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OPEN A quantum random access memory

(QRAM) using a polynomial
encoding of binary strings

Priyanka Mukhopadhyay

Quantum algorithms claim significant speedup over their classical counterparts for solving many
problems. An important aspect of many of these algorithms is the existence of a quantum oracle,
which needs to be implemented efficiently in order to realize the claimed advantages in practice. A
quantum random access memory (QRAM) is a promising architecture for realizing these oracles. In
this paper we develop a new design for QRAM and implement it with Clifford+T circuit. We focus on
optimizing the T-count and T-depth since non-Clifford gates are the most expensive to implement
fault-tolerantly in most error correction schemes. Integral to our design is a polynomial encoding of
bit strings and so we refer to this design as QRAM,,,;, . Compared to the previous state-of-the-art
bucket brigade architecture for QRAM, we achieve an exponential improvement in T-depth, while
reducing T-count and keeping the qubit-count same. Specifically, if N is the number of memory
locations to be queried, then QRAM,, ,, has T-depth O(log log N), T-count O(N — log N') and
uses O(N) logical qubits, while the bucket brigade circuit has T-depth O (log IV), T-count O(N) and uses
O(N) qubits. Combining two QRAM,, ,,,, we design a quantum look-up-table, qLUT,,,,, that has
T-depth O(log log V'), T-count O(\/pﬁl)l and qubit count O(v/IN). A quantum look-up table (qLUT)
or quantum read-only memory (QROM) has restricted functionality than a QRAM. For example, it
cannot write into a memory location and the circuit needs to be compiled each time the contents of
the memory change. The previous state-of-the-art CSWAP architecture has T-depth O(v/IN), T-count
O(v/'N) and qubit count O(v/IN). Thus we achieve a double exponential improvement in T-depth
while keeping the T-count and qubit-count asymptotically same. Additionally, with our polynomial
encoding of bit strings, we develop a method to optimize the Toffoli-count of circuits, specially those
consisting of multi-controlled-NOT gates.

Quantum computers hold immense promise to outperform classical computers in many applications. Over the
years numerous quantum algorithms have been developed that claim speedups over their classical counterparts in
various problems, for example, unstructured database search!, optimization?, quantum chemistry algorithms>7,
data processing for machine learning® !4, cryptography!>!®, image processing!’. Many of these algorithms
require access to oracles in order to fetch classical data and in practice, this is a non-trivial task. It is important to
specify the details of implementations of these oracles in order to claim a genuine quantum speedup'®. Efficient
implementation of oracles can reduce the crossover of runtime between classical and quantum advantage from
years to days'®.

Till date, the most general-purpose design for the implementation of quantum oracles is a quantum random
access memory (QRAM)?*-24, which analogous to a classical random access memory (RAM), returns the element
stored in a particular memory location. Specifically, suppose there are N memory locations, each indexed by an
integer ¢ € {0,1,..., N — 1} and element z; is stored in location i. Then on input i, a classical RAM returns
;. This procedure is called “reading” from the memory. A classical RAM is also able to “write” a particular data
x; into memory location i. With a QRAM we are able to query a superposition of addresses. Let A be the input
qubit register storing the memory address to be queried and B be the output register. If [t} and |t)ou¢) are the
input and output states, then
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The above equations correspond to the process equivalent to “reading”. Like its classical counterpart, a QRAM is
also able to “write” into a memory location. In this case, the input state is

N—-1

i) = > cliy i), @)

=0

and after the operation z; is XOR-ed into the memory location i. The oracles described in many algorithms®
do require the writing operation. Giovannetti, Lloyd and Maccone introduced the fanout and bucket-brigade
architectures for QRAM in their pioneering work in*»%. Since then much work has been done to study these
designs and improve upon them. Out of the two desgins the bucket-brigade QRAM has become the most
popular because it has better noise resilience?”-?® and fault-tolerant resource estimates®. Several proposals
for the experimental implementations of QRAM have been put forth?**°-%, each utilizing the bucket brigade
architecture. In®® the authors propose a design implementing an n-bit QRAM on hardware nominally supported
only on an m-bit query, where m < n. Over the years there have been proposals for various implementations
of QRAM using different techniques, often for specific applications'”*’~%, and thus QRAMs have been used
for a wide variety of tasks like neural networks, data processing, quantum communication, image processing,
cryptanalysis, quantum simulation, circuit synthesis, state preparation, etc.

A circuit implementing a QRAM needs to be compiled and optimized only once, while the contents of the
memory are free to change. But it has the disadvantage of a significant space overhead. A bucket-brigade QRAM
for N memory locations require O(N) T gates, O(N) ancillae and has T-depth O(log N)%. In order to reduce
the number of ancillae many algorithms use a sequence of multi-controlled-NOT gates, also known as quantum
read-only memory (QROM)*7-#>5%, This can be implemented with O(N) T gates, O(log N) ancillae and O(N)
T-depth. Inspite of a lower qubit count, one disadvantage of a QROM is the exponentially higher T-depth which
is not desirable for an efficient fault-tolerant implementation. Another disadvantage of QROM is the fact that
we need to know the contents of the memory in advance. Each time the database changes, the circuit needs to
be recompiled and optimized. There are other architectures, as in**!, that perform queries in O(N log N) time
using O(log N) qubits.

Many hybrid architectures have been proposed that interpolate between these two extremes and leverage
their space-time tradeoff?>>*~%°. Notable among these is the CSWAP architecture®®, which can be thought of
as a combination of a QROM and a specific QRAM. It has T-count O(v/N), number of ancillae O(\/Ng) and
T-depth O(v/N). Here we mention that in literature the QRAM, QROM and these hybrid architectures are
also used to build quantum look-up-table (QLUT) and so the names are often used interchangeably. These are
required to perform restricted tasks. The contents of the table or database are known and this can be leveraged
to design circuits with better resource estimates like T-count.

Our contributions

In this paper we propose an architecture for a QRAM, mainly aimed at reducing the non-Clifford gate complexity
of the circuit implementation. We implement our circuits with the fault-tolerant, universal Clifford+T gate
set because it implements more unitaries exactly compared to other fault-tolerant, universal gate sets®-%%. In
most error correction schemes the cost of implementing the non-Clifford T gate is significantly higher than the
Clifford gates. Thus it is important to optimize the number of T-gates or T-count. It is also important to optimize
the T-depth?®37:64-67 which is related to the running time. A T-depth-1 corresponds to a set of T gates that can be
implemented in parallel. We also refer to it as a layer or stage. So a T-depth 7 for a circuit implies 74 such stages,
where in each stage the T gates are implemented in parallel. The product of T-depth and number of logical qubits
is taken as a parameter to measure the rough cost of fault-tolerant implementation in the surface code?*”8. Our
contributions in this paper can be summarized in the following points.

