of the excited state much
higher than expected from this theory. From Maxwell-Boltzmann statistics, we would
expect a thermal population of the excited state of P|1〉 ∼ 10−5%, but the measured
excited-state population is often orders of magnitudes higher at around 1% [135].

The longitudinal relaxation rate can be determined using Fermi’s golden rule

Γ1 =
1
h̄2 | 〈0|Ŝ|1〉 |

2Sλ(ωq), (1.128)

where Ŝ is the transverse coupling of the qubit to the environment, i.e., a coupling of the
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type σx or σy. The qubit frequency is denoted ωq. The noise power spectral density

Sλ(ω) =
∫ −∞

∞
dt〈λ̂(t)λ̂(0)〉e−iωt, (1.129)

characterizes the frequency distribution of the noise power for a stationary noise process
λ̂. Note that the Wiener-Khintchine theorem states that Sλ(ω) is the Fourier transform of
the autocorrelation function cλ(t) = 〈λ̂(t)λ̂(0)〉 of the noise source λ [136, 137].

The longitudinal relaxation rate can be measured by preparing the qubit in state
|1〉 (e.g., using a π pulse as in Section 1.7) and then making multiple measurements of the
qubit excited-state population at a set of subsequent times [55].

Transverse relaxation

The transverse relaxation time

Γ2 =
1
T2

=
Γ1
2

+ Γφ (1.130)

describes the loss of coherence of a superposition. As seen in Eq. (1.130), it is caused both
by transverse noise, which leads to energy (longitudinal) relaxation of the excited-state
component of the superposition state and by longitudinal noise, which causes fluctuations
of the qubit frequency and leads to pure dephasing, see Section 1.9.1 below. Note that the
sum in Eq. (1.130) is only valid for weak noise that also is only correlated at short times
[138].

We introduce transverse relaxation as it is a measurable quantity, contrary to pure
dephasing, which can only be inferred using Eq. (1.130). Transverse relaxation can be
measured using Ramsey interferometry [55, 139]. In Ramsey interferometry, a π/2 pulse
rotates the Bloch vector from |0〉 to the equator of the Bloch sphere. If we know the qubit
frequency perfectly, it should remain stationary at the equator, and if we apply another
π/2 pulse at some time later, we should measure |1〉. However, if our knowledge of the
qubit frequency and our assumed frame does not match the qubit’s actual rotation frame,
then the state will not remain stationary at the equator of the Bloch sphere after the first
π/2 pulse is applied. Instead, it will precess around the equator at a frequency equal to
the difference between the assumed frame and the actual qubit frequency. This means
that if we perform two π/2 pulses with variable delay in between, we should observe
oscillations in the measured state of the qubit. In reality, one often chooses a frame that
is intentionally detuned from the qubit frequency so that these oscillations are observed
even for the perfectly calibrated qubit. This means that an error in qubit frequency will
result in a difference from the expected oscillation frequency [140]. For simple Markovian
noise, these oscillations are exponentially damped with characteristic time T2 [55].

Pure dephasing

The pure dephasing rate Γφ describes depolarization in the x-y plane of the Bloch sphere.
It is referred to as “pure dephasing” to distinguish it from other phase-breaking processes
such as energy excitation or relaxation. Pure dephasing is caused by longitudinal noise
that couples to the qubit via the z axis. This longitudinal noise causes the qubit frequency,
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ω, to fluctuate such that it is no longer equal to the interaction frame frequency, causing the
Bloch vector to precess forward or backward in the interacting frame as seen in Fig. 1.12(b).

To lowest order, the pure dephasing rate is orthogonal to the difference between
the two diagonal matrix elements [48, 131]

Γφ =
1
h̄2

(
| 〈0|Ŝ|0〉 − 〈1|Ŝ|1〉 |2

)
Sλ(0), (1.131)

where Ŝ is the longitudinal coupling of the qubit to the environment, i.e., a coupling of
the type σz. This means that pure dephasing disappears if 〈0|Ĥenv|0〉 = 〈1|Ĥenv|1〉. For
superconducting circuits, this can often be realized by tuning the system to the so-called
“sweet spot” using external flux biasing. This means that the transverse relaxation becomes
approximately half the longitudinal relaxation rate as in Eq. (1.130). Thus decreasing the
longitudinal relaxation rate becomes the main focus when developing qubits to increase
the lifetime. However, in reality, pure dephasing will never disappear entirely due to
effects beyond the linear theory, such as higher-order corrections, other noise sources,
or nonmarkovian effects. Nevertheless, these effects are small at the “sweet spot”, and
therefore relaxation noise will often be the dominant source of noise.

Note that pure dephasing is, in principle, reversible as there is no energy exchange
with the environment, which means that it can be undone without destroying any quantum
information [141]. It is also worth noting that qubit dephasing is subject to broadband
noise since noise at any frequency can modify the qubit frequency and cause dephasing.

The impact of noise alters the density matrix of Eq. (1.125) giving us the Bloch-
Redfield density matrix [142]

ρBR =

[
1 + (|α|2 − 1)e−Γ1t αβ∗e−iδte−Γ2t

α∗βe−iδte−Γ2t |β|2e−Γ1t

]
. (1.132)

Note that the longitudinal relaxation rate influences the diagonal, while the transverse
influences only the off diagonal. We also include the phase difference δ = ωq − ωext
between the qubit frequency, ωq, and the rotating frame frequency, ωext, which is needed
in order to perform Ramsey interferometry.

1.9.2 Master equation

As we are interested in the effect of noise on the dynamics of the system, we consider a
so-called master equation for the system. A master equation describes the time evolution of
a system (in our case, an electrical circuit) where we model the system as an ensemble of
states described by a density matrix ρ, and where we can determine the transition between
the states by a transition matrix [131].

From the time-dependent Schrödinger equation in Eq. (1.62), we can derive a
master equation for the closed system called the Liouville-von Neumann equation

ρ̇(t) = −i[Ĥ, ρ(t)], (1.133)

where Ĥ is the Hamiltonian of the system, and ρ is the density matrix in Eq. (1.125). Note
how it resembles Heisenberg’s equations of motion in Eq. (1.67), but with a different sign
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since the density matrix is a dynamical variable, i.e., it is an operator in contrast to a
quantum state or wave function.

As we are interested in the effect of noise, we must add other terms to the Liouville-
von Neumann equation. For a system that is weakly coupled to the environment, the
evolution is described by the Lindblad master equation [48, 131, 143]

ρ̇(t) = −i[Ĥ, ρ(t)] + ∑
i

Γi

(
L̂iρL̂†

i −
1
2
{L̂i L̂†

i , ρ}
)

, (1.134)

where {·, ·} is the anticommutator, and L̂i are the so-called jump operators representing
the interaction between the system and the environment.

For the case of a two-level model with both longitudinal and transverse relaxation
weakly coupled to the environment, the Lindblad master equation takes the form

ρ̇(t) = −i[Ĥ, ρ(t)]

+ Γ−
(

σ−ρσ+ −
1
2
{σ̂−σ̂+, ρ}

)
+ Γ+

(
σ+ρσ− −

1
2
{σ̂+σ̂−, ρ}

)
+ Γφ (σzρσz − ρ) ,

(1.135)

where the decoherence rates, Γi, can be found in Eqs. (1.126) and (1.130). Equation (1.134)
can be used to simulate a system including noise and is usually solved numerically using,
e.g., QuTiP [144].

1.10 Examples

This section presents some examples of more or less well-known superconducting qubits.
We start from some simple, early single-qubit designs, then move to the transmon and
flux qubit, and finally, we discuss couplings between qubits. In Fig. 1.13 we present an
overview of the qubits discussed in the examples.

There are four fundamental types of qubits: Phase qubits, charge qubits, flux qubits,
and quasicharge qubits. These qubits can be ordered in pairs according to the behavior
of quantum fluctuation in the Cooper pair condensate. Charge qubits with single-charge
tunneling are dual to flux qubits with single-flux tunneling, while phase qubits with
phase oscillation are dual to the quasicharge qubits with quasicharge oscillations. These
fundamental qubits can be seen in Fig. 1.13.

The most straightforward realization of a superconducting qubit is a phase qubit. It
is a current-biased Josephson junction, which essentially is just a Josephson junction with
a current applied across it. It operates in the so-called phase regime where EC � EJ . In
this regime, the Josephson tunneling dominates over the charging of the capacitor, making
the anharmonicity relatively small. This can be interpreted as a low kinetic (capacitive)
energy compared to the potential (inductive) energy. The bias current introduces the
anharmonicity, and adjusting the bias current closer to the critical current of the Josephson
junction increases the anharmonicity. The fact that one can tune the anharmonicity
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Figure 1.13: Parameter space of the “qubit zoo.” The qubits are plotted according to their effective Josephson
energy, EJ , and inductive energy, EL, both normalized by their effective capacitive energy, EC . The marker
indicates the type of qubits, with a yellow square indicating the phase qubit, red dots indicating charge qubits,
green triangles indicating flux qubits, and a blue star for the quasicharge qubit. Note that the placement of the
qubits is only approximate as the effective energies are not definitive. Note that the 0-π qubit is plotted for each
mode; the ϕ mode works similar to a fluxonium qubit, and the θ mode works similarly to the transmon qubit.

dynamically is a strength of this qubit. However, the phase qubit has a relatively large
decoherence noise, and we do not further detail the phase qubit as it is rarely used in
modern circuit designs. For more details, see Refs. [71, 145].

1.10.1 Charge qubits

Central types of qubits are the so-called charge qubits. These have their name from the
fact that the basis states of the qubit are charge eigenstates, meaning that they are only
dependent on the number of excess Cooper pairs in a disconnected superconducting
island and primarily independent of the node fluxes. We start from the single Cooper pair
box and move on to the transmon qubit based on the Cooper pair box.

Single Cooper pair box

In 1997 the first charge qubit, known as the single Cooper pair box (SCPB), was invented
[146–148]. As with the phase qubit, it is not used in modern qubit implementations due to
bad coherence times. However, we detail this qubit as it forms the basis for the renowned
transmon qubit and is a nice example of how to analyze a circuit.

The SCPB consists of a Josephson junction, with energy EJ , and a capacitor with
capacitance Cg in series, yielding a superconducting island in between them. A parasitic
capacitance CJ is included in the Josephson junction. This is a lumped-circuit element
representation of the natural capacitance that the junction will have by way of construction.
The circuit is biased with a gate voltage Vg over the capacitor, making it possible to transfer
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Figure 1.14: (a) Circuit diagram of the single Cooper pair box, consisting of a Josephson junction, with energy
EJ and parasitic capacitance CJ , in series with a gate capacitor with capacitance Cg. The gate voltage is denoted
Vg, and the system is connected to ground in the right corner. A dot denotes the only active node. (b)-(e) The
energies of the lowest-lying states of the single Cooper pair box and transmon qubit as a function of the bias
charge ng. The difference between the two lowest bands is approximately equal to EJ at the avoided crossing.

electrons from the reservoir to the superconducting island via the gate capacitance Cg. The
circuit is connected to ground, and thus there is only one active node with flux φ through
it. The corresponding circuit diagram can be seen in Fig. 1.14(a).

We follow the method presented in Section 1.2.2. In order to write the Lagrangian,
we must consider the fixed gate voltage. We model this as an external node with a well
defined flux φV = Vgt, meaning φ̇V = Vg. Setting φT = (φ, φV) we write the Lagrangian

L =
1
2
φ̇TCφ̇+ EJ cos φ, (1.136)

where the capacitance matrix is

C =

[
CJ + Cg −Cg
−Cg Cg

]
. (1.137)

Since we know that φ̇V = Vg is a classical externally controlled variable, it should not be
quantized. Therefore, we only calculate one conjugate momentum

q = (Cg + Cj)φ̇− CgVg. (1.138)

Solving for φ̇ we perform a Legendre transformation and find the Hamiltonian

H =
1

2(Cg + CJ)
(q + CgVg)

2 −
CgV2

g

2
− EJ cos φ. (1.139)

We now change into conventional notation and define the effective capacitive energy

EC =
e2

2(Cg + CJ)
, (1.140)
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which means that we can write the Hamiltonian as

Ĥ = 4EC(n̂− ng)
2 − EJ cos φ̂, (1.141)

where we quantize the dynamic variables and remove constant terms. We further define
the offset charge ng = CgVg/2e.

We can now discuss the operational regime of the Cooper pair box. When the
Josephson energy is much smaller than the capacitive energy (EJ/EC � 1), the energy
spectrum of the system becomes a set of parabolas when plotted against ng, one for each
eigenvalue of n̂. The parabolas cross at ng = n + 1/2, where n ∈ Z, see Fig. 1.14(b). If
we consider the eigenstates of n̂ we find that the states |n〉 and |n + 1〉 are degenerate at
ng = n + 1/2. These states are essentially charge states of the capacitor. In this picture,
the Hamiltonian of the capacitor becomes

ĤC = 4EC

∞

∑
n=−∞

(n− ng)
2 |n〉〈n| , (1.142)

which in matrix representation is just a diagonal matrix with (n− ng)2 on the diagonal.

Introducing the Josephson junction lifts the degeneracy and introduces an avoided
crossing at ng = n + 1/2. The matrix representation becomes a tridiagonal matrix with
EJ/2 on the diagonals below and above the main diagonal, consisting of the capacitor
entries discussed above.

To show this, we must relate the phase states of the Josephson junction |φ〉 to
the charge states |n〉. This can be done through a Fourier transform (this treatment is
analogous to the treatment of a one-dimensional solid, see, e.g., Ref. [76])

|φ〉 = 1√
2π

∞

∑
n=−∞

e−inφ |n〉 . (1.143)

Note that, since n is a discrete variable, the phase must be 2π periodic. This is in agreement
with the fact that we consider φ as the phase of the Josephson junction. The commutator
between the two corresponding operators is

[φ̂, n̂] ∼ i, (1.144)

where the ’∼’ indicates that this is only true up to the association φ ∼ φ + 2π. Since the
phase is continuous, the inverse transformation of Eq. (1.143) is

|n〉 = 1√
2π

∫ 2π

0
dφ eiφn |φ〉 . (1.145)

Now writing the last term of Eq. (1.141) as the sum of exponentials and inserting the

49



Chapter 1. Introduction to Superconducting Circuits

identity relation, we find

ĤJ = −EJ cos φ̂

= −EJ

2

∫ 2π

0
dφ |φ〉〈φ|

(
eiφ + e−iφ

)
= − EJ

4π

∫∫ 2π

0
dφ dφ′

∞

∑
n=−∞

∣∣φ〉〈φ′∣∣ (e−inφei(n+1)φ′ + einφ′ e−i(n+1)φ
)

= −EJ

2

∞

∑
n=−∞

(|n〉〈n + 1|+ |n + 1〉〈n|) ,

where we apply both Eqs. (1.143) and (1.145) in the second to last step and use the
definition of the delta function as an integral in the last step.

Solving the full system, Ĥ = ĤC + ĤJ , using either Mathieu functions [149] or
numerically, yields the avoided crossings seen in Fig. 1.14(c). The distance between these
avoided crossings is approximately equal to the Josephson-junction energy EJ for the
lowest states in the spectrum. To realize a qubit, we set ng equal to some half-integer,
which yields two states close to each other but with a large gap to higher states [150]. That
way, we obtain a significant anharmonicity, see Fig. 1.14(c) where the distance between
the green and the yellow lines is significantly different from the distance between the blue
and yellow line at, e.g., ng = 1/2.

The SCPB is, however, quite sensitive to small fluctuations of the gate voltage
Vg, since this changes ng and the energy dispersion is steep around the working point
ng = n + 1/2, as seen in Fig. 1.14(c) for EJ/EC = 1.0. This means that the qubit works
only in this sweet spot as it is otherwise susceptible to charge noise. This reduces the
decoherence time of the system. The transmon qubit attempts to fix this problem.

Transmon qubit

The transmission-line shunted plasma oscillation qubit, or transmon qubit for short, was
proposed in 2007 as an attempt to increase the coherence time in charge qubits [80, 151].
It exploits the fact that the charge dispersion reduces exponentially in EJ/EC, while
the anharmonicity decreases only algebraically in EJ/EC following a power law. The
setup resembles that of the single Cooper pair box, the difference being a large shunting
capacitance, CB, between the two superconducting islands, followed by a similar increase
in the gate capacitance Cg. The circuit diagram is seen in Fig. 1.15.

Capacitors in parallel add to one effective capacitor; hence the effective capacitance
can be seen as the sum of the capacitance of the three capacitors CΣ = CJ + CB + Cg. With
this elementary knowledge, the Hamiltonian of the transmon becomes identical to that of
the single Copper pair box from Eq. (1.141) with the exception that

EC =
e2

2(CJ + CB + Cg)
, (1.146)

where we change the effective capacitance in Eq. (1.140). This gives much more freedom in
choosing the ratio EJ/EC, and we can thus solve the Hamiltonian for the energy dispersion
for larger EJ/EC. The result is seen in Fig. 1.14(d) and (e).
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CJ

EJ

Vg

Cg CB

Figure 1.15: Circuit diagram of the transmon qubit consisting of a Josephson junction with energy EJ and
parasitic capacitance CJ in series with a capacitor, Cg. A large capacitance, CB, shunts the system. The gate
voltage is denoted Vg, and the system is connected to ground in the right corner. There is only one active node.
The diagram should be compared to Fig. 1.14(a).

From these results, we observe that the energy dispersion becomes flatter for larger
ratios of EJ/EC, which means that the qubit becomes increasingly insensitive to charge
noise. An utterly flat dispersion would lead to no charge noise sensitivity at all. However,
we also notice that the anharmonicity decreases for larger ratios. This is a result of the
before-mentioned fact that the charge dispersion decreases exponentially in EJ/EC while
the anharmonicity has a slower rate of change given by a power law. Therefore we cannot
just increase the shunting capacitance until all charge noise disappears as we still need a
working qubit. We are thus left with some effective values for the transmon, which are
usually somewhere in the range EJ/EC ∈ [50, 100].

Even though the transmon has a ratio EJ/EC close to that of the phase regime
(EC � EJ), it is still classified as a charge qubit due to the structural similarity to the single
Cooper pair box qubit and the fact that the eigenstates still have reasonably well-defined
charge [80]. Due to that and the fact that capacitors in parallel add, we often just put a
Josephson junction and a parasitic capacitance in place of the transmon in larger circuits
for simplicity. We further notice that if the ratio EJ/EC is very large, the bias voltage
becomes irrelevant and can be omitted as well.

When implementing the transmon qubit on an actual chip, various architectures are
used, including the Xmon, which is developed for nearest-neighbor capacitive coupling of
qubits [31, 152–155], the three-dimensional (3D) transmon where the Josephson junction
is coupled to a three-dimensional cavity [156], or the gatemon which is based on a
semiconductor nanowire and controlled by an electrostatic gate [157, 158]. In general,
there are many shapes of the transmon, and these can often be tailor-made to the specific
experiment, see, e.g., Ref. [159]. Typical for these different architectures is that they can be
treated theoretically equivalently to the basic transmon setup discussed above. Therefore,
they are often referred to as transmonlike qubits when the architecture is irrelevant from a
theoretical point of view.

Recently a dual to the transmon qubit called a quasicharge qubit, or blochnium,
has been proposed, where a large shunting inductance replaces the shunting capacitance.
This large inductance makes the qubit robust against flux noise, which could open up for
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Figure 1.16: Circuit diagrams of different flux qubits. (a) C-shunted flux qubit. Two Josephson junctions in
series are placed in parallel with a third Josephson junction. Both the parasitic and shunting capacitances are
included in the capacitance. (b) Fluxonium qubit. An array of N Josephson junctions are placed in parallel
with another Josephson junction, effectively creating an inductor in parallel with the Josephson junction.

exploring high-impedance circuits [160].

1.10.2 Flux qubits

Flux qubits are generally implemented in a looped superconducting circuit interrupted by
one or more Josephson junctions. A current is induced in these circuits because fluxoid
quantization means that only an integer number of magnetic flux quanta is allowed to
penetrate the loop. As a response to the external flux, currents flow in superconducting
materials to enhance or diminish the total flux such that an integer number of flux quanta
is achieved in total.

A superposition of clockwise and counterclockwise currents is obtained by setting
the external magnetic field at half a magnetic flux quantum. Changing to node flux space,
this superposition of currents can be seen as a superposition of the ground states in a
double-well potential. In the double-well potential, small tunneling occurs between the
two sides of the well, which couples the two wave functions, making an avoided crossing,
and thus a closely spaced two-level system with a considerable gap to the remaining states.
We now elaborate on some concrete realizations of these general ideas.

C-shunted flux qubit

The C-shunted flux qubit (CSFQ) idea is the same as for the transmon. However, here the
capacitive shunting is over a flux qubit, sometimes called a persistent-current qubit (PCQ)
[161, 162]. As with the transmon qubit, the capacitive shunting improves the coherence of
the qubit [30, 163]. We, therefore, consider the flux qubit without going into details of the
shunting, see Section 1.10.1. The coherence of the flux qubit can further be improved by
placing it in a 3D [164], or coplanar [165] resonator.

The flux qubit consists of two Josephson junctions in series, with energy γEJ ,
which are then placed in parallel with a third Josephson junction, with Josephson energy
EJ . Here γ is the ratio of the geometrical size of the Josephson junctions. To a good
approximation, all capacitances (both parasitic and shunting) can be collected into one, as
seen in Fig. 1.16(a), when assuming γ > 1. When this is the case, the node between the
two Josephson junctions becomes a passive node.

Using the same trigonometric tricks as for the dc SQUID (see Section 1.1.2), we can
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write the potential energy of the three Josephson junctions as

U = −EJ

[
2γ cos

(
ψ+

2
− ψ2

)
cos

ψ−
2

+ cos(ψ− + Φ̃)

]
. (1.147)

Here we introduce the change of coordinates ψ± = φ1 ± φ3 and ψ2 = φ2 where n =
2 is the middle coordinate in between the two Josephson junctions. This coordinate
transformation turns out to diagonalize the capacitance matrix and leave only ψ− with a
nonzero eigenvalue. Thus, the two remaining node fluxes are superfluous, and from the
constraints obtained from the Euler-Lagrange equations, we find that ψ2 = ψ+/2, which
yields the potential energy

U = −EJ

[
2γ cos

ψ−
2

+ cos(ψ− + Φ̃)

]
. (1.148)

This no longer has the usual sinusoidal form, and its final form depends on the external
flux Φ̃ and the junction ratio γ. The most common configuration for an external flux is
Φ̃ = (1 + 2l)Φ0/2, where l ∈ Z. These points are often called the flux degeneracy points
and correspond to one-half of the superconducting flux quantum threading the qubit loop.
In this configuration, the qubit frequency is most robust against flux noise, leaving the
qubit with optimal coherence times.

As mentioned above, we assume γ > 1, which eliminates one degree of free-
dom. This can be seen as an approximation in which a particle starts in two dimensions
but is forced to move along just one dimension and is sometimes called the quasi-one-
dimensional (1D) approximation. This approximation fails if γ < 1. If 1 < γ < 2, the
potential takes the form of a double-well, which has been investigated as the PCQ [161,
162]. If γ > 2, the potential becomes a single well, very similar to the transmon qubit,
which is why the CSFQ has been investigated in this regime [30, 163]. In both cases, if the
anharmonicity is sufficiently large, the quantized potential can be truncated to the lower
level

Fluxonium

The fluxonium qubit is the natural extension of the flux qubit. Instead of two Josephson
junctions in parallel with another Josephson junction, the fluxonium features an array of
up to N = 100 Josephson junctions [166–168], sometimes referred to as a superinductance
[169, 170]. The circuit diagram can be seen in Fig. 1.16(b). Using the same quasi-1D
approximation as in Section 1.10.2 repeatedly, we arrive at a potential

U = −EJ

[
Nγ cos

ψ

N
+ cos(ψ + Φ̃)

]
, (1.149)

where ψ is the sum of all node fluxes in between the array of Josephson junctions on the
left side of Fig. 1.16(b). When the number of Josephson junctions N becomes large, the
argument in the first cosine, ψ/N becomes small such that the cosine can be approximated
by a second-order approximation which yields

U =
1
2

ELψ2 − EJ cos(ψ + Φ̃), (1.150)
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Figure 1.17: Spectrum of the fluxonium qubit at the two different flux-biasing points. For this plot the
parameters are set to EC/h = 1 GHz, EJ /h = 3.43 GHz and EL/h = 0.58 GHz.

where EL = EJγ/N is the resulting superinductance of the array of Josephson junctions.
This has the same effective form as a rf SQUID [124]. However, the superinductance
of the fluxonium qubit is much larger than the geometric inductance of the rf SQUID.
This is because the superinductance is produced by the kinetic inductance of the array
of Josephson junctions. It is therefore not limited, contrary to the geometrical inductance
where the loop impedance cannot exceed αRQ. Here α is the fine-structure constant and
RQ is the resistance quantum [169]. Recent implementations of superinductors are based
on nanowires of disordered granular aluminum or Nb alloys [171–174].

When the external flux bias is Φ̃ = 0 the potential has minimum at ψ = 0. For small
fluctuations of ψ, the potential is approximately harmonic and the lowest-lying states are
close to simple harmonic oscillator states. At higher energies, the anharmonic cosine term
of the potential comes into play as seen in Fig. 1.17(a). This ensures the anharmonicity
necessary for using the two lowest-lying states as the qubit subspace. However, the
fluxonium qubit is most often operated at Φ̃ = π, similarly to the flux qubit. In this
regime, the potential exhibits a double-well structure, and it is possible to achieve a much
larger anharmonicity than in the Φ̃ = 0 case, see Fig. 1.17(b).

In experiments, fluxonium qubits have reached impressive lifetimes of 100-400 µs
[167, 168], while recent experiments yields lifetimes in the 1-ms regime [175]. This is done
while maintaining a large anharmonicity suitable for fast gate operations. It puts fluxo-
nium among the top qubit candidates for near future quantum-computing applications.
In addition, the success of the fluxonium qubit proves that long coherence times can be
achieved even in a more complicated system with a large number of spurious modes [176].
This should encourage quantum engineers to further explore circuit design utilizing large
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superinductance.
A circuit element related to the fluxonium and the flux qubit is the superconducting

nonlinear asymmetric inductive element (SNAIL), which has the same architecture as
the fluxonium qubit in Fig. 1.16(b) but fewer Josephson junctions in the array than the
fluxonium, i.e., N ≥ 2 but less than for the fluxonium. For some particular choices of γ

and Φ̃ it is possible to cancel any fourth-order term, φ4 while keeping a substantial cubic
term, φ3 [177]. This can be used for amplifying three-wave-mixing [178, 179].

0-π qubit

A new type of qubit is the 0-π qubit. It has been proposed more recently than the above
qubits, but it shows promising tendencies in topological protection from noise [180–186].

The 0-π qubit consists of four nodes that are all connected by two large superinduc-
tors, two Josephson junctions, and two large shunting capacitors, as shown in Fig. 1.18(a).
We denote the shunting capacitors as C, the superinductors as L, and the Josephson
junctions as EJ and assume they have parasitic capacitances of CJ . The superinductors
are usually made as an array of Josephson junctions (see Section 1.10.2). However, here
we draw them as regular inductors, which is their effective form. An external flux, Φ̃,
goes through the qubit. It is advantageous to choose the spanning tree such that only the
Josephson junctions lie in the set of closure branches.

The node fluxes of the circuit are denoted (φ1, φ2, φ3, φ4), and the normal modes of
the circuit can be written using the transformation

ϕ

θ

ζ

Σ

 =
1
2


−1 1 −1 1
−1 1 1 −1
1 1 −1 −1
1 1 1 1




φ1
φ2
φ3
φ4

 . (1.151)

Here Σ is the CM coordinate, which has no influence on the dynamics of the system
and can be discarded. This basis transformation diagonalizes the capacitance matrix
C = 2 diag(CJ , CJ + C, C). The Hamiltonian then takes the form

H = 4ECϕn2
ϕ + 4ECθn2

θ + 4ECζ n2
ζ +

EL
2
(ϕ2 + ζ2)

− EJ
[
cos(θ + ϕ) + cos(θ − ϕ− Φ̃)

]
,

(1.152)

where nϕ, nζ , nθ are the canonical momenta, E−1
Cϕ = 16CJ , E−1

Cθ = 16(C + CJ) and E−1
Cζ =

16C are the charging energies of each mode, while EL = 2/L is the effective inductive
energy. Note that the ζ mode completely decouples from the rest of the system and can
thus be ignored. By transforming the θ variable θ → θ + Φ̃

2 we can rewrite the Hamiltonian
into the simpler form

H = 4ECϕn2
ϕ + 4ECθn2

θ − 2EJ cos θ cos
(

ϕ +
Φ̃
2

)
+

EL
2

ϕ2. (1.153)

The circuit is engineered so C � CJ , and we can think of the system as a heavy particle
moving along the θ axis and a lighter particle moving along the ϕ axis. In the basis of the
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Figure 1.18: (a) Circuit diagram of the 0-π qubit. Four nodes are connected to each other by two large
superinductors (drawn here as regular inductors) L, two Josephson junctions EJ with parasitic capacitance CJ ,
and two shunting capacitors C. (b)-(c) Wave functions of (b) the ground state and (c) first excited state for the
0-π qubit. The contour lines indicate the qubit potential. For this plot the parameters are set to EC,θ = 0.1,
EC,ϕ = 10, EJ = 10 and EL = 1. In the figure Φ̃ = 0. Changing the external flux would translate the
potential along the θ axis.

computational states |0〉 and |1〉, which are chosen as the ground and first excited state,
respectively, the θ variable is well localized around either 0 or π, as shown in Fig. 1.18(b)
and (c). This is the reason for the naming of the qubit. Setting θ = 0 or π in Eq. (1.153)
the potential along the ϕ axis becomes similar to the fluxonium biased by a flux of 0 or π.
As a result the two states have vanishing matrix elements 〈0| θn |1〉 , 〈0| ϕn |1〉 ' 0. This
makes the qubit highly resistant to noise-induced relaxation.

In recent experiments [185] with the 0-π qubit, relaxation times above 1 ms have
been achieved, making it an exciting candidate for future research. As with fluxonium,
the 0-π qubit proves that it is not only the most simple qubits, such as the charge and flux
qubit families, that can achieve long coherence times. Researchers should make a note of
this when developing new circuit designs to tap into the potential that more complicated
components, such as the superinductances used in fluxonium and the 0-π qubit, bring to
the table.

1.10.3 Tunable couplers

In Section 1.8 we have presented some simple static couplings of qubits. Here we present
some tunable couplers from the literature. By tunable, we mean couplers where the
interaction strength can be changed in situ, without changing the circuit layout. We
consider both capacitive and inductive coupling. The list of couplers presented here is, of
course, not exhaustive as there are other types of couplers in the literature, see, e.g., Refs.
[187, 188] or Chapter 3.
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Figure 1.19: Circuit diagram implementing a tunable capacitive coupler. Two transmonlike qubits are
connected via another tunable transmonlike qubit and directly to each other.

Tunable capacitive coupler

Here we present a tunable capacitive coupling between two modes [189–192]. Consider
the circuit in Fig. 1.19 where two transmonlike qubits, subscript 1 and 2, are connected
capacitively to each other and a mediating transmonlike qubit, subscript g. If we require
the Josephson junctions of the qubits to be dc SQUIDs, we can tune the frequency of
the qubits. Writing down the Hamiltonian of this circuit following the approach in
Section 1.2.2 is straightforward

H =
1
2
qTC−1q −∑

j
EJ,j cos φj, (1.154)

where the sum is over all three modes, i.e., 1, 2, g. The capacitance matrix is

C =

C1 + C1g + C12 −C1g −C12
−C1g Cg + C1g + C2g −C2g
−C12 −C2g C2 + C2g + C12

 , (1.155)

which is invertible. We leave this inversion to the reader and note that assuming the
qubit-coupler capacitances are smaller than the mode capacitances but more significant
than the qubit-qubit capacitance, i.e., Cn � Cng � C12, it can be simplified significantly,
see, e.g., Ref. [190]. The diagonal terms ofC−1 contribute to the frequencies of the modes,
while the three off-diagonal terms contribute to the coupling. Quantizing the Hamiltonian,
the interacting part takes the form

Ĥint = ∑
i>j

(C−1)(i,j)n̂in̂j, (1.156)

where n̂i is the Cooper pair number operator of the ith mode, and i, j ∈ {1, 2, g}. Mapping
to annihilation and creation operators connected to the harmonic degrees of freedom
yields

Ĥint = ∑
i>j

gij

(
b̂†

i b̂j + b̂i b̂†
j − b̂†

i b̂†
j − b̂i b̂j

)
, (1.157)
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where the coupling strength is given as

gij = (C−1)(i,j)
1

2
√

ζiζ j

, (1.158)

and the impedances are given in Eq. (1.56). Note that we have to keep the nonconserving
terms in Eq. (1.157) as these can be significant in the dispersive regime, i.e., when the
coupler frequency is larger than the difference in qubit frequencies; |∆j| = |ωj −ωg| � g.

