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Abstract: We extend the scope of the unified factorization method to the solution of conditionally

and unconditionally exactly solvable models of quantum mechanics, proposed in a previous paper

[R.R. Nigmatullin, A.A. Khamzin, D. Baleanu, Results in Physics 41 (2022) 105945]. The possibilities of

applying the unified approach in the factorization method are demonstrated by calculating the energy

spectrum of a potential constructed in the form of a second-order polynomial in many of the linearly

independent functions. We analyze the solutions in detail when the potential is constructed from

two linearly independent functions. We show that in the general case, such kinds of potentials are

conditionally exactly solvable. To verify the novel approach, we consider several known potentials.

We show that the shape of the energy spectrum is invariant to the number of functions from which

the potential is formed and is determined by the type of differential equations that the potential-

generating functions obey.

Keywords: exactly solvable models; conditionally exactly solvable models; Schrödinger equation;

factorization method; superpotential

MSC: 81Qxx; 81Vxx

1. Introduction

Exactly solvable models play an important role in quantum mechanics. Firstly, they
are interesting in themselves as models of real physical systems. Secondly, exactly solvable
models serve as reliable zero approximations in constructing perturbation theory. However,
the number of currently known exactly solvable models is very limited [1–3], and the
possibilities of perturbation theory in quantum physics are also limited.

The exact solvability criteria are very strict and require obtaining the entire spectrum
of the Hamiltonian in closed form for all potential parameter values in closed form. This
requirement often leads to insurmountable difficulties in finding new exact solutions. In
this regard, recent research has focused on finding models for which the spectral problem
can be precisely solved—either for a small portion of the spectrum rather than the entire
spectrum or for specific values of potential parameters rather than all possible values. In
the first case, the models are called quasi-exactly solvable (QES) [4–7], and in the second
case, they are called conditionally exactly solvable (CES) [8–10]. Obviously, such models
are no less useful than exactly solvable ones. They can also be used to model real physical
situations as well as in perturbation theory.

The main approaches for solving Q(C)ES models in quantum mechanics are the
polynomial ansatz for the wave function [11,12], the canonical point transformation [13],
and the factorization method [14–17]. Note that there are types of QES potentials for which
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the Schrödinger equation is reduced to the Heun equation, whose analytical solutions
are expressed in terms of the Heun confluent functions. In this case, the spectrum can be
calculated numerically from the corresponding Wronsky determinant [18].

The most effective tool for finding solutions to exactly solvable and conditionally exactly
solvable models is the factorization method, which was introduced by Schrödinger [19–21]
and later developed by Infield and Hull [1]. The introduction of supersymmetric quantum
mechanics (SUSYQM) by Witten [22] and the concept of shape invariance by Genden-
stein [23] have greatly improved the method [24–26].

In a paper [27], a novel approach was proposed that led to the further development
of the factorization method to enable its improvement in the search for new exact and
conditional solutions of the Schrödinger equation. Within the framework of the new
approach, it becomes possible to largely unify and algorithmize the factorization method.
In [27], we demonstrated the possibilities of a new factorization method algorithm by
calculating the spectrum of exactly solvable and conditionally exactly solvable models with
potentials in the form of a single-function Laurent polynomial. We found the conditions
for the values of the coefficients of the potential and the form of the potential-generating
function under which it is possible to obtain an unconditionally exact solution.

In this study, we continued the development of a new factorization method algorithm
for solving the spectral problem of the Schrödinger equation and generalized it to the case
when the potential is constructed as a polynomial of several functions. The main idea
of the generalization is based on the previous one. The isospectral condition is imposed
on the family of partner Hamiltonians, which leads to a recurrent equation that relates
the superpotentials and energies of excited states to the ground state. The superpotential
of the ground state satisfies the Riccati equation, which relates it to the potential. The
superpotential is constructed as a linear combination of potential-generating functions,
one of which satisfies the Riccati equation, and the others satisfy the Bernoulli equation.
This again allowed us to obtain a closed system of difference equations for the parameters
of superpotentials and energy eigenvalues, which admits an exact solution. However, in
the general case, as will be shown, the spectral problem is conditionally exactly solvable.
This generalization of the algorithm significantly expands the possibilities of using the
factorization method in the search for new models that allow an exact solution.

2. Unification of the Factorization Method

Consider a one-dimensional problem and represent the Hamiltonian in the follow-
ing form:

H = − ℏ2

2m

d2

dx2
+

ℏ2

2mx2
0

Φ

(
x

x0

)
, (1)

where the potential is represented through a dimensionless function Φ(x/x0), x0 is the char-
acteristic length scale, and m is particle mass. It is convenient to represent the Hamiltonian
(1) in dimensionless form:

h =
2mx2

0

ℏ2
H = − d2

du2
+ Φ(u), (2)

where u = x/x0 is the dimensionless coordinate.
The main idea of the factorization method is to represent the Hamiltonian in the

following form
h = a+a + ε0, (3)

where the operators a and a+, which are called ladder operators, have the following structure

a+ = − d

du
+ϕ0(u), a =

d

du
+ϕ0(u), (4)
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The function ϕ0(x), which is called the superpotential, satisfies the Riccati equation

−ϕ′
0(u) +ϕ

2
0(u) + ε0 = Φ(u). (5)

The superpotential makes it possible to determine the wave function of the ground state

ψ0(u) = A exp

(
−
∫
ϕ0(u)du

)
, (6)

where A is the normalization constant. The next step in SUSYQM theory is the construction
of the partner Hamiltonian

h̃ = − d2

du2
+ Φ̃(u) = aa+ + ε0. (7)

The Hamiltonians partners h and h̃ are related by the relationship ah = h̃a. This
relationship leads to the following connection of the partner potentials Φ(u) and Φ̃(u):

Φ̃(u) = Φ(u) + 2ϕ′
0(u). (8)

The SUSYQM procedure is iterated and generates a hierarchy of partner Hamiltonians.

hn+1 = a+n+1an+1 + εn+1 = ana+n + εn, n = 0, 1, 2, . . . (9)

Here,

a+n = − d

du
+ϕn(u), an =

d

du
+ϕn(u) (10)

where the functions ϕn(u) are found from the following recurrent equation:

−(ϕ′
n+1 +ϕ

′
n) +ϕ

2
n+1 −ϕ2

n + εn+1 − εn = 0, n = 0, 1, 2, . . . . (11)

Equation (11) is enough to determine the full spectrum of the Hamiltonian and the
desired superpotential.

