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Based on the Skyrme energy density functional, the self-consistent HF calculations have been performed
for 10, and the results show that the double point group tetrahedral symmetry T(? may play an
important role in the configuration of many-body fermion system in the ground state of 0. The
corresponding total density distribution in the ground state, calculated by using the HF wave functions,
presents the distinct 4o cluster-like tetrahedral structure with the Ty symmetry. Among others, the
necessary restoration of the rotational and parity symmetry, plays a crucial role for the occurrence of
the tetrahedral symmetry in '60.
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The tetrahedral symmetry that breaks spontaneously both the
spherical and spatial-reflection symmetries has been identified in
molecules, fullerenes, metal clusters and many other quantum ob-
jects, all of which are governed by electromagnetic interaction.
A matter of fundamental interest has been the possibility of the
tetrahedral symmetry in atomic nuclei, as a strong interaction fi-
nite many-body quantum system. Recently, the low-lying tetrahe-
dral states were predicted by the potential energy surface calcula-
tions to appear in 1°°Gd [1]. To test the tetrahedral symmetry the
ultrahigh-resolution gamma-ray spectroscopy of >°°Gd was carried
out in a collaboration between France, Poland, Bulgaria, Switzer-
land and Italy [2]. The experimental result, however, gives a strong
evidence against tetrahedral symmetry in the lowest negative-
parity band of *Gd. The same conclusion for the non-tetrahedral
symmetry of this negative-parity band also was drawn by another
experimental data [3]. The searching for new candidates for the
tetrahedral symmetry in other nuclear mass regions becomes an
important task to address the issue.

Very recently, the evidence for the tetrahedral symmetry in
light nucleus %0 has been identified by Bijker and lachello with
the algebraic cluster model to reproduce the rotation-vibration
spectrum of an object with Ty symmetry (tetrahedral) and com-
pare it with the observed ground state rotational band in 160 [4].
This study clearly shows that the low-lying states in 60 can be
described as a 4o cluster with Ty symmetry for both the energies
and the B(EL) values of the ground-band states. A very recent ab
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initio lattice calculation of the low-lying even-parity states of 60
has been carried out in the framework of nuclear lattice effective
field theory, and the result also shows that the nucleons in the
ground state of 180 are arranged in a tetrahedral configuration of
4« clusters [5]. The fingerprints of tetrahedral configuration in 60
is also found from the investigation of giant dipole resonance [6].

In this letter, we report our investigation based on the nuclear
mean-field solution for the tetrahedral symmetry in the ground
state of 160 rather than the starting point of the «-cluster picture.
The specific results may, therefore, provide a deeper insight into
the tetrahedral symmetry in the nuclear system where the mean
field approximation has been proven as an essential starting point
for the nuclear modelings. We will show that the HF calculation
based on the Skyrme energy density functional predicts the tetra-
hedral shape with double point group symmetry Tc? as the major
configuration in the ground state of '60, and the beyond mean-
field effect, namely, the restoration of rotational symmetry, plays
a crucial role in the occurrence of the tetrahedral symmetry. We
show also that the ground state of '°0 with the tetrahedral T2
symmetry has a density distribution of nuclear matter presenting
a 4o-cluster structure with the T; symmetry.

The density functional theory (DFT) is based on theorems pre-
senting the existence of energy functionals for many-body systems,
which, in principle, include all many-body correlations [7-9]. Ac-
tually, the first nuclear energy density functionals have been pre-
sented in the context of the Hartree-Fock (HF) method with the
zero range, density dependent interactions such as the Skyrme
force [10-12]. The potential energy surfaces (PES) is obtained by
the constraints of multipole moments Qw, using the augmented
Lagrangian method, which is very robust and can give precisely the
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requested solutions [13]. During PES calculations, a constraint is al-
ways imposed on the center of mass of the nucleus: (r'Yi0) =0,
to exclude the possible coupling to the spurious center of mass
motion.