To see this, we perform a Schrieffer-Wolff transformation similar to the one per-
formed in Section 1.8.3. However, this time we have three modes and include the noncon-
serving terms. We thus take

Ŝ = ∑
j=1,2

[
gjg

∆j
(b̂†

g b̂j − b̂g b̂†
j )−

gjg

Σj
(b̂†

g b̂†
j − b̂g b̂j)

]
, (1.159)

where Σj = ωj + ωg. Assuming a small anharmonicity αj � ∆j, we can expand the
transformation to second order (note that g12 is considered a second-order small quantity
on its own). We find the full Hamiltonian to be

Ĥdisp = eŜĤe−Ŝ = ∑
j=1,2

[
ω̃j b̂†

j b̂j +
αj

2
b̂†

j b̂†
j b̂j b̂j

]
+ g̃12(b̂†

1 b̂2 + b̂1b̂†
2), (1.160)

where

ω̃j = ωj + g2
jg

(
1
∆j
− 1

Σj

)
, (1.161)

g̃12 = g12 +
g1gg2g

2

(
1

∆1
+

1
∆2
− 1

Σ1
− 1

Σ2

)
. (1.162)

In the dispersive regime |∆j| ' |Σj| the nonconserving terms contribute to the coupling.
The total effective coupling g̃12 depends on gjg as well as ∆j and Σj, all of which depend
on the coupler frequency ωg, which can be tuned. Thus g̃12 is tunable as it is implicitly a
function of ωg.

Note that instead of the tunable transmon coupler, one could also have employed
a tunable harmonic oscillator or cavity for coupling the two qubits as used in Section 1.8.3.
The analysis is essentially the same.

Delft coupler

The Delft coupler [193] introduces tunable nonlinear couplings between two qubits in a
center-of-mass basis. As with the above coupler, it is based on capacitors. The following
example is a simplification of the Supplementary Material of Ref. [193].

Consider the circuit diagram in Fig. 1.20. Following the approach in Section 1.2.2,
we find the following capacitance matrix

C =


C + Cg −C 0 0
−C C + Cg + Cc −Cc 0

0 −Cc C + Cg + Cc −C
0 0 −C C + Cg

 , (1.163)
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Figure 1.20: Circuit diagram of the Delft coupler. Two transmonlike qubits (1 and 2) coupled via another
transmonlike coupler (c).

where we define the flux vector as φ = (φ1, φ2, φ3, φ4)
T . This yields the following circuit

Lagrangian

L =
1
2
φ̇TCφ̇+ E(1)

J cos(φ1 − φ2) + Ec
J cos(φ2 − φ3) + E(2)

J cos(φ3 − φ4). (1.164)

We now change into a CM basis (see Section 1.2.5) of the capacitive subsystem using the
following transformations

ψCM =
1
2
(φ1 + φ2 + φ3 + φ4), (1.165a)

ψ1 =
1√
2
(φ1 − φ2), (1.165b)

ψ2 =
1√
2
(φ4 − φ3), (1.165c)

ψS =
1
2
(φ1 + φ2 − φ3 − φ4). (1.165d)

This decouples the center-of-mass coordinate, ψCM, from the remaining coordinates (note
that this is due to the identical grounding capacitances Cg) as the transformed capacitance
matrix takes the form

K =
1
2


2Cg 0 0 0

0 4C + 2Cg + Cc −Cc −
√

2Cc
0 −Cc 4C + 2Cg + Cc

√
2Cc

0 −
√

2Cc
√

2Cc 2Cg + 2Cc

 , (1.166)

where we choose the basis such that ψ = (ψCM, ψ1, ψ2, ψS)
T . Doing a Legendre transfor-

mation and quantizing, we find the Hamiltonian

Ĥ =
1
2
p̂TK−1p̂− E(1)

J cos(
√

2ψ̂1)− E(2)
J cos(

√
2ψ̂2)− Ec

J cos
(

ψ̂1 − ψ̂2√
2
− ψ̂S

)
, (1.167)

where p̂ is the vector of conjugate momentum of the ψ̂ vector. Expanding the cosines and
changing into annihilation and creation operators [Eq. (1.58)], the noninteracting part of
the Hamiltonian takes the form

Ĥ0 = ∑
i={S,1,2}

[
ωb̂†

i b̂i +
α

2
b̂†

i b̂†
i b̂i b̂i

]
, (1.168)
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where we define ω = 4
√

ECEJ + α and α = −ζ2(EJ + 3E(1)
J )/8, with the effective ca-

pacitive energies being the usual E(i)
C = (K−1)(i,i)/8, which turn out to be the same for

the 1 and 2 mode. Thus, we denote it EC = E(1)
C = E(2)

C . We also define the effective

Josephson energy EJ = E(1)
J + Ec

J /4 and assume that the 1 and 2 modes are resonant, i.e.,

E(1)
J = E(2)

J . Lastly, we define the impedance as given in Eq. (1.56). We do not include the
center-of-mass coordinate as it does not influence the system’s dynamics. Note how the 1
and 2 modes are affected by their “own” Josephson junction and the coupling Josephson
junction.

Assuming that the so-called sloshing mode, ψS, is detuned from the remaining
two modes, we can remove couplings to it, using the rotating-wave approximation from
Section 1.5. After this approximation, the interaction part of the Hamiltonian takes the
form

ĤI = Jb̂1b̂†
2 +

V
2

b̂†
1 b̂1b̂†

2 b̂2 +
V
4

b̂†
1 b̂†

1 b̂2b̂2 +
V
2
(b̂1n̂1b̂†

2 + b̂2n̂2b̂†
1) + H.c., (1.169)

where we use the assumption that the 1 and 2 modes are resonant. The swapping coupling
strength is given by

J =
1

2ζ
(K−1)(1,2) −

ζEc
J

4
− V

2
, (1.170)

where the nonlinear coupling factor is given as

V = −
Ec

J ζ2

16
. (1.171)

The first nonlinear term in Eq. (1.169) is sometimes called the cross-Kerr coupling term
with coupling strength V/2, while the second nonlinear term tunnels a pair of excitations
from one mode to the other with coupling strength V/4. Therefore this term does not
contribute to the Hamiltonian if truncated to a two-level model, but it may result in
corrections to the model. Thus truncating to a two-level model, the Hamiltonian becomes

Ĥ = Ĥ0 + J(σ+
1 σ−2 + σ−1 σ+

2 ) +
V
4

σz
1 σz

2 , (1.172)

where we have both transverse (σ+σ− + σ−σ+) and longitudinal coupling (σzσz) between
the 1 and 2 modes. Both J and V depend on the Josephson energy of the coupler, which
can be tuned using the external flux, thus making the coupling tunable.

Gmon coupler

The gmon coupler introduces tunable swapping couplings between two transmonlike
qubits by exploiting mutual inductance [189, 194–196].

Consider the circuit diagram in Fig. 1.21 of the gmon. A Josephson junction in
parallel with a capacitor and in series with a linear inductor is coupled to a similar setup via
another Josephson junction. An external flux through the coupling loop makes it possible
to tune the inductance of the coupling Josephson junction, such that Leff = Lg/ cos δ
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Figure 1.21: Circuit diagram of the gmon coupler. Two Josephson junctions, LJi , in parallel with a capacitor,
Ci , and in series with a linear inductor, Li , are coupled via a Josephson junction, Lg. The inductors lead to
mutual inductance between the two loops, and an external flux through the middle loop allows for tuning off
the coupling.

[see Eq. (1.15)]. Here we define the dc phase difference across the Josephson junction,
δ = Φ̃ + ξ̄2 − ξ̄1, where the bar indicates the equilibrium position of the coordinates.

The ξ coordinates are passive nodes as they are only coupled to inductors and not
any capacitors. We can therefore remove the ξ coordinates from the Hamiltonian. To do
this, we must first determine the voltage of the φ coordinates. This can be done using
Kirchhoff’s voltage law, Eq. (1.3b), which yields

Vi = (LJi + Li) İi ±M( İ2 − İ1), (1.173)

where M is the mutual inductance between the right and left loop and we have plus for
i = 1 and minus for i = 2. In order to simplify this expression we define Lqi = LJi + Li−M,
which is the inductance in the ith loop.

To determine the mutual inductance M, we consider a current I1 in the left qubit. A
small fraction of this current flows through the coupler Josephson junction. This fraction
is

Ig =
L1

L1 + L2 + Leff
I1, (1.174)

where we use the effective inductance in place of Lg. This current generates a flux in the
right qubit φ2 = L2 Ig. This means that we can express the mutual inductance as

M =
φ2
I1

=
L1L2

L1 + L2 + Leff
. (1.175)

With the mutual inductance determined, we are ready to find the Hamiltonian of the
circuit in Fig. 1.21. It is as follows:

H = ∑
i=1,2

[
q2

i
2Ci

+
ξ2

i
2Li
− 1

LJi
cos(φi − ξi)−

1
Lg

cos(ξ1 − ξ2 + Φ̃)

]
, (1.176)

where qi is the conjugate momentum of the ith flux. Since the ξ coordinates are passive
nodes, we want to remove them from the Hamiltonian. We do this by minimizing ξi for
a fixed φi. This is equivalent to solving Lagrange’s equations, Eq. (1.27), for ξi. This is
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straightforward but cumbersome work as we end up with transcendental equations for
ξi. We, therefore, skip straight to the resulting Hamiltonian. Details can be found in Ref.
[195]. The Hamiltonian in the harmonic and weak coupling limit, Lq � M, becomes

H = ∑
i=1,2

[
q2

i
2Ci

+
φ2

i
2Lqi

]
+ Γφ1φ2, (1.177)

where we do not include the anharmonic corrections, see Ref. [195]. The coupling is given
as

Γ = − M
Lq1Lq2

= − L1L2
(L1 + Lj1)(L2 + LJ2)(Leff + L1 + L2)

, (1.178)

and changing into annihilation and creation operators yields a coupling strength of

g =
1
2

Γ
√

ζ1ζ2, (1.179)

where the impedances are found in Eq. (1.56). This coupling strength is tunable via the
parameter Leff.

1.11 Summary and outlook

In this chapter, we have presented various methods used when analyzing superconducting
electrical circuits. We have summarized the methods in Fig. 1.22.

An analysis usually starts by determining over which components possible exter-
nal flux should be added, either using Kirchhoff’s law directly, as in Section 1.2.1 or via
constructing a spanning tree as described in Section 1.2.2. The Lagrangian can then be
constructed by determining the capacitor (kinetic) energy and subtracting the inductive
(potential) energy as in Section 1.2.3. The Hamiltonian is found using a Legendre transfor-
mation in Section 1.2.4. One can then optionally change basis, e.g., into normal modes as
in Sections 1.2.5 and 1.2.6. The Hamiltonian can then be quantized using the canonical
quantization in Section 1.3.1. Asserting that the system is only weakly anharmonic, it
can be rewritten into interacting harmonic oscillators perturbed by the anharmonicity
following the approach in Section 1.4. After changing to annihilation and creation opera-
tors, the rotating-wave approximation can be applied if needed as in Section 1.5. If the
anharmonicity is large, the system can be truncated into qubits or qudits using either the
methods in Section 1.6. Note that this final truncation of the Hilbert space is not strictly
necessary to perform computations using the superconducting circuit as other approaches
work with the entire Hilbert space of the oscillators. These approaches are beyond the
scope of this chapter, and more information can be found in Refs. [197–209].

Besides the essential steps mentioned above, we have also discussed control of
the modes via microwave driving in Section 1.7 and used to perform single-qubit gates.
Simple coupling of modes is discussed in Section 1.8, and this enables the implementation
of two-qubit gates. We also discussed coupling to linear resonators and inductive coupling
via mutual inductance in the same section. Finally, we have discussed how to include
noise when calculating the dynamics of the system using the Bloch-Redfield model and
master equation in Section 1.9. We have illustrated the methods with concrete examples
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Figure 1.22: Overview of the methods presented in this chapter. Blue blocks indicate the essential methods,
while yellow blocks indicate optional steps. Green boxes are beyond the scope of this chapter. Round blocks are
assertions that must be satisfied before advancing in the flowchart.
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throughout the chapter, and finally, in Section 1.10 we discussed several key examples of
contemporary qubit designs and some couplers that allow the qubits to interact.

The methods presented here are by no means exhaustive regarding circuit analysis.
Classical electrical circuit analysis has been performed for decades by both physicists
and engineers, and much more information on this subject can be found in the existing
literature. Therefore, the methods presented here should not be seen as a limit to what can
be done with superconducting circuits but merely as a starting point for researchers new
to the field of superconducting electrical circuit analysis.

In the following three chapters of this thesis, we will consider controlled gates
which can be implemented in superconducting circuits and analyzed using the methods
presented in this chapter. Therefore, these three gates can be seen as an example of what
this chapter’s methods can be used.
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CHAPTER 2

The n-bit iToffoli gate

The inspiration for the n-bit iToffoli gate is a circuit I worked on during my master’s thesis; however,
it was not until much later, during my PhD studies, that I realized it could be engineered into a
controlled gate. Apparently, we were not the only people working on this, since when we put the
preliminary paper on arXiv, a research group from the University of Amsterdam contacted us, and
we ended up collaborating with them, making Ref. [V], on which this chapter is based. Text and
figures have been edited to fit into the thesis.

The n-bit Toffoli gates are a family of reversible logic gates, where each gate has n control
bits and one bit, which is inverted if the control bits are in the right state. The n-bit Toffoli
gates, and especially the two-bit Toffoli gate, also known as the Toffoli gate [210], are of
great interest in the field of quantum information [87]. The two-bit Toffoli gate, on its own,
is universal in classical computing, and together with the Hadamard gate, it constitutes a
universal set of quantum gates [87]. The n-bit Toffoli gates are further important since they
play a pivotal role in schemes for quantum error correction [211, 212], in fault-tolerant
quantum computing [213, 214], and in Shor’s algorithm [215].

While high-fidelity quantum gates on one or two qubits have been reported [216–
220], proper implementations of multiqubit gates such as the Toffoli gate remain chal-
lenging. In a conventional circuit decomposition, where the Toffoli gate is performed as a
sequence of one- and two-qubit gates, it is known that at least five two-qubit operations
are needed to obtain a two-bit Toffoli gate. For larger n, these numbers grow steeply: The
n-bit Toffoli can be implemented with a circuit of depth O(log(n)), requiring O(n) ancilla
bits. If no ancillae may be used, the number of controlled-NOT (CNOT) gates is lower
bounded at 2n, although the best-known implementations require a quadratic number of
CNOT gates [221].

Circumventing this decomposition has also attracted significant attention. Refer-
ence [222] considers a shorter circuit for the two-bit Toffoli gate by requiring one qutrit and
Refs. [85, 223, 224] implement a similar scheme, employing superconducting transmon
qubits or atoms in coupled cavities. Other proposals rely on the properties of resonant
driving, such as the two-bit Toffoli gate using a modified Jaynes-Cummings model [225] or
other multiqubit gates in integrable spin chains [226, 227]. References [228–230] describe
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a Toffoli gate for general n by exploiting the Rydberg blockade, and Ref. [231] proposes
the same gate using trapped ions. Another proposal for the two-bit Toffoli gate using the
Rydberg atom is based on Stark-tuned three-body Förster resonances [232]. A recent result
in Ref. [233] addresses a driven two-bit Toffoli gate for silicon spin qubits.

This chapter presents a simple single-step implementation of the n-bit Toffoli gate
for an arbitrary n. We require a strong, Ising-type coupling between a “target” qubit and
n “control” qubits, and then apply a driving field to invert the target qubit selectively.
This results in an operation we call iToffoli, which can be straightforwardly mapped into
a conventional Toffoli gate by demoting a single qubit to an ancilla. Surprisingly, we
find that the gate time and error do not increase with n in theory, which beats previously
known results. We critically note that our assumptions may break down at larger system
sizes: We require interactions between n qubits and a single target, where the interaction
strength should not decrease with n. Moreover, the required driving frequency scales
with the number of qubits. Still, the protocol could significantly enhance the capabilities
of specific near-term quantum computers [234], and we perform a detailed study of its
performance on superconducting circuits. Our simulations find that when decoherence is
neglected, the fidelity is approximately constant above 0.995, and when decoherence is
included, the iToffoli attains fidelities above 0.98 with up to five control qubits, for gate
times of 50 ns. A similar driving approach allows a “fanout” gate, where a CNOT gate
takes place between a single control and n target qubits. We discuss its application in error
correction, where qubits can be encoded in fewer steps.

The n-bit iToffoli gate is closely related to previous work on multiqubit gates that
exploit the Rydberg blockade interaction, especially Ref. [228]. In contrast to such prior
art, we do not assume a perfect blockade interaction but consider an Ising model with
finite interaction strength, allowing a rigorous analysis of gate times and errors. Moreover,
our broader perspective results in the same operation in fewer steps without restricting
the study to a single platform.

This chapter is organized as follows: In Section 2.1 we present a simple Hamiltonian
and show how it yields an n-bit Toffoli gate. As an example, we consider the n = 1
case, which turns out to be identical to the universal Barenco gate. We then discuss the
effectiveness of the gate, exploring the important n = 2 case as an example in Section 2.1.3.
In Section 2.2 we explain how to use the same ideas to implement a CNOT gate on several
qubits at the same time. We further, in Section 2.3, present possible implementations of the
gates using superconducting circuits. In Section 2.4 we combine the gates and show how
to create a more efficient quantum error correction by simulating the three-qubit bit-flip
correcting code and the Steane seven-qubit code using our single step gates. In Section 2.5
we provide a summary and outlook.

2.1 Implementation of selective inversion

Consider n + 1 qubits each with frequency ωj. All of the qubits are connected with Ising
coupling with strength Jjk as described by the Ising Hamiltonian

ĤIsing =
1
2

n

∑
j<k=0

Jjkσz
j σz

k , (2.1)
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while the non-interacting part of the Hamiltonian is given as

Ĥ0 = −1
2

n

∑
j=0

ωjσ
z
j , (2.2)

where σx,y,z denote the Pauli operators. We denote the quantum states in the computa-
tional basis by |x0,x〉, where x0 ∈ {0, 1} represents states of the zeroth qubit, which we
will call the target qubit, and x ∈ {0, 1}n denotes the string of the state of the remaining
qubits, which we call control qubits. These states are eigenstates of H0 +HIsing, whose
energies we denote by Ex0,x. We drive the zeroth qubit with a field of the form

Ĥdrive = α0(t)σx
0 + β0(t)σ

y
0 . (2.3)

When the driving is included in the Hamiltonian, the Hilbert space decomposes into
conserved subspaces, one for each x. Each of these subspaces is spanned by |0,x〉 and
|1,x〉. We define the energy gap between such two states due to the Ising interaction, as

∆x = E0,x − E1,x + ω0 =
n

∑
j=1

Jj0(−1)xj , (2.4)

where xj denotes the jth entry in the string of control qubit states. Similarly, we define the
mean energy as Ēx = (E0,x + E1,x)/2. The Hamiltonian of a given subspace is then

Ĥx =
1
2
(∆x −ω0)σ

z + α(t)σx + β0(t)σy + Ēx12. (2.5)

Here 12 denotes the two-dimensional identity matrix.
We now consider the driving fields. In general different combinations of the driving

fields, αj(t) and β j(t) will lead to the same result, and here we consider a balanced two
quadrature driving

α0(t) = Ω cos [(∆0 −ω0)t + θ] ,

β0(t) = Ω sin [(∆0 −ω0)t + θ] ,
(2.6)

where ∆0 is the driving frequency of qubit 0, Ω is the Rabi frequency, and θ is the driving
phase. We now transform into the rotating frame using the transformation

Ûint(t) = exp

i

Ĥ0 +
1
2

∆0σz
0 + ∑

x∈{0,1}n

Ēx |x〉〈x|

 t

 . (2.7)

In this frame, for each subspace labeled by x, the Hamiltonian takes the form,

Ĥx,I = δxσz
0 + Ω(σx

0 cos θ + σ
y
0 sin θ), (2.8)

where δx = (∆x − ∆0)/2 defines the detuning. With the now time-independent Hamilto-
nian we can calculate the time evolution operator for all two-dimensional subspaces

Û (t) =
⊕

x∈{0,1}n

(
12 cos vxt− i

σ · vx
vx

sin vxt
)

, (2.9)
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where σ = (σx, σy, σz), and

vx =

Ω cos θ

Ω sin θ

δx

 , (2.10)

with vx = |vx| being the length of the vector.
It follows from Eq. (2.9) that we have obtained selective state inversion. In order to

see this, we consider the case where the driving frequency is resonant with an energy gap
of a single subspace x′, i.e., ∆0 = ∆x′ , in which case we obtain a rotation around a vector
in the x-y plane, leading to a perfect inversion at times T = (2m + 1)π/2Ω for m ∈ Z,
where the time-evolution operator of that subspace takes the form

Ûx′ (t = T) = ±i (σx cos θ + σy sin θ) . (2.11)

The remaining off-resonant subspaces, i.e., assuming |Ω| � |∆0 − ∆x|, evolve approxi-
mately as if no driving takes place:

Ûx(t = T) ≈ exp(−iδxσzt). (2.12)

Thus we conclude that if we set ∆0 = ∆x′ , we obtain an inversion of the resonant sub-
spaces, while the off-resonant subspaces are not inverted.

Note that we do not require the Jjks to be equal, but we do require them to be
larger than the Rabi frequency, i.e., Jjk � Ω, to satisfy the off-resonance condition. We
further note that if instead of the two quadratures in Eq. (2.6), we had used one quadrature
driving, i.e., β(t) = 0, we would have had two driving fields of opposite sign:

α(t) = 2Ω
(

ei(∆0−ω0)t + e−i(∆0−ω0)t
)

. (2.13)

When ω0 = 0, there would be two resonant subspaces in which the zeroth qubit is
inverted. This problem is fixed by demanding a relatively large frequency of the zeroth
qubit, ω0 � Ω. Moreover, in the case β = 0 the above results are then no longer exact, but
remain valid if the rotating-wave approximation (∆x, ∆0 � Ω) applies.

2.1.1 The Barenco gates

There is no two-qubit gate in classical reversible computing that is both universal and
reversible. However, in quantum computing, any entangling two-qubit gate is universal
when assisted by one-qubit gates [235, 236]. Some two-qubit gates are even universal on
their own. The first two-qubit gates, which were shown to be universal, were the family
of Barenco gates [237], and it turns out that our implementation above yields exactly such
gates for n = 1. Therefore, and for the sake of an example, we discuss the n = 1 more
in-depth.

Consider the Hamiltonian Ĥ = Ĥ0 + ĤIsing + Ĥdrive for n = 1. In this case
the Hamiltonian splits up into two subspaces: {|00〉 , |10〉} and {|01〉 , |11〉}. We now
transform into the interacting picture using the transformation

Ûint = exp
[
Ĥ0 − δ1σz

1 +
1
2

δ114 + ∆0σz
0 σz

1

]
, (2.14)
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2.1. Implementation of selective inversion

where δ1 is some detuning from the frequency of the control qubit. Now, if we require
the driving to be on resonance with the target qubit, i.e., ∆0 = −J10 then the interacting
Hamiltonian takes the form

ĤI = δ1(|01〉〈01|+ |11〉〈11|) + Ω(σ+e−iθ + σ−eiθ). (2.15)

Exponentiating this to get the time evolution operator we obtain

Û (t) =


1 0 0 0
0 1 0 0
0 0 eiδ1t cos Ωt −iei(δ1t−θ) sin Ωt
0 0 −iei(δ1t+θ) sin Ωt eiδ1t cos Ωt

 , (2.16)

which is identical to the family of Barenco gates.
As the Barenco gates are closely related to the Deutsch gate, this begs the question

whether our implementation yields a Deutsch gate for n = 2. However, this turns out not
to be the case; there is a phase of i to differ.

2.1.2 The (n− 1)-bit Toffoli gate

To form an approximate Toffoli gate with n control qubits, we choose the driving frequency
∆0 to be such that the zeroth qubit flips if and only if all control qubits are in the state |1〉,
i.e., ∆0 = ∆11...1. Equations (2.11) and (2.12) suggest that we have indeed obtained the
aimed operation. However, moving back from the rotating frame to the laboratory frame
using Ûx,lab = Û †

int(t)Ûx [see Eq. (2.7)], we encounter two discrepancies:

(i) The additional phases exp(−iEx0,xT) accumulated on each computational basis state
due to ĤIsing.

(ii) The additional phase −i in the resonant subspace x = 1 . . . 1. (note that this is not a
global phase).

Note that such phases in the laboratory frame become relevant when subsequent non-
commuting operations are performed.

The 2n+1 different energies Ex0,x can in general be hard to compute for a large
system. Undoing them may be even harder. However, one can conceive various specific
configurations where resetting the phases is possible. In particular, whenever the Ising
couplings Jjk are symmetric under permutations on the control qubits, then the evolution
depends only on the Hamming weight (the number of qubits in state |1〉) of the control
qubits, which we define as q = |x|H . In such cases, only n + 1 subspaces are unique, and
hence only n + 1 relative phases have to be considered. Various techniques can then be
used to undo these dynamic phases. One example is to choose a total gate time T such that
all phases Ex0,xT become a multiple of 2π. For example, when all Jjk are integer multiples
of some energy scale J, then the values of Ex0,x are also integer multiples of 2J such that a
total driving time T = 2kπ/J (k ∈ N) gets rid of unwanted phases. Note that random
experimental imperfections in Jjk may still cause the fidelity of such phase recurrences to
be affected. A different strategy is to invert the sign of all Jjk halfway through the protocol
[227]. This undoes the accumulated phases, although care has to be taken to change the
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Chapter 2. The n-bit iToffoli gate

Figure 2.1: Circuit that turns two applications of the iToffoli (here indicated as the result of our protocol, with
total time 2T = π/Ω and arbitrary θ) into a conventional Toffoli gate, at the cost of a single ancilla. The Hs
denote Hadamard gates.

phase θ of the resonant driving fields such that the previously caused rotation on the
zeroth qubit is not counteracted.

Assuming that we removed the phases due to ĤIsing, e.g., by transforming into the
frame rotating with ĤIsing, we turn to removing the phase −i. This phase results from
evolution by a Hamiltonian with trace 0, which generates unitaries with determinant 1.
We will refer to the operation that acts as −iσx on the target, if and only if all controls
are in the state |1〉. To turn this into a conventional Toffoli gate, we propose the circuit
in Fig. 2.1, which employs a single ancilla qubit and requires a Hadamard gate before
and after our gate. Applying the resonant operation twice leads to a phase −1 in the
resonant subspace. This is similar to a multiple-controlled Z gate except that the sign is
applied both when the target is in state |0〉 and when it is in state |1〉. Hence, we obtain a
multiple-controlled Z gate which applies a sign −1 to the control qubits if and only if all
these qubits are in the state |1〉. The state of the target is unimportant, and we may just as
well initialize it to |0〉 before the protocol. Finally, the controlled Z gate is mapped to a
controlled X gate by using two Hadamard gates; these can be applied to any control qubit,
which then takes the role of target of the resultant (n− 1)-bit Toffoli gate.

2.1.3 Simulation of the two-bit iToffoli gate with decoherence

To illuminate the system’s performance in a practical setting, we simulate our protocol for
the iToffoli gate under realistic decoherence for n = 2. We characterize the performance of
the gate by calculating the average process fidelity, which is defined as [238, 239]:

F̄ =
∫

dψ〈ψ|Û †
targetE(ψ)Ûtarget|ψ〉, (2.17)

where integration is performed over the subspace of all possible initial states, Ûtarget is the
target gate, and E is the quantum map realized by our system. We simulate the system
using the Lindblad master equation (see Section 1.9) and the interaction Hamiltonian of
Eq. (2.8) using the QUTIP PYTHON toolbox [240]. The result is then transformed into the
frame rotating with the diagonal of the Hamiltonian, and then the average process fidelity
is calculated using the simplified formula found be Ref. [241]

F̄(t) =
1
5
+

1
80

16

∑
j=1

Tr
(
ÛtargetU†

j Û †
targetEt(Ûj)

)
, (2.18)
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Figure 2.2: Simulation of the two-bit iToffoli gate for different values of the driving J. The straight red line
indicates the gate time T on the right y axis, while the blue lines indicate the average fidelity, at the gate time,
on the left y axis. The dashed blue line is the average fidelity with a decoherence time of T1 = T2 = 30 µs,
while the solid line is without decoherence.

which evaluates how well a quantum map, Et, approximates the target gate, Ûtarget, over a
uniform distribution of input quantum states, Ûj. The target operator is the time evolution
operator in Eq. (2.9).

We choose parameters that lie in a realistic range for a superconducting circuit
experiment for all simulations. However, our simulation is done for the general Hamil-
tonian and thus valid for any implementation with identical parameters. In particular
we have J0k/2π = J/2π = 40 MHz and all other couplings are zero, while we change the
Rabi frequency Ω/2π from 2 to 10 MHz. The average fidelity of the simulation can be
seen in Fig. 2.2 together with the gate time. The figure shows the average fidelity both
without any decoherence and with decoherence times of T1 = T2 = 30 µs [53], where
T1 indicates the relaxation time and T2 indicates the dephasing time. Without any deco-
herence, we find that the average fidelity increases asymptotically towards unity as the
driving decreases, with the only expense being an increase in gate time. Since decoherence
increases over time, a longer gate time means lower fidelity, which we observe when
including decoherence in the simulations. In this case we find that the fidelity peaks just
above 0.99 at J/Ω = 8, which yields a gate time of T = 62.5 ns. This fidelity is higher
than any previously measured Toffoli gate fidelities [232, 242]. However, we note that the
fidelity is dependent on the parameters J and Ω, and thus changing these will change the
fidelity. The oscillation of the average fidelity is due to a minor mismatch in the phase of
the evolved state compared to the desired gate, which disappears when J/Ω ∈ 2Z.

As an indication of the fidelity of a conventional Toffoli gate, we simulate the same
protocol for time 2T (see Fig. 2.1), resulting in still above 0.98 fidelity. An additional two
Hadamard gates should still be applied, but we remain agnostic to the errors these would
introduce.

We investigate the peak fidelity of the n-bit iToffoli gate as a function of the number
of control qubits. This is done by simulating the gate for different n but with J/Ω = 8
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Chapter 2. The n-bit iToffoli gate

Figure 2.3: Average fidelity as a function of the number of qubits for the n-bit iToffoli gate and the CNOTn

gate. Simulations done with noise have a decoherence time of T1 = T2 = 30 µs. All simulations are done with
J/Ω = 8, i.e., peak fidelity (cf. Fig. 2.2). Note that the one-bit iToffoli and CNOT1 are the same gate, which is
an example of a Barenco gate.

in all cases. The result is shown in Fig. 2.3. We find that when we omit the decoherence
of the qubits, the average fidelity [found using Eq. (2.18)] increases when there are more
than two control qubits, and we stay above 0.995 fidelity for all cases. When decoherence
is included, the fidelity decreases as the number of qubits increases, as one would expect.
Thus we conclude that the major contribution to errors in the scheme is the decoherence
of the qubits.