(I) We develop a quantum random access memory, which we call QRAM,,,;, (Section Quantum random
access memory (QRAM,, ;. )), with the help of a polynomial encoding of bit strings (Section Polynomial
encoding of Boolean strings). We show that QRAM,, ,;,, can be implemented with N — log N — 1 Toffoli
gates. We can parallelize this circuit, using an additional O(N) ancillae in order to achieve a Toffoli-depth
oflog log N. This implies a T-count of O(IN — log N — 1) and T-depth of O(log log N). Thus compared
to previous bucket-brigade architecture®® we achieve an exponential improvement in the T-depth, reduce
the T-count, while keeping the number of ancillae nearly the same.

(I) We use two QRAM,, ;. to design a QROM or qLUT. This is a hybrid architecture and we achieve a
T-count of O(v'N), T- depth O(log log N) and ancillae count of O(+/N). Thus, here we achieve a double
exponential improvement in T-depth compared to previous designs®®*, while keeping the T-count and
ancillae count asymptotically similar. We refer to this desgin as qLUT,,;, (Section Quantum look-up-
table (qLUT,,;,)). In Table 1 we have summarized and compared the cost of implementation of our
QRAM,,;, and qLUT,,;, with some previous works.
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T-depth T-count | #Logical qubits
Bucket-brigade?®?’ O(log N) O(N) O(N)
CSWAP™ O(VN) O(VN) | O(VN)
QRAM,,,;, (This work) | O(loglog N) | O(N) O(N)
qLUT,,;, (Thiswork) | O(loglog N) | O(v/N) | O(v/N)

Table 1. Comparison of T-depth, T-count and number of logical qubits required to implement QRAM and
qLUT.

(ITII) The encoding polynomials that are integral to our constructions of QRAM and qLUT have other appli-
cations. For example, in Section Toffoli-count optimization of quantum circuits we describe a procedure
(TOFFOLI-OPT-POLY) to optimize the Toffoli-count of circuits. Later we also discuss some other poten-
tial applications and hence these polynomials may be of independent interest.

Organization

In Section Polynomial encoding of Boolean strings we describe a polynomial encoding of bit strings. Using this
we design our QRAM,, ;. in Section Quantum random access memory (QRAM ) The design of qLUT
and a method for circuit optimization has been discussed in Section Other apphcatlons of polynomial encoding.
Finally we conclude in Section Discussions and conclusion.

Polynomial encoding of Boolean strings

In this section we describe an encoding where a bit string of length # is represented by a polynomial and then we
derive certain properties of the set of NV = 2" polynomials. These attributes will aid in the design of QRAM,, ;.
, as explained in later sections.

Notations : We use the following notations and conventions. A polynomial in # variables comprises of a sum
of one or more monomials, where each monomial is the product of at most n variables. We say that a monomial
has weight k if it is the product of k variables. A constant is a monomial of weight 0. A polynomial is linear if it
can be expressed as sum of monomials of weight at most 1. Let Z C {1, 2,...,n} be a subset of indices of the
variables z1, . .., n. We refer to the subscripts as indices. We denote a monomial with variables having indices
in Z by mz. That is,

mz = H Zyj. (3)

jez
Encoding polynomial : Suppose we have an n-length bit string - (b1, ba, . . . , b,), denoted as b. We encode this
bit string into a polynomial in # Boolean variables - 21, z2, . .., T, where variable x; corresponds to bit b;. We

assign the following polynomial to each variable b;.

14 (—1)b

3 + i = po, (x4) (4)

bib—>

If b; =0 then b; — % +x; =1+ x; and if b; = 1 then b; — % + x; = x;. The complete bit string
(b1,b2,...,by) is encoded as follows.

n b
(bl,bz,...,bn)f—)H(l—’_(z Dl > Hpb xi) = pg(x1,...,Tn) (5)
i=1

Now we prove some properties of the encoding polynomials.

Lemma 1 Suppose we have n bits - b1, ba, . .., by, and we associate a variable x; to each bit b;. Consider the 2"
encoding polynomials {pg(x1,...,xn)} corresponding to the 2" possible n-bit strings b = (b1, b2, ..., by), as
defined in Eq. (5). Then we have

pp(bh,bh, ..., 0h) =8 5 mod 2,  where b = (b}, bh,...,bL),

implying py (b1,b%,...,b,) =1 mod 2 if and only ifl;: Y oor b = b for each j =1,...,n. Else, it is
0 mod 2.

Proof By definition of the encoding in Eq. (4), py, (zi) = 1 + x; when b; = 0 and py, (x;) = z; when b; = 1.
Thus, ps, (b:) = 1 and since pp(z1,...,2n) = Hj 1 Py, (i), 50 py(b1, ..., bp) =1 mod 2.
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Again, if b # b; then ps, (b;) = 2 or 0. So pz(b1, . . .

This proves the lemma. [J

Lemma 2 Let py(z1, ...
pp(x1, ...

Proof LetZ = {1,...
By definition,

pg(xl,...,:cn)—(H x;

J:ijET

e

J:jeT

which clearly proves the lemma. O
We have the following corollaries.

Corollary 3 Let py(z1,. .

,Zn) be the encoding polynomial corresponding to the bit string b= (by,...
defined in Eq. (5). Assume that k of the bitsi.e. by, .. .,

717n) = Z mzr,

T/ DT

,bn,) =0 mod 2, whenever b #b.
,bn), as
b, are I and the rest 0. Then,

where

T ={ir,... in)

,n} \ Z be the complement set of Z. All additions and multiplications are commutative.

[T a+=o

0:€T

Y wet Y e |

LeT f1 # fgﬁ LeT
51, b el

Tey Tey +

,Tn) be the encoding polynomial corresponding to the bit string b= (b1,...,bn),

as deﬁned in Eq. (5). Let I1 be the subset of indices of the bits in b that have value 1. Given any subset of indices

ICHl,.

Corollary4  J7=!

Corollary 5 Each encoding polynomial pz(z1, . ..

.,n}, the monomial mz appears as a summand in pg(x1, . .

., %n) ifand only if T, C T.

ﬁ (1+=x5) —1+ij+2x]xk+ Z T;TrpTe + - - —I—ﬁmj.
j=1

ik kAL

,Tn), defined in Eq. (5), has exactly one summand monomial

of minimum weight. Specifically, let Ty be the subset of indices of the bits in b that have value 1. Then the minimum

weight monomial is

IlZlej.

JEIL

Also, it follows that each encoding polynomial has a unique minimum weight monomial.

New labeling : Thus we can label each encoding polynomial pb(xl, ..
mz = H] <z & is the minimum weight monomial and 7 C {1,.

that have value 1.

Theorem 6 Let pg(x1, ...
defined in Eq. (5). Suppose I, C {1,.

pp(®1, ..., Tn)

,Zn) be the encoding polynomial corresponding to a bit string b= (by,...

= Pmz, (z1, ...

., Tn) by Pmy(x1,...,Tn), where
.,n}is the subset of indices of the bits in b

,bn), as

..,n} is the subset of indices of the bits in b that have value 1. Then,

7~73n) =mz, + @ Pmy, -

Iy CT’

In the above by XOR we mean that the coefficients of same monomials are added modulo 2.

Proof From Corollary 5, mz, appears as a summand in pz(z1, . ..

