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Based on the Skyrme energy density functional, the self-consistent HF calculations have been performed 
for 16O, and the results show that the double point group tetrahedral symmetry T D

d may play an 
important role in the configuration of many-body fermion system in the ground state of 16O. The 
corresponding total density distribution in the ground state, calculated by using the HF wave functions, 
presents the distinct 4α cluster-like tetrahedral structure with the Td symmetry. Among others, the 
necessary restoration of the rotational and parity symmetry, plays a crucial role for the occurrence of 
the tetrahedral symmetry in 16O.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The tetrahedral symmetry that breaks spontaneously both the 
spherical and spatial-reflection symmetries has been identified in 
molecules, fullerenes, metal clusters and many other quantum ob-
jects, all of which are governed by electromagnetic interaction. 
A matter of fundamental interest has been the possibility of the 
tetrahedral symmetry in atomic nuclei, as a strong interaction fi-
nite many-body quantum system. Recently, the low-lying tetrahe-
dral states were predicted by the potential energy surface calcula-
tions to appear in 156Gd [1]. To test the tetrahedral symmetry the 
ultrahigh-resolution gamma-ray spectroscopy of 156Gd was carried 
out in a collaboration between France, Poland, Bulgaria, Switzer-
land and Italy [2]. The experimental result, however, gives a strong 
evidence against tetrahedral symmetry in the lowest negative-
parity band of 156Gd. The same conclusion for the non-tetrahedral 
symmetry of this negative-parity band also was drawn by another 
experimental data [3]. The searching for new candidates for the 
tetrahedral symmetry in other nuclear mass regions becomes an 
important task to address the issue.

Very recently, the evidence for the tetrahedral symmetry in 
light nucleus 16O has been identified by Bijker and Iachello with 
the algebraic cluster model to reproduce the rotation-vibration 
spectrum of an object with Td symmetry (tetrahedral) and com-
pare it with the observed ground state rotational band in 16O [4]. 
This study clearly shows that the low-lying states in 16O can be 
described as a 4α cluster with Td symmetry for both the energies 
and the B(E L) values of the ground-band states. A very recent ab 
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initio lattice calculation of the low-lying even-parity states of 16O 
has been carried out in the framework of nuclear lattice effective 
field theory, and the result also shows that the nucleons in the 
ground state of 16O are arranged in a tetrahedral configuration of 
4α clusters [5]. The fingerprints of tetrahedral configuration in 16O 
is also found from the investigation of giant dipole resonance [6].

In this letter, we report our investigation based on the nuclear 
mean-field solution for the tetrahedral symmetry in the ground 
state of 16O rather than the starting point of the α-cluster picture. 
The specific results may, therefore, provide a deeper insight into 
the tetrahedral symmetry in the nuclear system where the mean 
field approximation has been proven as an essential starting point 
for the nuclear modelings. We will show that the HF calculation 
based on the Skyrme energy density functional predicts the tetra-
hedral shape with double point group symmetry T D

d as the major 
configuration in the ground state of 16O, and the beyond mean-
field effect, namely, the restoration of rotational symmetry, plays 
a crucial role in the occurrence of the tetrahedral symmetry. We 
show also that the ground state of 16O with the tetrahedral T D

d
symmetry has a density distribution of nuclear matter presenting 
a 4α-cluster structure with the Td symmetry.

The density functional theory (DFT) is based on theorems pre-
senting the existence of energy functionals for many-body systems, 
which, in principle, include all many-body correlations [7–9]. Ac-
tually, the first nuclear energy density functionals have been pre-
sented in the context of the Hartree–Fock (HF) method with the 
zero range, density dependent interactions such as the Skyrme 
force [10–12]. The potential energy surfaces (PES) is obtained by 
the constraints of multipole moments Q̄ λμ , using the augmented 
Lagrangian method, which is very robust and can give precisely the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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requested solutions [13]. During PES calculations, a constraint is al-
ways imposed on the center of mass of the nucleus: 〈r1Y10〉 = 0, 
to exclude the possible coupling to the spurious center of mass 
motion.