In [27], we proposed a unified algorithm for applying the factorization method to
obtain the full spectrum of the Hamiltonian with a potential in the form of a Laurent
polynomial for a single function f (u)

Φ(u) =
2N

∑
k=−2N

wk f k(u), (12)

where wk are the constant coefficients, and the function f (u) satisfies the Riccati equation
with constant coefficients

f ′(u) = κ0 + κ1 f (u) + κ2 f 2(u), (13)

where κm (m = 1,2,3) are the constant coefficients. The algorithm is based on the representa-
tion of the superpotential ϕn(u) in the form of the following ansatz

ϕn(u) =
N

∑
k=−N

αnk f k(u), (14)

where αnk are the constant coefficients, n = 0,1,2,. . . The form of superpotential (14)
completely depends on the form of potential (12). Substituting superpotential (14) into
Equations (5) and (11), and potential (12) into Equation (5), considering (13), and then
equating the coefficients at the same powers of the function f leads to an algebraic system of
equations for the coefficients of the superpotentials (14) and energies of the eigenstates (see
Equation (45) in [27]). These systems of equations make it possible to find the full energy
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spectrum and coefficients of the superpotential for given values of N and the coefficients wk

(k = −2N, . . ., 2N), κm (m = 0,1,2). For arbitrary N, in the general case, as shown in [27], the
potential of the form (12) is conditionally exactly solvable, since the number of equations
for determining the coefficients of the superpotential exceeds the number of unknown
coefficients. Excessive equations lead to constraint conditions on the coefficients of potential
(12). However, in the case of N = 2, in special cases, for potential (12) it is possible to obtain
unconditional exact solutions [27], which coincide with all known, by now, exact solutions.
Note that the general form of the energy spectrum does not depend on the order N of the
Laurent polynomial in (12) but is determined by the form of the differential equation for
the potential generating function f (u).

In the following sections, we demonstrate that the method in [27] can also be gener-
alized to the case of a multiplicity of potential generating functions. This generalization
significantly expands the class of potentials, admitting an exact solution for the spectrum.

3. Generalization of the Unified Algorithm of the Factorization Method to the Case of
Two Potential-Generating Functions

We begin the generalization by constructing a unified calculation scheme for the
factorization method, which allows us to calculate the energy spectrum of the Hamiltonian
with the potential formed by two linearly independent functions f0(u) and f1(u),

Φ(u) = w0 + w01 f0(u) + w02 f 2
0 (u) + w11 f1(u) + w12 f 2

1 (u) + q01 f0(u) f1(u). (15)

Again, as in the scheme proposed by us in [27], let function f0(u) satisfy the Riccati
equation with constant coefficients

f ′0(u) = κ00 + κ01 f0(u) + κ02 f 2
0 (u), (16)

and the second function f1(u) satisfy the Bernoulli equation of the form

f ′1(u) = κ11 f1(u) + κ12 f 2
1 (u) + ξ01 f0(u) f1(u), (17)

where κ11, κ12, ξ01 are the constant coefficients. Then, Equation (17) admits an exact analyti-
cal solution in quadratures

f1(u) =
exp(κ11u + ξ01

∫
f0(u)du)

C − κ12

∫
exp(κ11u + ξ01

∫
f0(u)du)du

, (18)

where constant C is found from the boundary conditions. Since function f 0(u) satisfies the
Riccati equation with constant coefficients (16), with an appropriate choice of dimensionless
coordinate, the following set of elementary functions for it becomes possible:

u,
1

u
, exp(−u), tan(a · u + b),

1

eu − q
. (19)

When ξ01 = 0, the function f 1(u) has the form

f1(u) =

{
κ11

C exp(−κ11u)−κ12
, κ11 6= 0,

− 1
κ12u+C , κ11 = 0.

(20)

Table 1 presents possible types of function f 1(u) obtained from Equation (18) for each
elementary function f 0(u) from set (19).
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Table 1. Expressions for function f 1(u) satisfying Equation (17) when choosing a function from

set (19).

f 0(u) f 1(u)

u

(
C exp

(
−κ11u − ξ01u2/2

)
− κ12

√
2

ξ01
πF
(
κ11+ξ01u√

2ξ01

))−1

F(u) is the Dawson function

1
u

uξ01 eκ11u(C + κ12Γ(ξ01 + 1,−κ11u))−1

Γ(a, u) is the incomplete gamma function

e−u exp
(
−ξ01e−u + κ11u

)(
C − κ12

∫
exp

(
−ξ01e−u + κ11u

))−1

tan(au + b) eκ11u(cos(au+b))−ξ01/a

C−κ12

∫
eκ11u(cos(au+b))−ξ01/adu

− 1
eu−q

(
C exp(−(κ11 + ξ01/q)u)(eu − q)ξ01/q +

κ12(eu−q)
κ11q+ξ01 2F1

(
1, 1 + κ11, 1 + κ11 + ξ01/q, q−1eu

))−1

2F1(a, b, c, z) is the hypergeometric function

Below, we show that, by generalizing the approach developed in [27] to the case of two lin-
early independent potential-generating functions satisfying differential Equations (16) and (17),
it is possible to construct an exact energy spectrum for new, nontrivial potentials (Table 1).

