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ABSTRACT
Protocols of quantum information science often realize in terms of specially selected states. In particular, such states are used to perform
measurements at the final stage of a protocol. This study aims to explore measurements assigned to a mutually unbiased-equiangular tight
frame. The utilized method deals with Kirkwood–Dirac quasiprobabilities, which are increasingly used in contemporary research. These
quasiprobabilities constitute a matrix that can be linked to unravelings of certain quantum channels. Using states of the given frame to build
principal Kraus operators leads to quasiprobabilities that represent the measured state. The structure of a mutually unbiased-equiangular
tight frame allows one to characterize entropies associated with a particular unraveling. To do this, we estimate some of the Schatten and
Ky Fan norms of the matrix consisted of quasiprobabilities. New uncertainty relations in terms of Rényi and Tsallis entropies follow from
the obtained inequalities. A utility of the presented inequalities is exemplified with mutually unbiased bases of a qubit and equiangular tight
frames of a ququart.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0254873

I. INTRODUCTION

Quantum technologies of information processing are currently
the subject of active research. Their role will only increase in recent
future. Several physical platforms are recognized as a feasible way
to build quantum processors.1–4 Quantum measurements are a nec-
essary step to complete any protocol. Specially constructed sets of
quantum states are requisite for such purposes. Mutually unbiased
bases5 are seemingly the most known example of important dis-
crete structures in Hilbert spaces.6 They were first considered by
Schwinger7 and applied to quantum state determination in Refs.
8 and 9. In fact, two mutually unbiased bases are used in the
BB84 scheme of quantum cryptography.10 Recently, equiangular
tight frames have been shown to be useful in quantum informa-
tion processing. Such frames of finite-dimensional vectors were
originally studied independently of applications.11,12 The concept
of mutually unbiased equiangular tight frames was also proposed

rather as a way to produce new frames from existing ones.13

Extending mutually unbiased bases, this concept deserves further
development, including potential usage in quantum information
science.

As a rule, quantum measurements of the considered type dif-
fer from the most familiar case of an orthonormal basis. It is
important in both theory and practice that the number of dif-
ferent outcomes can exceed the dimensionality. The use of over-
complete sets of vectors is often significant, for example, as with
mutually unbiased bases.14 Properties of the measurements of inter-
est can be described in terms of quasiprobabilities. The Wigner
functions15 are a popular example of quasiprobabilities used in
various questions.16–20 The Kirkwood–Dirac quasiprobabilities are
another especially important direction of investigations. They are
now exploited more widely21 than it was intended initially.22,23 In
fact, Kirkwood gave a phase-space methodology to calculate par-
tition functions and dealt with canonically conjugate variables.22
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At present, the Kirkwood–Dirac quasiprobabilities have found use
in quantum state tomography,24–27 information scrambling,28–31

postselected metrology,32–34 quantum thermodynamics,35–37 and
conceptual questions.38–41 Reference 42 used the Kirkwood–Dirac
quasiprobabilities to characterize the unravelings of quantum chan-
nel assigned to an equiangular tight frame.

This study examines the Kirkwood–Dirac quasiprobabilities
for measurements assigned to mutually unbiased equiangular tight
frames. First, it generalizes to several measurements the consider-
ation originally given in Ref. 42. Second, the introduced matrices
of quasiprobabilities will be described in terms of the Schatten
and Ky Fan norms. Relations between various characteristics of
probability distributions are important because some of them are
easier to obtain than others. The structure of a mutually unbiased-
equiangular tight frame allows one to derive many useful relations.
New entropic uncertainty relations will be given for unravelings of
the induced quantum channels. It is also of interest, since entropic
functions are hardly exposed to measure immediately. This paper is
organized as follows: Sec. II reviews the preliminary facts and gives
the notation. Section III aims to characterize the quasiprobabilities
in terms of the Schatten and Ky Fan norms. Entropic uncertainty
relations for unravelings of the corresponding quantum channels
will also be examined. The considered examples include com-
plementary finite-dimensional observables with mutually unbiased
eigenbases. Section IV concludes this paper.

II. PRELIMINARIES
This section reviews the required material. First, one recalls

some definitions concerning finite-dimensional operators and their
norms. Second, the concept of mutually unbiased equiangular
tight frames is briefly discussed. Furthermore, Kirkwood–Dirac
quasiprobabilities in connection with unravelings of a quan-
tum channel are discussed. Finally, we recall the Rényi and
Tsallis entropies to characterize probability distributions of
interest.

A. Required facts from linear algebra
Let L(Hd) denote the space of linear operators on d-

dimensional Hilbert space Hd. By L+(Hd) and Lsa(Hd), one,
respectively, means the set of positive semi-definite operators and
the real space of Hermitian ones. The quantum states are represented
by density matrices such that ρ ∈ L+(H) and tr(ρ) = 1. The set of
pure states contains density matrices of the form ρ = ∣ψ⟩⟨ψ∣, where
∣ψ⟩ ∈ Hd and ⟨ψ∣ψ⟩ = 1. The operators of interest are described by
rectangular matrices with complex entries. Let Mm×n(C) be the
space of all m × n complex matrices. The space of n × n matrices will
be denoted by Mn(C). By M(sa)n (C) and M+n (C), we, respectively,
mean the space of Hermitian n × n matrices and the set of positive
semi-definite ones. For every G ∈Mm×n(C), the square matrices G†G
and GG† have the same non-zero eigenvalues. The positive square
roots of these eigenvalues are the singular values σj(G) of G.43 For
real α > 0, we will use norm-like functional,

∥G∥α = (∑j σj(G)
α
)

1/α
, (1)

where the sum is actually taken over non-zero singular values of
G. The legitimate norm arises for α ≥ 1, and it is the Schatten α-
norm. In particular, this family includes the trace norm for α = 1,
the Hilbert–Schmidt norm, or the Frobenius norm,

