

Study of dynamic moment of inertia versus rotational frequency for superdeformed bands in ^{83}Y

Honey Sharma* and Tapan Sharma ‡

*Department of Physical Sciences,
Sant Baba Bhag Singh University,
Padhiana, Punjab-144030, India

and

‡ Independent Researcher and Life Member of International Association of Engineers

Introduction

The study of spin determination is an essential step towards characterizing the overall nature of superdeformed (SD) bands in various mass regions. The kinematic moment of inertia ($J^{(1)}$) and dynamic moment of inertia ($J^{(2)}$) are the critical parameters to investigate the spectroscopy of SD bands in further detail. $J^{(1)}$ completely depend upon spins, in contrast to $J^{(2)}$. Because the spin assignments of the SD bands in various mass regions are still up for debate, $J^{(2)}$ is primarily considered. In the context of the N_pN_n scheme, Sharma et al. [1] examined the systematics of $J^{(1)}$ and $J^{(2)}$ in A~190, 150, and 130 mass regions. There is a continuous increase of $J^{(2)}$ with rotational frequency ($\hbar\omega$) for the mass region A~190 and a continuous decrease of $J^{(2)}$ with rise of $\hbar\omega$ for A~150,130. SD bands were seen in the A~80 mass region up to $\hbar\omega$ of approximately 1.3 MeV/ħ [2], in contrast to A~190, 150, and 130 mass regions. In nuclei with atomic numbers Z=38 – 40 and N=42 – 45, the estimate for extremely elongated forms with an axis ratio of 2:1 was discovered in the A~80 mass region [3–8]. Baktash et al. [9] observed similar estimates experimentally in ^{83}Sr (1). In this present work, the calculated transition energies of ^{83}Y (1,2,3,4)SD bands obtained from various rotational energy formulae i.e nuclear softness formula [10], VMI model [11], VMINS3 model [12], four parameter formula [13] are used to calculate $J^{(2)}$ and

its variation with $\hbar\omega$ is investigated.

Formalism

A) Nuclear softness formula [10]

$$E_\gamma(I) = \frac{\hbar^2}{2\Im_0} \times \left[\frac{I(I+1)}{(I+\sigma I)} - \frac{(I-2)(I-1)}{1+\sigma(I-2)} \right]. \quad (1)$$

B)VMI model [11]

$$E_\gamma(I \rightarrow I-2) = \frac{[I(I+1) - (I-2)(I-1)]}{2\Im_0} + \frac{[I(I+1)]^2 - [(I-2)(I-1)]^2}{8C(\Im_0)^4}. \quad (2)$$

C)VMINS3 model [12]

$$E_I = \frac{\hbar^2}{2\Im_0} \frac{I(I+1)}{(1+\sigma_1 I)} + \frac{1}{2} C \Im_0^2 I^2 \sigma_1. \quad (3)$$

D)Four parameter formula [13]

$$E_\gamma(I \rightarrow I-2) = A(I(I+1) - (I-2)(I-1)) + B((I(I+1))^2 - ((I-2)(I-1))^2) + C((I(I+1))^3 - ((I-2)(I-1))^3) + D((I(I+1))^4 - ((I-2)(I-1))^4). \quad (4)$$

E)Dynamic Moment of Inertia ($J^{(2)}$)

$$\Im^{(2)}(I) = 4000/[E_\gamma(I+2) - E_\gamma(I)]. \quad (5)$$

F) Rotational Frequency ($\hbar\omega$)

$$\hbar\omega = \frac{E_\gamma(I) + E_\gamma(I+2)}{4}. \quad (6)$$

*Electronic address: honeysharma777@gmail.com

Results and Discussion

The $J^{(2)}$ scatters at around $25\hbar^2/MeV$ in $A \sim 80$ mass region. Upbends are visible in the SD bands at high rotational frequencies in the ^{83}Y nucleus [2] due to a rotational alignment of a pair of nucleons. Hence, it is observed from Fig. 1 that this type of trend is well reproduced by four parameter formula for all the $^{83}Y(1,2,3,4)$ SD bands.