For potential (15), we accept the following ansatz for the superpotentials:

ϕn(u) = α0,n f0 + α1,n f1 + βn. (21)

Assuming that the full set of functions
{

f0, f1, f 2
0 , f 2

1 , f0 f1

}
is linearly independent,

substituting the function ϕ0(u) into Equation (5), and then equating the coefficients at the
same powers of the functions f0,1 and f0 · f1, we find the following system of equations for
determining the coefficients of the superpotential and the energy of the ground state:

f0,1
0 : ε0 = w0 + α00κ00 − β2

0,
f0 : 2α00β0 − α00κ01 = w01,
f 2
0 : α2

00 − α00κ02 = w02,
f1 : 2α10β0 − α10κ11 = w11,
f 2
1 : α2

10 − α10κ12 = w12,
f0 · f1 : 2α00α10 − α10ξ01 = q01.

(22)

To determine the eigenvalues and coefficients of the superpotential of the excited
states, we substitute ϕn(u) from (21) into Equation (11) and again equate the coefficients at
the same powers f0,1 and f0 · f1. Finally, after some algebraic manipulations, we obtain a
system of equations.

f0,1
0 : εn+1 = εn + κ00(α0n + α0,n+1)− (β2

n+1 − β2
n),

f0 : −κ01(α0n + α0,n+1) + 2(α0,n+1βn+1 − α0,nβn) = 0,
f 2
0 : α2

0,n+1 − α2
0n − κ02(α0,n+1 + α0n) = 0,

f1 : −κ11(α1n + α1,n+1) + 2(α1,n+1βn+1 − α1,nβn) = 0,
f 2
1 : α2

1,n+1 − α2
1n − κ12(α1,n+1 + α1n) = 0,

f0 · f1 : −ξ01(α1n + α1,n+1) + 2(α0,n+1α1,n+1 − α0,nα1,n) = 0.

(23)

Note that in the general case, the number of equations for determining the super-
potential parameters in Equations (22) and (23) exceeds the number of unknowns. This
leads to constraints on the potential parameters. Thus, the case of two independent
potential-forming functions, in the general case, leads to conditionally exactly solvable
potentials. However, in the special case, when κ01 = κ11 = 0, w01 = w11 = 0, βn = 0,
the problem is reduced to an unconditionally exactly solvable. The system of difference
Equations (22) and (23) allows the exact analytical solution
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α00 = κ02
2 ±

√
κ2

02
4 + w02, α0,n = α00 + κ02n,

α1,0 = κ12
2 ±

√
κ2

12
4 + w12, α1,n = α1,0 + κ12n,

βn =





1
2

w01−κ01w02/κ02
κ02n+α00

+ 1
2
κ01
κ02

(κ02n + α00), κ02 6= 0,
1
2

(
w01
α00

+ κ01

)
+ κ01n, κ02 = 0,

, (24a)

εn =





w0 − κ00
κ02

w02 +
κ01
2κ02

(
κ01
κ02

w02 − w01

)
−
(

κ2
01

4κ2
02
− κ00

κ02

)
(κ02n + α00)

2 − (w01−κ01w02/κ02)
2

4(κ02n+α00)
2 , κ02 6= 0,

w0 + κ00

(
κ00w02

κ2
01

− w01
κ01

)
−
(
κ01n + w01

2α00
+ κ01

2 − α00κ00
κ01

)2
, κ02 = 0, κ01 6= 0,

w0 − w2
01

4w02
+ α00κ00(2n + 1), κ01 = 0, κ02 = 0.

, (24b)

constraint conditions :

w11 =





κ11
κ12

w12 + (κ12n + α10)
{

w01−κ01w02/κ02
κ02n+α00

+ (κ01 − κ11)n + κ01
κ02
α00 − κ11

κ12
α10

}
, κ02, κ12 6= 0,

κ11
κ12

w12 + (κ12n + α10)
{

w01
α00

− κ11
κ12
α10 + κ01 + (2κ01 − κ11)n

}
, κ12 6= 0, κ02 = 0,

α10

{
w01−κ01w02/κ02

κ02n+α00
+ (κ01 − 2κ11)n + κ01

κ02
α00 − κ11

}
, κ12 = 0, κ02 6= 0,

α10

{
(κ01 − κ11)(2n + 1) + w01

α00

}
, κ02 = 0, κ12 = 0,

,

q01 =

{
ξ01w12
κ12

+ (κ12n + α10)
{

2α00 − ξ01
κ12
α10 + (2κ02 − ξ01)n

}
, κ12 6= 0,

α10{2α00 − ξ01 + 2(κ02 − ξ01)n}, κ12 = 0.

(24c)

Thus, in the case when the complete set of functions
{

f0, f1, f 2
0 , f 2

1 , f0 f1

}
is linearly

independent, there are two constraint conditions on the potential parameters. Although it
is not required, we selected possible parameters w11 and q01 as dependent ones.

As an example of applying the solutions obtained above, consider the mixed Hellman–
Morse potential

Φ(u) = − 2

u
+

be−u

u
+ λ2

(
e−2u − 2e−u

)
+

l(l + 1)

u2
. (25)

For this potential, we choose f0(u) = 1/u, f1(u) = exp(−u). Then, from (15), (16)
and (17), we obtain

w0 = 0, w01 = −2, w02 = l(l + 1), w11 = −2λ2, w12 = λ2, q01 = b,
κ00 = 0, κ01 = 0, κ02 = −1, κ11 = −1, κ12 = 0, ξ01 = 0.

, (26)

We substitute the found parameters (26) into (24) and obtain expressions for the energy
spectrum, superpotential coefficients, and constraint conditions on the potential parameters

α0,n = −l − 1 − n, α1,n = −λ, βn = 1
n+l+1 ,

εn = − 1

(n+l+1)2 ,

Constraint conditions : λ = 1
n+l+1 + n + 1

2 , b = 2λ(n + l + 1)

. (27)

As can be seen from (27), the potential spectrum coincides with the spectrum of
the hydrogen-like potential and does not depend on the Yukawa and Morse potential
parameters given in (25). The reason for this, apparently, is the constraint conditions on the
parameters λ and b (see (27))

Next, consider the case when the set of functions
{

f0, f1, f 2
0 , f 2

1 , f0 f1

}
is not completely

linearly independent. In this case, the number of equations that impose constraint condi-
tions on the parameters of the potential can be reduced to one. We search for the linear
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relationship between these functions using the first integral of the system of differential
Equations (16) and (17):

1

f1
= Ce−F − e−F

∫
eF κ12

κ00 + κ01 f0 + κ02 f 2
0

d f0, F =
∫

κ11 + ξ01 f0

κ00 + κ01 f0 + κ02 f 2
0

d f0, (28)

Table 2 shows possible cases leading to a linear relationship related to the selected set
of functions.