The symmetry restoration is very important to study the “true” 
ground and excited states of deformed nuclei, for references of 
investigating tetrahedral symmetry, see Refs. [14–16]. In the de-
formed mean field, the angular-momentum-projection (AMP) op-
erator P̂ I

M K and parity projection operator P̂π [17,18], can be used 
to obtain the angular momentum and parity conserving wave func-
tion,

|I M K π 〉= P̂ I
M K P̂π |�〉≡ 2I + 1

8π2

∫
D I∗

M K (�) R̂(�)|�π 〉 d�, (1)

where, I is the angular momentum, and M and K are its pro-
jections along the laboratory and intrinsic z axes, respectively. 
P̂π = 1/2(1 + π P̂ ), where P̂ is the parity operator and π = ±1. 
� denotes the set of three Euler angles (α, β, γ ), while D I∗

M K (�)

are Wigner functions [19]. R̂(�) = e−iα Î z e−iβ Î y e−iγ Î z is the rota-
tion operator.

As the rotation symmetry is broken in the mean field, K is no 
longer a good quantum number, so that different K components 
must be mixed with the coefficients determined by minimizing the 
energy. The K -mixing is realized by the assumption,

|I Mπ 〉(i) =
∑

K

g(i)
K |I M K π 〉 ≡

∑
K

g(i)
K P̂ I

M K |�π 〉, (2)

where g(i)
K are the mixing coefficients of different K components. 

The label i = 1, 2, . . . indicates the different collective states with 
the same angular momentum I . Then the Hill–Wheeler (HW) [20]
equation is solved to obtain the eigen energies E Iπ

i and mixing 
coefficients g(i)

K ,

HIπ ḡ(i) = E Iπ
i N Iπ ḡ(i), (3)

where the matrix elements HIπ
K ′ K = 〈�|Ĥ P̂ I

K ′ K P̂π |�〉 and N I
K ′ K =

〈�| P̂ I
K ′ K P̂π |�〉 represent the Hamiltonian and overlap kernels, re-

spectively. ḡ(i) represents a column of the g(i)
K coefficients. States 

with different angular momentum and parity Iπ are solved sep-
arately. When solving Eq. (3), the norm matrix is diagonalized to 
build the collective subspace. To avoid the numerical unstable solu-
tion, the cut-off parameter needs to be used to remove the “zero” 
norm eigenstates. The cut-off is chosen to satisfy the plateau con-
dition for the corresponding state [21].

The EDF calculation and its extensions in this work are per-
formed by the computer code HFODD (v2.73y) [22], which can 
solve HF/HFB equations in the basis of three-dimensional Carte-
sian harmonic oscillators. The AMP is provided by the code HFODD

already and we implemented the parity projection for the current 
study. Calculations were performed in the spherical basis of 12 ma-
jor harmonic-oscillator shells. The harmonic oscillator frequency of 
the basis is chosen as 1.2 × 41 MeV/A (the value 1.2 is based on 
experience of diagonalizing the Woods–Saxon Hamiltonian on the 
HO basis [23,24]). During the calculations, we break all intrinsic 
symmetries of the nuclear mean field, i.e., simplex, signature, and 
parity symmetry, to adopt all possible deformation freedoms. The 
AMP energy and overlap kernels are calculated by using 40 Gauss–
Chebyshev integration points in the α and γ directions and 40 
Gauss–Legendre points in the β direction.

We use several Skyrme-EDFs, as the SLy4 [25], SIII [26], and 
SkP [27] functionals which are frequently used for DFT predic-
tions, to initiate the calculations. The SkV [26] functional, derived 
Fig. 1. Mean-field energy E , projected energy EPROJ = E I=0
1 in function of the 

quadrupole moments Q̂ 20 (left) and Q̂ 22 (right), calculated for 16O by the SkV, SLY4, 
SIII, and SKP functionals.

Fig. 2. Same as Fig. 1, but for octupole moments Q̂ 30, Q̂ 31, Q̂ 32 and Q̂ 33. The 
quadrupole moments are set to zero during these calculations.

from the density-independent force and free from singularity prob-
lem existed in multi-reference calculations [28,29], also serves DFT 
predictions commonly, especially for beyond-mean-field descrip-
tions [30,31].