,Zn). Let |Z1] = w. We need to prove that

any monomial mz such that Z' O Z; will be added odd number of times.

Consider the sets Zo; = Z1 | J{;} such that j ¢ Z:. If we add polynomials py,.,

~ which have mz,, as the

minimum weight monomial then each of these monomials of weight w + 1 gets addéd only once.
Consider the sets Zs;r = Z1 | J{j, k} such that j,k ¢ Z:. Now for each pair of indices j, k ¢ 71 we have
Zsjk = T2j \U{k} = Zox U{j}. From Lemma 2, the monomial mz, ;, appears as a summand in p.,, and

Pmz,, - It also appears as the minimum weight monomial in Pz,

_From Corollary 3 it cannot appear in any

other polynomial pr,,, where Z' D Z;. Thus monomials of the form mz,;, with weight w + 2 gets added odd

number of times.
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5 | pg(x1,x2,x3)

000 | 14+ x1 + @2 + 3 + z122 + T2x3 + T123 + T1T2T3 | P1

001 | z3 + z1x3 + 23 + T1 223 Pag

010 | zo + z1x2 + 23 + T1T2T3 Py

011 | 923 + 2120273 Pagag
100 | 2y + z122 + z123 + T12223 Pay

101 | zyz3 + z1w223 Pzyzg
110 | zyx0 + z12223 Pzyzg
L1 | zyzaws Pzizgxg

Table 2. Encoding polynomials for 3 bit strings. In the last column an alternate labeling has been mentioned
where each polynomial is indexed by its unique minimum weight monomial.

b pg (X1, X2, X3, X4)

0000 | 1+ 21 + @2 + 3 + +24 + T102 + T173 + T1T4 + T2T3 + TaTy + T3T4 + T1T2T3 + T1T2T4 + T1T3T4 + T2T3T4 + T1T2T3T4 | P1

0001 |y + x124 + T22g + T34 + T12224 + T12T3T4 + T2XT3T4 + T1T2T3T4 Py
0010 | z3 + 123 + T2®3 + T3%4 + T1T2x3 + T1T3L4 + T2L3T4 + T1T2T3T4 Pag
0011 | x34 + 12324 + T2T3T4 + T1T2T3T4 Pzgazy
0100 |y + x122 + xows + x2xy + T12223 + T1T2T4 + T2XT3T4 + T1T2T3T4 Pay
0101 | zoxy 4+ 21@224 + T2w3T4 + T12T2T324 Pzoyzy
0110 | zpxs + z1w223 + T2T3T4 + T1T2T3T4 JEDEE
0111 | womwawy + 1 T2T3T4 Pagzgzy
1000 | 1 + 2122 + 2123 + 2124 + 12223 + T1T2Ty + T1T3T4 + T1T2T3T4 Pay

1001 | 214 + 212224 + T10324 + T12T2T324 Paqay
1010 | xy w3 + w1223 + T1X3T4 + T1T2T3T4 Payazg
1011 | 2324 + 21220324 Pzizzay
1100 | zyzo + 217223 + T1X2T4 + T1T2T3T4 Py
101 | zywoxy + 1222324 Pzjzgay
110 | zyw0x3 + T1T2T3T4 Pzizgxg
111 | zyzox3wy Pzjzgugzy

Table 3. Encoding polynomials for 4 bit strings. In the last column an alternate labeling has been mentioned
where each polynomial is indexed by its unique minimum weight monomial.

Similarly we can generalize this argument to monomials of weight w’ > w. Consider the index set
T, =T1|J T2 such that |Tz| = w’ — w. Thus the monomial mz,, has weight w’. From Lemma 2 and
Corollary 3 this monomial appears as a summand in all polynomials of the form py,_,, , where

Iy CZ' CTy. (7)

/
Number of subsets of weight w + £ such that they satisfy the subset relation in Eq. (7) is ( w Z w ) . Here ¢

varies from 1 to w’ — w. Thus number of times mz,, gets added is

w ’ w w , ,
Z(wé_w):z:(wzw)f1:2”*wf1z1 mod 2.
/=1 £=0

This proves the theorem. [

In Tables 2 and 3 we have enlisted all the encoding polynomials for 3 and 4-bit strings. We have also specified
the alternate labeling of each polynomial, that is, indexed by its unique minimum weight monomial. The various
properties proved in this section can be verified from these tables.

Quantum random access memory (QRAM,, ;)

In this section we describe the construction of QRAM,,,;, using the polynomial encoding of bit strings,
discussed in the previous Section Polynomial encoding of Boolean strings. We implement the circuits using
Clifford+T gate set, as discussed earlier in Section Our contributions.

Some definitions : Here we briefly recap the following definitions. The T-count of a circuit is the number of
T-gates in it. The Toffoli-count of a circuit is the number of Toffoli-gates in it. Let U be the unitary implemented
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by a circuit. Assume U can be expressed as a product of 74 unitaries, i.e. U = H:il Uj, where each Uj is such

that the T or T gates appearing in its circuit can be implemented in parallel. We call 75 as the T-depth of the
circuit for U. Each Uj has T-depth 1 circuit. We can define the Toffoli-depth of a circuit in an analogous manner.

Suppose we have N = 2™ memory locations, each specified or indexed by an n-bit string b = (b1, ..., bn),
which is its address. We have n input qubits {q1, . . . , gn }, whose state selects a memory location. We call these
address qubits. The main difference between a qubit and a bit is the fact that the former can be in a superposition
ofboth the |0) and |1) states, while the latter can either have state (or value) 0 or 1. Thus state of qubsits (g1, - . . , gn)
can be a superposition of bit strings (b1, ..., b, ), each specifying a particular memory location, say My. We
can encode each bit string with the encoding polynomial (Eq. 5) described in Section Polynomial encoding of
Boolean strings. It follows that each memory location Mj, is associated with a polynomial p;(x1,...,2,) inn
variables {z1, ..., n}, uniquely determined by b. We can alternatively call this its polynomial address.

We first describe how one particular memory location with address b = (b1, . . ., b,) is queried. That is, the
state of the address qubit ¢; = b;, for each j = 1, ..., n. Then it is straightforward to understand the operation
of the QRAM,,,;, circuit, when a superposition of memory locations are queried. An illustration of 3-qubit
QRAM,, ;,, has been shown in Fig. 2a.

We allocate N ancillae ao, . . ., an—1, such that a; implements the encoding polynomial of j (in the binary
form). Each of these ancilla are initialized in state |0). Here we mention that for the remaining part of the paper
we use either integers or their binary representation for indexing. This is for convenience and it should be clear
from the context. From Lemma 1 we know that for each of the N possible bit strings only one of these ancilla flips
to |1) and it is uniquely determined by the bit string. Thus these ancillae can be used to select memory locations.
Each of the input qubits is assigned a variable. A Toffoli can be used to multiply two monomials because it
operates as follows, with input states |z), |y), |0).

TOFFOLIx)|y)|0) = |z)|y)|zy) ®)

We perform the following steps. In Fig. 1 we have shown a flowchart depicting these steps.