Table 2. Possible types of linear relationship between functions from a set
{

f0, f1, f 2
0 , f 2

1 , f0 f1

}
.

Parameter Values
Linear Dependence among

{f0,f1,f2
0,f2

1,f0f1}.
Possible Choice for

Function f 0(u)
Possible Expressions
for the Function f 1(u)

κ00 = κ01 = κ11 = 0,
ξ01 = 0

f0 f1 = 1
C (κ02 f0 − κ12 f1)

1
u

1
u+p

κ11 = κ01, ξ01 = 2κ02 κ12 f0 f1 = C f1 − κ00 − κ01 f0 − κ02 f 2
0

u 1
u+p

1
u

1
u2+pu

e−u 1
eu+p

− 1
eu−q

1
eu+p

tan(au + b) 1
tan(au+b)+p

κ00 = 0, κ11 = mκ01,
ξ01 = κ02, κ12 = 0

m = 2 : κ02 f0 f1 = C f 2
0 − κ01 f1. 1

u ,− 1
eu−q u, e−u

m = −1 : f0 f1 = C(κ01 + κ02 f0)
2. e−u, − 1

eu−q eu

m = 1/2 : f 2
1 = C(κ01 f0 + κ02 f 2

0 ). e−u, − 1
eu−q e−u/2, 1

eu/2−qe−u/2

κ01 = κ11 = κ12 = 0,
ξ01 = κ02

f 2
1 = C(κ00 + κ02 f 2

0 ) tan(au + b) 1
cos(au+b)

From Table 2, it can be seen that it is sufficient to consider only two cases of linear
dependence:

f 2
1 = a0 + a1 f0 + a2 f 2

0 , (29)

f0 f1 = b0 + b1 f0 + b2 f1, (30)

In the first case, the systems in Equations (22) and (23) are reduced to one equation
that takes the form

n = 0

f0,1
0 : ε0 = w0 + a0w12 + α00κ00 − β2

0 − a0(α
2
10 − α10κ12),

f0 : 2α00β0 − α00κ01 + a1(α
2
10 − α10κ12) = w′

01 = w01 + a1w12,
f 2
0 : α2

00 − α00κ02 + a2(α
2
10 − α10κ12) = w′

02 = w02 + a2w12,
f1 : 2α10β0 − α10κ11 = w11,
f0 · f1 : 2α00α10 − α10ξ01 = q01.

(31a)

n ≥ 1

f0,1
0 : εn+1 = εn + κ00(α0n + α0,n+1)− (β2

n+1 − β2
n)− a0(α

2
1,n+1 − α2

1n − κ12(α1,n+1 + α1n)),

f0 : −κ01(α0n + α0,n+1) + 2(α0,n+1βn+1 − α0,nβn) + a1(α
2
1,n+1 − α2

1n − κ12(α1,n+1 + α1n)) = 0,

f 2
0 : α2

0,n+1 − α2
0n − κ02(α0,n+1 + α0n) + a2(α

2
1,n+1 − α2

1n − κ12(α1,n+1 + α1n)) = 0,

f1 : −κ11(α1n + α1,n+1) + 2(α1,n+1βn+1 − α1,nβn) = 0,
f0 · f1 : −ξ01(α1n + α1,n+1) + 2(α0,n+1α1,n+1 − α0,nα1,n) = 0.

(31b)

Despite the complexity of the equation system, it is amenable to an exact analytical
solution.
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α00 = κ02
2 ±

√
2

(
κ2

02+4w′
02+

√
(κ2

02+4w′
02)

2−16a2q2
01

)√
κ2

02+4w′
02±

√
(κ2

02+4w′
02)

2−16a2q2
01

16
√

a2q01
,

α0n = α00 + κ02n,

α1,n = α01 = ±
√

κ2
02+4w′

02±
√
(κ2

02+4w′
02)

2−16a2q2
01

8a2
,

βn =





κ01
2κ02

(κ02n + α00) +
(w′

01−κ01w′
02/κ02−α2

10(a1−κ01a2/κ02))
2(κ02n+α00)

, κ02 6= 0,

w′
01+κ01α00−a1α

2
01

2α00
+ κ01n, κ02 = 0,

(32a)

εn = w0 + a0(w12 − α2
10) + κ00α00 + κ00(2α00n + κ02n2)− β2

n. (32b)

Constraint condition :

w11 =





α10

{
κ01
κ02

(κ02n + α00)− (2n + 1)κ11 +
(w′

01−κ01w′
02/κ02−α2

10(a1−κ01a2/κ02))
(κ02n+α00)

}
, κ02 6= 0,

α10(w
′
01+κ01α00−a1α

2
01)

2α00
+ 2α10(κ01 − κ11)n − α10κ11, κ02 = 0.

(32c)

When solving the system of equations, we set κ12 = 0 (see Table 2).
As an example, consider a potential of the form

Φ(u) =
µsinh(u)− λ

cosh2(u)
. (33)

The exact solution for this potential is found in [3,24]. For this potential, we choose
the potential-generating functions f0 = tanh(u), f1(u) = 1/ cosh(u), which are related
by the dependence of the form (29): f 2

1 = 1 − f 2
0 . As a result, for potential (33) we obtain

the following values for the input parameters:

w0 = −λ, w01 = 0, w02 = λ, w11 = 0, w12 = 0, q01 = µ,
κ00 = 1, κ01 = 0, κ02 = −1, κ11 = 0, κ12 = 0, ξ01 = −1,
a0 = 1, a1 = 0, a2 = −1.

