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There has been considerable interest of late in the
analyticity properties of the scattering amplitude on
unphysical sheets of the energy Riemann surface.
This analyticity has been used in discussions of un-
stable particles and the resulting scattering reso-
nances, 1) and anomalous thresholds % **%). A general
approach to the analytic properties on the second Rie-
mann sheet will be discussed first. Then some
practical applications of these properties will be pre-
sented.

1. THE UNPHYSICAL SHEETS

This work was carried out in collaboration with
M. Goldberger, S. MacDowell, and S. Trieman.
Let us first consider the case of individual partial
waves, because the application of unitarity is so simple
in this case. We will further restrict our attention
to the scattering of scalar particles of mass p. It is
a “simple ” matter to extend the discussion to more
interesting cases.

It is possible to discuss the many-channel problem
by utilizing the matrix formulation of Bjorken . We
will discuss the case of only one channel, but most
of the equations we will develop are true in the many
channel case if they are looked upon as matrix
equations.

The analytic properties of the partial wave ampli-
tudes have been well discussed ®. The result is that
the function

v+ pt\* s .
fiD( +ie) = ( s ) 'sin 6; = "'sin 6,/ p(v)
v

is an analytic function of v (the square of the relative
momentum) with a cut along the entire positive real
axis and along the negative real axis from (—o0) to
(—M?/4), where 1/M is the range of the effective

potential. The superscript one is to emphasize that
this equation is defined on the physical sheet.

Below the onset of inelastic channels, the phase
shift is real along the physical cut and the unitarity
relation takes the usual form. We next remark that
by trivial manipulation,

£y —ig) =f,(1)(v+is)[1+2ipf,“)(v+ ie)] !
=Dy +ie)S; v+ i€) ,

where S, is the S-matrix. The scattering amplitude
on the second sheet is introduced as the continuation
across the positive axis in a counter-clockwise
direction :

fPv+ie) = v —ie) = f{O(v+ie)S, ' (v+ie) .

It is immediately obvious that £,(*)(v) has the same
analyticity region as £, (v) plus any additional poles
coming from the zeroes of the S-matrix, and the
kinematic cuts coming from p. The /™ partial cross
section is easily seen to enjoy analyticity in the v-plane
cut along the negative axis. The same statement
holds for the functions pImf; and Ref, An inter-
esting fact, which can be readily demonstrated, is that
the Ref; has exactly one-half the residue that f; has
at its negative dynamic singularities.

Let us now see whether or not S; has zeroes close
to the physical region. The complex zeroes of S,
which might lead to scattering resonances are strongly
dependent upon dynamics and hence are difficult to
discuss. We will show that in general, S, has at least
one zero between v = 0 and (—M %/4) for every other
I. If there is no zero energy resonance or anomalous
threshold the S-matrix is unity at zero kinetic energy.
As v approaches (—M?/4), the singular part of a
Yukawa-type Born term approaches



248 Session S 2

A M? 4y
Oy =Py (14— ) In( 1 +—
S0~ = ’( +2v> ( M2>

24
~ —WPI(_ 1) In (c0) .

Thus if / is odd, the Born term has the sign of the
potential, A, and approaches infinity. On the other
hand, if / is even, the sign is reversed. Since f; is
bounded for (—M?/4)<v<0if there is no bound
state, then the function S; = 1+2ipf(") must have at
least one zero for every other / in this range of v.

One final remark is worth making. If one attempts
to continue to the third Riemann sheet by avoiding
the negative cuts associated with the points v = —pu?,
and —M?/4, then f® = f®. Thus there are only
two sheets associated with the elastic part of the
physical cut.

Let us now turn to a discussion of the scattering
amplitude without expanding in partial waves.

In order to discuss the analyticity of the scattering
amplitude at fixed angle we will assume that a Mandel-

stam representation holds in the physical sheet. Thus,
we write
L[ deAS(t,y) 1 [ du' Ay,
njt'+2v(l—z) wjJu' +2v(1+2)
M2 M2

The only property of the weight functions 4, and A4,
that is needed, is that they are analytic functions of
v, with a cut along the positive real axis. Subtractions
will not affect our discussion, and are therefore
suppressed. The unitarity relation is

e’
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where x =zz'—[(1—z*)(1-2z'*)]  cos ¢'. In the
same manner as before, the scattering amplitude on
the second sheet is introduced as

dQ’
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n

It is a simple matter to transform this into a non-
singular integral equation of the form
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where