2.2 A single control, multiple inversion gate

Multiple applications of a controlled-NOT gate on several different qubits, with the same
qubit controlling all the gates, are essential in many aspects of quantum information,
particularly in error correction such as Shor’s code [87]. We, therefore, present a scheme
for implementing inverting multiple qubits with the same control qubit in a single step.
We will refer to this scheme as a CNOTn-gate, but it is also often known as a fan-out gate.

Starting with n + 1 qubits, we employ the same overall Hamiltonian as in Sec-
tion 2.1, Ĥ = Ĥ0 + ĤIsing + Ĥdrive, where Ĥ0 and ĤIsing are given in Eqs. (2.1) and (2.2),
respectively, while we require Jjk = 0 for k > 0. The driving Hamiltonian is now given as

Ĥdrive =
n

∑
j=1

[
αj(t)σx

j + β j(t)σ
y
j

]
. (2.19)

where the driving fields are given as in Eq. (2.6). This is essentially identically to the system
in Section 2.1; however, now with driving on what was before denoted the control qubits.
We, therefore, denote our quantum states in the same way as before, |x0,x〉; however,
now we are interested in flipping the qubits in the state x conditional on the state of the
zeroth qubit x0. This means that the Hilbert space only decomposes into two conserved
subspaces, one spanned by {|0,x〉}, and one spanned by {|1,x〉}. We now transform into
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2.3. Superconducting circuit implementation

a rotating frame using the transformation

Ûint(t) = exp

i

Ĥ0 +
1
2

n

∑
j=1

Jj0σz
j σz

0

 t

 . (2.20)

In this frame the Hamiltonian takes the form

ĤI =
n

∑
j=1

Ω
{

σx
j cos

[
(∆j − Jj0σz

0 )t + θj

]
+ σ

y
j sin

[
(∆j − Jj0σz

0 )t + θj

]}
, (2.21)

from which we see that we obtain selective inversion of the n qubits, at time T = (2m +
1)π/2Ω, if we require ∆j = −Jj0. The time evolution operator takes the form

Û (t = T) = |0〉〈0|0
n⊗

j=1
Îj + (−i)n|1〉〈1|0

n⊗
j=1

(
σx

j cos θj + σ
y
j sin θj

)
, (2.22)

where Îj is the identity of the jth qubit and |0〉〈0|0 and |1〉〈1|0 operate only on the zeroth
qubit. We find that the phase (−i)n on the inverting part of the operator is now dependent
on the number of target qubits. In this case, it is canceled by a single-qubit phase gate
of the form diag(1, in) on the control qubit. Note that in the case of an even number of
qubits, the phase is either ±1, which can be taken care of by choosing suitable phases θj,
in which case the single-qubit phase gate is unnecessary.

Since the only difference between the Hamiltonian of the CNOTn gate and the n-bit
Toffoli gate in Section 2.1 is which qubits are being driven, a numerical simulation of the
CNOTn gate as a function of the ratio J/Ω yields an average fidelity comparable to the one
for the n-bit iToffoli gate in Fig. 2.2. However, the CNOTn gate has a slightly lower fidelity
since more qubits are now inverted. The peak average fidelity can be seen in Fig. 2.3,
where the average fidelity decreases as a function of the number of qubits. This behavior
is expected since the CNOTn gate does not approximate the identity better for larger n.
Note that the one-bit iToffoli gate is the same as the CNOT gate, which is why the average
fidelities are identical in this case. This is also the fidelity one gets when simulating the
Barenco gate in Section 2.1.1.

2.3 Superconducting circuit implementation

The ideas presented here are applicable in various quantum information technologies, e.g.,
ultracold atoms of the Rydberg type, which natively feature a strong Ising-type interaction
[243] or trapped ions which are very well suited to simulate the Ising model with all-to-all
connectivity [244].

Notwithstanding, we focus on implementing the gates using superconducting
circuits, which is the technology in focus in this thesis. Such an implementation would
require quite large longitudinal ZZ couplings, in the sense that they must dominate
over the transversal XX couplings. For superconducting circuits, this regime is within
experimental reach according to Ref. [193].

We propose to implement the n-bit Toffoli gate and the CNOTn gate by connecting n
transmon qubits via Josephson junctions (with as small a parasitic capacitance as possible)
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Figure 2.4: Schematics of (a) the two-bit and (b) the three-bit iToffoli gates with the green spheres (ω0)
representing the target qubit and the blue spheres representing the control qubits. Also shown are (c) and (d)
the superconducting circuits yielding the models in (a) and (b), respectively. The different parts of the system
are colored according to their role, as per (a) and (b).

to another transmon qubit, which we call the zeroth transmon, in correspondence with the
naming of the qubits in Section 2.1. This can be seen for n = 2 and 3 in Fig. 2.4. Following
the approach presented in Section 1.2.3 we obtain the Lagrangian for the circuit

L = 2
n

∑
i=0

Ciφ̇
2
i + 2

n

∑
i=1

Cz,i (φ̇i − φ̇0)
2 +

n

∑
i=0

Ei cos φi +
n

∑
i=1

Ez,i cos(φ0 − φi), (2.23)

where φ̂i are the node fluxes across the Josephson junctions of the respective qubits. The
first two terms come from the capacitors and are interpreted as kinetic terms, and the
remaining terms come from the Josephson junctions and are interpreted as potential
terms. The n indicates the number of blue transmon qubits on the circuit diagram, i.e., in
Fig. 2.4(c) n = 2.

The Lagrangian can be rewritten into the Hamiltonian doing the Legendre trans-
formation in Section 1.2.4

H =
1
2
qTC−1q −

n

∑
i=0

Ei cos φi −
n

∑
i=1

Ez,i cos(φ0 − φi), (2.24)

76



2.3. Superconducting circuit implementation

where the capacitance matrix in the two-bit case [Fig. 2.4(c)] is

C =

C0 + Cz,1 + Cz,2 −Cz,1 −Cz,2
−Cz,1 C1 + Cz,1 0
−Cz,2 0 C2 + Cz,2

 , (2.25)

while in the three-bit case [Fig. 2.4(d)] it becomes

C =


C0 + Cz,1 + Cz,2 + Cz,3 −Cz,1 −Cz,2 −Cz,3

−Cz,1 C1 + Cz,1 0 0
−Cz,2 0 C2 + Cz,2 0
−Cz,3 0 0 C3 + Cz,3

 , (2.26)

and so on for higher n. The typical transmon has a charging energy much smaller than the
junction energy, and therefore the phase is well localized near the bottom of the potential.
We can therefore expand the potential part of the Hamiltonian to fourth order

U(φ) =
n

∑
i=0

Ei

[
1
2

φ2
i −

1
24

φ4
i

]
+

n

∑
i=1

Ez,i

[
1
2
(φi − φ0)

2 − 1
24

(φi − φ0)
4
]

.

By collecting terms we write the full Hamiltonian as

H =
n

∑
i=0

[
1
2

EC
i q2

i +
1
2

EJ
i φ2

i −
1

24
EJ

i φ4
i

]
+

n

∑
i=1

(C−1)(i,0)qiq0

+
n

∑
i>j=1

(C−1)(i,j)qiqj +
n

∑
i=1

Ez,i

[
−1

4
φ2

i φ2
0 − φiφ0 +

1
6

(
φ3

i φ0 + φiφ
3
0

)]
,

where the effective energy of the capacitances is EC
i = (C−1)(i,i)/8. Note that there is a

capacitive coupling between all of the qubits regardless of whether there is a capacitor
between them. The effective Josephson energies are

EJ
i =Ei + Ez,i for i 6= 0, (2.27a)

EJ
0 =E0 +

n

∑
i=1

Ez,i. (2.27b)

We can now quantize the Hamiltonian following the approach in Section 1.3.1 and then
change into annihilation and creation operators, and if the anharmonicities αi = EC

i /2 of
the qubits are sufficiently large, we can justify projecting the Hamiltonian in the lowest
two eigenstates of each qubit (Section 1.6.1)

Ĥ =− 1
2

n

∑
i=0

ωiσ
z
i +

1
2

n

∑
n=1

Jz
i σz

i σz
0 +

1
2

n

∑
i=1

Jx
i
(
σ+

i σ−0 + σ−i σ+
0
)

+
1
2

n

∑
i 6=j=1

Jx
ij

(
σ+

i σ−j + σ−i σ+
j

)
,

(2.28)

where we neglect terms that do not conserve number excitation. We note that the first
term is the desired non-interacting Hamiltonian, and the second term is the desired Ising
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coupling term. The qubit frequencies and the coupling strengths are given as

ωi =
√

8EC
i EJ

i +
1
2

EC
i +

1
6

Ez,iζiζ0 for i 6= 0, (2.29a)

ω0 =
√

8EC
0 EJ

0 +
1
2

EC
0 +

1
6

n

∑
i=1

Ez,iζiζ0, (2.29b)

Jz
i =− 1

12
Ez,iζiζ0, (2.29c)

Jx
i =

(C−1)(i,0)√
ζiζ0

− Ez,i
√

ζiζ0 +
1
4

Ez,i(ζi + ζ0)
√

ζiζ0, (2.29d)

Jx
ij =

(C−1)(i,j)√
ζiζ j

, (2.29e)

where the impedance is given as in Eq. (1.56).
If we operate in the weak-coupling regime for the transversal couplings Cz,i �

C0, Ci, for all i, the detuning δi0 = ωi −ω0, of the zeroth qubit compared to all other qubits,
becomes much larger than the transverse couplings in Eq. (2.29d). We can then ignore the
first-order excitation swaps between these qubits using the rotating wave approximation.
In this case, the Hamiltonian takes the form

Ĥ = Ĥ0 +
1
2

n

∑
n=1

Jz
i σz

i σz
0 +

1
2

n

∑
i 6=j=1

Jx
ij

(
σ+

i σ−j + σ−i σ+
j

)
. (2.30)

The last term represents the cross-couplings between the ith and jth qubit for i, j =
1, 2, . . . , n. We get rid of this term as we are in the weak-coupling limit, Cz,i � Ci, which
makes the Hamiltonian take the desired form.

Finally, we can engineer the driving term Ĥdrive using the microwave approach
presented in Section 1.7. In Appendix B we present realistic parameters for the circuit
model which realizes the desired iToffoli gate.

2.4 Applications within quantum error correction

In this section, we discuss how to use the results in this chapter to create an efficient error
correction code. We consider the three-qubit bit-flip code [87] and the Steane seven-qubit
code [245, 246]. We focus on bit flip rather than phase errors in the three-qubit code since
the decay time for relaxation is usually half the decay time for dephasing in the case of
transmons [151, 247]. One can, however, easily change the code into correcting phase
errors by applying Hadamard gates around the source of error [87]. This could be useful
in an implementation of a 0-π qubit, which has a long relaxation time but a rather short
dephasing time [182, 183, 248]. The three-qubit code has previously been implemented
using superconducting circuits to a fidelity of 0.85 [223] and with trapped ions to a fidelity
of approximately 0.98 [249]. The Steane seven-qubit code has been implemented with a
state fidelity between 0.85 and 0.95 using trapped ions [250].

In the following, all simulations are done without worrying about the phase
generated by the inverting, i.e., it is done with the iToffoli gate, as it is irrelevant for the
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Figure 2.5: Effective three-qubit error correction code using two CNOT2 gates and a Toffoli gate. We label the
top qubit 1, the middle qubit 2, and the lowest qubit 3. Note that the figure is shown with regular Toffoli gates,
while our simulation is done with the iToffoli gates; however, it does not change the result.

encoding. The error correction codes are simulated using the Lindblad master equation
using the QUTIP toolbox [240]. All Ising couplings are assumed to be J/2π = 40 MHz.

2.4.1 Three-qubit bit flip code

The original three-qubit bit-flip code works by first applying two CNOT gates before
the error source, and then two CNOT gates are followed by a single two-bit Toffoli gate.
This means a total of five steps. However, using our results, the code can be performed
in merely three steps: apply a single CNOT2 gate before the source of error, a single
CNOT2 gate after the error, and finally a single n-bit Toffoli gate. A quantum circuit of the
error-correcting code can be seen in Fig. 2.5.

The first two qubits are initiated in the state |0〉, while the third qubit is initiated in
the normalized state

|ψ〉 = α |0〉+ β |1〉 . (2.31)

The system is then operated as a CNOT2 gate by driving the first two qubits with an Rabi
frequency of Ω = J/8 for one period, i.e., T = 50 ns. After this, a bit-flip error might
occur. This is followed by another driving of the two first qubits for one period. Finally,
the last qubit is driven for one period. All this is done in 150 ns. By averaging over the
Bloch sphere for the input state |ψ〉 in Eq. (2.31) we find the average fidelity of the code.
In Fig. 2.6 we present the average fidelities for the three-qubit error correction code for a
single bit flip on the different bits. The simulation shows that the error is corrected with a
fidelity above 0.99.

2.4.2 Steane code

The Steane code is a bit more intricate than the three-qubit code because it encodes seven
qubits. This is two more than the minimum number of qubits needed for protection
against both bit-flip and phase errors [87], but it is the simplest Calderbank-Shor-Steane
(CSS) code (stabilizers built from only either Z or X rotations) that protects against both
bit-flip and phase errors. The encoding scheme for the Steane code can be seen in Fig. 2.7.

As the encoding scheme only uses CNOT2 and CNOT3 gates, it is necessary to be
able to perform gate operations on some of the seven qubits but not all. This can be
achieved in situ in superconducting circuits by varying the magnetic flux through the
Josephson junctions, which connects qubits that are desired unconnected. An overview of
how to connect the seven qubits in the four steps of the encoding can be seen in Fig. 2.8.
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Figure 2.6: Average fidelity [Eq. (2.18)] of different states found by simulating the quantum error correction
code shown in Fig. 2.5 using the gates developed in the previous sections: (a) no error, (b) error on the first
qubit, (c) error on the second qubit, (d) error on the third qubit.
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Figure 2.7: Encoding scheme for the Steane code. Qubit Q is initially in state |ψ〉, and the circuit encodes it
into a seven-qubit state using one CNOT2 gate and three CNOT3 gates. The first three qubits are prepared in
the state |+〉 = (|0〉+ |1〉)/

√
2, while the last three qubits are prepared in the state |0〉.

Using the regular CNOT gate, the Steane encoding takes 11 steps, while with CNOTn gates,
it can be done in just four steps.

Seven qubits are initialized, three in the state |+〉 = (|0〉+ |1〉)/
√

2 and three in
the state |0〉, while the last qubit is prepared in the state of Eq. (2.31). The driving of the
target qubits is the same for all steps, yielding a total time of 4T for the encoding. We
average over the Bloch sphere for the input state |ψ〉 in order to find the average fidelity.
The fidelity is found by taking the overlap between the seven-qubit output state and
the state α |0〉L + β |1〉L, where the expressions for the two states |0〉L and |1〉L are the
appropriate encoding states for the Steane code when the encoding is done with iToffoli
gates. We absorb the additional phases in that come with our driven protocol into the
definitions of |0〉L and |1〉L. These additional phases do not change the error-correcting
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Figure 2.8: The four steps realizing the Steane code using CNOTn gates. Green spheres (spheres with one
connection) represent target qubits, i.e., qubits on which the NOT operation is performed, blue spheres (spheres
with multiple connections) are control qubits, and the yellow spheres (unconnected spheres) represents idle
qubits. The four steps (a)-(d) corresponds to the four gates in Fig. 2.7.

properties of the code; see the appendix of [V].
The results of the simulation can be seen in Fig. 2.9. The result is similar to the

one presented in Fig. 2.2, however, with longer gate times and lower fidelities. When not
considering decoherence, the lower fidelity is also a result of the fact that we need four
gates, and thus the infidelities of all gates accumulate. The fidelity peaks below 0.9 when
including decoherence in the simulation, which is lower than before because more qubits
are subjected to decoherence. The longer gate time is a result of the fact that we are now
dealing with four gates, compared to one in Fig. 2.2. However, this is still a relatively short
time compared to if we had only used two-qubit gates, which would increase the gate
time by almost a factor of 3.

2.5 Summary and outlook

In this chapter, we proposed a simple single-step implementation of n-bit Toffoli gates,
CNOTn-gates, and the Barenco gate and showed that these exhibit a high fidelity, with
the leading cause of error being the qubits’ decoherence. These gates can easily be
transformed into CnZ or CZn gates by applying Hadamard gates on the target qubits.
While the difficulty of implementing our gates does increase with n, we believe that our
gates can provide many advantages to certain types of quantum computers, especially
compared to rather deep equivalent circuits built from one- and two-qubit gates. As
an example of an implementation of the gates for quantum information processing, we
discussed superconducting circuit design of the gates, though the idea is not limited to
this quantum information scheme. We showed that the gates could easily be concatenated
into error correction codes by simulating the protocol. The gates proposed in this chapter
are not limited to the three-qubit error-correcting code or the Steane code, and they can
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Figure 2.9: Simulation of the Steane encoding scheme seen in Fig. 2.7, using CNOTn gates. The simulation is
done for J/2π = 40 MHz. The straight red line indicates the gate time T on the right y axis, while the blue
lines indicate the average fidelity, at the gate time, on the left y axis. The dashed blue line is the average fidelity
with a decoherence time of T1 = T2 = 30 µs, while the solid line is without decoherence.

be applied to numerous other codes making them more effective. These results could
enhance the performance of near-term quantum computing experiments on algorithms
that require many Toffoli gates or same-control CNOT gates.

Multiqubit Toffoli gates is an active research field, and several papers have been
published since the work in this chapter was done. This includes multiqubit gates in
Rydberg atoms [251–256], trapped ions [257, 258], and superconducting circuits [251,
255, 258, 259]. Multiqubit gates can also be useful in quantum algorithms for solving
differential equations [260] and string matching [261], as well as other error mitigation
schemes [262] than those discussed in this chapter and quantum-inspired algorithms [263].

References [264, 265] have explored how to improve the method presented in this
chapter for trapped ions, and recently a paper was put on arXiv proposing a single-shot
method for executing an iToffoli gate, inspired by the approach in this chapter [266].
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CHAPTER 3

The Controlled iSWAP Gate

Following the work on the iToffoli gate of the previous chapter, I realized that one could probably
use the same idea of detuning in and out of resonance to create a controlled swap gate. This idea led
to the controlled iSWAP gate of Ref. [VI] on which this chapter is based. Text and figures have been
edited to fit into the thesis.

Previously we discussed controlled NOT gates such as the CNOT and the Toffoli gate.
In particular, we showed how to implement an n-bit iToffoli in the previous chapter.
Equivalent (in the sense that they both constitute a universal set of gates together with
the set of one-qubit operations) to the CNOT gate is the iSWAP gate which we denote Ŝ =
|00〉〈00| ± i(|10〉〈01|+ |01〉〈10|) + |11〉〈11|. The iSWAP gate is a perfect entangling version
of the SWAP gate, which is why it is equivalent to the CNOT gate. However, the iSWAP

gate has the advantage over the CNOT gate that it occurs naturally in systems with XY
interaction or Heisenberg models, such as solid-state systems [267, 268], superconducting
circuits [269], and in cavity mediated between spin qubits and superconducting qubits [19,
110, 270]. Other implementations of the iSWAP gate include linear optics [271, 272] and
nuclear spin using qudits [273].

Despite several attemps of implementing the iSWAP gate [187, 274, 275], the Fred-
kin gate [43, 276–283], and other controlled-swapping gates [III, 44, 86], no one have
embarked in the implementation of a controlled iSWAP gate, to the best of our knowledge.
Recently a deterministic Fredkin and exponential SWAP gate was implemented using
three-dimensional, fixed frequency superconducting microwave cavities [201, 284].

This chapter presents a simple implementation of a multiqubit controlled iSWAP

gate which we call CniSWAP, where the n indicates the number of control qubits. This is
essentially an iFredkin gate for a single control qubit, i.e., a Fredkin gate with a phase of i
on the swapping part. The implementation is based on using the control qubits to tune the
target qubits in and out of resonance by following the approach presented in Chapter 2
and can be realized using different schemes for quantum information processing. We
include circuit design for implementating of the iSWAP gate in superconducting circuits
as well as for the C2iSWAP gate in the appendix. The gate requires a single flux pulse to
operate, and the gate time is thus independent of the number of control qubits. When
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neglecting the decoherence of the qubits, we find a fidelity above 0.998 for one control
qubit. When including decoherence of the qubits, the fidelity stays above 0.99 for up to
four control qubits.

Being able to exponentiate quantum gates can be helpful in different quantum infor-
mation schemes such as in continuous variable (CV) systems [208], where exponentiated
gates, such as exp(iθX̂), can be used to operate on the systems [209, 285]. Another scheme
that might benefit from being able to exponentiate non-Hermitian quantum gates is quan-
tum random walks [286], where non-unitary operations are needed for, e.g., graph coloring
[287, 288]. We, therefore, present a quantum circuit for probabilistic exponentiating of
non-Hermitian operators, based on the method by [289] which works for exponentiating
Hermitian operators. Our method is exact for a cyclic operator, i.e., operators fulfilling
T̂n = 1, while it is approximate for all other non-Hermitian operators.

This chapter is organized as follows: In Section 3.1 we present a simple Hamiltonian
and show how it yields an CniSWAP gate. We discuss the effectiveness of the gate exploring
the single-qubit controlled iSWAP gate as an example in Section 3.1.1. We further, in
Section 3.2, present an implementation using superconducting circuits of the CniSWAP

gate and discuss how to expand it to more controls. In Section 3.3 we show how to expand
the implementation of the controlled iSWAP gate into controlling swapping of an array
of qubits. In Section 3.2.1 we discuss a realistic implementation of the gate, including
fabrication errors and decoherence noise. In Section 3.4 we present a quantum circuit for
probabilistic exponentiating cyclic quantum gates and discuss its range of validity. In
Section 3.5 we provide a summary and outlook for future work.

3.1 Implementation of the controlled iSWAP gate

Consider n + 2 qubits each with frequency ωi. The first n qubits are connected to one of
the two last qubits by Ising couplings Jz

i , where i refers to the first n qubits. The last two
qubits are further connected by a transversal coupling Jx. We denote the last two qubits
as target qubit T1 and T2. The Hamiltonian for the system is

Ĥ = Ĥ0 −
∆
2

σz
T1 +

n

∑
i=1

Jz
i
2

σz
T1σz

i +
Jx

2
(σx

T1σx
T2 + σ

y
T1σ

y
T2), (3.1)

where σx,y,z denotes the Pauli matrices, and the non-interacting part of the Hamiltonian is
given as

Ĥ0 = −
n

∑
i=1

ωi
2

σz
i −

ωT2
2

(σz
T1 + σz

T2) , (3.2)

and ∆ = ωT1 −ωT2 is the detuning of the two target qubits. Changing to the interaction
picture using the transformation Ûint(t) = exp(iĤ0t), the Hamiltonian takes the form

ĤI = −
∆
2

σz
T1 +

n

∑
i=1

Jz
i
2

σz
T1σz

i + Jx(σ+
T1σ−T2 + σ+

T2σ−T1). (3.3)

In order to realize the behavior of the controlled iSWAP gate, we must require the detuning
to be

∆ = −
n

∑
i=1

Jz
i , (3.4)
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and Jz
i � Jx for all i. Thus the energy shift due to the first n qubits must be large enough

to bring the last two qubits in and out of resonance, making the first n qubits the control
qubits and the last two the swapping qubits.

Changing into the frame rotating with the diagonal part of the Hamiltonian, we
obtain

Ĥrot = Jx
[
σ+

T1σ−T2ei ∑n
i=1 Jz

i (1+σz
i )t + H.c.

]
. (3.5)

With the condition that Jz � Jx both terms of Ĥrot will rotate rapidly, and can thus be
neglected using the rotating wave approximation, unless all of the control qubits are in the
state |1〉. This means that the Hamiltonian effectively becomes

Ĥrot = Jx |1̃〉〈1̃|C ⊗
[
σ+

T1σ−T2 + σ+
T2σ−T1

]
, (3.6)

where subscript C denotes the state of the control qubits, i.e. the first n qubits, and T
denotes the state of the target qubit, i.e., qubit T1 and T2. The state |1̃〉C = |11 . . . 1〉C
denotes the state where all control qubits are in the state |1〉.

We can calculate the time evolution operator by taking the matrix exponential,
Û (t) = exp(iĤrott), which yields

Û (t) = ˆ̃IC ⊗ ÎT + |1̃〉〈1̃|C ⊗


1 0 0 0
0 cos(Jt) −i sin(Jt) 0
0 −i sin(Jt) cos(Jt) 0
0 0 0 1

 , (3.7)

where ĨC denotes the reduced identity of the control qubits where the states |1̃〉〈1̃|C have
been removed. The identity of the target qubits is denoted ÎT .

From Eq. (3.7) we see that for times T = (2m + 1)π/2Jx, m ∈ Z the time evolution
operator takes the form of a controlled iSWAP gate.

Û (t = T) = ˆ̃IC ⊗ ÎT + |1̃〉〈1̃|C ⊗ ŜT , (3.8)

where ŜT is the two-qubit iSWAP gate on the target qubits, swapping the target qubit with a
phase of ±i. The phase on the target qubit depends on the sign of ∓|Jx|. For completeness
we note that for times T′ = (2m + 1)π/4Jx we obtain the controlled-

√
iSWAP gate [55].

Note that once time has passed, the desired gate has been performed, interactions must
be turned off. Thus the gate depends on control over the exchange interaction. This can
be achieved differently depending on which scheme is used to implement the gate. In
Section 3.2 we present an implementation of the gate in superconducting circuits, where
we also discuss how to control the exchange interaction.

3.1.1 Example: The single controlled iSWAP gate

In order to illuminate the performance of the system worked as a CniSWAP gate, we
explore the example of the single controlled iSWAP gate. We chose this example since not
only is it the simplest non-trivial example, it is also closely related to the Fredkin gate. A
schematic presentation of the model yielding the CiSWAP gate can be seen in Fig. 3.3(a),
which corresponds to Eq. (3.1) with n = 1.
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x

Figure 3.1: Simulation of the controlled iSWAP gate for different coupling values Jx . The blue lines indicate
the average fidelity at the gate time (left y axis), while the straight red line indicates the gate time T (right y
axis). The dashed blue line is the average fidelity with a decoherence time of T1 = T2 = 30 µs, while the solid is
without decoherence.

We characterize the performance of the gate by calculating the average process
fidelity, Eq. (2.18), with the target gate being Eq. (3.8). We simulate the system similarly
to in Section 2.1.3 using the Lindblad Master equation and the interaction Hamiltonian
of Eq. (3.3) using the QUTIP PYTHON toolbox [240]. The result is then transformed into
the frame rotating with the diagonal of the Hamiltonian, and then the average fidelity is
calculated.

For all simulations, we have Jz/2π = 50 MHz, while we change the transversal
coupling, Jx/2π, from 5 to 25 MHz. The average fidelity of the simulation can be seen in
Fig. 3.1 together with the gate time. The figure shows both the average fidelity without any
decoherence and with a decoherence time of T1 = T2 = 30 µs [53]. We model decoherence
as relaxation and phase errors; we do not include excitation by thermal photon, as it
contributes very little to the decoherence [135]. Without any decoherence, we find that
the average fidelity increases asymptotically towards unity as the driving decreases, with
the only expense being an increase in gate time. Since decoherence increases over time, a
longer gate time means lower fidelity, which we observe when including decoherence in
the simulations. In this case we find that the fidelity peaks at ∼ 0.995 around Jz/Jx ∼ 4,
which yields a gate time of T ∼ 25 ns. However, we note that the fidelity is dependent on
the parameters Jx and Jz; thus, changing these will change the fidelity. We also see that
for just Jz = 2Jx we obtain an average fidelity above 0.99 for a gate time T ∼ 15 ns. The
oscillation of the average fidelity is due to a minor mismatch in the phase of the evolved
state compared to the desired matrix in Eq. (3.7), which disappears when Jz/J ∈ Z.

We simulate the CniSWAP gate for different n in the optimal ratio between cou-
plings, Jz/Jx ∼ 4. The result of this simulation is seen in Fig. 3.2. We observe that the
fidelity stays above 0.998 for up to n = 4 control qubits when decoherence is not included.
This is because, for larger n, the gate resembles the identity more. This is because the
identity operation is applied to the control qubits, meaning that for a large number of
control qubits, the gate will perform the identity on the control qubits, and the swapping
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Figure 3.2: Average fidelity as a function of the number of qubits in the CniSWAP gate. The blue square
markers indicate the simulation without decoherence, while the round red markers indicate the simulation done
with a decoherence time of T1 = T2 = 30 µs. All simulations are done with Jz/J = 5, i.e., peak fidelity cf.
Fig. 3.1.

operation will only be performed on the target qubits. When decoherence is included, the
average fidelity decreases for larger n as it should; however, we still find a fidelity above
0.99 for up to 4 controls.

3.2 Superconducting circuit implementation

A possible implementation of the CiSWAP gate using superconducting circuits can be seen
in Fig. 3.3(c). The circuit consists of three fixed-frequency transmon qubits, where two of
them are connected through a tunable bus qubit, following the approach by Ref. [187],
and the third qubit is connected to the other two by Josephson junctions, with as small
a parasitic capacitance as possible. In our analysis, we connect a number, n, of fixed
frequency qubits to the target qubits. It is irrelevant to which target qubit these control
qubits are connected. The control qubits can be connected to either (or both) target qubits,
but for simplicity, we connect all control qubits to target qubit 1.

Following the approach presented in Section 1.2.3, we obtain the Lagrangian for
the CniSWAP circuit

L =2
n

∑
i=T1,T2,

TB,TB’,1,...

[
Ciφ̇

2
i + Ei cos φi

]
+ 2Cx (φ̇T1 − φ̇TB)

2 + 2Cx (φ̇T2 − φ̇TB’)
2

+ 2
n

∑
i=1

Cz,i (φ̇i − φ̇T1)
2 +

n

∑
i=1

Ez,i cos(φT1 − φi) + ETB(Φ̃) cos φTB,

(3.9)

where the first summation is understood as the summation over T1, T2, TB, TB’, 1, 2, . . . , n.
We denote φT1 and φT2 as the node fluxes of the target qubits [green islands in Fig. 3.3(c)
and (d)], φTB and φTB’ are the node fluxes of the tunable bus [red islands in Fig. 3.3(c)
and (d)], and φi are the node fluxes of the control qubits [blue islands in Fig. 3.3(c) and
(d)]. Φ̃ is the external magnetic flux through the tunable bus in units of Φ0/2π, where
Φ0 is the flux quantum. We have also used the fact that the tunable bus is essentially a
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Figure 3.3: Schematics of (a) the CiSWAP gate and (b) the C2iSWAP gate in superconducting circuits with
the green spheres (subscript T1 and T2) representing the target qubits and the blue spheres (subscript 1 and 2)
representing the control qubits. The red lines indicates an interaction which can be turn on and off.Also shown
are (c) and (d) the superconducting circuits yielding the models in (a) and (b), respectively. The different parts
of the system are colored according to their role, as per (a) and (b).

dc SQUID, see Section 1.1.2, in order to write the tunable Josephson energy of the bus as
ETB(Φ̃) = 2ETB cos(Φ̃/2). In doing so we have used Kirchhoff’s voltage law, Eq. (1.3b)
which states that φTB’ = Φ̃− φTB. Using this we rewrite the Lagrangian into

L =2
n

∑
i=T1,T2,
TB,1,...

[
Ciφ̇

2
i + Ei cos φi

]
+ 2Cx

[
φ̇2

T1 + φ̇2
T2 + 2φ̇2

TB + 2φ̇TB (φ̇T2 − φ̇T1)
]

+ 4CTBφ̇2
TB + 2

n

∑
i=1

Cz,i (φ̇i − φ̇T1)
2 +

n

∑
i=1

Ez,i cos(φT1 − φi) + 2ETB(Φ̃) cos φTB,

(3.10)
where we have ignored all terms concerning ˙̃Φ since these all contribute with irrelevant
constant terms.