∥G∥2 =

√

tr(G†G) (2)

for α = 2, and the spectral norm ∥G∥∞ = max σj(G).
The Ky Fan norms form another especially important family

of unitarily invariant norms. These norms are used to formulate the
Ky Fan maximum principle.44 For k = 1, 2, . . ., the Ky Fan k-norm is
defined as43

∥G∥(k) =
k

∑
j=1

σj(G)
↓. (3)

Here, the down arrow indicates that singular values should be put in
non-increasing order. The above norms can also be applied to finite-
dimensional vectors. For a probability distribution P = {pj} and
α > 0, we will use the quantity

∥P∥α = (∑j pαj )
1/α

. (4)

Furthermore, the Ky Fan k-norm reads as

∥P∥(k) =
k

∑
j=1

p↓j . (5)

For a distribution with N probabilities, the index of coincidence is
defined as

I(P) =
N

∑
j=1

p2
j . (6)

The above quantities will be applied to characterize probability
distributions quantitatively.

Quantum measurements are represented by the non-
orthogonal resolutions of the identity, also known as positive
operator-valued measures (POVMs).45 The set E = {Ej}

N
j=1 of

operators Ej ∈ L+(Hd) is a POVM, when the completeness relation
holds,

N

∑
j=1

Ej = 𝟙d. (7)

For the pre-measurement density matrix ρ, the probability of the jth
outcome reads as

pj(E; ρ) = tr(Ejρ). (8)

It is principally important for quantum information processing that
the number of outcomes N can exceed the dimensionality d.

B. Mutually unbiased equiangular tight frames
A set {∣ϕj⟩} of n ≥ d unit vectors of Hd gives a tight frame,

when46

n

∑
j=1
∣ϕj⟩⟨ϕj ∣ =

n
d
𝟙d. (9)

APL Quantum 2, 026108 (2025); doi: 10.1063/5.0254873 2, 026108-2

© Author(s) 2025

 18 April 2025 14:03:27

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

If the formula

∣⟨ϕi∣ϕj⟩∣
2
= c (10)

holds for all i ≠ j, then we deal with an equiangular tight frame
(ETF). It can be shown that n ≤ d2 and

c =
n − d
(n − 1)d

. (11)

An equiangular tight frame of n = d2 vectors, if it exists in
Hd, leads to a symmetric informationally complete measurement
(SIC-POVM) with elements,

1
d
∣ϕj⟩⟨ϕj ∣. (12)

The existence of such sets for all d was conjectured by Zauner.6
Reference 47 examined SIC-POVMs in more detail. Informationally
complete measurements are interesting in various issues, including
quantum tomography.48

The concept of a mutually unbiased-equiangular tight frame
was first introduced in Ref. 13. Suppose that 1 ≤M and 1 ≤ d ≤ n.
A sequence {∣ϕμj⟩} of unit vectors with μ = 1, . . . , M and j = 1, . . . , n
is a mutually unbiased-equiangular tight frame if13

∣⟨ϕμi∣ϕνj⟩∣
2
=

⎧⎪⎪
⎨
⎪⎪⎩

c, μ = ν and i ≠ j,
d−1, μ ≠ ν,

(13)

where c is given by (11). In other words, this mutually unbiased-
equiangular tight frame consists of M usual ETFs. The special case
with n = d and c = 0 reduces to a set of M mutually unbiased bases
(MUBs). Such bases provide an example of complementary observ-
ables in finite dimensions.49 The authors of Ref. 13 also gave a
recipe to produce new ETFs with the use of mutually unbiased ETFs.
The authors of Ref. 50 proposed mutually unbiased measurements.
These measurements are similar to MUBs, but rank-one elements
are not required. The case of several ETFs with the fixed overlap
between vectors of different frames can be treated as another modi-
fication of MUBs. We still use POVMs with rank-one elements, but
the number of outcomes can exceed dimensionality.

Let us exemplify shortly a mutually unbiased-equiangular tight
frame with c ≠ 0. It deals with a ququart in dimension four. The vec-
tors of mutually unbiased ETFs arise as columns of the matrices Ψ,
ΔΨ, and Δ2Ψ, where13

Δ =

⎛
⎜
⎜
⎜
⎜
⎝

ω 0 0 0
0 ω2 0 0
0 0 ω8 0
0 0 0 ω4

⎞
⎟
⎟
⎟
⎟
⎠

, Ψ = 1
2

⎛
⎜
⎜
⎜
⎜
⎝

1 ω3 ω6 ω9 ω12

1 ω6 ω12 ω3 ω9

1 ω9 ω3 ω12 ω6

1 ω12 ω9 ω6 ω3

⎞
⎟
⎟
⎟
⎟
⎠

,

(14)
and ω = exp (i2π/15). In this example, we have d = 4, n = 5, and
M = 3.

Each of M ETFs induces a non-orthogonal resolution Fμ
= {Fμi}

n
i=1 of the identity with rank-one elements,

Fμi =
d
n
∣ϕμi⟩⟨ϕμi∣, (15)

since

d
n

n

∑
i=1
∣ϕμi⟩⟨ϕμi∣ = 𝟙d. (16)

For each μ, the probability of the ith outcome reads as

pi(Fμ; ρ) =
d
n
⟨ϕμi∣ρ∣ϕμi⟩. (17)

Substituting these probabilities in (6) gives the μth index of coinci-
dence I(Fμ; ρ). To a mutually unbiased-equiangular tight frame, we
also assign a single POVM with rank-one elements,

d
Mn
∣ϕμi⟩⟨ϕμi∣. (18)

The probability of the μith outcome then appears as

pμi(F ; ρ) =
d

Mn
⟨ϕμi∣ρ∣ϕμi⟩. (19)

It follows from (17) and (19) that

I(F ; ρ) =
1

M2

M

∑
μ=1

I(Fμ; ρ). (20)

Here, the total index of coincidence I(F ; ρ) is obtained from (6)
by substituting the probabilities (19). Formula (20) connects two
different interpretations of measurement data.

