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We measured the spatial splitting of a non-polarized neutron beam passed through a crystal under 
diffraction conditions in heterogeneous magnetic field (analog to the Stern-Gerlach effect) into two 
polarized components with opposite polarization. The measurements were carried out using Laue 
diffraction scheme, small gradients of the magnetic field and Bragg angles close to orthogonality θB =
(78 − 82)◦. After a flight path in crystal of 21.6 cm a splitting of 4.1 ± 0.1 cm was achieved (using a 
field gradient of ∼ 3 G/cm and a diffraction angle of 82◦). In the absence of a diffraction (crystal) but 
otherwise the same flight path and field gradient the spatial splitting would be ∼ 4 ·10−7 cm. From those 
we deduce an experimental amplification factor in the order of about ∼ 2 · 105 tan2 θB due to the use of 
diffraction in crystals, which agrees with theory.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the frame work of preparation towards a larger experiment 
to probe the weak equivalence principle for neutrons [1] we car-
ried out a measurement to investigate the diffractive amplification 
of small interactions of the neutron. This can be achieved by using 
Laue diffraction in crystals with Bragg angles close to 90◦ . The spa-
tial splitting of an unpolarized neutron beam due to the presence 
of a magnetic field gradient (∼ 3 G/cm) into two polarized beams 
with opposite spin orientation (analog to Stern-Gerlach effect) was 
amplified via Laue diffraction on a crystal and measured.

2. Theory

According to the dynamic theory of diffraction [2] neutron 
propagation in a crystal in nearly Bragg directions for a certain 
system of crystallographic planes can be described by two types 
of Bloch waves ψ(1) and ψ(2) . They are formed because of the in-
teraction of the neutron with a periodic nuclear potential of this 
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system of crystallographic planes, which is characterized by the 
reciprocal lattice vector g that is perpendicular to the planes and 
has the length |g| ≡ g = 2π/d, where d is the interplanar distance. 
The corresponding harmonic of the periodic nuclear potential has 
the form

V g(r) = 2V g cos gr. (1)

The amplitude of the harmonic is determined by the structural am-
plitude of the nuclear scattering of the neutron by a crystal cell:

V N
g = 2π h̄2

m
Nc F N

g ,

F N
g =

∑
i

exp(−W ig) f N
i (g)exp(igri). (2)

Here, m is the neutron mass, Nc is the number of unit cells in 
unit volume of the crystal, the subscript i specifies atoms in a unit 
cell, ri is the position of the nucleus of the ith atom in the unit 
cell, f N

i (g) is the scattering amplitude by the ith nucleus of the 
unit cell with the momentum transfer g, and W ig is the Debye-
Waller factor. Note that the structural forward scattering amplitude 
(g = 0) determines the average nuclear potential of the crystal 
(and, thereby, its average refractive index).
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The waves ψ(1) and ψ(2) are two orthogonal superpositions of 
the direct wave with the wavevector k and the wave with the 
wavevector k + g reflected from crystallographic planes:

ψ(1)(r) = cosγ eik(1)r + sinγ ei[k(1)+g]r, (3)

ψ(2)(r) = − sinγ eik(2)r + cosγ ei[k(2)+g]r. (4)

Here

tan 2γ = U N
g

�g
≡ 1

w g
, (5)

where

U N
g = 2mV N

g

h̄2
(6)

and

�g = (k + g)2 − k2

2
= 2kg + g2

2
. (7)

The dimensional (�g ) and dimensionless (w g ) parameters describe 
a deviation from the Bragg condition.