The terms coming from the capacitors are interpreted as kinetic terms, while the
remaining terms come from the Josephson junctions and are interpreted as potential terms.
The n indicates the number of blue islands on the circuit diagram, i.e., for the CiSWAP in
Fig. 3.3(c) n = 1. Considering the case of a single control qubit and arranging the node
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fluxes in a vector as φT = (φ1, φT1, φTB, φT2), the capacitance matrix becomes

C =


C1 + Cz,1 −Cz,1 0 0
−Cz,1 CT1 + Cz,1 + 2Cx −Cx 0

0 −Cx 4CTB + 2Cx −Cx
0 0 −Cx CT2 + 2Cx

 . (3.11)

For two control qubits [see Fig. 3.3(d) for circuit diagram of this gate] the capacitance
matrix takes the form

C =


C1 + Cz,1 0 −Cz,1 0 0

0 C2 + Cz,2 −Cz,2 0 0
−Cz,1 −Cz,2 CT1 + Cz,1 + 2Cx −Cx 0

0 0 −Cx 4CTB + 2Cx −Cx
0 0 0 −Cx CT2 + 2Cx

 . (3.12)

and so on for higher n. With this, we can do a Legendre transform as in Section 1.2.4 and
write the Hamiltonian as

H =
1
2
q̂TC−1q̂ + U(φ), (3.13)

where qT = (q1, qT1, qTB, qT2) is the conjugate momentum and U(φ) is the potential
energy coming from the Josephson junctions.

The typical transmon has a charging energy much smaller than the junction energy,
and therefore the phase is well localized near the bottom of the potential. We can therefore
expand the potential part of the Hamiltonian to fourth order

U(φ) =
n

∑
i=T1,T2,
TB,1,...

Ei

[
1
2

φ2
i −

1
24

φ4
i

]
+

n

∑
i=1

Ez,i

[
1
2
(φi − φT1)

2 − 1
24

(φi − φT1)
4
]

+ 2ETB(Φ̃)

[
1
2

φ2
TB −

1
24

φ4
TB

]
.

By collecting terms we can write the full Hamiltonian as

H =
n

∑
i=T1,T2,
TB,1,...

[
1
2

EC
i q2

i +
1
2

EJ
i φ2

i −
1

24
EJ

i φ4
i

]
+

1
2

n

∑
i 6=j=

T1,T2,TB,1

(K−1)(i,j)qiqj

+
n

∑
i=1

Ez,i

[
−1

4
φ2

i φ2
T1 − φiφT1 +

1
6

(
φ3

i φT1 + φiφ
3
T1

)]
+

1
2

EC
TBq2

TB +
1
2

ETB(Φ̃)φ2
TB −

1
24

ETB(Φ̃)φ4
TB,

where the effective energy of the capacitances is EC
i = (C−1)(i,i)/8. The second summa-

tion is understood as the sum over i and j = T1, T2, TB, 1, . . . , n, where i and j is never
equal. Note that there is a capacitive coupling between all of the qubits regardless of
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whether there actually is a capacitor between them. The effective Josephson energies are

EJ
i =Ei + 2Ez,i, (3.14a)

EJ
T1 =ET1 +

n

∑
i=1

Ez,i, (3.14b)

EJ
T2 =ET2, (3.14c)

EJ
TB =ETB(Φ). (3.14d)

We are now ready to do the canonical quantization and transform it into annihilation
and creation operators as in Sections 1.3.1 and 1.4. If we operate the circuit in the weak
coupling regime Ez,i � Ej and Cz,i � Cj for all i and j we can view the system as n + 2
harmonic oscillators perturbed by their interactions. If we also assume that the modes
of oscillator T1 and T2 are close to resonant, we can treat their detuning as part of the
perturbation. The total Hamiltonian is the sum of the harmonic oscillator Hamiltonian Ĥ0
and a perturbation V̂. If we introduce the number operator N̂ = b̂† b̂ and swap operator
X̂ij = b̂j b̂†

i + b̂†
j b̂i, we can write the two parts of the Hamiltonian as

Ĥ0 =
n

∑
i=1

ωi N̂i + ωT2(N̂T1 + N̂T2) + ωTBN̂TB, (3.15a)

V̂ =δN̂T1 −
1
2

n

∑
i=T1,T2,TB,1

EC
i N̂i(N̂i − 1) +

n

∑
i=1

gz
iT1N̂i N̂T1 +

n

∑
i 6=j=

T1,T2,TB,1

gx
ijX̂ij (3.15b)

+
n

∑
i=1

gxz
iT1
[
ζi
(
X̂iT1N̂i + N̂iX̂iT1

)
+ ζT1

(
X̂iT1N̂T1 + N̂T1X̂iT1

)]
,

where the qubit frequencies are then given as

ωi =
√

8EJ
i EC

i −
1

12
Ez,iζiζT1 for i = 1, 2, . . . n, (3.16a)

ωT1 =
√

8EJ
T1EC

T1 −
1
12

Ez,iζT1

n

∑
i=1

ζi, (3.16b)

ωT2 =
√

8EJ
T2EC

T2, (3.16c)

ωTB =
√

8EJ
TBEC

TB, (3.16d)

δ =
1
2
(ωT1 −ωT2) , (3.16e)
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and the coupling strengths are given as

gz
iT1 =− 1

4
Ez,iζiζT1, for i = 1, 2, . . . , n, (3.17a)

gxz
iT1 =− 1

16
Ez,i
√

ζiζT1, for i = 1, 2, . . . , n, (3.17b)

gx
ij =−

1
2

(C−1)(i,j)√
ζiζ j

, for j, i = 1, 2, . . . , n, (3.17c)

gx
TjTB =− 1

2

(C−1)(Tj,TB)√
ζTjζTB

, for j = 1, 2, (3.17d)

gx
iT1 =− 1

2

(C−1)(i,T1)√
ζiζT1

− 1
2

Ez,i
√

ζiζT1 +
1
16

Ez,i(ζi + ζT1)
√

ζiζT1, for i = 1, 2, . . . , n,

(3.17e)

where the impedance is given as in Eq. (1.56).
If we only consider the two lowest-lying states of each oscillator, the uncoupled

Hamiltonian has a degenerate spectrum with 2n+2 states. If we require the detunings
∆ij = ωi −ωj between each of the control qubits to be much larger than the transversal
couplings in Eq. (3.17c), we can ignore the first order excitations swaps between the control
qubits. If we further require that the control qubits are detuned from the target qubits in
such a way that ∆iTj = ωi −ωTj is much larger than the transversal coupling in Eq. (3.17e)
we can also neglect first order excitation swaps between the target qubits and the control
qubits. This leaves only one transversal coupling in Eq. (3.17d).

If the anharmonicity is sufficiently larger than the transversal coupling between the
target qubits, we can justify projecting the final effective Hamiltonian into the two lowest
states of each qubit. This projection is made using degenerate second-order perturbation
theory. In this case, each degenerate subspace is well described by an effective interaction

P̂V̂effP̂ = P̂V̂P̂ + P̂V̂Q̂
1

ED − Q̂Ĥ0Q̂
Q̂V̂P̂, (3.18)

where P̂ projects onto the degenerate subspace consisting of the 2n+2 lowest-lying states
and Q̂ = 1− P̂ projects onto the orthogonal complement. Doing so yields an effective
interaction between the qubits given by

V̂eff = −
∆T1

2
σz

T1 +
n

∑
i=1

Jz
i
2

σz
T1σz

i +
2

∑
j=1

gx
TjTB

(
σ+

Tjσ
−
TB + σ−Tjσ

+
TB

)
. (3.19)

The detuning of the target qubit can then be calculated and the second-order matrix
elements are

∆T1 = −δ +
n

∑
i=1

[
gz

iT1
2
− gx

iT1 − gxz
iT1(ζi + 2ζT1)

∆iT

]
, (3.20)

where ∆iT = ωi −ωT2 is the detuning of the target qubits with respect to the ith control
qubit. The longitudinal coupling between the target qubits and the control qubits are

Jz
i =

gz
iT1
2

+
gxz

iT1(ζi − 2ζTj)

∆iT
. (3.21)
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The purpose of this longitudinal coupling is to tune the target qubits in and out of
resonance, depending on the state of the control qubits. We thus require this coupling to
be significantly larger than the coupling between the target qubits and the tunable bus,
gx

TjTB.

Time-dependent external fluxes

We now wish to perform the same trick as Ref. [187] in order to gain control over the
transversal couplings to the target qubits. We there consider the dispersive regime, where
|gx

TjTB/(ωTj −ωTB)| � 1. In this regime, we can adiabatically eliminate the tunable bus,
which yields the following terms in the Hamiltonian

Ĥ0 =
n

∑
i=1

ωi
2

σz
i +

ω̃T2
2

(σz
T1 + σz

T2), (3.22a)

V̂eff =−
∆̃T1

2
σz

T1 +
n

∑
i=1

Jz
i
2

σz
T1σz

i + J̃x (σ+
T1σ−T2 + σ−T1σ+

T2
)

, (3.22b)

where the dressed qubit frequency and dressed detuning is

ω̃Tj =ωTj +
(gx

TjTB)
2

ωTj −ωTB
, (3.23a)

J̃x =
gx

T1TBgx
T2TB

2

(
1

ωT1 −ωTB
+

1
ωT2 −ωTB

)
. (3.23b)

In order to interact the qubits via the tunable bus coupler we apply a sinusoidal fast-flux
bias modulation of amplitude, χ, such that the flux applied to the tunable bus becomes
Φ̃(t) = Θ + χ cos(ωΦ̃t). By expanding the dressed qubit frequency ω̃Tj in the parameter
χ cos(ωΦ̃t), where χ� 1, we obtain

ω̃Tj(Φ̃(t)) ' ω̃Tj(Θ) +
∂ω̃Tj

∂Φ̃

∣∣∣∣
Φ̃→Θ

χ cos(ωΦ̃t) +
1
2

∂2ω̃Tj

∂Φ̃2

∣∣∣∣∣
Φ̃→Θ

(χ cos(ωΦ̃t))2

=

[
ω̃Tj(Θ)− χ2

4
∂2ω̃Tj

∂Φ̃2

∣∣∣∣∣
Φ̃→Θ

]
+

∂ω̃Tj

∂Φ̃

∣∣∣∣
Φ̃→Θ

χ cos(ωΦ̃t)

+
χ2

4
∂2ω̃Tj

∂Φ̃2

∣∣∣∣∣
Φ̃→Θ

cos(2ωΦ̃t).

(3.24)

There is a similar expansion for the coupling Jx. In a frame rotating at the qubit frequencies
for χ = 0, oscillating σz terms and dc exchange coupling terms time average to zero. This
means that the time-averaged qubit frequencies and couplings become

ω̄Tj(Φ̃(t)) = ω̃Tj(Θ)− χ2

4
∂2ω̃Tj

∂Φ̃2

∣∣∣∣∣
Φ̃→Θ

, (3.25a)

J̄x(Φ̃(t), t) =
∂ J̃x

∂Φ̃

∣∣∣∣
Φ̃→Θ

χ cos(ωΦ̃t) +
χ2

4
∂2 J̃x

∂Φ̃2

∣∣∣∣
Φ̃→Θ

cos(2ωΦ̃t). (3.25b)
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Because there is a drive-induced qubit shift, all N qubits will acquire a phase during the
flux modulation pulse. This phase may be compensated after applying single-qubit Z

gates. In a frame rotating with Ĥ0 (including the drive-induced shift), the Hamiltonian is

Ĥ = − ∆̄T1
2

σz
T1 +

n

∑
i=1

Jz
i
2

σz
T1σz

i + J̄x(Φ̃(t), t)
(
σ+

T1σ−T2 + σ−T1σ+
T2
)

. (3.26)

Now in order to fix the oscillation of the exchange coupling and create the controlled
iSWAP gate we require the flux frequency to be resonant with the phase when the target
qubits are in the |1〉 state, i.e.,

ωΦ̃ = ∆̄T1 +
n

∑
i=1

Jz
i . (3.27)

In a frame rotating with the diagonal terms, the Hamiltonian takes the form

Ĥ = J̄x(Φ̃(t), t)ei(∆̄T1−∑n
i=1 Jz

i σz
i )t
(
σ+

T1σ−T2 + σ−T1σ+
T2
)

=χ
∂ J̃x

∂Φ̃

∣∣∣∣
Φ̃→Θ

∣∣1̃〉〈1̃∣∣C ⊗ (σ+
T1σ−T2 + σ−T1σ+

T2
)

,
(3.28)

where we have used the rotating wave approximation to remove all fast-rotating terms, i.e.,
all terms other than the term where all control qubits are in the state |1〉. Thus the condition
in the original implementation, Eq. (3.4) is now replaced by the more easily obtainable
expression in Eq. (3.27). This also means that the gate time becomes T = (2m + 1)π/Jx

due to the cosine function. Nevertheless, the result is the same, and we obtain a controlled
iSWAP gate.

Note that there is also a resonant coupling at 2ωΦ̃ = ∆̄T1 + ∑n
i=1 Jz

i , in which case
the exchange coupling is via the second order terms in Eq. (3.25b). This could be used to
lower the coupling in order to satisfy the requirement Jx � Jz.

An alternative approach to implementing such a tunable exchange coupling is to
use the gmon-based design mentioned in Section 1.10.3.

3.2.1 Simulations

In order to show that the superconducting circuit model presented in the previous section
does indeed give the desired result, we find realistic parameters for the circuit presented
in Fig. 3.3 and their corresponding gate parameters. These parameters can be found in Ta-
bles C.1 to C.3 in Appendix C for Φ = 0. In Fig. 3.4 we present typical parameters relevant
for the gate implementation, i.e., derivatives of Jx and ω̃ as a function of the external flux,
Φ. In a realistic implementation, the circuit parameter is not perfect compared to the ones
found in our simulations. Therefore we simulate with errors. We assume a fabrication
error of up to 10% of 95% of the simulations. We then Monte Carlo simulates the circuit to
find the error on the gate parameters. These errors are presented as the dashed lines in
Fig. 3.4. While these errors might seem large, they are not a problem for the gate, as the
gate operation is mainly dependent on Eq. (3.27), which can be achieved only with control
over just the external flux.

Using the gate parameters found in Table C.2 and Fig. 3.4 we simulate the gate
using an external DC flux of Φ = 0.100Φ0 and a modulation of χ = 0.100Φ0. The external
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(a)

(b)

Figure 3.4: Typical derivatives of the gate parameters (a) Jx and (b) ω̃. The dashed lines indicates the error on
the parameters, found using Monte Carlo simulations. In particular the parameters comes from column 2 in
Table C.2.

flux frequency is determined from Eq. (3.27); however, we include an error corresponding
to a standard deviation of 1MHz/2π in our simulation. In Ref. [187] they have an error of
0.1MHz/2π. The result of these Monte Carlo simulations can be seen in Fig. 3.5 where
we have plotted the average fidelity of a subset of the simulations as a function of time.
From the distribution of fidelities, we see that 60% of the simulations end up with a
fidelity above 0.99, while 90% of the simulations are above 0.98 when simulating without
decoherence noise. In contrast, the fidelity is smaller when decoherence noise is included
in the simulations.

We conclude that even when including significant errors in the fabrication of the
circuit, the gate still yields a high fidelity with the perfect CiSWAP gate.

3.3 Controlled swapping arrays

Suppose we have multiple qubits, which we want to swap in a controlled way, i.e., first
swapping two qubits, then swapping two other qubits, and so on. This might be useful in
a range of quantum algorithms.

This section discusses how to expand the idea of the CiSWAP gate previous section
into a system where we can swap qubits in an array arbitrarily. We will discuss this for
the case of an array of first three qubits and then briefly for four qubits, but the ideas will
be easily expandable to more qubits.

In an attempt to create such a system, we connect all qubits which we wish to
swap to each other with transversal coupling, Jx. Each of these n qubits are detuned from
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(a)

(b)

Figure 3.5: (a) Average fidelity of the Monte Carlo simulation of the gate as a function of time. All shown
simulations are without noise (b) Distribution of fidelities of the simulations at the gate time. The noise is the
same as in Section 3.1.1.

the average frequency of the qubits, such that ∆i 6= ∆j for i 6= j = 1, 2, . . . , n. Following
the idea of Fig. 3.3 we add a control qubit for each target qubit and couple it with Ising
couplings, Jz

i , to each qubit. A schematic representation of the model for n = 3 can be
seen in Fig. 3.6(a). The Hamiltonian for such a system becomes

Ĥ = −
n

∑
i=1

[
ω + ∆i

2
σz

Ti +
ωCi

2
σz

Ci

]
+

n

∑
i=1

Jz
i
2

σz
Tiσ

z
Ci +

1
4

n

∑
j 6=i=1

Jxσx
Tiσ

x
Tj. (3.29)

where ω is the average over all the target qubits frequency, ∆i is the detuning of the ith
target qubit from the average frequency of the target qubits, and the subscript Ti indicates
the ith target qubit, while the subscript Ci indicates the ith control qubit.

If we require that the Ising couplings have the strengths Jz
i = −∆i, and require that

Jz
i � Jx for all i, then at times T = (2m + 1)π/(2Jx), m ∈ Z the time evolution operator

for the n = 3 case takes the form

Û (T) = ˆ̃IC ⊗ ÎT + |110〉〈110|C ⊗ Ŝ12 + |011〉〈011|C ⊗ Ŝ23 + |101〉〈101|C ⊗ Ŝ13

+ |111〉〈111|C ⊗ Ŝ123.
(3.30)

where ˆ̃IC denotes the reduced identity of the control qubits where the states |100〉〈100|C,
|010〉〈010|C, and |001〉〈001|C have been removed. The identity of the three target qubits is
denoted ÎT , and Ŝij is the two-qubit iSWAP gate which swaps the state of the qubits i and j.
The quantum circuit of the model can be seen in Fig. 3.6(c).
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Figure 3.6: Schematic representation of the model leading to controlled swapping between (a) three qubits and
(b) four qubits. The green spheres (subscripts 1, 2, 3, and 4) represent the swapping qubits, while the blue
spheres (subscripts C1, C2, C3, and C4) represent the ancilla qubits, which controls the swapping. (c) and (d)
quantum circuit representations of the models in (a) and (b), respectively, for times T = (2m + 1)π/(2Jx),
m ∈ Z. The top three or four ancilla qubits control the swapping and corresponds to the blue spheres, while the
lower three or four qubits correspond to the green spheres. The filled circles indicate that the ancilla qubits must
be the state |1〉 for the swap to be activated, while the non-filled circles indicate that the ancilla qubits must be
in the state |0〉; for the three-qubit case, this corresponds to the time evolution operators in Eq. (3.30).

From the time evolution operator in Eq. (3.30) we see that we have complete control
over which qubits we wish to swap, depending on the three ancilla qubits, i.e., if we wish
to swap qubits Ci and Cj to be in the |1〉 state and remaining control qubits to be in the
state |0〉, in which case with the ±iSWAP-operators Ŝij swaps the state of the two qubits i
and j. We note that we also obtain a three-way swapping operator when all control qubits
are in the |1〉 state. In its matrix representation, the three-way swap-operator is an 8× 8
matrix and takes the form

Ŝ123 =


1 0 0 0
0 Ŝ1 0 0
0 0 Ŝ2 0
0 0 0 1

 , (3.31)

where the two operators Ŝ1 and Ŝ2 are 3× 3 matrices and operate on the three-dimensional
subspaces of one and two excitation number of the target subspace, respectively. In their
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matrix representation, these take the same form

Ŝ1,2 =
1
3

ei Jx t/2

 3 cos
(

3Jx t
2

)
−i sin

(
3Jx t

2

)
2i sin

(
3Jx t

2

)
2i sin

(
3Jx t

2

)
2i sin

(
3Jx t

2

)
3 cos

(
3Jx t

2

)
−i sin

(
3Jx t

2

)
2i sin

(
3Jx t

2

)
2i sin

(
3Jx t

2

)
2i sin

(
3Jx t

2

)
3 cos

(
3Jx t

2

)
−i sin

(
3Jx t

2

)
 , (3.32)

which can be used to entangle all three qubits. We consider the particular case of T′ =
mπ/3Jx, m ∈ Z, for which the operator takes the form

Ŝ1,2 =
1
3

ieiπ/6

−1 2 2
2 −1 2
2 2 −1

 . (3.33)

This operator can be used to create a state belonging to the same non-biseparable classes
of three-qubit states as the W state [290]. Note that this simultaneous three-way swapping
can be used to create multiqubit gates that are faster than the usual two-qubit gates [291].

In Fig. 3.6(b), we show the model for a four qubit swapping array with all-to-all
couplings corresponding to Hamiltonian in Eq. (3.29) with n = 4. In Fig. 3.6(d), we present
the corresponding gates of the model coming from making the time evolution operator
from the Hamiltonian. As above, we obtain fully controllable two-qubit swapping between
all four qubits. We further obtain four three-qubit entangling gates, similar to the one in
Eq. (3.32) and one single four-qubit entangling gate.

In order to test the viability of our analysis we simulate the Hamiltonian in Eq. (3.29)
using the PYTHON toolbox QUTIP using the same approach as in Section 3.1.1. Using
parameters Jz

i /(2π) ∈ {−20, 20, 60}MHz and Jx = mini |Jz
i |/5 we find a fidelity of 0.993

at time T = π/(2Jx) = 62.5 ns without including decoherence, and a fidelity of 0.98 when
including a decoherence time of T1 = T2 = 30 µs.

3.4 Probabilistic exponentiating of cyclic non-Hermitian quantum
gates

This section presents an exact probabilistic method for exponentiating cyclic non-Hermi-
tian gates using an explicit quantum circuit. While our method is exact for cyclic operators,
it is approximate for non-cyclic operators. The CiSWAP gate presented in this paper is, in
fact, a cyclic non-Hermitian gate. Note that exponentiating non-Hermitian gates leads to
non-unitary gates.

Unitary Hermitian gates can be exponentiated using the method developed by
Marvian and Lloyd [289]. Albeit they only present their method for the controlled-SWAP

gate, it works for all unitary Hermitian gates. Here we extend their method in order to
exponentiate non-Hermitian gates. Our method is exact for a gate, T̂, for which T̂n = 1

for n ∈ Z and approximately correct if this is not the case. We call gates where T̂n = 1 for
cyclic gates with cyclic order n. For n > 2, all cyclic gates become non-Hermitian, since all
eigenvalues of Hermitian matrices must be real and a diagonal matrix, D̂, fulfilling the
Spectral theorem such that T̂ = ÛD̂Û−1, where Û is a unitary, must then fulfill D̂n = 1.

Our result becomes interesting as soon as one wants to exponentiate any phase
gate, with a phase other than −1, in which case the gate becomes non-Hermitian. This
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Table 3.1: Common non-Hermitian quantum gates and their cyclic order n. We assume ϕ to be π divided by
an integer. The controlled version of the gates mentioned in this table is non-Hermitian with the same cyclic
order.

Gate n
Phase shift Rϕ π/ϕ
Square root of not

√
NOT 4

Imaginary swap iSWAP 4
Square root of swap

√
SWAP 4

Ising XX coupling XX0 or XXπ 8
Ising YY coupling YYϕ 2π/ϕ
Ising ZZ coupling ZZϕ 2π/ϕ
Deutch Dϕ 2π/ϕ

means that the result of such exponentiating will be non-unitary for n > 2. In Table 3.1 we
mention a few often used non-Hermitian gates and their cyclic order. We note that to use
our method, we must perform a controlled version of the gate we wish to exponentiate,
i.e., if we wish to exponentiate an iSWAP, we would need a controlled iSWAP, as discussed
above.

Suppose we have a controlled cyclic gate T̂ working on an arbitrary number of
qubits. In order to create a circuit for exponentiating such an operator, we must first Taylor
expand the exponential

eiθT̂ =
∞

∑
j=0

1
(nj)!

(iθ)nj1 +
∞

∑
j=0

1
(nj + 1)!

(iθ)nj+1T̂ + · · ·

+
∞

∑
j=0

1
((n + 1)j− 1)!

(iθ)((n+1)j−1)T̂ j−1

=
n−1

∑
k=0

∞

∑
j=0

1
(nj + k)!

(iθ)nj+k T̂k.

In total, this yields n Taylor terms, meaning that our quantum circuit would need n− 1
ancilla qubits to perform the controls. We then apply the controlled gate n− 1 times, each
time controlled by a different ancilla qubit. The quantum circuit can be seen in Fig. 3.7.

We now prepare the ancilla qubits in the state

|ϕ̃〉 = N
n−1

∑
k=0

∞

∑
j=0

1
(nj + k)!

(iθ)nj+k ∣∣k̃〉 , (3.34)

where N is a normalization which depends on θ, and the state
∣∣k̃〉 indicates a state with

k excitations, i.e. we have
∣∣0̃〉 = |00 · · · 00〉, and

∣∣1̃〉 = |10 · · · 00〉,
∣∣1̃〉 = |01 · · · 00〉, or∣∣1̃〉 = |00 · · · 01〉, etc.

Let |γ〉 be the initial state of the target qubits. If we act with the n− 1 controlled-T̂
gates on the initial state |ϕ̃〉 |γ〉, as in Fig. 3.7 we arrive at the state

|ϕ̃〉 |γ〉 → N
n−1

∑
k=0

∞

∑
j=0

1
(nj + k)!

(iθ)nj+k T̂k ∣∣k̃〉 |γ〉 .
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•
•

...
•

•


|ϕ̃〉

T̂ T̂ T̂ T̂

|γ〉

Figure 3.7: Quantum circuit used to exponentiate a matrix T̂ for which T̂n = 1. On top we have n− 1 ancilla
qubits which are prepared in the state |ϕ̃〉. Each acts as a conditional for a T̂ operation, and finally, they are
all measured in the {|±〉}-basis. Note that the T̂ operation does not have to be a two-qubit operation; it can
operate on m qubits.

If we measure the n− 1 ancillae in the {|±〉} = {(|0〉+ |1〉)/
√

2} basis, there is a prob-
ability of around 1/2n−1 that we measure |+〉 in all of the ancillae, if we require θ to be
small. This means that the total state becomes

|+ · · ·+〉N
n−1

∑
k=0

∞

∑
j=0

1
(nj + k)!

(iθ)nj+k T̂k |γ〉 = |+ · · ·+〉NeiθT̂ |γ〉 ,

which is the desired result. If this state is not measured, the experiment must be repeated
until the desired result is obtained.

We note that if the gate is not cyclic, our method works approximately as long as θ

is small, in which case the first terms of the Taylor expansion will dominate. This means
that we can choose the number of terms we want in our Taylor expansion as the number
of ancillae we include in our quantum circuit.

3.4.1 Example

For an example of the Hermitian n = 2 case, see Ref. [289]. Here we consider the case
n = 4. This could, for example, be a CiSWAP. The exponential in this case becomes

eiθT̂ =
1
2

[
(cos θ + cosh θ)1 + i(sin θ + sinh θ)T̂

+ (cos θ − cosh θ)T̂2 + i(sin θ − sinh θ)T̂3
]
.

(3.35)

Remember that the operator in the exponent is not Hermitian, and thus we are not dealing
with a unitary. This means that if θ becomes large, then the hyperbolic functions will blow
up. Therefore we keep θ small. Notwithstanding, we prepare three ancillae in the state

|ϕ̃〉 =K
2
[
(cos θ + cosh θ)

∣∣0̃〉+ i(sin θ + sinh θ)
∣∣1̃〉

+ (cos θ − cosh θ)
∣∣2̃〉+ i(sin θ − sinh θ)

∣∣3̃〉 ]
=A |000〉+ B |001〉+ C |011〉+ D |111〉 .

(3.36)
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Figure 3.8: Probability of measuring each of the states in Eq. (3.37).

All normalization is included in K. Note that we could have chosen other states such as
|100〉 and |101〉 in the second and third term of |ϕ̃〉 as well, as this choice can be made
without loss of generality.

Now performing the three controlled T-gates on the qubits, we arrive at the state

|ϕ̃〉 |γ〉 →K
2
[
(cos θ + cosh θ)

∣∣0̃〉+ i(sin θ + sinh θ)
∣∣1̃〉 T̂

+ (cos θ − cosh θ)
∣∣2̃〉 T̂2 + i(sin θ − sinh θ)

∣∣3̃〉 T̂3] |γ〉 .

By measuring in the {|±〉}-basis there is a probability that we will measure the state
|+++〉 which means that we have achieved matrix exponentiation by arriving at the
state |+++〉KeiθT̂ |γ〉.

3.4.2 Measuring probabillity

In order to investigate the probability of measuring the correct state, we consider the state
|ϕ̃〉 in Eq. (3.36). In the {|±〉}-basis, it takes the form

|ϕ̃〉 = [A + B + C + D] |+++〉
+ [A− B− C− D] |++−〉
+ [A + B− C− D] |+−+〉
+ [A + B + C− D] |−++〉
+ [A− B + C + D] |+−−〉
+ [A− B− C + D] |−+−〉
+ [A + B− C + D] |− −+〉
+ [A− B + C− D] |− −−〉 ,

(3.37)

We wish to measure a state with a coefficient A+ B+C + D, and thus we want to measure
the state |+++〉. Note that if we chose our

∣∣k̃〉 states as superpositions, such as
∣∣1̃〉 =

100



3.5. Summary and Outlook

a |001〉+ b |010〉+ c |100〉, then there is no state in the {|±〉}-basis with a coefficient A +
B + C + D, since the normalization then require the B and C coefficients to be normalized
by the superposition coefficients a, b, and c, which means that we get an imbalance
between the B and C coefficients and the A and D coefficients.

We plot the probabilities of measuring the eight states as a function of θ to see how
they behave. The result is seen in Fig. 3.8. Unfortunately, we observe that the probability of
measuring the state |+++〉 decreases exponentially with θ. This supports our previous
understanding that we should keep θ small.

3.5 Summary and Outlook

We have proposed a simple implementation of a controlled iSWAP-gate and shown that
this exhibits a high fidelity. We have discussed an implementation of our gates using
superconducting circuits and simulated the gate, including possible fabrication errors
and decoherence noise. Even when including these, we still find a reasonably high
fidelity. The general implementation presented in Section 3.1 is, however, not limited to
superconducting circuits. While the difficulty of implementing our gates increases with the
number of controls, we believe that our gates will be superior in certain types of quantum
computations, especially compared to equivalent circuits built from one- and two-qubit
gates, which often become quite deep. Our controlled iSWAP can easily be extended to
swapping between more qubits, such that it is possible to control swapping between three,
four, and so on qubits. We also propose a quantum circuit for probabilistic exponentiating
non-Hermitian quantum gates, which are exact for cyclic gates and approximately exact
given small parameters for all other non-Hermitian gates. These results could enhance the
performance of near-term quantum computing experiments on algorithms that require
multiqubit swapping gates and exponentiating of gates.
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CHAPTER 4

The Linear Controlled Swapping Gate

This chapter is based on Ref. [III]; however, we do not include the circuit analysis, as it was part of
my master’s thesis, but we do present the circuit diagram. This is also why it is included last of the
controlled gates even though it was published before the two other gates. Text and figures have also
been edited to fit into the thesis.

We discussed controlled versions of the CNOT and iSWAP gates in the two previous
chapters. This chapter presents yet another controlled gate that occurs natively in super-
conducting circuits based on a linear Heisenberg model. In particular, we investigate what
kind of quantum mechanical two-qubit gates a linear chain of qubits implements. We
further mention a way of implementing such a chain using superconducting qubits. We
show that such a chain swaps the end qubits’ states and obtains a phase, with an average
fidelity of around 0.99. The swapping operation is controlled on the middle qubits, acting
as ancilla qubits. Altogether, this implements a conditional two-qubit swapping gate.

This chapter is organized as follows: In Section 4.1.1 we introduce the Hamiltonian
of the system and the requirements to it. This is followed by Section 4.1.2 where we
present the swapping gate which the Hamiltonian implements and perform a numerical
investigation of the average fidelity of the gate when varying the parameters of the system.
Then, in Section 4.2, we present a superconducting circuit that implements the desired
Hamiltonian in the case of four qubits. Finally, in Section 4.3 we present a summary and
outlook of the chapter.

