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Abstract
Wavelet transforms are widely used in various fields of science and engineering as a mathematical
tool with features that reveal information ignored by the Fourier transform. Unlike the Fourier
transform, which is unique, a wavelet transform is specified by a sequence of numbers associated
with the type of wavelet used and an order parameter specifying the length of the sequence. While
the quantum Fourier transform, a quantum analog of the classical Fourier transform, has been
pivotal in quantum computing, prior works on quantum wavelet transforms (QWTs) were limited
to the second and fourth order of a particular wavelet, the Daubechies wavelet. Here we develop a
simple yet efficient quantum algorithm for executing any wavelet transform on a quantum
computer. Our approach is to decompose the kernel matrix of a wavelet transform as a linear
combination of unitaries (LCU) that are compilable by easy-to-implement modular quantum
arithmetic operations and use the LCU technique to construct a probabilistic procedure to
implement a QWT with a known success probability. We then use properties of wavelets to make
this approach deterministic by a few executions of the amplitude amplification strategy. We extend
our approach to a multilevel wavelet transform and a generalized version, the packet wavelet
transform, establishing computational complexities in terms of three parameters: the wavelet
orderM, the dimension N of the transformation matrix, and the transformation level d. We show
the cost is logarithmic in N, linear in d and superlinear inM. Moreover, we show the cost is
independent ofM for practical applications. Our proposed QWTs could be used in quantum
computing algorithms in a similar manner to their well-established counterpart, the quantum
Fourier transform.

1. Introduction

As a solid alternative to the Fourier transform, wavelet transforms are a relatively new mathematical tool
with diverse utility that has generated much interest in various fields of science and engineering over the past
four decades. Although wavelet-like functions have existed for over a century, a prominent example is what is
now known as the Haar wavelet. The interest is due to the attractive features of wavelets [1–4]. Such
functions are differentiable, up to a particular order, and are local in both the real and dual spaces. They
provide an exact representation for polynomials up to a certain order, and a simple yet optimal
preconditioner for a large class of differential operators. Crucially, wavelets provide structured and sparse
representations for vectors, functions, or operators, enabling data compression and constructing faster
algorithms. These appealing features of wavelets and their associated transforms make them advantageous
for numerous applications in classical computing over their established counterpart, the Fourier transform.
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With the wavelet transforms’ diverse utility and extensive use in classical computing, a natural
expectation is that a quantum analog of such transforms will find applications in quantum computing,
especially for developing faster quantum algorithms and quantum data compression. Wavelets have already
been used in quantum physics and computation [5–12]. However, prior works on developing a quantum
analog for wavelet transforms are limited to a few representative cases [13–17]. In contrast, the quantum
Fourier transform, a quantum analog of the classical Fourier transform, has been extensively used in
quantum computing as a critical subroutine for many quantum algorithms.

Unlike the Fourier transform, a wavelet transform is not unique and is specified by the type of wavelet
used and an order parameter. In particular, a wavelet transform is defined by a sequence of numbers, known
as the filter coefficients, associated with the type of wavelet used and an even number known as the order of
the wavelet that specifies the length of the sequence. Given the sequence, a unitary matrix known as the
kernel matrix of the wavelet transform is constructed, the application of which on a vector yields the
single-level wavelet transform of the vector. Such a transform partitions the vector into two components: a
low-frequency or average component and high-frequency or difference component (see figure 1). To expose
the multi-scale structure of the vector, or a function for that matter, the wavelet transform is recursively
applied to the low-frequency component, yielding the multi-level wavelet transform of the vector. The
wavelet packet transform is a generalization of the multi-level wavelet transform, in which the wavelet
transform is recursively applied to both the low- and high-frequency components. We refer to a quantum
analog of the (single-) multi-level and packet wavelet transforms as the (single-) multi-level and packet
quantum wavelet transforms (QWTs), respectively.

This paper proposes and analyzes a conceptually simple and computationally efficient quantum
algorithm for executing single-level, multi-level, and packet QWTs associated with any wavelet and any order
on a quantum computer. Our approach is based on decomposing a unitary associated with a wavelet
transform in terms of a linear combination of a finite number of simple-to-implement unitaries and using
the linear combination of unitaries (LCU) technique [18] to implement the original unitary. Specifically, we
decompose the kernel matrix of the wavelet transform, associated with a wavelet of orderM, as a linear
combination ofM simple-to-implement unitaries and, by the LCU technique, construct a probabilistic
procedure for implementing the single-level QWT. The success probability of this approach is a known
constant by properties of the wavelet filters. We use this known success probability to make the
implementation deterministic using a single ancilla qubit and a few rounds of amplitude amplification.

Having an implementation for the single-level QWT and recursive formulae describing the multi-level
and packet wavelet transforms based on single-level transforms, we construct quantum algorithms for
multi-level and packet QWTs. We establish the computational complexity of these transformations in terms
of three parameters: the wavelet orderM, the dimension of the wavelet-transform matrix N, and the level of
the wavelet transform d. Without loss of generality, we assume that our main parameter of interest N is a
power of two, as N= 2n, and report the computational costs with respect to n, the number of qubits that the
wavelet transforms act on.

We summarize our main results on computational costs of the described transformations in the
following three theorems. We establish these theorems in subsequent sections after providing a detailed
description of our algorithms.

Theorem 1 (Single-level QWTwith logarithmic gate cost). A single-level QWT on n qubits, associated with a
wavelet of order M, can be implemented using dlog2Me+ 1 ancilla qubits andO(n)+O(M3/2) TOFFOLI and
elementary one- and two-qubit gates.

Theorem 2 (Multi-level QWTwith multiplicative gate cost). A d-level QWT on n qubits can be achieved
using dlog2Me+ 2 ancilla qubits andO(dn)+O(dM3/2) TOFFOLI and elementary one- and two-qubit gates.

Theorem 3 (Packet QWT). A d-level packet QWT on n qubits can be achieved using dlog2Me+ 1 ancilla
qubits andO(dn− d2/2)+O(dM3/2) TOFFOLI and elementary one- and two-qubit gates.