Step1l.  Computing monomials : We implement the monomials using CNOTs and Toffolis. This can be
done by multiplying lower weight monomials, using Toffolis. Each monomial is stored in a specific
ancilla. Suppose an ancilla a; is intended to select memory location M. Let mz is the minimum
weight monomial of the encoding polynomial corresponding to the binary representation of j. Then
mz is stored in a;. By Corollary 5, each monomial gets stored in distinct and uniquely determined

ancilla.

Step2.  Computing encoding polynomials : Using CNOTs we XOR the monomials and implement the en-
coding_polynomials, as stated in Theorem 6. That is, after this step ancilla a; stores pg(ﬂcl, cee s Tn),
where b is the binary representation of j. So it can be used to select the memory location Mj.

Step3.  Select and compute : Using a Toffoli controlled on a; and M; we copy the memory content onto

the output bus (Fig. 2b). This is equivalent to “reading” from the memory. For “writing” into the
memory we reverse the control and target at the output bus and M;.

Step4.  Making the operations reversible : To obtain a fully reversible QRAM,, ;, , after the reading or
writing operation we implement the circuit, as described in steps 1 and 2, in the reverse order. This
is equivalent to uncomputation.

As an example, consider the 3-qubit QRAM,,;, shown in Fig. 2. Apart from the 3 input qubits g1, g2, g3
there are N = 2% = 8 ancillae (Fig. 2a), each intended to select a memory location. We label these ancillae
as @000, @001, - - - , @111 and the corresponding memory locations as Mooo, Moo1, - - - , M111, respectively. For

1/p address qubits
(vars. xq,...,: r.)

Evaluate monomials
(Use TOFFOLI) Monomial Monomial

l of weight of weight
<k <k

Evaluate enc. poly.
(Use CNOT) \ /

J, TOFFOLI

Memory location
gets selected

J, Monomial

of weight

Controlled operations
on memory contents <ki+ky

(a) (b)

Fig. 1. (a) A flowchart showing the procedures in QRAM,, ;. . In the figure “I/p” and “enc. poly” represents
“Input” and “encoding polynomials’, respectively. (b) The procedure of evaluating monomials using Toffoli.
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10) J} |out)
(c)

Fig. 2. QRAM,,,;, on 3 qubits. (a) The circuit shows the computation of the encoding polynomials and

their storage in specific ancilla. These ancillae are used to select memory locations for further operations like
reading, writing, assigning phase, etc. Each dotted box corresponds to Toffoli-depth 1. Thus the circuit has
Toffoli-depth 2. (b) The circuit shows the reading operation where contents of one of the memory location,
controlled on an ancilla, is copied to the output bus. (c) A parallelized version of the circuit in (b). The Toffoli-
depth in this case is 1.

simplicity, we assume each memory location has 1 qubit. Now in each ancilla a; we want to implement the
polynomial p;; (Table 2), which is a sum of monomials in variables x1, x2, 3, assigned to input qubits g1, g2, g3
, respectively. First, we use 3 CNOTs to get the 3 minimum weight monomials of weight 1, that is, 1, 22, 23
and store them in @100, @010, aoo1, respectively. Next, using Toffolis we compute monomials of weight 2, that
is, 122, x2x3, T123 and store these in ancillae a110, ao11, @101, respectively. After that we again use Toffoli to
multiply monomials of weight 1 and 2, obtaining x1 2223, and store it in a111. We observe (refer Table 2) that if
a monomial mz is the minimum weight monomial of an encoding polynomial p;; then it is stored in ancilla a;
. This completes Step 1.

Then, using CNOTs we XOR the monomials and obtain the encoding polynomials in corresponding ancilla,
as stated in Theorem 6. This implies we first compute encoding polynomials whose minimum weight monomial
has highest weight, then we compute those polynomials whose minimum weight monomial has the second
highest weight and so on. One way of doing this step is to XOR az (storing mz) with each az/ (storing mz)
such that 7" C Z. We start from Z with highest cardinality n, then sets of indices with second highest cardinality
n — 1 and so on. For example, in Fig. 2a the highest weight monomial is z12x223 and after step 1, Puyzozs iS
already computed in a111. We XOR a111 with all other ancillae because {1,2, 3} is a superset of the set of
indices of all other monomials. This also computes the polynomials Pz, o> Droxs a0d Pzyas in @110, Go11 and
a101, respectively. Next, we XOR az with each az/ such that |Z| = 2 and Z' C Z. So, a110 is XORed with a100
, ap10 and aooo. Similarly, we XOR ao11 and a101 with 3 other ancillae (each). This completes the computation
of polynomials p.,, Pz, and pz, in @100, ao10 and aoo1, respectively. Finally, we XOR a100, @010 and ago1 with
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aooo. We use X gate on agoo to add 1. This completes the computation of polynomial p;. This also completes
Step 2.

In Step 3 if we want to read from the memory then we use the circuit in Fig. 2b. Here controlled on each
ancilla a memory location is copied to the output bus |out).

lllustration : application of QRAM,, ;. in Grover’s algorithm

To further illustrate the application of QRAM,, ,;,, we consider the Grover’s algorithm', which gives a thoeretical
quadratic speedup over classical search algorithms in an unstructured database. Suppose there are N items in
the database. The Grover’s algorithm consists of the following steps. First we initialize the system in the state
|¥) = |0)". Then we perform a number of iterations of the following procedure.

1. Setall qubits into an equal superposition state |s).

N—-1
n n 1 .
H®"|0) =ﬁ2|z>=|s>.
=0

2. Phase-tag the states that represent the values to be searched.
3. Implement a diffusion operator Ug = 2|s)(s| — I that amplifies the amplitudes for measuring the states that
need to be searched.

At the end of all iterations of the algorithm we perform a measurement in the computational basis. The searched
items can be be found by identifying the distinct peaks in the distribution of the measured results.

Steps 2 (phase-tagging) and 3 (diffusion operator) correspond to two successively performed reflections, and
thus together they perform a rotation in a 2D-plane. Thus in each iteration of the Grover’s algorithm the state
|s) is rotated closer to a state |k), that represents a value to be searched. After an optimal number of iterations
|s) is rotated the closest to | k). Searching one item in an unstructured database with N items requires at most
O (\/ﬁ ) iterations. Classically this search can be done in O(N) time complexity. Thus it is possible to achieve a

quadatic speed-up, provided each iteration is done efficiently, or simply put, time complexity of each iteration is
considerably less than the number of iterations.

Usually, in theoretical analyses of Grover’s algorithm we assume the existence of a phase-tagging oracle that
performs step 2. This oracle has the following functionality :

O = (-1)'Di) with f@@)=1 if ie{k} else f(i)=0.

An efficient implementation of this oracle is essential in order to achieve the claimed speedup of the Grover’s
algorithm in practice. Our QRAM,,,;, can be used to implement this oracle. Specifically, after we compute the
encoding polynomials in order to select a memory location (Step 3) we do not require the Toffolis, as shown in
Fig. 2b. Instead, we use CZ on each memory location where the control is on the selecting ancilla. In this way, we
apply phase on selected memory locations.