The wavevectors k(1) and k(2) belong to different branches of 
the dispersion surface, which is specified by the equation
(

k(1,2)
)2 = K 2 − �g ∓

√
�2

g + (
U N

g
)2

. (8)

Here, K 2 = k2
e (1 − V N

0 ) is the length squared of the wavevector of 
the neutron incident on the crystal taking into account the average 
refractive index of the crystal, where ke is the wavevector of the 
neutron in vacuum. For cos2 γ in Eqs. (3) and (4), we have

cos2 γ = 1

2

⎡
⎢⎣1 + �g√

�2
g + (

U N
g
)2

⎤
⎥⎦ =

= 1

2

⎡
⎢⎣1 + w g√

1 + w2
g

⎤
⎥⎦ . (9)

Under the exact Bragg condition (w g = 0), ψ(1) and ψ(2) are the 
symmetric and antisymmetric combinations of the direct and re-
flected waves, respectively. They propagate along crystallographic 
planes (in the direction k|| = k + g/2, see Fig. 1) with the velocity 
v || = v cos θB . Neutrons in the states ψ(1) and ψ(2) are concen-
trated predominantly in and between nuclear planes, respectively 
(“nuclear” planes are determined by the maxima of the nuclear po-
tential). Consequently, neutrons in the states ψ(1) and ψ(2) move 
in different potentials and have slightly different kinetic ener-
gies (i.e., different wavevectors) and different absorption. Deviation 
from the Bragg condition leads to changes in current density direc-
tions and toward opposite sides.

In the case of symmetric Laue diffraction (the input face of the 
crystal is perpendicular to reflecting planes), boundary conditions 
for the wave function inside the crystal give [2]

ψ(r) = ψ(1)(r) cosγ + ψ(2)(r) sinγ . (10)

Thus, at small deviations from the Bragg condition (w g � 1), 
both states are excited with almost the same probability. However, 
the directions of the neutron current densities jψ(1) and jψ(2) in 
these states can change very significantly when Bragg angles θB

are close to 90◦ , i.e., when k|| � g/2 (tan θB = g/2k|| � 1) (see 
Fig. 1):

jψ(1,2) ≈ h̄ [
k(1,2)

|| ± g
w g

]
. (11)
m 2
Fig. 1. Symmetric Laue diffraction in an undeformed finite crystal. Neutrons n are 
incident on the crystal at a certain angle different from the Bragg angle θB within 
the Bragg (Darwin) width; jψ(1) and jψ(2) are the neutron flux density vectors of 
two Bloch waves, g is the reciprocal lattice vector, L is the crystal thickness and H
is the height. Here “Kato trajectories” are straight lines directed along the current 
density vectors.

3. External force and “Kato trajectories”

The propagation of a neutron (two-wave packet) under action 
of external force (or in slightly deformed crystal) from a certain 
region on the input face in a crystal can be described by “Kato tra-
jectories” [3]. They are curves tangents to which are directed along 
the current density vector at each point of the trajectory. In an 
undeformed crystal, and when the external force is absent, Kato 
trajectories are straight lines (see Fig. 1), whose slopes are deter-
mined by the parameter w g . When the direction of the incident 
beam is varied within the Bragg angular width, the angle of incli-
nation θ of the Kato trajectory will be varying from −θB to +θB . At 
Bragg angles close to the right angle, the dimensions of the crystal 
(H is the height and L is the thickness) can restrict possible an-
gles of inclination of trajectories if tan θ = H/2L < tan θB as in our 
case.

An external force, acting on the diffracting neutron inside the 
crystal can slightly change the direction of motion (and/or its 
wavelength). This results in a deviation from the Bragg condition 
and change of the amplitudes of the direct and diffracted waves in-
side the crystal. As a result, a substantial deviation of the direction 
of neutron current in the crystal will take place.

In the experiment a double crystal layout as shown in Fig. 2
was used.

A bending of the Kato trajectory due to external force F w in 
a double crystal scheme leads to a spatial shift of the neutron 
beam at the exit face of the second crystal. In order to identify 
the neutrons deviating from the Bragg condition (Kato trajectory) 
the neutron flux is collimated by two slits S1 and S2 at the first 
and second crystal. The spatial distribution of the neutron beam at 
the exit of the second crystal is obtained by a scanning slit S3.