We remark that the number of levels for the multi-level or packet QWTs is upper bounded by n, i.e.
d⩽ n. Hence, as a corollary of theorems 2 and 3 , the gate cost for these transformations is at most quadratic
in n= log2N. We show that the gate costs reported in the above theorems are independent ofM for practical
applications and only a few number of ancilla qubits suffice to implement the multi-level and packet QWTs.
We discuss allowable range for the order parameterM versus the values used in practical applications in the
discussion section.
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Figure 1. Visualization for (Left) multi-level wavelet transform, (Middle) the packet wavelet transform, and (Right) action of
quantum perfect shuffle transform in equation (32) on three-qubit basis states. Three-level wavelet transforms are shown for
simplicity. In the first level, the size-N vector ψ is partitioned into two size-N/2 vectors: an average vector a1 = Hψ and a
difference vector d1 = Gψ with H and G defined in equation (2). For the quantum (packet) wavelet transform, the components
of ψ are amplitudes of a quantum state. The wavelet transform is recursively applied to the average vector in the multi-level
wavelet transform. In contrast, the packet transform applies the wavelet transform to both the average and difference vectors.

The rest of this paper proceeds as follows. We begin by describing the notation we use throughout the
paper. Then we detail our approach for implementing a single-level QWT by simple modular arithmetic
operations in section 2. We describe the multi-level and packet QWT in section 3, followed by detailed
complexity analysis for our algorithms in section 4. Finally, we discuss our results and conclude in section 5.
Notation: We refer to A ∈ C2n×2n as n-qubit matrix and denote the n-qubit identity by 1n. Throughout

the paper, we use the symbolM for the wavelet order andm= dlog2Me. The wavelet order is an even positive
number asM= 2K with K a positive integer called the wavelet index; the symbol K is used forM/2. We use
zero indexing for iterable mathematical objects such as vectors and matrices. Qubits of an n-qubit register is
ordered from right to left, i.e. the rightmost (leftmost) qubit in |qn−1, . . . ,q1,q0〉 representing the state of an
n-qubit register that encodes the binary representation of an integer q is the first (last) qubit. The first and
last qubits are also referred to as the least-significant bit (LSB) and the most-significant bit (MSB). Qubits in
a quantum circuit are ordered from bottom to top: the bottom qubit is the LSB and the top qubit is the MSB.

2. Single-level QWT

This section describes our algorithm for executing a single-level wavelet transform on a quantum computer.
Such a transformation is specified by a kernel matrix. We describe this matrix in section 2.1 and decompose
it as a linear combination of a finite number of unitaries. The decomposition enables a
prepare-select-unprepare-style procedure for probabilistic implementation of the desired transformation
that we cover in section 2.2. In section 2.3, we describe how purposefully reducing the success probability
yields a perfect amplitude amplification. Finally, in sections 2.4 and 2.5, we provide a compilation for the
select and prepare operations based on simple-to-implement modular arithmetic operations.

2.1. The wavelet kernel matrix as a LCU
We begin this subsection by briefly describing the kernel matrix associated with a wavelet transform. We refer
to [4, chapter 2.1] for a review of wavelet formalism and how this matrix is constructed. The kernel matrixW
of a wavelet transform is specified by the wavelet filter coefficients: a sequence of numbers (h0,h1, . . . ,hM)
that depend on the type of wavelet and satisfy

M−1∑
ℓ=0

hℓ =
√
2,

M−1∑
ℓ=0

h2ℓ = 1, (1)

where the even numberM is the wavelet order. Specifically, the 2n × 2n kernel matrixW is comprised of
2n−1 × 2n matrices H and G as

W=

[
H
G

]
, Hij = hj−2i( mod 2n), Gij = gj−2i( mod 2n), gℓ = (−)

ℓ hM−1−ℓ; (2)

3
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an example of the kernel matrixW for a forth-order wavelet (M= 4) is as follows

W=



h0 h1 h2 h3 0 0 · · · 0 0 0 0
0 0 h0 h1 h2 h3 · · · 0 0 0 0
0 0 0 0 h0 h1 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · h0 h1 h2 h3
h2 h3 0 0 0 0 · · · 0 0 h0 h1
h3 −h2 h1 −h0 0 0 · · · 0 0 0 0
0 0 h3 −h2 h1 −h0 · · · 0 0 0 0
0 0 0 0 h3 −h2 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · h3 −h2 h1 −h0
h1 −h0 0 0 0 0 · · · 0 0 h3 −h2



,

U=



h0 h1 h2 h3 0 0 · · · 0 0 0 0
0 0 h0 h1 h2 h3 · · · 0 0 0 0
0 0 0 0 h0 h1 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · h0 h1 h2 h3
h2 h3 0 0 0 0 · · · 0 0 h0 h1
h1 −h0 0 0 · · · 0 0 0 0 h3 −h2
h3 −h2 h1 −h0 · · · 0 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 · · · h1 −h0 0 0 0 0
0 0 0 0 · · · h3 −h2 h1 −h0 0 0
0 0 0 0 · · · 0 0 h3 −h2 h1 −h0



(3)

The unitary matrix U here is a modification of the unitaryW that we use for decomposingW as a LCU. To
this end, let us first define the circular downshift and upshift permutation operations as

S↓n :=
2n−1∑
j=0

|j+ 1 mod 2n〉〈j|=


1

1
1

. . .

1

 , S↑n :=
2n−1∑
j=0

|j− 1 mod 2n〉〈j|=


1

1
. . .

1
1

 ,
(4)

where the matrix size is 2n × 2n. Note that these operations are inverse of each other and their action on
n-qubit basis state |j〉 is

S↓n |j〉= |j+ 1 mod 2n〉, S↑n |j〉= |j− 1 mod 2n〉. (5)

Upon acting on a vector with 2n components, S↓n/S
↑
n shifts the vector’s components one place

downward/upward with wraparound. Similarly, when acting on a matrix with 2n rows from the left side,
S↓n/S

↑
n shifts the rows of the matrix one place downward/upward with wraparound.
To construct an LCU decomposition for the n-qubit unitaryW, the kernel matrix associated with a

wavelet of orderM= 2K, first we transform it into another unitary U by K− 1 downshift permutations of
the rows in the lower half ofW. Specifically, we transformW as

W=

[
H
G

]
→ U=

[
H
G ′

]
, G ′ :=

(
S↓n−1

)K−1
G, (6)

where G′ is obtained by K− 1 downshift permutations of the rows of G and its elements are

G ′
i,j = (−1)2i+2−j h2i+2−j. (7)

Let us now represent K− 1 upnshift permutations on n qubits by USHIFTn with the action