The symmetry restoration is very important to study the “true”
ground and excited states of deformed nuclei, for references of
investigating tetrahedral symmetry, see Refs. [14-16]. In the de-
formed mean field, the angular-momentum-projection (AMP) op-
erator 13,’\4,( and parity projection operator P” [17,18], can be used
to obtain the angular momentum and parity conserving wave func-

tion,
21 +1 I
87[2 /DMK

where, I is the angular momentum, and M and K are its pro-
jections along the laboratory and intrinsic z axes, respectively.
pT = 1/2(1 + 7 P), where P is the parity operator and 7w = +1.
Q denotes the set of three Euler angles (o, B, y), while D’M*K(Q)
are Wigner functions [19]. R(Q) = e—ielzg=iBlye=ivl: is the rota-
tion operator.

As the rotation symmetry is broken in the mean field, K is no
longer a good quantum number, so that different K components
must be mixed with the coefficients determined by minimizing the
energy. The K-mixing is realized by the assumption,

IM™)D =37 g IMK™) Zg(')PMKM)” (2)
K
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where gg) are the mixing coefficients of different K components.
The label i =1, 2, ... indicates the different collective states with
the same angular momentum I. Then the Hill-Wheeler (HW) [20]

equation is solved to obtain the eigen energies E{” and mixing

coefficients g;é),

H gV =E N g0 (3)
i )

where the matrix elements H;(,K (<I>|HPK 'K P”|<I>> and M’('K =
(<I>|P<,KP”|<I>) represent the Hamiltonian and overlap kernels, re-

spectively. g® represents a column of the g(l) coefficients. States

with different angular momentum and parity I are solved sep-
arately. When solving Eq. (3), the norm matrix is diagonalized to
build the collective subspace. To avoid the numerical unstable solu-
tion, the cut-off parameter needs to be used to remove the “zero”
norm eigenstates. The cut-off is chosen to satisfy the plateau con-
dition for the corresponding state [21].

The EDF calculation and its extensions in this work are per-
formed by the computer code HFODD (v2.73y) [22], which can
solve HF/HFB equations in the basis of three-dimensional Carte-
sian harmonic oscillators. The AMP is provided by the code HFODD
already and we implemented the parity projection for the current
study. Calculations were performed in the spherical basis of 12 ma-
jor harmonic-oscillator shells. The harmonic oscillator frequency of
the basis is chosen as 1.2 x 41 MeV/A (the value 1.2 is based on
experience of diagonalizing the Woods-Saxon Hamiltonian on the
HO basis [23,24]). During the calculations, we break all intrinsic
symmetries of the nuclear mean field, i.e., simplex, signature, and
parity symmetry, to adopt all possible deformation freedoms. The
AMP energy and overlap kernels are calculated by using 40 Gauss—
Chebyshev integration points in the o and y directions and 40
Gauss-Legendre points in the 8 direction.

We use several Skyrme-EDFs, as the SLy4 [25], SIII [26], and
SkP [27] functionals which are frequently used for DFT predic-
tions, to initiate the calculations. The SkV [26] functional, derived
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Fig. 1. Mean-field energy E, projected energy Epros = EQ:O in function of the
quadrupole moments Q5o (left) and Q5 (right), calculated for 160 by the SkV, SLY4,
SIII, and SKP functionals.

|—— SkV

E (MeV)

Epro, (MeV)

0 20 40 60

0 2040 60

0 20 40 60 0 20 40 60 80
3 3
Q,, (fm’) Q,, (fm’) Q,, (fm’) Q, (fm”)

Fig. 2. Same as Fig. 1, but for octupole moments ng, Q31, Q32 and Q33. The
quadrupole moments are set to zero during these calculations.

from the density-independent force and free from singularity prob-
lem existed in multi-reference calculations [28,29], also serves DFT
predictions commonly, especially for beyond-mean-field descrip-
tions [30,31].