In Fig. 2 we show by red and blue lines the two Kato trajec-
tories of neutrons with opposite spin projection weakly absorbed 
inside the crystal (which belong to one of two branches of the 
neutron dispersion surface in crystal). Having in mind the experi-
mental conditions (large thickness of the crystals and large Bragg 
angles) the neutrons in other diffracting branches are almost com-
pletely absorbed due to the Borman effect [4] by the silicon crystal 
and the according Kato trajectories disappear.

The effect of diffractive amplification of the deviation of a neu-
tron beam inside a crystal is well known long ago. This is why 
the diffraction is widely used to study the fundamental proper-
ties and interactions of the neutron. Those are the development 
of new methods for searching for the neutron electric dipole mo-
ment [5–12], a search for hypothetical CP-violating forces [13], the 
study of the neutrons interaction with gravitational and magnetic 
fields [8,14–16], as well of the effects of neutron acceleration in 
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Fig. 2. Double crystal experimental layout (top view): 1 – neutron beam; 2 – con-
crete hutch; 3 – double-crystal monochromator; 4 – translation stage for the crys-
tals including a rotation stage; 5 – two silicon single crystals; 6 – collimating (S1, 
S2) and scanning (S3) slits; 7 – thermostat; 8 – detector; 9 – detector shielding; 10 
– beam dump.

variable magnetic fields [17,18] and in an accelerating crystal [19]. 
Also there are interesting studies of the Schwinger (spin-orbit) 
interaction of the neutron with interplanar electric fields in cen-
trosymmetric [20,21] and non-centrosymmetric crystal [7,9,22–24]
in diffraction and also of its application to control neutron polar-
ization at Laue diffraction in the perfect slightly deformed crystal 
with controlled deformation using a small temperature gradient 
[25].

The effect of diffractive amplification has been directly mea-
sured by Zeilinger et al. [15], with using neutron beam deflec-
tion in inhomogeneous magnetic field. The deflection was more 
105 times (actually 2.1 · 105) larger than in the same fields in 
free space. The authors [15] have obtained the splitting of non-
polarized beam into two also non-polarized beams in contrast to 
the present work. In this paper, we exploit two additional factors 
related to the use of large Bragg angles and large crystal sizes.

First, there is another gain associated with large diffraction an-
gles close to 90◦ , which is proportional to tan2 θB. Its existence is 
based on the fact that diffraction is not governed by the neutrons 
total velocity vn , but its projection onto the crystallographic planes 
v || = vn cos θB [26,27]. When the diffraction angle is increased the 
time spent by the neutron inside the crystal, is growing propor-
tional to tan θB [28]. This gives a new additional amplification 
scheme for measuring forces weakly interacting with the diffract-
ing neutron.

Secondly, for thick crystals and large Bragg angles, due to in-
creasing the time spent by the neutron inside the crystal, effective 
path of neutron in the crystal increases significantly too, so the 
effect of abnormal absorption (Borman effect) becomes very pro-
nounced. It was measured [4] for used silicon crystal and results 
in that only neutrons in the weakly absorbed state survive in con-
trast to ref. [15]. Therefore, the corresponding Kato trajectory splits 
only due to two opposite forces acting on neutrons with oppo-
site spin orientations (Fig. 2), so that the spatial separation of the 
spins occurs, as in the Stern-Gerlach effect, but significantly larger 
in magnitude.

The present experiment is particularly focusing on demonstrat-
ing the extraordinary sensitivity with respect to external forces 
acting on the neutron inside the crystal. The force F w , necessary to 
displace the neutron beam at the exit of the second crystal (in the 
case of three collimating slits and the equal distance L between 
them) by a distance equal to the slit width δs , is [29]
Fig. 3. Schematic view on probing silicon crystal and magnetic field guide: a – prob-
ing silicon crystal, b – rotation stage (also part of field guide), c – neutron beam exit 
area, d – permanent magnets, e – magnetic field guide, f – piezomotor positioner 
of exit slit S3 (slit is not shown).

