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The study of the nuclear equation of state
is an important area of research in intermedi-
ate energy heavy ion reactions [1, 2]. Isoscal-
ing [3–5] and isobaric yield ratio [4–6] are two
well known methods which are used to study
the nuclear equation of state and to extract
symmetry energy coefficient at finite tempera-
ture from multifragmentation reactions. This
paper focuses on theoretical study of isoscal-
ing and isobaric yield ratio in nuclear multi-
fragmentation reactions around the projectile
beam energy available from VECC K=500 su-
perconducting cyclotron.
The ratio of yields (R21) from two nu-

clear reactions 1 and 2 having different isospin
asymmetry (2 is more neutron rich than 1)
exhibits an exponential relationship [3] as a
function of neutron(N) and proton(Z) number
i.e.

R21 =
Y2(N,Z)

Y1(N,Z)
= C exp(αN + βZ) (1)

where α and β are isoscaling parameters and
C is a normalization constant.The isobaric ra-
tio of yields [6] of two different types of frag-
ments having same mass number A but dif-
ferent isospin asymmetry I = N − Z and
I

′

= N
′

− Z
′

originating from a nuclear re-
action is given by,

R[I
′

, I, A] =
Y (I, A)

Y (I ′

, A)
(2)

The quantity R[I
′

, I, A] shows linear behavior
with A2/3 for I=1 and I ′=-1 [5].
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For studying isoscaling and isobaric yield
ratio, 14N+58Ni and 14N+64Ni reactions at
projectile beam energy 18 MeV/nucleon are
simulated in the framework of isospin de-
pendent hybrid model [7] of nuclear mul-
tifragmentation reactions. This model cal-
culation consists of three different stages:
(i) initial stage of the reaction is stud-
ied by Boltzmann-Uehling-Uhlenbeck equa-
tion based isospin dependent transport model
(BUU@VECC-McGill) [8]. Excitation and
isospin asymmetry of the compound nuclear
system formed after the dynamical stage are
determined by considering 90% of the total
mass (remaining part is considered as pre-
equilibrium emission). (ii) The Canonical
Thermodynamical Model (CTM) [9] is used
to study the fragmentation of the compound
nuclear system corresponding to the excita-
tion (E∗) and isospin asymmetry obtained at
stage-i. (iii) Finally the secondary decay of ex-
cited fragments produced in stage-ii is studied
by the evaporation model based on Weisskopf
formalism [10].

Fig. 1 shows the isoscaling behavior
obtained from the hybrid model calculation
for 14N+58Ni and 14N+64Ni reactions at 18
MeV/nucleon. The left panel shows the ra-
tios as function of neutron number N for fixed
Z values, while the right panel displays the
ratios as function of proton number Z for
fixed neutron numbers (N). The dashed lines
are drawn through the best fits of the calcu-
lated ratios. The lines in the plot approxi-
mately parallel to each other as it should be
if the law of isoscaling described in Eq. 1 is
obeyed. One vital assumption in Eq. 1 is that
freeze-out temperature (T ) of both the reac-
tions are same. The concept of temperature
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FIG. 1: Isotopic ratios(R21) of multiplicities
of fragments (N,Z) where reaction 1 and 2
are 14N+58Ni and 14N+64Ni respectively at 18
MeV/nucleon.

is quite familiar in heavy ion physics and it
is usually calculated from double isotope ratio
method or kinetic energy spectra of emitted
particles [1]. But in both cases, sequential
decay, Fermi motion, pre-equilibrium emis-
sion etc complicate the scenario of tempera-
ture measurement and the response of differ-
ent thermometers is sometimes contradictory.
The advantage of the present hybrid model
calculation is that one can estimate the tem-
perature of the intermediate energy heavy ion
reactions directly from here which bypasses all
such problems. It is directly obtained from
this hybrid model calculation that, tempera-
ture for the 14N+58Ni reaction is 3.21 MeV
while that for the 14N+64Ni reaction is 3.26
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FIG. 2: Variation of isobaric yield ratio
lnR[1,−1, A] with A2/3 for 14N+58Ni (left panel)
and 14N+64Ni (right panel) reactions at 18
MeV/nucleon. Lines are drawn to guide the eyes.

MeV i.e. they are extremely close and this

confirms strongly the assumption made for ap-
plying isoscaling equation.
Fig. 2 indicates the variation of isobaric

yield ratio parameter lnR[1,−1, A] with A2/3

for 14N+58Ni (left panel) and 14N+64Ni (right
panel) reactions at 18 MeV/nucleon. With
the increase of isospin asymmetry, the effect
of particle fluctuation as well as secondary
decay is more, hence slight deviation of the
calculated ratios from linear behavior is visi-
ble for 14N+64Ni reaction compared to that of
14N+58Ni reaction.
Hence, from this isospin dependent hybrid

model calculation it can be concluded that
light fragments originated from nuclear multi-
fragmentation experiments around the projec-
tile beam energy available from VECC K=500
cyclotron will also show linear behavior for
determining isoscaling and isobaric yield ra-
tio parameters. Most important significance
of using this newly developed hybrid model is
direct estimation of temperature of the reac-
tions which confirms the important assump-
tion of isoscaling equation, that is, tempera-
ture of both the reactions are very close.
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