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Abstract

Scattering amplitudes in Yang—Mills theory can be represented in the formalism of Cachazo, He and
Yuan (CHY) as integrals over an auxiliary projective space—fully localized on the support of the scattering
equations. Because solving the scattering equations is difficult and summing over the solutions algebraically
complex, a method of directly integrating the terms that appear in this representation has long been sought.
We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and
then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for
which combinatorial rules of integration are known. The result is the foundations of a systematic procedure
to obtain analytic, covariant forms of Yang—Mills tree-amplitudes for any number of external legs and in any
number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up
to six gluons of arbitrary helicities.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most fundamental quantities in theoretical particle physics is the scattering am-
plitude for n gauge bosons. Although so essential, it is remarkable that for a long time explicit
expressions for covariant d-dimensional scattering amplitudes of n massless gauge bosons of
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arbitrary helicities were most easily obtained from the field theory limit of string theory (see,
e.g., [1] for areview). Conventional d-dimensional Feynman diagram techniques are simply way
too cumbersome above a small number of external legs. The highly efficient BCFW on-shell
recursion relations [2,3] provide a practical solution, but it would still be worthwhile to explore
alternate approaches.

In the scattering equation formalism of CHY, [4—6], represents a completely new step towards
obtaining such compact covariant expressions for amplitudes. Expressed in terms of a (reduced)
2n x 2n Pfaffian, the n-point S-matrix element is given by a (n — 3)-dimensional integral which
fully localizes on the set of solutions to so-called scattering equations. A proof of the validity
of this remarkable formula for any n has been given in ref. [7] and it has also been derived
from the viewpoint of the ambitwistor string [8—10]. Thus, no integrations are really required to
find the n-point covariant scattering amplitude, only a sum over solutions to a set of algebraic
equations. The downside of this is that the sum scales with n as (n — 3)! and finding the full set of
solutions becomes difficult already at rather low values n. Progress has been made from a variety
of different directions [11-13].!

Recently, a simple set of analytic integration rules were derived. They circumvent the problem
of summing over (n — 3)! solutions and provides the result of that sum based on a simple com-
binatorial algorithm, [15—17]. However, some of the integrals needed in order to obtain explicit
expressions for covariant gauge boson amplitudes were not immediately in a form where these
simple integration rules were applicable. Rather, one would first have to resort to a not entirely
systematic use of integration-by-parts identities. This makes it hard to provide general and simple
rules for deriving any n-point gauge boson scattering amplitude using this formalism.

Very recently, the issue of integration rules for more general CHY integrands has been con-
sidered from two independent directions [18,19]. The monodromy relations solve such problems
by shifting the integration contours appropriately. That way we rewrite all integrands in terms of
pieces that all have &’ — 0 limits without further analytic continuation. Other prescriptions with
less compact integrands (e.g., rewritten through also integration by parts identities) can indeed be
verified to be free of such terms. However, such prescriptions appear very hard to systematize. In
this paper, we shall present a different and fully systematic solution to the problem—applicable
at least to the case of integrands appearing in the CHY representation of Yang—Mills amplitudes.
Interestingly, our method uses the idea of monodromy as it is applied in string theory [20,21].
This is perhaps puzzling on two counts. First, monodromy relations in string theory a priori only
provide non-trivial relations between full amplitudes: by a sequence of contour shifts, and upon
taking first real and then imaginary parts [20], one derives KK amplitude relations [22] and BCJ
amplitude relations [23], respectively. Second, because the CHY construction is based on entirely
different integrations on a set of é-function constraints, it may not seem a priori obvious why
monodromy considerations can apply to that formalism.

To understand the first issue, one should realize that monodromy in string theory is far more
general than as applied to a full amplitude: it can also be applied to individual terms in the string
theory integrand. To understand the second issue, one needs to know the intimate relationship
between string theory integrals and CHY integrals, as explained in ref. [24] (see also section 3 of
ref. [15]). The latter connection allows us to import monodromy relations of string theory in the
o’ — 0 limit into CHY integrands. In this way we establish a broad class of general relations sat-

1 We are also aware of another approach to analytic integration—very different than what is described here—that
should work for arbitrary CHY/string-theory integrands, [14].
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isfied by CHY integrals, corresponding to real and imaginary parts of string theory monodromy
relations. Taking the real part, we obtain identities that involve only the CHY integration vari-
ables. As might have been guessed, such identities are in fact simple algebraic identities of the
kind obtained by, e.g., partial fractioning. However, the identities corresponding to taking the
imaginary part are highly non-trivial, mixing integration variables with generalized Mandelstam
variables. In this way, integration variables can, figuratively speaking, be traded for momenta.
In particular, such identities can be used to lower the order of the poles, thus rendering those
integrals doable by means of the integration rules derived in refs. [15—17]. This provides a step-
by-step implementation of integration rules that can be used for any n-point amplitude, i.e. we
start from the most complicated integrands and reduce them step-wise to simpler integrands until
we only have integrands that can be evaluated.

In this paper, we describe this application of string theory monodromy relations and how it
can be applied as a powerful and systematic tool for analytically integrating the terms that appear
in the CHY representation of Yang—Mills amplitudes. Surely these tools have much broader
applications, but we consider Yang—Mills amplitudes as our primary example. In section 2, we
review how Yang—Mills amplitudes are represented in CHY and string theory, and discuss the
obstacles to direct analytic integration. The first obstacle is the fact that the CHY representation is
not manifestly Mobius-invariant term-by-term; this is remedied in section 2 where we describe a
refinement of the CHY representation that is manifestly Mobius-invariant. Even when every term
is manifestly Mobius-invariant, however, the analytic rules for integration described in [15-17]
can be obstructed by the appearance of integrands with what we will call ‘problematic k-tuples’.
These include (and generalize) the higher-poles that can appear in individual terms in the CHY
and string theory representations. In section 3, we describe how monodromy relations of string
theory can be used to systematically eliminate these obstructions. We use these new rules to
derive analytic formulae (via CHY) for Yang—Mills amplitudes involving as many as six gluons.
These are given in detail in Appendix A; these formulae have been verified against known results
(e.g. using the package [25]), and are provided as a MATHEMATICA notebook included in this
work’s submission files on the arXiv.

2. Review and refinement of CHY and string amplitudes

In this section, we rapidly review the CHY and string theory representations of amplitudes
in Yang-Mills theory, and briefly discuss the obstacles to analytic integration of the formulae
that result. But prior to doing so, we must first refine the CHY representation in order make it
manifestly Mobius-invariant term-by-term.