F w = m0d

π tan2 θB
· 2En

L2
· δs ≡ 1

Ke
· 2En

L2
· δs, (12)

where Ke – is the total coefficient of diffractive amplification, 
(2Enδs)/L2 – the force, perpendicular to the direction of motion 
of the neutron and necessary for a displacement of δs in vacuum, 
m0 ≡ 2F gd/V – the “Kato mass”, V – the crystals unit cell volume, 
F g – the neutron scattering structure amplitude for the crystals 
unit cell, En – the neutron energy, L – the thickness of one crystal.

For the (220) planes of silicon with an interplane distance of 
d = 1.92 Å, as used in the present experiment and for m0 = 774.4
cm−1, the diffractive amplification coefficient becomes

K (220)
e = π tan2 θB

m0d
= 2.1 · 105 · tan2 θB (13)

which predicts a value of K (220)
e = 1.1 · 107 for a maximum Bragg 

angle of 82◦ in the experiment.

4. The setup

The experiment was carried out in 2018 at the PF1b cold neu-
tron beam facility [30] of the Institut Laue-Langevin, Grenoble, 
France. A schematic view of the experiment was shown above 
in Fig. 2. At the beginning the beam of nonpolarized cold neu-
trons (1) is passing onto the monochromator (3), which is shielded 
by a concrete hutch (2). The monochromator, apart from select-
ing a wave length and divergence diapason, is also lowering the 
neutron flux falling onto the actual silicon crystal (5). This also 
decreases the ambient background substantially. The monochro-
mator is mounted on a rotation stage and consists of two crystals 
of pyrolitic graphite (PG) having the (002) planes (dPG = 3.35 Å) 
oriented to the parallel-opposite crystal faces. The reflected wave 
length can be tuned via the rotation stage within a range of 
λ = (3.5 − 3.9) Å. The mosaicity of the crystals is ∼ 0.9◦ , which 
allows to achieve a monochromaticity of �λ/λ ∼ 10−2.

The neutron beam from the monochromator is impinging the 
entry face of the probing silicon crystal (5) having dimensions of 
130 mm × 130 mm × 218 mm. In the experiment the (220) 
diffraction planes with an interplane spacing of d = 1.92 Å were 
used.

The maximum variation of the interplanar spacing �d/d over 
the entire crystal volume should be no more than ∼ 10−7 to ob-
serve the effect. Larger gradients of interplanar distance will lead 
to additional Kato forces, acting in the same directions and with 
the comparable value as the magnetic gradients, and so to the 
broadening of the Kato trajectories and the intensity distribution 
profiles on the output face of the crystal, to a decrease in inten-
sity and the disappearance of the effect. To obtain a double crystal 
geometry the silicon crystal has a cut with a depth of 72 mm and 
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Fig. 4. Intensity distributions for different diffraction angles θB at the exit face of the crystal for a field gradient in the vicinity of the neutron beam. Filled squares with 
statistical error bars are the experimental data. The dotted curves denoted with (2) and (3) are fitted Gaussian profiles representing the reflexes of the two spin projections, 
and curve (4) is the sum of both (2) and (3).
a width of 1.6 mm. The entire silicon crystal is clamped onto a 
precision rotation stage, which itself is mounted onto translation 
stages (4). The precision goniometer is used to vary the Bragg an-
gle θB and is controlled via an optical encoder with an precision 
of 0.03◦ . Everything is placed inside a thermostatic box consisting 
of an active and a passive thermal shield 7. The thermostat itself is 
connected to a temperature stabilized liquid circulator Julabo F34-
HE, which allows to achieve a temperature stability of ∼ 0.01 ◦C 
per day on the silicon crystal (under the conditions of the PF1b 
facility).