(34)

Substituting these parameters into solutions (32), we obtain

α00 = − 1
2 + 1

4

√
2 + 8λ+ 2

√
16µ2 + (4λ+ 1)2,

α0,n = α00 − n,

α1,n = α1,0 = −
√

2µ√
1+4λ+

√
16µ2+(4λ+1)2

,

βn = 0,

εn = λ− (α00 − n)2.

(35)

There are no constraints on the parameters of the potential, so potential (33) is uncon-
ditionally exactly solvable.

Next, consider case (30). The system of equations in this case is also solvable and has
the form

n = 0

f0,1
0 : ε0 = w0 + b0q01 + α00κ00 − β2

0 − 2b0α00α10,
f0 : 2α00β0 − α00κ01 + 2b1α00α10 = w′

01 = w01 + b1q01,
f 2
0 : α2

00 − α00κ02 = w02,
f1 : 2α10β0 − α10κ11 + 2b2α00α10 = w′

11 = w11 + b2q01,
f 2
1 : α2

10 − α10κ12 = w12,

(36a)
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n ≥ 1

f0,1
0 : εn+1 = εn + κ00(α0n + α0,n+1)− (β2

n+1 − β2
n)− 2b0(α0,n+1α1,n+1 − α0,nα1,n),

f0 : −κ01(α0n + α0,n+1) + 2(α0,n+1βn+1 − α0,nβn) + 2b1(α0,n+1α1,n+1 − α0,nα1,n) = 0,
f 2
0 : α2

0,n+1 − α2
0n − κ02(α0,n+1 + α0n) = 0,

f1 : −κ11(α1n + α1,n+1) + 2(α1,n+1βn+1 − α1,nβn) + 2b2(α0,n+1α1,n+1 − α0,nα1,n) = 0,
f 2
1 : α2

1,n+1 − α2
1n − κ12(α1,n+1 + α1n) = 0.

, (36b)

The system of Equation (36) again admits an exact solution that has the form

α00 = κ02
2 ±

√
κ2

02
4 + w02, α0,n = α00 + κ02n, α1,0 = κ12

2 ±
√

κ2
12
4 + w12, α1,n = α1,0 + κ12n,

βn =





b1

(
α00κ12
κ02

− α10

)
+ (κ01−2b1κ12)

2κ02
(κ02n + α00) +

w′
01−κ01w02/κ02

2(κ02n+α00)
, κ02 6= 0,

w′
01+κ01α00−2b1α00α10

2α00
+ (κ01 − b1κ12)n, κ02 = 0,

(37a)

εn = w0 + b0q01 + α00(κ00 − 2b0α10) + 2(α00(κ00 − b0κ12)− b0α10κ02)n + κ02(κ00 − 2b0κ12)n
2 − β2

n. (37b)

Constraint conditions :

b1

(
α00κ12
κ02

− α10

)
+ (κ01−2b1κ12)

2κ02
(κ02n + α00) +

w′
01−κ01w02/κ02

2(κ02n+α00)
=

= b2

(
α10κ02
κ12

− α00

)
+ (κ11−2b2κ02)

2κ12
(κ12n + α10) +

w′
11−κ11w12/κ12

2(κ12n+α10)
, κ02, κ12 6= 0,

w′
01+κ01α00−2b1α00α10

2α00
+ (κ01 − b1κ12)n =

= b2

(
α10κ02
κ12

− α00

)
+ (κ11−2b2κ02)

2κ12
(κ12n + α10) +

w′
11−κ11w12/κ12

2(κ12n+α10)
, κ02 = 0, κ12 6= 0,

b1

(
α00κ12
κ02

− α10

)
+ (κ01−2b1κ12)

2κ02
(κ02n + α00) +

w′
01−κ01w02/κ02

2(κ02n+α00)
=

= 1
2

(
w′

11
α10

+ κ11 − 2b2α00

)
+ (κ11 − b2κ02)n, κ02 6= 0, κ12 = 0,

w′
01+κ01α00−2b1α00α10

2α00
+ (κ01 − b1κ12)n = 1

2

(
w′

11
α10

+ κ11 − 2b2α00

)
+ (κ11 − b2κ02)n, κ02 = 0, κ12 = 0,

(37c)

As an example, consider the soft-core Coulomb potential in three dimensions

Φ(u) =
λ

u
− µ

u + β
+

l(l + 1)

u2
. (38)

The exact solution for this potential in terms of the wave -function ansatz is considered
in [12,28]. Here, we present results for this potential that are different from the results
given in these papers. For this potential, we choose f0 = 1/u, f1 = 1/(u + β), which are
connected by relationship: f0 f1 = ( f0 − f1)/β. For potential (38), we obtain the following
values for the input parameters

w0 = 0, w′
01 = λ, w′

02 = l(l + 1), w′
11 = −µ, w12 = 0, q01 = 0,

κ00 = 0, κ01 = 0, κ02 = −1, κ11 = 0, κ12 = −1, ξ01 = 0,

b0 = 0, b1 = β−1, b2 = −β−1, b3 = 0.

, (39)

We substitute parameters (39) into solutions (37) and obtain

α0,n = −(n + l + 1), α1,n = −(n + 1),

βn = µ−λ

2(2n+l+2)
,

εn = −β2
n = − (µ−λ)2

4(2n+l+2)2 ,

constraint condition : β = 2(n+1)(n+l+1)(2n+l+2)
µ(n+l+1)+λ(n+1)

, (40)

Comparing the results (40) with those [12] for potential (38), we see that there is a
difference in the constraint conditions for excited states. To determine the true constraint
condition, apparently, it is necessary to perform a numerical solution of the Schrödinger
equation. We note that in [15–17], using a numerical solution of the Schrödinger equation
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for some potentials, it was shown that the results of the wave-function ansatz method
used in [12] do not agree with the numerical results for all excited states, in contrast to the
superpotential ansatz method, which was used in this study.

Using the example of the soft-core Coulomb potential (38), we discuss the physical
meaning of the results obtained. Potential (38) was proposed in [29] for modeling Coulomb
screening in an atom. The authors of [29], using potential (38), within the framework of
nonperturbative analysis, found approximate values for the energies of atoms, which are in
excellent agreement with the experimental results.