C. Kirkwood–Dirac quasiprobabilities
and channel unravelings

The concept of Kirkwood–Dirac quasiprobabilities was orig-
inally introduced for orthonormal bases and later extended to
the case of two POVMs.51 In this paper, we will use the follow-
ing reformulation. To the given POVM E = {Ej}

N
j=1 and density

matrix ρ, one assigns N2 quantities of the form tr(EiEjρ). Fol-
lowing Ref. 42, these quantities will be referred to as general-
ized Kirkwood–Dirac quasiprobabilities. To each POVM, one can
also assign trace-preserving completely positive map, or quantum
channel,

ρ↦ Ψ(ρ) =
N

∑
j=1

AjρA†
j , (21)

where

Aj =
√

Ej. (22)

The set {Aj}
N
j=1 is a particular operator-sum representation of Ψ in

terms of Kraus operators. Following Ref. 52, we will call it an unrav-
eling of Ψ. The operators of form (22) are measurement operators
according to Sec. 2.2.6 of Ref. 45. The operators Aj will be referred to
as the principal Kraus operators.53

In the case of POVM elements from a mutually unbiased-
equiangular tight frame, measurement statistics can be interpreted
in two different ways. The first deals with the quasiprobabilities
expressed as

d2

M2n2 ⟨ϕμi∣ϕνj⟩⟨ϕνj ∣ρ∣ϕμi⟩. (23)
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By Π(F ; ρ), we denote the Mn ×Mn matrix constituted by these
quasiprobabilities. When μ ≠ ν, quantity (23) involves states of the
two different frames. This is consistent with the approach to a gener-
alized Kirkwood–Dirac distribution proposed in Ref. 51. Extending
Ref. 42, we define the quantum channel as follows:

ρ↦ Φ(ρ) =
M

∑
μ=1

n

∑
i=1

pμi(F ; ρ) ∣ϕμi⟩⟨ϕμi∣, (24)

Aμi =

√
d

Mn
∣ϕμi⟩⟨ϕμi∣, (25)

where pμi(F ; ρ) reads as (19). In the following, we will also use the
Mn ×Mn matrix Λ(A; ρ) with elements,

tr(A†
μiAνjρ) =

d
Mn
⟨ϕμi∣ϕνj⟩⟨ϕνj ∣ρ∣ϕμi⟩. (26)

The latter differs from (23) only by a factor. Therefore, the matrix
equation

Π(F ; ρ) =
d

Mn
Λ(A; ρ) (27)

is valid due to the chosen form of POVM elements. It is obvious that
Λ(A; ρ) ∈M(sa)Mn (C) and Π(F ; ρ) ∈M(sa)Mn (C). It will be proved in
the following that these matrices are positive semi-definite.

The second interpretation uses M POVMs Fμ and M quantum
channels. For each μ = 1, . . . , M, we have the n × n matrixΠ(Fμ; ρ),
which consisted of quasiprobabilities of the form

d2

n2 ⟨ϕμi∣ϕμj⟩⟨ϕμj ∣ρ∣ϕμi⟩. (28)

The corresponding quantum channel and its principal Kraus
operators read as

ρ↦ Φμ(ρ) =
n

∑
i=1

pi(Fμ; ρ) ∣ϕμi⟩⟨ϕμi∣, (29)

√
M Aμi =

√
d
n
∣ϕμi⟩⟨ϕμi∣, (30)

where pi(Fμ; ρ) is given by (17). The n × n matrix Λ(Aμ; ρ)
contains entries of the form

M tr(A†
μiAμjρ) =

d
n
⟨ϕμi∣ϕμj⟩⟨ϕμj ∣ρ∣ϕμi⟩. (31)

It is obvious that Λ(Aμ; ρ) ∈M(sa)n (C) and Π(Fμ; ρ) ∈M(sa)n (C).
These matrices are positive semi-definite and ∥Λ(Aμ; ρ)∥1 = 1.42

D. Generalized entropies
To characterize probability distributions, we will use the

Rényi54 and Tsallis entropies.55 It will be convenient to begin with
the second case. Dealing with the functions of the Tsallis type, we
utilize the α-logarithm of positive variable. It is defined as

lnα(X) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

X1−α
− 1

1 − α
if 0 < α ≠ 1,

ln X if α = 1.
(32)

For α > 0, the Tsallis α-entropy reads as55

Hα(P) =
1

1 − α
⎛

⎝
∑

j
pαj − 1

⎞

⎠
=∑

j
pj lnα(

1
pj
). (33)

The Rényi α-entropy is defined as54

Rα(P) =
1

1 − α
ln
⎛

⎝
∑

j
pαj
⎞

⎠
. (34)

The limit α→∞ gives the min-entropy expressed as

R∞(P) = − ln (max pj). (35)

In the limit α→ 1, both entropies (33) and (34) reduce to the
Shannon entropy,

H1(P) = −∑
j

pj ln pj. (36)

The basic properties of the Rényi and Tsallis entropies are con-
sidered in Sec. 2.7 of Ref. 56. It follows from (33) and (34)
that

Rα(P) =
1

1 − α
ln [1 + (1 − α)Hα(P)]. (37)

Due to this link, each of Tsallis-entropy inequalities potentially has
a Rényi-entropy counterpart, and vice versa. Using quantity (4), we,
respectively, write

Hα(P) =
∥P∥αα − 1

1 − α
, (38)

Rα(P) =
α

1 − α
ln ∥P∥α. (39)

The above entropies have found use in various disciplines. Part II
of Ref. 57 discussed concrete physical examples, which actualize the
Tsallis entropies. For physical applications of the Rényi entropies,
see Ref. 58 and references therein.