4.1 The system

Using a linear Heisenberg model, we can implement a two-qubit swapping gate. The
Heisenberg model consists of several connected qubits. We start by presenting the Hamil-
tonian of the system and then explain how it yields the gate.
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4.1.1 The Hamiltonian

We consider a linear Heisenberg chain consisting of N qubits. In the Schrödinger picture,
the linear Heisenberg model takes the form

Ĥ = −1
2

N

∑
j=1

ωjσ
z
j +

N−1

∑
j=1

[
Jx
j (σ

x
j σx

j+1 + σ
y
j σ

y
j+1) + Jz

j σz
j σz

j+1

]
,

where σ
x,y,z
j are the Pauli matrices, ωj denotes the frequency of qubit j, and the Jx,z

j ’s
denotes the coupling between the jth and (j + 1)th qubits. This means that we consider
only nearest neighbor XXZ interactions.

Following Ref. [292] we assume a spatially symmetric spin chain, meaning that
ωj = ωN+1−j and Jx,z

j = Jx,z
N−j. In order to study the role of the interactions, we transform

into the interaction picture choosing the non-interacting Hamiltonian as

Ĥ0 = −1
2

ω1

N

∑
j=1

σz
j , (4.1)

which yields the interaction Hamiltonian

ĤI = −
1
2

N−1

∑
j=2

δjσ
z
j +

N−1

∑
j=1

[
Jx
j (σ

x
j σx

j+1 + σ
y
j σ

y
j+1) + Jz

j σz
j σz

j+1

]
,

where the detuning is δj = ωj −ω1 and we have used the rotating wave approximation
to neglect interaction terms, see Section 1.5. This is justified under the assumption that
ω1 � Jj, which we assume for the rest of this chapter.

Although the result of Ref. [292] is valid for any N ≥ 4, we will now focus on the
case of N = 4. This is partly because it simplifies the arguments while the ideas remain
intact and partly because a physical implementation, discussed in [III], is more easily done
with fewer qubits. With only four qubits, we are left with just one detuning; why we drop
the subscript, δ ≡ δ2, and four interaction terms, Jx,z

1,2 . The last requirements for the gate
relates these parameters; the first is δ = δ± ≡ 2(Jz

2 ± Jx
2 ), in accordance with Ref. [292],

while the second requirement is J1 ≡ Jx
1 = Jz

1 . For a derivation of these requirements, see
Ref. [292]. A schematic model of the system is seen in Fig. 4.1(a).

4.1.2 The two-qubit swapping gate

The above Hamiltonian, with N = 4, implements a two-qubit swapping gate, where the
first and the last qubits are the swapped qubits, while the middle ancilla qubits control
the state of the gate. We thus have a multiqubit controlled gate, where the combined state
of the control qubits determine the state of the gate, effectively working as a single control
qubit [293–295]. The control qubits then constitutes a switch which can either be in an
“open” state, which, in the case of four qubits, i.e., two control qubits, is |0〉C ≡ |00〉C,
or a “closed” state, which, in this case is the Bell states

∣∣1±〉C = (|10〉C ± |01〉C)/
√

2,
depending on the choice of δ±. Note that the subscript C denotes the (N − 2)-qubit state
of the control qubits, while we use T for the target, i.e., first and last, qubits. In the
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Figure 4.1: (a) The desired qubit model as seen in Eq. (4.2). (b) The lumped circuit model for the super
conducting circuit used to implement the above system. The crossed boxes represent Josephson junctions, the
parallel lines are capacitors, and the bent lines are linear inductors.

computational basis of the target qubits, {|00〉T , |01〉T , |10〉T , |11〉T}, the open gate can
be expressed as

Ûopen =


1 0 0 0
0 0 ∓1 0
0 ∓1 0 0
0 0 0 i

 , (4.2)

where the choice of δ± dictates the phase on the swap. The closed state of the gate is
simply the identity Uclosed = 14. The open gate will entangle the input and output qubits.
This can be quantified using the entanglement power [296], which in our case is 1/9.

We characterize the performance of the gate by calculating the average process
fidelity, Eq. (2.18), with the target gate being Ûopen and Ûclosed. We simulate the system
similarly to in Sections 2.1.3 and 3.1.1 using the Lindblad Master equation and the interac-
tion Hamiltonian of Eq. (4.2) using the QUTIP PYTHON toolbox [240]. The result is then
transformed into the frame rotating with the diagonal of the Hamiltonian, and then the
average fidelity is calculated.

Given a set of model parameters, the average fidelity can be calculated as a function
of time for both sets of gate configurations. In the case of the open gate, i.e., configuration
|0〉C, the average fidelity rises from some initial value to a maximum (unity for the perfect
gate) at the gate time, which we denote tg. Analytically, we expect this to be [292]

tg =
π

|2J1|
; (4.3)

however, for the simulations, we find the best gate time numerically. In the case of the
closed gate, i.e., the configuration |1〉C, the average fidelity is initially unity and deviates
only from this value due to leakage to the control qubits or as a result of decoherence
noise.

In order to investigate the sensitivity of the parameter space, we vary the parame-
ters J1, J2, and δ and show the gate time and average fidelities at the gate time in Fig. 4.2.
The figure shows both the average fidelity without any decoherence and with a decoher-
ence time of T1 = T2 = 100 µs [297]. In Figs. 4.2(a) and (d), we vary the coupling of the
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δ

(a)

(d)

(b)

(e)

(c)

(d)

Figure 4.2: (a)-(c) Gate time as a function of the model parameters J2, 1/J1, and δ. The blue lines indicate the
analytical result of Eq. (4.3) and the red lines indicate the point of maximum average fidelity. (d)-(e) Average
fidelities at the numerical gate time as a function of the model parameters J2, 1/J1, and δ, both with (dashed
lines) and without (solid lines) decoherence noise. The yellow lines indicate the fidelity when the gate is in the
open configuration, while the purple line indicates that it is in the closed configuration.

control qubits, J2 ≡ Jx
2 = Jz

2 , in the configuration
∣∣1+〉C, while keeping the remaining

coupling constants at J1 = 30 MHz. Setting Jx
2 = Jz

2 is merely done for the simplicity of
the numerical investigation and is not a requirement, as we will exploit later. From this
simulation, we observe that the optimal numerical gate time is about 5% faster than the
analytical, and for large J2/J1, we observe almost unity average fidelity for the closed
configuration of the gate, and between 0.98 and 0.99 for the open configuration. In Figs.
4.2(b) and (e), we vary the coupling between the target qubits and the control qubits,
i.e., J1, while keeping the coupling between the control qubits constant at J2 = 750 MHz,
in the configuration

∣∣1+〉C. Again, we observe a slightly shorter numerical gate time
and fidelities of close to unity and just between 0.98 and 0.99 for the closed and open
configuration, respectively. In Figs. 4.2(c) and (f), we vary Jx

2 and keeping Jz
2 = 600 MHz

in the case of the gate being in the configuration
∣∣1−〉C to effectively vary ∆ around zero.

We observe that the gate completely fails around zero, as it should, but we also conclude
that we achieve a larger average fidelity (just above 0.99) for a positive detuning, i.e.,
Jz
2 > Jx

2 , rather than a negative detuning. However, for the case of
∣∣1+〉C, we find that the

average fidelity is slightly larger when Jz
2 < Jx

2 . The simulations also find that a different
sign on the couplings J1 and J2 yields a slightly larger average fidelity.

The simulations mentioned above beg the question of why the average gate fideli-
ties do not approach unity, even when the requirements mentioned in Section 4.1.1 are
fulfilled. The answer to this question is found together with the answer as to why the
numerical gate time is shorter than the analytical gate time in Eq. (4.3). It all comes down
to the fact that even though the state |1〉 |0〉C |1〉 is indeed an eigenstate of the Hamiltonian,
it is also degenerate with the states |1〉

∣∣1∓〉C |0〉 and |0〉
∣∣1∓〉C |1〉 depending on the choice

of δ± (note that these states are not the same as the configurations of the closed gate).
This means that the system will oscillate between these three states, like how the open
gate oscillates between states with a single excitation. However, the time scale of this
oscillation is less than for the single excitation, with an oscillation time around 90% of the
analytical gate time. This means that sometimes between 0.9tg and tg, we will observe
maximum average fidelity, less unity, depending on the system’s configuration.
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Figure 4.3: Average fidelities of the control qubits in both states for increasing coupling strength beyond
nearest-neighbor coupling, Jc. The solid lines are with next-to-nearest couplings included, and the dash-dotted
lines are with up to next-to-next-to-nearest neighbor coupling.

This does, however, not mean that it is impossible to achieve perfect transfer for
some states in a well-configured system. Namely, as long as not both the input and output
qubit are in a superposition state, the state is transferred perfectly when disregarding
decoherence noise.

Note that the resonance of the eigenstates mentioned above is the same resonance
that makes the gate work to begin with, in that case it is the states |1〉 |0〉C |0〉, |0〉 |0〉C |1〉,
and |0〉

∣∣1∓〉C |0〉 that are in resonance.

4.2 Superconducting circuit implementation

A possible superconducting circuit implementing the desired gate for N = 4 can be seen
in Fig. 4.1(b). It consists of four transmon qubits connected through a Josephson junction
and the two end qubit connected to the middle ones via an inductor, while the middle two
are connected through a capacitor of arbitrary size. The capacitive coupling between the
to end qubits should be as small as possible to avoid coupling beyond nearest-neighbor
coupling. It is essential to minimize capacitive couplings between every other pair of
qubits when the circuit is scaled up to larger N. When this is the case, the capacitance
matrix becomes approximately block diagonal, and its inverse becomes block-diagonal,
which means that unwanted cross-talk beyond the nearest neighbor is suppressed. When
the capacitance between every other pair of qubits is not minimized, the capacitance
matrix becomes tridiagonal, and its inverse will feature components leading to coupling
beyond nearest-neighbor coupling. In reality, there will always be a parasitic capacitance
between two nodes connected through a Josephson junction; however, not including these
are equivalent to assuming Ci � Ci,i+1, where Ci is the shunting capacitance of the ith
qubit and Ci,i+1 is the parasitic capacitance between the ith and (i + 1)th node. A detailed
analysis of the circuit can be found in [III].

In order to quantify the effect of coupling beyond nearest-neighbor coupling,
we simulate the gate, including next-to-nearest couplings and next-to-next-to-nearest
couplings. We calculate the average fidelity, for the two states of the control qubits, as a
function of increasing cross-talk, and the result can be seen in Fig. 4.3.
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From the simulation, we see that next-to-nearest couplings have no effect on the
gate when it is in its closed configurations

∣∣1±〉C, and have only little effect when it is
in its open configuration |0〉C. The average fidelity increases a tiny amount until the
next-to-nearest neighbor coupling is ∼ 3% of the nearest neighbor coupling between the
target qubits and the control qubits. This is consistent with the result of Ref. [298]. On the
other hand, next-to-next-to-nearest couplings have a much more significant influence on
the system when the coupling strength is above 2% of the target-control coupling, and
we conclude that the gate fidelity decreases as the square of the next-to-next-to-nearest
coupling strength. This is expected since the next-to-next-to-nearest coupling is a direct
coupling of the input and output qubits.

4.3 Summary and Outlook

This chapter investigates how a linear chain of qubits can be configured into operating
as a controlled two-qubit swapping gate. In particular, we have focused on the case of
four qubits and shown that it can create a swapping gate with a fidelity around 0.99, even
when including realistic decoherence noise. We have also presented a superconducting
circuit design that could be used to implement the gate.
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Hybrid Quantum-Classical Algorithms





CHAPTER 5

Parameterized Quantum Circuits

At some point during my PhD studies, my focus shifted from superconducting circuits to quantum
algorithms, more specifically hybrid quantum-classical algorithms. This shift came naturally since
such algorithms are the ones that are applied to emerging quantum chips based on superconducting
circuits. In other words, my focus went from “how do one build a quantum chip?” to “given such a
quantum chip, what can we do with it?”. This chapter is based on Ref. [VII]. Text and figures have
been edited to fit the thesis, and the section on photonic circuits has been omitted as it is outside the
scope of this thesis.

Until now, we have primarily been focusing on building qubits and performing gate-
operations on them using superconducting circuits. However, producing such quantum
chips is not all there is to quantum technology. We must also figure out which algorithms
we should apply to such quantum chips. Ideally, we would like to apply some great
algorithm to a large-scale, fault-tolerant, universal quantum computer, but although we
are closer to this significant milestone than ever before, it may take years before we achieve
this. Current quantum technology supports only a couple of tens of qubits and a few
hundred gate operations before the noise becomes too overwhelming. Nonetheless, there
is a growing consensus that these Noisy Intermediate-Scale Quantum (NISQ) devices
may find a practical application in the near future or at least a lot sooner than large-scale,
fault-tolerant universal quantum computing [234].

A strategy for optimizing the use of noisy quantum hardware is to divide the
computational tasks between classical and quantum resources. Hybrid quantum-classical
(HQC) algorithms are such schemes. Examples of HQC algorithms are the quantum
approximate optimization algorithm (QAOA) [299–301], the quantum autoencoder (QAE)
[302], the quantum variational error corrector (QVECTOR) [303], classification via near
term quantum neural networks (QNN) [304–307], quantum generative adversarial net-
works (QuGAN) [308–311], and the variational quantum eigensolver (VQE) [312–319]. All
these algorithms have in common that they share a quantum subroutine for producing
parameterized trial states, where the parameters can be tuned to optimize a function
value. Thus the performance of these algorithms depends on the configuration of the
parameterized quantum circuit (PQC). This has led to several studies of circuit properties,
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and capabilities [320–324]. In this chapter, we discuss PQCs and characterize their power
by their entangling capability and so-called expressibility, introduced recently by Sukin
Sim et al. [320]. In particular, we focus on the effect of single-qubit rotations and investi-
gate whether it is possible to saturate the expressibility and entangling capability when
gradually increasing the number of single-qubit rotations.

While single-qubit rotations are often cheap to implement in quantum circuits,
they sum up many variational parameters for classical optimization. If some of these
variational parameters are redundant, the result of an HQC algorithm should not suffer
by removing them from the classical optimization. In addition, the presence of redundant
parameters slows down the optimizer and may get it stuck in a local minimum, preventing
the HQC algorithm from converging to the global minimum. With the current few-qubit
HQC experiments, this has posed no problem, but for future applications to large systems
beyond classical numerical methods, the number of variational parameters in the classical
part of the HQC algorithm may become a limiting factor. Therefore, we investigate
how many rotations are necessary to run these algorithms without compromising the
results. We do this by considering the expressibility and entangling capability [320],
and investigate whether they saturate before we reach the maximum amount of single-
qubit rotations. To verify that these metrics capture the capability of an actual HQC
algorithm, we also simulate a VQE for the same number of single-qubit rotations. We
discuss these results in Section 6.1 where we go into detail concerning the variational
quantum eigensolver. In Section 5.1 we present PQCs and introduce the two metrics we
investigate. In Section 5.2 we present our results of the metrics and consider how the
expressibility and entangling capability are affected when the number of qubits in the
PQC is increased up to ten qubits, where previous investigations have only considered
four qubits [320]. In particular, in Section 5.3 we consider how different entangling gates
perform when the number of qubits is increased. In Section 5.4 we present a summary
and outlook for future work.

5.1 Theory behind PQCs

A parameterized quantum circuit (PQC) is essentially just a circuit consisting of N inter-
connected qubits, which we can operate on with quantum-logic gates, often just called
gates. Some of these gates should be parameterized, e.g., in the rotation angle of a single-
qubit rotation gate (see Section 1.7.1 for how to do this with superconducting circuits). We
represent a PQC by a parameter-dependent unitary matrix, Û (θ), that is used to map an
initial state of N qubits, often |0 . . . 0〉, to some other state Û (θ) |0 . . . 0〉, which is typically
used to approximate the ground state of some predefined Hamiltonian Ĥ.

Parameterized quantum circuits can take many forms, but the order and type of
gates are usually fixed before the experiment starts, and only the gate parameters are
optimized during the algorithm. Often PQCs are built using a layered structure where
each layer consists of some parameterized single-qubit rotations followed by a set of
unparameterized entangling gates. In Fig. 5.1 we present an example of such a PQC,
which consists of N qubits and L layers. A predefined number of single-qubit rotations
are performed in each layer, followed by an entangling operation, V. Generally, it takes
three rotations to map an arbitrary qubit state to another state. We, therefore, include
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Figure 5.1: Possible implementation of a parameterized quantum circuit (PQC). Single-qubit rotations are
denoted Rx , Ry, and Rz, while the multiqubit block indicates entangling gates spanning multiple qubits. The
first layer (red) consists of two single-qubit rotations on each qubit and an entangling gate, V. The bulk layers
(blue) each consists of three single-qubit rotations on each qubit and an entangling gate. The circuit ends with
two single-qubit rotations on each qubit.
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Figure 5.2: Example circuit with N = 4 qubits, L = 1 layer, and m = 6 randomly configured single-qubit
rotations.

three rotations on each qubit in each layer. However, if we assume that the qubit starts
in the |0〉-state, then we can map it to any other state using just two rotation gates. We
can therefore eliminate a gate in the first layer (red part of Fig. 5.1) without losing any
expressibility of the circuit. In many quantum algorithms, one measure each qubit in the z
basis, which by the same reasoning as for the first qubits makes final z rotations irrelevant,
meaning that we can remove a gate from the last part of the circuit (red part of Fig. 5.1).
Note that this part is not considered a part of any layer and that the number of layers is
equal to the number of V operations. For now, we assume that the entangling gates, V,
have no variational parameters, meaning that the total number of parameters is equal to
the number of single-qubit rotations,

M = N(3L + 1). (5.1)

For an HQC problem of fixed V, L, and N, we wish to investigate the quality of the PQC as
a function of the number of single-qubit rotations, m ∈ [0, M]. However, as this will leave
2M possible PQCs for each VQE problem, we select the PQC realizations randomly. For a
given number of variational parameters, m, we pick a random circuit configuration with m
single-qubit rotations. This is equivalent to fixing M−m rotation angles in Fig. 5.1 to zero.
An example circuit with L = 1, N = 4 and m = 6 is shown in Fig. 5.2. Producing many
randomly chosen circuit configurations with m rotations allows us to collect statistics
about circuits with a certain “rotations filling degree”.

5.1.1 Expressibility

We wish to measure how well a given PQC performs in an HQC algorithm, such as VQE.
One way to do this is to simulate a VQE algorithm for a specific system. However, we
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would like to characterize the PQC more generally, independent of the specific VQE
problem. One way to do this is to calculate the expressibility (and entangling capability as
presented in Section 5.1.2) [320]. The expressibility measures how close the PQC comes to
uniformly map the initial state, |0 . . . 0〉, to the entire Hilbert space. This mapping is done
by comparing the probability distribution of the PQC with the probability of a uniform
distribution in Hilbert space, i.e., an ensemble of Haar random states. Loosely, one may
think of the expressibility as how many final states the PQC can reach.

It is important to note that the expressibility and entangling capability are not
perfect metrics for the suitability of a PQC in an HQC [324]. Some chemistry and con-
densed matter Hamiltonians contain specific symmetries, which can be solved accurately
by a PQC respecting these symmetries, which is rated poorly by the expressibility and
entangling capability metrics.

We calculate the expressibility following the approach in Ref. [320]:

1. Pick the gate operation, V, qubit number, N, and the number of layers, L.

2. For a given number of rotations, m, pick a random PQC resulting in a parameterized
unitary, Û (θ).

3. Calculate the expressibility of the circuit:

a) Uniformly sample 1000(N + 1) sets of parameter vectors, θ1,θ2.

b) Compute the overlap fidelity of the final states,

F = | 〈0 . . . 0|Û †(θ2)Û (θ1)|0 . . . 0〉 |2. (5.2)

c) Create a histogram over the fidelities, in order to estimate the probability
distribution, P(F), of the fidelities found in the previous step. Not that this
estimation will depend on the number of bins in the histogram, nbins. For the
sake of consistency we set nbins = 75 as in Ref. [320].

d) Compare P(F) with the probability distribution achieved from an ensemble of
Haar random states, PHaar(F) = (2N − 1)(1− F)2N−2, using the same number
of bins as in the previous step. We do this by computing the Kullback-Liebler
divergence

Expr =DKL(P(F)||PHaar(F))

=∑
F

P(F) ln
(

P(F)
PHaar(F)

)
,

(5.3)

where the sum is taken over the bins. This measure is known as the expressibil-
ity of a PQC.

4. Calculate the relative expressibility

E = − ln
[

Expr
Expr(Idle circuit)

]
. (5.4)

Note that Expr = 0 for the most expressible circuit that reaches all final states uniformly,
P(F) = PHaar(F). On the other hand, the least expressible circuit (the idle circuit with
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no gates) has Expr(Idle circuit) = (2N − 1) ln(nbins) > 0. The above also illustrates the
dependence on the chosen number of histogram bins. We, therefore, normalize our results
with the expressibility of the idle circuit. To better resolve the most expressible circuits
(Expr ∼ 0), we take the logarithm and multiply by minus one in order to make the result
positive. We call this relative expressibility; see Equation 5.4.

We note that instead of calculating the expressibility via the Haar measure, we
could also have used other metrics, such as the qBAS score, where the probability distri-
bution P(F) is compared to the bars and stripes data set [325]. Had we instead tried to
maximize the expressibility, this could be considered training the circuit for approximating
a given probability distribution. This unsupervised machine learning task is also known
as generative modeling. Such a training model is an example of data-driven quantum
circuit learning [325].

5.1.2 Entangling capability

It is expected that HQC algorithms may have an advantage over similar classical algo-
rithms in the future since entanglement occurs naturally in the quantum mechanical part
of the HQC algorithm. Therefore we also wish to measure how well quantum circuits can
produce entangled states. Reference [320] proposes to use the entangling capability and
defines it as the average Meyer-Wallach entanglement measure [326]

Q(|ψ〉) = 4
n

n

∑
j=1

D(ιj(0) |ψ〉 , ιj(1) |ψ〉), (5.5)

where the generalized distance, D, is

D(|u〉 , |v〉) = 1
2 ∑

i,j
|uivj − ujvi|2, (5.6)

and the linear mapping ιj(b) removes the jth qubit in the computational basis

ιj(b) |b1 . . . bn〉 = δbbj |b1 . . . b̂j . . . bn〉 , (5.7)

where bj ∈ {0, 1} and the “hat” denotes the absence of the jth qubit. The average of Q
is then taken over a uniformly sampled set of parameters θ. We denote the entangling
capability C. The entangling capability lies between zero and one, zero being a non-
entangling circuit and one representing a maximally entangling circuit. We wish to
investigate whether the entangling capability saturates around the same amount of single-
qubit rotations where the expressibility saturates.

5.2 Reducing the amount of single-qubit rotations

We consider the following protocol: For each fixed number of rotations, m, we sample
100 random circuits and calculate their relative expressibility and entangling capability1.

1Some of the numerical results presented here were obtained at the Centre for Scientific Computing, Aarhus
http://phys.au.dk/forskning/cscaa/.
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(a)

(d)

(b)
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(f)

Figure 5.3: Relative expressibility of different circuits with N = 4 qubits and L = 4 layers as a function of the
number of rotations. The inset in the right upper corner of each plot shows the entangling gate, V, used in each
layer. (a) Three CNOTs, (b) diamond gate, (c) C2iSWAP, (d) three iSWAPs, (e) C3NOT, (f) 3-bit iToffoli gate.

The PQC is considered saturated if the relative expressibility and entangling capability
converge after a given number of single-qubit rotations. The two metrics do not necessarily
converge at the same number of single-qubit rotations, but, as we will see, this usually
happens around the same point. One could argue that this is expected since we are
only adding single-qubit gates, and thus we are not adding any entangling gates to the
circuit. Therefore, a PQC that is saturated in the relative expressibility should be capable
of applying the maximal entangling capability of the given V-gate.

In Fig. 5.3 we have plotted a two-dimensional histogram of the relative express-
ibility as a function of the number of rotations, m, in the circuit. The calculations are
performed with N = 4 qubits in L = 4 layers, allowing for a maximum of M = 52 single-
qubit rotations according to Eq. (5.1). The calculation for different entangling operations,
V, displayed as the inset in each subplot. We present two-dimensional histograms of the
entangling capabilities in Fig. 5.4, for the same cases. For results concerning less layers
(L = 1, 2, 3) and/or more qubits (N = 6, 8) see the supplementary material of the original
paper [VII].

Before discussing the details of each of the different V-gates, we first consider some
general features of the results. First of all, if no V-gates are present, all product states can
be represented using only three single-qubit rotations on each qubit. In the case of N = 4
qubits, this implies that 12 single-qubit rotations are sufficient, which yields a relative
expressibility of E = 5.8 and, of course, zero entangling capability. All non-entangling
circuits yield this maximum relative expressibility and zero entangling capability.

Most of the plots show a “stripe” pattern, which is especially pronounced for low
relative expressibility or entangling capability. These stripes occur when the single-qubit
rotations are placed on the same qubits. For N = 4, we observe up to four stripes, the
lowest stripe when all rotations are placed on one qubit, the second-lowest when all
rotations are placed on two qubits, and so forth.

The final point is that a circuit that has converged in relative expressibility and
entangling capability is not necessarily capable of finding any arbitrary state in the selected
Hilbert space. The fact that we achieve convergence means that this particular choice
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(f)

Figure 5.4: Entangling capability of different circuits with N = 4 qubits and L = 4 layers as a function of the
number of rotations. The inset in the right upper corner of each plot shows the entangling gate, V, used in each
layer. (a) Three CNOTs, (b) diamond gate, (c) C2iSWAP, (d) three iSWAPs, (e) C3NOT, (f) 3-bit iToffoli gate.

of PQC has reached its limit. This limit is seen by considering the minimum required
parameters to specify an arbitrary N-dimensional state, which is 2(2N)− 2 parameters.
Here the factor 2N comes from the number of amplitudes of each basis state, the factor of
two arises because the amplitudes are complex, and the subtraction of two parameters is
due to global phase and normalization conditions. Thus for the N = 4 case, the minimum
parameter count is 30. This means that if a PQC saturates below m = 30, it cannot reach
arbitrary states in the Hilbert space.

V = CNOTs

One of the most frequently used two-qubit entangling gates is the CNOT gate. We, therefore,
consider the case where V is a CNOT between each consecutive pair of qubits. See Fig. 5.3(a)
for the case of four qubits and four layers. The relative expressibility converges towards
E = 10 within 30 single-qubit rotations. The story is similar for fewer layers; the relative
expressibility is converged at m = 30 single-qubit rotations. The above implies that we
do not saturate the relative expressibility for one and two layers, as we have less than 30
rotations in both cases. However, more than three layers of CNOTs and 30 single-qubit
rotations seem to be a waste of resources, as the relative expressibility does not increase
further. However, this does not mean that this PQC configuration is optimal, as we will
see when discussing the diamond gate. From Fig. 5.4(a), we observe that the entangling
capability saturates around 0.8 at approximately 30 single-qubit rotations.

For N = 6 qubits (see original paper [VII]), we observe the same tendencies;
however, the relative expressibility converges towards E = 9. This convergence happens
at around 40 single-qubit rotations, obtained for just two layers, significantly fewer than
the minimum parameter count: 126 for six qubits.

Turning towards the case of eight qubits, we again observe a saturation of the
relative expressibility and entangling capability (see original paper [VII]). Convergence is
reached after approximately 30 single-qubit rotations at a relative expressibility E = 7.5,
which is lower than for both four and six qubits and the same as for having no entangling

117



Chapter 5. Parameterized Quantum Circuits

V gate. This fact is due to the number of bins used in the definition of the relative
expressibility; see Section 5.3 for further discussion.

V =iSWAPs

An entangling version of the SWAP gate is the iSWAP gate. The iSWAP gate has an entangling
power equivalent to the CNOT gate and occurs naturally in systems with XY-interaction or
Heisenberg models, such as superconducting circuits [269] as mentioned in Section 1.8.2,
and in cavity mediated interaction between spin qubits and superconducting qubits [19,
110, 270]. In Fig. 5.3(d), we present the relative expressibility where the V gate is an iSWAP

gate between each qubit. The relative expressibility of this configuration goes towards the
same as for the CNOT; however, it converges a bit slower. For four qubits, the difference is
about five rotations. However, it is more pronounced for six qubits with a difference of
around 20 single-qubit rotations. The behavior for eight qubits and the iSWAP gates is the
same as for the CNOT gate.

The entangling capability in Fig. 5.4(d) saturates a bit below 0.8, and the saturation
point is later than for the CNOT gates as for the relative expressibility. Overall, the iSWAP

gate performs worse than the CNOT gate.

V = DIAMOND

An example of an entangling four-qubit gate is the diamond gate [327], which is an
entangling swapping gate with two control qubits, where the two control qubits must be
in an entangled state to control the swapping operation. The diamond gate is difficult to
synthesize into one- and two-qubit gates. A decomposition into standard gates requires
21 gates, while it can be done with purely CNOT gates and single-qubit gates using 42
and 49 gates, respectively. It does, however, naturally occur in superconducting circuit
schemes for quantum information processing. See Ref. [327] or the supporting material of
Ref. [VII] for more details.

In Fig. 5.3(b) we present the relative expressibility for circuits with four qubits, four
layers and V = Udia, where Udia is the diamond gate. We see that the relative expressibility
converges rapidly towards E = 10, which it reaches within 20 single-qubit rotations, which
is less than for both the CNOT and iSWAP gates in subfigures (a) and (d) and less than the
minimum number of parameters. We, therefore, conclude that even though the PQC has
saturated, it is incapable of reaching any arbitrary state in the Hilbert space. This also
means that other circuits that have saturated at the same relative expressibility must also
be incapable. In the case of the entangling capability [Fig. 5.4(b)], we also find saturation
at around 20 single-qubit rotations.

We observe the same behavior for six qubits: When the diamond gate is used as an
entangling gate, convergence is reached faster than when CNOT or iSWAP gates are used.
For eight qubits, the performance of the diamond gate is reduced to the same level as the
two other gates. We also see that the stripe patterns are less pronounced in the case of the
diamond gate. This is because the gate is highly entangling, mixing the qubits and thus
blurring out the stripes.
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V = MULTIQUBIT GATES

In order to investigate whether the diamond gate performs well simply because it is
a multiqubit gate, we consider a few other multiqubit gates. In Chapters 2 and 3 we
discussed different multi-qubit gates, more specifically the CnNOT, the n-bit iToffoli, and
the CniSWAP gate. We, therefore, consider these three gates as our entangling gates one at
a time. The result using these gates can be seen in subfigures (c), (e), and (f) of Fig. 5.3 for
N = 4.

Common for all three gates is that they converge towards the same relative ex-
pressibility as the other entangling gates, namely E = 10 for four qubits. However, they
are much more dependent on the number of rotations, as the convergence point is only
reached for the maximum amount of rotations. The main difference between the three
gates is that the double controlled iSWAP in Fig. 5.3(c) converges a bit faster than the
multiple controlled NOT gates. However, this difference cannot be seen for six or more
qubits, where all three multiqubit gates converge at the same rate. Thus, the double
controlled iSWAP converges faster because it has twice as many target qubits compared to
the multiple controlled NOT gates, which is less significant for more qubits. An interesting
thing to notice is the fact that the diamond gate seems to converge much faster than
the double controlled iSWAP gate (compare subfigures (b) to (c)) although both gates are
swapping gates with two controls. This difference is probably because the controlling part
of the diamond gate requires a superposition state to activate the swap, compared to the
multiple controlled iSWAP gate, which does not require a superposition.

In terms of entangling capability, multiple control gates perform only at an average
level with a maximal entangling capability of 0.5, see Fig. 5.4(c), (e), and (f). As for the
relative expressibility, we need the maximum number of rotations for the entangling
capabilities to reach their maximum. We also observe that the three multiqubit gates
barely outperform the non-entangling gates for six qubits. This is because most of the
qubits become control qubits when the number of qubits increases, and this means that
the multiqubit gates will act trivially on more states as the number of qubits increases.
We conclude that the entangling capability and relative expressibility saturates for ap-
proximately the same number of qubit rotations as the VQE simulation saturates. In the
following section, we consider the entangling capability and the relative expressibility as
the number of qubits increases, but only for the case of a fully saturated PQC.