USHIFTn|j〉 := |j+K− 1 mod 2n〉 (8)

4
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on n-qubit basis state |j〉. Then we have

W= (|0〉〈0| ⊗1n−1 + |1〉〈1| ⊗ USHIFTn−1)U := Λ1 (USHIFTn−1)U, (9)

i.e.W is obtained by K− 1 upshift permutations of the rows in the lower half of U.
We now decompose the unitary U as a linear combination ofM unitaries as

U=
M−1∑
ℓ=0

hℓUℓ, Uℓ :=

{
Pℓ ifℓ is odd,

(Z⊗1n−1)Pℓ ifℓ is even,
(10)

where Z is the Pauli-Z operator and the unitary

Pℓ :=

N/2−1∑
j=0

|j〉〈2j+ ℓ modN|+ |N/2+ j〉〈2j+ 1− ℓ modN| (11)

is a permutation matrix that is obtained from U as follows: all entries of U with value±hℓ are replaced with
1 and all other nonzero entries are replaced with 0. BecauseW is unitarily equivalent to U by equation (9),
the LCU decomposition in equation (10) provides a similar LCU decomposition forW.

2.2. Probabilistic implementation for the single-level QWT
The decomposition in equation (10) enables a prepare-select-unprepare-style method [18] for probabilistic
implementation of U. To this end, let

PREP|0m〉 := 1√
h

M−1∑
ℓ=0

√
|hℓ||ℓ〉, UNPREP

†|0m〉 := 1√
h

M−1∑
ℓ=0

sign(hℓ)
√

|hℓ||ℓ〉, h :=
M−1∑
ℓ=0

|hℓ| , (12)

wherem= dlog2Me is the number of ancilla qubits, and let SELECT be an operation such that

SELECT|ℓ〉|j〉 := |ℓ〉Uℓ|j〉 (13)

with Uℓ defined in equation (10). Then for any n-qubit state we have

(UNPREP⊗1n) SELECT (PREP⊗1n) |0m〉|ψ〉=
1

h
|0m〉U|ψ〉+

√
1− 1

h2
| ⊥〉, (14)

where | ⊥〉 is an (m+ n)-qubit state such that (〈0m| ⊗1n)| ⊥〉= 0. This equation follows as

|0m〉|ψ〉 PREP⊗1n−−−−−−−→ 1√
h

∑
ℓ

√
|hℓ||ℓ〉|ψ〉 (15)

SELECT−−−−−−−−→ 1√
h

∑
ℓ

√
|hℓ||ℓ〉Uℓ|ψ〉 (16)

UNPREP⊗1n−−−−−−−→ 1

h
|0m〉U|ψ〉+

√
1− 1

h2
| ⊥〉, (17)

where the last line follows by projecting the ancilla qubits to |0m〉 state, i.e.

(〈0m| ⊗1n)(UNPREP⊗1n)
1√
h

∑
ℓ

√
|hℓ||ℓ〉Uℓ|ψ〉=

1

h

∑
ℓ ′ℓ

sign(hℓ ′)
√

|hℓ ′hℓ|〈ℓ ′|ℓ〉Uℓ|ψ〉 (18)

=
1

h

∑
ℓ

hℓUℓ|ψ〉=
1

h
U|ψ〉. (19)

Equation (14) yields a probabilistic implementation for U. Because U andW are unitarily equivalent, by
equation (9), we also have a probabilistic implementation forW with the same success probability. In
particular, let us define a probabilistic QWT as

PQWT := (1m ⊗Λ1 (USHIFTn−1))(UNPREP⊗1n) SELECT (PREP⊗1n) , (20)

then we have

PQWT|0m〉|ψ〉= sin(α) |0m〉W|ψ〉+ cos(α) | ⊥ ′〉, sin(α) := 1/h, (21)

5
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Figure 2. (Left) The success amplitude of the probabilistic implementation in equation (21) for a single-level QWT for commonly
used wavelets. The success amplitude is known and is greater than 1/4 for a wide range of wavelet order; it is greater than 0.31 for
the range of wavelet order used in practical applications. For perfect amplitude amplification, the former (latter) value needs
three (two) rounds of amplitude amplification. (Right) The magnitude of wavelet coefficient |hℓ| as a function of the index ℓ for
the Debauchees wavelet with orderM= 28,30,32,34. The zoomed-in part shows the wavelet coefficients with higher indexes are
negligibly small, and the number of small coefficients increases by increasing the wavelet order. The magnitude of wavelet
coefficients for other wavelets has a similar pattern.

with the (m+ n)-qubit state | ⊥ ′〉 := 1m ⊗Λ1(USHIFTn−1)| ⊥〉 and the |1〉-controlled unitary Λ1(USHIFT)
defined in equation (9). The success amplitude of this approach is known and its value is 1/h. As shown in
figure 2(Left), the success amplitude is greater than 1/4 for a wide range of wavelet order.

We now present an alternative approach for a probabilistic implementation of the single-level QWT. The
state-preparation of this approach is simpler and could be preferred in practical applications. Instead of
preparing the state with square-root coefficients by PREP in equation (12), in this approach we use the
operation LINPREP defined as

LINPREP|0m〉 :=
M−1∑
ℓ=0

hℓ|ℓ〉, (22)

which prepares the state with linear coefficients. For any n-qubit state |ψ〉 we then have(
H⊗m ⊗1n

)
SELECT (LINPREP⊗1n) |0m〉|ψ〉= sin(α) |0m〉U|ψ〉+ cos(α) | ⊥〉, sin(α) := 1/

√
M, (23)

where | ⊥〉 and SELECT are as those in equation (14). This equation follows as

|0m〉|ψ〉 LINPREP⊗1n−−−−−−−→
∑
ℓ

hℓ|ℓ〉|ψ〉
SELECT−−−−−→

∑
ℓ

hℓ|ℓ〉Uℓ|ψ〉
H⊗m⊗1n−−−−−→ sin(α) |0m〉U|ψ〉+ cos(α) | ⊥〉, (24)

where the last step is obtained by projecting the ancilla qubits to |0m〉 state, i.e.

(〈0m| ⊗1n)
(
H⊗m ⊗1n

)∑
ℓ

hℓ|ℓ〉Uℓ|ψ〉=
1√
M

∑
ℓ ′ℓ

hℓ〈ℓ ′|ℓ〉Uℓ|ψ〉=
1√
M

∑
ℓ

hℓUℓ|ψ〉= sin(α)U|ψ〉.