In the scattering equation formalism, the n-point gluon amplitude in Yang—Mills can be rep-
resented as follows [4-6],

Pf'W(z;)

=0 o |
A=ED oY (z1 —22)(z2 —23) - (2 — 21)

where the integration measure Qcpy (which includes the scattering equation constraints) is given
by:

2.1

d"z
Qeny = ———— [ [ /8(8) = (zr — 25)% (25 — 20)* (20 — 20)? dzi 8(S;), (2.2
cHY VO](SL(z))U (S) = (zr —29)° (25 — 20 (2 — 27) iezﬂ];[”} 28(S), (2.2)
where the §-functions impose the scattering equations,
s=Y 4 o, 2.3)

i (zi—zj)
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localizing the integration to simply a sum over the (n — 3)! solutions to {S; = 0}; also appearing
in the integration measure (2.1) is the reduced Pfaffian® of the matrix W (that is, the Pfaffian of

\Illl]] , obtained by deleting rows and columns i, j from W),

(=Dt
(zi —zj)

Pf'w =

L. _ T
Pr(w), where \Dz(é ¢ ) @4)

where the components of W are given by the matrices,

€ji le"
A‘ - Sij , B -Eij, C .Eij,
i#j (zi—zj) i#] (zi — Zj) i# (zi — Zj) ‘ (2.5)
ck: .
Ai=j =0, Bi=j =0, Cimy == 2 (i —llzz)'
1#£i

for which s;;=2k; -k; and €;;=2¢;-€; and €k;; =2¢; k;.

While correct, this representation does not provide a manifestly Mobius-invariant integrand
for the amplitude because of the diagonal terms of the matrix C: these terms are not of uniform
(nor correct) weight under Mobius transformations. This problem can be solved as follows. Let
us make use of the (partial-fraction) identity,

€kiy €kiy €kir(z1 — za)

TGi—w) Ga—z) " (za —zi)(zi —21) for i7a, 2.6)

to re-write the diagonal terms of the C-matrix,

Cii = Z( .47 + €kil(z1 — za) ) N Z €kil(z1 — za) 27

T\ G-w@-w) G Ga— @@ -

Here, the RHS follows from gauge-invariance (and momentum conservation)—as the sum of the
first terms is always proportional to €k;;. Because the terms on the RHS have uniform weight of
Z; 2 under modular transformations, the reduced Pfaffian is guaranteed to be term-wise Mobius
invariant. Thus, and for the sake of concreteness, we can replace the diagonal elements of the
C-matrix by, for example,

Xn: ek (z1 — 22) i1
N e (2—z)@ —2) ’
123

Z €kij(z1 — z1) )
_ i>1.

1) (zi—z)@i—z)’

Throughout the rest of this work, whenever we speak of ‘the’ terms in the CHY representation of
the amplitude, we have made use of this form of the diagonal entries of the C-matrix—rendering
the CHY representation term-wise, manifestly Mobius-invariant.

Another way to compute pure Yang—Mills field theory amplitudes is provided by superstring
theory—see, e.g., ref. [1]. Here the n-point field theory amplitude can be computed as the leading
a’ contribution to a set of ordered integrations along the real axis:

(2.8)

2 Interestingly, we can here report on one further refinement; one has always the freedom to pick a different Pfaffian
reduction for each occurring product of contracted polarization vectors in the amplitude. Although not employed here,
this observation can be used to favor certain CHY integrations when deriving amplitude results.
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-1
A = lim o/ @972 /hdz- (z1 —22)(z2 — Zn)(2n —21)/ o
" a'—0 i3 ! ]_[?:1(11' - Zi+l)

x [T =z — 610"

i<j
V20 (0; — 0)) (piekij + ¢j€kij) vipj€ij  9i0jpipje;;
X Hexp — — 5 |- 2.9)
i< (zi —zj) (zi—z;) (@i—zj)

The auxiliary Grassmann integrations over ¢; and 6; automatically impose the multi-linearity
condition on the amplitude in terms of the external polarization vectors ej.‘, just like the Pfaffian
does in the CHY prescription. Explicit examples of using string theory to compute Yang—Mills
amplitudes, including all the stringy corrections proportional to powers of &’ can be found in [1]
and in the impressive work by Medina, Brandt and Machado [26] (at 5-point, see also [27]), and
by Oprisa and Stieberger [28] (at 6-point). The pure spinor formalism provides another method to
derive such amplitudes using the Berends—Giele recursion procedure [29-31].> Once the Grass-
mann integrations have been performed, we are left with bosonic integrands with poles in the
z; variables. Using integration by parts identities a bosonic integrand written solely in terms of
single poles can be recovered [24]. Inserting the CHY §-function constraints into such a super-
string integrand and taking the o’ — 0 limit one precisely recovers the CHY prescription [4—6]
for Yang—Mills theory. An alternative, string-like derivation of the CHY formalism uses the am-
bitwistor string [8,9,32-34].

In ref. [15], this match between ordered string theory integrations and the CHY prescription
was exploited in several ways. It is instructive to see why certain string theory integration rules
do not immediately carry over to CHY-type integrals, while others do. Let us start with string
theory and the following generic ¢>-type integral over ordered variables,

n—1
. -3 /o
7,= lim " f [Tdzi @1~ —z)Gn—20) ] |- HE@. (2.10)

i=3 I<i<j<n

where H(z) consists of products of factors (z; — z j)_‘Z such that the whole integrand is
SL(2)-invariant. Depending on the form of H (z), the integral above, with the prefactor ()" 3,
may or may not be well defined. If the degree of divergence of the integral itself is stronger than
(o )3~ as &’ — 0 the evaluation of Z, will require analytic continuation. In ref. [15] such in-
tegrals were not considered. This is sufficient to provide, for example, all integration rules for
scalar @3-theory. Tellingly, it is precisely these “simpler” string theory integrals for which com-
pact integration rules can be formulated and for which there is one-to-one translation table to
CHY integrals, where the corresponding integrals instead are evaluated by means of the global
residue theorem. When we turn to Yang—Mills theory in the CHY formalism a more general set
of integrals appear, and we need integration rules for them. This is where monodromy provides
a solution. By deforming contours in string theory the analytic continuation can be performed in
a systematic manner, relating the result to string theory integrations that do not require analytic
continuation. The latter can immediately be transcribed into alternative CHY representations of
the original integrals, now with the bonus that the standard integration rules apply.