III. MAIN RESULTS
This section aims to report the main results. First, the Schatten

norms of the corresponding matrices are characterized. Further-
more, some Ky Fan norms are estimated from above. Third, the
obtained inequalities are used to formulate new uncertainty rela-
tions for unravelings of the considered quantum channels. Finally,
we give examples of Kirkwood–Dirac quasiprobabilities defined in
terms of mutually unbiased ETFs. The first example deals with a pair
of complementary observables in dimension two.
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A. Inequalities for estimating some Schatten norms
The inner structure of a mutually unbiased-equiangular tight

frame allows us to evaluate the Hilbert–Schmidt norms of the
matrices of interest. This result is posed as follows:

Proposition 1. Let the matrix Λ(A; ρ) with elements (26)
be assigned to the density matrix ρ and mutually unbiased-
equiangular tight frame {∣ϕμj⟩} with μ = 1, . . . , M and j = 1, . . . , n;
then, Λ(A; ρ) ∈M+Mn(C), ∥Λ(A; ρ)∥1 = 1, and

∥Λ(A; ρ)∥2
2 = (1 − c)I(F ; ρ) +

cd +M − 1
Md

tr(ρ2
). (40)

Proof. The matrix Λ(A; ρ) is Hermitian and can be diagonal-
ized as

V†Λ(A; ρ)V = diag(λ1, . . . , λMn), (41)

where V is a unitary Mn ×Mn matrix. Due to a unitary freedom in
the operator-sum representation,45 map (24) can be rewritten with a
new Kraus operator,

A(ex)
μi =∑j Aνjvνj,μi. (42)

It is immediate to check that λμi = pμi(A(ex); ρ) ≥ 0. Thus, the
matrix Λ(A; ρ) is positive semi-definite. Its trace is equal to 1 and
also coincides with the norm ∥Λ(A; ρ)∥1.

The (μi,μi)-entry of Λ(A; ρ)2 reads as

d2

M2n2

n

∑
j=1
∣⟨ϕμi∣ϕμj⟩∣

2
⟨ϕμi∣ρ∣ϕμj⟩⟨ϕμj ∣ρ∣ϕμi⟩

+
d

M2n2∑
ν≠μ

n

∑
j=1
⟨ϕμi∣ρ∣ϕνj⟩⟨ϕνj ∣ρ∣ϕμi⟩, (43)

where we used the second row of (13). Summing the second term in
(43) over μ = 1, . . . , M and i = 1, . . . , n results in

M − 1
Md

tr(ρ2
) (44)

due to (16). The first sum in (43) is rewritten as

d2

M2n2 ⟨ϕμi∣ρ∣ϕμi⟩
2
+

cd2

M2n2∑
j≠i
⟨ϕμi∣ρ∣ϕνj⟩⟨ϕνj ∣ρ∣ϕμi⟩

=
(1 − c)d2

M2n2 ⟨ϕμi∣ρ∣ϕμi⟩
2
+

cd
M2n

⟨ϕμi∣ρ2
∣ϕμi⟩. (45)

Summing the latter over μ = 1, . . . , M and i = 1, . . . , n gives

(1 − c)I(F ; ρ) +
c

M
tr(ρ2

). (46)

Adding (44) to (46) provides the right-hand side of (40). ■
The result (40) will be used together with the following formula:

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥2

2 =
1 − c

M

M

∑
μ=1

I(Fμ; ρ) + c tr(ρ2
), (47)

which follows from

∥Λ(Aμ; ρ)∥2
2 = (1 − c)I(Fμ; ρ) + c tr(ρ2

). (48)

The latter was first proved in Ref. 42. It can also be obtained
from (40) with M = 1. Let us proceed to the estimation of the
Hilbert–Schmidt norms from above.

Proposition 2. Let the matrix Λ(A; ρ) with elements (26) be
assigned to the density matrix ρ and mutually unbiased-equiangular
tight frame {∣ϕμj⟩} with μ = 1, . . . , M and j = 1, . . . , n; then,

∥Λ(A; ρ)∥2
2 ≤
(1 − c)2

[d tr(ρ2
) − 1]

M2nS
+

1 − c
Mn
+

cd +M − 1
Md

tr(ρ2
),

(49)
where S = n/d. It also holds that

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥2

2 ≤
(1 − c)2

[d tr(ρ2
) − 1]

MnS
+

1 − c
n
+ c tr(ρ2

).

(50)

Proof. It was shown in the Appendix of Ref. 59 that

1
M

M

∑
μ=1

I(Fμ; ρ) ≤
(1 − c)[d tr(ρ2

) − 1]
MnS

+
1
n

. (51)

This result follows from the properties of generalized equiangular
measurements given in Refs. 60 and 61. Combining (20) with (51)
leads to

I(F ; ρ) ≤
(1 − c)[d tr(ρ2

) − 1]
M2nS

+
1

Mn
. (52)

Thus, the index of coincidence is estimated from above in terms
of the purity. Claim (49) immediately follows from (40) and (52).
Combining (47) with (51) leads to (50). ■

Inequality (49) estimates the square of the Hilbert–Schmidt
norm of Λ(A; ρ) from above. Due to (50), we can estimate the
averaged Hilbert–Schmidt norm of the matrices Λ(Aμ; ρ). These
relations further lead to inequalities for certain Schatten norms. Let
the piecewise smooth function X ↦ Lα(X) be defined as

Lα(X) = (q + 1)lnα(q + 1) − q lnα(q)
− q(q + 1)[lnα(q + 1) − lnα(q)]X,

X ∈ [
1

q + 1
,

1
q
],

(53)

where integer q ≥ 1. This function will be used to formulate desired
estimates.