(25)
The success amplitude of this approach is 1/

√
M. As shown in figure 2(Right), the magnitude of wavelet

coefficients hℓ with high index ℓ are negligibly small. Consequently, the success amplitude becomes
effectively independent ofM for practical applications.

2.3. Reduction of success amplitude for perfect amplitude amplification
The success amplitude of the described probabilistic approaches for implementing the single-level QWT is a
known constant value. For perfect amplitude amplification, we purposefully reduce the success amplitude
using one extra ancilla qubit. This end is achieved by applying a rotation gate on the extra qubit initialized in
|0〉. A few rounds of amplitude amplification then yields the success state with unit probability.

The success amplitude of the probabilistic implementation PQWT in equation (21) is sin α. This
amplitude is known and has a value greater than 1/4 as discussed in section 2.2. Let θ < α be the angle
defined in the equation below and let R(θ) be the rotation gate defined as R(θ)|0〉 := cosθ|0〉+ sinθ|1〉, then
by equation (21) and for any n-qubit state |ψ〉 we have

(R(θ)⊗ PQWT) |0〉|0m〉|ψ〉= sin(π/14) |0m+1〉W|ψ〉+ cos(π/14) | ⊥ ′ ′〉, cosθ := sin(π/14)/ sinα, (26)

6
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where | ⊥ ′ ′〉 is an (m+ n+ 1)-qubit state that satisfies (〈0m+1| ⊗1n)| ⊥ ′ ′〉= 0. The success amplitude is
now sin(π/14), enabling perfect amplitude amplification. Indeed, by only three rounds of amplitude
amplification,W is applied on |ψ〉 and allm+ 1 ancilla qubits end up in the all-zero state.

We remark that the success amplitude is grater than 0.31 for the range of wavelet order used in practical
applications; see figure 2(Left). In this case, we reduce the success amplitude to sin(π/10)< 0.31 by setting
cosθ = sin(π/10)/ sinα and achieve the perfect amplitude amplification by only two rounds of amplitude
amplification.

We use the oblivious amplitude amplification because the input state |ψ〉 is unknown. To this end, let
Rn = 2|0n〉〈0n| −1n be the n-qubit reflection operator with respect to the n-qubit zero state |0n〉 and let

A :=−(R(θ)⊗ PQWT)(Rm+1 ⊗1n)(R(θ)⊗ PQWT)
†
(Rm+1 ⊗1n) , (27)

be the amplitude amplification operator. Then the following holds [19, lemma 2.2]

At (R(θ)⊗ PQWT) |0〉|0m〉|ψ〉= sin((2t+ 1)π/14) |0m+1〉W|ψ〉+ cos((2t+ 1)π/14) | ⊥ ′ ′〉. (28)

Therefore, the unit success probability is achieved by three executions of amplitude amplification (t= 3).
The success amplitude of the second approach based on equation (23) is sinα= 1/

√
M. In this case, we

reduce the success amplitude to sin(π/2(2t+ 1)) by applying the rotation gate R(θ) on the extra qubit
initialized in |0〉 state, with t and θ defined as

t :=

⌈
1

2

( π

2α
− 1

)⌉
, cosθ :=

sin(π/2(2t+ 1))

sinα
=
√
M sin

(
π

2

1

2t+ 1

)
. (29)

Then we achieve the desired state with unit success probability by t rounds of amplitude amplification, i.e.W
is applied on |ψ〉 and allm+ 1 ancilla qubits end up in the all-zero state.

2.4. Implementing SELECT by modular quantum arithmetic
Here we describe our approach for implementing the SELECT operation by simple modular arithmetic
operations on a quantum computer. As per equation (13), SELECT applies Uℓ on the second register |j〉 based
on the value of ℓ encoded in the first register |ℓ〉. If ℓ is odd, then Uℓ = Pℓ by equation (10). Otherwise, Uℓ is
a product of Pℓ and a single Pauli-Z on the first qubit of the second register. That is to say that Uℓ and Pℓ are
equivalent up to a |0〉-controlled-Z operation; control qubit is the qubit representing the LSB of ℓ and target
qubit is the one representing the MSB of j. Implementing SELECT is therefore achieved by an implementation
for Pℓ.

The n-qubit permutation Pℓ in equation (11) transforms the n-qubit basis state |j〉 as

Pℓ : |j〉 7→

{
| j−ℓ modN

2 〉 if j and ℓ have same parity,

|N2 +
j+ℓ−1 modN

2 〉 if j and ℓ have opposite parity.
(30)

This transformation can be implemented by modular quantum addition ADD and subtraction SUB defined as

ADD|ℓ〉|j〉 := |ℓ〉|j+ ℓ modN〉, SUB|ℓ〉|j〉 := |ℓ〉|j− ℓ modN〉, (31)

and by the quantum perfect shuffle transformation defined as

SHUFFLE|qn−1 . . .q1q0〉 := |q0qn−1 . . .q1〉, (32)

which performs the transformation |q〉 7→ |q/2〉 if q is an even number and |q〉 7→ |N/2+(q− 1)/2〉 if q is
odd (see figure 1). For clarity, we remark that here and in the following |ℓ〉 is anm-qubit basis state with
m< n and |j〉 is an n-qubit basis state.

To implement Pℓ by these operations, we use a single ancilla qubit called parity qubit and define the
parity operation PAR as

PAR|0〉|ℓ〉|j〉 :=

{
|0〉|ℓ〉|j〉 if j and ℓ have same parity,

|1〉|ℓ〉|j〉 if j and ℓ have opposite parity,
(33)

which flips the parity qubit based on the parity of ℓ and j; parity of a number is 0 if its even and is 1
otherwise. This operation can be implemented using two CNOT gates, one controlled on the LSQ of the
register encoding ℓ and the other controlled on the LSQ of the register encoding j. The target qubit for each
CNOT is the parity qubit.