3 We thank C. Mafra and O. Schlotterer for informing us, after the preprint of this paper was made public, of the
link http://www.damtp.cam.ac.uk/user/crm66/SYM/pss.html, where many explicit examples of am-
plitudes are provided.
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Although the integration rules derived in ref. [15] are very powerful and exhaust all integrals
that arise for ¢>-theory, certain integrations that arise in the CHY formulation of Yang—Mills the-
ory are not covered by these rules. In string theory, those integrals are not well-defined for o’ near
the origin, requiring analytical continuation. This makes it more complicated to deduce proper
integration rules, and interestingly this is true also in the CHY formalism. Steps have recently
been taken towards the formulation of such generalized CHY integration rules in refs. [18,19].
In the next section we will present a systematic solution to this problem. But before doing so, let
us first review the obstructions that arise for more general integrands—and how we can represent
these diagrammatically.

2.1. Graphical representations of integrands and obstacles to integration

We can represent any CHY/string-theory integrand H (z) constructed as products of factors
of the form (z; — z;) graphically as a multi-graph with solid lines indicating factors that appear
in the denominator (with multiplicity), and with dashed lines indicating factors in the numerator
(with multiplicity). For example,

(z1 —z4)
< .
(21 — 22)%(z2 — 23)%(z3 — 24)%(z4 — 25)%(z5 — 26) (21 — 26)%(21 — 25)(24 — 26)

To be completely clear throughout this work, we will always use the convention that every link
(ij) < (z; — zj) that appears in the graph is taken to be ordered, with i < j. Thus, when we find it
useful later on to discuss ‘Parke—Taylor’-like factors 1/((z1 —z2) - - - (zn — z21)), the reader should
bear in mind that this would be represented graphically with a minus sign: e.g.,

2 3
1

(21 — 22)(z2 — 23) (23 — 24) (24 — 25) (25 — 26) (21 — 26)

= —PT(1,2,3,4,5,6).

We need not review the combinatorial rules for analytic integration described in ref. [15].
But for our purposes it will be important to emphasize that these rules necessitate that for every
k-element subset of particle labels 7, there exists no more than 2k — 2 factors (z; — z;) in the
denominator between elements {i, j} Ct (counting factors in the numerator negatively). Subsets
T that do not meet this criterion will be called ‘problematic k-tuples’. When an integrand is
free of problematic k-tuples, then the integration rules described in ref. [15] apply, providing an
analytic expression for the result of integration against the CHY measure.

Both the six-point integrands drawn above are free of problematic k-tuples, and hence can
be integrated analytically without difficulty. Perhaps the simplest example of a graph with a
problematic k-tuple appears for 4 particles:

1 2 1
[ — ] , 2'11
< (z1 —22)3(z2 — 23)(z3 — 24)3 (21 — 24) 11
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for which the 2-tuple T ={1, 2} is problematic because there are more than 2 factors of (z1 — z2)
in the denominator. We could also describe the subset {3, 4} as problematic, but subsets should
be considered equivalent to their complements so it is sufficient to consider only t={1, 2}.
The existence of a problematic 2-tuple is always indicated by a triple-line in the diagrammatic
representation of the integrand.

A more intricate example of an integrand with problematic k-tuples would be the following:

3

2
1} 4 P (z1 —24)? .
\ l/ (z1 — 2203 (22 — 23)(23 — 24)% (24 — 25)3(z5 — 26) (21 — 26)%(21 — 23) (24 — 2Z6)

6 5

This integrand has four problematic k-tuples: {1, 2}, {4, 5}, {1, 2, 3}, and {1, 2, 6}.

In the next section we will describe how integrands such as these with problematic k-tuples
can systematically be expanded using monodromy relations into a sum of integrands without
problematic k-tuples, allowing us to use the combinatorial rules of ref. [15] to express the result
of their integration analytically.

3. Integrand-level monodromy relations and reduction

As reviewed above, the two primary obstacles to obtaining analytic formulae for scattering
amplitudes using the scattering equation formalism are the non-manifest Mobius-invariance of
individual terms—solved in our refined formulation—and the appearance of integrands such as
(2.11) that have problematic k-tuples. To illustrate this, let us consider the terms that appear
in the (refined) CHY representation of the 4-particle tree-amplitude. Using (2.1) with C defined
according to (2.8), picking {i, j} = {1, 2} for the projection to the reduced Pfaffian, and extracting
the coefficients of cyclic classes (mod duplication), the amplitude is expressed as follows,

Ay = ay €1p€34 + @z €13€24 + B1 €12 + B2 €13 + distinct cyclic, 3.1

where the coefficients are given by:

1 2 1 2
[ — ]
o1 =512 ) o =—S12 )
—
4 3 4 3
1 2 1 2
Br= €kzeka — €k3j€kan ; (3.2)
4 3 4 3
1 2 1
Br = —€kazeky — €ko1€kys
4 3 4 3
Of these, all but &1 can be integrated immediately via the rules of ref. [15]:
1 2 1 2
1 1 ! 2 1 1
=—— =——, =—(—+—). (33)
S12 523 S12 8§23
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from which we see that oy =1,

€k31€kansyz+ekarekasia 5 €ko1€kq3soz+ekozekarsin
1= . Ba= .
512523 §12823

3.4)

While the CHY integrand appearing in the coefficient oy is Mobius invariant, it cannot be
integrated analytically according to the rules of ref. [15] because of the cubic powers (z; —
22)° and (z3 — z4)° appearing in the denominator (represented as triple lines in the figure). As
described above, these indicate the existence of the problematic 2-tuple {1, 2}.

Let us now describe how monodromy relations of string theory can remedy this situation—
lowering the degree of poles in the diagram (2.11). The basic idea is a simple one. Viewing
the integrand (2.11) in string theory, monodromy tells us how to exchange one integration region
with another while carefully deforming the contour around branch points. Effectively, this results
in complex phases (determined by the Koba—Nielsen factor) attached to the integrand:

0
0= /dzH(Z)(—Z)a/S'Z(l — 7)Y (3.5)
—00
1 00
+eia/s12 deH(Z)(Z)a/Slz(l _ Z)a’sz3 + eia/(512+s23) /dZH(Z)(Z)a/Slz(Z _ 1)0[’323 )
0 1

Let us introduce a convenient graphical notation. A line between two points i < j represents a

factor (le—zj) both with respect to the string theory and the CHY measures. Applied to the case

of eq. 2.11, the above relation then becomes a three-term identity:

1 2 1 2 1 2

0: Z + el‘a/é‘lz = _ ei(x,(j‘|2+S23) . (36)

4 3 4 3 4 3

Here, the minus sign appearing in the relation above is really due to our convention for how to
order the denominators of the factors corresponding to the diagrams. Such a relation naturally
splits up into real and imaginary parts [20,35-37], yielding:

1 2 1‘ .2 1 2
0= Z + cos(a's12) — cos(a'(s12+523)) ,
4= 3 4= 3 45 3
2 12 3.7)
0= sin(a's12) — sin(a/(s12+523))
45 3 4 3

These identities are the analogs of KK [22] and BCJ [23] relations, respectively. Note that the
first relation (the real part) involves two diagrams both with triple lines. The identity holds,
of course; but it is not the one that will prove useful to us here. The relation following from
the imaginary part, however, is far more interesting: it relates a diagram with a triple line (a
problematic 2-tuple) to one without. As we are only interested in the leading contribution as
a’ — 0, this identity becomes,
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1
s12+523 s12+5823 513
= S = — 3 = -5 - (38)
— 12 512 S12
4 3 4 3
Using this, we see that o1 given in (3.2) is simply equal to s13/s12. Thus, we have found an-
alytic expressions for all the terms needed to express the amplitude. Putting everything together,
we have:

1
Ay = [613624 + o (612634S13 + 612(€k316k42 + 6k32€k41) + 613€k216k43)
112 (3.9)
+ — <6126k326k41 + 6136k236k41)] + distinct cyclic.
5§23

Going to higher multiplicity, the terms generated in the CHY representation increasingly in-
volve problematic k-tuples. For n = 5, for example, a direct expansion of the CHY representation
(2.1) (using the refined C-matrix and projecting to the reduced Pfaffian with {i, j} = {1, 2}—for
the sake of concreteness) generates an expansion involving 26 distinct CHY integrals to evaluate.
Of these, 17 are free of problematic k-tuples and therefore can be integrated directly using the
tools of ref. [15]. The diagrams that have problematic k-tuples include, for example,

2 2 2

(3.10)

Like for n = 4, the only problematic k-tuples are 2-tuples when n =5 (simply because subsets
are considered equivalent to their complements). Thus, we should be able to use the same strategy
as above to compute such terms analytically.

3.1. Systematic elimination of problematic 2-tuples

Let us now describe how problematic 2-tuples can be systematically eliminated through a
natural generalization of the identity (3.5). This will allow us to analytically integrate all the
terms appearing the 5-particle amplitude.

In order to describe the generalization of (3.5) to higher multiplicity, it will be useful to define
the notation
_ 1
(@) (- (@ - )]
(motivated by analogy to the structure of the Parke-Taylor amplitude, [38]). In the CHY repre-
sentation of Yang—Mills amplitudes (2.1), every term in the n-particle amplitude is manifestly
proportional to PT (1, ..., n). But introducing this notation here will allow us to deal with more
general Hamiltonian cycles (a path through a graph that passes through all vertices exactly once)
appearing in the integrands in which we are interested.

It is straightforward to see that the generalized BCJ-type identity from the imaginary part of
the basic monodromy relation (3.5) (at leading order in o) is the identity:

PT(1,2,...,n)

3.11)

n—1
0=s2PT(L2.....0)+ Y _(s124+526.4) PT(L, ...k, 2. k+1,....n). (3.12)
k=3
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as anticipated from (3.6) and (3.7). Here, we have introduced the notation s, p...c) =Sap + - - . +Sac
for the sake of concision. Just to be clear, this is not an ‘identity’ among CHY integrands, but
an identity after integration against the scattering equation constraints. We will give an alternate,
direct proof of this identity in Appendix B. Dividing by the Parke-Taylor pre-factor in the leading
term of (3.12), we can re-write this identity in terms of cross-ratios constructed from the z;’s:

L _Vlil <S12+S2(3--~k)> (Zl — 12)(22 — Z3)(Zk - Zk+1) (313)

= 512 (z1 — 23)(zk — 22) (22 — Zh41)

Importantly, multiplication of any CHY integrand by (3.13) will result in sum of integrands
with a reduced power of (z; — z2) appearing in the denominator. For example, an integrand with
the problematic 2-tuple {1, 2} (corresponding to a factor of 1/(z; — z2)>) will be expanded into
a sum of terms proportional to 1/(z; — z2)?>—free of the problematic 2-tuple. Thus, the identity
systematically eliminates the problematic 2-tuple {1, 2}. This motivates us to label this identity
as follows:

n
s12+ 8230\ PT(L, ..., k,2,k+1,...,n)
Id{l’z}E_Z( ( ))
S12 PT(l,Z,...,I’l)

=1. (3.14)

k=3
(Strictly speaking, this identity also depends on an overall cyclic ordering—through the appear-
ance of PT(1,2,...,n) in the denominator of (3.14). However, any permutation o € &,, of
labels (1,2,...,n)— (01,072, ...,0,) such that {1,2}C{o1, 02} would achieve the elimination
of the bad 2-tuple {1, 2}. Usually there is a natural choice for the cyclic ordering as every graph
(including those generated by multiple iterations of identities such as (3.14)) will involve a Parke-
Taylor prefactor; when this is the case, use of this identity will not generate any new factors in
the numerator. In our examples below, the ‘natural’ ordering will always be taken.)

This notation should be fairly intuitive: for any CHY integration with a problematic 2-tuple
7, multiplication by Id, will result in a sum of terms without the problematic 2-tuple. This can
be done iteratively, leading to a systematic elimination of all problematic 2-tuples, allowing us
to obtain analytic expressions for these terms using the integration rules of ref. [15].

As described above, for n = 5 the only possible bad k-tuples are 2-tuples. Thus, the
procedure described above should suffice to systematically evaluate terms such as those in
(3.10)—examples relevant to the 5-particle amplitude. The first of the examples in (3.10) con-
tains only a single problematic 2-tuple—namely, {4, 5}. Thus, it can be evaluated by a single
application of Id(4 5):

2 2
1 1 1
3 _ Sa5+S1s 3, S5 Fsa2s 3
545 845 (3.15)
4 4

1 <S45+515 S35)
= T - ).
Sis §23 512

(We remind the reader that any unusual signs appearing above follow from the convention that
all the links (ij) < (z; — z;) that appear in the graph are ordered: i < j.)