We are not going into more detail of an optimal fault-tolerant implementation of Grover’s algorithm in
order to achieve a practical quantum speed-up as this is a stand-alone research topic’® and beyond the scope
of this paper. But briefly we want to summarize this section by emphasizing that an efficient implementation
of the phase-tagging oracle is crucial for the practical speed-up of Grover’s algorithm. A QRAM (with proper
modification) can be used and faster this QRAM, the better it is. In later sections we give a detail analysis of the
cost of fault-tolerant implementation of QRAM,,,;,, (though with read/write operations) with the surface code
and show that it is much faster and consumes less number of qubits, compared to other QRAMs. Thus it can also
be used to have a faster fault-tolerant implementation of Grover’s algorithm.

Cost of implementation

Now we discuss the cost of implementing a circuit with the Clifford+T gate set. We focus on optimizing the
non-Clifford resource, that is, the T-count and T-depth, as discussed earlier in Section Our contributions. We
first bound the Toffoli depth and number of compute-uncompute Toffoli pairs. In literature there are different
implementations of a Toffoli gate with the Clifford+T gate set, some optimizing its T-count, while there are others
that optimize T-depth. The circuit in®®® gives the lowest T-count of 4 and has a T-depth of 2. It uses logical
AND gadget which does the multiplication. One advantage of this circuit is the fact that if we have a compute-
uncompute pair then the uncomputation part does not require any T-gate, but it uses classical measurements.
Another circuit is the one in”® which has a T-count of 7, T-depth of 1 and uses 4 extra ancillae. Depending on
whichever parameter we want to optimize, one implementation can be favoured over the other.

We have separated the cost after the computation of the encoding polynomials since the cost of this part can
change depending upon the required operations, as discussed in Section Illustration : application of QRAM
in Grover’s algorithm.

Number of compute-uncompute Toffoli pairs : From Theorem 6 we know that we need to implement all
monomials of weight 0,1, 2, ..., n. We do not require any Toffoli to implement monomials of weight 0 and
1. The former can be obtained by applying X gate and the latter are the variables assigned to the input qubits.

poly

There are ( g ) monomials of weight 2. We need these many Toffolis in order to get all monomials of weight
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2. Monomials of weight 3 can be obtained by multiplying each weight 2 monomial with a variable. In general,
a monomial of weight k& > 2 can be obtained by multiplying any two already calculated monomials of weights
k1, k2 < k, such that k1 + k2 = k. Thus we require 1 Toffoli to compute each monomial of weight more than
1. We also require equal number of Toffolis in order to uncompute. Hence the number of compute-uncompute
pairs of Toffoli we require is

Tcofzzn:<2)zzn:(z)—n—l:?"—n—lIN—logQN—l- 9)

k=2 k=0

Additionally, for copying memory contents (Fig. 2b), we require N¢ Toffolis, where £ is the number of qubits
in each memory location or its size. This implies that QRAM,,,,, has a T-count of O(N — log, N — 1) for
computing the encoding polynomials. It requires an additional O (N ¢) T-gates for reading or writing.

Number of logical qubits : Apart from the n = log, N qubits containing the input address, we require
N ancillae in order to select memory locations. Thus the number of logical qubits, excluding the N¢ memory
qubits is

Q=N +log, N. (10)

Number of CNOT pairs : Suppose an ancilla a; selects memory location M;. We have already discussed
that we need to implement the encoding polynomial of the binary representation of j in a;. From Corollary 5
we know that each encoding polynomial has a unique minimum weight monomial determined by the bit string
that it encodes. We can label each ancilla using these minimum weight monomials. Let Z be the set of indices of
the bits in the binary representation of j, that have value 1. mz is the corresponding minimum weight monomial

of the encoding polynomial pyin(;) (21, ..., 2n), where bin(j) is the binary representation of j. Then we can
alternatively refer to a; as az.
Initially, using # CNOTSs we store the single weight monomials 1, ..., 2, in n ancillae - af1y,...,a{n}

, respectively. Then using Toffolis we compute and store monomials of weight greater than 1 in different
ancillae. According to Theorem 6 we use CNOTs to add these monomials in order to implement the encoding
polynomials. Consider a monomial mz of weight k, i.e. |Z| = k that has been computed in ancilla az. From
Corollary 3 we know that we need to add a CNOT from the ancilla az to each ancilla az/, where Z' C Z. Now Z

has 2% — 1 subsets (excluding itself). And there are ( Z ) monomials of weight k. We need an equal number

of CNOT for uncomputations. Thus total number of CNOT pairs required is

c=n e (B) @ -v=nr 3 (1)#-(5)2- 5 (3)+(5)=newr

=log, N + N"82® _ N ~log, N + N*5 — N.

(11)

Toffoli-depth : In this design Toffolis are required to compute the different monomials that are stored in
distinct ancillae. As mentioned, we can compute a monomial of weight k by multiplying two already-computed
monomials of weight k1, k2 < k such that k1 + k2 = k. Initially we have n monomials of weight 1 (the inputs)

n

that are also stored in # ancillae. So we have 2 monomials and using these we can compute 5* = n new
monomials of higher weight in parallel. After that we can compute 2% = 3% monomials in parallel using the

2
already available 3n monomials. Next, we can compute  (2n + % + 3 (2n + %*)) monomials in parallel

using the available monomials. Roughly, we can compute O(n) monomials in parallel in each round. Since we
need to compute 2" — n — 1 monomials of weight greater than 1, so Toffoli-depth is

of 2"—n—1> N —log, N —1
7,7 €O (771 €O <log2N . (12)

Parallelizing the multiplications : lower T-depth
We observe that in this design the non-Clifford Toffolis are required to compute monomials of weight at most
n. Since we store the monomials in different qubits so we can compute in parallel monomials of weight k using
monomials of weight 1,..., £. Thus the maximum weight of any monomial that can be computed in parallel
is double the maximum weight of any monomial computed in the previous parallel stage (Each stage is Toffoli-
depth 1). Hence, all the monomials can be computed with Toffoli-depth
Efim = log, n = log, log, N. (13)

In Fig. 3 we have shown a parallel implementation of a 4-qubit QRAM.

The set of V¢ Toffolis required to read or write from the memory can be parallelized to have Toffoli-depth 1.
A simple method using an additional N¢ number of ancillae, has been shown in Fig. 2¢c, where £ = 1. During
reading, the contents of each memory location is copied to an ancilla. Then using CNOTs the parity of these
ancillae is stored on the output bus. As explained before, during writing the control and target of the memory
locations and output bus are reversed. In order to parallelize these operations and have Toffoli-depth 1, we can
also use the method described in Figure 4 of? or in’’, the latter has exponentially less qubit-count.
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Fig. 3. QRAM,,,;, on 4 qubits. This is a parallelized version, where the Toffoli-depth has been reduced by
using extra ancillae. Each dotted box corresponds to Toffoli-depth 1. Thus the circuit has Toffoli-depth 2. We
show only till the computation of the encoding polynomials in respective ancillae.