Proposition 3. Let the matrix Λ(A; ρ) with elements (26) be
assigned to the density matrix ρ and mutually unbiased-equiangular
tight frame {∣ϕμj⟩} with μ = 1, . . . , M and j = 1, . . . , n. For α ∈ [1,2],
it holds that

∥Λ(A; ρ)∥αα ≤ 1 − (α − 1)Lα(
(1 − c)2

[d tr(ρ2
) − 1]

M2nS

+
1 − c
Mn
+

cd +M − 1
Md

tr(ρ2
)), (54)

APL Quantum 2, 026108 (2025); doi: 10.1063/5.0254873 2, 026108-5

© Author(s) 2025

 18 April 2025 14:03:27

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥αα ≤ 1 − (α − 1)Lα(

(1 − c)2
[d tr(ρ2

) − 1]
MnS

+
1 − c

n
+ c tr(ρ2

)). (55)

Proof. Reference 62 is devoted to estimating the Tsallis α-
entropy at the given index of coincidence. It was shown therein that,
for α ∈ (0, 2],

1
1 − α

(∑j λ
α
j − 1) ≥ Lα(∑j λ

2
j ), (56)

where positive numbers λj obey ∑jλj = 1. Let λj with j = 1, . . . , Mn
denote the positive eigenvalues ofΛ(A; ρ). For 1 < α ≤ 2, we directly
obtain from (56) that

∥Λ(A; ρ)∥αα ≤ 1 − (α − 1)Lα(∥Λ(A; ρ)∥2
2). (57)

The latter remains valid for α = 1 due to ∥Λ(A; ρ)∥1 = 1. By con-
struction, the function X ↦ Lα(X) is decreasing and convex. Using
these properties, we combine (49) with (57) to prove (54).

In addition, the function X ↦ 1 − (α − 1)Lα(X) is increasing
and concave for α ∈ (1, 2]. By concavity and (57), we have

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥αα ≤ 1 − (α − 1)Lα

⎛

⎝

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥2

2

⎞

⎠
.

The latter proves (55) due to (50). ■
For the prescribed values of α, we have estimated the Schat-

ten norms of Λ(A; ρ) from above. In a similar manner, inequality
(55) deals with the averaged norms. Let us proceed to inequalities
for some of the Ky Fan norms.

B. Inequalities for estimating some Ky Fan norms
For positive semi-definite matrices, the Ky Fan k-norm reduces

to the sum of k largest eigenvalues. Such sums can be character-
ized in terms of the Hilbert–Schmidt norm. The following statement
holds.

Proposition 4. Let the matrix Λ(A; ρ) with elements (26) be
assigned to the density matrix ρ and mutually unbiased-equiangular
tight frame {∣ϕμj⟩} with μ = 1, . . . , M and j = 1, . . . , n; then,

∥Λ(A; ρ)∥
(1) ≤

1
Mn

⎧⎪⎪
⎨
⎪⎪⎩

1 +
√

Mn − 1 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ S(cd +M − 1) tr(ρ2
) − c)

1/2 ⎫⎪⎪
⎬
⎪⎪⎭

, (58)

∥Λ(A; ρ)∥
(2) ≤

1
Mn

⎧⎪⎪
⎨
⎪⎪⎩

2 +
√

2Mn − 4 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ S(cd +M − 1) tr(ρ2
) − c)

1/2 ⎫⎪⎪
⎬
⎪⎪⎭

. (59)

In addition, it holds that

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(1) ≤
1
n

⎧⎪⎪
⎨
⎪⎪⎩

1 +
√

n − 1 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ nc tr(ρ2
) − c)

1/2 ⎫⎪⎪
⎬
⎪⎪⎭

, (60)

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(2) ≤
1
n

⎧⎪⎪
⎨
⎪⎪⎩

2 +
√

2n − 4 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ nc tr(ρ2
) − c)

1/2 ⎫⎪⎪
⎬
⎪⎪⎭

. (61)

Proof. Due to Λ(A; ρ) ∈M+Mn(C) and ∥Λ(A; ρ)∥1 = 1, the
eigenvalues of Λ(A; ρ) are positive and sum to 1. The left-hand side
of (58) is equal to the maximal eigenvalue. To bind it from above, we
recall that the maximal probability can be estimated in terms of the
index of coincidence as62

max
1≤j≤N

pj ≤
1
N
(1 +

√
N − 1

√
NI(P) − 1 ), (62)

where N is the number of outcomes. Note also that the right-hand
side of (62) increases with I(P). Applying these facts to the eigenval-
ues of Λ(A; ρ) with N =Mn and (49) completes the proof of (58).
The right-hand side of (62) is a concave function of the index of
coincidence. This fact allows one to write

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(1) ≤
1
n

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 +
√

n − 1
⎛

⎝

n
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥2

2 − 1
⎞

⎠

1/2 ⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (63)

Combining the latter with (50) completes the proof of (60).

It was formulated in Theorem 2 of Ref. 63 that

max
j≠k
{pj + pk} ≤

1
N
(2 +

√
2N − 4

√
NI(P) − 1). (64)

The right-hand side of (64) increases with I(P) so that the inequali-
ties (49) and (64) together provide (59). Since the right-hand side of
(64) is a concave function of I(P), we also have

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(2) ≤
1
n

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 +
√

2n − 4
⎛

⎝

n
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥2

2 − 1
⎞

⎠

1/2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (65)

whence the result (61) follows. ■
The statement of Proposition 4 allows one to estimate the first

Ky Fan norms of Λ(A; ρ) from above. For M matrices Λ(Aμ; ρ),
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the averaged Ky Fan norms were estimated. In all these cases, the
inequalities are expressed in terms of purity and M, n, and d. If
the measurement statistics is sufficient to evaluate the correspond-
ing indices of coincidence, we also have other formulations. For
Λ(A; ρ), it holds that

∥Λ(A; ρ)∥
(1) ≤

1
Mn
{1 +

√
Mn − 1 (Mn(1 − c)I(F ; ρ)

+ S(cd +M − 1) tr(ρ2
) − 1)

1/2
}, (66)

