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Abstract

Universal curves and approximate formulas for the elements of the track param-
eter error matrix are derived for homogeneous tracking detectors in the continuous

measurement limit.
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1. Introduction

Formulas for estimating the track parameter error matrix resulting from diagonal
uniformly weighted fits have been published in many places [1]. This note derives
‘ similar formulas for optimal fits. It also also demonstrates that in the limit of contin-
~ uous measurement, the matrix elements are described by universal curves. The case
treated is homogeneous systems of many layers. In general, heterogeneous systems
" require numerical calculation.

If the track is nearly straight, we can describe its projection on the plane perpen-

dicular to the magnetic field as
y =a+ bz +cz?/2 (1.1)

where a is the position at the beginning of the tracking system, b is the slope, c is
the curvature, and z is the distance along the track. For the purposes of discussing
errors, this formulation is good for very curved tracks also; we need only think of y as
being the deviation from a reference track close to the actual track. We are interested

in the entire variance matrix for a, b, and c.

If the magnetic field is uniform, then the errors in the bend and nonbend planes
decouple, the errors can be expressed in a manner that is independent of the dip
angle if appropriate projected quantities are used, and momentum errors are simply

related to the curvature errors and the field strength.

2. Measurement Errorrs

Consider a detector with a total length L, N equally spaced layers, and an rms

measurement error at each layer of 0. If we define the information density ¢ as:

_ (N +3)

=i (2.1)
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we may write the Gluckstern [2] formula for the curvature error when there is in-

‘'significant multiple scattering as:

In this case, the uniformly weighted diagonal fit is optimal. This illustrates clearly

the 1/L® dependence of a detector with fixed spacing between measurements.

3. Multiple Scattering Errors

Gluckstern’s formula for V.. when only multiple scattering errors are significant

can be written as

1.43s

where scattering density s is the mean square projected scattering angle per unit

length.

The factor of 1.43 assumes an infinite number of equally spaced measurements
and a uniformly weighted diagonal fit. According to Scott [3], if an optimal fit is done
using all information about scattering errors at the measurement locations and their
correlations, this factor is 1.00, i.e.,

Vee =

(3.2)

]

This gives us an upper limit on the possible improvement to be gained by doing an

optimal fit.



4. Optimal Fits with Mixed Errors
Adding together (2.2) and (3.2), the optimal fit result is

720
Vee ® =<

8
L5 T L (4.1)

This is all very fine, but you may have observed that the optimal fits which yielded
the best values for V[, and V2, were different. Is adding the variances a good approx-
imation for an optimal fit? To answer this and to find the other matrix elements, we

must study the combined system. Note that V;; % V|; + V,; for Vaa, Vip, or Vi .

Billior [4] describes a recursive procedure which propagates the fit results from
layer to layer, adding the information gain and loss at each layer. This method
provides a straightforward means to calculate errors. He gives the following recursion

relation for the information matrix I = V~1;

0- 0 07\™! il 00
Inja=DT | I7'4+ |0 sl 0 D+|0 0 o |,
0 0 0 0 00
1 1 12)2
/ (4.2)
D=0 1 1 ,
00 1
I=L/N

D is the matrix which transforms the parémeters from those defined at one layer to

those defined at the next layer.

Letting | — 0 while holding ¢ and s constant is the “continuous” detector limit.

Let’s assume for the moment that in this limit there is universal curve, i.e., that the
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same curve (up to scale factors in length and magnitude) which describes a matrix
element’s dependence on length is independent of ¢, and s. (I will demonstrate this
later.) We can use (4.2) to calculate this curve by setting i = s = 1 and making
I small. The successive I; s give the results we seek. Figure 3 shows this curve for
Ve anci»compares it to the approximate equation (4.1). We get the expected limits
for thin and thick chambers. The transition between thick and thin is at L ~ 7.
. The numerical result is always larger than the approximation but never by more than
approximately 25%. Figures 1 through 6 show the universal curves for all the matrix

elements.

In one sense, our problem is solved once we determine the scale factors, but
perhaps we can derive formulas for these curves. Define the characteristic scattering
length of the the detector A = 1/¥/is. For an infinitely long detector, Billoir gives

the following power series in I/) (translated into our notation):

o _ V2 11 5/1\°

V2 11, 1/1\°

w — " e— —— —— — — — .« e
W= \/§/\+8(z\) o)

We already know from the numerical solution that V. = 0. Taking the | — 0

limit of (4.3) gives points at one end of our universal curves. The complete curves we

seek are the elements of V as a function L in this limit.

In the continuous detector limit, equation (4.2) becomes a system of six coupled
differential equations in the matrix elements of I. This system is first order, au-
tonomous (L does not appear explicitly), and nonlinear. We know that all elements
are zero at L = 0 (i.e., there is no information when there are no measurements.)