Table 5.1 presents a comparison of the different V-gates used in the analysis. The
comparison is made after the saturation point is reached for the diamond gate with two
layers and 25 single-qubit rotations for both four and six qubits. We do not compare
the eight qubit case as the expressibility is the same for all V-gates. See Section 5.3 for a
discussion of why this is the case. We note that other entangling gates may outperform
the gates we have considered here.

5.3 Increasing the number of qubits

In the light of the fact that all PQCs consisting of eight qubits seem to converge approxi-
mately towards the same relative expressibility, we investigate the relative expressibility
as a function of the number of qubits. We, therefore, plot the relative expressibility for
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Table 5.1: Comparison of relative expressibility and entangling capability for the different multiqubit V-gates.
The comparison is made after the saturation point of the diamond gate is reached with L = 2 layers and m = 25
rotations. Expressibility and entangling capabilities are taken as averages over the sample size. We compare
both four and six qubits, but not eight qubits, since the expressibility is the same for all V-gates due to our
choice of bins.

N = 4 N = 6
V-gate E C E C
None 5.8 0 6.6 0
CNOT 8.7 0.68 7.9 0.70
iSWAP 8.3 0.61 7.2 0.42
DIAMOND 9.4 0.79 8.4 0.76
MULTIQUBIT 7.3 0.35 6.7 0.05

different V gates in the top part of Fig. 5.5 where we depict up to three layers. In order
to ensure that the relative expressibility has converged, we use the maximum number of
rotations, i.e., M rotations. We use a selection of the same gates discussed in the previous
section: The identity, CNOTs, iSWAPs, diamond gates, and the multiqubit controlled NOT

gates.
For less than eight qubits, we observe that the relative expressibility is quite

scattered in Fig. 5.5, with the entangling gates yielding the best relative expressibility
and the identity gate yielding the worst relative expressibility. However, as the number
of qubits increases, the relative expressibility seems to converge towards E = 6.5 for
all cases. This convergence is because when the number of qubits increases, the Haar
measure peaks at low fidelity, meaning that the lowest bins dominate in calculating the
relative expressibility. When the number of qubits becomes sufficiently large, only the
lowest bin becomes relevant when calculating the relative expressibility. Therefore, one
should consider increasing the number of bins if one wishes to investigate the relative
expressibility for more qubits. However, to compare the relative expressibility for circuits
with different numbers of qubits, one should have the same number of bins, which is why
we have chosen 75 bins for all calculations. This also means that even though the relative
expressibility seems to converge towards a lower value for larger N, it does not necessarily
mean these PQCs are worse than similar PQC for lower N. It is simply a result of the
way relative expressibility is defined. Therefore, one should be cautious when comparing
PQCs across a different number of qubits.

Contrary to the relative expressibility, the entangling capability is not dependent
on the number of qubits, and we do not expect it to converge towards a specific value for
all cases. The entangling capability is plotted in the bottom part of Fig. 5.5. Without any
entangling gates, the entangling capability is, of course, zero. When introducing the CNOT

gates, we obtain an asymptotically increasing entangling capability. Not surprisingly,
more layers increase the entangling capability of the CNOT gates. We observe that for up
to three layers, there is a slow convergence towards one, i.e., 0.7 for one layer, 0.92 for two
layers, and 0.95 for three layers.

The entangling capability of iSWAP gates between each qubit is constant for a single
layer around 0.3, which is significantly lower than for the CNOT gates, despite both having
the maximum entangling power [328]. Increasing the number of layers dramatically
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Figure 5.5: Top: Relative expressibility and bottom: entangling capability for different choices of V gate as a
function of the number of qubits. In order to ensure convergence, all circuits are simulated with the maximum
number of rotations, i.e., M rotations.

increases the entangling capability of the circuit; however, it remains inferior to a circuit
with CNOT gates for the same amount of layers. Turning to the diamond gate, we observe
that for one layer, its entangling capability is approximately equal to that of the CNOT

gates, though it does seem to increase a bit slower. For two layers, it outperforms the
CNOT gates for three layers, and for three layers of the diamond gate, it looks like the
entangling capability converges towards unity. Contrary to the other entangling gates, the
entangling capability of the multiqubit controlled NOT gate converges towards zero as
the number of qubits increases. Since for a large number of control qubits, the multiqubit
gate resembles the identity gate quite well, as it acts trivially on most of the qubits in the
system.

5.4 Summary and outlook

We have investigated the relative expressibility and entangling capability for PQCs for
a varying number of single-qubit rotations. We found that the relative expressibility
and entangling capability can be saturated using fewer single-qubit rotations than the
maximum possible amount supported by the circuit. This could significantly decrease
the classical computational complexity of many hybrid quantum-classical algorithms.
We also find that it is subordinate where these single-qubit rotations are placed in the
circuit when the number of rotations is large. When the number of rotations is small, one
must spread the rotations evenly among the qubits, such that no qubit becomes saturated
with rotations to obtain an advantage. We note that even though this saturation point is
reached, it does not mean that the given PQC is capable of finding any arbitrary state in
the Hilbert space, and it implies that the given PQC has reached the limit of its capability.

Once the saturation point is achieved, the only remaining component to change
in a given PQC is each layer’s type of multiqubit gate. We find that highly entangling
multiqubit gates, such as the CNOT gate or the diamond gate [327] reaches the saturation
point of the relative expressibility, E , and entangling capability, C, with less single-qubit
rotations compared to less entangling gates.
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We assess that an efficient PQC can be created by employing highly entangling
gates such as the diamond gate or the CNOT in each layer for three layers and then doing
five to ten single-qubit rotations on each qubit. The placement of the single-qubit rotations
can be randomized. Of course, a high relative expressibility and entangling capability are
not enough to prove that PQCs are beneficial for all HQC algorithms. The next step would
then be to investigate the PQCs mentioned in this paper in an actual HQC setting, which,
coincidentally, is the objective of the next chapter.
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CHAPTER 6

Variational Quantum Eigensolver

In this chapter, I will present the Variational Quantum Eigensolver algorithm that I have used
during my PhD studies. I have mainly been focusing on solving simple molecules and Heisenberg
chains. Most of the results in this chapter are unpublished, but the results regarding the number of
single-qubit rotations (Section 6.4 and Fig. 6.2) have been published in Ref. [VII].

Variational Quantum Eigensolver (VQE) is an algorithm used for finding an approximate
ground state energy of a given Hamiltonian. It was initially proposed in 2014 as an
alternative to the quantum phase estimation algorithm, and the quantum mechanical
part was based on photonic quantum processors [312]. Since then, several other research
groups have adapted this algorithm [313, 314, 316–319]. Most relevant to this thesis, a
VQE algorithm was implemented on a superconducting chip in 2017 [315]. Below we
present the VQE algorithm and its extensions and simulations of the algorithm solving
molecules along with Heisenberg spin chains.

6.1 The algorithm

The Variational Quantum Eigensolver (VQE) is based on the variation principle, which
gives an upper bound for the ground state energy, E0, of some given Hamiltonian, Ĥ. In
general, it states that given any normalized state, |ψ〉, we have the following

E0 ≤ 〈ψ|Ĥ|ψ〉 . (6.1)

In other words, the expectation value of the Hamiltonian will always be larger or equal
to the actual ground state energy, no matter what trail state we choose. The equal sign is
only valid for the case where we chose the ground state as our trial state. Now say that we
can parameterize our trail states in a way such that |ψ(θ)〉 depends on a set of parameters
θ. In that case, we can minimize the expectation value of the Hamiltonian in order to
approximate the ground state energy. The remaining question is, how do we choose our
trial states?

The idea behind the VQE is that a quantum circuit might be better at choosing
trial states than a classical computer. Therefore, computing the trail states is done on a
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quantum processor while calculating expectation values, and minimizing the energy is
done on a classical computer. This is the core idea of HQC algorithms; computational
tasks are divided between a quantum resource and a classical computer to complement
the strengths of each process.

To summarize, a Variational Quantum Eigensolver must perform the following
steps:

1. Chose a parameterized quantum circuit (PQC), e.g., the one in Fig. 5.1. We denote
this circuit Û (θ), and it is often called the circuit ansatz.

2. Minimize the energy given by

E(θ) = 〈ψ(θ)|Ĥ|ψ(θ)〉 = 〈0 . . . 0|Û (θ)†ĤÛ (θ)|0 . . . 0〉 , (6.2)

using a classical optimization algorithm.

3. The resulting energy E(θ) and state |ψ(θ)〉 should be compared to the classically
found results.

There are several ways of choosing a circuit ansatz before performing VQE calculation.
Some construct their ansatz depending on the quantum hardware, i.e., the choice and
order of the gates depend on which gates are possible to perform on a quantum chip [315].
Others start from a unitary coupled-cluster ansatz where the PQC is built such that it has
properties similar to the ones seen in classical unitary coupled-cluster calculations [313,
329]. Finally, there have been researchers trying to use machine learning to figure out the
optimal circuit ansatz [330]. We will only concern ourselves with circuits similar to the
ones discussed in Chapter 5, i.e., single-qubit rotation gates layered with entangling gates.

6.2 VQE beyond the ground state

Even though the Variational Quantum Eigensolver was built to find ground states, there
are several ways to expand this method to find excited state [331–335]. Here we discuss
some of these approaches:

VQE for excited states

The first expansion of the VQE method we consider uses overlap estimation to find
subsequent states that are orthogonal to previous found states [334]. Suppose we have
minimized the energy of some Hamiltonian as Eq. (6.2) leading to an approximate ground
state |ψ(θ0)〉. Now we perform the VQE algorithm all over again, however this time we
include a penalty term based on the overlap between the ground state and the new state,
|ψ(θ1)〉, i.e., 〈ψ(θ0)|ψ(θ1)〉. This penalty ensures that the next state we find is orthogonal
to the first state, as required quantum mechanically. Continuing this scheme, we can find
the kth excited state by minimizing

F(θk) = 〈ψ(θk)|Ĥ|ψ(θk)〉+
k−1

∑
i=0

ηi 〈ψ(θi)|ψ(θk)〉 , (6.3)

124



6.3. Simulating molecules with VQE

where ηi is some constant that determines the size of the penalty, which must be chosen
larger than the energy gap between the two relevant states. Although this method can be
used to find any excited state in the Hilbert space spanned by the qubits of the ansatz, it
does require knowledge of all lower-lying states, which means that an iterative procedure
is required to find the kth excited state. Besides the linear scaling of the computation
time, this method also introduces the problem of determining ηi without prior knowledge
of the energy levels. Another problem with this method is that the crossing of states is
impossible to detect, as the method just finds the next lowest state.

Constrained VQE

Similar to the approach for the excited states, one can also penalize the VQE algorithm
using other metrics [333]. Given an operator Ô (this could be spin, Ŝ2, electron number,
N̂ , etc.) and its desired mean value, O, we now optimize the cost function

F(θ) = 〈ψ(θ)|Ĥ|ψ(θ)〉+ η
[
〈ψ(θ)|Ô|ψ(θ)〉 − O

]2 , (6.4)

where η is again some number whose size depends on the spacing of the energy levels.
Note that the constraint in Eq. (6.4) is relatively standard within constrained numerical
optimization [336], and one can, of course, add several different constraints at the same
time.

Subspace-Search Variational Quantum Eigensolver

The final example of an expansion of the original VQE we consider the subspace-search
Variational Quantum Eigensolver (SSVQE) [335]. This method can find up to the kth
excited state using just a single optimization procedure. The idea behind the procedure
is that instead of using a single input state as |0〉 = |0 . . . 0〉 we chose a set of orthogonal
states, {|ϕ〉j}k

j=0, meaning that 〈ϕi|ϕj〉 = δij, and then minimize a cost function consisting
of the sum of matrix elements given by these states. In other words, we minimize the
following function

F(θ) =
k

∑
j=0

ηi 〈ϕj|Û (θ)†ĤÛ (θ)|ϕj〉 , (6.5)

where ηi is some weight between 0 and 1 satisfying ηi > ηj when i < j, which chooses
which state becomes the excited states. When optimized this cost function maps the |ϕj〉
to the jth excited state for each j ∈ {0, 1, . . . , k}. While this procedure only requires one
optimization step, the overall time required for optimization may increase.

In an actual VQE implementation, one can create a set of orthogonal states by
applying a Pauli-X to a different set of qubits all initiated in the state |0〉. For example
applying a Pauli-X gate to the first qubit yields X1|0 . . . 00〉 = |0 . . . 01〉, which is orthogonal
to the original state.

6.3 Simulating molecules with VQE

We showed, in Chapter 5, how the expressibility and entanglement capability of a PQC
depended on the number of single-qubit rotations when the circuit layout was as in Fig. 5.1.
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Figure 6.1: Lowest lying states of small molecules. Lines indicates classical eigenvalue calculation of the qubit
Hamiltonian. Dots indicates VQE results using a two layers of diamond gates, while triangles represents VQE
results using CNOT gates. The gary dashed lines represent low lying states not found by the VQE. (a) H2, (b)
LiH, (c) BeH2, and (d) OH.

We will now verify these results by applying the VQE algorithm to the same circuits.
To apply the VQE, we must choose a Hamiltonian to which we can apply it. Often

used in VQE algorithms are the Hamiltonians of small molecules, especially H2, LiH,
and BeH2 [315, 333, 334]. These molecules are often chosen since their active space can
be effectively represented by 2, 4, and 6 qubits. In order to apply the VQE to molecular
problems, the Hamiltonians must be encoded onto qubits. When starting from fermionic
Hamiltonian in second quantization, this can be done using either a Bravyi-Kitaev [337]
or Jordan-Wigner [338] transformation. Following such a transformation, a Hamiltonian
for, e.g., four qubits take the form

Ĥ = ∑
α,β,γ,δ
∈x,y,z,I

hαβγδσα
1 σ

β
2 σ

γ
3 σδ

4 , (6.6)

where σ
x,y,z
i are the Pauli operators and σI

i is the identity on qubit i = 1, 2, 3, 4. The
coefficients hαβγδ are given by one- and two-body integrals of the molecule and do
generally depend on the molecular basis. We find the fermionic Hamiltonian using the
Python-based Simulations of Chemistry Framework (PYSCF) [339]. The matrix elements
are calculated in the STO-3G basis, and we map the Hamiltonian to a qubit Hamiltonian
using OpenFermion [340]. This procedure can, in principle, be applied to all molecules
for all geometries; however, we restrict ourselves to small molecules with less than ten
qubits to avoid diverging computation times. The fact that the above procedure produces
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Table 6.1: Molecular properties of the ground state of the molecules considered in Fig. 6.1. The multiplicity is
given as 2S + 1, where S is the spin of the state, and it is equal to the degeneracy of the state. All equilibrium
bond lengths have been obtained from [341], while the active space configurations have been determined
theoretically and confirmed to be realistically numerically.

H2 LiH BeH2 OH

Multiplicity 1 1 1 2
Charge 0 0 0 0
Equilibrium bond length [Å] 0.7414 1.595 1.326 0.964
Initial active space orbital 0 1 1 1
Final active space orbital 2 3 4 5
Qubit active space 4 4 6 8

diverging computation times for larger molecules is one of the motivations for developing
a more efficient quantum algorithm. We consider the molecules H2, LiH, BeH2, and OH.
The chemical properties of the molecules can be seen in Table 6.1.

In this section, we simulate a VQE algorithm1 using the PYTHON package QUTIP
to create parameterized quantum circuits, which we then use to calculate the expectation
value of the qubit Hamiltonian. The expectation value is minimized using BFGS opti-
mization. We consider two-layer circuits, fully saturated with single-qubit rotations, as
in Fig. 5.1, with either CNOT or diamond gates as the entangling gates, V, with a layout
identical to the one discussed Section 5.2. We simulate all four molecules for different
interatomic distances around their equilibrium length. The results is seen in Fig. 6.1. We
use the constrained VQE algorithm to find low-lying excited states of the molecules. Using
the penalty for the spin operator Ŝ we find states with single and triplet multiplicity
(defined as 2S + 1) for H2, LiH, and BeH2 and doublet and quartet states for OH. We also
consider a penalty term for the number of electrons, N̂ , in order to find ions for LiH, BeH2,
and OH.

From Fig. 6.1 we see that the ground state is accurately found for all four molecules.
The excited states are also accurately found for H2 and LiH. For LiH, we note that there
are several excited states the VQE simulation does not find. Had we used a VQE with
an overlap penalty, we would probably have found these states; however, then there is
no way of determining, e.g., the multiplicity of the molecule. For BeH2, there is a kink
around 2 Å; this is due to some symmetry discrepancy in the chemical PYSCF calculations.
Nevertheless, the VQE simulation finds these states as well. The doublet state is not found
accurately for an increasing bond length for the OH molecule, and this could probably be
managed by increasing the number of layers in the PQC.

6.4 Single-qubit rotations in VQE

Having shown that the VQE simulation accurately reproduces the potential energy sur-
faces of small molecules using PQCs saturated with single-qubit rotations, we consider
removing single-qubit rotations as in Chapter 5. In other words, we want to perform the

1Some of the numerical results presented here were obtained at the Centre for Scientific Computing, Aarhus
http://phys.au.dk/forskning/cscaa/.
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(a)

(d)

(b)

(e) (g)
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Figure 6.2: Energy error of the ground state LiH found using VQE of different circuits with N = 4 qubits
and L = 4 layers as a function of the number of rotations. The energy found using VQE is compared to a FCI
calculation, which yields the energy error. The inset in the right upper corner of each plot shows the entangling
gate, V, used in each layer. (a) Three CNOTs, (b) diamond gate, (c) C2iSWAP, (d) three iSWAPs, (e) C3NOT,
(f) 3-bit iToffoli gate.

VQE simulation using the PQC with a fixed number of rotations, m, that are smaller or
equal to M of Eq. (5.1). As in Section 5.2 we sample 100 random circuits for each m and
then we perform a VQE simulation for each circuit. We simulate LiH, BeH2, and OH for
N = 4, 6, 8 qubits, respectively.

In Fig. 6.2 we plot the energy error (compared to a classical eigenvalue calculation)
for the LiH calculations with four layers. For results concerning less layers (L = 1, 2, 3)
and/or more qubits (N = 6, 8) see the supplementary material of the original paper [VII].
We perform the simulation for the same types of gates as in Section 5.2. In Fig. 6.2(a),
we see that the energy error saturates at less than 0.05 Hartree around 30 single-qubit
rotations when the entangling gates are CNOT gates. This is entirely consistent with the
saturation points found in Figs. 5.3 and 5.4(a), which also saturates around the same point.
For the case of BeH2 and OH (N = 6, 8 respectively), we also observe saturation before
reaching the maximum number of rotations. For the iSWAP gate in Fig. 6.2(d), we observe
a slower convergence, which is not reached before 45 rotations. This is consistent with the
previous results for expressibility and entangling capabilities in Figs. 5.3 and 5.4(d), which
are also reached slower than for the CNOT gates.

On the other hand, for the diamond gate in Fig. 6.2(b), we find a faster convergence
than for both the CNOT and iSWAP gates. Again, this is consistent with previous express-
ibility and entangling capability, which converged faster than for the two other gates.
Finally, for the multiqubit gates in subfigures (c), (e), and (g), we also observe the same
tendencies as in the calculations of expressibility and entangling capability, namely that
the saturation point is reached close to the maximum number of single-qubit rotations. In
conclusion, we find that the VQE simulations agree very well with the results found in
Section 5.2.
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6.5 Entangling gates in VQE

Until now, we have only considered unparameterized entangling gates, i.e., entangling
gates that cannot be optimized during the VQE. This is also the standard approach in the
literature where only the single-qubit gates are optimized while the entangling gates are
fixed. However, some references point in the direction that removing entangling gates,
similarly, as we did for the rotational gates in Section 5.2, can improve VQE performance
for low-entangled ground states [259].

One can think of a fixed entangling gate and no entangling gate as the two extremes
of parameterization. However, there is no reason to consider only these two extremes
since, in experimental implementations of entangling gates, they are often controlled by
tuning of the gate, e.g., as in superconducting circuits where magnetic fluxes can be used
to tune qubits in and out of resonance, see Sections 1.8.2 and 1.10.3. In other words, most
experimental implementations already accommodate parameterized entangling gates,
where the parameter is given by the time the qubits are in resonance, as seen in Eqs. (1.110)
and (1.111), which implements a parameterized iSWAP gate.

We, therefore, consider whether parameterized entangling gates improve the
performance of VQEs. In particular, we consider three different parameterized entangling
gates: the CNOT(Θ), iSWAP(Θ), and the CZ(Θ) gates, which are defined in the following
way

CNOT(Θ) =


1 0 0 0
0 1 0 0
0 0 cos(Θ/2) −ieiΘ/2 sin(Θ/2)
0 0 −ieiΘ/2 sin(Θ/2) cos(Θ/2)

 , (6.7a)

iSWAP(Θ) =


1 0 0 0
0 cos(Θ/2) −i sin(Θ/2) 0
0 −i sin(Θ/2) cos(Θ/2) 0
0 0 0 1

 , (6.7b)

CZ(Θ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiΘ

 , (6.7c)

where we denote Θ the coupling angle. We consider these three gates since these are
the parameterized versions of the most commonly used entangling gates. Further, the
iSWAP(Θ) and CZ(Θ) gates are easily implemented in superconducting circuits using
capacitive coupling, see Section 1.8.2, and the CNOT(Θ) gate can be implemented in
superconducting circuits using the approach in Chapter 2.

When investigating the performance of the parameterized entangling gates, we
consider a VQE simulation and not the expressibility and entangling power as discussed
in Chapter 5. Trivially expressibility must increase when including more parameters,
as a more significant portion of the Hilbert space is available. On the other hand, the
entangling capability does not increase when parameterizing the three entangling gates
since these are already maximally entangled in their fixed version when Θ = π. In Fig. 6.3
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Figure 6.3: Entangling power [328] of the three parameterized entangling gates in Eq. (6.7). Note that the
entangling power of the CNOT(Θ) and CZ(Θ) gates lie on top of each other.
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Figure 6.4: Example of one layer of the circuit ansatz used in Section 6.5 for four qubits. First, an Euler
rotation is performed on each qubit, followed by a nearest-neighbor coupling of all the qubits using the given
entangling gate. Here it is shown using CNOT gates.

we show the entangling power [328] of the three parameterized entangling gates as a
function of their coupling angle.

In this section we consider a simulation of SSVQE implemented using TENSOR-
FLOW QUANTUM [342]. TENSORFLOW QUANTUM is an open-source PYTHON library for
prototyping hybrid quantum-classical models, based on the classical machine learning
library TENSORFLOW used for deep learning models. In this sense, TENSORFLOW QUAN-
TUM is built such that PQCs are considered layers similar to how one would consider
layers in a classical neural network. We will not go into details of how TENSORFLOW

QUANTUM work but refer to the original white paper [342].

We consider PQCs similar to the ones we have previously considered; however,
this time, we only consider full layers, i.e., blue layers in Fig. 5.1. We consider Euler
rotations, i.e., y-z-y rotations instead. Since we only consider two-qubit entangling gates,
we chose a nearest-neighbor coupling scheme with periodic boundary conditions. See
Fig. 6.4 for an example of the circuit ansatz.

Besides some of the molecular Hamiltonians we considered in Section 6.3 we will
also consider a one-dimensional Heisenberg model with periodic boundary conditions,
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Figure 6.5: Potential energy surfaces for H2 calculated using SSVQE for the two lowest states. The title of
each column indicates which entangling gate is used in the calculation, either fixed (solid line) or parameterized
(dashed lines). In the top row, we show the calculated energy, and in the bottom row, we show the energy
difference, ∆E, between the classical and VQE calculations. Lighter colors indicate that more layers are used in
the simulation. The gray line indicates chemical accuracy at 0.0016 Hartree. The results shown here are the
best out of 100 samples.

i.e.,

Ĥ =
N

∑
i=1

(
Bσz

i + Jxσx
i σx

i+1 + Jyσ
y
i σ

y
i+1 + Jzσz

i σz
i+1

)
, (6.8)

where the subscripts are modulo N. We consider both the XXX model with J = Jx =
Jy = Jz and the pure swap model with J = Jx = Jy and Jz = 0. We also consider a
transverse-field Ising model

Ĥ =
N

∑
i=1

(
Bσx

i + Jzσz
i σz

i+1
)

. (6.9)

As with the molecular Hamiltonians, we consider a range of configurations; more specifi-
cally, we consider J/B ∈ [0, 2] varied in steps of 0.1. We perform all VQE calculations 100
times, and since we are doing variational simulations, we pick the calculation resulting in
the lowest energies

In Fig. 6.5 we show the results for the two lowest states of H2, plotting results for
up to three layers for both fixed and parameterized entangling gates. Starting with the
CNOT gate, we see that the parameterized gates outperform the fixed gates for one and
two layers, while the performance is somewhat identical for three layers. We note that we
achieve chemical accuracy using only two layers for the parameterized gate, compared to
three for the fixed gates. Note the sharp drop in ∆E for the fixed gate for one layer around
0.75 Å; this happens since here we have a crossing of states, where the H+

2 state crosses
the triplet state of H2 (see Fig. 6.1). The SSVQE cannot distinguish between these states
and find the lowest. However, the one-layer fixed gate only finds the second-lowest to
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Figure 6.6: Potential energy surfaces for the Heisenberg model in Eq. (6.8) with six qubits calculated using
SSVQE for the two lowest states. The title of each column indicates which entangling gate is used in the
calculation, either fixed (solid line) or parameterized (dashed lines). In the top row, we show the calculated
energy, and in the bottom row, we show the energy difference, ∆E, between the classical and VQE calculations.
Lighter colors indicate that more layers are used in the simulation. The results shown here are the best out of
100 samples.

begin with, and since the starting values of the VQE come from the previous calculation,
it overperforms when this crossing occurs.

The story is the same for the iSWAP gate, and we even see that the two-layer
parameterized circuits perform better than fixed three-layer circuits. We are not capable of
achieving chemical accuracy with just fixed gates. This time we see a sharp increase in
∆E around 0.75 Å for two of the excited states. Again it is due to the crossing; however,
the algorithm finds the lowest and continues with this state. Finally, for the CZ gate, we
find that it performs significantly worse than the two other gates, both for the fixed and
parameterized versions. We only achieve chemical accuracy for the ground state for three
layers of the parameterized gate. However, the CZ gate works surprisingly well for the
fixed and parameterized versions for the first excited state, except for one layer, where the
crossing is again the source of trouble. The CZ gate is better at approximating the excited
state than the ground state is probably because the CZ gate mimics the structure of the
first excited state better. In Appendix E we show similar results for LiH (Fig. E.1). We
have also obtained results for BeH2, however, with fewer samples. The result is the same:
The parameterized gates perform better than the fixed gates in both cases.

In Fig. 6.6 we show results for the XXX Heisenberg model in Eq. (6.8) with six
qubits. In the simulation, we take B = 1 and interate J in steps of 0.1. We note that the
VQE model is very good at determining the energy when J = 0, which makes sense
since the Hamiltonian is diagonal in the computational basis in this case. The ground
state is also nicely determined until the crossing around J/B = 0.3, at which point the
fixed gates start performing worse than the parameterized gates. Especially for the iSWAP
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gate, we observe that the parameterized version outperforms the fixed version. The first
excited state is more difficult for the VQE, and it generally performs poorly, although the
parameterized version of the iSWAP performs best of all the gates. Here we also see that
a two-layer PQC with parameterized gates is better than the three-layer fixed version,
i.e., it is not just the increased number of parameters in the model that yields a better
result. Altogether, the XXX Heisenberg model results confirm the results we found for the
molecular Hamiltonian.

In Appendix E we show similar results for the pure swap Heisenberg model and
the transverse-field Ising model, both for six qubits. These results agree with what is
discussed here. We have also simulated these models for four, eight, and ten qubits; still,
the conclusions are the same; however, we do not include these plots here due to the scope
of this thesis.

6.6 Overlap fidelity

So far, we have only considered how well the VQE approximates the eigenvalue of the
Hamiltonian, i.e., the energy. However, there are always two sides to an eigenvalue
problem: the eigenvalue and the eigenstate. We, therefore, investigate how well the VQE
algorithm approximates the eigenstates of the Hamiltonian. We do this by calculating the
overlap fidelity between the classically found eigenstate, |ψ0〉, and the one given by the
VQE.

To make the calculation explicit, we consider an example. We chose the Heisenberg
model in Eq. (6.8) with Jx = Jy = Jz = B = 1 and four qubits. To make sure that our VQE
algorithm converges nicely, we pick the circuit ansatz in Fig. 6.4 with four layers. With
this ansatz, we find an energy error of ∆E = 2× 10−4, which indicates that the energy
obtained by the VQE simulation is close to the actual energy with a relative error of less
than 0.01 %. However, when we calculate the overlap fidelity between the VQE state and
the classically found, we find | 〈ψ0|ψ(θ)〉 |2 = 0.078 which is a very low overlap!

To gain further insight, we write out the states. First, the actual state, which consists
of only six out of 16 basis states in the computational basis

|ψ0〉 =0.289e−0.581i |0011〉+ 0.577e2.561i |0101〉+ 0.289e−0.581i |0110〉
+ 0.289e−0.581i |1001〉+ 0.577e2.561i |1010〉+ 0.289e−0.581i |1100〉 ,

(6.10)

and secondly the one found by VQE which consists of all possible basis states

|ψ(θ)〉 =0.387e−2.817i |0000〉+ 0.281e2.839i |0001〉+ 0.231e−2.953i |0010〉
+ 0.406e−0.146i |0011〉+ 0.17e−1.535i |0100〉+ 0.06e1.259i |0101〉
+ 0.135e1.811i |0110〉+ 0.162e2.843i |0111〉+ 0.496e2.836i |1000〉
+ 0.152e−1.821i |1001〉+ 0.304e2.366i |1010〉+ 0.05e−2.645i |1011〉
+ 0.131e0.826i |1100〉+ 0.25e−3.12i |1101〉+ 0.13e−3.13i |1110〉
+ 0.121e−1.272i |1111〉 .

(6.11)

These states look pretty different, and apparently, all but the six states in Eq. (6.10) have
minimal effect on the energy returned by the Hamiltonian.
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Note that this is not an odd case. More often than not, we obtain a low fidelity
despite good energy, especially when the number of qubits increases. One often obtains
both good energy and overlap for two qubits, which is why this example is done for the
more complex case of four qubits. It is important to note that this is also the case for
classical variation. In other words, it is a consequence of the variation principle, and it is
not necessarily a bad thing but a limitation to the procedure nevertheless [76, 343].

6.7 Summary and outlook

To summarize, we have used the VQE algorithm to find the ground state of multiple
molecular Hamiltonians. We have also used the SSVQE and constrained VQE to find
higher-lying states and discussed which methods are preferable depending on the aim of
the investigation. By calculating the energy of the LiH molecule using VQE for PQCs with
a different number of single-qubit rotations, we have confirmed the conclusions found in
Chapter 5, stating that one can save a significant amount of single-qubit rotations when
performing VQE.

We have also shown that parameterized entangling gates perform as well and
often better than fixed entangling gates in VQE simulations. This could be exploited at no
experimental cost in many VQE experiments as native gates in many quantum technology
schemes often depend on some tunable driving parameter. For some reason, this has
never been exploited in such experiments, to our knowledge. Especially the iSWAP gate
performs well in its parameterized version, which occurs natively in superconducting
circuits, see Section 1.8.2. Finally, we considered the overlap of VQE produced states and
the actual states and showed that it was pretty low even for VQE states that approximate
the system’s energy quite well. This is an issue with the variational approach, and a point
for further investigation could be to try to mend this problem.
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CHAPTER 7

Quantum Generative Adversarial Networks

At some point during my PhD studies, I became interested in machine learning, and in particular,
how to conceive quantum machine learning. Parameterized quantum circuits had already been
dubbed the quantum neural network by some researchers [304–306] and many hybrid quantum-
classical algorithms were considered quantum machine learning [342]. This chapter contains some
unpublished work I have done on quantum generative adversarial networks.