K(z,2';v) = Z’i J d¢'FO(, x).
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This azimuthal integration is readily carried out and
the result is

’

. t
K(z,2'3v) = 2| di Ay(t' V)| (1 $——22')? =
4n 2v

-1

—(1-z5(1~2 2)]

u/
+L du' Ay(u', v)| (1 +—+z2')* —
4n 2v

-4
2

—(1-z)(1-z2 2)]

The Fredholm solution to this integral equation can
be readily examined. Since the regions of integrations
are finite, it follows from standard arguments that
the analyticity domain of F®)(y,z) for physical z is at
least as large as that of F™)(v,z") for all physical z'.
In addition, however, there is the possibility of zeroes
of the Fredholm determinant D(v), and the kinematic
branch point v = —x* coming from the phase space
factor p(v). The poles due to the vanishing of D(v)
arise from the same source as in the partial wave
case. By using properties of the eigenfunctions of
the kernel, K, it can be shown that

D(v) = [T(1+2ipf"()) .
1

When the preceding discussion is carried out for
fixed momentum transfer ¢ <0, it is found that F®(v,7)
has complex singularities in v. The source of these
singularities is to be found in the kernel K. If one
iterates the equation for F®, the first iteration does
not have complex singularities but the higher order
iterations do.

From these equations it is possible to discuss the
analyticity in z for fixed complex v. In particular,
we are interested in the possibility of making a partial
wave expansion of F®)(v,z). If the nearest singu-
larities in z are complex or real and a finite distance
outside the interval (—1, 1), it is possible to pass an
ellipse through these points enclosing the physical
region. Then an expansion in a Legendre series is
possible within this region.



Strong Interactions of Pions and Nucleons (Theoretical) 249

From the expression for the kernel K(z,z';v) it is
seen that for fixed v, there is analyticity in z except
when

’

zz+z'2+(1+t—,)2+222’(1 +i-) =1
2y T v

The condition that this singularity lies in the interval
(—1, 1) is that v< —u?/4. Thus as long as v is not
on the negative cut, a Legendre expansion is possible
for F®, Similar results hold for Im F(v,z) as well.

2. ANOMALOUS THRESHOLDS

As a first application of the previous results, consider
the form factor for a scalar particle of mass M,
which interacts with a scalar photon through a pair
of particles of mass p as illustrated in Fig. 1. For
this discussion it will prove convenient to follow the
procedure developed by Mandelstam 2 instead of the
equivalent method described by Blankenbecler and
Nambu *.

In these methods, one is forced to continue certain
functions to the second Riemann sheet, and it is this
aspect of the problem which is of interest here. Fol-
lowing Frazer and Fulco ”, the form factor in the
normal case (M small) can be written in the form

0
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Here a(?) is the discontinuity across the negative cut
in the partial wave amplitude for the annihilation
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Fig. 1 Form factor graph.

Fig. 2 Anomalous threshold behaviour.

process and A(s) is the usual line integral over the
relevant phase shift of p-u scattering. If one now
continues in the external mass M, , by giving it a small
negative imaginary part, the point ¢ moves in a path
illustrated in Fig. 2. The line integral from (4u?) to
(c0) in F(s) must be deformed to avoid this protruding
branch cut. In order to perform these continuations
one must write ed* = ¢?S™'(s) and also continue
the factor exp [—A4(?)] onto its second sheet as M,
reaches its anomalous value, or @ reaches 4u®. The
result after this continuation is

4p?—in

A(s+ie) = p(s)ez"(s)S_’(s)I: J dt

-

e 4Dy(1)
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One might superficially expect that when the anom-
alous threshold a reaches the point where S has a
zero, the continuation would break down in a manner
that could not be discerned from perturbation theory.
This is not the case, since from the integral over o(z),
a factor of S miraculously appears to cancel any such

pole. The final result is that

1. B
F(s)=—f ds',(—s),
T S —S

where
B(s) = 2na(s)(ip) exp [A(s)] for a<s<dyu?,

and for s> 412,
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The effect of a narrow low energy resonance in
u-p scattering on the absorptive part of the form
factor is illustrated in Fig. 3. For «(¢), the first order
Born contribution with masses corresponding to the
A intermediate state in the X form factor has been
assumed. The solid line is the lowest order contri-
bution (4 =0) and the dotted line includes the
rescattering. R. Marr, L. Landovitz and myself are
looking into the effect of a pion-pion resonance on
the perturbation theoretic calculations of the vector
anomalous moment of the X particle. The effect
does not seem to be negligible.

