
A quantum random access memory 
(QRAM) using a polynomial 
encoding of binary strings
Priyanka Mukhopadhyay

Quantum algorithms claim significant speedup over their classical counterparts for solving many 
problems. An important aspect of many of these algorithms is the existence of a quantum oracle, 
which needs to be implemented efficiently in order to realize the claimed advantages in practice. A 
quantum random access memory (QRAM) is a promising architecture for realizing these oracles. In 
this paper we develop a new design for QRAM and implement it with Clifford+T circuit. We focus on 
optimizing the T-count and T-depth since non-Clifford gates are the most expensive to implement 
fault-tolerantly in most error correction schemes. Integral to our design is a polynomial encoding of 
bit strings and so we refer to this design as QRAMpoly. Compared to the previous state-of-the-art 
bucket brigade architecture for QRAM, we achieve an exponential improvement in T-depth, while 
reducing T-count and keeping the qubit-count same. Specifically, if N is the number of memory 
locations to be queried, then QRAMpoly  has T-depth O(log log N), T-count O(N − log N) and 
uses O(N) logical qubits, while the bucket brigade circuit has T-depth O(log N), T-count O(N) and uses 
O(N) qubits. Combining two QRAMpoly  we design a quantum look-up-table, qLUTpoly, that has 
T-depth O(log log N), T-count O(

√
N) and qubit count O(

√
N). A quantum look-up table (qLUT) 

or quantum read-only memory (QROM) has restricted functionality than a QRAM. For example, it 
cannot write into a memory location and the circuit needs to be compiled each time the contents of 
the memory change. The previous state-of-the-art CSWAP architecture has T-depth O(

√
N), T-count 

O(
√

N) and qubit count O(
√

N). Thus we achieve a double exponential improvement in T-depth 
while keeping the T-count and qubit-count asymptotically same. Additionally, with our polynomial 
encoding of bit strings, we develop a method to optimize the Toffoli-count of circuits, specially those 
consisting of multi-controlled-NOT gates.

Quantum computers hold immense promise to outperform classical computers in many applications. Over the 
years numerous quantum algorithms have been developed that claim speedups over their classical counterparts in 
various problems, for example, unstructured database search1, optimization2, quantum chemistry algorithms3–7, 
data processing for machine learning8–14, cryptography15,16, image processing17. Many of these algorithms 
require access to oracles in order to fetch classical data and in practice, this is a non-trivial task. It is important to 
specify the details of implementations of these oracles in order to claim a genuine quantum speedup18. Efficient 
implementation of oracles can reduce the crossover of runtime between classical and quantum advantage from 
years to days19.

Till date, the most general-purpose design for the implementation of quantum oracles is a quantum random 
access memory (QRAM)20–24, which analogous to a classical random access memory (RAM), returns the element 
stored in a particular memory location. Specifically, suppose there are N memory locations, each indexed by an 
integer i ∈ {0, 1, . . . , N − 1} and element xi is stored in location i. Then on input i, a classical RAM returns 
xi. This procedure is called “reading” from the memory. A classical RAM is also able to “write” a particular data 
xi into memory location i. With a QRAM we are able to query a superposition of addresses. Let A be the input 
qubit register storing the memory address to be queried and B be the output register. If |ψin⟩ and |ψout⟩ are the 
input and output states, then

Department of Computer Science, University of Toronto, Toronto, ON, Canada. email:  
mukhopadhyay.priyanka@gmail.com; priyanka.mukhopadhyay@utoronto.ca

OPEN

Scientific Reports |        (2025) 15:11002 1| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-95283-5&domain=pdf&date_stamp=2025-3-31


	

|ψin⟩ =
N−1∑
i=0

αi|i⟩A|0⟩B

|ψout⟩ =
N−1∑
i=0

αi|i⟩A|xi⟩B .

� (1)

The above equations correspond to the process equivalent to “reading”. Like its classical counterpart, a QRAM is 
also able to “write” into a memory location. In this case, the input state is

	
|ψ′

in⟩ =
N−1∑
i=0

αi|i⟩A|xi⟩B , � (2)

and after the operation xi is XOR-ed into the memory location i. The oracles described in many algorithms25 
do require the writing operation. Giovannetti, Lloyd and Maccone introduced the fanout and bucket-brigade 
architectures for QRAM in their pioneering work in20,26. Since then much work has been done to study these 
designs and improve upon them. Out of the two desgins the bucket-brigade QRAM has become the most 
popular because it has better noise resilience27,28 and fault-tolerant resource estimates29. Several proposals 
for the experimental implementations of QRAM have been put forth20,30–35, each utilizing the bucket brigade 
architecture. In36 the authors propose a design implementing an n-bit QRAM on hardware nominally supported 
only on an m-bit query, where m < n. Over the years there have been proposals for various implementations 
of QRAM using different techniques, often for specific applications17,37–53, and thus QRAMs have been used 
for a wide variety of tasks like neural networks, data processing, quantum communication, image processing, 
cryptanalysis, quantum simulation, circuit synthesis, state preparation, etc.

A circuit implementing a QRAM needs to be compiled and optimized only once, while the contents of the 
memory are free to change. But it has the disadvantage of a significant space overhead. A bucket-brigade QRAM 
for N memory locations require O(N) T gates, O(N) ancillae and has T-depth O(log N)29. In order to reduce 
the number of ancillae many algorithms use a sequence of multi-controlled-NOT gates, also known as quantum 
read-only memory (QROM)4,7,29,54. This can be implemented with O(N) T gates, O(log N) ancillae and O(N) 
T-depth. Inspite of a lower qubit count, one disadvantage of a QROM is the exponentially higher T-depth which 
is not desirable for an efficient fault-tolerant implementation. Another disadvantage of QROM is the fact that 
we need to know the contents of the memory in advance. Each time the database changes, the circuit needs to 
be recompiled and optimized. There are other architectures, as in40,41, that perform queries in O(N log N) time 
using O(log N) qubits.

Many hybrid architectures have been proposed that interpolate between these two extremes and leverage 
their space-time tradeoff29,54–59. Notable among these is the CSWAP architecture58, which can be thought of 
as a combination of a QROM and a specific QRAM. It has T-count O(

√
N), number of ancillae O(

√
N) and 

T-depth O(
√

N). Here we mention that in literature the QRAM, QROM and these hybrid architectures are 
also used to build quantum look-up-table (qLUT) and so the names are often used interchangeably. These are 
required to perform restricted tasks. The contents of the table or database are known and this can be leveraged 
to design circuits with better resource estimates like T-count.

Our contributions
In this paper we propose an architecture for a QRAM, mainly aimed at reducing the non-Clifford gate complexity 
of the circuit implementation. We implement our circuits with the fault-tolerant, universal Clifford+T gate 
set because it implements more unitaries exactly compared to other fault-tolerant, universal gate sets60–63. In 
most error correction schemes the cost of implementing the non-Clifford T gate is significantly higher than the 
Clifford gates. Thus it is important to optimize the number of T-gates or T-count. It is also important to optimize 
the T-depth29,37,64–67, which is related to the running time. A T-depth-1 corresponds to a set of T gates that can be 
implemented in parallel. We also refer to it as a layer or stage. So a T-depth Td for a circuit implies Td such stages, 
where in each stage the T gates are implemented in parallel. The product of T-depth and number of logical qubits 
is taken as a parameter to measure the rough cost of fault-tolerant implementation in the surface code29,37,58. Our 
contributions in this paper can be summarized in the following points.

	 (I)	 We develop a quantum random access memory, which we call QRAMpoly  (Section Quantum random 
access memory (QRAMpoly)), with the help of a polynomial encoding of bit strings (Section Polynomial 
encoding of Boolean strings). We show that QRAMpoly  can be implemented with N − log N − 1 Toffoli 
gates. We can parallelize this circuit, using an additional O(N) ancillae in order to achieve a Toffoli-depth 
of log log N . This implies a T-count of O(N − log N − 1) and T-depth of O(log log N). Thus compared 
to previous bucket-brigade architecture29 we achieve an exponential improvement in the T-depth, reduce 
the T-count, while keeping the number of ancillae nearly the same.

	 (II)	 We use two QRAMpoly  to design a QROM or qLUT. This is a hybrid architecture and we achieve a 
T-count of O(

√
N), T-depth O(log log N) and ancillae count of O(

√
N). Thus, here we achieve a double 

exponential improvement in T-depth compared to previous designs58,59, while keeping the T-count and 
ancillae count asymptotically similar. We refer to this desgin as qLUTpoly  (Section Quantum look-up-
table (qLUTpoly)). In Table 1 we have summarized and compared the cost of implementation of our 
QRAMpoly  and qLUTpoly  with some previous works.

Scientific Reports |        (2025) 15:11002 2| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	(III)	 The encoding polynomials that are integral to our constructions of QRAM and qLUT have other appli-
cations. For example, in Section Toffoli-count optimization of quantum circuits we describe a procedure 
(TOFFOLI-OPT-POLY) to optimize the Toffoli-count of circuits. Later we also discuss some other poten-
tial applications and hence these polynomials may be of independent interest.

Organization
In Section Polynomial encoding of Boolean strings we describe a polynomial encoding of bit strings. Using this 
we design our QRAMpoly  in Section Quantum random access memory (QRAMpoly). The design of qLUTpoly  
and a method for circuit optimization has been discussed in Section Other applications of polynomial encoding. 
Finally we conclude in Section Discussions and conclusion.

Polynomial encoding of Boolean strings
In this section we describe an encoding where a bit string of length n is represented by a polynomial and then we 
derive certain properties of the set of N = 2n polynomials. These attributes will aid in the design of QRAMpoly

, as explained in later sections.