The other two examples are more involved, as each has two distinct problematic 2-tuples.
Nevertheless, repeated application of the identity (3.14) will always result in an expansion into
terms without problematic 2-tuples. For the first, we find:

Id,s)
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2
1
Id(4,5)1dq1,2) 3
4

2 2
1
S(12)3S(34)5 S(12)3325 3 85 3
$12545 §12545 S12
4 4
S 5138 ) S
__Saw3 ( 135345 _ $25 2) (3.16)
512513545 \ S12845 845 S12
And for the last example of (3.10), we have:
2
1
Idgs.1)1dg3.4) 3
4
2 2
1

S1(25)S4(35) S1(25)S24 3 Si4 3

515534 515534 $15

4 4
. (81(25)84(35) 51(25)524 S3(24)Sl4> (3.17)

osiss3 \ S84 515534 siss3 ) ‘

In these examples involving multiple iterations of identities, the expressions above should be
understood somewhat suggestively: after applying Id;; 7y to the example in (3.16), each term
generated will have a different ‘preferred’ Parke-Taylor ordering—and hence, different preferred
orderings for the subsequent application of Id4 5. Moreover, not all the terms generated by ap-
plication Id{; 2 require further expansion: the rightmost term in the first line of (3.16) is already
free of problematic 2-tuples and hence can be directly integrated analytically.

We have made use of the general identity (3.14) to evaluate every term generated in the CHY
representation of the 5-particle amplitude. The explicit result has been given in Appendix A.1.

Beyond n =5, however, integrands can involve higher-order problematic k-tuples. In gen-
eral, the terms in the n-point amplitude can have problematic tuples with k <|n/2]. Thus, the
identities (3.14) require generalization. Conveniently, the obvious generalization—to BCJ-like
identities with higher-order shuffles—works. We now describe how this works in detail.

3.2. General monodromy reductions: eliminating problematic k-tuples

The complete generalization of the monodromy relations (3.12) can be written in the following
4.
way":

4 A derivation of the relation can be found in [39].



N.E.J. Bjerrum-Bohr et al. / Nuclear Physics B 913 (2016) 964-986 975

0= 3 PT(l,al,...,Gn_z,n)(sl...k—i— 3 s(,,.(,j). (3.18)
oe({2,....kJWk+1,....n—1}) {i,j}oi>o;

Here, {2, ..., k}w{k+1,...,n — 1} denotes the set of all ‘shuffles’ of the sets {2,...,k} and

{k+1,...,n — 1}—that is, all permutations that preserve the relative ordering of the sets. It may

be useful to give a concrete example. When n = 6 and k = 3, (3.18) becomes the BCJ-like
identity:
0= PT(1,2,3,4,5,6)5123+PT(1,2,4,3,5,6) (5123 +534)
+PT(1,2,4,5,3,6)(s123+5345)) + PT(1,4,2,3,5,6) (5123 +5(23)4) (3.19)
+PT(1,4,2,5,3,6)(s123+5023)4+535)+ PT(1,4,5,2,3,0)(s123+5(23)45))-
Because we are always interested in using these identities to eliminate one of the terms (that
involving the identity element of the shuffle), it is natural to rewrite (3.18) slightly as follows:
0=s51..xPT(1,2,...,n)
+ > PTU o1, oo m(siat Y sooy)s  (320)
o €({2,. kY fk+1,...,n—1)) {i,j}loi>0;
where here, L1 is defined to be the set of shuffles excluding the identity. This leads to the new set
of monodromy relations, naturally generalizing those defined in (3.14):
_ —1
T PT(,...,n)s1..k
X Z PT(1,01,...,anfz,n)<slmk—|— Z sgl.gj)zl.

oe({2,.... Y O{k+1,....n—1)) {i,j}o>0;

(3.21)

As before, it is easy to see that application of Id, will eliminate any problematic k-tuple t. To
illustrate the use of these generalized monodromy relations, consider the evaluation of a contri-
bution to the 6-point amplitude with a single problematic 3-tuple {1, 2, 3}: through multiplication
by Id{y2,3) we find,

2 3 2 3 2 '3
1 4 _ S1231s34y 4+S1z3+S3(45)1 4
5123 $123 ?
5 5 5
2 3
b
4 12334 ?4
5123 3.22
; (3.22)
2 .3 2 3
S123+824+5 S123+8
81234524 +53045) ¢ 4 123+523)45) | 4
$123 5123
5 5
. _L <5123+S34+5123+S3(45) +8123+S(23)4+S123+S(23)(45)>
5253\ S12556 512545 523556 523845 .
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(Notice that the fourth term in the expansion above vanishes upon integration.) Similar reduc-
tion procedures exist for every integrand that we have checked—generating all terms necessary
for amplitudes through 8 particles. For the sake of reference, we provide a complete analytic
representation of the 6-particle amplitude in Appendix A.2.

4. Conclusions

In this paper, we have proposed a systematic algorithm to eliminate problematic k-tuples by
integrand-level monodromy relations, which hold only at the support of scattering equations.
Combining proper rewriting of diagonal entries of the C-matrix, we are able to write CHY inte-
grand to a manifestly modular-invariant form and then using the integration rule given in [15-17]
to obtain an analytic CHY representation of Yang—Mills amplitudes. It is obvious that our method
can be used in any theory, including gravity theories.

One interesting aspect of this representation of Yang—Mills amplitudes is the following. Upon
expanding the Pfaffian we get the sum of CHY integrands dressed with proper kinematic fac-
tors s;;. Although potentially some CHY integrands could produce higher order poles 1 /sf‘,
the dressed kinematic factors conspire to reduce them to simple poles, as expected on physical
grounds This is similar to the phenomenon observed in the KLT relations A; SAg, where the
momentum kernel S removes precisely removes double pole properly. Indeed, the momentum
kernel [40] is directly related to the generator of BCJ-type identities [41]. It could be useful to
understand the detailed mechanism in terms of CHY integrands further.

Another intriguing direction is following. With our algorithm, it is straightforward to write
down analytic expression for essentially any given CHY integrand. Thus, it maybe possible to
consider a more general investigation of the mapping between the CHY formalism and general
quantum field theories. Turning trees into loops, one can now also very explicitly consider loop
amplitudes in this framework.
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Appendix A. Explicit representations of Yang—Mills amplitudes
A.l. Analytic CHY representation of the five-particle amplitude

Directly expanding (the manifestly-Mobius invariant form of) the CHY representation of the
five-particle amplitude in Yang—Mills gives a total of 26 distinct integrands. Applying the rules
described in this note and collecting terms into cyclic classes gives the following analytic repre-
sentation for the amplitude,

As = €10€34 + ap €10€35 + a3 €13€04 + B1 €12 + Ba €13 + distinct cyclic, (A.1)

where the coefficients are as follows:
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€ks254(15) + €ks4523 — €ks3504 n €ks4523 — €ks3504 + €ks2545

a) =
515534 512534
N €ks4523 n €ksq n €ks, (24 n Gki (A-2)
512545 545 s1s 512
= €ky,25)5245) — €kaas13 €kq3s2s 7 (A3)
512545 512534
o3 = Gki — Gki , (A4)
515 545
_ Ek32[€k41€k54 — €k456k51] + 6k31[€k456k52 - 6k426k54]
A= $12545
ekzp[€karekss — ekaseks: | N [€kzzekas — ekzsekar |eks
§235845 §15834 (A.5)
€kys [€k326k51 — €k316k52] + 6k34[6k416k52 — Ek42€k51]
512534
_ €k3reksiekq,as)
515523 ’
By = €k [ekasekss — ekazekss] n ekos[ekaseks) — ekaiekss]
2= 512545 §23545 (A.6)
n €kazeksieky, (15) n €kgzeksieka,15)  €kaiekazeks, 34y .
515523 515534 512534

We have verified this expression matches known results (e.g. [26], and BCFW [25]). Explicit,
machine-readable expressions can be found in the MATHEMATICA notebook amplitude_
cyclic_seeds.nb included as part of this work’s submission files to the arXiv.

