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Abstract 

Universal curves and approximate formulas for the elements of the track param- 

eter error matrix are derived for homogeneous tracking detectors in the continuous 

measurement limit. 
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1. Introduction 

Formulas for estimating the track parameter error matrix resulting from diagonal 

uniformly weighted fits have been published in many places [l]. This note derives 

similar formulas for optimal fits. It also also demonstrates that in the limit of contin- .^ 

_ - uous measurement,.the matrix elements are described by universal curves. The case _. - 
-. 

treated is homogeneous systems of many layers. In general, heterogeneous systems 

require numerical calculation. 

If the track is nearly straight, we can describe its projection on the plane perpen- 

dicular to the magnetic field as 

Y = a+ bx+cx2/2 , (14 

where a is the position at the beginning of the tracking system, b is the slope, c is 

the curvature, and x is the distance along the track. For the purposes of discussing 

errors, this formulation is good for very curved tracks also; we need only think of y as 

being the deviation from a reference track.close to the actual track. We are interested 

in the entire variance matrix for a, b, and c. 

If the magnetic field is uniform, then the errors in the bend and nonbend planes 

decouple, the errors can be expressed in a manner that is independent of the dip 

angle if appropriate projected quantities are used, and momentum errors are simply 

related to the curvature errors and the field strength. 

2. Measurement Errors 

Consider a detector with a total length L, N equally spaced layers, and an rms 

measurement error at each layer of cr. If we define the information density i as: 

2 

(2.1) 



we may write the Gluckstern [2] formula for the curvature error when there is in- 

-significant multiple scattering as: 

P-2) 

In this case, the uniformly weighted diagonal fit is optimal. This illustrates clearly 

the l/L5 dependence of a detector with fixed spacing between measurements. 

3. Multiple Scattering Errors 

Gluckstern’s formula for V,, when only multiple scattering errors are significant 

can be written as 

w 

where scattering density s is the mean square projected scattering angle per unit 

length. 

The factor of 1.43 assumes an infinite number of equally spaced measurements 

and a uniformly weighted diagonal fit. According to Scott [3], if an optimal fit is done 

using all information about scattering errors at the measurement locations and their 

correlations, this factor is 1.00, i.e., 

P-2) 

This gives us an upper limit on the possible improvement to be gained by doing an 

optimal fit. 
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4. Optimal Fits with Mixed Errors 

Adding together (2.2) and (3.2), the optimal fit result is .- 

.^ 
V 

720 s 
L cc = z+z * (44 

_. - 
-- 

This is all very fine, but you may have observed that the optimal fits which yielded 

the best values for V,rC and VA were different. Is adding the variances a good approx- 

imation for an optimal fit? To answer this and to find the other matrix elements, we 

must study the combined system. Note that Kj $ y> + Ks for V,, , Vbb , or Vab. 

Billior [4] describes a recursive procedure which propagates the fit results from 

layer to layer, adding the information gain and loss at each layer. This method 

provides a straightforward means to calculate errors. He gives the following recursion 

relation for the information matrix I E V-l: 

..,=D(I;l+ [i’ ;‘;])-lD+ [I ; i] , 
1 1 

D=Ol [ P/2 

1 1 , 

00 1 

(4.2) 

IrLjN . 

D is the matrix which transforms the parameters from those defined at one layer to 

those defined at the next layer. 

Letting 1 --+ 0 while holding i and s constant is the “continuous” detector limit. 

Let’s assume for the moment that in this limit there is universal curve, i.e., that the . . 
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same curve (up to scale factors in length and magnitude) which describes a matrix 

element’s dependence on length is independent of i, and s. (I will demonstrate this 

later.) We can use (4.2) to calculate this curve by setting i = s = 1 and making 

I small. The successive 1,“s give the results we seek. Figure 3 shows this curve for 
..^ 
- V,, and compares it to the approximate equation (4.1). We get the expected limits 

. - 
-. for thin and thick chambers. The transition between thick and thin is at L M 7. 

The numerical result is always larger than the approximation but never by more than 

approximately 25%. Figures 1 through 6 show the universal curves for all the matrix 

elements . 

In one sense, our problem 

perhaps we can derive formulas 

length of the the detector X E 

is solved once we determine the scale factors, but 

for these curves. Define the characteristic scattering 

l/a. For an infinitely long detector, Billoir gives 

the following power series in l/X (translated into our notation): 

(44 

We already know from the numerical solution that Vcy = 0. Taking the I + 0 

limit of (4.3) gives points at one end of our universal curves. The complete curves we 

seek are the elements of V as a function L in this limit. 

In the continuous detector limit, equation (4.2) becomes a system of six coupled 

differential equations in the matrix elements of I. This system is first order, au- 

tonomous (L does not appear explicitly), and nonlinear. We know that all elements 

are zero at L = 0 (i.e., there is no information when there are no measurements.) 