On the probing silicon crystal the neutron beam itself is colli-
mated by two slits S1, S2 (see Fig. 2), while the spatial distribution 
on the exit of the probing crystal is scanned with slit S3. The slit 
S3 is mounted onto a piezomotor driven translation stage, which 
essentially eliminates all motion related heating of the crystal in-
side the thermostatic box. All slits are made from 0.5 mm thick 
cadmium metal.

Using permanent magnets and a special designed field guide 
(see Fig. 3) a field gradient is generated in the vicinity of the prob-
ing silicon crystal.

Opposing forces will act onto neutrons with opposite spin pro-
jection. Only force components perpendicular to the crystal planes 
along the reciprocal lattice vector g (y-axis) will contribute to a 
deviation from the Bragg condition:

F y = ∓μ
∂ B

∂ y
, (14)

where ∂ B/∂ y – is the magnetic field gradient along y- axis, and μ
– is the magnetic moment of the neutron.

After transmission through the crystal the diffracted neutrons 
are counted by the detector (8) (Fig. 2), which is protected from 
ambient background by the shielding (9). Neutrons not satisfying 
the conditions for diffraction are absorbed in the beam dump (10).
5. Results

The measurements were done for diffraction angles in the 
range of θB = 78◦ − 82◦ . The minimum collimating slit openings of 
S1=17 mm, S2=15 mm, S3=18 mm were chosen to optimize statis-
tics during the given beam time.

The results of the measurement are shown in Fig. 4 and Fig. 5. 
In Fig. 4 the neutron intensity distribution at the exit of the prob-
ing crystal is shown as function of angle θB, where N denotes 
the measured intensity and lS3 is the position of the scanning slit 
S3. The experimental data are shown as filled squares, while the 
curves denoted with (2) and (3) result from fitted Gaussian profiles 
representing the reflexes of the two spin projections and curve (4) 
is the sum of both.

Without a magnetic field the position of the intensity distri-
bution coincides with that shown at θB = 78◦ , but the width is 
slightly smaller and coincides with the widths of the dotted curves 
(2) and (3).

Since the primary neutron beam is unpolarized the two dif-
ferent spin projections are displaced with opposite sign. The dif-
ference in width and amplitude of the double-crystal lines (still 
having the same area under the curve) can be explained by the 
fact that one part is passing the crystal at larger distance (15 mm) 
with respect to the beam center. Due to the particular design of 
the field guide this is leading to an already substantial variation of 
the field gradient at these length scales.

In Fig. 5 we show the dependence of the splitting distance �exp
(filled circles) between the maxima of the double crystal reflexes 
for the two spin projections as function of the Bragg angle θB (see 
curves (2) and (3) in Fig. 4). From the plot it is evident that for 
a maximum diffraction angle of 82◦ the spatial splitting �exp is 
4.1 ± 0.1 cm.

From these data and using the equations (12) and (14) we can 
extract the value of the field gradient (open circles in Fig. 5)
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Fig. 5. Distance between the two intensity maxima of the two spin projections (see 
Fig. 4), field gradient as function of diffraction angle θB and calculated average value 
of the field gradient.

∂ B

∂ y
= 2En

μK (220)
e L2

· �exp

2
. (15)

The average value of the field gradient along the neutron 
beam was calculated to be 3.12 ± 0.09 G/cm (see Fig. 5), which 
is consistent with estimates based on magnetometer readings 
at three points on each side (input and output) of the crystal 
3.0 ± 0.3 G/cm. For comparison, the spatial split for neutrons 
with a wave length λ = 3.8 Å (which corresponds to Bragg an-
gle of 82◦) moving in free space under the same field gradient 
through the same 3-slit collimator without crystal (removed from 
the setup), can be calculated to be 3.9 · 10−7 cm. From this we 
can deduce the measured diffractive amplification coefficient to be 
Kexp ∼ 2 · 105 tan2 θB, which agrees well with theory.
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