We first calculate the energy curves against one deformation
freedom only, while other deformations are forced to be zero.
The results for quadrupole deformations and octupole deformation,
are shown in Figs. 1 and 2, respectively. The mean field ener-
gies from variational calculations are shown in the upper panel of
the figures. The lowest projected energies EFO, in function of the
quadrupole moments (Fig. 1) and octupole moments (Fig. 2), are
shown in the lower panel, labeled as Epros. As expected, in the
mean-field energy curves of 160 there is a deep minimum at the
spherical configuration and no other local minimum. The projected
energy curves are extremely flat against quadrupole deformations,
being consistent with the results in Ref. [32].

However, when the necessary restoration of the rotational sym-
metry is considered through the angular momentum plus parity
projection (AMPP), the octupole deformed states become lower in
energy than the spherical state, as the well established minima
seen in the lower panel of Fig. 2. For all these Skyrme functionals,
non-axial octupole minima with moment Q32 are slightly lower
than axial deformed one with Q30, and are also slightly lower than
the corresponding other non-axial octupole minima. Especially, the
results from the SkV functional shows that the Q3;-deformed min-
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Fig. 3. The quadrupole moments against the octupole moments, during the HF vari-
ations for the calculation with constraints of octupole moments.
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Fig. 4. Potential energy surfaces in the (Qa9, Q32) (left) and (Q2, Q32) (right)
plane, calculated by SkV functionals. The contour scale is 1.0 MeV for the mean-
field energy E (a) and (b), and 0.2 MeV for the projected energy Epros (c) and (d).

imum is explicitly lowest. In general, the HF solutions with the
Skyrme functionals and AMPP indicates that the system in the
ground state of 160 favors to have the Y3 shape, the tetrahedral
symmetry.

We also do the variations against single octupole deformation
without constraints of other deformation freedom. The uncon-
strained moments, e.g., quadrupole and other octupole moments
are initialized as zero. Thus, they can occur naturally during the
HF variations (minimizing procedure). The quadrupole moments
after convergence are shown in Fig. 3. The other, unconstrained,
octupole moments are nearly zero (less than 10~! fm?) after the
convergence. As in Fig. 3 (a), when Q3p moment increases, Q2o
moment grows, without triaxial deformations. When Q3; moment
increases, Q29 moment increases and triaxality kicks in (Q22 mo-
ment appears), seen in Fig. 3 (b). As in Fig. 3 (c), when Q3
moment increases, no quadrupole deformation appears at all. The
results of Q33 are similar as Q3p moment, as in the panel (d) of
Fig. 3.

We then test the competition of the tetrahedral degree of free-
dom with the quadrupole and other octupole degrees of freedom.
The potential energy surfaces in the (ng, Q32) and (sz, Q32)
plane are given, calculated by using the SkV functionals and setting
other multipole moments to zero during the entire computation,
in Fig. 4. The Fig. 5 shows the energy surfaces in the (Q30, Q32),
(Q31, 03, ), and (Q33, ng) plane, calculated with other multipole
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Fig. 5. Same as Fig. 4, but for energy surfaces in the (Q30' Qg,z), (Q31, Q32), and

(@33, @32) plane. The contour scale is 1.0 MeV for the mean-field energy E (a), (b)
and (c), and 0.15 MeV for the angular-momentum projected energy Epros (d), (e)
and (f).
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Fig. 6. (a-c) Density distributions of '60, with the pure moment O3 =40 fm®
(B32 = 0.339), calculated by SkV functional, in (x, y), (v, z), (z, X) planes, respec-
tively. The contour scale is 0.01 fm™3, and the third axis left, i.., z, x, y is fixed at
0.161 fm. (d) The 3D-density distribution of 160 at the density p =0.15 fm~>.

moments being excluded. As expected, in the mean-field energy
surfaces only the spherical minimum survives. After the restora-
tion of the symmetry, the projected energy surfaces in the lower
panel of Figs. 4 and 5, gives a pure (0 3,-deformed minimum, in-
dicating the tetrahedral symmetry nature in the ground state of
160. The projected energies give rise to the tetrahedral minimum
at about Q3; =40 fm>. The above projected energy surface calcu-
lations demonstrate that the tetrahedral degree of freedom as the
non-axial octupole deformation, Y33, could win against or strongly
compete with the other important nuclear deformation degrees of
freedom, namely, the quadrupole and other octupole deformations.