We first calculate the energy curves against one deformation 
freedom only, while other deformations are forced to be zero. 
The results for quadrupole deformations and octupole deformation, 
are shown in Figs. 1 and 2, respectively. The mean field ener-
gies from variational calculations are shown in the upper panel of 
the figures. The lowest projected energies E I=0

1 , in function of the 
quadrupole moments (Fig. 1) and octupole moments (Fig. 2), are 
shown in the lower panel, labeled as EPROJ . As expected, in the 
mean-field energy curves of 16O there is a deep minimum at the 
spherical configuration and no other local minimum. The projected 
energy curves are extremely flat against quadrupole deformations, 
being consistent with the results in Ref. [32].

However, when the necessary restoration of the rotational sym-
metry is considered through the angular momentum plus parity 
projection (AMPP), the octupole deformed states become lower in 
energy than the spherical state, as the well established minima 
seen in the lower panel of Fig. 2. For all these Skyrme functionals, 
non-axial octupole minima with moment Q̂ 32 are slightly lower 
than axial deformed one with Q̂ 30, and are also slightly lower than 
the corresponding other non-axial octupole minima. Especially, the 
results from the SkV functional shows that the Q̂ 32-deformed min-



500 X.B. Wang et al. / Physics Letters B 790 (2019) 498–501
Fig. 3. The quadrupole moments against the octupole moments, during the HF vari-
ations for the calculation with constraints of octupole moments.

Fig. 4. Potential energy surfaces in the ( Q̂ 20, Q̂ 32) (left) and ( Q̂ 22, Q̂ 32) (right) 
plane, calculated by SkV functionals. The contour scale is 1.0 MeV for the mean-
field energy E (a) and (b), and 0.2 MeV for the projected energy EPROJ (c) and (d).

imum is explicitly lowest. In general, the HF solutions with the 
Skyrme functionals and AMPP indicates that the system in the 
ground state of 16O favors to have the Y32 shape, the tetrahedral 
symmetry.

We also do the variations against single octupole deformation 
without constraints of other deformation freedom. The uncon-
strained moments, e.g., quadrupole and other octupole moments 
are initialized as zero. Thus, they can occur naturally during the 
HF variations (minimizing procedure). The quadrupole moments 
after convergence are shown in Fig. 3. The other, unconstrained, 
octupole moments are nearly zero (less than 10−1 fm3) after the 
convergence. As in Fig. 3 (a), when Q 30 moment increases, Q 20
moment grows, without triaxial deformations. When Q 31 moment 
increases, Q 20 moment increases and triaxality kicks in (Q 22 mo-
ment appears), seen in Fig. 3 (b). As in Fig. 3 (c), when Q 32
moment increases, no quadrupole deformation appears at all. The 
results of Q 33 are similar as Q 30 moment, as in the panel (d) of 
Fig. 3.

We then test the competition of the tetrahedral degree of free-
dom with the quadrupole and other octupole degrees of freedom. 
The potential energy surfaces in the ( Q̂ 20, Q̂ 32) and ( Q̂ 22, Q̂ 32) 
plane are given, calculated by using the SkV functionals and setting 
other multipole moments to zero during the entire computation, 
in Fig. 4. The Fig. 5 shows the energy surfaces in the ( Q̂ 30, Q̂ 32), 
( Q̂ 31, Q̂ 32), and ( Q̂ 33, Q̂ 32) plane, calculated with other multipole 
Fig. 5. Same as Fig. 4, but for energy surfaces in the ( Q̂ 30, Q̂ 32), ( Q̂ 31, Q̂ 32), and 
( Q̂ 33, Q̂ 32) plane. The contour scale is 1.0 MeV for the mean-field energy E (a), (b) 
and (c), and 0.15 MeV for the angular-momentum projected energy EPROJ (d), (e) 
and (f).

Fig. 6. (a–c) Density distributions of 16O, with the pure moment Q̂ 32 = 40 fm3

(β32 = 0.339), calculated by SkV functional, in (x, y), (y, z), (z, x) planes, respec-
tively. The contour scale is 0.01 fm−3, and the third axis left, i.e., z, x, y is fixed at 
0.161 fm. (d) The 3D-density distribution of 16O at the density ρ = 0.15 fm−3.

moments being excluded. As expected, in the mean-field energy 
surfaces only the spherical minimum survives. After the restora-
tion of the symmetry, the projected energy surfaces in the lower 
panel of Figs. 4 and 5, gives a pure Q̂ 32-deformed minimum, in-
dicating the tetrahedral symmetry nature in the ground state of 
16O. The projected energies give rise to the tetrahedral minimum 
at about Q32 = 40 fm3. The above projected energy surface calcu-
lations demonstrate that the tetrahedral degree of freedom as the 
non-axial octupole deformation, Y32, could win against or strongly 
compete with the other important nuclear deformation degrees of 
freedom, namely, the quadrupole and other octupole deformations.