Notations :   We use the following notations and conventions. A polynomial in n variables comprises of a sum 
of one or more monomials, where each monomial is the product of at most n variables. We say that a monomial 
has weight k if it is the product of k variables. A constant is a monomial of weight 0. A polynomial is linear if it 
can be expressed as sum of monomials of weight at most 1. Let I ⊆ {1, 2, . . . , n} be a subset of indices of the 
variables x1, . . . , xn. We refer to the subscripts as indices. We denote a monomial with variables having indices 
in I  by mI . That is,

	
mI =

∏
j∈I

xj .� (3)

 

Encoding polynomial :  Suppose we have an n-length bit string - (b1, b2, . . . , bn), denoted as ⃗b. We encode this 
bit string into a polynomial in n Boolean variables - x1, x2, . . . , xn, where variable xi corresponds to bit bi. We 
assign the following polynomial to each variable bi.

	
bi �→1 + (−1)bi

2 + xi := pbi (xi) � (4)

If bi = 0 then bi �→ 1+1
2 + xi = 1 + xi and if bi = 1 then bi �→ 1−1

2 + xi = xi. The complete bit string 
(b1, b2, . . . , bn) is encoded as follows.

	
(b1, b2, . . . , bn) �→

n∏
i=1

(
1 + (−1)bi

2 + xi

)
=

n∏
i=1

pbi (xi) := p⃗b(x1, . . . , xn)� (5)

Now we prove some properties of the encoding polynomials.

Lemma 1  Suppose we have n bits - b1, b2, . . . , bn and we associate a variable xi to each bit bi. Consider the 2n 
encoding polynomials {p⃗b(x1, . . . , xn)} corresponding to the 2n possible n-bit strings b⃗ = (b1, b2, . . . , bn), as 
defined in Eq. (5). Then we have

	 p⃗b(b′
1, b′

2, . . . , b′
n) ≡ δ⃗

b,b⃗′ mod 2, where b⃗′ = (b′
1, b′

2, . . . , b′
n),

implying p⃗b (b′
1, b′

2, . . . , b′
n) ≡ 1 mod 2 if and only if b⃗ = b⃗′ or bj = b′

j  for each j = 1, . . . , n. Else, it is 
0 mod 2.

Proof  By definition of the encoding in Eq. (4), pbi (xi) = 1 + xi when bi = 0 and pbi (xi) = xi when bi = 1. 
Thus, pbi (bi) = 1 and since p⃗b(x1, . . . , xn) =

∏n

i=1 pbi (xi), so p⃗b(b1, . . . , bn) ≡ 1 mod 2.

T-depth T-count #Logical qubits

Bucket-brigade20,29 O(log N) O(N) O(N)

CSWAP58 O(
√

N) O(
√

N) O(
√

N)

QRAMpoly  (This work) O(log log N) O(N) O(N)

qLUTpoly  (This work) O(log log N) O(
√

N) O(
√

N)

Table 1.  Comparison of T-depth, T-count and number of logical qubits required to implement QRAM and 
qLUT.

 

Scientific Reports |        (2025) 15:11002 3| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Again, if b′
i ̸= bi then pbi (b′

i) = 2 or 0. So p⃗b(b′
1, . . . , b′

n) ≡ 0 mod 2, whenever b⃗′ ̸= b⃗.
This proves the lemma. □

Lemma 2  Let p⃗b(x1, . . . , xn) be the encoding polynomial corresponding to the bit string b⃗ = (b1, . . . , bn), as 
defined in Eq. (5). Assume that k of the bits i.e. bi1 , . . . , bik  are 1 and the rest 0. Then,

	
p⃗b(x1, . . . , xn) =

∑
I′:I′⊇I

mI′ , where I = {i1, . . . , ik}.

Proof  Let I = {1, . . . , n} \ I  be the complement set of I . All additions and multiplications are commutative. 
By definition,

	

p⃗b(x1, . . . , xn) =

( ∏
j:j∈I

xj

) 
 ∏

ℓ:ℓ∈I

(1 + xℓ)




=

( ∏
j:j∈I

xj

)



1 +
∑

ℓ∈I

xℓ +
∑

ℓ1 ̸= ℓ2
ℓ1, ℓ2 ∈ I

xℓ1 xℓ2 + · · · +
∏

ℓ∈I

xℓ




,

� (6)

which clearly proves the lemma. □
We have the following corollaries.

Corollary 3  Let p⃗b(x1, . . . , xn) be the encoding polynomial corresponding to the bit string b⃗ = (b1, . . . , bn), 
as defined in Eq. (5). Let I1 be the subset of indices of the bits in ⃗b that have value 1. Given any subset of indices 
I ⊆ {1, . . . , n}, the monomial mI  appears as a summand in p⃗b(x1, . . . , xn) if and only if I1 ⊆ I .

Corollary 4 	

n∏
j=1

(1 + xj) = 1 +
k∑

j=1

xj +
∑
j ̸=k

xjxk +
∑

j ̸=k ̸=ℓ

xjxkxℓ + · · · +
n∏

j=1

xj .

Corollary 5  Each encoding polynomial p⃗b(x1, . . . , xn), defined in Eq. (5), has exactly one summand monomial 
of minimum weight. Specifically, let I1 be the subset of indices of the bits in ⃗b that have value 1. Then the minimum 
weight monomial is

	
mI1 =

∏
j∈I1

xj .

Also, it follows that each encoding polynomial has a unique minimum weight monomial.

New labeling :  Thus we can label each encoding polynomial p⃗b(x1, . . . , xn) by pmI (x1, . . . , xn), where 
mI =

∏
j∈I xj  is the minimum weight monomial and I ⊆ {1, . . . , n} is the subset of indices of the bits in ⃗b 

that have value 1.

Theorem 6  Let p⃗b(x1, . . . , xn) be the encoding polynomial corresponding to a bit string b⃗ = (b1, . . . , bn), as 
defined in Eq. (5). Suppose I1 ⊆ {1, . . . , n} is the subset of indices of the bits in ⃗b that have value 1. Then,

	
p⃗b(x1, . . . , xn) = pmI1

(x1, . . . , xn) = mI1 +
⊕

I′:I1⊂I′

pmI′ .

In the above by XOR we mean that the coefficients of same monomials are added modulo 2.

Proof  From Corollary 5, mI1  appears as a summand in p⃗b(x1, . . . , xn). Let |I1| = w. We need to prove that 
any monomial mI′  such that I′ ⊃ I1 will be added odd number of times.

Consider the sets I2j = I1
∪

{j} such that j /∈ I1. If we add polynomials pmI2j
 which have mI2j  as the 

minimum weight monomial then each of these monomials of weight w + 1 gets added only once.
Consider the sets I3jk = I1

∪
{j, k} such that j, k /∈ I1. Now for each pair of indices j, k /∈ I1 we have 

I3jk = I2j

∪
{k} = I2k

∪
{j}. From Lemma 2, the monomial mI3jk  appears as a summand in pmI2j

 and 
pmI2k

. It also appears as the minimum weight monomial in pmI3jk
. From Corollary 3 it cannot appear in any 

other polynomial pmI′  where I′ ⊃ I1. Thus monomials of the form mI3jk  with weight w + 2 gets added odd 
number of times.

Scientific Reports |        (2025) 15:11002 4| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Similarly we can generalize this argument to monomials of weight w′ > w. Consider the index set 
Iw′ = I1

∪
I2 such that |I2| = w′ − w. Thus the monomial mIw′  has weight w′. From Lemma 2 and 

Corollary 3 this monomial appears as a summand in all polynomials of the form pmI′′ , where

	 I1 ⊂ I′′ ⊆ Iw′ .� (7)

Number of subsets of weight w + ℓ such that they satisfy the subset relation in Eq. (7) is 
(

w′ − w
ℓ

)
. Here ℓ 

varies from 1 to w′ − w. Thus number of times mIw′  gets added is

	

w′−w∑
ℓ=1

(
w′ − w

ℓ

)
=

w′−w∑
ℓ=0

(
w′ − w

ℓ

)
− 1 = 2w′−w − 1 ≡ 1 mod 2.

This proves the theorem. □
In Tables 2 and 3 we have enlisted all the encoding polynomials for 3 and 4-bit strings. We have also specified 
the alternate labeling of each polynomial, that is, indexed by its unique minimum weight monomial. The various 
properties proved in this section can be verified from these tables.

Quantum random access memory (QRAMpoly)
In this section we describe the construction of QRAMpoly  using the polynomial encoding of bit strings, 
discussed in the previous Section Polynomial encoding of Boolean strings. We implement the circuits using 
Clifford+T gate set, as discussed earlier in Section Our contributions.

Some definitions : Here we briefly recap the following definitions. The T-count of a circuit is the number of 
T-gates in it. The Toffoli-count of a circuit is the number of Toffoli-gates in it. Let U be the unitary implemented 

b⃗ pb⃗(x1, x2, x3, x4)

0000 1 + x1 + x2 + x3 + +x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2x3x4 p1

0001 x4 + x1x4 + x2x4 + x3x4 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2x3x4 px4

0010 x3 + x1x3 + x2x3 + x3x4 + x1x2x3 + x1x3x4 + x2x3x4 + x1x2x3x4 px3

0011 x3x4 + x1x3x4 + x2x3x4 + x1x2x3x4 px3x4

0100 x2 + x1x2 + x2x3 + x2x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x2x3x4 px2

0101 x2x4 + x1x2x4 + x2x3x4 + x1x2x3x4 px2x4

0110 x2x3 + x1x2x3 + x2x3x4 + x1x2x3x4 px2x3

0111 x2x3x4 + x1x2x3x4 px2x3x4

1000 x1 + x1x2 + x1x3 + x1x4 + x1x2x3 + x1x2x4 + x1x3x4 + x1x2x3x4 px1

1001 x1x4 + x1x2x4 + x1x3x4 + x1x2x3x4 px1x4

1010 x1x3 + x1x2x3 + x1x3x4 + x1x2x3x4 px1x3

1011 x1x3x4 + x1x2x3x4 px1x3x4

1100 x1x2 + x1x2x3 + x1x2x4 + x1x2x3x4 px1x2

1101 x1x2x4 + x1x2x3x4 px1x2x4

1110 x1x2x3 + x1x2x3x4 px1x2x3

1111 x1x2x3x4 px1x2x3x4

Table 3.  Encoding polynomials for 4 bit strings. In the last column an alternate labeling has been mentioned 
where each polynomial is indexed by its unique minimum weight monomial.