∥Λ(A; ρ)∥
(2) ≤

1
Mn
{2 +

√
2Mn − 4 (Mn(1 − c)I(F ; ρ)

+ S(cd +M − 1) tr(ρ2
) − 1)

1/2
}. (67)

In addition, the averaged Ky Fan norms satisfy

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(1) ≤
1
n

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 +
√

n − 1
⎛

⎝

n − nc
M

M

∑
μ=1

I(F μ; ρ) + nc tr(ρ2
) − 1
⎞

⎠

1/2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

(68)

1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(2) ≤
1
n

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 +
√

2n − 4
⎛

⎝

n − nc
M

M

∑
μ=1

I(F μ; ρ) + nc tr(ρ2
) − 1
⎞

⎠

1/2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

(69)

The inequalities for k = 1 are of particular importance since
they lead to uncertainty relations in terms of the min-entropy. The
first Ky Fan norm is estimated from below as follows: Let X ↦ Λp(X)
be a piecewise smooth function such that62

Λp(X) =
1
q
(1 +

√
qX − 1
q − 1

), X ∈ [
1
q

,
1

q − 1
], (70)

where integer q ≥ 2. For any distribution, the maximal probability is
not less than Λp(I(P)),62 whence

Λp((1 − c)I(F ; ρ) +
cd +M − 1

Md
tr(ρ2

))

= Λp(∥Λ(A; ρ)∥2
2) ≤ ∥Λ(A; ρ)∥

(1), (71)

Λp((1 − c)I(Fμ; ρ) + c tr(ρ2
))

= Λp(∥Λ(Aμ; ρ)∥2
2) ≤ ∥Λ(Aμ; ρ)∥

(1). (72)

At this point, the measurement statistics allows us to evaluate the
squared Hilbert–Schmidt norms due to relations (40) and (48).
Inequalities (49) and (50) are not suitable here since the function
X ↦ Λp(X) increases.

C. Uncertainty relations for unravelings
of the considered quantum channels

The above inequalities lead to uncertainty relations for unravel-
ings of channel (24). Information entropies provide a flexible way to
address various measurement scenarios, including the cases of quan-
tum memory64–67 and multipartite systems.68–70 For more applica-
tions of entropic uncertainty relations in quantum information, see
Ref. 71 and references therein. For special types of measurements,
uncertainty relations often follow from the estimation of the corre-
sponding indices of coincidence. Using MUBs, this approach was
given in Ref. 72. It was later applied to a SIC-POVM,73 a general
SIC-POVM,74 and a single ETF.75 We can similarly treat the case of
mutually unbiased ETFs. Proposition 2 allows one to evaluate the
Hilbert–Schmidt norm of all matrices of the form Λ(B; ρ). These
positive semi-definite matrices have the same non-zero eigenvalues,
whence

∥Λ(B; ρ)∥α = ∥Λ(A; ρ)∥α, (73)

∥Λ(B; ρ)∥
(k) = ∥Λ(A; ρ)∥

(k). (74)

For each of M quantum channels of form (29), we also write

∥Λ(Bμ; ρ)∥α = ∥Λ(Aμ; ρ)∥α, (75)

∥Λ(Bμ; ρ)∥
(k) = ∥Λ(Aμ; ρ)∥

(k). (76)

Using the above connection, we have arrived at a conclusion.

Proposition 5. Let principal Kraus operators (24) be built of
the states of mutually unbiased-equiangular tight frame {∣ϕμj⟩} with
μ = 1, . . . , M and j = 1, . . . , n. For arbitrary unraveling B of channel
(24), each density matrix ρ, and α ∈ (0, 2], it holds that

Hα(B; ρ) ≥ Lα(
(1 − c)2

[d tr(ρ2
) − 1]

M2nS
+

1 − c
Mn

+
cd +M − 1

Md
tr(ρ2

)). (77)

Let Bμ be an arbitrary unraveling of the quantum channel (29). For
each density matrix ρ and α ∈ (0, 2], we also have

1
M

M

∑
μ=1

Hα(Bμ; ρ) ≥ Lα(
(1 − c)2

[d tr(ρ2
) − 1]

MnS
+

1 − c
n
+ c tr(ρ2

)).

(78)

Proof. It immediately follows from (56) that, for α ∈ (0, 2],

Hα(B; ρ) ≥ Lα(I(B; ρ)). (79)

To estimate I(B; ρ) for an arbitrary unraveling B, we use (49) and
(73) to write

I(B; ρ) ≤ ∥Λ(B; ρ)∥2
2 = ∥Λ(A; ρ)∥2

2 ≤
(1 − c)2

[d tr(ρ2
) − 1]

M2nS

+
1 − c
Mn
+

cd +M − 1
Md

tr(ρ2
). (80)
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Since the function X ↦ Lα(X) decreases, combining (79) with (80)
completes the proof of (77).

As the function X ↦ Lα(X) is convex, one gets

1
M

M

∑
μ=1

Hα(Bμ; ρ) ≥ Lα
⎛

⎝

1
M

M

∑
μ=1

I(Bμ; ρ)
⎞

⎠
. (81)

According to (50), we also write

1
M

M

∑
μ=1

I(Bμ; ρ) ≤
1
M

M

∑
μ=1
∥Λ(Bμ; ρ)∥2

2

=
1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥2

2 ≤
(1 − c)2

[d tr(ρ2
) − 1]

MnS

+
1 − c

n
+ c tr(ρ2

). (82)

Combining the latter with (81) leads to (78) due to the decreasing of
the function X ↦ Lα(X). ■

The statement of Proposition 5 gives an estimate of Hα(B; ρ)
for arbitrary unraveling of map (24). Using (37) allows us to obtain