68,69 70

Hence, using either of the implementations in or’’, accounting for both the computation and
uncomputation part, we achieve a T-depth of 2 log, log, N, excluding the read/write operation.

Extra ancillae to reduce Toffoli-depth : In the first step we compute monomials of weight 2, using monomials
of weight 1. We store n 4+ n weight-1 monomials in 27 distinct qubits. Using these we can compute n weight-2

monomials in parallel. We can compute the remaining ( TQL ) — n weight-2 monomials by copying the inputs

+((5) )

extra ancillae. We reuse ancillae. In the next step (Toffoli-depth 2) we compute monomials of weight 3 and 4. We

can already compute £ (2n + ( 721 )) monomials using the monomials already stored (no extra ancilla). We

in different ancillae. So we require

can compute the remaining using

n n n
2((5)+(5)) - ((3)+2)
extra ancillae. We use the ancillae used in Toffoli-depth-1. So we need not add this number to the previously
calculated number. Generalizing, suppose we have computed all monomials of weight at most k/2. In the next

step we can compute all monomials of weight k. We can compute 5 (( k72 ) 4ot Qn) monomials using

already stored monomials. Remaining can be computed using

s (1) s (e )= () oo () o2

extra ancillae. Number of extra ancillae we require is
max Ax < 2" = N.
ax Ay < (14)
Thus, excluding the memory qubits and ancillae required to parallelize the reading/writing operation, the total

number of logical qubits we require is

Qpar < 2N +log N. (15)

Extra CNOT to reduce T-depth : At each step we require CNOTs to copy monomials to extra ancillae and
then again we reset. Roughly, we can say that we require maxy Ay CNOT pairs at each step. Thus number of
extra CNOT pairs is at most
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2" log, n = N loglog N.
So total number of CNOT pairs is

Cpar € O (3" —2" +2"log,n) € O (N"° + Nlog, log, N) . (16)

Remark 3.1 A monomial of weight k can be computed by C* X, a NOT gate controlled on k qubits. This gate,
oninput |z1),|z2),. .., |Zk),|0), returns the product |x1z2 . .. zx), as follows.

C* Xla1)|wa) -+ |wk)[0) = |w1)|wa) - - |zx) |21 . k)

In principle, we can compute all the necessary N — log, N — 1 monomials in parallel by using ( Z ) number

of C" X gates, for each k = 2, ..., n. We require enough number of ancillae in order to copy the input variables
the required number of times. Thus for computing the encoding polynomials the T-depth or Toffoli-depth is
determined by the maximum T-depth or Toffoli-depth required to implement any C* X, where k = 2, ..., n.
So this part can improve with the design of better circuits for C" X.

Comparison with previous work

We compare the resource estimates with the parallelized version of bucket-brigade QRAM?. Here we mention
that we have compared with the bucket-brigade architecture for the following reasons. First, this has been
the most widely studied QRAM and a detailed fault-tolerant resource estimates is available, as in*. Second,
its applications are more general than other QRAMs, for example, FF-QRAM*’, EQGAN-QRAM”?, PQC-
based QRAM®, which have been designed for specific problems and some of them do not scale well. Third,
QRAMs as in*%#%72-74 yge unitaries like controlled rotations, that are approximately implementable by discrete
universal gate sets. The non-Clifford cost like T-count or Toffoli-count varies inversely with the precision of
synthesis®!~¢>7>. Hence, such designs are more expensive to implement fault-tolerantly. Fourth, many works
have used the bucket-brigade QRAM as a basic module and designed more intricate architecture with it, most
often to achieve some tradeoffs for particular applications or scenario, for example. Thus, we can simply replace
this module with our QRAM,,,;,, in order to compare the designs.

‘We compare the Toffoli-count, Toffoli-depth and number of logical qubits. In this way we do not have to worry
about the difference in T-count and T-depth due to different implementations of Toffoli. We do not consider
resource estimates for the reading/writing operation since this part can be implemented and optimized in a
similar fashion and hence its cost can be regarded the same. Without this, the parallel bucket-brigade circuit in®
requires /N — 2 compute-uncompute Toffoli pairs, 2V + log, IV logical qubits and has Toffoli-depth log, N.
From Egs. (9), (13) and (15), this implies the following.

T-depth in this work  log, log, N

Rr— epth — - =
T—depth T-depth in [29] log, N (17)
T-count in this work N —log, N —1
R —count — " =
T ¢ T-count in [29] N (18)
Logical qubits in this work 2N
unbits :# 8 d = =1 (19)

#Logical qubits in [29] 2N

Thus we achieve an exponential improvement of T-depth, reduction in T-count, while keeping the number of
logical qubits the same.

Fault-tolerant implementation : In most error-correction schemes, including the most popular surface
code, the cost of implementation of the non-Clifford T gate is much more than the cost of the Clifford gates®.
In® the following has been taken as a rough estimate for the cost of implementation with the surface code.

Rough cost = log, (Logical qubits x T-depth) (20)

Thus from Egs. (17)-(19) we can say that our QRAM,,;, has much less fault-tolerant cost estimates from
previous bucket-brigade architecture. So we expect much better performance in terms of running time.

For illustration, we consider an implementation of our QRAM, ;- with the surface code, and estimate
resource requirements following the procedures described in® and¥. Consider the number of qubits n = 36
, which corresponds to 8 GB of classical data. Using logical AND gadgets®®, Toffoli can be implemented with 4
T gates with a T-depth 2 and if there is a compute-uncompute Toffoli pair we do not require any T gate for the
uncomputation part. Hence, from Eq. (9), assuming ¢ = 1, the T-count is

T < 42N —logn — 1) = 5.4975 x 10" (21)
and the T-depth is
Ta <2([logn] +1) = 14. (22)
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Each T gate requires one magic state (|A)). For the above T-count the output error rate for state distillation
should be no greater than

1 _
Pout = = A 1.81899 12, (23)

Now we use Algorithm 4 in*’ in order to calculate the distance of the surface code. Assuming a magic state
injection error rate p;, = 107*, a per-gate error rate p, = 107>, the stated algorithm suggests 2 layers of
distillation with distances d1 = 10, d2 = 5. The first stage of distillation consumes 16 logical qubits and the
second stage consumes 16 x 15 = 240 logical qubits in order to generate a single magic state.

The input states of the logical qubits in the second layer are encoded on a distance d2 = 5 code that uses
Np2 = 2.5 x 1.25 x d3 ~ 79 physical qubits per logical qubit. The total footprint of the distillation circuit is
then 240 x Np2 = 18750 physical qubits. This round of distillation is completed in o2 = 10d2 = 50 surface
code cycles.

Thefirstortoplayerrequiresad; = 10surfacecode,forwhichalogicalqubittakes N1 = 2.5 x 1.25 x d3 = 313
physical qubits. So the total number of physical qubits required is 16 X Np1 = 5000, with the round of
distillation completed in 01 = 10d; = 100 surface code cycles.