 

b⃗ pb⃗(x1, x2, x3)

000 1 + x1 + x2 + x3 + x1x2 + x2x3 + x1x3 + x1x2x3 p1

001 x3 + x1x3 + x2x3 + x1x2x3 px3

010 x2 + x1x2 + x2x3 + x1x2x3 px2

011 x2x3 + x1x2x3 px2x3

100 x1 + x1x2 + x1x3 + x1x2x3 px1

101 x1x3 + x1x2x3 px1x3

110 x1x2 + x1x2x3 px1x2

111 x1x2x3 px1x2x3

Table 2.  Encoding polynomials for 3 bit strings. In the last column an alternate labeling has been mentioned 
where each polynomial is indexed by its unique minimum weight monomial.

 

Scientific Reports |        (2025) 15:11002 5| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


by a circuit. Assume U can be expressed as a product of Td unitaries, i.e. U =
∏Td

j=1 Uj , where each Uj  is such 
that the T or T† gates appearing in its circuit can be implemented in parallel. We call Td as the T-depth of the 
circuit for U. Each Uj  has T-depth 1 circuit. We can define the Toffoli-depth of a circuit in an analogous manner.

Suppose we have N = 2n memory locations, each specified or indexed by an n-bit string ⃗b = (b1, . . . , bn), 
which is its address. We have n input qubits {q1, . . . , qn}, whose state selects a memory location. We call these 
address qubits. The main difference between a qubit and a bit is the fact that the former can be in a superposition 
of both the |0⟩ and |1⟩ states, while the latter can either have state (or value) 0 or 1. Thus state of qubits (q1, . . . , qn) 
can be a superposition of bit strings (b1, . . . , bn), each specifying a particular memory location, say Mb⃗. We 
can encode each bit string with the encoding polynomial (Eq. 5) described in Section Polynomial encoding of 
Boolean strings. It follows that each memory location Mb⃗ is associated with a polynomial p⃗b(x1, . . . , xn) in n 
variables {x1, . . . , xn}, uniquely determined by ⃗b. We can alternatively call this its polynomial address.

We first describe how one particular memory location with address ⃗b = (b1, . . . , bn) is queried. That is, the 
state of the address qubit qj = bj , for each j = 1, . . . , n. Then it is straightforward to understand the operation 
of the QRAMpoly  circuit, when a superposition of memory locations are queried. An illustration of 3-qubit 
QRAMpoly  has been shown in Fig. 2a.

We allocate N ancillae a0, . . . , aN−1, such that aj  implements the encoding polynomial of j (in the binary 
form). Each of these ancilla are initialized in state |0⟩. Here we mention that for the remaining part of the paper 
we use either integers or their binary representation for indexing. This is for convenience and it should be clear 
from the context. From Lemma 1 we know that for each of the N possible bit strings only one of these ancilla flips 
to |1⟩ and it is uniquely determined by the bit string. Thus these ancillae can be used to select memory locations. 
Each of the input qubits is assigned a variable. A Toffoli can be used to multiply two monomials because it 
operates as follows, with input states |x⟩, |y⟩, |0⟩.

	 T OF F OLI|x〉|y〉|0〉 �→ |x〉|y〉|xy〉� (8)

We perform the following steps. In Fig. 1 we have shown a flowchart depicting these steps. 
Step 1.	 Computing monomials : We implement the monomials using CNOTs and Toffolis. This can be 

done by multiplying lower weight monomials, using Toffolis. Each monomial is stored in a specific 
ancilla. Suppose an ancilla aj  is intended to select memory location Mj . Let mI  is the minimum 
weight monomial of the encoding polynomial corresponding to the binary representation of j. Then 
mI  is stored in aj . By Corollary 5, each monomial gets stored in distinct and uniquely determined 
ancilla.

Step 2.	 Computing encoding polynomials : Using CNOTs we XOR the monomials and implement the en-
coding polynomials, as stated in Theorem 6. That is, after this step ancilla aj  stores p⃗b(x1, . . . , xn), 
where ⃗b is the binary representation of j. So it can be used to select the memory location Mj .

Step 3.	 Select and compute : Using a Toffoli controlled on aj  and Mj  we copy the memory content onto 
the output bus (Fig. 2b). This is equivalent to “reading” from the memory. For “writing” into the 
memory we reverse the control and target at the output bus and Mj .

Step 4.	 Making the operations reversible : To obtain a fully reversible QRAMpoly , after the reading or 
writing operation we implement the circuit, as described in steps 1 and 2, in the reverse order. This 
is equivalent to uncomputation.

As an example, consider the 3-qubit QRAMpoly  shown in Fig. 2. Apart from the 3 input qubits q1, q2, q3 
there are N = 23 = 8 ancillae (Fig. 2a), each intended to select a memory location. We label these ancillae 
as a000, a001, . . . , a111 and the corresponding memory locations as M000, M001, . . . , M111, respectively. For 

Fig. 1.  (a) A flowchart showing the procedures in QRAMpoly . In the figure “I/p” and “enc. poly.” represents 
“Input” and “encoding polynomials”, respectively. (b) The procedure of evaluating monomials using Toffoli.

 

Scientific Reports |        (2025) 15:11002 6| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


simplicity, we assume each memory location has 1 qubit. Now in each ancilla ab⃗ we want to implement the 
polynomial p⃗b (Table 2), which is a sum of monomials in variables x1, x2, x3, assigned to input qubits q1, q2, q3
, respectively. First, we use 3 CNOTs to get the 3 minimum weight monomials of weight 1, that is, x1, x2, x3 
and store them in a100, a010, a001, respectively. Next, using Toffolis we compute monomials of weight 2, that 
is, x1x2, x2x3, x1x3 and store these in ancillae a110, a011, a101, respectively. After that we again use Toffoli to 
multiply monomials of weight 1 and 2, obtaining x1x2x3, and store it in a111. We observe (refer Table 2) that if 
a monomial mI  is the minimum weight monomial of an encoding polynomial p⃗b then it is stored in ancilla ab⃗
. This completes Step 1.

Then, using CNOTs we XOR the monomials and obtain the encoding polynomials in corresponding ancilla, 
as stated in Theorem 6. This implies we first compute encoding polynomials whose minimum weight monomial 
has highest weight, then we compute those polynomials whose minimum weight monomial has the second 
highest weight and so on. One way of doing this step is to XOR aI  (storing mI) with each aI′  (storing mI′ ) 
such that I′ ⊂ I . We start from I  with highest cardinality n, then sets of indices with second highest cardinality 
n − 1 and so on. For example, in Fig. 2a the highest weight monomial is x1x2x3 and after step 1, px1x2x3  is 
already computed in a111. We XOR a111 with all other ancillae because {1, 2, 3} is a superset of the set of 
indices of all other monomials. This also computes the polynomials px1x2 , px2x3  and px1x3  in a110, a011 and 
a101, respectively. Next, we XOR aI  with each aI′  such that |I| = 2 and I′ ⊂ I . So, a110 is XORed with a100
, a010 and a000. Similarly, we XOR a011 and a101 with 3 other ancillae (each). This completes the computation 
of polynomials px1 , px2  and px3  in a100, a010 and a001, respectively. Finally, we XOR a100, a010 and a001 with 

Fig. 2.  QRAMpoly  on 3 qubits. (a) The circuit shows the computation of the encoding polynomials and 
their storage in specific ancilla. These ancillae are used to select memory locations for further operations like 
reading, writing, assigning phase, etc. Each dotted box corresponds to Toffoli-depth 1. Thus the circuit has 
Toffoli-depth 2. (b) The circuit shows the reading operation where contents of one of the memory location, 
controlled on an ancilla, is copied to the output bus. (c) A parallelized version of the circuit in (b). The Toffoli-
depth in this case is 1.

 

Scientific Reports |        (2025) 15:11002 7| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


a000. We use X gate on a000 to add 1. This completes the computation of polynomial p1. This also completes 
Step 2.

In Step 3 if we want to read from the memory then we use the circuit in Fig. 2b. Here controlled on each 
ancilla a memory location is copied to the output bus |out⟩.

Illustration : application of QRAMpoly  in Grover’s algorithm
To further illustrate the application of QRAMpoly  we consider the Grover’s algorithm1, which gives a thoeretical 
quadratic speedup over classical search algorithms in an unstructured database. Suppose there are N items in 
the database. The Grover’s algorithm consists of the following steps. First we initialize the system in the state 
|Ψ⟩ = |0⟩n. Then we perform a number of iterations of the following procedure. 

	1.	 Set all qubits into an equal superposition state |s⟩. 

	
H⊗n|0⟩n = 1√

N

N−1∑
i=0

|i⟩ = |s⟩.

	2.	 Phase-tag the states that represent the values to be searched.
	3.	 Implement a diffusion operator Ud = 2|s⟩⟨s| − I that amplifies the amplitudes for measuring the states that 

need to be searched.

At the end of all iterations of the algorithm we perform a measurement in the computational basis. The searched 
items can be be found by identifying the distinct peaks in the distribution of the measured results.

Steps 2 (phase-tagging) and 3 (diffusion operator) correspond to two successively performed reflections, and 
thus together they perform a rotation in a 2D-plane. Thus in each iteration of the Grover’s algorithm the state 
|s⟩ is rotated closer to a state |k⟩, that represents a value to be searched. After an optimal number of iterations 
|s⟩ is rotated the closest to |k⟩. Searching one item in an unstructured database with N items requires at most 
O

(√
N

)
 iterations. Classically this search can be done in O(N) time complexity. Thus it is possible to achieve a 

quadatic speed-up, provided each iteration is done efficiently, or simply put, time complexity of each iteration is 
considerably less than the number of iterations.