Rα(B; ρ) ≥
1

1 − α
ln{1 + (1 − α)Lα(

(1 − c)2
[d tr(ρ2

) − 1]
M2nS

+
1 − c
Mn

+
cd +M − 1

Md
tr(ρ2

))}, (83)

where α ∈ (0, 2]. Indeed, the function X ↦ (1 − α)−1

ln [1 + (1 − α)X] is increasing. For α ∈ [1,2], one also has

1
M

M

∑
μ=1

Rα(Bμ; ρ) ≥
1

1 − α
ln{1 + (1 − α)Lα(

(1 − c)2
[d tr(ρ2

) − 1]
MnS

+
1 − c

n
+ c tr(ρ2

))}. (84)

To derive the latter, we recall the following fact. If the func-
tion X ↦ f(X) is convex and the function Y ↦ g(Y) is increas-
ing and convex, then their composition X ↦ g( f (X)) is con-
vex too. Combining this with the properties of X ↦ Lα(X) and
Y ↦ (1 − α)−1 ln{1 + (1 − α)Y} gives convexity of the function

X ↦
1

1 − α
ln{1 + (1 − α)Lα(X)}

for α ∈ [1,2]. In addition, this function decreases. Then, result (84)
follows from (82) and

1
M

M

∑
μ=1

Rα(Bμ; ρ) ≥
1
M

M

∑
μ=1

ln{1 + (1 − α)Lα(I(Bμ; ρ))}
1 − α

. (85)

Thus, we have formulated uncertainty relations in terms of the Tsal-
lis and Rényi entropies for arbitrary unravelings of the quantum
channels (24) and (29).

Uncertainty relations in terms of the min-entropy follow from
the estimates of the maximal probabilities from above. The following
statement is based on results (58) and (60).

Proposition 6. Let principal Kraus operators (24) be built of
the states of mutually unbiased-equiangular tight frame {∣ϕμj⟩} with
μ = 1, . . . , M and j = 1, . . . , n. For arbitrary unraveling B of channel
(24) and each density matrix ρ, it holds that

R∞(B; ρ) ≥ ln (Mn) − ln
⎧⎪⎪
⎨
⎪⎪⎩

1 +
√

Mn − 1 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ S(cd +M − 1) tr(ρ2
) − c)

1/2⎫⎪⎪
⎬
⎪⎪⎭

. (86)

Let Bμ be an arbitrary unraveling of the quantum channel (29). For
each density matrix ρ, we also have

1
M

M

∑
μ=1

R∞(Bμ; ρ) ≥ ln n − ln
⎧⎪⎪
⎨
⎪⎪⎩

1 +
√

n − 1 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ nc tr(ρ2
) − c)

1/2⎫⎪⎪
⎬
⎪⎪⎭

. (87)

Proof. To estimate the maximal probability for an arbitrary
unraveling B, we use (58) and (74) to get

max
1≤j≤Mn

pj(B; ρ) ≤ ∥Λ(B; ρ)∥
(1) = ∥Λ(A; ρ)∥

(1)

≤
1

Mn

⎧⎪⎪
⎨
⎪⎪⎩

1 +
√

Mn − 1 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ S(cd +M − 1) tr(ρ2
) − c)

1/2⎫⎪⎪
⎬
⎪⎪⎭

. (88)

Combining this with (35) immediately gives (86). In a similar
manner, one uses (60) to write

1
M

M

∑
μ=1

max
1≤j≤n

pj(Bμ; ρ) ≤
1
M

M

∑
μ=1
∥Λ(Bμ; ρ)∥

(1) =
1
M

M

∑
μ=1
∥Λ(Aμ; ρ)∥

(1)

≤
1
n

⎧⎪⎪
⎨
⎪⎪⎩

1 +
√

n − 1 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ nc tr(ρ2
) − c)

1/2⎫⎪⎪
⎬
⎪⎪⎭

. (89)

To obtain (87), we combine (35) with (89) since the function X
↦ −ln X is convex and decreasing. ■

Formulas (59) and (61) lead to uncertainty relations of the
Landau–Pollak type. Inequalities of this kind are formulated in
terms of the two maximal probabilities. Applications to uncertainty
relations were mentioned in Ref. 76, whereas the original formu-
lation77 was focused on signal analysis. Here, we have arrived at a
conclusion.

Proposition 7. Let principal Kraus operators (24) be built of
the states of mutually unbiased-equiangular tight frame {∣ϕμj⟩} with
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μ = 1, . . . , M and j = 1, . . . , n. For arbitrary unraveling B of channel
(24) and each density matrix ρ, it holds that

max
j≠k
{pj(B; ρ) + pk(B; ρ)} ≤

1
Mn

×

⎧⎪⎪
⎨
⎪⎪⎩

2 +
√

2Mn − 4 (
(1 − c)2

[d tr(ρ2
) − 1]

MS

+ S(cd +M − 1) tr(ρ2
) − c)

1/2⎫⎪⎪
⎬
⎪⎪⎭

. (90)

Let Bμ be an arbitrary unraveling of the quantum channel (29). For
each density matrix ρ, we also have

1
M

M

∑
μ=1

max
j≠k
{pj(Bμ; ρ) + pk(Bμ; ρ)} ≤

1
n

×

⎧⎪⎪
⎨
⎪⎪⎩

2 +
√

2n − 4 (
(1 − c)2

[d tr(ρ2
) − 1]

MS
+ nc tr(ρ2

) − c)
1/2⎫⎪⎪
⎬
⎪⎪⎭

.