7
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Figure 3. Equivalent quantum circuits for executing a single-level QWT comprised of high-level operations. Three registers are
used: the parity register par (one qubit), the ancilla register anc (m qubits), and system register sys (n qubits). The state of sys
register is in a superposition of |j⟩ states for different values of j and the state of anc register, after applying PREP with action given
in equation (12), is in a superposition of |ℓ⟩ states for different values of ℓ. The gates inside the dotted-line box implement the
SELECT operation in equation (13) as follows. The |0⟩-controlled Z is applied as per equation (10). The first two CNOTs compute the
parity of j and ℓ by their LSB. Then controlled on the parity qubit, we apply SUB (parity zero) or ADD (parity one). The sequence of
SWAP gates implement the SHUFFLE operation in equation (32). The subsequent CNOT resets the parity qubit to |0⟩ because the state
of par is filliped to |1⟩ only if j and ℓ have opposite parity as per equation (33); otherwise it stays |0⟩. If par is |1⟩, the MSB of
sys register is in the state |1⟩ as the value encoded in sys is greater than N/2 by equation (30), so the last CNOT resets the parity
qubit. The CNOT has no action if par is |0⟩. This is because the value encoded in the system register is less than N/2 by
equation (30) when j and ℓ have same parity. Consequently, the MSB of sys is |0⟩, making the last CNOT inactive. The
controlled-USHIFT operation, with USHIFT given in equation (8), maps the implemented unitary by SELECT to the single-level
QWTW as in equation (9). The rotation gate R is used for amplitude amplificationA given in equation (27). The bottom circuit
follows from the top circuit. The amplitude amplificationA ′ is unitarily equivalent toA.

Having computed the parity by PAR, we then apply SUB to the last two registers if the parity qubit is |0〉 and
apply ADD to these registers if the parity is |1〉, followed by the shuffle operation in equation (32) on the last
register. By these operations, the state of the parity qubit, them-qubit register encoding ℓ, and the n-qubit
register encoding j transform as

PAR|0〉|ℓ〉|j〉 |0⟩⟨0|⊗SUB+|1⟩⟨1|⊗ADD−−−−−−−−−−−−−−−→ |0〉|ℓ〉|j− ℓ modN〉+ |1〉|ℓ〉|j+ ℓ modN〉 (34)
11⊗1m⊗SHUFFLE−−−−−−−−−−−−−−→ |0〉|ℓ〉|( j− ℓ modN)/2〉+ |1〉|ℓ〉|N/2+( j+ ℓ− 1 modN)/2〉, (35)

whereN= 2n. We finally erase the parity qubit to achieve an implementation for Pℓ. To this end, we note that
the parity qubit is |1〉 only if the value encoded in the last register is greater than N/2; see equation (30).
Hence a CNOT from the qubit representing the MSB of the value encoded in the system register to the parity
qubit would erase this qubit.

The quantum circuit in the dotted-line box in figure 3 gives an implementation for the SELECT operation
based on the described approach. The sequence of SWAP gates in this circuit gives a gate-level implementation
for SHUFFLE in equation (32)

2.5. A compilation for state-preparation operations
Here we provide procedures for implementing the LINPREP and PREP operations that prepare states with linear
and square-root coefficients, respectively. We begin with an implementation for LINPREP in equation (22)
using the rotation gate, defined as

R(θℓ) :=

[
cosθℓ sinθℓ
− sinθℓ cosθℓ

]
(36)

for some known angle θℓ, and the increment gate that preforms the map |ℓ〉 7→ |ℓ+ 1〉 for |ℓ〉 anm-qubit
basis state. Notice that the increment gate is indeed the downshift permutation S↓m defined in equation (4)
and its inverse is the upshift permutation S↑m.

8
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Figure 4. (a) Diagrammatic representation of the procedure producing the wavelet filters for a wavelet of orderM from a
particular initial vector by a set ofM/2 rotations;M= 6 is illustrated here. (b) Zero padding for cases thatM is not a power of
two. (c) Rotations can be applied in parallel. The right (left) arrow represents shifting elements of the vector one place to the
right (left). As the initial vector is a particular vector, the rotations represented by white boxes do not affect the vector.
(d) Quantum circuit for LINPREP using rotation gates, the increment gate denoted by+1 and its inverse denoted by−1. The gate
+1 (−1) is applied before (after) each rotation gate Rℓ with even ℓ, as in dotted boxes.

The LINPREP operation prepares a quantum state with amplitudes given by the wavelet filter
h= (h0, . . . ,hM−1)

⊤, a column vector ofM real numbers that satisfy equation (1). By the procedure given in
[20], the wavelet filter vector h of lengthM= 2K can be achieved by a sequence of K unitaries Uℓ as
h= UK−1 · · ·U1U0 eK, where eℓ is the ℓth column of theM-by-M identity matrix and the unitary Uℓ is
constructed from rotation gates R(θℓ) as illustrated in figure 4(a). As an example, forM= 6 we have

h0
h1
h2
h3
h4
h5

=



c2 s2
−s2 c2

c2 s2
−s2 c2

c2 s2
−s2 c2





1
c1 s1
−s1 c1

c1 s1
−s1 c1

1





1
1

c0 s0
−s0 c0

1
1





0
0
0
1
0
0


(37)

where cℓ := cosθℓ and sℓ := sinθℓ.
Having classically precomputed the rotation angles (θ0,θ1, . . . ,θK−1) by the procedure in [20], we

construct a quantum circuit for LINPREP as follows. Letm= dlog2Me. ForM that is not a power of 2, we pad
(2m −M)/2 zeros from left and right to the wavelet filter vector h to have a vector as
(0, . . . ,0,h0, . . . ,hM−1,0 . . . ,0)⊤. Then unitaries Uℓ are modified accordingly so that UK−1 · · ·U1U0 e2m−1

yields the modified wavelet filter vector. A diagrammatic representation of this approach is shown in
figure 4(b) forM= 6. For each θℓ with even ℓ, first we shift elements of the vector one place to the right,
shown in figure 4(c) by the right arrow, to be able to apply the rotations in parallel on consequent pairs of the
vector elements and then shift the vector elements one place to the left. Because the rotations are in parallel,
we can decompose the associated unitary as a tensor product of an identity and a rotation gate as 1m−1 ⊗Rℓ.
Shifting to the right (left) is implemented by the increment gate (inverse of the increment gate) on a quantum
computer. The inverse of the increment gate is applied (2m −M)/2 times at the end to achieve the desired
amplitudes as (h0, . . . ,hM−1,0 . . . ,0)⊤. The quantum circuit in figure 4(d) illustrates the case whereM= 6.