The concatenated distillation scheme is performed in o = o1 + 02 = 150 surface code cycles. Since the
first or top layer has lower footprint than the second or bottom layer, distillation can potentially be pipelined to
produce

150 x 18750 N
100 x 5000 + 50 x 18750

magicstatesin parallel. The physical qubitsin thesecondlayerisreused. Letts. = 200nsisasurfacecodecycletime.

Then 2 magic states can be produced every o X ts = 30 x 107 s. We require .- = % ~ 3.9 x 10'°
d
magic states per layer or depth of T-gates. We produce these many magic states in parallel for each layer. Due to

parallelization the number of physical qubits required is

% x 3.9 x 10'° x 18750 ~ 3.66 x 10™* (24)

and the time taken is

14x30x 107 %s =42 x 107 %s. (25)

In surface code implementation the cost of implementation of a multi-target CNOT is equal to the cost of a
single target CNOT® and has the same execution time. So we consider a multi-target CNOT as one logical
CNOT. Each Toffoli can be implemented with 2 CNOTS, 2 multi-target CNOTs, 1 H and 1 S gate®. Thus we
can upper bound the number of logical Cliffords by 7N = 7 x 2°6 = 4.81 x 10"". The overall error rate of
the Cliffords should therefore be less than =% ~ 2.08 x 10~ '?. To compute the required distance, we seek the
smallest d that satisfies the inequality

d+1

Pin 2 —12
2.08 x 10
(0.0125) < %

and find this to be d=11. The number of physical qubits required to encode the Cliffords
is at most 2x 2% x25x1.25x 1125197 x 103, Overall, we require approximately
3.66 x 10™ 4 5.197 x 10" ~ 4.18 x 10'* physical qubits to encode the complete QRAM

poly*
Roughly, we expect to perform ﬁ =

511 ~ 0.25 logical Clifford operations per qubit per layer of
T-depth. Since each logical CNOT takes 2 surface code cycles and we require o = 150 surface code cycles per
T-depth, so the overall time is dominated by the time for implementing the non-Clifford T-gates. Thus, the time
for implementing one memory read/write operation with QRAM_ , is approximately 4.2 x 10~ *s and utilizes
about 4.18 x 10™ physical qubits.

The QRAM in® requires 1.5 x 10'® physical qubits and is implemented in approximately 2.13 x 10~ ?s,
using the same surface code parameters and doing a similar analysis. We remark that design considerations can
vary. We can further reduce the time by parallelizing the magic state factories even more. This will increase the
number of physical qubits.

poly

Other applications of polynomial encoding

In this section we discuss some applications for the polynomial encoding of bit-strings. First, we describe a
quantum look-up-table (QLUT) that can be built using two QRAMs. If we use QRAM,,,;, that uses the
polynomial encoding, then our qLUT, ;. has double exponentially less T-depth than previous designs. Second,
we descibe a method to optimize the Toffoli-count of circuits consisting of groups of multi-controlled-NOT
gates.
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Quantum look-up-table (qLUT,,;, )
Now we describe a quantum look-up-table formed by combining two QRAMs, as shown in Fig. 4. Suppose we
want to build a qQLUT with n address bits. That is, there are N = 2" number of look-up addresses. We divide
the address bits into two groups, the first one with 71 bits and the next one with n bits. That is, n = n1 + n2
and assume N1 = 2™, No = 2”2, With these we build two QRAMs, QRAM,, ;, .. and QRAM,, ;. . with
n1 and ne number of address qubits respectively. Thus, QRAM,,;, . and QRAM,, ;. . are capable of
addressing /N1 and N> memory locations respectively. And as discussed before we have N1 and N> number of
(selecting) ancillae in each QRAM,, ,; (respectively) that correspond to these address locations.

Suppose we want to read a look-up address indexed by the bit string bo, . .., bn—1, or alternatively by the
integer N = ij_ol b;27. Now,

n—1 nog—1 n—1 ng—1 n—1
N =) b2 = b;2' + ) b2) = b2’ + 272 b; 27"
J J J J J
j=0 j=0 j=no j=0 j=no

ng—1 n—ng—1 ng—1 ny—1
S (5 e ) = o (e ) e,
J=0 j’=0 7=0 j’'=0

With the first QRAM i.e. QRAM,,;, ,, we select all address locations with first n; bits as bo, . . . , bn; —1. From
the previous equation we know that there are N2 such locations and we copy their contents in separate registers.
With the next QRAM ie. QRAM,, ;. .. we select an address among these copied addresses. Specifically, it
selects an address with the last na bits as by, , . . . , b, Hence finally a memory location with address (bo, . . . , bx)
gets selected. After this, using Toffolis we copy the contents of this memory location into the output bus.

Let each look-up address has ¢ bits. So after an address gets selected we require N2¢ Toffolis in order to
compute the parity into the output bus. We can parallelize these Toffolis with additional N2/ ancillae, as
shown in Fig. 2c and explained in Section Parallelizing the multiplications : lower T-depth. QRAM,,;, ., and
QRAM,, ;. ., can be implemented in parallel. Further, if we use the parallelized versions of these QRAMs then
we have the following.

Toffoli-depth = max{log, n1,logy n2} + 1
Toffoli-count = (N1 —n1 — 1)+ (No —n2 — 1) + No = N1+ (£ +1)Na —n — 2
#Ancillae =2N; + 2Ny + ¢Ny + {Ny = 2(N1 —+ (é =+ 1)N2)

4]

QRAM,y,

aN,-1

o) — X || xbw | | XLwNg-Ny

‘0) — Xk 4‘\1\'_,‘1_. ,,,,,, -—XL\'l\'_"V."‘

[0) — Xhwg-rp—{ xLavyal o oo — xEviNg1

QR AA\II;(;IV.H:

!
dy, 1

0) ---—H— |out)

Fig. 4. A quantum look-up table (QLUT), using 71 -bit and n2-bit QRAM in parallel. For gLUT ;. we use

poly
two QRAM one addressing n1-bit locations and another one addressing n2-bit locations.

poly>
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Fig. 5. (a) A circuit with 4 multi-controlled-NOT gates or C* X, where each such gate is controlled on 3
qubits. (b) The same circuit implemented with 1 Toffoli gate.

2N and 2N ancillae are required to implement QRAM,, ;.
qubits are required to copy the contents of the subset of memory locations selected by QRAM
qubits are also required to parallelize the last N2 Toffolis and compute the parity.

Comparison with previous works : In the CSWAP architecture for qLUT?® the authors combine a QROM
and a specific QRAM. The QROM is implemented with a set of multi-controlled-NOT gates. The QRAM
is implemented with a number of Fredkin or controlled-SWAP unitaries. Each controlled-SWAP can be
implemented with a Toffoli and CNOT. The contents of the selected memory location is always obtained on
some specified qubits. This qLUT has a T-count of O(v/N), T-depth O(v/N) and number of qubits O(v/N).

If Ny = Ny = +/N then using any of the existing implementations of Toffoli, our qLUT,,,;, has T-depth
O(log, log, N), which is a double exponential improvement over the previous work. The T-count and number
of qubits is asymptotically same. Thus from a fault-tolerant perspective, assuming the cost metric in Eq. (20), our
design is expected to perform better.

