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Abstract

In the following dissertation, we explore the applicability of Yangian symme-

try to various integrable models, in particular, in relation with S-matrices.

One of the main themes in this dissertation is that, after a careful study of

the mathematics of the symmetry algebras one finds that in an integrable

model, one can directly reconstruct S-matrices just from the algebra. It has

been known for a long time that S-matrices in integrable models are fixed

by symmetry. However, Lie algebra symmetry, the Yang-Baxter equation,

crossing and unitarity, which are what constrains the S-matrix in integrable

models, are often taken to be separate, independent properties of the S-

matrix. Here, we construct scattering matrices purely from the Yangian,

showing that the Yangian is the right algebraic object to unify all required

symmetries of many integrable models. In particular, we reconstruct the

S-matrix of the principal chiral field, and, up to a CDD factor, of other

integrable field theories with su(n) symmetry. Furthermore, we study the

AdS/CFT correspondence, which is also believed to be integrable in the

planar limit. We reconstruct the S-matrices at weak and at strong coupling

from the Yangian or its classical limit.

This version of the thesis includes minor corrections following the viva on

17 September 2010.
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1 Introduction

In this thesis we will investigate the applicability of Yangian symmetry

to integrable models. In physics, obtaining exact analytic expressions for

physical quantities is usually at best difficult, and in most cases impossible.

Instead, one is restricted to the use of perturbative techniques or to numeri-

cal investigations. Indeed, besides improvement of algorithms, numerics has

greatly benefited from the advancement of computer technology in the last

decades. To obtain a result to the desired accuracy, one often just requires

the use of a faster computer. However, for certain questions, it is just not

sufficient to simply get better numerics. Consider, for instance, QCD. QCD

is a quantum field theory developed to explain phenomena of the theory of

strong interactions. It is asymptotically free [1, 2, 3, 4], which implies that

perturbation theory at high energies is effective in the investigation of the

physics. However, the number of Feynman diagrams increases significantly

with the order of perturbation theory, and there is no hope for a general

all loop answer. At low energies, much less is understood, as the theory

is strongly coupled and confining. Indeed, quarks and gluons never appear

as individual particles in nature, but only as colour singlets. As perturba-

tion in the coupling does not work in this regime, one usually restricts the

investigation to lattice discretisation. After decades of improved methods

and dramatically advanced computer technology, still no exact masses of

all the mesons and baryons have been derived1, and confinement is yet to

be understood better. On the perturbative side, computer power seems to

have been used at its maximum, and the derivation of three loop Feynman

diagrams was already quite involved [6, 7].

Besides trying to improve numerics to get more precise quantitative results,

a way to understand better a complicated physical system such as QCD

is to simplify a model. One can switch off certain degrees of freedom, or

integrate them out. Indeed, perturbation theory itself works in this way,

1For a review including more recent successes we refer to [5].
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as one throws away terms which are suppressed by some power in a small

quantity. Then, the quantitative result obtained should be close to the real

physical result. Occasionally, one might simplify the theory under investi-

gation too much to obtain correct numbers, but the simplified theory is still

good enough to share qualitative features with the original theory. This

is for instance the case in lattice simulations of QCD. These might lead

to the correct formation of mesons and baryons, but their masses are not

necessarily correct. In QCD, one can think of some other simplifications.

One might want to study the system without fundamental fermions, i.e. the

pure SU(3) Yang-Mills theory. Another possibility is to generalise QCD by

considering any SU(N) as the gauge group. In particular, it was shown in

[8] that the theory simplifies dramatically in the large N limit, if one also

sends the coupling constant gYM to zero, but keeps the ’t Hooft coupling

λ = g2
YMN fixed. Indeed, in this limit, only planar Feynman diagrams sur-

vive. The remaining theory is still a complicated field theory which depends

on the coupling constant λ. One can then study additional non-planar cor-

rections, i.e. perturbations in 1
N . It was noticed in [8] that the perturbation

theory in 1
N is similar to the topological expansion of string theory.

String theory was originally developed in the 1960s as a theory of the

strong interactions (see the reviews [9, 10, 11]). The original idea was that

as between two oppositely charged quarks a flux tube is formed, and the

potential grows linearly with the separation distance, the dynamics can be

described by a string. However, the quantisation of such a model leads to

the appearance of a spin two particle in the spectrum, which is not observed

in this regime. Furthermore, consistency required the theory to be defined

in 26 space-time dimensions, and the spectrum contained tachyons. With

the subsequent discovery of QCD in the 1970s, string theory became less

popular, despite the interesting claim that the spin-two particle should ac-

tually be related to the graviton. Hence, string theory was conjectured to

be a theory of quantum gravity. String theory became popular again with

the discovery that the supersymmetric extension of strings can be anomaly

free if it is defined in 10 dimensions [12]. It was hence considered a more

serious candidate for a theory of quantum gravity. Indeed, having 10 in-

stead of 4 dimensions was now considered as a virtue rather than a flaw,

as one was trying to use 6 of the 10 dimensions as internal dimensions in a
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Kaluza-Klein compactification of the full theory, leading to the gauge the-

ories of nature. Hence, string theory was considered to be able to describe

both gauge theories and quantum gravity, and is considered as a candidate

for the theory of everything.