Results similar to the anomalous form factor dis-
cussion hold also for the scattering situation depicted

in Fig. 4. The absorptive part of the scattering
matrix G has the form

Im GI(S) = pr*(S)Ha(S) s

where
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Fig. 3 Imaginary part of form factor.

Fig. 4 Scattering graph.

if M, and M, are small enough. Let us first consider
the case where only M, is large enough for an anoma-
lous threshold. By standard procedures the scattering
amplitude G is found to be

o]

G =~ J a5

S =S
a

where for a <s<4pu?, the imaginary part of G is
I(s) = 2ma(s)(ip)H,(s) -

Now if the mass M, is increased until b = a, which
can obviously occur even if H,(s) has a normal thresh-
old, then G becomes complex. The condition b = a
is just the condition found in perturbation theory by
Karplus, Sommerfield and Wichmann® for the
“ super "-anomalous case. The essential point here
for our purposes is that the superficially dangerous
factor of S™' cancels.

3. BOUND STATES

Another interesting application of the analytic
properties of the scattering amplitude on the second
sheet is to be found in the problem of bound states.
One may entertain the question of whether the
Mandelstam program is complete enough to yield
the masses and “coupling constants” of bound
states, or whether one must put them in by hand.
A physical example is to be found in nucleon-nucleon
scattering in the triplet S state. If one applies the
standard N/D procedure without explicitly putting in
the deuteron pole, then it is reasonable to expect
that D will develop a zero at the appropriate energy.
This can even be rigorously demonstrated in the case
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of potential scattering. However a new problem
arises in field theory. For example, the contribution
to the physical cut from the N-+P-+7n intermediate
state must somehow extend its threshold from
2M+p)? to (M,+p)®. By what mechanism is this
cut extended? We would like to show that by making
very plausible assumptions about the scattering
amplitude on the second sheet, the bound state prob-
lem can be handled in principle within the Mandel-
stam program.

As an extreme example consider a Fermi-Yang
model of nucleon-nucleon scattering in which both
the pions and deuterons are assumed to be bound
S states. For example, the fundamental interaction
could be considered to be of a four field nature,
described by some coupling constant which will be
allowed to vary. The process nucleon-nucleon scatter-
ing will be labeled process one, with energy s. The
crossed processes, nucleon-antinucleon scattering with
energies u and ¢, are labeled two and three. The
Mandelstam representation, without subtractions and
with spin labels suppressed, has the form

1 Im f,(s") 1 ,Im £,
G(s,u,t)=—st’ ——,fl( Do L[ —,fz( ).

T S —S Y u—u
aM? aM2

1 Im f5(¢'

+- | dt ,f—3()+G’(s,u,t) ,
n t—t
am?

where G’ contains the double dispersion integrals,
subtracted in such a way that the absorptive part of
the S wave in all three channels is given by the single
dispersion integrals alone. As we have seen, these
absorptive parts are given by

Im fi(x) = p()F VAP 1+2ip(a)f ()]

in the elastic region.

The essential point is to recall now that if there are
no bound states and the effective potential is attrac-
tive, then S(x) has a zero for x between zero and
4M?*. As the coupling constant increases, this point
would seem to move towards 4M 2. Guided by what
does occur in potential scattering, we will assume
that this zero moves in a path illustrated in Fig. 5,
and that the scattering amplitude is an analytic func-
tion of the position of this zero. Thus when the zero

®‘—<—'~\
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Fig. 5 Path of the zero of S.

passes around the point 4M 2, the line integrals over x
must be deformed to avoid this pole in Im fi(x). This
deformed path can be shrunk to a small circle about
the pole plus the contribution from 4M? to infinity.
The small circles yield poles in the scattering ampli-
tude of the form

1—2 gZ g2
2

S M2+1
— My U—N

where the pole in Imf; has been placed at M ] and those
in Imf, 5 have been placed at y*>.  This is the mechan-
ism by which the poles move from the second to the
first sheet of the scattering amplitude as true bound
states are formed.