In the last decade, machine learning has enjoyed great success worldwide. Machine
learning is essentially the study of algorithms that can improve automatically by learning
from data. Such algorithms have proved to be extraordinarily useful at recognizing
patterns in existing data and using this insight for, e.g., classification (assigning the correct
category to an example) and regression (estimating a numerical value based on a variety of
inputs) [344, 345]. However, generation of data has been a weakness of machine learning.
At least until 2014 when Generative adversarial networks (GANs) were invented [346].
Since then, GANs has proved a hugely successful generative machine learning technique.
GANs was not the first computer program to generate data, but the realism and variety of
the results have made GANs a tremendous success compared to other models [347].

The success of classical models have been a great source of inspiration within
the quantum technology community, often posing the question: “Can we make this
quantum?”, and sure enough, the same has happened with GANs (and machine learning
in general [348, 349]). In 2018 it was proposed to create a quantum version of a GAN,
called a QuGAN [309]. At the same time, such a QuGAN was simulated and shown to be
able to generate a single CNOT gate [308]. Before diving further into QuGANs, we will
briefly introduce classical GANs.

7.1 Classical generative adversarial networks

The idea behind GANs is to pitch neural networks up against each other, in a way such
that one network, called the generator, tries to generate some data (e.g., pictures, sounds,
videos, text), while the other network, called the discriminator tries to tell whether the data
it is receiving, is real or fake. In this sense, the networks become adversaries, which is why
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Figure 7.1: Schematic representation of a generative adversarial network. A discriminative neural network is
randomly fed with real world data or data generated by a generative network. The task of the discriminative
network is then to determine what data is real and what data is fake.

the networks are called adversarial networks1 The network is set up in a zero-sum game,
where one player’s gain is the other player’s loss. With this approach, the generator is
trained indirectly through the discriminator, which is also updated dynamically.

The GAN training algorithm is as follows [344] (see Fig. 7.1 for a schematic repre-
sentation):

1. Train the discriminator:

a) Take a real random example, x, from the training dataset.

b) Using a random noise vector, z, generate a fake example, x∗, using the genera-
tor.

c) Use the discriminator network to classify x and x∗.

d) Compute the classification errors and backpropagate the total error to update
the discriminator’s training parameters, θd, in order to minimize the classifica-
tion errors, E .

2. Train the generator:

a) Using a random noise vector, z, generate a fake example, x∗, using the genera-
tor.

b) Use the discriminator network to classify x∗.

c) Compute the classification errors and backpropagate the total error to update
the generator’s training parameters, θg, in order to maximize the classification
errors, E .

3. Repeat the above steps until equilibrium is reached.

1Despite this seemingly antagonistic approach to GAN models there have been attempts at stopping this
confrontational approach [350].
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Mathematically we are updating the following minimax cost function

max
θg

min
θd
E(θg,θd), (7.1)

where E(θg,θd) is the cost function yielding unity when the discriminator correctly
classifies all data and zero when it is wrong all the time. The above algorithm also means
that GANs are implicit generative models implying that they do not explicitly model the
likelihood function or provide ways of finding latent variables corresponding to a given
sample [351].

As mentioned, this setup is a zero-sum game since the two networks are trying to
minimize and maximize the same error simultaneously. All zero-sum games have Nash
equilibriums, where neither player can improve their situation. GANs can reach a Nash
equilibrium in two ways, in both cases E(θg,θd) = 0.5

• The generator produces fake samples that are indistinguishable from the real data
in the training dataset.

• The discriminator can at best randomly guess whether a particular example is real
or fake.

In other words, once equilibrium is reached, we can either generate exceptional fake data
or have trained an extremely poor discriminator. Of course, we are aiming for the first
one.

However, there is no guarantee that a GAN will actually converge to the desired
equilibrium. The convergence of GANs is an open problem, and it is well known that
GANs are notoriously difficult to train [352]. The training has only become increasingly
difficult as the depth of the neural networks has increased [353]. There are several
proposed solutions to this problem, albeit none of the proposals completely solves the
problem, they do remedy some of the shortcomings of the training [354]. We will not
consider these approaches when considering QuGANs as we are still considering the
most simple forms; however, these approaches could be used to improve the training of
QuGANs.

Another common problem with GANs is mode collapse. Often we want GANs
to produce a wide variety of outputs. For example, we would want the GAN to produce
an output for each number of a dataset of handwritten digits. However, if the generator
generates an especially plausible output, it may learn only to produce that output. How-
ever, if the generator starts to generate the same output all the time, the discriminator’s
best strategy is always to reject that output. If the discriminator gets stuck in a local
minimum and does not find the optimal strategy, the generator can quickly learn to avoid
that output. In other words, the generator can iterate through the remaining output types
while the discriminator is trapped, always labeling the output the generator is avoiding as
fake. Again there have been proposed ways to remedy this, but we will not discuss these
further in the setting of QuGANs [355, 356].
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Figure 7.2: Overview of the different approaches to combining classical and quantum machine learning. The
first letter refers to the data type, while the second letter refers to the algorithm used. In this chapter, we consider
the QQ approach to QuGANs. Figure inspired from Ref. [349].

7.2 Quantum machine learning

Quantum generative adversarial networks are a type of quantum machine learning.
Quantum machine learning is often used indiscriminately for any kind of machine learning
related to quantum mechanics. We, therefore, start by defining the different kinds of
quantum machine learning.

Classical machine learning considers classical machine learning models used on
classical data, i.e., data we observe on an everyday basis, e.g., images, financial data,
text. Due to the success of classical machine learning on classical data, these classical
techniques have also been used on quantum mechanical data [357–360]. The opposite
approach where quantum algorithms are used on classical data is also considered quantum
machine learning. These approaches have also been seen within QuGANs, which have
been applied to, e.g., financial data [310] and the MNIST dataset [361]. Finally, there is the
fully quantum approach where we consider quantum algorithms on quantum data. We
summarize the different approaches in Fig. 7.2.

Note that for the case of GANs, there are two distinct networks, meaning that we
could, in principle, consider a system where either the generator or discriminator behaves
quantum mechanically, while the other behaves classically [309]. In the following, we will
consider the fully quantum mechanical approach to GANs.

7.2.1 Entangling quantum GAN

As with classical GANs, there are several approaches to QuGANs. Here we will consider
an approach called Entangling Quantum Generative Adversarial Networks (EQ-GAN)
[307]. The original work on QuGANs [308] proposed a direct analogy of the classical GAN
architecture in the design of the generator and discriminator circuits. They proposed to
exchange the neural networks of classical GANs with PQC. A simplified version of the
proposal can be seen in Fig. 7.3(a). The input is either generated using a PQC, called G(θg)
or coming from a real source, R. The discriminator is also a PQC, D(θd), that operates on
the same qubits as the generator/real data, as well as an output qubit. Reference [308]
successfully train this architecture to generate a CNOT gate using a total of five qubits and
four layers.
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(a) (b)

Figure 7.3: (a) Original proposal for QuGANs [308]. (b) Entangling Quantum GAN (EQ-GAN) [307]. Note
that the EQ-GAN can also be configured using an ancilla qubit for measurement as for the QuGAN.

However, this approach does not always converge but suffers from mode collapse.
In some cases, it oscillates between a finite set of states and suffers from non-unique Nash
equilibrium. This is due to the way the minimax cost function is defined using a positive
operator-valued measurement [307].

To fix these problems, Ref. [307] proposed the Entangling Quantum GAN, which is
operated more faithfully to the principles of quantum mechanics. The EQ-GAN algorithm
does not pass the data to the discriminator as either fake or real, but rather, the discrimina-
tor is allowed to entangle the fake and real data. The schematic of this approach is seen
in Fig. 7.3(b). In the proposal of the EQ-GAN, the authors verify both analytically and
numerically that the EQ-GAN converges to the global optimal Nash equilibrium that the
original QuGAN failed on.

In the EQ-GAN, we can, in principle, choose our generator how we like. However,
similar to the VQE, it must be chosen realistically in relation to what is possible with
near-term devices and what we are trying to generate. We will there use the same PQC
ansatz as we did for the VQE simulation in Chapter 6.

The discriminator, on the other hand, is another story. In principle, we want some
circuit that entangles the two states of the real data and the generated data in such a way
that we can measure whether the discriminator deems it identical or different. The swap
test does exactly this [362]. In Fig. 7.4(a), we show the destructive swap test, which, given
two states, can be used to measure whether the two states are identical or not [363]. At
the end of the circuit, we measure each qubit. Calling the bit strings O1 and O2 of the
measurements related to Oi

1 and Oi
2 [see Fig. 7.4(a)] we say that the test succeeds if the

bitwise AND operation of O1 and O2 is −1 while it fails if it is +1.
In the ideal world without noise, we would be done and not require any adver-

sarial training of the discriminator circuit. However, noise is quite relevant for near-term
quantum computing. The entangling two-qubit operation of the swap test introduces
phase errors that make calibration difficult. We, therefore, resort to adversarial gener-
ative learning by choosing a different discriminator network. We, therefore, chose the
discriminator network in Fig. 7.4(b). Its structure resembles that of the swap test, and it is
indeed capable of learning the swap test. Reference [307] showed that this approach is
more robust against noise and returns a more significant fidelity when trained on single-
qubit gates. With this structure for our quantum GAN, we proceed to simulate one for
approximating circuits and quantum states.
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(a)

(b)

Figure 7.4: (a) Perfect (destructive) swap test [363] (b) Adversarial swap test [307]. Note that the swap test
can be done in a non-destructive fashion as well, see Ref. [362].

7.3 Approximating simple circuits

We simulate our EQ-GAN following the approach described in Ref. [342]. We prepare
our circuits using CIRQ and then add them as layers using TENSORFLOW QUANTUM. We
compile the model using TENSORFLOW and optimize it using the ADAM optimizer, with
learning rates of 0.01. We introduce noise in our system on the rotation angle of all of the
gates. We do this by adding a gate after each gate with a random error. On the single
qubit rotations we add an error to the rotation angle sampled from a normal distribution
with µ = 0.06 and σ = 0.02. On the two-qubit gates we sample from a normal distribution
with µ = 0 and σ = 0.005. These are chosen similarly with the errors in Ref. [307].

As a first approach, we consider a simple circuit consisting of two qubits and a
single layer similar to the circuits used when we considered SSVQE in Fig. 6.4. The circuit
can be seen in Fig. 7.5(a). We use a similar circuit with fixed predefined, randomly chosen
rotation angles for the real data we want to generate. Having prepared our real circuit, we
train the EQ-GAN using both the perfect swap test in Fig. 7.4(a) as the discriminator and
the adversarial swap test in Fig. 7.4(b) as the discriminator. We train for 80 episodes and
a batch size of 4, with learning rates of 0.01 for both networks, and the resulting fidelity
can be seen in Fig. 7.5(b). As expected, the adversarial discriminator performs the perfect
swap test. We present the maximal fidelities of the two cases in Table 7.1 where we also
present the angles used in the simulation.
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Figure 7.5: (a) Parameterized quantum circuit representing the simple EQ-GAN model used in Section 7.3.
The circuit should be compared to Fig. 7.3(a). (b) Fidelity of the generated circuit using the EQ-GAN model.
The dashed line indicates where the generator loss is lowest.

Table 7.1: Parameters used in the EQ-GAN simulation and overlap fidelity of the states returned by the
circuits. True data refers to the randomly chosen rotations angle θ∗ in Fig. 7.5(a). Perfect angles refer to the
rotation angles obtained using the perfect swap test as the discriminator, while adversarial angles refer to the
rotation angles obtained using the adversarial swap test as the discriminator. All angles are in radians.

Fidelity θ1 θ2 θ3 θ4 θ5 θ6

True data, θ∗ 1.0000 5.094 2.928 6.116 0.026 4.529 4.847
Perfect angles, θp 0.9811 0.519 0.063 0.519 5.646 0.438 5.65
Adversarial angles, θa 0.9992 0.51 6.018 0.494 5.631 0.051 5.47

Surprisingly, despite a fidelity less than 5× 10−4 from unity in the overlap, we see
that the generated rotation angles are far from the real ones. In order to investigate this
peculiarity, we calculate the states produced by the different rotation angles:

Û (θ∗) |00〉 =0.655e−0.609i |00〉+ 0.369e−0.841i |01〉+ 0.324e2.326i |10〉+ 0.575e2.558i |11〉 ,

Û (θp) |00〉 =0.708e−0.306i |00〉+ 0.404e−0.27i |01〉+ 0.287e−3.141i |10〉+ 0.503e3.106i |11〉 ,

Û (θa) |00〉 =0.654e−3.025i |00〉+ 0.355e3.105i |01〉+ 0.319e−0.005i |10〉+ 0.587e0.148i |11〉 .

Comparing the amplitudes of each state in the computational basis, we see that these
match rather well. Especially the adversarial trained Û (θa) match the amplitudes of Û (θ∗)
quite closely, as we should expect from a fidelity so close to unity. Thus we find that the
fidelity measure of the swap test is only concerned with the amplitude and not the phase
of the states. We obtain similar results using different entangling gates, more qubits, other
rotation angles. Whenever we train a circuit to a high fidelity, only the amplitudes match,
not the phases.

This discussion should be related to the discussion on the VQE overlap in Sec-
tion 6.6. We found that an energy close to the real energy does not necessarily mean that
we obtain a high overlap between the VQE state and the real state. As we will see in the
next section, a good overlap is no guarantee of a matching energy.

In general, we can conclude that if one wants a precise energy, one should apply
the VQE algorithm, and if one wants a good overlap, one should apply the EQ-GAN
algorithm but still be mindful of the phases. Combining the EQ-GAN and VQE algorithm
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might be tempting to find the full eigenstate. Nevertheless, doing so would require
knowledge of both the real eigenstate (for the EQ-GAN) and the Hamiltonian (for the
VQE), to which end we do not need any further information.

7.4 Approximating VQE states using EQ-GAN

In the previous section, we saw that an EQ-GAN could approximate a simple two-qubit
circuit, or at least we found a high overlap fidelity, while the phase was estimated poorly.

Now we want to push the EQ-GAN. For that, we need some data. Luckily from
the VQE simulation we have done in Section 6.5, we have plenty of data in the form of
unitaries that an EQ-GAN could learn. We, therefore, chose our R in Fig. 7.3(b) as the
circuits found using the VQE algorithm in Chapter 6. In other words, we set R = Û (θVQE),
where Û is a unitary representing a circuit on the form of Fig. 6.4 with a given number
of layers and type of entangling gate. The parameters θVQE are determined from a VQE
simulation as performed in Section 6.5. To generate more data for the machine learning
algorithm, we sample 100 circuit parameters from the original VQE parameters with
a standard deviation of 0.01. We chose the generator identical to the VQE circuit, i.e.,
G(θ) = Û (θ) and optimize the θ parameters. This way, we could, in principle, learn the
exact VQE circuit. We use both a perfect swap test and an adversarial swap test as the
discriminator.

To sum up, what we are trying to do, we are trying to learn the eigenstates of
a given system without knowing the Hamiltonian of the system. This could be useful
for systems where one can only measure the states and energies of the system and not
determine the Hamiltonian. We simulate the EQ-GAN algorithm equivalently to in
Section 7.32. As previously, we do the simulation for H2, LiH, and BeH2 for different
entangling gates (CNOT, iSWAP, CZ, and their parameterized versions) for up to three
layers. In Fig. 7.6 we present some typical results for H2. For examples of other results,
see Appendix F.

Considering the predicted energy in Fig. 7.6(a), we see that the perfect swap and
adversarial swap predict roughly the same energy, and curiously enough, the excited state
is predicted larger than the ground state energy. However, none of the predicted energies
are close to the one found using VQE, both for the ground and excited state. The reason
we do not obtain good energies is due to the lack of phase estimation as discussed in
Section 7.3. If we consider the infidelity, 1− | 〈GAN|VQE〉 |2, on the other hand, we see
that it is pretty good with infidelities around 0.05 and below. As expected, the adversarial
swap test outperforms the perfect swap test.

We obtain similar results for other combinations of molecules, gates, and layers.
See Appendix F for different results. It is worth noting that the results obtained here are
done without optimizing the meta parameters, i.e., we are using the same 80 episodes,
a batch size of 4, and learning rates of 0.01 as we did in Section 7.3. It is possible that
optimizing these parameters could result in even higher fidelities, as is usually the case
for classical machine learning algorithms [346].

2Some of the numerical results presented here were obtained at the Centre for Scientific Computing, Aarhus
http://phys.au.dk/forskning/cscaa/.
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(a)

(b)

Figure 7.6: Results of the EQ-GAN learning on VQE data for H2 with three layers of Fig. 6.4. (a) Predicted
energy of the EQ-GAN algorithm (lines) and SSVQE (circles). Solid lines indicates the adversarial swap test
was used, while the dashed line indicate that the perfect swap test was used. (b) Infidelity of the state generated
by the EQ-GAN, |GAN〉 = G(θ) |0〉, with the state generated by the VQE, |VQE〉 = Û (θVQE) |0〉.

7.5 Summary and outlook

In this chapter, we have introduced classical GANs and discussed how to make a fully
quantum version of a GAN, i.e., a generative network based on a quantum algorithm
working on quantum data. First, the original QuGAN proposal was introduced, and then
the entangling quantum GAN. We then showed that using TENSORFLOW QUANTUM

we could simulate an EQ-GAN, first on a simple two-qubit circuit and later on actual
VQE data, from simulation done in Chapter 6. We showed that we achieved a rather
good overlap fidelity, especially for the adversarial swap test, which outperforms the
perfect swap test as expected. However, we also showed that the EQ-GAN lacks any
phase estimation despite this excellent overlap fidelity. This means that the EQ-GAN
simulation trying to generate molecular states, as approximated by the VQE, does not
yield any good eigenvalues. In other words, it does not predict the energy of the given
molecule very accurately. One could argue that this should not be surprising as we are
trying to approximate an approximation.

To fix this problem, a point for further investigation could be to learn directly from
the eigenstates of the molecular systems instead of learning from the states approximated
by the VQE algorithm. This could improve the predicted energies, especially considering
the magnitude of irrelevant states included in the VQE, as discussed in Section 6.6.
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CHAPTER 8

Conclusion and outlook

The recurring theme throughout this thesis has been quantum technology based on a
platform of superconducting circuits. We started by introducing superconducting circuits
from a theoretical point of view, and we discussed the tools and methods needed to
analyze a given circuit down to a qubit model. We then presented some examples of
superconducting qubits from the general literature and discussed different coupling
schemes.

In the following chapter, we presented three different controlled gates, which could
all be implemented using the methods of superconducting circuits. First, we presented the
n-bit iToffoli gate, and the related CNOTn and Barenco gates, which we showed were more
efficient in the number of operations needed to operate the gate. Next, we presented the
controlled iSWAP gate and showed how it could exponentiate non-Hermitian gates. Finally,
we discussed another way to implement a controlled swap gate using a linear coupled
approach. This way, the opening and closing of the gate depended on a superposition
state of the control qubits. All three gates could be used in near-term quantum chips, as
they are high fidelity native gates in different quantum technology schemes, particularly
in superconducting circuits.

In the last part of the thesis, we considered hybrid quantum-classical algorithms
and simulated examples of these. The base for most HQC algorithms is parameterized
quantum circuits. We showed that we could reduce the number of single-qubit rotations
in these circuits without loss of expressibility or entanglement capability, and we showed
that the placement of the single-qubit rotations could be arbitrary. We also showed that
this reduction in single-qubit rotations did not affect the variational quantum eigensolver
simulations as expected from the expressibility and entanglement analyses. We further
used the VQE to find the eigenstates of different molecules and other Hamiltonians. We
then discussed how parameterized entangling gates could improve variational quantum
eigensolver results without any experimental cost. The last thing we discussed in the VQE
chapter was the overlap fidelity of the approximate eigenstates. We showed that it was
generally low, even for extremely good eigenvalues, possibly due to low-contributing
states concerning the Hamiltonian.

Finally, we discussed quantum versions of the efficacious generative adversarial
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networks in the last chapter. In particular, we considered the entangling quantum gen-
erative adversarial network, which we simulated to show that it yielded a high overlap
fidelity. However, we also showed that it could not determine the phases of the states,
which made it ineffective at determining the energies of a Hamiltonian despite a more
considerable overlap fidelity with the eigenstates.

Where to go from here? One could continue to explore different ways to design
superconducting circuits to obtain new gates and interactions. However, I believe that
such analysis of superconducting circuits is most productive when objective with the
analysis. It is my firm belief that any significant breakthrough within superconducting
circuit engineering will probably be carried by experimental breakthroughs improving
the lifetime of qubits and interactions between these. Such improvements are also what is
needed for better superconducting quantum chips. Nonetheless, creative explorations of
superconducting circuits may open up new ways to employ said circuits.

The variational quantum eigensolver is a well-proven algorithm that has already
been shown to approximate eigenvalues quite well. However, there is room for improve-
ment. As discussed, the approximate eigenstates are not that good, and improving these
could be a valid point for further investigation.

The quantum generative adversarial networks, on the other hand, is much less
proven; however, it has great potential, especially thinking of the success of their classical
counter part. It is quite the opposite of the variational quantum eigensolver as it predicts
the states rather well, without reproducing any possible eigenvalues. One possible appli-
cation of the quantum GAN could be to generate states measured directly from, e.g., an
actual molecule.

The final question of any thesis regarding any emerging technology such as quan-
tum technology should be: When will it take over the world? The European Commission
seems to think it is only 10-20 years away [364]; however, 10-20 years is a pretty standard
answer that most scientists applying for funding will give you if you ask them when their
research will revolutionize the world. On a more serious note, the question depends on
what is meant; if by taking over the world, you are asking when we will be using quantum
laptops to search the quantum internet while checking our quantum smartphones? Well,
then the answer is never. Quantum computers may revolutionize the world, but the
everyday private user will get their own quantum computer; they will probably not even
notice the quantum revolution if it comes. There are several reasons for this: First, we live
in a classical world, and therefore we need to interact with classical computers. Second,
quantum computers are highly specialized in solving particular problems. Third, most
people do not need improved computations when sending e-mails or surfing the internet.

Notwithstanding, this does not mean that quantum computers are a purely aca-
demic interest that will be useless in a commercial setting. Quantum computers could help
speed up some computations needed by companies or researchers (Grover’s algorithm,
VQE, QAOA could potentially do this), but it is probably not something the end-user will
ever notice. In other words, a quantum computer will become part of some backend, not
visible to the end-users. Quantum computers may be available through cloud services
as part of a computational suit. In fact, they are already available from, e.g., IBM Quan-
tum, which offers a superconducting quantum computer [365], Amazon Braket, which
offers both trapped-ion technology from IonQ and superconducting quantum processor
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from Regetti, as well as quantum annealing from D-Wave through Amazon Web Services
[366], or Microsoft Azure Quantum, which offers trapped-ion technology from IonQ and
Quantinuum and superconducting quantum processor from Quantum Circuits, Inc and
Regetti [367]. So if the question is: When will quantum computations be available? Then
the answer is today.

To summarize, the real question is not when quantum computers will arrive,
because they are already here. Instead, it is a question of when they will be useful for
anything? Hopefully, some of the results presented in this thesis will help make quantum
technologies useful in the near future, however long that may be.
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APPENDIX A

Graph Theory of Electrical Networks

This appendix is quoted from [VIII] with minor changes to fit the context of this thesis.

In this appendix to Chapter 1, we present some useful graph theory for electrical circuits.
The reason for this is that graph theory is the natural language of electromagnetic circuits
where each circuit element can be represented as an edge on a graph.

A.1 Fundamental graph theory of electrical networks

In this appendix, we present some fundamental definitions from graph theory. The first
three definitions are directly related to the discussion in Chapter 1, while the remaining
definitions provide an alternative way of stating Kirchhoff’s laws. We describe the quan-
tities important to circuit analysis using the example circuit shown on Fig. A.1(a). The
example circuit consists of a transmon qubit capacitively coupled to a resonator, which is a
very common setup [80, 193]. For more material on graph theory see, e.g., Refs. [368, 369].

Definition 1 (Graph) A graph G = (N ,B) is a set of nodes N = {n1, . . . , nN} where N is
the number of nodes, and a set of branches (sometimes called edges) B = {b1, . . . , bB} where each

(a) (b)

(c)

1 2

3

Figure A.1: (a) Example transmon-resonator circuit. The chosen spanning tree (red) consists of the resonator
Lr inductance and the shunting capacitance Cs. (b) Fundamental cutsets of the circuit (in solid) with respect
to the chosen spanning tree. (c) Fundamental loops of the circuit (in solid) with respect to the chosen spanning
tree.
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branch connects a pair of nodes and B is the number of branches. The number of nodes is called the
order of the graph and is denoted |G| = N. We allow multiple branches to connect the same pair
of nodes. Sometimes this is called a multigraph in order to distinguish it from simple graphs
where only one branch can connect the same pair of nodes.

Using this definition, we can consider each circuit as a graph where each compo-
nent corresponds to a branch. The first step of any circuit analysis is to label every branch
of the graph. These can be labeled in different ways, usually via the element or the flux
through the current. These are equivalent, and often both are used as they complement
each other.

Using the components as the labels, the set of branches in Fig. A.1(a) becomes
B = {Lr, Cs, Cr, Cc, LJ}. The order of the graph is |G| = 3 and the nodes can be labeled
arbitrarily, here we label them 1,2, and 3. The number of branches is B = 5, and we can
thus write the flux over all branches as a vector with five elements

Φ =
[
Φ1 Φ2 Φ3 Φ4 Φ5

]T , (A.1)

where the order of the fluxes corresponds to the number of the branches in B. Note that
we have indicated the direction of every branch in Fig. A.1(a) using arrows. We define
positive branch currents Ib > 0 as the case where current flows through a branch in the
direction of the arrow. Using the passive sign convention the voltage over a branch is
then given by Vb = Vstart

b −Vend
b , which ensures that the power Pb = IbVb is positive if

energy is being stored or dissipated in the branch element. Strictly speaking, this makes
our graph a directed graph, but since all electrical network graphs are directed graphs,
we are simply going to call them graphs. We are also going to assume that our graph is
connected, meaning that there exists a path between every pair of nodes.

Definition 2 (Subgraph) A graph H = (NH,BH) is called a subgraph of G = (NG ,BG ),
written H ⊆ G, if NH ⊆ NG and BH ⊆ BG . If H is a subgraph of G but H 6= G it is called a
proper subgraph.

In the electrical circuit setting, the notion of subgraphs is often used to describe the
capacitive and inductive subgraphs of the circuit. In the case of the example in Fig. A.1(a)
the capacitive subgraph is defined to be the set of branches BC = {Cs, Cr, Cc}, while the
inductive subgraph is defined by BL = {Lr, LJ}. Note that the set of nodes are identical for
the capacitive and inductive subgraph as well as the full (super)graph, i.e.,NC = NL = N .
Also, even though we assume our graph to be connected, its subgraphs are not necessarily
connected.

The next step in the analysis is to specify a subgraph called a spanning tree for our
graph.

Definition 3 (Spanning tree) A spanning tree of a graph G is a connected subgraph T that
contains the same nodes as G (i.e., NT = NG ) and contains no loops.

The branches of the spanning tree are called twigs and branches of the complement of the
spanning tree are called links (or chords). Note that there are BG − (NG − 1) links.

The spanning tree connects every pair of nodes through exactly one path. For our
example, we choose branches 1 and 2 as our spanning tree as shown in red on Fig. A.1.
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The linear inductor, together with the Cs shunting capacitor, constitutes the twigs of the
tree, while the remaining capacitors (Cr, Cc) and Josephson junction (LJ) are links. Note
that we are free to choose our spanning tree differently as long as it obeys the definition.
We could, e.g., have chosen the inductive subgraph, as mentioned above, however, we
can not choose the capacitive subgraph as it includes a loop. This freedom in choosing the
spanning tree corresponds to a gauge freedom in the equations of motion.

Choosing a spanning tree also allows us to define fundamental cutsets and funda-
mental loops, which are useful when deriving the equations of motion for a circuit. The
following definitions used in the main text but can be used for an alternative statement of
Kirchhoff’s laws. We start with the fundamental cutsets.

Definition 4 (Cut) Given a graph G = (N ,B) a cut is a partitioning of nodes N into two
disjoint sets NA and NB. With every cut, we can associate a cutset, which is the set of branches
that have endpoints in both NA and NB.

Note that removing a single twig cuts the spanning tree, T , into two disjoint
subgraphs with nodesNA andNB. Such a cut is called a fundamental cut, and the branches
that must be removed to complete the same cut on the full graph is called a fundamental
cutset. More formally:

Definition 5 (Fundamental cut) Given a graph G and a spanning tree T we define a funda-
mental cut or f-cut as a cut whose cutset contains only one twig.

In practice, the fundamental cutsets can be found by removing one twig from the
spanning tree. This creates two disjoint subgraphs of the spanning tree with nodes NA
and NB. Now remove the links of the full graph with endpoints in both partitions. The
cutset is then the set of all the removed links and the single twig. We thus end up with a
unique cutset with one twig and any number of links. This can be done for every twig,
and the number of fundamental cutsets is thus equal to the number of twigs |T | = N − 1.
The fundamental cutsets of our example graph can be seen in Fig. A.1(b).

We now turn our attention to the loops. By taking the spanning tree and adding a
single link from the full graph we form a unique loop. Such a loop contains exactly one
link and one or more twigs. We call these loops the fundamental loops of the G with respect
to the spanning tree T .

Definition 6 (Fundamental loop) Given a graph G and a spanning tree T , we define a funda-
mental loop or f-loop as a loop consisting of exactly one link and one or more twigs.

The number of fundamental loops that can be formed is equal to the number of
links. The fundamental loops of our example graph can be seen in Fig. A.1(c).

As we shall see in the following section the fundamental loops and cuts allow us
to write Kirchhoff’s laws in a compact and useful way.

A.1.1 Circuit matrices

Using the notion of f-loops and f-cuts, we define two characteristic matrices for the
network graphs, which can be used to write Kirchhoff’s laws more compactly.
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For every loop, we can define the orientation, i.e., clockwise or anti-clockwise. For
an f-loop, we let the orientation be determined by the orientation of its link. We can then
define the fundamental loop matrix.

Definition 7 (Fundamental loop matrix) Given a graph G = (N ,B), with spanning tree T ,
we define the fundamental loop matrix, or f-loop matrix, F (L) as

F
(L)
ij =


+1 if bj ∈ fi and li, bj same orientation
−1 if bj ∈ fi and li, bj opposite orientation
0 if bj /∈ fi

, (A.2)

where li is the link in the ith f-loop, fi, with 1 ≤ i ≤ |G\T | = B− (N − 1) and bj is the jth
branch in B with 1 ≤ j ≤ B.

In other words, we iterate through the branches and the set of f-loops. If the given branch
is in the given f-loop, the matrix entry becomes ±1, with a plus if the branch has the same
orientation as the f-loop (which is determined by the link of the f-loop). If the branch is
not in the given f-loop, the matrix entry is 0.

Consider our example circuit and its fundamental loops from Fig. A.1(c). The first
fundamental loop consists of the link Φ3 and the twig Φ1. The orientation of the loop

(determined by Φ3) is clockwise, which means that the F (L)
11 = −1, since the twig Φ1

points in the anti-clockwise direction. The only other nonzero entry in the first row is

F
(L)
13 = 1, corresponding to the link Φ3 oriented in the clockwise direction. Following the

same method for the other two f-loops, we find

F (L) =

−1 0 1 0 0
1 −1 0 1 0
0 −1 0 0 1

 , (A.3)

where the columns correspond to the branches in their respective order and the rows
correspond to the loops in the same order as in Fig. A.1(c).

As with the loops, we can also choose an orientation for the cutsets. If a cut is
oriented from NA to NB, we say that a branch in the cutset has positive orientation if it
begins in NA and ends in NB. We choose to orient every f-cutset such that its twig in an
f-cutset has positive orientation. We can then define the fundamental cutset matrix.