A.2. Analytic CHY representation of the six-particle amplitude

Directly expanding (the manifestly-Mobius invariant form of) the CHY representation of the
six-particle amplitude in Yang-Mills gives a total of 237 distinct integrands. Applying the rules
described in this note and collecting terms into cyclic classes gives the following analytic repre-
sentation for the amplitude,

A6 = a1 €12€34€56 + 02 €12€35€46 + 003 €12€36€45 + 04 €13€25€46
+ Bi€12€3s + Pr€ra€rs + B3 €13€24 + Pa€12€3a + Ps €12€as5 + Po €12€46 (A7)
+ B7€13€46 + Py €13€46 + Po €12€36 + Y1 €12 + V2 €13 + 3 €14 + distinct cyclic,
where the coefficients are as follows’:

1 1 $2(35 $2(35 §5(24 $5(24 §25 $45
o= —— o — oDy 26D 08 508 +
§123 S16 §126512 $126516 $156516 5156556 $12556 $123556

523 + $238545 — §4(23)525 — 524535 + $23845 — §4(23)825 — 524535 + 523845
$123812 5156516534 5156534556 $123512856

5 Here we have introduced a notation €k (j...ky=2€;-(kj+...+k). Explicit expressions can be found in the MATHE-
MATICA notebook amplitude_cyclic_seeds.nb included as part of this work’s submission files to the arXiv.
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54(56)525 — 524535 1 523545 | $2(35)545 — 524835 | $2(35)545 — 524535
+ =0 + =2 + =) : (A8)
512534556 5126512534 5126516534
11T sae 523 526 (A.9)
S126  S123 16 5126516 S123512  S126512
1 534 52(16)  S216)534 | S234) | S4(13) | S4(13)
5126 S56  S126545  S126512 5126512545 S12856  S123545  S123556
| S403)523 7513524 | $4013)523 — 513524
$123512545 5123512556 (A.10)
1
—, (A.11)
5123

€kqreker — €kqpeke,(13)  €kaneke1 — ekqr€ker  €kapekor  €kyseke, (13)

$12556

n €kqzeke,(13) — €ka,(13)€ke, (25)
5123556

n €kyzeke15234)  €kazekel

5126512
€kazeke152(34)
5126516534 5156516534
€kqzeker  €kszeker  €kyzeke
- - —~

5126516 5123545
€kyzeke15234)  €kysekel

516545

5156534556 5156556 534556

N ekaz[€ke, (25)52(56) — €ke25134) ]

5126534 5156516
N eka3[€ke, (25)526 — €ke251(34) — k1525 |
5126512534
L €kas|ekeas13 — €ke1523 + €ke3526] n ekas[ekers13 — €ke,(13)523]
5126512545 5123512545
[ekazeke,(13) — €keaeka, (13)]|s312) + €kes[€karsiz — ek, (13)523]

s

(A.12)

5128534556

_ €kyseke1s3

5126516545 5123512556

[€kzp — €ks]ekes 4 [€kzr — €kzs]ekes  ekzpekessaa
5156516 5156556 5156516523
n €k3zekessas)  €kareke,(15)  €ksackerssia)  €ksacken
5156523556 516523 5126516534 5126516
_ €k3qekessazay  €ksaekessaza)  €ksaeke, 34)
5156516534 5156534556 516534

(A.13)

€ksqeke,45)  €ksa€kel N €kseeke1 — €ksy€kes

5123545 516545 5156556

(A.14)

$123556 5156516

[eksaeker — eksieken](s56 + s126)
5126512556

n eke1€ks, (24) — €ks1€ke, (24)
5156556

7[[61626/%1 — eksi€ker 514 + [€ksacker — eksiekes]s23
5156534556
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+ [eksi€kes — ekszeken |s24 + [€ksaekor — €ksieken |sas
eksrek eksaek €ksqekers
sacker | eksacker | eksackerss

+ [eks2eker — 6k51€k62]846] +

5126516 516545 5126516545
n €ksyekes n [eksaekes — €ksaeken |s13 + [€ksacke, (13) — €keacks,(13) ]s23
5126545 $123512556

— [[€k536k62 — eksaekes |s14 + [€ksacke) + eksaekes |53
512534556

— ke[ €ks3saaa) — €ksasi3 + €ksis23] + [€eksaeker — eksi€ker s
+ [6k546k63 — €ks3eke + 6k516k63]sz4 + [6k526k61 — 6k516k62]S45
€ksq(eke,(13)523 — €ke2513) n €ksqekes — ekszekey

- €k546k62S13] +
§123512545 5126534

+ _ [6k61 [€ksas23 + €ksasas| — eksaekezsa(ie) — €kszekeas(ss)
5126512534

eksqeke, (13)
5123545

n €ksqekgs — ekszekey n eksa[€eke1523 — €ke3saie) — €keasiz]

— eks3eke, (14)524 — €ken[€ksasi3 — €ks3sia + 6k51S45]] +

534556 5126512545
eke1[€ksasa3) — €ksasaz + eks3so4] N eksaeke (13) — €keacks (13

5156516534 5123556
+€k61[€k54523 — eks3524 + €ks2545] n eke1€ks, (24
5126516534 5156516

(A.15)

2ekzyeker 4 €kzneke (14) _ €kzjeker + €kzreke, (23) n [6k34 — 6k32]€k65

Bs =
5126516 5123512 5156516
4 [€k3s — €ksr]ekes  €ksa[ekessas) — €keass23) + €ke,(23)856]
5156556 5123523545

B ek3o[€kessa23) + €ke,23)55(16) — €k6455(23) | _ ekxoekessas)

516523545 5123523556
€k3oekessas)  €kanekessas)  €ksnekes  €ksaeke,(23)
5156516523 5156523556 512556 5123523