We have not yet achieved the correct representation
if p? is less than M?, since there must be cuts in  and ¢
beginning at 4u®. A qualitative understanding of
the origin of these cuts can be achieved by examining
the four nucleon intermediate state depicted in Fig.
6. The absorptive part can be considered as a sum
over the angular momentum of each nucleon pair.
From this double sum we will restrict our attention
to the configuration where both of the pairs are in
relative S states. It is clear that when rescattering is
taken into account, the matrix element will have

Fig. 6 Four-nucleon contribution to N—N scattering.
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factors such as exp [4(m?)], where m] is the (variable)
mass of the i™ pair. The absorptive part will be a
finite integral over the masses m? of a function which
will contain factors of S™1(m?).

When the strength of the coupling is increased, the
integrals over the m? (which start at 4M?) must be
deformed to avoid the wandering pole of S~'. The
absorptive part then picks up a cut in # starting at 4p”
and passing through the point 162 before reversing
direction. The dispersion integral over the absorp-
tive part starts at 16M?* and it must be deformed to
avoid this protruding out. Finally, one achieves a
dispersion integral over ¢ with a threshold at 4u”.
This type of continuation is highly reminiscent of the
anomalous threshold case.

In discussing the partial waves for N-N scattering,

this type of continuation is necessary in order to get
the one pion exchange cuts, and there is no difficulty

in reproducing our previous results using the full
representation.

We can now see that if the pole of S™! crosses into
the physical sheet, it must move as indicated. If it
moved a finite distance away from the real axis, then
from the higher order inelastic intermediate states
complex spikes would develop. These would be in
obvious contradiction to the unitarity condition in the
physical region. It would be amusing if this type of
continuation, which uses unitarity so strongly, could
be used to prove dispersion relations for nucleon-
nucleon scattering. That is, one would not continue
to an imaginary nucleon mass but instead put the
pion mass on the second sheet.

It thus seems clear that if the S-matrix has the
required behavior as a function of the coupling
strength, the bound state problem is solvable in terms
of the double dispersion relations and unitarity.
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DISCUSSION

EDEN : I would like to ask whether the assumption
that the zero of the S-matrix moves around into the
upper sheet has been proved for potential scattering.

BLANKENBECLER : Yes.

OPPENHEIMER : Are the zeros of high / from virtual
states protected by the centrifugal barrier ?

BLANKENBECLER : Probably, but the exact con-
nection is not clear.

OenME : I would like to add a remark on the con-
tinuation into the first unphysical sheet of a partial
wave amplitude. It is a simple consequence of the
unitarity condition that the branch line from the

threshold of the elastic process to the threshold of the
first inelastic process is a cut which connects just two
Riemann sheets. So, if one wants, one can write
a dispersion relation in both sheets and eliminate
completely the integral over the elastic cut. Instead,
one gets contributions from the second sheet. These
are the pole terms, an integral over the left hand cut
and an integral over a branch line which is related
to inelastic processes.

OPPENHEIMER :
had done this.

For potential scattering Peierls

OenME : That is right, but it is true in general. It
also holds for the vertex function and the propagator.
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BRreIT: In some respects, it is trivial but I think not
altogether trivial that there is a connection between
this and the old Gamow theory of radioactive disinte-
gration which led one to consider the scattering ampli-
tude as a function of a complex variable. I think the
remark the chairman made is very close to the situ-
ation of potential barriers in the Gamow theory, but
one can also follow this out in a more systematic
fashion by just considering what happens to the scatter-
ing amplitudes as a function of energy. That has
been done. If one assumes that the imaginary part
is small, then one gets a factorization for the constants
which is common in nuclear reaction theory in approxi-
mate formulae. Somehow I fail to see in this presen-
tation any evidence of this factorization, although it
probably is there. The factorization comes out
rather naturally in the other treatment. It follows
very readily by bringing in the time.

OPPENHEIMER : I think this was brought out in
Taylor’s remarks where the energy dependence has
been explicitly exhibited for the case of a sharp
resonance.

BreIT: T had this same question in my mind then
as to whether the factorization was present, and I
did not understand whether it was present or not.

J. G. TayLor: Yes, it is present here.

BreiT: So somehow it must degenerate into
the case which is known without these formal
manipulations in the complex plane.

J. G. TayLor: It is difficult in this formalism to
discuss the time dependence of the amplitude.

BreiT : That’s right, but if you do, then the case of
a small damping is very easily treated.

NEwTON : First, | want to make a remark about
what Oppenheimer said. The zeros in the other
sheet of the Riemann surface are not necessarily con-
nected with the virtual states in the sense of a centri-
fugal barrier.

OPPENHEIMER : The zeros on the real axis for high /?

NEWTON : Yes, but they can occur even for / equals
ZETO0.