To date, it is still not quite clear how exactly one should obtain the stan-

dard model from string theory. For the purpose of scientific interest of this

thesis, it does not matter whether or not string theory will ultimately turn

out to be the theory of everything or not. What is important is that in

the decades of development of string theory, lots of interesting and useful

mathematical structures have been found. In this sense, string theory has

a similar status as quantum field theory. Quantum field theory provides a

useful framework which can be applied to many problems in physics, espe-

cially in particle physics and in condensed matter theory. Likewise, string

theory can be applied to different problems, or it can be seen as the fun-

damental, unified theory of all particles and forces. The most prominent of

the new applications of string theory is via a new connection between gauge

and string theory, in the line of thought of [8] discussed above. Such a pre-

cise connection was found in the late 1990s in [13, 14, 15], and claims the

exact duality of string theory on Anti de Sitter spaces in d+ 1 dimensions,

with conformal field theories in d dimensions. As string theory is consistent

only in 10 dimensions, the d+ 1 dimensional Anti-de Sitter space has to be

accompanied by a 9− d dimensional internal manifold2.

In this thesis we will be only concerned with the best understood example

of the AdS/CFT correspondence, which is between N = 4 Super Yang-Mills

theory in four dimensions with SU(N) gauge group, and string theory on

an AdS5 × S5 space. Shortly after the discovery of the AdS/CFT corre-

spondence [13], only comparatively simpler physical quantities such as BPS

operators and supergravity states could be compared [14, 15]. The reason

is that the correspondence is in fact a strong-weak duality. This means

weakly coupled gauge theory is related to strongly coupled string theory,

and vice versa. As we argued above, we can often understand physical sys-

tems well if we have a small parameter in the theory, which we can use for

2There is an analogous correspondence for M-theory in eleven dimensions, which we will
not discuss in this thesis.
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perturbation theory. Now the problem is that if physical quantities in the

gauge theory are perturbatively calculated in a series in one parameter, the

corresponding dual string theory quantity will have the inverse parameter

as the natural expansion parameter. This makes a perturbative comparison

of physical quantities hard to achieve. Indeed, the quantities compared in

[14, 15] are independent of the coupling.

Furthermore, when the AdS/CFT correspondence was formulated, not

even an action describing the motion of strings on AdS5 × S5 was known.

In general, it is a hard task to explicitly describe the motion of strings on

curved space-times. The action was later fixed in [16]. A main advancement

in non-trivial tests of the AdS/CFT correspondence was proposed in [17],

where it was shown that if one takes operators in the gauge theory which

are composed of many scalar operators and only a few other operators, and

introduces a new coupling constant which is composed of the gauge coupling

and the number of operators, one can keep this new coupling finite and com-

pare the resulting operator to a dual string state, which is now spinning fast

around a big circle in the five sphere of the AdS5 × S5 space. This limit is

not quite the planar ’t Hooft limit discussed before, and restricts the the-

ory to operators with large R-charge, i.e. a large amount of one particular

scalar operator in the gauge theory. In the dual string theory, this amounts

to taking a plane wave limit. Such limit was also found in [18], and it was

shown that string theory is exactly solvable in that limit [19, 20]. Related

limits of fast spinning strings were found in [21, 22], see also the reviews

[23, 24].

The next crucial development towards a precise understanding of the

AdS/CFT correspondence was the observation in [25] that in certain sec-

tors at one loop in the ’t Hooft coupling λ ofN = 4 Super Yang-Mills theory,

the dilatation generator, which describes the behaviour of the theory under

scaling transformations, behaves like an integrable spin chain Hamiltonian.

Subsequently, this observation was generalised to the whole one loop N = 4

Super Yang-Mills theory [26], and integrability was conjectured to survive

for the whole AdS/CFT correspondence [27] in the ’t Hooft limit. Indeed,

on the dual string side, a Lax connection was found [28], indicating the clas-

sical integrability of the string sigma model. This generalises earlier work
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about the classical integrability of the bosonic part of the sigma model [29].