€k [€ke255(12) — €kes52(34) + €k, (34)525] n €ksaekess2(34) n €ksaekes
5126512534 5156534556 5123556
v ekza[ekessaaa) + €kea(ss(16) + 55(34)) — €k, (34)525 ] N ek3aekessaa)

5126516534 5156516534

—_— [6k34€k6255(12) — ek3sekensaie) — (€k3oekes + €kgaeks (12))55(16)
5126512545

+ 2ek3sekerss36) — €kzsekeasos + ekzseke3soq — ekziekensas

— ek3aeke3s2s — €keacks (45525 — €kzoeke, (23)525 + €k3r€keasss

€kssekey ~ €ksgekes — ekasekes
+ €kes(€k3asr3 + €k3 (45)524 — 6k32S34)] + +
5126545 $123545
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n ekzsekes — ekssekes  €kos[€k3asia — €kzasaz + €k3 (12)524]
516545 $123512556

—_— [€k356k63524 — ek3sekeasazsy — €kzoeke (23)55(12) — €k3s€keasa3
5126516545

— ek3aeke, (34)525 — €kasekenssa + ekes(€k3asaz + €k3 (a5)524 — €k32534)

— ekssekenszs + ekzrekeasss — ekgr[€ks, 45)S5(24) + €k3assas) | + €ksackensse

ekea[€ks,(15) — 2€kayq]| — €ksaeks 14y €knreke, (23)
5126512 C s1e%3

- €k32€k6,(23)556] -

—_— [€k64[€k3,(12)525 — ek3s523 + €k3s35| — €k3iekensse
5123512545

€k3q€kess2(34)

— ek3aeke, (23)556 — €kes[€k3os3a — €k3asaz + 6k3,(12)sz4]] +
512534556

(A.16)

€k3i€ksy — ekzpeksy n €k3ieksy — ekspeks)  ekspeks)  ekzreksasie

Be

$123512 512534 $123523  $123523845
_Ckackss | ehnacksosise | chsacksosise | ekaacksesise) | €kzackss
523845 §123523556 5156523556 5156534556 $156523
n €karekse . €k3seks (26) — €k3 (26)€ks, (34) n €kgeksy  €ksgekss

5156534 5126534 512534 5123545
_ €ksqeks, 26) n ekse[€k3as1(56) — €kz152(56) + €k3,(56)523 ]
5126545 5123512556
N eksa[€k31s26 — €k3os16 — €k36523] N eksa[€k3es2(16) — €k3as16 + €k31526]

5123512545 5126512545
N 6k56[6k32S1(56) + €k3,(56)52(34) — €k31S2(56)] n €kseeks, (56 n ekseeks, (56)

512534556 5123556 534556
+ eks,34)[€k3e52(16) — €k32516 + €k31526 | — €kas[ekses2(16) — €ksasie + €ksisa6]
5126512534

’

(A.17)

€kazeks,(15)  €kazeke1sa3a)  €kazeke1sa3a)  €kazeker

534556 5156516534 5156534556 5156516
_ €kyzeker n €kysekel  €kyseke,4s)  €keseka,(se)

Br=

(A.18)
5156556 §16545 8123545 8123556

By = €kyrekss  €kareksqszus)  €kareksqszus)  €kareksy n €ko1€kses3a
5T Tsasn $123512545 5126512545 5126512 5123512556
€kpzekss  €kazeks, (16)54(23) n €kyzeks (16)  €kazeks 16) n ekozeks (16)
5156556 5156516523 5123523 5156516 516523
n €kasekss  €ksaeka, (16)5345) n €ksacka,16)  €ksa€ka, 16) n eksqeko (16)
5123556 5126516545 5123545 5126516 516545
n €ka1€kse n €kazeksssie n €kyzeksy  €kpzeksesa3)  €kazeksesa(as)

(A.19)
§$12556 §123523545 §23545 §123523556 §156523556
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€kyzeksy — ekgpekss  ekgpeks) + ekaieksy  ekazeksesase)

5126545 512545 512534556
N [ekazeksy — ekarekss|sie + [€ksaeka, (16) — €kazeks,(16) ] 526
5126512545

n €kyzeksy n eka3[eksasic — €ks,16)526] n ekse[€ka, (13)52(13) — €kas13]

5126534 5126512534 5123512556

4 [ekseeka,(13) — €kaseks, (13)|s213) + [€kaseksz — ekazekse 513
5123512545

) (A.20)

—_— [[6k32€k41 — ek31€kar | [ekseekes — €ksackes |
5123512556

+ [€k32[6k51€k65 — 6k56€k61] + €k31 [€k56€k62 - €k52€k65]i|6k4’(56)i|

—_— [6k316k41€ks46k62 — €k3pekapeksqeke) — ekspekazeksaeker
$123512545

— 6k326k45€k54€k61 — €k32€k456k56€k61 + €k31€k436k54€k62
+ek3iekaseksaeker + €k3iekasekseeker + ekzpekaseksiekey

— ek31€kaseksyekes + ekzpekareksaeke (23) — €kziekareksacke (13)

+ 6k45 [6k326k51 — 6k316k52]6k65] + [6/(32 [€k416k546k67(23)

$123523545
— €kgreksqeke) — €kazeksacke) — €kaseksaeke) — ekasekseekel

ek3a[ekseekel — eksiekes |eka, 23)
$156523556
n €kzoekei [6](456/(5,(23) — 6k546k4,(23)] " [€k32€k43 - €k34€k42]€k616k5,(16)

+ ekyseksiekes + €k45€k516k65]] +

$16523545 5156516534

ek3 [€k56 [eko1€ka, (23) + €kareke, (14)] — €kes[eksi€ka, 23) + 6k41€k5,(14)]]
+

$123523556
[€ksaekar — €kzrekas][€kseekel — €ksiekes ] N ekzrekei€ks, (23)€ks (16)
5156534556 5156516523

1
+— |:Ek34 [€k42 [6k41 [€k566k62 — Ek52€k65] — €k56€k61 + €k51€k65]:|
$12534556

+ €ky3 [€k32[€k56€k61 — €k51€k(,5] + €k3q [ — €kseekenr + €k52€k65]]i|

—_— [[6k356k43 — ekagekys |[eksaeke) — eksieker ]
5126512534

+ [6k43 [ek3ieker — ekzrekel | + ekza[ekareker — ek416k62]]6k5,(34)

+— |:[Ek456k53 - Ek43€k54] [€k32€k61 — €k31€k62]
$126512545

+ [€k54[6k426k61 — 6k41€k62] + €k45 [€k51€k62 — €k52€k61]]6k3’(45)
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€k [Eksz [ekasekss — ekazeksa] + [ekanekss — €k45€k52]6k3,(45)]