Potential (38) at λ = 2Z, µ = 2Z′ is a simple model of Coulomb screening with a
repulsive center. In this case, screening is provided by introducing an additional effective
charge equaling −Z′e

V(u) = Eh

(
Z

u
− Z′

u + 1/λs

)
. (41)

Here, Eh = ℏ2/ma2
B is a characteristic energy scale, u = r/aB, and λs = 1/β is a

screening parameter in dimensionless units. Figure 1 shows the graphs of potential (41)
for different values of the screening parameter λs and the parameter is equal to θ = Z′/Z.
As can be seen in Figure 1b, potential (41) at Z′

> Z has a characteristic minimum at
r0 = aB/λs(

√
θ − 1). The exact energy spectrum for potential (41) follows from (40):

Enl = −Eh
(Z − Z′)2

(2n + l + 2)2
; (42)

But, for certain values, for example, the Z′ parameter, which are found from the constraint
condition (see (40)),

Z′ = λs(n + 1)(2n + l + 2)− Z(n + 1)

n + l + 1
. (43)

0 2 4 6 8 10
0,0
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 V(u) for λ
s
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 V(u) for λ
s
=0.5
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θ=0,9
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V
(u
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Z
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B

λs=0.5
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Figure 1. Coordinate dependences of the screened Coulomb potential (41) for different values of

screening parameter λs (a) and parameter θ = Z′/Z (b).

The text continues in Figure A1 and Table 2.
Therefore, for the ground state and the first excited state, from (42) and (43), we obtain

E00 = −Eh
(Z − Z′)2

4
= −Eh(Z − λs)

2 (44)

E10 = −Eh
(Z−Z′)2

16 = −Eh
(Z−4λs)

2

4 ,

E11 = −Eh
(Z−Z′)2

25 = −Eh
(Z−6λs)

2

9

(45)
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For s states, from (42) and (43), we obtain

En0 = −Eh

(
Z

n + 1
− λs(n + 1)

)2

, (46)

n = 0,1,2,. . ., nm=
√

Z/λs − 1.
The results for the soft-core Coulomb potential (screened Coulomb potential) (42)–(46)

are required in plasma physics to compare the approximate values of energy levels obtained
for potential (41), for example, using perturbation theory with respect to the screening
parameter or an accurate estimate of the screening parameter from experimental data.

Note that it is required to include λ = −2Z, µ = −2Z′ in (38) when modeling
screening in atoms having an attractive center. In this case, the exact solution is only feasible
for a negative screening parameter value, as is evident from the constraint condition in
(40). This difficulty can be overcome, for example, in case u << β = 1/λs, representing the
screened Coulomb potential (41) in the form

V(u) ≈ Eh

(
−2Z

u
+ 2Z′λs

(
1 − λsu + λ2

s u2
))

, (47)

where Eh = mec2α2 = 27, 211 eV is the Hartree energy, and α is the fine structure constant.
Potential (47) also admits an exact solution via the algorithm described in [27] with one
potential-generating function f (u) = u or via the algorithm presented in this article by
choosing f 0(u) = 1/u and f 1(u) = u. In this case, the problem is also conditionally exactly
solvable, and the energy spectrum and the constraint condition have the form

Enl = −Eh

(
Z2

(n+l+1)2 − 2λsZ′ + λs

√
2λsZ′(4n + 2l + 3)

)
,

λsZ′ = 2Z2

(n+l+1)2

, (48)

Note that potentials (41) and (47) are special cases of a more general screened Coulomb
potential taken in the form

V(u) = −2Z · Eh

u

∞

∑
k=0

ak(λsu)k, (49)

which was proposed in [30] to analyze screening effects. As demonstrated in [27], the
spectral problem also enables one to obtain a conditionally exact solution within the unified
approach based on the factorization method if the series in (49) is approximated using a
finite polynomial.

4. Generalization of Unified Algorithm of Factorization Method to the Case of Many
Independent Potential-Generating Functions

The aforementioned approach for using the factorization method in the situation
of two independent potential-generating functions allows for the generalization to any
number of potential-generating functions. One of these generalizations is shown below.

Let the potential be formed from an arbitrary number of N + 1 independent functions
fk(u) (k = 0, 1, 2, . . . , N) and has the form

Φ(u) = w0 +
N

∑
k=0

(
wk1 fk(u) + wk2 f 2

k (u) +
k−1

∑
m=0

qmk fm(u) fk(u)

)
, (50)
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and the functions fk(u) satisfy the system of differential equations of the form

f ′0(u) = κ00 + κ01 f0(u) + κ02 f 2
0 (u),

f ′k(u) = κk1 fk(u) + κk2 f 2
k (u) +

k−1

∑
m=0

ξmk fm(u) fk(u), k = 1, 2, . . . , N.
, (51)

The choice of differential equations in the form (51) is due to the possibility of an
exact analytical solution of system (51) in quadratures. Indeed, let us rewrite the system of
Equation (51) in the form

f ′k(u) = Sk−1(u) fk(u) + κk2 f 2
k (u),

Sk−1(u) = κk1 +
k−1

∑
m=0

ξmk fm(u), k = 1, 2, . . . , N.
, (52)

Then, for each k (k = 1, 2, . . ., N), we have the Bernoulli equation, which admits a
solution in quadratures

fk(u) =
exp(

∫
Sk−1(u)du)

Ck − κk2

∫
exp(

∫
Sk−1(u)du)du

, k = 1, 2, . . . , N., (53)

where Ck are constants, which are found from the boundary conditions.
In accordance with the algorithm described in the previous section, for the superpo-

tential, we take the following ansatz

ϕn(u) =
N

∑
k=0

αkn fk(u) + βn. (54)

Finally, one can obtain the following system of equations for calculating the coefficients
of the superpotential and the energy spectrum by substituting the superpotential (54) into
Equations (5) and (11) and then equating the coefficients at the functions fk, fm fk (k, m =
0, 1, 2, . . . , N) under the assumption that the entire set of functions { fk, fm fk} (k, m =
0, 1, 2, . . . , N) is linearly independent

n = 0 :
−κk1αk0 + 2αk0β0 = wk1,
−κk2αk0 + α

2
k0 = wk2, k = 0, 1, . . . , N,

−ξmkαk0 + 2αk0αm0 = qmk, m = 0, 1, 2, . . . , N − 1, k > m,

ε0 = w0 + κ00α00 − β2
0.