We know that the solutions are well behaved everywhere except at L = CCI (where 
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ICC 4 00). While closed form solutions are not easily obtained, we can find the a set 

of power series which satisfies the system of equations. 

According to differential equation theory, these series converge for all L and are 

a unique solution. This matrix of power series can be inverted to yield a set of power 1 

Se& for the elements of V: 

V aa = & 
( 

1 t $&u4 - 4 
7 
0861;;2 

7 , 
4oou8 t - - * * 

> 

Vbb 
192 1 4 47 

=pg 1-t -u - 403,603,200U8+-"' 840 

v& = g$. 1+ &4- 
( 

l9 
726,485,760u8 + -"' > 

vab = $f$ 1 + 5U4 - - * n n 
2160 518 

9”:s 4ooU8 + 7 3 > (44 

vbc = -360 
iX4u4 l+&u4-726 ;;5 760u8t-.- 

7 3 > 

V 
60 1 

ac =m 1-t -- 4 - 3,632,428,800u8 43 + -"' 5040 

where u s L/X. The first term is the usual expression for measurement error alone. 

We recognize the sum of the first two terms as the error one would get from a uni- 

formly weighted diagonal fit. Thus the third term gives, to leading order in L/X, the 

improvement due to optimal fitting. The above series are useful for u < 7, after which 

the number of terms required to get an accurate result grows rapidly. The form of 

this solution demonstrates the universal curve hypothesis. 

Equation (4.2) can be rewritten as a recursion rule for V instead of I. From 

the resulting rule comes a system of differential equations in the elements of V. 
1. 
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Unfortunately, this system of equations is very badly behaved and complete series 

solutions are not readily obtained. This system does have the solution: 
. . 

Vab=-SX2 (I+&:) 

vbc = 
U 

V 
SX 

ac =- 
u ’ 

This is a complete solution but it is not unique. It does approach the desired solution 

as L/X --$ oq. Vaa , Vbb , Vab go to constant values in the large L limit. This is because 

the back of a detector contributes no information about the particles location and 

slope at the detector entrance once there has been sufficient scattering. V,, , Vbc, 

Vat continue to decrease as X/L because essentially independent measurements of the 

curvature are made along the entire length of the track. The effective lever arm of 

the curvature measurements is limited by the multiple scattering. 

5. Approximate Formulas for Optimal Fits 

We get good simple approximations for Vcc , I&, and Vat by adding (4.5) and the 

first terms from (4.4). In the case of V&, this is the result we obtained previously in 

(4.1). These formulas are represented by the dotted curves on the figures. Vaa , Vbb , 

Vab are not so simple. Equation (4.4) truncated at two terms is shown on the figures as 
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a dotted curve. Equation (4.5) is displayed as a dashed curve. A useful approximation 

can be had by using (4.4) for L/X < 7 and (4.5) a b ove. These recommendations are 

summarized below, 
. . 

.^ One caution: Remember that these formulas are for the continuous chamber 

- - approximation in the large N limit, i.e., L/N < X and N > 10. The formulas _. _. 

for Ka , vbb , and Vab , in particular, will be overestimates if the former condition is 

violated. Since this effect is worst at L + 00, equation (4.3) may be used to get an 

upper limit on the deviation. 

6. Summary of Approximate Formulas 

Here is a summary of the recommended approximate formulas for the optimal fit 

variance matrix elements in the continuous detector large N limit. 
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Vaae$(t+&U3) ifu<7 

V 
1 1 

aa a T- 
( > 

-+d ax u 
ifu>7 

ifu>7 

ifu<7 

ifu>7 

(6-l) 

where for a detector with N layers, length L, and rms measurement error per layer 

of Q: i s (N +5)/(02L), s E mean square projected scattering angle per unit length, 

X E l/G, and u G L/X. 
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Figure Captions 

1. Vaa. The solid curve is the numerical calculation. The dotted curve is result of 

the diagonal unweighted fit. The dashed curve is the large u solution. 

.^ 2. vbb. The solid curve is the numerical calculation. The dotted curve is result of -. 
_ - _ . 

-- the diagonal &weighted fit. The dashed curve is the large u solution. 

3. V,,. The solid curve is the numerical calculation. The dotted curve is result of 

the approximation (4.1). 

4. Vab. The solid curve is the numerical calculation. The dotted curve is result of 

the diagonal unweighted fit. The dashed curve is the large u solution. 

5. vbc. The solid curve is the numerical calculation. The dotted curve is result of 

the approximation. 

6. V,,. The solid curve is the numerical calculation. The dotted curve is result of 

the approximation. 
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