Usually, in theoretical analyses of Grover’s algorithm we assume the existence of a phase-tagging oracle that 
performs step 2. This oracle has the following functionality :

	 O|i⟩ = (−1)f(i)|i⟩ with f(i) = 1 if i ∈ {k} else f(i) = 0.

An efficient implementation of this oracle is essential in order to achieve the claimed speedup of the Grover’s 
algorithm in practice. Our QRAMpoly  can be used to implement this oracle. Specifically, after we compute the 
encoding polynomials in order to select a memory location (Step 3) we do not require the Toffolis, as shown in 
Fig. 2b. Instead, we use CZ on each memory location where the control is on the selecting ancilla. In this way, we 
apply phase on selected memory locations.

We are not going into more detail of an optimal fault-tolerant implementation of Grover’s algorithm in 
order to achieve a practical quantum speed-up as this is a stand-alone research topic73 and beyond the scope 
of this paper. But briefly we want to summarize this section by emphasizing that an efficient implementation 
of the phase-tagging oracle is crucial for the practical speed-up of Grover’s algorithm. A QRAM (with proper 
modification) can be used and faster this QRAM, the better it is. In later sections we give a detail analysis of the 
cost of fault-tolerant implementation of QRAMpoly  (though with read/write operations) with the surface code 
and show that it is much faster and consumes less number of qubits, compared to other QRAMs. Thus it can also 
be used to have a faster fault-tolerant implementation of Grover’s algorithm.

Cost of implementation
Now we discuss the cost of implementing a circuit with the Clifford+T gate set. We focus on optimizing the 
non-Clifford resource, that is, the T-count and T-depth, as discussed earlier in Section Our contributions. We 
first bound the Toffoli depth and number of compute-uncompute Toffoli pairs. In literature there are different 
implementations of a Toffoli gate with the Clifford+T gate set, some optimizing its T-count, while there are others 
that optimize T-depth. The circuit in68,69 gives the lowest T-count of 4 and has a T-depth of 2. It uses logical 
AND gadget which does the multiplication. One advantage of this circuit is the fact that if we have a compute-
uncompute pair then the uncomputation part does not require any T-gate, but it uses classical measurements. 
Another circuit is the one in70 which has a T-count of 7, T-depth of 1 and uses 4 extra ancillae. Depending on 
whichever parameter we want to optimize, one implementation can be favoured over the other.

We have separated the cost after the computation of the encoding polynomials since the cost of this part can 
change depending upon the required operations, as discussed in Section Illustration : application of QRAMpoly  
in Grover’s algorithm.

Number of compute-uncompute Toffoli pairs :  From Theorem 6 we know that we need to implement all 
monomials of weight 0, 1, 2, . . . , n. We do not require any Toffoli to implement monomials of weight 0 and 
1. The former can be obtained by applying X gate and the latter are the variables assigned to the input qubits. 

There are 
(

n
2

)
 monomials of weight 2. We need these many Toffolis in order to get all monomials of weight 

Scientific Reports |        (2025) 15:11002 8| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


2. Monomials of weight 3 can be obtained by multiplying each weight 2 monomial with a variable. In general, 
a monomial of weight k ≥ 2 can be obtained by multiplying any two already calculated monomials of weights 
k1, k2 < k, such that k1 + k2 = k. Thus we require 1 Toffoli to compute each monomial of weight more than 
1. We also require equal number of Toffolis in order to uncompute. Hence the number of compute-uncompute 
pairs of Toffoli we require is

	
T of

c =
n∑

k=2

(
n
k

)
=

n∑
k=0

(
n
k

)
− n − 1 = 2n − n − 1 = N − log2 N − 1.� (9)

Additionally, for copying memory contents (Fig. 2b), we require Nℓ Toffolis, where ℓ is the number of qubits 
in each memory location or its size. This implies that QRAMpoly  has a T-count of O(N − log2 N − 1) for 
computing the encoding polynomials. It requires an additional O(Nℓ) T-gates for reading or writing.

Number of logical qubits :  Apart from the n = log2 N  qubits containing the input address, we require 
N ancillae in order to select memory locations. Thus the number of logical qubits, excluding the Nℓ memory 
qubits is

	 Q = N + log2 N.� (10)

Number of CNOT pairs : Suppose an ancilla aj  selects memory location Mj . We have already discussed 
that we need to implement the encoding polynomial of the binary representation of j in aj . From Corollary 5 
we know that each encoding polynomial has a unique minimum weight monomial determined by the bit string 
that it encodes. We can label each ancilla using these minimum weight monomials. Let I  be the set of indices of 
the bits in the binary representation of j, that have value 1. mI  is the corresponding minimum weight monomial 
of the encoding polynomial pbin(j)(x1, . . . , xn), where bin(j) is the binary representation of j. Then we can 
alternatively refer to aj  as aI .

Initially, using n CNOTs we store the single weight monomials x1, . . . , xn in n ancillae - a{1}, . . . , a{n}
, respectively. Then using Toffolis we compute and store monomials of weight greater than 1 in different 
ancillae. According to Theorem 6 we use CNOTs to add these monomials in order to implement the encoding 
polynomials. Consider a monomial mI  of weight k, i.e. |I| = k that has been computed in ancilla aI . From 
Corollary 3 we know that we need to add a CNOT from the ancilla aI  to each ancilla aI′ , where I′ ⊂ I . Now I  

has 2k − 1 subsets (excluding itself). And there are 
(

n
k

)
 monomials of weight k. We need an equal number 

of CNOT for uncomputations. Thus total number of CNOT pairs required is

	

C =n +
n∑

k=1

(
n
k

)
(2k − 1) = n +

n∑
k=0

(
n
k

)
2k −

(
n
0

)
20 −

n∑
k=0

(
n
k

)
+

(
n
0

)
= n + 3n − 2n

= log2 N + N log2 3 − N ≈ log2 N + N1.6 − N.

� (11)

Toffoli-depth : In this design Toffolis are required to compute the different monomials that are stored in 
distinct ancillae. As mentioned, we can compute a monomial of weight k by multiplying two already-computed 
monomials of weight k1, k2 < k such that k1 + k2 = k. Initially we have n monomials of weight 1 (the inputs) 
that are also stored in n ancillae. So we have 2n monomials and using these we can compute 2n

2 = n new 
monomials of higher weight in parallel. After that we can compute 2n+n

2 = 3n
2  monomials in parallel using the 

already available 3n monomials. Next, we can compute 1
2

(
2n + 2n

2 + 1
2

(
2n + 2n

2

))
 monomials in parallel 

using the available monomials. Roughly, we can compute O(n) monomials in parallel in each round. Since we 
need to compute 2n − n − 1 monomials of weight greater than 1, so Toffoli-depth is

	
T of

d ∈ O
(2n − n − 1

n

)
∈ O

(
N − log2 N − 1

log2 N

)
.� (12)

Parallelizing the multiplications : lower T-depth
We observe that in this design the non-Clifford Toffolis are required to compute monomials of weight at most 
n. Since we store the monomials in different qubits so we can compute in parallel monomials of weight k using 
monomials of weight 1, . . . , k

2 . Thus the maximum weight of any monomial that can be computed in parallel 
is double the maximum weight of any monomial computed in the previous parallel stage (Each stage is Toffoli-
depth 1). Hence, all the monomials can be computed with Toffoli-depth

	 T of
d,par = log2 n = log2 log2 N.� (13)

In Fig. 3 we have shown a parallel implementation of a 4-qubit QRAM.
The set of Nℓ Toffolis required to read or write from the memory can be parallelized to have Toffoli-depth 1. 

A simple method using an additional Nℓ number of ancillae, has been shown in Fig. 2c, where ℓ = 1. During 
reading, the contents of each memory location is copied to an ancilla. Then using CNOTs the parity of these 
ancillae is stored on the output bus. As explained before, during writing the control and target of the memory 
locations and output bus are reversed. In order to parallelize these operations and have Toffoli-depth 1, we can 
also use the method described in Figure 4 of29 or in71, the latter has exponentially less qubit-count.

Scientific Reports |        (2025) 15:11002 9| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Hence, using either of the implementations in68,69 or70, accounting for both the computation and 
uncomputation part, we achieve a T-depth of 2 log2 log2 N , excluding the read/write operation.

Extra ancillae to reduce Toffoli-depth :  In the first step we compute monomials of weight 2, using monomials 
of weight 1. We store n + n weight-1 monomials in 2n distinct qubits. Using these we can compute n weight-2 

monomials in parallel. We can compute the remaining 
(

n
2

)
− n weight-2 monomials by copying the inputs 

in different ancillae. So we require

	
2

((
n
2

)
− n

)

extra ancillae. We reuse ancillae. In the next step (Toffoli-depth 2) we compute monomials of weight 3 and 4. We 

can already compute 1
2

(
2n +

(
n
2

))
 monomials using the monomials already stored (no extra ancilla). We 

can compute the remaining using

	
2

((
n
4

)
+

(
n
3

))
−

((
n
2

)
+ 2n

)

extra ancillae. We use the ancillae used in Toffoli-depth-1. So we need not add this number to the previously 
calculated number. Generalizing, suppose we have computed all monomials of weight at most k/2. In the next 

step we can compute all monomials of weight k. We can compute 1
2

((
n

k/2
)

+ · · · + 2n
)

 monomials using 

already stored monomials. Remaining can be computed using

	
Ak = 2

((
n
k

)
+ · · · +

(
n

k/2 + 1
))

−
((

n
k/2

)
+ · · · +

(
n
2

)
+ 2n

)

extra ancillae. Number of extra ancillae we require is

	
max

k
Ak ≤ 2n = N.� (14)

Thus, excluding the memory qubits and ancillae required to parallelize the reading/writing operation, the total 
number of logical qubits we require is

	 Qpar ≤ 2N + log N.� (15)

Extra CNOT to reduce T-depth :  At each step we require CNOTs to copy monomials to extra ancillae and 
then again we reset. Roughly, we can say that we require maxk Ak  CNOT pairs at each step. Thus number of 
extra CNOT pairs is at most

Fig. 3.  QRAMpoly  on 4 qubits. This is a parallelized version, where the Toffoli-depth has been reduced by 
using extra ancillae. Each dotted box corresponds to Toffoli-depth 1. Thus the circuit has Toffoli-depth 2. We 
show only till the computation of the encoding polynomials in respective ancillae.