Our CNOT cost is primarily dominated by the step where we copy a subset of memory locations selected
by the first QRAM. We require /N1 N2 = {N CNOTs at this stage. But again this is a group of /N1 multi-target
CNOTs, where each has N> target. So in surface code implementation the execution time is equivalent to the
time of execution of N1 logical CNOTS. This cost is the same as that in®®.

and QRAM,,;, .., respectively. N2
¢N3

poly,ny*

Toffoli-count optimization of quantum circuits

The polynomial encoding can be used to optimize the number of Toffolis required to implement groups of
multi-controlled-X gates or mixed polarity multiple control Toffolis (MPMCTs)%. For example, we want to
implement a circuit that flips a qubit to |1) for a subset, S C {0, 1}", of n-bit strings. These types of circuits also
represent a kind of QROM. These can be used to select a subset of addresses and implement certain operations
on those locations. We optimize the Toffoli-count of such circuits using the following procedure, which we call
TOFFOLI-OPT-POLY.

1. Compute the encoding polynomial of each bit-string b € S. This can be done conveniently using Lemma 2.
2. Compute the following sum of the encoding polynomials.

p(m17---7mn) = @pg(:ch...,xn)

bes

In this case coeflicients of same monomials are added and reduced modulo 2.

3. A product of linear polynomials can be implemented with a Toffoli. We remember that a linear polynomial is
the sum of monomials of weight at most 1. Such a polynomial can be implemented with CNOTs and X gates.
Arrange the terms in p(x1, . . ., 5 ) such that the number of products of linear polynomials is optimized.

4. For each product we implement its factors in separate qubits, using CNOT and X gates. Using Toffoli we
multiply these factors to implement the product. Then using CNOTs we add such product terms in order to
implement p(x1,...,%n).

For illustration, consider the circuit shown in Fig. 5a, that has 3 qubits g1, g2, g3 and another qubit initialized
to |0). It flips the last qubit to |1) whenever the state of the first 3 qubits is |000), |001), |011) or |111). The
encoding polynomials pooo(z1,x2,z3), poo1(z1,x2,Z3), poi1(z1, T2, x3) and p111(z1,x2,3) have been
calculated in Table 2. Then,

p(x1, T2, 3) =pooo(T1, T2, x3) ® poo1 (1, T2, T3) ® po11(x1, T2, x3) ® p111(T1, T2, T3)
=14 z1 4+ 22+ 122 + T223 = 1 + 21 + 22 + T2(T1 + T3).

The 3 qubits g1, g2, g3 are assigned variables 1, 2, 3, respectively. With a CNOT controlled on g: and having
target on g3, we compute x1 @ x3. Then using a Toffoli controlled on |g2) and |gs), that store z2 and =1 ® 3,
respectively, we compute the product z2(z1 + x3). The rest of the variables can be added using CNOTs and X.
The optimized circuit with 1 Toffoli gate has been shown in Fig. 5b.

Scientific Reports |

(2025) 15:11002 | https://doi.org/10.1038/s41598-025-95283-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Here we observe that a sequence of multi-controlled-X gates represents a Boolean function which is a sum of
product terms. We can find its ESOP (Exclusive Sum-of-Products) expression using tools like EXORCISM”6-78,
Then factoring this expression we can implement the Boolean expression. We can also use the algorithm in”
which first computes the ESOP, and then breaks the expression into common cofactors, which are reversibly
synthesized. For example, in? the authors mentioned that the circuit in Fig. 5a can be implemented with 2
Toffolis. This is more than the Toffoli-count we get. We can also implement each multi-controlled-NOT-X gate
using the decomposition given in®’. Each C™ X i.e. an n-qubit-controlled-X gate can be implemented with n — 1
Toffolis and an additional n — 1 ancillae. But this will give more Toffoli-count than our implementation in Fig.
5b.

Discussions and conclusion

In this paper we develop a new design for quantum random access memory, using a polynomial encoding of the
bit strings specifying the address of memory locations. We implement a Clifford+T circuit for our QRAM,,,;,
and show that QRAM,,;, has T-count O(N —log N — 1), T-depth O(loglog N) and uses O(N) logical
qubits. Thus with our design of QRAM,,,;,, we achieve an exponential improvement in T-depth, while reducing
T-count and keeping the number of logical qubits requirement the same with respect to the previous state-of-
the-art bucket brigade architecture?®?. We illustrate that when encoded with the surface code®, in order to
perform one memory read/write operation, QRAM,,,;,, takes less time and uses much less number of physical
qubits. Using two such QRAM,, ; we implement a quantum look-up table (qLUT,,,;,) that has T-count
O(V/'N), T-depth O(loglog N) and uses O(v/N) logical qubits. With our quantum look-up-table circuit
qLUT,,;, we achieve (Table 1) a double exponential improvement in T-depth over the previous state-of-the-art
CSWAP architecture for gLUT®®, while the T-count and qubit-count are asymptotically same.

In our designs reduction in non-Clifford gate count comes at the cost of an increase in the CNOT gate count.
The latter is a Clifford gate and in most error correction schemes the cost of implementing a Clifford is much
less than the cost of implementing a non-Clifford. Thus, in our illustration we obtained better performance
compared to previous QRAM designs. But CNOT, being a multi-qubit gate is more error prone than single-qubit
gates like T. Even for connectivity constrained architectures (especially of the NISQ era) implementing a multi-
qubit gate becomes more costly because it often needs a number of intermediate CNOT or SWAP gates, thus
increasing the total gate count®.

The problem of studying the noise-resilience of QRAM is an active research problem®"®, especially for the
pre-fault-tolerant regime. And we believe it is beyond the scope of this current work because this paper exclusively
focuses on performance improvements in the fault-tolerant regime. Often metrics and design considerations
in these two regimes differ and hence they are studied separately. A detail analysis of the noise-resilience of
QRAM,,;,, is left for future work. It will also be interesting to study the mapping overhead of these circuits
in different architectural layouts like 2D grid, as done in*®>°. We expect to find trade-offs between the CNOT
count and error rate or sparsity of the underlying graph. We can also aim at developing different hybrid designs
with these new and existing circuits, so that we can take advantage of the various designs in different scenarios.

Using the polynomial encoding, we develop a method (TOFFOLI-OPT-POLY) to optimize the Toffoli-count
of quantum circuits, especially those using multi-controlled-NOT gates. Since such circuits represent a sum-of-
product (SOP) form of Boolean function, so these encodings can also have potential application in optimizing
Boolean ESOP expressions, similar to the algorithms in”®~"°. Some of these classical algorithms have inspired
methods for reversible quantum logic synthesis’?, which in turn have been an integral part of the design of
quantum oracles for important algorithms like Grover’s search. Thus these encoding polynomials may be used
for reversible quantum logic synthesis. In the future we aim to investigate this avenue and the application of
the polynomial encodings towards the design of algorithm-specific oracles and application-specific QRAMs, as

in40'49’72‘74.
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