OPPENHEIMER : Yes, but you will have them even
for weak attractive forces for high /.

BLANKENBECLER : That is right.

NEWTON : In the case of potential scattering, if the
potential is cut off there must be infinitely many zeros
in the wrong sheet, not all on the real axis, of course.
I also wanted to ask Taylor a question. I had the
impression that when you wrote things down for
analytic continuation you acted as though the complex
conjugate of the function was analytic. That must
be a wrong impression.

J. G. Tayror : I think that when you look at the
absorptive part as the product of, say, MM* where M*
is the boundary value on the lower half of the cut,
and M is the boundary value on the upper half, then
M is the one that you want to continue across the cut
in order to go into the unphysical sheet. M* is auto-
matically continuable into the lower half plane be-
cause it is already a boundary value in the lower
half plane.

OMNES : I should like to remark that it is possible
to prove this property of poles which go from the
real axis in the lower sheet to the other sheet by using
the integral representation of the Wigner R-functions.
In the case of potential scattering or in the Castillejo-
Dalitz-Dyson cases, you can show that you have these
properties. I have tried to prove it more generally
but I did not succeed. Great difficulties arise when
you have non-trivial crossing relations. It is an
interesting question to know if these properties of
poles remain in more general cases.

EDEN : Could I just make a small comment on the
question of the Mandelstam representation in the
first unphysical sheet? Taylor obtained the result
that the representation does not apply because there
are complex singularities on the physical sheet. If
there are curves of singularities on the boundary of
the physical sheet, we know that they do not connect
the surfaces which run into the physical sheet. There-
fore, the surfaces must go into the first non-physical
sheet. The fact that there is a spectral function at all
means that you will not have the Mandelstam repre-
sentation holding in the first unphysical skeet.

J. G. TAYLOR : One might be able to write down a
more complicated representation since we have lo-
cated the singularities in cos 6 explicitly. It might be
possible to write down something which is more
complicated but which still may have some value,
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It should be a rather compact representation of the
singularities in other sheets.

BLANKENBECLER : One might also hope that if these
curves of singularities actually lie in the physical
sheet, there does not exist a sheet in which a Mandel-
stam representation holds.

EDEN : On that point, if there are super anomalous
thresholds so that the Mandelstam representation does
not apply in the physical sheet, then it is possible in
fourth order that your remark is correct.

BLANKENBECLER : I mean the generalized sheets in
which you have ignored only those parts of the singu-
larities which have wound their way around into the
physical sheet.

EDEN : I was going to say that in the higher order
diagrams you do not have the same conditions as in
fourth order. By removing the anomaly from fourth
order, you do not remove the anomaly from sixth
order, so that at best you would have to have a
very multiply-connected sheet.

PERTURBATION THEORY WITHOUT HAMILTONIAN ®

K. Nishijima
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Various model approaches to the theory of ele-
mentary particles have so far been extensively dis-
cussed. In such an approach one specifies the funda-
mental fields as well as the fundamental interactions,
and then derives the mass levels of certain states which
are conventionally referred to as elementary particles.

We shall take an extreme opposite approach to this
problem here, namely we do not distinguish between
elementary and composite particles, nor do we specify
the basic interactions whatsoever. Such a theory
may be called a “phenomenological field theory.”

This is an S matrix formulation of field theory
and shares many features with dispersion theory,
nevertheless there are also many important differences
between the two approaches. Though the present
approach is a kind of S matrix formulation of re-
normalized field theories, we do not confine ourselves
to the S matrix elements on the mass shell and take
explicitly those matrix elements which are off the mass
shell.

The basic idea of formulating field theories in this
manner may be stated in the following way : suppose
that the conventional renormalizable field theories
offer, at least approximately, the correct description
of the properties of fundamental particles; then there
should be an alternative approach to such a theory
which explicitly avoids the occurrence of divergences
in the course of calculation.

This idea would be implemented by exhausting all
possible relationships among renormalized finite
expressions, and in what follows we try to carry out
this program.

For this purpose we postulate two kinds of universal
relationships in this formalism, namely the generalized
unitarity condition and the parametric dispersion re-
lations for Green’s functions. After studying field
theories satisfying both conditions we find that what
determines the dynamics of such a system are the as-
sumed number of subtractions in the parametric
dispersion relations. Through this work it seems to

- ( The essential part of this talk appeared in the author’s article, Phys. Rev. 119, p. 485 (1960).