 

Scientific Reports |        (2025) 15:11002 10| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 2n log2 n = N log log N.

So total number of CNOT pairs is

	 Cpar ∈ O (3n − 2n + 2n log2 n) ∈ O
(
N1.6 + N log2 log2 N

)
.� (16)

Remark 3.1  A monomial of weight k can be computed by CkX , a NOT gate controlled on k qubits. This gate, 
on input |x1⟩, |x2⟩, . . . , |xk⟩, |0⟩, returns the product |x1x2 . . . xk⟩, as follows.

	 CkX|x1〉|x2〉 · · · |xk〉|0〉 �→ |x1〉|x2〉 · · · |xk〉|x1x2 . . . xk〉

In principle, we can compute all the necessary N − log2 N − 1 monomials in parallel by using 
(

n
k

)
 number 

of CkX  gates, for each k = 2, . . . , n. We require enough number of ancillae in order to copy the input variables 
the required number of times. Thus for computing the encoding polynomials the T-depth or Toffoli-depth is 
determined by the maximum T-depth or Toffoli-depth required to implement any CkX , where k = 2, . . . , n. 
So this part can improve with the design of better circuits for CnX .

Comparison with previous work
We compare the resource estimates with the parallelized version of bucket-brigade QRAM29. Here we mention 
that we have compared with the bucket-brigade architecture for the following reasons. First, this has been 
the most widely studied QRAM and a detailed fault-tolerant resource estimates is available, as in29. Second, 
its applications are more general than other QRAMs, for example, FF-QRAM40, EQGAN-QRAM72, PQC-
based QRAM49, which have been designed for specific problems and some of them do not scale well. Third, 
QRAMs as in40,49,72–74 use unitaries like controlled rotations, that are approximately implementable by discrete 
universal gate sets. The non-Clifford cost like T-count or Toffoli-count varies inversely with the precision of 
synthesis61–63,75. Hence, such designs are more expensive to implement fault-tolerantly. Fourth, many works 
have used the bucket-brigade QRAM as a basic module and designed more intricate architecture with it, most 
often to achieve some tradeoffs for particular applications or scenario, for example36. Thus, we can simply replace 
this module with our QRAMpoly  in order to compare the designs.

We compare the Toffoli-count, Toffoli-depth and number of logical qubits. In this way we do not have to worry 
about the difference in T-count and T-depth due to different implementations of Toffoli. We do not consider 
resource estimates for the reading/writing operation since this part can be implemented and optimized in a 
similar fashion and hence its cost can be regarded the same. Without this, the parallel bucket-brigade circuit in29 
requires N − 2 compute-uncompute Toffoli pairs, 2N + log2 N  logical qubits and has Toffoli-depth log2 N . 
From Eqs. (9), (13) and (15), this implies the following.

	
RT −depth =T-depth in this work

T-depth in [29]
= log2 log2 N

log2 N
� (17)

	
RT −count =T-count in this work

T-count in [29]
= N − log2 N − 1

N
� (18)

	
Rqubits =#Logical qubits in this work

#Logical qubits in [29]
= 2N

2N
= 1 � (19)

Thus we achieve an exponential improvement of T-depth, reduction in T-count, while keeping the number of 
logical qubits the same.

Fault-tolerant implementation : In most error-correction schemes, including the most popular surface 
code, the cost of implementation of the non-Clifford T gate is much more than the cost of the Clifford gates64. 
In29 the following has been taken as a rough estimate for the cost of implementation with the surface code.

	 Rough cost = log2 (Logical qubits × T-depth)� (20)

Thus from Eqs. (17)-(19) we can say that our QRAMpoly  has much less fault-tolerant cost estimates from 
previous bucket-brigade architecture. So we expect much better performance in terms of running time.

For illustration, we consider an implementation of our QRAMpoly  with the surface code, and estimate 
resource requirements following the procedures described in64 and37. Consider the number of qubits n = 36
, which corresponds to 8 GB of classical data. Using logical AND gadgets69, Toffoli can be implemented with 4 
T gates with a T-depth 2 and if there is a compute-uncompute Toffoli pair we do not require any T gate for the 
uncomputation part. Hence, from Eq. (9), assuming ℓ = 1, the T-count is

	 T ≤ 4(2N − log n − 1) = 5.4975 × 1011� (21)

and the T-depth is

	 Td ≤ 2(⌈log n⌉ + 1) = 14.� (22)

Scientific Reports |        (2025) 15:11002 11| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Each T gate requires one magic state (|AL⟩). For the above T-count the output error rate for state distillation 
should be no greater than

	
pout = 1

T ≈ 1.81899−12.� (23)

Now we use Algorithm 4 in37 in order to calculate the distance of the surface code. Assuming a magic state 
injection error rate pin = 10−4, a per-gate error rate pg = 10−5, the stated algorithm suggests 2 layers of 
distillation with distances d1 = 10, d2 = 5. The first stage of distillation consumes 16 logical qubits and the 
second stage consumes 16 × 15 = 240 logical qubits in order to generate a single magic state.

The input states of the logical qubits in the second layer are encoded on a distance d2 = 5 code that uses 
Np2 = 2.5 × 1.25 × d2

2 ≈ 79 physical qubits per logical qubit. The total footprint of the distillation circuit is 
then 240 × Np2 = 18750 physical qubits. This round of distillation is completed in σ2 = 10d2 = 50 surface 
code cycles.

The first or top layer requires a d1 = 10 surface code, for which a logical qubit takes Np1 = 2.5 × 1.25 × d2
1 ≈ 313 

physical qubits. So the total number of physical qubits required is 16 × Np1 = 5000, with the round of 
distillation completed in σ1 = 10d1 = 100 surface code cycles.

The concatenated distillation scheme is performed in σ = σ1 + σ2 = 150 surface code cycles. Since the 
first or top layer has lower footprint than the second or bottom layer, distillation can potentially be pipelined to 
produce

	
150 × 18750

100 × 5000 + 50 × 18750 ≈ 2

magic states in parallel. The physical qubits in the second layer is reused. Let tsc = 200ns is a surface code cycle time. 
Then 2 magic states can be produced every σ × tsc = 30 × 10−6 s. We require T

Td
= 5.4975×1011

14 ≈ 3.9 × 1010 
magic states per layer or depth of T-gates. We produce these many magic states in parallel for each layer. Due to 
parallelization the number of physical qubits required is

	
1
2 × 3.9 × 1010 × 18750 ≈ 3.66 × 1014� (24)

and the time taken is

	 14 × 30 × 10−6s = 4.2 × 10−4s.� (25)

In surface code implementation the cost of implementation of a multi-target CNOT is equal to the cost of a 
single target CNOT64 and has the same execution time. So we consider a multi-target CNOT as one logical 
CNOT. Each Toffoli can be implemented with 2 CNOTs, 2 multi-target CNOTs, 1 H and 1 S gate69. Thus we 
can upper bound the number of logical Cliffords by 7N = 7 × 236 = 4.81 × 1011. The overall error rate of 
the Cliffords should therefore be less than 1

7N
≈ 2.08 × 10−12. To compute the required distance, we seek the 

smallest d that satisfies the inequality

	

(
pin

0.0125

) d+1
2

< 2.08 × 10−12

and find this to be d = 11. The number of physical qubits required to encode the Cliffords 
is at most 2 × 236 × 2.5 × 1.25 × 112 ≈ 5.197 × 1013. Overall, we require approximately 
3.66 × 1014 + 5.197 × 1013 ≈ 4.18 × 1014 physical qubits to encode the complete QRAMpoly .

Roughly, we expect to perform 7N
2N×Td

= 7
2×14 ≈ 0.25 logical Clifford operations per qubit per layer of 

T-depth. Since each logical CNOT takes 2 surface code cycles and we require σ = 150 surface code cycles per 
T-depth, so the overall time is dominated by the time for implementing the non-Clifford T-gates. Thus, the time 
for implementing one memory read/write operation with QRAMpoly  is approximately 4.2 × 10−4s and utilizes 
about 4.18 × 1014 physical qubits.

The QRAM in29 requires 1.5 × 1015 physical qubits and is implemented in approximately 2.13 × 10−3s, 
using the same surface code parameters and doing a similar analysis. We remark that design considerations can 
vary. We can further reduce the time by parallelizing the magic state factories even more. This will increase the 
number of physical qubits.

Other applications of polynomial encoding
In this section we discuss some applications for the polynomial encoding of bit-strings. First, we describe a 
quantum look-up-table (qLUT) that can be built using two QRAMs. If we use QRAMpoly  that uses the 
polynomial encoding, then our qLUTpoly  has double exponentially less T-depth than previous designs. Second, 
we descibe a method to optimize the Toffoli-count of circuits consisting of groups of multi-controlled-NOT 
gates.