We know that the solutions are well behaved everywhere except at L = oo (where



I.c — o0). While closed form solutions are not easily obtained, we can find the a set

of power series which satisfies the system of equations.

_According to differential equation theory, these series converge for all L and are
d_a unique solution. This matrix of power series can be inverted to yield a set of power

?grié"s for the elements of V:

hu 5670 ~ 4,086,482,400

AR SR | S SR
840 ~ 403,603,200

Vo 2 (4 g et )

Vop = -

1oa_ 19
504 726,485,760

(
( .
Vi = —20 <1+ R SR L A 8+—---> (4.4)
( .
(

Ve = = 8+_...)

2160" ~ 518,918,400

1, 19

v _ =360 LW
be = 1680 726,485,760

8
: +-
- iyt

L@c==

1+ —1——u4 - 43 ub -
5040 3,632,428,800

iA3y3
where u = L/). The first term is the usual expression for measurement error alone.
We recognize the sum of the first two terms as the error one would get from a uni-
formly weighted diagonal fit. Thus the third term gives, to leading order in L/, the
improvement due to optimal fitting. The above series are useful for u < 7, after which
the number of terms required to get an accurate result grows rapidly. The form of

this solution demonstrates the universal curve hypothesis.

Equation (4.2) can be rewritten as a recursion rule for V instead of I. From

the resulting rule comes a system of differential equations in the elements of V.
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Unfortunately, this system of equations is very badly behaved and complete series
solutions are not readily obtained. This system does have the solution:

Vaa = V28)3 (1 + -\/—1-2-;)

Vip = V2s) (1 +\/§%)

8
Vcc=m

Vap = —sA? (1 + \/5%)

Vie = —V2s—

Vac=:’i\'
u

This is a complete solution but it is not unique. It does approach the desired solution
as L/A — 00. Vaa, Vip, Vi go to constant values in the large L limit. This is because
the back of a detector contributes no information about the particles location and
slope at the detector entrance once there has been sufficient scattering. Vi, Vi,
Vac continue to decrease as A/ L because essentially independent measurements of the
curvature are made along the entire length of the track. The effective lever arm of

the curvature measurements is limited by the multiple scattering.

5. Approximate Formulas for Optimal Fits

We get good simple approximations for V.., Vi, and V;. by adding (4.5) and the
first terms from (4.4). In the case of V., this is the result we obtained previously in
(4.1). These formulas are represented by the dotted curves on the figures. Vio, Vip,

Vab are not so simple. Equation (4.4) truncated at two terms is shown on the figures as



a dotted curve, Equation (4.5) is displayed as a dashed curve. A useful approximation
can be had by using (4.4) for L/\ < 7 and (4.5) above. These recommendations are

summarized below.

One caution: Remember that these formulas are for the continuous chamber
approxifnationw in the large N limit, i.e., L/N <« X and N > 10. The formulas
for Vaa, Vip, and V3, in particular, will be overestimates if the former condition is
 violated. Since this effect is worst at L — oo, equation (4.3) may be ﬁsed to get an

upper limit on the deviation.

6. Summary of Approximate Formulas

Here is a summary of the recommended approximate formulas for the optimal fit

variance matrix elements in the continuous detector large N limit.



Vip =~

Vip =

9 /1 1 4 .
iT\(Estmo") fu<?
3—(1+\/§> fu>7

A \u

192 /1 1 .
;—/\—(;,"+°8-4—0u) fu<g?

—l—(z-ﬁ-\/i) fu>7

A \u

1 720 1
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-36 /1 5 )
Byl 25+2160“) ifu<?
_—1<£+1) fu>T

A u

-1 (360 , V2

A4\ ud u

(6.1)

where for a detector with N layers, length L, and rms measurement error per layer

of o: i = (N +5)/(¢%L), s = mean square projected scattering angle per unit length,

A=1/vis,and u= L/
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Figure Captions

. Vaa. The solid curve is the numerical calculation. The dotted curve is result of

the diagonal unweighted fit. The dashed curve is the large u solution.

. Vs». The solid curve is the numerical calculation. The dotted curve is result of

the diagonal unweighted fit. The dashed curve is the large u solution.

. Vee. The solid curve is the numerical calculation. The dotted curve is result of

the approximation (4.1).

. Vap. The solid curve is the numerical calculation. The dotted curve is result of

the diagonal unweighted fit. The dashed curve is the large u solution.

. Vhe. The solid curve is the numerical calculation. The dotted curve is result of

the approximation.

. Vac. The solid curve is the numerical calculation. The dotted curve is result of

the approximation.
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