(55a)

n ≥ 1 :
−κk1(αk,n+1 + αk,n) + 2(αk,n+1βn+1 − αk,nβn) = 0,
−κk2(αk,n+1 + αk,n) + (α2

k,n+1 − α2
k,n) = 0, k = 0, 1, . . . , N,

−ξmk(αk,n+1 + αk,n) + 2(αk,n+1αm,n+1 − αk,nαm,n) = 0, m = 0, 1, 2, . . . , N − 1, k > m,

εn+1 = εn + κ00(α0,n+1 + α0,n)− (β2
n+1 − β2

n)

, (55b)

From the resulting system of Equation (55), it can be seen that, to determine N + 2
unknown parameters of the superpotential αk,n, βn (k = 0, 1, 2,. . ., N), for each n. we have
N(N + 1)/2 + 2N + 2 equations. Therefore, in the general case, the number of equations
that impose constraints on the parameters of the potential is N(N + 1)/2 + N.

Before presenting the solution of the system in Equation (53) in the general case, let us
consider its solution in the particular case, when κk2 = 0 (k = 0, 1, 2, . . . , N). In this case, as
it follows from (55), we obtain

ξmk = 0,
αk,n = αk,0 = ±√

wk2,

βn = 1
2

(
w01
α00

+ κ01

)
+ κ01n,

(56a)
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εn = w0 + κ00α00(2n + 1)−
(

1

2

(
w01

α00
+ κ01

)
+ κ01n

)2

, , (56b)

Constraint conditions :
wk1
αk0

+ κk1(2n + 1) = w01
α00

+ κ01(2n + 1), k = 1, 2, . . . , N,

qmk = 2αk0αm0, m = 0, 1, 2, . . . , N, k > m.

, (56c)

Next, we present solutions to the system in Equation (55) in the general case

αk,0 = κk2
2 ±

√
κ2

k2
4 + wk2, αk,n = αk,0 + κk2n, k = 0, 1, 2, . . . , N,

βn = κ01
2κ02

(κ02n + α00) +
1
2
(w01−w02κ01/κ02)

(κ02n+α00)
,

, (57a)

εn = w0 +
κ00

2

(
α00 −

w02

κ02

)
+
κ02

2κ00
(κ00n + α00)

2 − 1

4

(
κ01

κ02
(κ02n + α00) +

(w01 − w02κ01/κ02)

(κ02n + α00)

)2

, (57b)

Constraint conditions :
κk1
κk2

(κk2n + αk0) +
(wk1−wk2κk1/κk2)

(κk2n+αk0)
= κ01

κ02
(κ02n + α00) +

(w01−w02κ01/κ02)
(κ02n+α00)

, k = 1, 2, . . . , N,

qmk =
ξmkwk2
κk2

+ (αk0 + κk2n)
{

2αm0 − ξmk
κk2
αk0 + (2κm2 − ξmk)n

}
, m = 0, 1, 2, . . . , N, k > m.

(57c)

As it can be seen from (57b), the general shape of the energy spectrum coincides with
the shape of the spectra (24b).

The analytical expression for the energy spectrum of model systems allows one to
accurately investigate their thermodynamic properties (see Appendix A).

5. Conclusions

In this study, we continued to build a new strategy for using the factorization technique
suggested in [27] to obtain exact solutions. The simplicity of the approach and the potential
for algorithmizing the process of finding the exact solution to spectrum problems are its
key benefits. We extended the application of the new algorithm to obtain exact solutions for
potentials constructed from a set of functions. Such a generalization significantly expands
the possibilities of using the proposed algorithm and creates new opportunities for finding
exact solutions to more complex potentials.

This strategy is based on the representation of the superpotential as a second-order
polynomial in linearly independent functions that are solutions of coupled second-order
differential equations. The shape of the energy spectrum is governed by differential
equations and potential forms. As a comparison of the spectra for potentials constructed
from a single function and from a set of functions shows, the shape of the spectrum remains
unchanged. This finding led to the conclusion that the type of differential equation satisfied
by the basic generating function of the potential (in the case of many potential-generating
functions, this is the function f 0(u)) determines the shape of the spectrum.

The choice of potential-forming functions that satisfy Equation (51) and the form of
potentials (50) are not limitations of our approach. This technique can be used for potentials
constructed from functions that satisfy other types of differential equations. The method
can also be used in systems with two interacting particles because, for many potentials of
pair interactions, the problem can be reduced to a conditionally exactly solvable one for an
effective one-particle problem [31].

A direct generalization of the factorization approach and the concept of shape invari-
ance are impossible in the case of a many-particle quantum system that includes more
than two particles [31]. This is because, for more than two particles, the sum of pairwise
interactions other than harmonic or inverse square interactions is not central in the global
length variable.
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Appendix A. Thermodynamic Properties

An analysis of the spectra obtained in this work and in [27] for exactly resolvable and
conditionally exactly resolvable potentials leads to the most general form of the spectrum

En =
ℏ2α2

2m

{
A − B(n + q1)

2 − C

(n + q2)
2

}
, n = 0, 1, 2, . . . , nm, (A1)

where the parameters α, A, B, C, q1,2, and nm do not depend on n and are functions of the
potential parameters and, possibly, the orbital quantum number. The parameter nm can tend
to infinity. The general form of the spectrum (A1), of course, as mentioned above, is written
only for the case when the potential-generating functions satisfy a Riccati-type differential
equation. The existence of an exact spectrum in a closed form allows the accurate study of
the thermodynamic properties of systems, which are described by model potentials that
admit exact consideration. The starting point for studying the thermodynamics of a system
is the calculation of the partition function