We now describe an approach for implementing the PREP operation in equation (12). This operation
prepares the state with square-root coefficients, i.e. the state |ψ〉 :=

∑
ℓ

√
pℓ|ℓ〉 with pℓ := |hℓ|/h. To prepare

this state, first we prepare the uniform superposition state (1/
√
M)

∑
ℓ |ℓ〉 and then apply the uniformly

controlled rotation [21] that performs the map

|0〉|ℓ〉 7→ (cos(θℓ) |0〉+ sin(θℓ) |1〉) |ℓ〉, cos(θℓ) :=
√
|hℓ|/h. (38)

The output state after this operation is sinα|0〉|ψ〉+ cosα| ⊥〉 with the success amplitude sinα := 1/
√
M. As

per the discussion in section 2.3, the state |ψ〉 is achieved using one extra qubit andΘ(
√
M) rounds of

amplitude amplification. We remark that the same approach can be used to implement UNPREP in
equation (12).

3. Multi-level and packet QWT

We now use our implementation for the single-level QWT as a subroutine and construct quantum

algorithms for multi-level and packet QWTs. To this end, letW(d)
n denote the d-level wavelet transform of size

2n × 2n and let P(d)n denote the d-level wavelet packet transform of the same size. Also letW(1)
n =Wn for

notation simplicity.
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Figure 5. Quantum circuits for (a) the d-level packet QWT and (b) the d-level QWT using single-level QWTs; d= 4 is illustrated
here. (c) An implementation of multi-controlled single-level QWTs needed for the multi-level QWT in (b) using multi-bit Toffoli
gates, controlled single-level QWT and one ancilla qubit that starts and ends in the |0⟩ state.

The d-level wavelet transform can be recursively decomposed as [7, appendix A]

W(d)
n =

(
W(d−1)

n−1 ⊕1n−1

)
Wn. (39)

This decomposition follows from the notion of multi-level wavelet transform: at each level, the
transformation is only applied on the low-frequency component (i.e. the top part) of the column vector it
acts on. The wavelet packet transform, however, acts on both the low- and high-frequency components, so
we have the decomposition

P(d)n =
(
P(d−1)
n−1 ⊕ P(d−1)

n−1

)
Wn =

(
11 ⊗ P(d−1)

n−1

)
Wn (40)

for the wavelet packet transform. Equation (39) yields the decomposition

W(d)
n = Λd−1

0 (Wn−d+1) · · ·Λ2
0 (Wn−2)Λ

1
0 (Wn−1)Wn, (41)

where

Λs
0 (Wn−s) := |0s〉〈0s| ⊗Wn−s +(1s − |0s〉〈0s|)⊗1n−s (42)

is the |0s〉-controlled unitary operation, for any s ∈ {1, . . . ,d− 1}. Similarity, equation (40) yields the
decomposition

P(d)n = (1d−1 ⊗Wn−d+1) · · ·(12 ⊗Wn−2)(11 ⊗Wn−1)Wn (43)

for the d-level wavelet packet transform. These decompositions give a simple procedure for implementing a
multi-level and packet QWT shown by the quantum circuits in figure 5

The multi-level packet QWT is construed from single-level QWTs that can be implemented by the
method described in section 2. In contrast, the multi-level QWT is constructed from multi-controlled
single-level QWTs. As in figure 5(c), we break down these multi-controlled operations in terms of multi-bit
Toffoli gates and controlled single-level QWTs. We discuss an implementation of a multi-bit Toffoli gate
in section 4.1 and a controlled single-level QWT in section 4.3, where we analyze the complexities of
these operations.

4. Complexity analysis

In this section, we analyze the computational cost of executing single-level, multi-level and packet QWTs,
thereby establishing theorems 1–3. We begin by analyzing the computational cost of key subroutines in our
algorithms in section 4.1. We then build upon them and provide cost analysis for the single-level QWT in
section 4.2 and for the multi-level and packet QWTs in section 4.3.

In our cost analysis and in implementing the key operations, we use ancilla and ‘borrowed’ qubits. In
contrast to an ancilla qubit that starts from |0〉 and returns to |0〉, a borrowed qubit can start from any state
and will return to its original state. The purpose of using borrowed qubits is that they enable simple
implementation for complex multi-qubit operations. The availability of a sufficient number of qubits in our
algorithm on which the key operations do not act on them allows us to use them as borrowed qubits in
implementing such operations.

10
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4.1. Complexity of key subroutines
Here we analyze the cost of key subroutines used in our algorithm for a single-level QWT: PREP, SELECT and
USHIFT, the latter of which adds a classically known constant value to the value encoded in a quantum register.
We also analyze the cost of implementing a multi-qubit reflection, an operation used in the amplitude
amplification part of our algorithm.

For simplicity of cost analysis, we state the cost of each key subroutine in a lemma and proceed with
analyzing the cost in the poof. We begin with a lemma stating the cost of executing a multi-bit Toffoli gate, an
operation frequently used in our algorithm and provides an implementation for the multi-qubit reflection
about the all-zero state.

Lemma 1. The (m+ 1)-bit Toffoli gate with m⩾ 3, defined as
Λm
1 (X) := |1m〉〈1m| ⊗X+(1m − |1m〉〈1m|)⊗11, can be implemented by either of the following computational

resources:

(I) m− 2 borrowed qubits andO(m) TOFFOLI gates, or
(II) one borrowed qubit andO(m) TOFFOLI and elementary one- or two-qubit gate.

The implementation based onm− 2 borrowed qubits follows from Gidney’s method [22] for
implementing a multi-bit Toffoli gate and the one using one borrowed qubit follows by the method given in
[23, corollary 7.4 ] and also in [24]. Notice that the gate cost of the two methods scales similarly, but one uses
only a single borrowed qubit. However, we sometimes use the method withm− 2 borrowed qubits due to its
simplicity in implementing a multi-bit Toffoli and the availability of a sufficient number of qubits in our
algorithm that can be borrowed.

We proceed with the cost of SELECT in the following lemma.

Lemma 2. SELECT in equation (13) can be executed using one ancilla and one borrowed qubit, two Hadamard
andO(n) NOT, CNOT and TOFFOLI gates.