Scientific Reports |        (2025) 15:11002 12| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Quantum look-up-table (qLUTpoly)
Now we describe a quantum look-up-table formed by combining two QRAMs, as shown in Fig. 4. Suppose we 
want to build a qLUT with n address bits. That is, there are N = 2n number of look-up addresses. We divide 
the address bits into two groups, the first one with n1 bits and the next one with n2 bits. That is, n = n1 + n2 
and assume N1 = 2n1 , N2 = 2n2 . With these we build two QRAMs, QRAMpoly,n1  and QRAMpoly,n2  with 
n1 and n2 number of address qubits respectively. Thus, QRAMpoly,n1  and QRAMpoly,n2  are capable of 
addressing N1 and N2 memory locations respectively. And as discussed before we have N1 and N2 number of 
(selecting) ancillae in each QRAMpoly  (respectively) that correspond to these address locations.

Suppose we want to read a look-up address indexed by the bit string b0, . . . , bn−1, or alternatively by the 
integer N ′ =

∑n−1
j=0 bj2j . Now,

	

N ′ =
n−1∑
j=0

bj2j =
n2−1∑
j=0

bj2j +
n−1∑

j=n2

bj2j =
n2−1∑
j=0

bj2j + 2n2

(
n−1∑

j=n2

bj2j−n2

)

=
n2−1∑
j=0

bj2j + N2

(
n−n2−1∑

j′=0

bj′+n2 2j′

)
=

n2−1∑
j=0

bj2j + N2

(
n1−1∑
j′=0

bj′+n2 2j′

)
= N ′

2 + N2N ′
1.

With the first QRAM i.e. QRAMpoly,n1  we select all address locations with first n1 bits as b0, . . . , bn1−1. From 
the previous equation we know that there are N2 such locations and we copy their contents in separate registers. 
With the next QRAM i.e. QRAMpoly,n2  we select an address among these copied addresses. Specifically, it 
selects an address with the last n2 bits as bn1 , . . . , bn. Hence finally a memory location with address (b0, . . . , bn) 
gets selected. After this, using Toffolis we copy the contents of this memory location into the output bus.

Let each look-up address has ℓ bits. So after an address gets selected we require N2ℓ Toffolis in order to 
compute the parity into the output bus. We can parallelize these Toffolis with additional N2ℓ ancillae, as 
shown in Fig. 2c and explained in Section Parallelizing the multiplications : lower T-depth. QRAMpoly,n1  and 
QRAMpoly,n2  can be implemented in parallel. Further, if we use the parallelized versions of these QRAMs then 
we have the following.

	

Toffoli-depth = max{log2 n1, log2 n2} + 1
Toffoli-count = (N1 − n1 − 1) + (N2 − n2 − 1) + ℓN2 = N1 + (ℓ + 1)N2 − n − 2
#Ancillae = 2N1 + 2N2 + ℓN2 + ℓN2 = 2(N1 + (ℓ + 1)N2)

Fig. 4.  A quantum look-up table (qLUT), using n1-bit and n2-bit QRAM in parallel. For qLUTpoly  we use 
two QRAMpoly , one addressing n1-bit locations and another one addressing n2-bit locations.

 

Scientific Reports |        (2025) 15:11002 13| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


2N1 and 2N2 ancillae are required to implement QRAMpoly,n1  and QRAMpoly,n2 , respectively. ℓN2 
qubits are required to copy the contents of the subset of memory locations selected by QRAMpoly,n1 . ℓN2 
qubits are also required to parallelize the last ℓN2 Toffolis and compute the parity.

Comparison with previous works : In the CSWAP architecture for qLUT58 the authors combine a QROM 
and a specific QRAM. The QROM is implemented with a set of multi-controlled-NOT gates. The QRAM 
is implemented with a number of Fredkin or controlled-SWAP unitaries. Each controlled-SWAP can be 
implemented with a Toffoli and CNOT. The contents of the selected memory location is always obtained on 
some specified qubits. This qLUT has a T-count of O(

√
N), T-depth O(

√
N) and number of qubits O(

√
N).

If N1 = N2 =
√

N  then using any of the existing implementations of Toffoli, our qLUTpoly  has T-depth 
O(log2 log2 N), which is a double exponential improvement over the previous work. The T-count and number 
of qubits is asymptotically same. Thus from a fault-tolerant perspective, assuming the cost metric in Eq. (20), our 
design is expected to perform better.

Our CNOT cost is primarily dominated by the step where we copy a subset of memory locations selected 
by the first QRAM. We require ℓN1N2 = ℓN  CNOTs at this stage. But again this is a group of N1 multi-target 
CNOTs, where each has N2 target. So in surface code implementation the execution time is equivalent to the 
time of execution of N1 logical CNOTs. This cost is the same as that in58.

Toffoli-count optimization of quantum circuits
The polynomial encoding can be used to optimize the number of Toffolis required to implement groups of 
multi-controlled-X gates or mixed polarity multiple control Toffolis (MPMCTs)29. For example, we want to 
implement a circuit that flips a qubit to |1⟩ for a subset, S ⊆ {0, 1}n, of n-bit strings. These types of circuits also 
represent a kind of QROM. These can be used to select a subset of addresses and implement certain operations 
on those locations. We optimize the Toffoli-count of such circuits using the following procedure, which we call 
TOFFOLI-OPT-POLY.

	1.	 Compute the encoding polynomial of each bit-string ⃗b ∈ S . This can be done conveniently using Lemma 2.
	2.	 Compute the following sum of the encoding polynomials. 

	

p(x1, . . . , xn) =
⊕

b⃗∈S

p⃗b(x1, . . . , xn)

	 In this case coefficients of same monomials are added and reduced modulo 2.

	3.	 A product of linear polynomials can be implemented with a Toffoli. We remember that a linear polynomial is 
the sum of monomials of weight at most 1. Such a polynomial can be implemented with CNOTs and X gates. 
Arrange the terms in p(x1, . . . , xn) such that the number of products of linear polynomials is optimized.

	4.	 For each product we implement its factors in separate qubits, using CNOT and X gates. Using Toffoli we 
multiply these factors to implement the product. Then using CNOTs we add such product terms in order to 
implement p(x1, . . . , xn).

For illustration, consider the circuit shown in Fig. 5a, that has 3 qubits q1, q2, q3 and another qubit initialized 
to |0⟩. It flips the last qubit to |1⟩ whenever the state of the first 3 qubits is |000⟩, |001⟩, |011⟩ or |111⟩. The 
encoding polynomials p000(x1, x2, x3), p001(x1, x2, x3), p011(x1, x2, x3) and p111(x1, x2, x3) have been 
calculated in Table 2. Then,

	

p(x1, x2, x3) =p000(x1, x2, x3) ⊕ p001(x1, x2, x3) ⊕ p011(x1, x2, x3) ⊕ p111(x1, x2, x3)
=1 + x1 + x2 + x1x2 + x2x3 = 1 + x1 + x2 + x2(x1 + x3).

The 3 qubits q1, q2, q3 are assigned variables x1, x2, x3, respectively. With a CNOT controlled on q1 and having 
target on q3, we compute x1 ⊕ x3. Then using a Toffoli controlled on |q2⟩ and |q3⟩, that store x2 and x1 ⊕ x3, 
respectively, we compute the product x2(x1 + x3). The rest of the variables can be added using CNOTs and X. 
The optimized circuit with 1 Toffoli gate has been shown in Fig. 5b.

Fig. 5.  (a) A circuit with 4 multi-controlled-NOT gates or C3X , where each such gate is controlled on 3 
qubits. (b) The same circuit implemented with 1 Toffoli gate.

 

Scientific Reports |        (2025) 15:11002 14| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Here we observe that a sequence of multi-controlled-X gates represents a Boolean function which is a sum of 
product terms. We can find its ESOP (Exclusive Sum-of-Products) expression using tools like EXORCISM76–78. 
Then factoring this expression we can implement the Boolean expression. We can also use the algorithm in79 
which first computes the ESOP, and then breaks the expression into common cofactors, which are reversibly 
synthesized. For example, in29 the authors mentioned that the circuit in Fig. 5a can be implemented with 2 
Toffolis. This is more than the Toffoli-count we get. We can also implement each multi-controlled-NOT-X gate 
using the decomposition given in80. Each CnX  i.e. an n-qubit-controlled-X gate can be implemented with n − 1 
Toffolis and an additional n − 1 ancillae. But this will give more Toffoli-count than our implementation in Fig. 
5b.

Discussions and conclusion
In this paper we develop a new design for quantum random access memory, using a polynomial encoding of the 
bit strings specifying the address of memory locations. We implement a Clifford+T circuit for our QRAMpoly  
and show that QRAMpoly  has T-count O(N − log N − 1), T-depth O(log log N) and uses O(N) logical 
qubits. Thus with our design of QRAMpoly  we achieve an exponential improvement in T-depth, while reducing 
T-count and keeping the number of logical qubits requirement the same with respect to the previous state-of-
the-art bucket brigade architecture20,29. We illustrate that when encoded with the surface code64,65, in order to 
perform one memory read/write operation, QRAMpoly  takes less time and uses much less number of physical 
qubits. Using two such QRAMpoly  we implement a quantum look-up table (qLUTpoly) that has T-count 
O(

√
N), T-depth O(log log N) and uses O(

√
N) logical qubits. With our quantum look-up-table circuit 

qLUTpoly  we achieve (Table 1) a double exponential improvement in T-depth over the previous state-of-the-art 
CSWAP architecture for qLUT58, while the T-count and qubit-count are asymptotically same.

In our designs reduction in non-Clifford gate count comes at the cost of an increase in the CNOT gate count. 
The latter is a Clifford gate and in most error correction schemes the cost of implementing a Clifford is much 
less than the cost of implementing a non-Clifford. Thus, in our illustration we obtained better performance 
compared to previous QRAM designs. But CNOT, being a multi-qubit gate is more error prone than single-qubit 
gates like T. Even for connectivity constrained architectures (especially of the NISQ era) implementing a multi-
qubit gate becomes more costly because it often needs a number of intermediate CNOT or SWAP gates, thus 
increasing the total gate count81.