The total density distribution in the ground state of 160 is cal-
culated by using the wave function predicted by the projected en-
ergy surface of SkV functional, namely, with the tetrahedral shape
at the moment Qs, = 40 fm> (tetrahedral minimum of the pro-
jected energy surfaces, as can be seen in Figs. 2, 4, and 5), and
the results are plotted in Fig. 6. This total density distribution of
160, as a nucleonic system, coincides with the 4a-cluster structure



X.B. Wang et al. / Physics Letters B 790 (2019) 498-501 501

T B, T T T T

— o= Crank(x) 6*
20 F
— 2= Crank(y)

—v= Crank(z)

— &= Crank(xy)

E (MeV)

10 o 1
3; —e— PROJ(X)
7 —a— PROJ(y)
0* —v— PROJ(z)
0r —e— PROJ(xy)
0 10 20 30 40 50
1(1+1)

Fig. 7. The experimental ground-state band of 60, taken from the observed spec-
trum [34] and organized by Ref. [4], is given for a comparison with calculations
(labeled as “Exp.”). Calculated ground-state band of '®0 from the cranking-HF solu-
tion of tetrahedral symmetry with Qs3; =40 fm> with cranking axis as x, y, z and
the axis in x—y plane (7 /4 degree between x and y axis), are labeled as “Crank(x)”,
“Crank(y)”, “Crank(z)” and “Crank(xy)” respectively. The projection energies after the
convergence of CHF with different cranking axis are also given (labeled as “PROJ(x)”",
“PROJ(y)", “PROJ(z)", and “PROJ(xy)” correspondingly).

of 1%0. Hence, the present Skyrme functional calculations could
provide the microscopic support to the 4w-cluster modelings of
the tetrahedral structure of 160, for an example, as that given in
Ref. [4].

The tetrahedral rotational band is a very important proof for the
tetrahedral symmetry [33]. In Ref. [4], the ground tetrahedral rota-
tional band of 160 has been used as the experimental indicator of
tetrahedral symmetry. However, unlike the axially deformed nuclei,
the favored cranking axis of the tetrahedral deformed state has un-
certainties [35,36]. In principle, the tilted axis cranking needs to
be performed. To test the collective rotation on the tetrahedral de-
formed state, we select several different cranking axis, as x axis,
Yy axis, z axis, and the axis in xy plane (/4 degree between x
and y axis). We do the cranking calculation with the constraints
of (I) =1 based on the tetrahedral-deformed minimum suggested
by projected energy surface, by the SkV functional. The AMPP cal-
culations is performed after the convergence of cranking-HF (CHF)
calculations. In the CHF calculation, the time-odd field is also in-
cluded. The projection after the convergence of cranking mean
field can improve the description of the cranking momentum of
inertia at low spins for projection calculations, which is an approx-
imated variational-after-projection (VAP) method [21,37]. Results
are shown in Fig. 7. The total Routhians by different cranking axis
at the same spin are quite close. Both the CHF and projection
calculations can give good reproduction of the experimental tetra-
hedral rotational band of 160.

The present Skyrme functional HF calculations, as the micro-
scopic mean-field study, could support, therefore, the conclusion
that the tetrahedral symmetry as the 4o structure exists in the
ground state of 1%0 from the very recent studies, the algebraic
cluster model (ACM) calculation [4] and the ab initio lattice calcu-
lation [5]. The necessary restoration of the rotational symmetry is
essential for the appearance of well established tetrahedral minima
in the projected energy surfaces generated by the Skyrme function-
als. The spectrum calculations performed with the AMPP on the
CHF solutions indicate again that the tetrahedral symmetry con-
figuration might be a major one in the ground state of 0. As a

typical quantum system, the “true” ground state 80 should be a
mixing of different possible configurations, and what matters most
would be the relative importances for these configurations, so that,
the mixing between different configurations, i.e., spherical shape,
quadrupole deformed shape, Y3, — 4o, 12C + « structure, etc., have
to be performed in the future, to understand the full picture of the
ground state in 160,
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