+
5126516545
eke1 [[6k356k43 — ekasekys |eksy + [€ksaekar — 6k326k43]6k5,(34)]
n , (A21)
5126516534

€kay [6k43 [eksackes — ekseekoa] + [ekseekes — €k53€k65]6k4,(56)]

»2
§123512556

€k | [ekasekss — ekaseksa]ekes + [€kazekss — ekasekss |eke, 43

+

$123512545

ekas| ekai [eksaekes — ekseekea] + [eksoekol — eksi€kes | €ka, s6)
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$123523556

€ky3 | [ekasekss — ekaseksa]eker + [€kareksa — ekaseksi ek, 43
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5123523545
_ Ekasekei€ka, a6 €ks,ca) eka1€kas[€ekeseks, (34) — eksecke, (34)]
5126516534 512534556
B ekazekegreka, 34)€ks, (16) I €koy [€k45€k53 - Ek43€k54]€k6,(12)
5156516534 5126512545
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€kp1€kazeks (3a)€ke, (12) n ekyzeke [ekaseks, (16) — €ksacka (16)]
5126512534 516523545
ekyz[eksiekes — ekseekel |eka, (34) n [ekasekss — ekazekss]ekeieka,16)
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§$156534556 §126516545

[eksackes — ekseekea |ekai€ks (12) n [ekai€k3r — ekozeksy |eksaeks (as)

V3
$123812856 §123823845

4 [ekozeksi — ekpieksa|[ekseekes — €ksackes ] n eksacke€ka, (34)€ks (16)
5123523556 5156516534
n €ksqckei€ka, (16)€ks,(34) n ek €kzqeks (34 €ke,(12) n eko€ksqeks (12)€ke, (45)
5126516534 5126512534 5123512545
n eky1ekaa[ekseeke, (34) — €keseks, (34)] n €koyeksacks as)€ke, (12)

512534556 5126512545
4 [€kozekzs — ekoaeksr|[ekseekel — €ksiekes ] n eksacke1€kn, (16)€k3, (45)
5156523556 5126516545
n [€kasekzs — ekaaeksr|ekor€ks (16) n [eksseker — €ksi€kes |ekzack, 3a)

5156516523 5156534556
n ekssekel [ekazeks (16) — €kzaeka (16)]
516523545

. (A.23)
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Appendix B. Elaboration of the monodromy relation

In this section, we provide some further details on the identity (3.12). After some simplifica-
tion this identity becomes

@-2) (2k = 2441)
Oz(szl 21 — 23 + (ZS2’> 2k — Zhk+1 ) B.1)

(@1 —2)(2—23) = ] (zk — 22) (22 — Zk+1)

Collecting coefficients of each sy; (e.g. s21) we arrive at

(z1 — 23) @ —ze) (21 — 2n)
1 — 23 n Z k — Zk+1 _ 1 —2Zn ’ (B.2)
@ —2)(@-23) o @-2) @ -u) (@ —22)(@2 =)
where we have used the following identity
Z (zk — Zi41) _ (2a — zn) . (B.3)

(zk —22) (@2 — zk+1)  (za — 22)(22 — 2n)

Similarly, the coefficient of 525, j =3,...,(n — 1) is % Inserting the identity (B.1)

we then have

(Z] Zn)
0 =151 E 82 (B.4)
(z1 —zz)(zz _Zn) !z —zz)(zz —zn)
To prove (B.4) we use the scattering equation — 2121) e =3 —(Zz — as the follows®

252] < _Zn) + (Z]'_Zn) ) . (21— zn)

(zj — zz)(zz —zn)  (22—2zj)(22 — 2Za) (z2 — zn)(z2 — Zn)

:i (@1 —22)+ (22 —2)) (21 —zn)
Y - 2j)(z2 — zn) (22— zn) (22 — 2n)
— n—1
(11 —22) 52 (z1 — zn) _
(zz—z 2; (ZZ_Zn); (z2—2z)) e v

The more general monodromy relation (3.18) can also be proved in a similar fashion highlighting
the deep intimacy between the monodromy relations and the scattering equations.

We also note that in a systematic approach for the problematic k-tuples, we insert identities
(3.21) for each k-tuple when there are multiple ones. However, to avoid reproduce problematic
k-tuples, we need to make these identities compatible. For example, in the integrand

1
(z1 —22)%(z3 — 24)3(z5 — 26)% (22 — 23)(za — 25) (26 — 21)

(B.5)

6 In fact, (B.4) can be written as an identity of cross ratio 0 = sp1 + > "' _ 257 (&j—en)a1 —22) Such an identity and its
j= 3 J(zj—z2)(z1—zn) "

generalizations will be systematically studied in the forthcoming ref. [42].
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there are three problematic 2-tuples {1, 2}, {3, 4} and {5, 6}, thus we need to use three identities

of the type 3.12. As an example a proper combination of three identities is given by
PT(1,2,3,4,5,6)

S S S. S S S
_ (( 203) | $2056) 4(23)) 566) | S2(56) 4(16)) PT(1.3.2.5.4.6)

512834 556 512534
(S2(13) S2(56)S4(23)) S5(13) S26S4(16)) PT(1.3.5.2.4.6)
S12 512534 556 12534 R

$2(56)514 $5(26) 526514

)PT(1,3,5,2,6, 4)
$12834 856 $12834

-
(
<52<56)S41 545
-(%
(S

+

)PT(1,3,2, 6,4,5)
§12834 S56

S213) | $2(56)5423)
512534
52(56)514 55(14)
512534 856

) PT(1,5,3,2,4,6)
856

+

)PT(153264)

_ (M) PT(1,3,5,4,2,6).
$12534

It is seen that all problematic 2-tuples are removed. The result for the integration B.5 is Zz?:l T;
where

S2(13)  52(56)54(23) \ $5(46) . $2(56)54(16 1 1
T1_<<<>+<)(>><)+<><>>X< 4 >
12 $12534 856 §$12834 812534556 $125123856

K} K K K 59265, 1
T — << 203) | 52(56) 4(23)) 5(13) 826 4(]6)) y ( ) ’
S12 512834 556 512834 $12534556

52(56)514 S5(26) . 526514 1 1
R Y A N
512834 856 S12S34 512534556 $345134556
52(56)514 S45 1
$12834  S56 $12834556 5125123556
Ts — <Sz(13) 52(56)54(23)> < 1 1 )
512 512534 512534556 5345156556
<S2(56)S14 S5(14)> ( >
Te =
512834 556 $12534556
1

$2654(35
512534 512534556 5125126534
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