Proof. By figure 3, SELECT is composed of one controlled-Z gate, three CNOT gates, one controlled-SUB, one
controlled-ADD and n− 1 SWAP gates. The controlled-Z gate can be executed using two Hadamard gates and
one CNOT, and each SWAP can be executed using three CNOTs. By the compilation given in [25], the ADD itself
can be implemented using one ancilla qubit andO(n) NOT, CNOT and TOFFOLI gates. Hence the controlled-ADD
can be compiled using O(n) CNOT, TOFFOLI and four-bit Toffoli gates, the latter of which can be implemented
using one borrowed qubit and four TOFFOLI gates by lemma 1.

In the next lemma, we show that them-qubit reflection Rm about the all-zero state |0m〉 can be
implemented usingm− 2 borrowed qubits.

Lemma 3. The m-qubit reflection Rm := |0m〉〈0m| −1m can be executed using one ancilla and m− 2 borrowed
qubits along with two Hadamard, 2m+ 2 NOT andO(m) TOFFOLI gates.

Proof. Using the phase kickback trick and one ancilla qubit, we can implement Rm up to an irrelevant global
−1 phase factor as

(Rm ⊗11) |ψ〉|0〉=−X⊗m+1 (1m ⊗H)Λm
1 (X)(1m ⊗H)X⊗m+1|ψ〉|0〉, (44)

where |ψ〉 is anym-qubit state and Λm
1 (X) is the (m+ 1)-bit Toffoli gate. The lemma then follows by Gidney’s

method [22] for implementing the (m+ 1)-bit Toffoli using O(m) TOFFOLI gates and m− 2 borrowed qubits.

We remark that the (m+ 1)-bit Toffoli can be implemented using only one borrowed qubit andO(m)

TOFFOLI and elementary one- or two-qubit gate by lemma 1. However, we use the method withm− 2
borrowed qubits due to its simplicity in implementing a multi-bit Toffoli and the availability of a sufficient
number of qubits in our algorithm that can be borrowed.

The following lemma states the cost of adding a known classical value to a quantum register. We use a
controlled version of this operation in our algorithm, the cost of which is stated in the following corollary.

Lemma 4. Adding a classically known m-bit constant to an n-qubit register with m< n can be achieved using
m+ 1 ancilla qubits andO(m) NOT, CNOT and TOFFOLI gates.

Proof. First, preparem ancillae in the computational state that encodes them-bit constant. This preparation
can be achieved by applying at most m NOT gates. Then add this state to the state of the n-qubit register by
ADD operation in equation (31). Bym< n and the compilation given in [25], ADD can be implemented by one
ancilla qubit andO(m) NOT, CNOT and TOFFOLI gates.

11
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The computational cost reported in lemma 4 is indeed the cost of executing USHIFT in equation (8). We
use a controlled version of this operation as in the circuit shown in figure 3. Because of the TOFFOLI gate in
lemma 4, the controlled-USHIFT requires implementing a four-bit Toffoli gate, an operation that can be
implemented using one borrowed qubit and four TOFFOLI gates by lemma 1. Therefore, we have the following
cost for the controlled USHIFT as a corollary of lemmas 1 and 4.

Corollary 4. The controlled-USHIFT operation can be executed by one borrowed qubit, m+ 1 ancilla qubits, and
O(m) CNOT and TOFFOLI gates.

The final lemma states the cost of the PREP operation. We remark that the cost of this operation is
independent of n as PREP generates a quantum state on a number of ancilla qubits that depends on the
wavelet orderM.

Lemma 5. LINPREP in equation (22) can be executed usingO(M log2M) elementary gates and dlog2Me borrowed
qubits. PREP and UNPREP in equation (12) can be executed usingO(M3/2) elementary gates and one ancilla qubit.

Proof. The LINPREP can be implemented usingO(M) rotation gates andO(M) increment and inverse of incre-
ment gates by the procedure given in section 2.5. The increment gate onm= dlog2Me qubits can be implemen-
ted usingm borrowed qubits andO(m) elementary gates [26], so the overall gate cost of LINPREP isO(M log2M).
As per section 2.5, PREP and UNPREP operations can be implemented by preparing the uniform superposition
state on m qubits, applying the uniformly controlled rotation in equation (38), and O(

√
M) rounds of amp-

litude amplification. The uniform superposition state is prepared by m Hadamard gates, and the uniformly
controlled rotation can be implemented byO(M) CNOT and rotation gates [21]. Therefore, the overall gate cost
of PREP and UNPREP isO(M3/2).

4.2. Complexity of single-level QWT
We now build upon the computational cost of the key subroutines analyzed in the previous section to obtain
the computational cost of executing a single-level QWT. To this end, we mainly use equations (27) and (28).
By these equations, a single-level QWT is achieved by performing three rotation gates and

• Two PQWT and one PQWT†, which by equation (20) needs performing two SELECT and one SELECT
†; two PREP

and one PREP
†; two UNPREP and one UNPREP

†; and one controlled-USHIFT;
• Two (m+ 1)-qubit reflection Rm+1.

Therefore, by lemmas 2, 3, 5 and corollary 4 , the gate cost G(1UNPREP) for executing a single-level QWT is

G (1QWT) = 3G (SELECT)+ 6G (PREP)+G (controlled-USHIFT)+ 2G (Rm+1)+ 3 ∈ O (n)+O
(
M3/2

)
(45)

wherem= dlog2Me in our application;M is the wavelet order. The number of ancilla qubits used ism+ 1:
m ancillae are used for the state-preparation step, and one extra ancilla is the parity qubit par, which is also
used in the amplitude amplification step.

We remark that the borrowed qubits in executing PREP, SELECT, controlled-USHIFT and reflection
operations, in lemmas 2–5, are borrowed from the portion of quantum registers that these operations do not
act on them. For instance, them− 2 borrowed qubits in lemma 3 for executing them-qubit reflection Rm

could be anym− 2 qubits of the n qubit register that Rm does not act on them. For SELECT, the borrowed
qubit is needed to implement the four-bit Toffoli gate, see proof of lemma 2, and this qubit could be any
qubit in the circuit that the four-bit Toffoli gate does not act on it. We also remark that them+ 1 ancilla
qubits in corollary 4 needed for controlled-USHIFT are qubits of the single-qubit par register andm-qubit anc
register. This operation is executed after the amplitude amplification, see figure 3, when par and anc are in
the all-zero state.

Putting all together, the overall gate cost for implementing the single-level QWT isO(n)+O(M3/2) and
the number of ancilla qubits is dlog2Me+ 1. This is the computational cost reported in theorem 1.