The problem of studying the noise-resilience of QRAM is an active research problem27,28, especially for the 
pre-fault-tolerant regime. And we believe it is beyond the scope of this current work because this paper exclusively 
focuses on performance improvements in the fault-tolerant regime. Often metrics and design considerations 
in these two regimes differ and hence they are studied separately. A detail analysis of the noise-resilience of 
QRAMpoly  is left for future work. It will also be interesting to study the mapping overhead of these circuits 
in different architectural layouts like 2D grid, as done in36,59. We expect to find trade-offs between the CNOT 
count and error rate or sparsity of the underlying graph. We can also aim at developing different hybrid designs 
with these new and existing circuits, so that we can take advantage of the various designs in different scenarios.

Using the polynomial encoding, we develop a method (TOFFOLI-OPT-POLY) to optimize the Toffoli-count 
of quantum circuits, especially those using multi-controlled-NOT gates. Since such circuits represent a sum-of-
product (SOP) form of Boolean function, so these encodings can also have potential application in optimizing 
Boolean ESOP expressions, similar to the algorithms in76–79. Some of these classical algorithms have inspired 
methods for reversible quantum logic synthesis73, which in turn have been an integral part of the design of 
quantum oracles for important algorithms like Grover’s search. Thus these encoding polynomials may be used 
for reversible quantum logic synthesis. In the future we aim to investigate this avenue and the application of 
the polynomial encodings towards the design of algorithm-specific oracles and application-specific QRAMs, as 
in40,49,72–74.

Data availability
All relevant data are included in this manuscript.

Received: 19 November 2024; Accepted: 20 March 2025

References
	 1.	 Grover, Lov K. A fast quantum mechanical algorithm for database search. In  Proceedings of the twenty-eighth Annual ACM 

Symposium on Theory of Computing, pages 212–219, (1996).
	 2.	 van Apeldoorn, Joran, Gilyén, András, Gribling, Sander & de Wolf, Ronald. Convex optimization using quantum oracles. Quantum 

4, 220 (2020).
	 3.	 Reiher, Markus, Wiebe, Nathan, Svore, Krysta M., Wecker, Dave & Troyer, Matthias. Elucidating reaction mechanisms on quantum 

computers. Proceedings of the National Academy of Sciences 114(29), 7555–7560 (2017).
	 4.	 Babbush, Ryan et al. Low-depth quantum simulation of materials. Physical Review X 8(1), 011044 (2018).
	 5.	 Bauer, Bela, Bravyi, Sergey, Motta, Mario & Chan, Garnet Kin-Lic. Quantum algorithms for quantum chemistry and quantum 

materials science. Chemical Reviews 120(22), 12685–12717 (2020).
	 6.	 Cao, Yudong et al. Quantum chemistry in the age of quantum computing. Chemical Reviews 119(19), 10856–10915 (2019).
	 7.	 Rubin, Nicholas C. et al. Fault-tolerant quantum simulation of materials using Bloch orbitals. PRX Quantum 4(4), 040303 (2023).
	 8.	 Wilson Rosa de Oliveira. Quantum RAM based neural netoworks. In ESANN 9, 331–336 (2009).
	 9.	 Biamonte, Jacob et al. Quantum machine learning. Nature 549(7671), 195–202 (2017).
	10.	 Harrow, Aram W., Hassidim, Avinatan & Lloyd, Seth. Quantum algorithm for linear systems of equations. Physical Review Letters 

103(15), 150502 (2009).
	11.	 Huang, Hsin-Yuan., Kueng, Richard, Torlai, Giacomo, Albert, Victor V. & Preskill, John. Provably efficient machine learning for 

quantum many-body problems. Science 377(6613), eabk3333 (2022).

Scientific Reports |        (2025) 15:11002 15| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	12.	 Ciliberto, Carlo et al. Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical 
and Engineering Sciences 474(2209), 20170551 (2018).

	13.	 Adcock, J. C. et al. S Morley-Short (AB Price, and S Stanisic. Advances in quantum machine learning. Quantum, S Pallister, 2015).
	14.	 Bang, Jeongho, Dutta, Arijit, Lee, Seung-Woo. & Kim, Jaewan. Optimal usage of quantum random access memory in quantum 

machine learning. Physical Review A 99(1), 012326 (2019).
	15.	 Shor, Peter W. Algorithms for quantum computation: discrete logarithms and factoring. In  Proceedings 35th Annual Symposium 

on Foundations of Computer Science, pages 124–134. IEEE, (1994).
	16.	 Kuperberg, Greg. Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In  8th Conference 

on the Theory of Quantum Computation, Communication and Cryptography, page 20, (2013).
	17.	 Oh, Seunghyeok, Choi, Jaeho, Kim, Jong-Kook & Kim, Joongheon. Quantum convolutional neural network for resource-efficient 

image classification: A quantum random access memory (QRAM) approach. In  2021 International Conference on Information 
Networking (ICOIN), pages 50–52. IEEE, (2021).

	18.	 Aaronson, Scott. Read the fine print. Nature Physics 11(4), 291–293 (2015).
	19.	 von Burg, Vera et al. Quantum computing enhanced computational catalysis. Physical Review Research 3(3), 033055 (2021).
	20.	 Giovannetti, Vittorio, Lloyd, Seth & Maccone, Lorenzo. Architectures for a quantum random access memory. Physical Review A - 

Atomic, Molecular, and Optical Physics 78(5), 052310 (2008).
	21.	 Konig, Robert, Maurer, Ueli & Renner, Renato. On the power of quantum memory. IEEE Transactions on Information Theory 

51(7), 2391–2401 (2005).
	22.	 Blencowe, Miles. Quantum RAM. Nature 468(7320), 44–45 (2010).
	23.	 Liu, Chenxu, Wang, Meng, Stein, Samuel A, Ding, Yufei & Li, Ang. Quantum memory: A missing piece in quantum computing 

units. arXiv preprint arXiv:2309.14432, (2023).
	24.	 Phalak, Koustubh, Chatterjee, Avimita & Ghosh, Swaroop. Quantum random access memory for dummies. Sensors 23(17), 7462 

(2023).
	25.	 Kerenidis, Iordanis & Prakash, Anupam. Quantum recommendation systems. In  8th Innovations in Theoretical Computer Science 

Conference (ITCS 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, (2017).
	26.	 Giovannetti, Vittorio, Lloyd, Seth & Maccone, Lorenzo. Quantum random access memory. Physical Review Letters 100(16), 160501 

(2008).
	27.	 Arunachalam, Srinivasan, Gheorghiu, Vlad, Jochym-O’Connor, Tomas, Mosca, Michele & Srinivasan, Priyaa Varshinee. On the 

robustness of bucket brigade quantum RAM. New Journal of Physics 17(12), 123010 (2015).
	28.	 Hann, Connor T., Gideon, Lee, Girvin, S. M. & Jiang, Liang. Resilience of quantum random access memory to generic noise. PRX 

Quantum 2(2), 020311 (2021).
	29.	 Di Matteo, Olivia, Gheorghiu, Vlad & Mosca, Michele. Fault-tolerant resource estimation of quantum random-access memories. 

IEEE Transactions on Quantum Engineering 1, 1–13 (2020).
	30.	 Hong, Fang-Yu., Xiang, Yang, Zhu, Zhi-Yan., Jiang, Li.-zhen & Liang-neng, Wu. Robust quantum random access memory. Physical 

Review A - Atomic, Molecular, and Optical Physics 86(1), 010306 (2012).
	31.	 Moiseev, E. S. & Moiseev, S. A. Time-bin quantum RAM. Journal of Modern Optics 63(20), 2081–2092 (2016).
	32.	 Hann, Connor T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Physical 

Review Letters 123(25), 250501 (2019).
	33.	 Chen, Kevin C., Dai, Wenhan, Errando-Herranz, Carlos, Lloyd, Seth & Englund, Dirk. Scalable and high-fidelity quantum random 

access memory in spin-photon networks. PRX Quantum 2(3), 030319 (2021).
	34.	 Pla, Jarryd. Chirping toward a quantum RAM. Physics 15, 168 (2022).
	35.	 Weiss, D. K., Puri, Shruti & Girvin, S. M. Quantum random access memory architectures using 3D superconducting cavities. PRX 

Quantum 5(2), 020312 (2024).
	36.	 Xu, Shifan, Hann, Connor T., Foxman, Ben, Girvin, Steven M & Ding, Yongshan. Systems architecture for quantum random access 

memory. In  Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture, pages 526–538, (2023).
	37.	 Amy, Matthew, Di Matteo, Olivia, Gheorghiu, Vlad, Mosca, Michele, Parent, Alex & Schanck, John. Estimating the cost of generic 

quantum pre-image attacks on SHA-2 and SHA-3. In  International Conference on Selected Areas in Cryptography, pages 317–337. 
Springer, (2016).

	38.	 Soeken, Mathias, Roetteler, Martin, Wiebe, Nathan & De Micheli, Giovanni. LUT-based hierarchical reversible logic synthesis. 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38(9), 1675–1688 (2018).

	39.	 Jaques, Samuel & Schanck, John M. Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE. In  Advances 
in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, 
Proceedings, Part I 39, pages 32–61. Springer, (2019).

	40.	 Park, Daniel K., Petruccione, Francesco & Rhee, June-Koo Kevin. Circuit-based quantum random access memory for classical 
data. Scientific Reports 9(1), 3949 (2019).

	41.	 De Veras, Tiago ML., De Araujo, Ismael CS., Park, Daniel K. & Da Silva, Adenilton J. Circuit-based quantum random access 
memory for classical data with continuous amplitudes. IEEE Transactions on Computers 70(12), 2125–2135 (2020).

	42.	 Asaka, Ryo, Sakai, Kazumitsu & Yahagi, Ryoko. Quantum random access memory via quantum walk. Quantum Science and 
Technology 6(3), 035004 (2021).