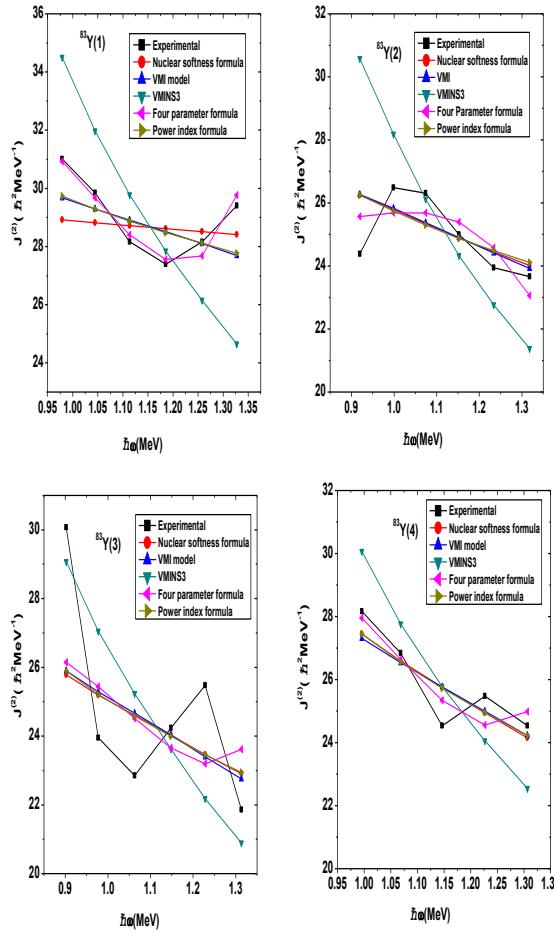


FIG. 1: Variation of calculated result of dynamic moment of inertia $J^{(2)}$ with rotational frequency for $^{83}Y(1,2,3,4)$ SD bands in $A \sim 80$ mass region and comparison with experimental data.

Conclusion

To study the behaviour of SD bands the dynamic moment of inertia $J^{(2)}$ is a vital quantity. The change of $J^{(2)}$ with $\hbar\omega$ for $^{83}Y(1,2,3,4)$ SD bands is investigated in present study. As reported in Ref.[2] $J^{(2)}$ with $\hbar\omega$ for ^{83}Y SD nuclei show upbends at high rotational frequency due to a rotational alignment of a pair of nucleons. In the present study also it is well noticed that the same experimental trend is followed by four parameter formula for all four SD rotational bands in ^{83}Y .

References

- [1] H. Sharma, N. Sharma and H. M. Mittal, Chinese Phys. C 41 (2017) 084104.
- [2] F. Lerma, W. Reviol and C. J. Chiara, Phys. Rev. C 67 (2003) 044310.
- [3] W. Nazarewicz, J. Dudek et al., Nucl. Phys. A 435 (1985) 397.
- [4] J. Dudek, W. Nazarewicz and N. Rowley, Phys. Rev. C 35 (1987) 1489.
- [5] T. Bengtsson, I. Ragnarsson and S. Aberg, Phys. Lett. B 208 (1988) 39.
- [6] P. Bonche, H. Flocard and P.H. Heenen, Nucl. Phys. A 523 (1991) 300.
- [7] T. Werner and J. Dudek, At. Data Nucl. Data Tables 50 (1992) 176.
- [8] A.V. Afanasjev and I. Ragnarsson, Nucl. Phys. A 586 (1995) 377.
- [9] C. Baktash, D. M. Cullen et al., Phys. Rev. Lett. 74 (1995) 1946.
- [10] R. K. Gupta, Phys. Lett. B 36 (1971) 173.
- [11] M. A. J. Mariscotti, G. S. Goldhaber and B. Buck, Phys. Rev. 178 (1969) 1864.
- [12] J. S. Batra and R. K. Gupta, Phys. Rev. C 43 (1991) 1725.
- [13] A. Bohr and B. R. Mottelson, Nuclear Structure Benjamin New York Vol.2, (1975) Chap. 4.