The total density distribution in the ground state of 16O is cal-
culated by using the wave function predicted by the projected en-
ergy surface of SkV functional, namely, with the tetrahedral shape 
at the moment Q32 = 40 fm3 (tetrahedral minimum of the pro-
jected energy surfaces, as can be seen in Figs. 2, 4, and 5), and 
the results are plotted in Fig. 6. This total density distribution of 
16O, as a nucleonic system, coincides with the 4α-cluster structure 
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Fig. 7. The experimental ground-state band of 16O, taken from the observed spec-
trum [34] and organized by Ref. [4], is given for a comparison with calculations 
(labeled as “Exp.”). Calculated ground-state band of 16O from the cranking-HF solu-
tion of tetrahedral symmetry with Q32 = 40 fm3 with cranking axis as x, y, z and 
the axis in x − y plane (π/4 degree between x and y axis), are labeled as “Crank(x)”, 
“Crank(y)”, “Crank(z)” and “Crank(xy)” respectively. The projection energies after the 
convergence of CHF with different cranking axis are also given (labeled as “PROJ(x)”, 
“PROJ(y)”, “PROJ(z)”, and “PROJ(xy)” correspondingly).

of 16O. Hence, the present Skyrme functional calculations could 
provide the microscopic support to the 4α-cluster modelings of 
the tetrahedral structure of 16O, for an example, as that given in 
Ref. [4].

The tetrahedral rotational band is a very important proof for the 
tetrahedral symmetry [33]. In Ref. [4], the ground tetrahedral rota-
tional band of 16O has been used as the experimental indicator of 
tetrahedral symmetry. However, unlike the axially deformed nuclei, 
the favored cranking axis of the tetrahedral deformed state has un-
certainties [35,36]. In principle, the tilted axis cranking needs to 
be performed. To test the collective rotation on the tetrahedral de-
formed state, we select several different cranking axis, as x axis, 
y axis, z axis, and the axis in xy plane (π/4 degree between x
and y axis). We do the cranking calculation with the constraints 
of 〈 Î〉 = I based on the tetrahedral-deformed minimum suggested 
by projected energy surface, by the SkV functional. The AMPP cal-
culations is performed after the convergence of cranking-HF (CHF) 
calculations. In the CHF calculation, the time-odd field is also in-
cluded. The projection after the convergence of cranking mean 
field can improve the description of the cranking momentum of 
inertia at low spins for projection calculations, which is an approx-
imated variational-after-projection (VAP) method [21,37]. Results 
are shown in Fig. 7. The total Routhians by different cranking axis 
at the same spin are quite close. Both the CHF and projection 
calculations can give good reproduction of the experimental tetra-
hedral rotational band of 16O.

The present Skyrme functional HF calculations, as the micro-
scopic mean-field study, could support, therefore, the conclusion 
that the tetrahedral symmetry as the 4α structure exists in the 
ground state of 16O from the very recent studies, the algebraic 
cluster model (ACM) calculation [4] and the ab initio lattice calcu-
lation [5]. The necessary restoration of the rotational symmetry is 
essential for the appearance of well established tetrahedral minima 
in the projected energy surfaces generated by the Skyrme function-
als. The spectrum calculations performed with the AMPP on the 
CHF solutions indicate again that the tetrahedral symmetry con-
figuration might be a major one in the ground state of 16O. As a 
typical quantum system, the “true” ground state 16O should be a 
mixing of different possible configurations, and what matters most 
would be the relative importances for these configurations, so that, 
the mixing between different configurations, i.e., spherical shape, 
quadrupole deformed shape, Y32 − 4α, 12C +α structure, etc., have 
to be performed in the future, to understand the full picture of the 
ground state in 16O.
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