	43.	 Zidan, Mohammed, Abdel-Aty, Abdel-Haleem., Khalil, Ashraf, Abdel-Aty, Mahmoud & Eleuch, Hichem. A novel efficient 
quantum random access memory. IEEE Access 9, 151775–151780 (2021).

	44.	 Dangwal, Siddharth, Sharma, Ritvik & Bhowmik, Debanjan. Fast-QTrain: an algorithm for fast training of variational classifiers. 
Quantum Information Processing 21(5), 189 (2022).

	45.	 Asaka, Ryo, Sakai, Kazumitsu & Yahagi, Ryoko. Two-level quantum walkers on directed graphs. ii. application to quantum random 
access memory. Physical Review A 107(2), 022416 (2023).

	46.	 Bugalho, Luís. et al. Resource-efficient simulation of noisy quantum circuits and application to network-enabled QRAM 
optimization. npj Quantum Information 9(1), 105 (2023).

	47.	 Clarino, David, Asada, Naoya & Yamashita, Shigeru. Optimizing LUT-based quantum circuit synthesis using relative phase 
Boolean operations. In  2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 1–8. IEEE, (2023).

	48.	 Chen, Zhao-Yun, Xue, Cheng, Wang, Yun-Jie, Sun, Tai-Ping, Liu, Huan-Yu, Zhuang, Xi-Ning, Dou, Meng-Han, Zou, Tian-Rui, 
Fang, Yuan, Wu, Yu-Chun, et al. Efficient and error-resilient data access protocols for a limited-sized quantum random access 
memory. arXiv preprint arXiv:2303.05207, (2023).

	49.	 Phalak, Koustubh, Li, Junde & Ghosh, Swaroop. Trainable PQC-based QRAM for quantum storage. IEEE Access 11, 51892–51899 
(2023).

	50.	 Liu, Junyu, Hann, Connor T. & Jiang, Liang. Data centers with quantum random access memory and quantum networks. Physical 
Review A 108(3), 032610 (2023).

	51.	 Liu, Junyu & Jiang, Liang Quantum data center: Perspectives.  IEEE Network, (2024).
	52.	 Duan, Bojia & Hsieh, Chang-Yu. Compact and classically preprocessed data-loading quantum circuit as a quantum random access 

memory. Physical Review A 110(1), 012616 (2024).
	53.	 Hunt, Ethan. Phase RAM: Phase estimation’s application in QRAM. In  Proceedings of the 2024 ACM Southeast Conference, pages 

205–210, (2024).

Scientific Reports |        (2025) 15:11002 16| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://arxiv.org/abs/2309.14432
http://arxiv.org/abs/2303.05207
http://www.nature.com/scientificreports


	54.	 Mukhopadhyay, Priyanka, Stetina, Torin F. & Wiebe, Nathan. Quantum simulation of the first-quantized Pauli-Fierz Hamiltonian. 
PRX Quantum 5(1), 010345 (2024).

	55.	 Berry, Dominic W., Gidney, Craig, Motta, Mario, McClean, Jarrod R. & Babbush, Ryan. Qubitization of arbitrary basis quantum 
chemistry leveraging sparsity and low rank factorization. Quantum 3, 208 (2019).

	56.	 Häner, Thomas, Kliuchnikov, Vadym, Roetteler, Martin & Soeken, Mathias. Space-time optimized table lookup. arXiv preprint 
arXiv:2211.01133, (2022).

	57.	 Krishnakumar, Rajiv, Soeken, Mathias, Roetteler, Martin & Zeng, William. A Q# implementation of a quantum lookup table for 
quantum arithmetic functions. In  2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS), pages 
75–82. IEEE, (2022).

	58.	 Low, Guang Hao, Kliuchnikov, Vadym & Schaeffer, Luke. Trading T gates for dirty qubits in state preparation and unitary synthesis. 
Quantum 8, 1375 (2024).

	59.	 Zhu, Shuchen, Sundaram, Aarthi & Low, Guang Hao. Unified architecture for a quantum lookup table. arXiv preprint 
arXiv:2406.18030, (2024).

	60.	 Mosca, Michele & Mukhopadhyay, Priyanka. A polynomial time and space heuristic algorithm for T-count. Quantum Science and 
Technology 7(1), 015003 (2021).

	61.	 Mukhopadhyay, Priyanka. CS-count-optimal quantum circuits for arbitrary multi-qubit unitaries. Scientific Reports 14(1), 13916 
(2024).

	62.	 Mukhopadhyay, Priyanka. Synthesizing Toffoli-optimal quantum circuits for arbitrary multi-qubit unitaries. arXiv preprint 
arXiv:2401.08950, (2024).

	63.	 Mukhopadhyay, Priyanka. Synthesis of V-count-optimal quantum circuits for multiqubit unitaries. Physical Review A 109(5), 
052619 (2024).

	64.	 Fowler, Austin G., Mariantoni, Matteo, Martinis, John M. & Cleland, Andrew N. Surface codes: Towards practical large-scale 
quantum computation. Physical Review A - Atomic, Molecular, and Optical Physics 86(3), 032324 (2012).

	65.	 Fowler, Austin G. Time-optimal quantum computation. arXiv preprint arXiv:1210.4626, (2012).
	66.	 Häner, Thomas & Soeken, Mathias. Lowering the T-depth of quantum circuits by reducing the multiplicative depth of logic 

networks. arXiv preprint arXiv:2006.03845, (2020).
	67.	 Gheorghiu, Vlad, Mosca, Michele & Mukhopadhyay, Priyanka. A (quasi-) polynomial time heuristic algorithm for synthesizing 

T-depth optimal circuits. npj Quantum Information 8(1), 110 (2022).
	68.	 Jones, Cody. Low-overhead constructions for the fault-tolerant Toffoli gate. Physical Review A - Atomic, Molecular, and Optical 

Physics 87(2), 022328 (2013).
	69.	 Gidney, Craig. Halving the cost of quantum addition. Quantum 2, 74 (2018).
	70.	 Selinger, Peter. Quantum circuits of T-depth one. Physical Review A - Atomic, Molecular, and Optical Physics 87(4), 042302 (2013).
	71.	 Paler, Alexandru, Oumarou, Oumarou & Basmadjian, Robert. Parallelizing the queries in a bucket-brigade quantum random 

access memory. Physical Review A 102(3), 032608 (2020).
	72.	 Niu, Murphy Yuezhen et al. Entangling quantum generative adversarial networks. Physical Review Letters 128(22), 220505 (2022).
	73.	 Seidel, Raphael et al. Automatic generation of Grover quantum oracles for arbitrary data structures. Quantum Science and 

Technology 8(2), 025003 (2023).
	74.	 Nagy, Ákos & Zhang, Cindy. Novel oracle constructions for quantum random access memory. arXiv preprint arXiv:2405.20225, 

(2024).
	75.	 Gheorghiu, Vlad, Mosca, Michele & Mukhopadhyay, Priyanka. T-count and T-depth of any multi-qubit unitary. npj Quantum 

Information 8(1), 141 (2022).
	76.	 Song, Ning & Perkowski, Marek A. Exorcism-mv-2: minimization of exclusive sum of products expressions for multiple-valued 

input incompletely specified functions. In  [1993] Proceedings of the Twenty-Third International Symposium on Multiple-Valued 
Logic, pages 132–137. IEEE, (1993).

	77.	 Song, Ning & Perkowski, Marek A. Minimization of exclusive sum-of-products expressions for multiple-valued input, incompletely 
specified functions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15(4), 385–395 (1996).

	78.	 Mishchenko, Alan & Perkowski, Marek. Fast heuristic minimization of exclusive-sums-of-products. (2001).
	79.	 Shafaei, Alireza, Saeedi, Mehdi & Pedram, Massoud. Reversible logic synthesis of k-input, m-output lookup tables. In  2013 Design, 

Automation & Test in Europe Conference & Exhibition (DATE), pages 1235–1240, IEEE, (2013).
	80.	 He, Yong, Ming-Xing Luo, E., Zhang, Hong-Ke Wang. & Wang, Xiao-Feng. Decompositions of n-qubit Toffoli gates with linear 

circuit complexity. International Journal of Theoretical Physics 56, 2350–2361 (2017).
	81.	 Gheorghiu, Vlad, Huang, Jiaxin, Li, Sarah Meng, Mosca, Michele & Mukhopadhyay, Priyanka. Reducing the CNOT count for 

Clifford+ T circuits on NISQ architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42(6), 
1873–1884 (2022).

Acknowledgements
The author thanks Nathan Wiebe for helpful discussions. The author also thanks the anonymous reviewers 
whose helpful comments have helped us improve our manuscript significantly. The author acknowledges fund-
ing from the NSERC discovery program.

Author contributions
The ideas, implementations and preparation of the manuscript was done by P.Mukhopadhyay.

Declarations

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:11002 17| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://arxiv.org/abs/2211.01133
http://arxiv.org/abs/2406.18030
http://arxiv.org/abs/2401.08950
http://arxiv.org/abs/1210.4626
http://arxiv.org/abs/2006.03845
http://arxiv.org/abs/2405.20225
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:11002 18| https://doi.org/10.1038/s41598-025-95283-5

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A quantum random access memory (QRAM) using a polynomial encoding of binary strings
	﻿﻿Our contributions
	﻿Organization
	﻿﻿Polynomial encoding of Boolean strings
	﻿﻿Quantum random access memory (﻿￼﻿﻿)
	﻿﻿Illustration : application of ﻿￼﻿﻿ in Grover’s algorithm
	﻿Cost of implementation
	﻿﻿Parallelizing the multiplications : lower T-depth
	﻿Comparison with previous work

	﻿﻿Other applications of polynomial encoding
	﻿﻿Quantum look-up-table (﻿￼﻿﻿)
	﻿﻿Toffoli-count optimization of quantum circuits

	﻿﻿Discussions and conclusion
	﻿References