Z(β) =
nm

∑
n=0

e−βEn , β =
1

kBT
. (A2)

Substituting expression (A1) into Equation (A2), we obtain the following expression
for the partition function

Z(β) =
nm

∑
n=0

exp

(
−βℏ

2α2

2m

{
A − B(n + q1)

2 − C

(n + q2)
2

})
. (A3)

Replacing summation by integration in (A3), we obtain

Z(β) ≃
nm∫

0

exp

(
−βℏ

2α2

2m

{
A − B(n + q1)

2 − C

(n + q2)
2

})
dn. (A4)

In closed form, the integral (A4) can be calculated only in the special case q1 = q2 = q

Z(β) = e−βξ1

√
π

4ξ2
√
β

{
D+

nm+q(β) + D−
nm+q(β)− D+

q (β)− D−
q (β)

}
,

D±
n (β) = e±2βξ2ξ3 erf

[(
ξ2n ± ξ3

n

)√
β
]
,

ξ1 = Aℏ2α2

2m , ξ2 = ℏα
√
−B√

2m
, ξ3 = ℏα

√
−C√

2m

(A5)
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Here, erf[z] is error function. To facilitate further calculations, we assume that nm >> q;
then, considering the asymptotic behavior of the error function for large values of the
argument, erf(z) ≈ 1 − exp(−z2)/z

√
π, then simplify the expression for the partition

function (A5)

Z(β) = e−βξ1

√
π

4ξ2
√
β

{
− e−ξ2

2nm
2β

√
πβξ2nm

+ e2βξ2ξ3 erfc

[(
ξ2q +

ξ3

q

)√
β

]
+ e−2βξ2ξ3 erfc

[(
ξ2q − ξ3

q

)√
β

]}
. (A6)

Here, erfc(z) = 1 − erf(z). Using the partition function (A6), it is possible to deter-
mine thermodynamic functions such as the average energy U(β), heat capacity C(β), and
entropy S(β):

U(β) = ∂
∂β ln Z(β) = ξ1 − 1

2β +
1√
πβ

(
ξ2nm+ 1

2βξ2nm

)
e−ξ2

2nm
2β− 2ξ2q√

πβ
e−(ξ2

2q2+ξ2
3q−2)β+2ξ2ξ3Q−(β)

− e
−ξ2

2nm2β
√
πβξ2nm

+Q+(β)

,

Q±(β) = e2βξ2ξ3 Erfc
[(

ξ2q + ξ3
q

)√
β
]
± e−2βξ2ξ3Erfc

[(
ξ2q − ξ3

q

)√
β
] , (A7)

C(β) = −kBβ
2 ∂

∂βU(β) = − kB
2 +

kBβ
2

(
1√
πβ

(
ξ2nm+ 1

2βξ2nm

)
e−ξ2

2nm
2β− 2ξ2q√

πβ
e−(ξ2

2q2+ξ2
3q−2)β+2ξ2ξ3Q−(β)

)2

(
− e

−ξ2
2nm2β

√
πβξ2nm

+Q+(β)

)2

−kBβ
2
− 1√

πβ3

(
ξ2nm+ 3

4βξ2nm
+β(ξ2nm)3

)
e−ξ2

2nm
2β+2ξ2ξ3

(
2ξ2q√
πβ

e−(ξ2
2q2+ξ2

3q−2)β+2ξ2ξ3Q+(β)

)

− e
−ξ2

2nm2β
√
πβξ2nm

+Q+(β)

, (A8)

S(β) = ln Z(β) + βU(β). (A9)

As a demonstration of the results obtained above, we analyze the thermodynamic
properties of the system described by the spectrum (46). Accepting in (A6)–(A9) the A =
2EhZλs, B = Ehλ

2
s , C = EhZ2, we obtain the following expressions for the thermodynamic

quantities of the screened Coulomb potential

Z(β) =

√
π

4λs
√

Ehβ

{
e−4βEhλsZerfi

[
2
√

EhβλsZ
]
− erfi

[√
Ehβ(λs − Z)

]
− e−4βEhλsZerfi

[√
Ehβ(λs + Z)

]}
, (A10)

U(β) = − 1
2β − 4EhλsZ + 2

eβEh(λs−Z)2λs

√
Eh/β−

√
EhλsZ/β+

√
π2EhλsZerfi[

√
Ehβ(λs−Z)]√

π(−e−4βEhλsZerfi[2
√

EhβλsZ]+erfi[
√

Ehβ(λs−Z)]+e−4βEhλsZerfi[
√

Ehβ(λs+Z)])
, (A11)

C(β) = − 1
2 +

4

(
eβEh(λs+Z)2√Ehβλs−e4βEhλsZ√EhβλsZ+2

√
πEhβλsZe4βEhλsZerfi[

√
Ehβ(λs−Z)]

)2

π(erfi[2
√

EhβλsZ]−e4βEhλsZerfi[
√

Ehβ(λs−Z)]−erfi[
√

Ehβ(λs+Z)])
2 +

+
(−e4βEhλsZ√EhβλsZ(−1+8EhβλsZ)+eβEh(λs+Z)2λs

√
Ehβ(−1+2Ehβ(λs

2+4λsZ−Z2))+16
√
πβ2Eh

2Z3/2λs
2e4βEhλsZerfi[

√
Ehβ(λs−Z)]√

π(erfi[2
√

EhβλsZ]−e4βEhλsZerfi[
√

Ehβ(λs−Z)]−erfi[
√

Ehβ(λs+Z)])

, (A12)

Here, erfi[z] = −ierf[iz]. In Figure A1, for demonstration, the temperature depen-
dences of the heat capacity (A12) are shown for some parameter values Z и λs.

Thus, the possibility of determining the exact spectrum of model systems makes it
possible to describe their thermodynamic properties with good accuracy.
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Figure A1. Temperature dependences of the heat capacity of a system with a screened Coulomb potential

for various values of the charge number Z (a) and various values of the screening parameter (b).
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