(91)

Proof. Recall that the matrixΛ(Bμ, ρ) is positive semi-definite,
and its diagonal elements represent probabilities pj(B; ρ). It also
follows from Theorem 1 of Ky Fan44 that

pj(Bμ; ρ) + pk(Bμ; ρ) ≤ ∥Λ(B; ρ)∥
(2)

for all j ≠ k. Then, inequality (90) follows by combining (59) with
(74) for k = 2. In a similar manner, inequality (91) is based on (61)
and (76). ■

D. Examples of Kirkwood–Dirac quasiprobabilities
for mutually unbiased ETFs

Let us discuss concrete examples of mutually unbiased equian-
gular tight frames. A traditional example of MUBs is provided by
three eigenbases of the Pauli matrices X, Y, and Z. The correspond-
ing six states are represented on the Bloch sphere by vertices of
an octahedron as shown in Fig. 1. The normalized eigenstates are,
respectively, denoted by ∣x±⟩, ∣y±⟩, and ∣z±⟩. We begin with the case
M = 2 since a diagonal matrix appears for M = 1. The choice M = 2
gives a pair of complementary observables. The obtained quasiprob-
abilities can be interpreted as a finite-dimensional counterpart of
the original formulation.22 For definiteness, the four principal Kraus
operators of the unraveling A read as 2−1

∣x±⟩⟨x±∣ and 2−1
∣z±⟩⟨z±∣.

We begin with illustrating inequality (54). Figure 2 shows the Schat-
ten 1.5-norm of the matrix Λ(A; ρ) and its estimate from above as a
function of square of the Bloch vector. The three orientations of the
Bloch vector are used here. According to (73), the presented curves
also characterize ∥Λ(B; ρ)∥1.5 for any unraveling B. Errors of the
estimate due to (54) are larger when the Bloch vector is directed
along the y-axis. For this direction, the estimation error is maximal
for pure states. However, it is less than seven percents in a relative
scale. This example shows a utility of the obtained estimates.

The second example deals with a ququart in dimension four.
The fifteen frame vectors arise as columns of the matrices Ψ, ΔΨ,

FIG. 1. Octahedron vertices corresponding to the six states of three mutually
unbiased bases in dimension two.

FIG. 2. Schatten 1.5-norm of the matrix Λ(A; ρ) for few orientations of the Bloch
vector together with the estimate from above obtained due to (54).

andΔ2Ψ, of whichΨ andΔ are given in (14). Let us consider density
matrices of the form

ρ = ν ∣Φ′00⟩⟨Φ
′
00∣ +

1 − ν
4

𝟙2 ⊗ 𝟙2, (92)

where ν ∈ [0, 1] and ∣Φ′00⟩ is one of the rotated Bell states. Such
density matrices are similar to isotropic states typically used in test-
ing criteria to detect non-classical correlations. For unitary qubit
rotation

Rℓ̂(θ) = cos(
θ
2
)𝟙2 − i sin(

θ
2
)(ℓxX + ℓyY + ℓzZ) (93)
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FIG. 3. Tsallis entropy H1.5(A; ρ) for few orientations of the vector ℓ̂ with the
estimate from below due to (95).

and a, b = 0, 1, the rotated Bell states read as ∣Φ′ab⟩

= (Rℓ̂(θ)
†
⊗ 𝟙2)∣Φab⟩. By ℓ̂ = (ℓx, ℓy, ℓz), we mean here a real

vector of unit length. The rotated Bell states are used in measure-
ment based quantum computation.78 The first Bell state reads
as

∣Φ00⟩ =
∣00⟩ + ∣11⟩
√

2
. (94)

Let Kraus operators be built of the states of a mutually unbiased-
equiangular tight frame {∣ϕμj⟩} according to (24). It follows from
(52) and (56) that, for α ∈ (0, 2],

Hα(A; ρ) ≥ Lα(
(1 − c)[d tr(ρ2

) − 1]
M2nS

+
1

Mn
). (95)

Figure 3 shows the entropy H1.5(A; ρ) and its estimate from below as
a function of ν ∈ [0, 1]. The choice θ = 0 implies the use of the origi-
nal state (94). In addition, the rotation with θ = π was used with two
orientations of the vector ℓ̂ along the x-axis and the middle between
the x- and y-axes. All the curves are similar and decrease with the
growth of ν. Similarly to Fig. 2, estimation errors become maximal
for pure states. In a relative scale, they do not exceed five percents. A
good quality of the given estimates is also observed.

IV. CONCLUSIONS
This paper considered Kirkwood–Dirac quasiprobabilities for

measurements assigned to a mutually unbiased-equiangular tight
frame. Mutually unbiased bases appeared as an important partic-
ular case. The contribution of this paper is characterized as three-
fold. First, the approach to quasiprobabilities given in Ref. 42 was
extended to several measurements. It is consistent with the previous

definition of generalized Kirkwood–Dirac quasiprobabilities.51 Sec-
ond, the matrices of quasiprobabilities were characterized in terms
of unitarily invariant norms, such as the Schatten and Ky Fan ones.
Third, improved entropic uncertainty relations for unravelings of
the corresponding quantum channels were derived.

Finite tight frames have found use in various disciplines,
including quantum information science. The considered
Kirkwood–Dirac quasiprobabilities are easy to analyze in terms of
unravelings of quantum channels whose principal Kraus operators
are defined via states of the frame. The structure of a mutually
unbiased-equiangular tight frame allows one to estimate from
above some Schatten and Ky Fan norms of matrices formed by
Kirkwood–Dirac quasiprobabilities. Such matrices are immediately
connected with the matrices assigned to different unravelings
of certain quantum channels. Here, many results are naturally
formulated in terms of different unravelings of quantum channels
of interest.

Since measurement statistics can be treated in two different
ways, the following interpretations were considered. The first deals
with a single POVM and only one quantum channel. The second
treatment uses a collection of similar quantum channels defined
in terms of mutually unbiased ETFs. Quantitative characteristics of
the corresponding matrices were described due to the properties of
a mutually unbiased-equiangular tight frame. For a set of several
quantum channels, averaged Schatten and Ky Fan norms were esti-
mated from above. The derived inequalities have led to uncertainty
relations that hold for arbitrary unravelings of the considered chan-
nels. A utility of the derived inequalities was illustrated with qubit
MUBs and ququart isotropic states defined in terms of rotated Bell
states.
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