4.3. Complexity of multi-level and packet QWTs
Here we analyze the complexity of implementing a d-level and packet QWTs, thereby establishing theorems 2
and 3. By figure 5, implementing a multi-level QWT is achieved by implementing multiply-controlled
single-level QWTs. Our strategy is to break down each multiply-controlled unitaries in terms of multi-bit
Toffoli gates and single-controlled unitary. We then use a compilation for a controlled single-level QWT and
an ancilla-friendly compilation for multi-bit Toffoli gates to achieve an efficient yet ancilla-friendly
implementation for a multi-level QWT. The packet QWT, however, is achieved by a sequence of single-level
QWTs without controlled qubits, as shown in figure 5.
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Before describing the specifics of our implementation strategy, we first state the complexity of the
|1〉-controlled single-level QWT in the following lemma. We then build upon this complexity to establish the
complexity of multi-level QWT.

Lemma 6. The controlled single-level QWT on n qubits, associated with a wavelet of order M, can be achieved
using dlog2Me+ 2 ancilla qubits andO(n)+O(M3/2) elementary gates.

Proof. By the circuit in figure 3, a controlled single-level QWT needs preforming double-controlled-SUB, -ADD
and -USHIFT operations, and single-controlled PREP and UNPREP operations. Each CNOT is transformed to a TOFFOLI,
each SWAP is transformed to three TOFFOLI gates and R is transformed to controlled-R. A double-controlled
operation can be reduced to a single-controlled operation using two TOFFOLI gates and one ancilla qubit. By
the discussion in the proof of lemma 2, the controlled-ADD (-SUB) can be compiled using O(n) CNOT, TOFFOLI
gates. The other ancilla qubits are them qubits used for state preparation and the parity qubit. Altogether with
corollary 4 prove the lemma.

We now proceed with the complexity of d-level QWT. Let the integer s, with 1⩽ s⩽ d, represent the level
of a QWT. Then for the level s= r+ 1 we need to implement |0r〉-controlled-Wn−r, whereWn−r is the
single-level QWT on n− r qubits. For simplicity of cost analysis, we map all |0〉-controlled operations in
figure 5(b) to |1〉-controlled operations; this can be achieved by 2(d− 1) NOT gates for d-level QWT as in
figure 5(c). For r⩾ 2, we implement |1r〉-controlled-Wn−r by a single ancilla qubit, two (r+ 1)-bit Toffoli
gates and one controlled-Wn−r as shown in figure 5(c). Notice that s= 1 corresponds to a single-level QWT
on n qubits and s= 2 corresponds to a controlled single-level QWT on n− 1 qubits.

The gate cost for the controlled single-level QWT on n− r qubits isO(n− r) by lemma 6, disregarding
the cost with respect toM, and the gate cost for the (r+ 1)-bit Toffoli gate isO(r) by lemma 1. Hence the
gate cost for each level, including the first and second levels, isO(n). We also have an additional gate cost of
O(M3/2) for each level associated with the cost of implementing PREP and UNPREP. We remark that only a
single ancilla qubit is used for all levels; the ancilla qubit starts and ends in |0〉 for each level to be reused in
the next level, as illustrated in figure 5(c). Putting all together, we arrive at the computational cost stated in
theorem 2 for a d-level QWT.

Because the packet QWT does not have multi-controlled operations (see figure 5(a)), its gate cost simply
follows from the cost of the single-level QWT. The single-level QWT acts on n− r qubits at level s= r+ 1 and
has the gate costO(n− r) by theorem 1. The gate cost for all levels 1⩽ s⩽ d is thereforeO(dn− d(d− 1)/2).
We also have an additional gate cost ofO(M3/2) for each level associated with the cost of implementing PREP

and UNPREP, yielding the overall gate cost stated in theorem 3. We note that the packet QWT does not need the
extra ancilla qubit used in multi-level QWT for implementing the multi-controlled operations.

5. Discussion and conclusion

Wavelets and their associated transforms have been extensively used in classical computing. The basis
functions of wavelet transforms have features that make such transforms advantageous for numerous
applications over their established counterpart, the Fourier transform. However, prior works on developing a
quantum analog for wavelet transforms were limited to a few representative cases. In this paper, we presented
quantum algorithms for executing any wavelet transform and a generalized version, the wavelet packet
transform, on a quantum computer; the algorithms work for any wavelet of any order. We have established
the computational complexity of our algorithms in terms of three parameters involved in wavelet transforms:
the wavelet orderM, the level d of wavelet transform, and the number of qubits n= log2N the QWT acts on,
with N the dimension of the kernel matrix associated with the wavelet transform.

The core idea of our approach is to express the kernel matrix as a linear combination ofM unitary
operations that are simple to implement on a quantum computer and use the LCU technique to construct a
probabilistic procedure for implementing the desired QWT. We then make the implementation deterministic
using the known success probability of the probabilistic procedure by only a few (two or three) rounds of
amplitude amplification. The gate cost of our algorithm for single-level QWT scales optimally with n, the
number of qubits, for the case that the wavelet orderM is constant. Indeed, the order parameter used in
practical applications is constant, typically in the range of 2⩽M⩽ 20 [3, 27, 28]. We also demonstrated that
the wavelet filter coefficients become negligibly small for larger values of the wavelet order, making the cost
of our algorithms effectively independent ofM for practical applications. In contrast, the transformation
level d scales linearly with the number of qubits, or log2N, for practical applications. Because the value of d is
upper-bounded by n, the gate cost of multi-level and packet QWTs scales asO(n2) in the worst case. Even for
the worst case, our algorithm improves the gate cost of prior works on the second- and fourth-order
Daubechies QWT fromO(n3) toO(n2).
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We remark that our approach requires a number of ancilla qubits that scales as log2M with the wavelet
order. The number of ancilla qubits would be a small constant number considering the range of wavelet order
or the magnitude of wavelet coefficients in practical applications. A potential area for further exploration is
constructing ancilla-free quantum algorithms for all QWTs. Constructing such algorithms would be valuable
for early fault-tolerant quantum computers with limited qubits and is plausible because QWTs are unitary
transformations. More importantly, a primary area for future research is exploring the opportunities offered
by QWTs in quantum algorithms, particularly in simulating quantum systems [6, 7, 12] and image
processing [29–31] where wavelet transforms could be advantageous over the established Fourier transform.
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