Definition 8 (Fundamental cut matrix) Given a connected graph G = (N ,B), with spanning
tree T , we define the fundamental cut matrix, or f-cut matrix, F (C) as

F
(C)
ij =


+1 if bj ∈ ci and ti, bj same orientation
−1 if bj ∈ ci and ti, bj opposite orientation
0 if bj /∈ ci

, (A.4)

where ti is the twig of the ith cutset, ci, with 1 ≤ i ≤ |T | = N − 1 and bj is the jth branch in B
with 1 ≤ j ≤ B.
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In other words, we iterate through the branches and the set of cutsets. If the given branch
is in the given cutset, the matrix entry becomes ±1, with a plus if the branch has the same
orientation as the cutset (which is determined by the orientation of the twig of the cutset).
If the branch is not in the given f-cutset, the matrix entry is 0.

As an example take the first cutset from Fig. A.1(b). The twig Φ1 and link Φ3 both
points towards the same node and thus have positive orientation. The final link Φ4 points
away from the node and has negative orientation. Thus the first row of the cutset matrix
becomes [1, 0, 1,−1, 0]. By analyzing the other cutset, in the same manner, we find the
fundamental cutset matrix

F (C) =

[
1 0 1 −1 0
0 1 0 1 1

]
, (A.5)

where the columns correspond to the branches in their respective order, and the rows
correspond to the cutsets in the same order as in Fig. A.1(b).

All branches of the graph are either twigs or links. Every f-cutset contains only one
twig, and every f-loop contains only one link. Additionally, for every partition of nodes
defined by an f-cut, every f-loop must begin and end in the same partition. Thus every
f-cutset and f-loop share either 0 or exactly 2 branches. Now consider the elements(

F (L)(F (C))T
)

ij
= ∑

k
F

(L)
ik F

(C)
jk . (A.6)

Evidently, the (i, j)th element depends only on the ith f-loop and the jth f-cut. If the
f-cutset and f-loop share no branches, all the terms are zero, and in the case where they
share exactly two branches, we get two nonzero terms with opposite signs. We thus have

F (L)(F (C))T = 0. (A.7)

Multiplying Eqs. (A.3) and (A.5) we see that this is exactly the case for the example graph,
as it should be.

A.2 Method of electrical network graph theory

In this section, we present a more mathematical stringent method for obtaining the
Hamiltonian of an electrical superconducting circuit. This method is based upon Ref.
[48] and uses electrical network graph theory [368]. This method is a more advanced
alternative to the method presented in Section 1.2, however, the resulting equations of
motion are the same.

The first step is to label and order all the circuit components (branches) of the
network graph and choose a spanning tree for the graph. Without loss of generality, we
order the components such that the first |T | branches are the twigs, and we then write the
fluxes and currents through all components as vectors

Φ =

[
Φt
Φl

]
, I =

[
It
Il

]
, (A.8)
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where Φt (It) are the fluxes (currents) of all the twigs and Φl (Il) are the fluxes (currents)
of all the links. For the example circuit in Fig. A.1 we have Φt = (Φ1, Φ2)

T and Φl =
(Φ3, Φ4, Φ5)

T and likewise for the current vector.
After all components have been labeled and a tree has been selected, we construct

the fundamental matrices of the graph F (L) and F (C) following Definitions 7 and 8,
respectively. In the following, we show how these matrices may be used to set up the
equations of motion and reduce the number of free coordinates.

A.2.1 Kirchhoff’s laws

Using Eq. (A.8) and the f-matrices, we reformulate Kirchhoff’s laws as stated in Eq. (1.3).

Kirchhoff’s current law

Kirchhoff’s current law states that no charge may accumulate at a node. Mathematically
we may write this as

∑
b incident on n

sn,b Ib = 0, for every node n, (A.9)

where we have sn,b = +1 if the branch b ends at node n and sn,b = −1 if b begins at n.
This is equivalent to the definition in Eq. (1.3a), but with currents instead of charges, i.e.,
Eq. (A.9) is the time derivative of Eq. (1.3a). Recall that a cutset is the set of branches
between two partitions of nodes. Thus if no charge has accumulated at a single node, the
total current from one partition of nodes to another must be zero. We can write this using
the f-cut matrix as

F (C)I = 0. (A.10)

If we calculate this matrix product for the example circuit using Eq. (A.5) we find

F (C)I =

[
1 0 1 −1 0
0 1 0 1 1

] 
I1
I2
I3
I4
I5

 =

[
I1 + I3 − I4
I2 + I4 + I5

]
=

[
0
0

]
,

which is equivalent to applying Kirchhoff’s current law directly to nodes 1 and 2 in
Fig. A.1.

Kirchhoff’s voltage law

Kirchhoff’s voltage law states that if we choose some oriented loop of branches l, the
algebraic sum of voltages around the loop must equal the electromotive force induced by
external magnetic flux, Φ̃l , through the face enclosed by the loop, i.e.,

∑
b∈l

sl,bVb = ˙̃Φl , for all loops l, (A.11)

where sl,b = +1 if b is oriented along l, and sl,b = −1 if b is oriented against l. The external
flux through the loop l is denotes Φ̃l . This is equivalent to the definition in Eq. (1.3b), but
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with voltages instead of fluxes, i.e., Eq. (A.11) is the time derivative of Eq. (1.3b). Thus, the
f-loops of the graph define a set of equations and using Eq. (1.2a) we may write Kirchhoff’s
voltage law as

F (L)Φ = Φ̃, (A.12)

where Φ̃ = (Φ̃1, . . . , Φ̃B−N+1)
T is the vector external fluxes through the fundamental

loops.
For the example circuit, we calculate the matrix product using Eq. (A.3) and find

F (L)Φ =

−1 0 1 0 0
1 −1 0 1 0
0 −1 0 0 1




Φ1
Φ2
Φ3
Φ4
Φ5

 =

 −Φ1 + Φ3
Φ1 −Φ2 + Φ4
−Φ2 + Φ5

 =

Φ̃1
Φ̃2
Φ̃3

 ,

where each row is equivalent to applying Kirchhoff’s voltage law directly to the corre-
sponding loop. We assume external fluxes of Φ̃ = (Φ̃1, Φ̃2, Φ̃3)

T through the loops.

Reducing the number of coordinates

Using Kirchhoff’s voltage law, we can reduce the number of free coordinates. We only
need to specify the fluxes of the spanning tree to calculate the remaining fluxes. In order
to do so, we write our f-cut matrix as

F (C) =
[
1 F

]
, (A.13)

where F is a |T | × |G\T | = (N− 1)× (B− N + 1) matrix and the identity is a (N− 1)×
(N − 1) matrix. Note that our specific ordering of the circuit components (twigs first, then
links) allows for the simple block structure of Eq. (A.13). This structure is clearly seen in
the example in Eq. (A.5), from which it is evident that

F =

[
1 −1 0
0 1 1

]
, (A.14)

for the example circuit in Fig. A.1.
Reordering the components shuffles the rows and columns of the fundamental

cut matrix, and the following derivations can easily be generalized. From Eq. (A.7) and
Definition 7 we find that we can write the f-loop matrix in a similar manner

F (L) =
[
−F T 1

]
, (A.15)

where F is the same matrix as in Eq. (A.13), meaning that the identity is now (B− N +
1) × (B − N + 1). This structure is again seen in the example in Eq. (A.3) where the
transpose of Eq. (A.14) occurs. We can then rewrite Kirchhoff’s voltage law in Eq. (A.12)
and isolate the fluxes of the links

Φl = Φ̃ +F TΦt, (A.16)
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and use this to write our flux vector in Eq. (A.8) in terms of the twig and external fluxes

Φ =

[
Φt

F TΦt + Φ̃

]
= (F (C))TΦt +

[
0

Φ̃

]
, (A.17)

meaning that we have eliminated the fluxes of the links. Using Eq. (A.17) on the example
circuit in Fig. A.1 we can write the fluxes as

Φ =


Φ1
Φ2

Φ1 + Φ̃1
Φ1 −Φ2 + Φ̃2

Φ2 + Φ̃3

 , (A.18)

which means that we have eliminated the three fluxes on the links.

A.2.2 Equations of motion

In this section, we use Kirchhoff’s current law, to set up the equations of motion for the
system. For this purpose, it is convenient to introduce the species-specific vectors IS and
ΦS

(IS)i =

{
Ii if the ith element is of species S,

0 otherwise,
, (A.19a)

(ΦS)i =

{
Φi if the ith element is of species S,

0 otherwise,
(A.19b)

where the species subscript, S, indicates the element species, i.e., capacitor, inductor, etc.
This can be understood as the current and flux vectors with everything but S species
removed. We use C for capacitors, L for linear inductors, and J for Josephson junctions.
For the example circuit this yields

IC = (0, I2, I3, I4, 0)T , (A.20a)

IL = (I1, 0, 0, 0, 0)T , (A.20b)

IJ = (0, 0, 0, 0, I5)
T , (A.20c)

and likewise for the fluxes.
The first step of the analysis is to express the current of every branch in terms of

the tree fluxes Φt. The current flowing through a capacitor with capacitance C is given by
Eq. (1.6), and we can thus write the current flowing through all capacitors as

IC = DCΦ̈, (A.21)

whereDC is a diagonal matrix with the circuit capacitances on the diagonal. In this context,
all other circuit components are counted as having zero capacitance. For the example
circuit the capacitance matrix becomes DC = diag(0, Cs, Cr, Cc, 0), which multiplied to
Φ̈ = (Φ̈1, Φ̈2, Φ̈3, Φ̈4, Φ̈5)

T yields Eq. (A.20a).
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A.2. Method of electrical network graph theory

The flux stored in the linear inductors is related to the currents through

LI = ΦL, (A.22)

whereL is a symmetric matrix with diagonal elementsLii = Li where Li is the inductance
of the ith element. For all other components than linear inductors, we set Li = 0. The
off-diagonal elements are the mutual inductances Lij = Mij = kij

√
Li Lj between the ith

and jth inductor, with −1 < kij < 1 being the coupling coefficient. If a positive current in
one inductor results in a positive magnetic flux contribution through another, we have
kij > 0. If the contribution is negative, we instead have kij < 0. The numerical value of kij
depends on the placement of the inductors relative to each other.

In the example circuit, there is only one inductor and thus no mutual inductance,
which means that L = (Lr, 0, 0, 0, 0)T , which multiplied to Φ gives Eq. (A.20b).

Note that all the rows and columns belonging to components not on the inductor
subgraph are zero. By removing these zero rows and columns, we get a NL × NL matrix
L′, where NL is the number of inductors. We can then rewrite Eq. (A.22) as

L′I ′L = Φ′L, (A.23)

where I ′L and Φ′L are the corresponding vectors found by removing all the noninductor
entries of the full-size vectors I and Φ. In our example this becomes a single equation
LrΦ1 = I1

The magnetic field energy stored in the inductors is

0 ≤ EL =
1
2
I ′TL L

′I ′L, (A.24)

which means that L′ must be positive semi-definite. We further assume L′ is positive
definite, meaning that 0 < I ′TL L

′I ′L for I ′L 6= 0. This assumption is also physically sensible
since any current through the inductors must store at least some magnetic field energy in
a realistic configuration. It also ensures that the symmetric L′ matrix is invertible, and we
can write

I ′L = L′−1Φ′L. (A.25)

We can expand the matrix L′−1 to work on the full flux vector by inserting zeros on the
noninductor columns and rows. Similarly, we also build the corresponding full inductor
current vector IL. The resulting equation can be written

IL = L+Φ, (A.26)

where L+ is the matrix found by expanding L′−1 with the zero-columns and rows of the
noninductor components. Formally, L+ is the Moore-Penrose pseudo-inverse [370] of the
original full inductance matrix L.

For our example we can easily invert L′ =
[
Lr
]

in order to find the psuedo-inverse
L+ = diag(1/Lr, 0, 0, 0, 0), which fulfill Eq. (A.26).

Now we only need to include the current through the Josephson junctions, which
follows from the Josephson relation

IJ = DJsinΦ, (A.27)
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where DJ is a diagonal matrix with the Josephson critical currents on the diagonal,
see Eq. (1.11) for the case of a single Josephson junction. As with L and C, all other
components than Josephson junction are counted as having zero critical currents. The
vector sinΦ = (sin Φ1, . . . , sin ΦB)

T is understood as the vector of sines of the branch
fluxes.

We have only one Josephson junction in the example circuit in Fig. A.1 which
means that sinΦ = (0, 0, 0, 0, sin Φ5)

T and DJ = diag(0, 0, 0, 0, Ic), where Ic = 1/LJ in
our notation, see Section 1.1.2. Multiplying these two gives Eq. (A.20c).

Thus, the current through each branch can be written as a function of the branch
flux and its derivatives as seen in Eqs. (A.21), (A.26), and (A.27), and Kirchhoff’s current
law thus gives a set of coupled second-order differential equations

0 = F (C)I = F (C) [IC + IL + IJ
]

=M Φ̈t + Q̇0 +KΦt + I0 +F
(C)DJsin

(
(F (C))TΦt +

[
0

Φ̃

])
,

(A.28)

where we define the “mass” and “spring constant” matrices (analogous to in Section 1.2.5)

M = F (C)DC(F (C))T , (A.29a)

K = F (C)L+(F (C))T , (A.29b)

and the offset charges and flux induced currents

Q0 = F (C)DC

[
0
˙̃Φ

]
, (A.30a)

I0 = F (C)L+
[
0

Φ̃

]
. (A.30b)

Note that these matrices are different from the capacitive and inductive matrices presented
in Section 1.2.3.

Consider again the example circuit in Fig. A.1. The “mass” and “spring constant”
matrices are in this case

M =

[
Cc + Cr −Cc
−Cc Cc + Cs

]
, (A.31a)

K =

[
1/Lr 0

0 0

]
. (A.31b)

Note how these are identical to how we constructed the capacitance matrix and the
inductor matrix in Section 1.2.3, respectively. Thus we have derived how to formulate the
capacitance and inductive matrices from the main text.

The offset charges and flux induces currents are

Q0 =

[
Cr

˙̃Φ1 − Cc
˙̃Φ2

Cc
˙̃Φ2

]
, (A.32a)

I0 =

[
0
0

]
. (A.32b)
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The offset chargesQ0 disappear if we assume the external fluxes to be time-independent.
The offset flux induced currents are zero since no linear inductors are links, meaning that
we have chosen no external fluxes over the linear inductors.

The final term of Eq. (A.28) reduces to

F (C)DJsinΦ =

[
0

Ic sin(Φ2 + Φ̃3)

]
, (A.33)

where we can move the external flux into the offset charges by choosing a spanning tree
over the Josephson junction instead.

A.2.3 Voltage and current sources

Until now, we have assumed that external fluxes are our only control parameters, but we
can also add current and voltage sources. Voltage sources can be added in series with
existing components without introducing new constraints on the branch fluxes. This
effectively transforms the external flux vector

Φ̃(t)→ Φ̃(t)−
∫ t

−∞
VV(t′)dt′ , (A.34)

where (VV)i is the voltage generated by the source on the ith branch, or 0 if the ith branch
is not a voltage source, i.e., defined analogously to Eq. (A.19).

Similarly, we can add a current source in parallel with an existing element without
introducing additional constraints on the free currents. This modifies I0 according to

I0 → I0 +F
(C)IB, (A.35)

where IB is the bias current vector with zeros on all entries except those belonging to a
branch with a current source, where instead it has the applied current, i.e., as in Eq. (A.19a).

A.2.4 Lagrangian and Hamiltonian

One can show, using Eq. (1.27), that a Lagrangian fulfilling the equations of motion in
Eq. (A.28) is

L =
1
2

Φ̇
T
t M Φ̇t +Q0 · Φ̇t −

1
2

ΦT
t KΦt − I0 ·Φt

+ JC · cos
(
(F (C))TΦt +

[
0

Φ̃

])
,

(A.36)

where we define the critical current vector

(JC)i = (DJ)ii. (A.37)

The conjugate momenta of the twig branches are then given by

Qt =
∂L
∂Φ̇t

=M Φ̇t +Q0, (A.38)
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and the Hamiltonian can be found performing a Legendre transformation

H = Qt · Φ̇t −L

=
1
2
(Qt −Q0)

T M−1 (Qt −Q0) +
1
2

ΦT
t KΦt + I0 ·Φt

− JC · cos
(
(F (C))TΦt +

[
0

Φ̃

])
.

(A.39)

This Hamiltonian can easily be quantized using the approach presented in Section 1.3.1,
where this time the canonical variables are the branch fluxes Φb and Qb of the twigs, with
the commutator relation in Eq. (1.47).
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APPENDIX B

Realistic Parameters for the iToffoli Gate

This appendix is quoted from [V] with minor changes to fit the context of this thesis.

In this appendix to Chapter 2 we present parameters for the circuit model in Fig. 2.4(c),
which yields the desired gate model of Fig. 2.4(a), i.e., a two-bit iToffoli gate. The parame-
ters are found by calculating the gate model parameters in Eq. (2.29) and then minimizing
a cost function that returns a low value when the requirements of the gate model are met.
The minimization is done using a simplex method, with randomized starting points, since
many solutions exist. To judge the quality of the circuit parameters, we also calculate the
relative anharmonicity of the two-level systems, i.e., the difference between the 01 and
the 12 transitions and the ratio between the effective Josephson energy and the effective
capacitive energy.

In order to simplify the numerical investigation, we have assumed that the pa-
rameters of the control qubits are identical. The parameters obtained are presented in
Table B.1. As expected, we see that the capacitance of the coupling Cz,i should be low
compared to the other couplings as we wish to operate in the weak coupling regime. We
note that we get Ising couplings in the range |Jz| ∈ [25, 320] and in all cases dominating
the cross-coupling Jx

ij. The swapping couplings Jx
i are all several factors lower than the

detunings ∆i0 = |Ωi −Ω0|.
We simulate all of the gates in Table B.1 and find that all result in a maximum

fidelity above 0.99 when the driving is Ω = Jz
i /8. The average fidelity as a function of

time can be seen in Fig. B.1.
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Figure B.1: Average fidelity as a function of time for all the gate configurations presented in Table B.1. All
simulations are done at a driving frequency of Ω = Jz/8. The fidelity is expected to peak at T = π/2Ω The
solid lines are simulations without decoherence, while the dashed line includes decoherence. The gate with the
lowest gate time corresponds to gate #1 in Table B.1 and so forth. The color of the lines also corresponds to the
colors in Table B.1.
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APPENDIX C

Realistic Parameters for the Controlled iSWAP Gate

This appendix is quoted from [VI] with minor changes to fit the context of this thesis.

In this appendix to Chapter 3 we present parameters for the circuit model in Fig. 3.3(c),
which yields the desired gate model of Fig. 3.3(a). The parameters are found by calcu-
lating the gate model parameters presented in Section 3.2 and then minimizing a cost
function that returns a low value when the requirements of the gate model are met. The
minimization is done using a simplex method, with randomized starting points, since
many solutions exist. To judge the quality of the circuit parameters, we also calculate the
relative anharmonicity of the two-level systems, i.e., the difference between the 01 and
the 12 transitions and the ratio between the effective Josephson energy and the effective
capacitive energy.

The circuit parameters obtained are presented in Table C.1 and corresponding
gate parameters can be seen in Table C.2. In Table C.3 we present quality parameters
(anharmonicities, and effective Josephson junction and effective capacitance ratios) for the
corresponding models. The parentheses in Tables C.2 and C.3 indicates the error on the
parameters, when assuming fabrication error on the circuit parameters in Table C.1. The
errors are found using Monte Carlo simulations, where circuit parameters are drawn from
a normal distribution centered around the experimental values presented in Table C.1,
with one standard deviation corresponding to a 5% error in the gate parameter. This
corresponds to 95% of the drawn samples being within a 10% error. The resulting errors
in Tables C.2 and C.3 corresponds one standard deviation.

Note that while it might look problematic that exchange coupling, Jx, is not sig-
nificantly lower than the longitudinal coupling, Jz, this is not the case as the coupling of
the gate is due to the first or second-order term in Eq. (3.25b). This means that we can
lower the exchange coupling to a desirable level when operating the gate. It is, however,
important that Jx is significantly lower than the detuning of the target qubit, which is
indeed the case in all cases.

Note that all qubits have an anharmonicity above 2%, sufficient to suppress higher-
order transitions in the anharmonic oscillator. We also note that the ratio between effective
Josephson energy and effective capacitance is above 70, which is sufficient in order to
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Appendix C. Realistic Parameters for the Controlled iSWAP Gate

Table C.1: Circuit parameters for implementing possible controlled iSWAP gates. Since the circuit parameter
space is rather large we have several possible solutions; some, but far from all, possible solutions are show in
the table. Here E1, ET1, ET2, ETB, and Ez,i indicate the Josephson junction of the control qubit, target qubits,
the tunable bus qubit, and the coupling between the target qubit and the control qubit, respectively; C1, CT1,
CT2, CTB, Cz, and Cx indicate the capacitance of the control qubit, the target qubits, and the couplings between
them, respectively. Corresponding gate parameters can be seen in Table C.2.

E1 ET1 ET2 ETB Ez,1 C1 CT1 CT2 CTB Cz Cx
# [2πGHz] [2πGHz] [2πGHz] [2πGHz] [2πGHz] [fF] [fF] [fF] [fF] [fF] [fF]

1 44.22 12.63 11.44 0.41 14.70 1.00 1.00 68.32 100.00 54.26 27.16
2 24.88 21.28 53.12 1.46 9.18 41.84 31.47 12.39 27.92 6.74 7.46
3 8.10 33.93 44.86 5.09 58.93 16.63 16.93 29.69 8.35 10.01 1.00
4 0.09 0.01 13.27 0.41 33.39 8.28 19.38 36.98 99.30 60.64 35.75
5 32.32 20.14 35.10 0.51 24.50 4.80 1.00 1.00 82.82 79.21 20.58
6 20.48 0.01 17.14 1.03 50.65 1.01 23.85 61.90 39.50 45.53 10.27
7 52.99 45.93 29.78 1.04 6.44 8.21 3.06 27.90 39.54 70.97 9.79
8 29.58 7.72 21.40 0.71 28.64 26.54 32.89 33.37 56.54 1.00 16.55
9 9.50 26.92 31.10 2.90 8.08 72.77 37.09 30.97 12.31 49.03 7.34
10 10.77 10.58 17.51 1.59 16.70 56.66 7.18 61.71 23.92 52.22 10.16

Table C.2: Gate model parameters for implementing possible controlled iSWAP gates corresponding to the
circuit parameters in Table C.1. Since the circuit parameter space is rather large, we have several possible
solutions; some, but far from all, possible solutions are shown in the table. Column 1-4 shows the dressed qubit
frequencies. Column 5 and 6 shows the couplings seen in Eq. (3.21) and Eq. (3.23b). The parentheses indicate
the error in the parameters when assuming a fabrication error of 10% on the circuit parameters in Table C.1.

ω1 ωT1 ωTB ωT2 Jz Jx

# [2πGHz] [2πGHz] [2πGHz] [2πGHz] [2πMHz] [2πMHz]

1 16.61(43) 7.21(20) 1.08(4) 3.98(12) −90.7(52) 8.2(8)
2 9.63(26) 8.90(37) 3.82(13) 17.65(52) −55.6(34) 20.7(22)
3 16.37(50) 18.56(43) 13.37(46) 14.85(51) −299.6(107) 27.3(193)
4 8.45(31) 4.82(18) 1.06(4) 4.51(12) −148.9(41) 11.8(10)
5 14.66(32) 10.13(26) 1.34(5) 11.54(40) −123.9(63) 11.1(9)
6 17.69(47) 10.28(1109) 2.70(9) 5.82(22) −252.8(73) 14.3(16)
7 18.51(46) 15.92(45) 2.73(9) 10.18(25) −41.1(29) 13.6(13)
8 15.84(55) 7.09(18) 1.88(6) 7.30(20) −141.6(59) 12.2(13)
9 4.71(14) 2.90(281) 7.62(22) 10.64(35) −35.6(19) 16.7(1107)
10 6.07(18) 7.41(18) 4.19(12) 5.87(20) −93.5(39) 47.3(75)

suppress significant charge noise [80].
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Table C.3: Quality parameters for implementing possible controlled iSWAP gates corresponding to the circuit
parameters in Table C.1. α are the relative anharmonicities of the qubits, while EJ /EC are the ratios between the
effective Josephson energy and effective capacitive energy. The parentheses indicate the error in the parameters
when assuming a fabrication error of 10% on the circuit parameters in Table C.1.

# α1 [%] αT1 [%] αTB [%] αT2 [%] EJ
1/EC

1 EJ
T1/EC

T1 EJ
TB/EC

TB EJ
T2/EC

T2

1 −2.1(1) −2.5(1) −2.1(1) −2.0(1) 85.1(40) 77.1(45) 73.6(49) 71.4(39)
2 −2.1(1) −2.1(1) −2.1(1) −2.0(1) 83.9(45) 81.4(39) 74.3(49) 73.7(39)
3 −2.6(1) −2.1(1) −2.1(1) −2.1(1) 80.2(47) 120.6(62) 74.3(51) 73.3(46)
4 −2.6(1) −2.1(1) −2.0(1) −2.0(1) 76.4(43) 164.4(103) 74.4(49) 72.4(39)
5 −2.1(1) −2.1(1) −2.0(1) −2.0(1) 93.3(41) 104.9(57) 74.7(51) 74.3(45)
6 −2.3(1) −2.1(3) −2.0(1) −2.0(1) 85.7(39) 117.1(70) 74.4(50) 72.4(42)
7 −2.1(1) −2.1(1) −2.1(1) −2.0(1) 76.9(37) 79.6(38) 73.9(50) 72.1(39)
8 −2.2(1) −2.1(1) −2.1(1) −2.0(1) 82.7(50) 123.6(67) 73.9(48) 72.2(39)
9 −2.1(1) −4.2(7) −2.0(1) −2.0(1) 88.7(48) 144.9(71) 74.5(46) 71.9(40)

10 −2.1(1) −2.4(1) −2.1(1) −2.0(1) 105.4(57) 75.7(34) 74.3(47) 73.3(42)
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APPENDIX D

Realistic Parameters for the Linear Controlled
Swapping Gate

This appendix is quoted from [III] with minor changes to fit the context of this thesis.

In this appendix to Chapter 4 we present parameters for the circuit model in Fig. 4.1(b),
which yields the desired gate model of Fig. 4.1(a), i.e., linear controlled swapping gate.
The parameters are found by calculating the gate model parameters and then minimizing
a cost function which returns a low value when the requirements of the gate model are
met. The minimization is done using a simplex method, with randomized starting points,
since many solutions exist. In order to judge the quality of the circuit parameters, we
also calculate the relative anharmonicity, αr, (see Eq. (1.76)) of the two-level systems and
couplings to higher-lying states Kx

2,3 and Mx
2,3. The parameters obtained are presented in

Table D.1.
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Figure D.1: Average fidelity of the system with realistic parameters (row 6 of Table D.1) as a function of time.
The simulations are done both for perfect control qubits (solid lines), i.e., perfect two-level systems, and for
realistic control qubits, i.e., approximate two-level systems where the third level is included (dashed-dotted
lines). The |0±〉C indicates the choice of detuning δ± and thus for which gates in Eq. (4.2) the simulation is
done. The inset shows a zoom of the peak of the average fidelity in the open configuration |0〉C , i.e., around
t ∼ tg.
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Appendix D. Realistic Parameters for the Linear Controlled Swapping Gate
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We simulate the gate with the parameters of row 6 in Table B.1 and find that all
result in a maximum fidelity above 0.99, when the driving is ω = Jz

i /8. The average
fidelity as a function of time can be seen in Fig. D.1. We simulate both perfect qubits and
realistic qubits where we include the third state with the given anharmonicity. From the
simulation, we see that the optimal gate time is just before tg and that the inclusion of the
third excited state does not change the fidelity significantly.
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APPENDIX E

Additional Results for Entangling Gates in VQE

This appendix presents some additional results from the simulations discussed in Section 6.5.

Besides the results presented in Section 6.5 for H2 and the full XXX Heisenberg model,
we here present similar results for LiH (Fig. E.1), the pure swap model (Fig. E.2) and the
transverse-field Ising model (Fig. E.3) with six qubits. The results in this appendix are
consistent with the conclusion of the main text.

For LiH in Fig. E.1, we observe that the parameterized gates perform just as well
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Figure E.1: Potential energy surface for LiH calculated using SSVQE for the two lowest states. The title of
each column indicates which entangling gate is used in the calculation, either fixed (solid line) or parameterized
(dashed lines). In the top row, we show the calculated energy, and in the bottom row, we show the energy
difference, ∆E, between the classical and VQE calculations. Lighter colors indicate that more layers are used in
the simulation. The gray line indicates chemical accuracy at 0.0016 Hartree. The results shown here are the
best out of 100 samples.
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Figure E.2: Potential energy surface for the pure swap Heisenberg model in Eq. (6.8) with six qubits calculated
using SSVQE for the two lowest states. The title of each column indicates which entangling gate is used in
the calculation, either fixed (solid line) or parameterized (dashed lines). In the top row, we show the calculated
energy, and in the bottom row, we show the energy difference, ∆E, between the classical and VQE calculations.
Lighter colors indicate that more layers are used in the simulation. The results shown here are the best out of
100 samples.

or better than all the fixed gates. We also note that for the CNOT and CZ gate, the one
layer PQC is having trouble finding the correct states. However, for the iSWAP gate, it
is the three-layer fixed PQC that has the most trouble finding the correct state. This is
quite peculiar and is probably due to some optimization difficulties. Nonetheless, the
parameterized three-layer PQC performs quite well. Note that the third energy curve
found by the SSVQE is probably the second excited state of LiH, i.e., the triplet state found
in Fig. 6.1(b).

In Fig. E.2 we show results for simulations of the pure swap Heisenberg model,
i.e., J = Jx = Jy and Jz = 0 in Eq. (6.8), for six qubits. The simulation agrees with the
conclusion for the full XXX Heisenberg model, i.e., the parameterized gates outperform
the fixed gates. For both the CNOT and iSWAP gate, we see that the parameterized gate
performs better than the fixed gates, even with fewer layers. The CZ gate, on the other
hand, does not perform that well in the parameterized version.

In Fig. E.3 we show results for simulations of the transverse-field Ising model in
Eq. (6.9). Again, the simulations are consistent with the previous conclusion. The main
text results for four, six, and ten qubit yields the same conclusions but are omitted here.
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Figure E.3: Potential energy surface for the transverse-field Ising model in Eq. (6.9) with six qubits calculated
using SSVQE for the two lowest states. The title of each column indicates which entangling gate is used in
the calculation, either fixed (solid line) or parameterized (dashed lines). In the top row, we show the calculated
energy, and in the bottom row, we show the energy difference, ∆E, between the classical and VQE calculations.
Lighter colors indicate that more layers are used in the simulation. The results shown here are the best out of
100 samples.
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APPENDIX F

Additional Results for Approximating VQE states
using EQ-GAN

This appendix presents some additional results from the simulations discussed in Section 7.4.

In Fig. F.1 and Fig. F.2 we present the result of EQ-GAN simulations trying to learn the
eigenstates o LiH and BeH2, respectively, using the VQE results as data. The figures
should be compared to Fig. 7.6 of the main text, and it is clear that the conclusion is the
same. We obtain quite a good fidelity, especially for the adversarial training; however, the
energies are not nearly as good as the VQE result.
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Appendix F. Additional Results for Approximating VQE states using EQ-GAN

Figure F.1: Results of the EQ-GAN learning on VQE data for LiH with one layer of Fig. 6.4. (a) Predicted
energy of the EQ-GAN algorithm (lines) and SSVQE (circles). Solid lines indicates the adversarial swap test
was used, while the dashed line indicate that the perfect swap test was used. (b) Infidelity of the state generated
by the EQ-GAN, |GAN〉 = G(θ) |0〉, with the state generated by the VQE, |VQE〉 = Û (θVQE) |0〉.
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Figure F.2: Results of the EQ-GAN learning on VQE data for BeH2 with three layers of Fig. 6.4 but with
iSWAP gates instead of CNOT gates. (a) Predicted energy of the EQ-GAN algorithm (lines) and SSVQE
(circles). Solid lines indicates the adversarial swap test was used, while the dashed line indicate that the perfect
swap test was used. (b) Infidelity of the state generated by the EQ-GAN, |GAN〉 = G(θ) |0〉, with the state
generated by the VQE, |VQE〉 = Û (θVQE) |0〉.
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