Consequently, non-local conserved charges were found on the dual gauge

side, and shown to form a Yangian algebra [30, 31].

Before continuing the discussion of the AdS/CFT correspondence, we

should clarify what we actually mean by an integrable system. If we have

a mechanical system with a finite number of degrees of freedom, there is a

mathematically well defined notion of integrablility (see e.g. [32]). Namely,

a system is called integrable, if it possesses as many independent conserved

charges as it has degrees of freedom. Then, the theorem of Liouville-Arnold

implies that the phase space factorises into (projective) tori. In suitable co-

ordinates on these tori, the motion of the system is just linear. Integrability

in the AdS/CFT correspondence arises on both sides of the correspondence

in a completely different fashion. On the gauge side, we are dealing with the

dilatation operator, which acts as an integrable Hamiltonian on a spin chain

of arbitrary length. On the string side, we are dealing with an (at least clas-

sically) integrable sigma model. In both cases, we have an arbitrary number

of degrees of freedom. Furthermore, we are dealing with quantum systems.

Hence, we should discuss the meaning of integrability in those cases.

The way integrability is manifest in most known integrable systems with

infinitely many degrees of freedom is in terms of the appearance of a cer-

tain quantum group, which acts as their algebra of symmetries. Quantum

groups are Hopf algebras, which are extensions of ordinary algebras com-

bined with a so-called coalgebra structure. This coalgebra structure consists

mainly of a coproduct, which defines the action of the symmetry generators

on tensor products. Indeed, ordinary Lie algebras act on tensor products,

or multi-particle states, just as the sum on the individual states. This im-

plies that the quantum numbers on multi-particle states should simply add

up. For many integrable systems, new kinds of non-local charges appear.

Non-locality is realised by the fact that the symmetry generators act non-

trivially on a multi-particle state, i.e. not simply as the sum of the actions

on each individual particle. In field theories, Lie algebra generators are usu-

ally realised as integrals over local conserved currents. In the case of the two

dimensional non-linear sigma models, classical non-local conserved charges

were constructed as double integrals over the product of two currents at
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different points in space [33]. For the O(n) sigma model, these charges were

argued to survive quantisation [34]. These non-local charges are the first in

a series of infinitely many non-local conserved charges. In [34], it was also

argued that this implies the factorisation of the scattering matrix into two-

particle S-matrices, and the order of the two particle scattering processes

does not matter. Furthermore, there can be no particle production or an-

nihilation. This implies that the so-called Yang-Baxter equation holds. As

one has a relativistic theory, one can derive a crossing equation for the two

particle S-matrix, and the S-matrix should also be unitary and have the

right analytic properties. Having established these properties imply that

the two particle S-matrix is completely fixed up to a simple CDD factor3,

which satisfies the homogeneous crossing and unitarity equations. This im-

plies that the CDD factor is a trigonometric function, and it can be fixed

if one knows about the particle content of the theory, and hence about the

pole structure of the S-matrix. This line of thought was proposed in the

1970s, see e.g. [36, 37]. The two particle S-matrix allows one to reconstruct

all S-matrices by the property of factorisability. Often in the literature, the

higher conserved charges implying factorisability of the S-matrix are local

charges [38, 39, 40], which can be used to disentangle a multi-particle scat-

tering process. Indeed, it seems for most known cases of integrable models,

local and non-local conserved charges coexist. Furthermore, their origin can

often be traced back to a quantum groups. The arguments in [34] for the

factorisation are however given by using non-local charges.

As the conserved charges imply the factorisation of the S-matrix, this

factorisation and the absence of particle production is in turn often taken

as a definition of quantum integrability. In this thesis we will give a reason

why this makes sense. We will show that the scattering matrices for at

least some integrable models also follow directly from the underlying infi-

nite dimensional quantum group symmetry. If one takes for instance the

two dimensional principal chiral field with su(n)× su(n) symmetry, similar

arguments as for the O(n) sigma models imply the factorisability of the S-

matrix. The two particle S-matrix has been derived and used to construct

so-called Bethe equations [41, 42, 43], which are periodicity conditions on

3Castillejo-Dalitz-Dyson (CDD) factors appeared first in the study of Low’s scattering
equation [35].
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the wave function. It is well known that the principal chiral field also has

conserved non-local charges, similar in nature to the charges of the O(n)

model [34]. These charges are related to the Yangian [44]. The matrix part

of the scattering matrix is proportional to two copies of the standard Yang

R-matrix, which is simply of the form R ∝ Id+ 1
uP. Here, P is the permuta-

tion operator, and u = u1−u2 is the difference of rapidities of the scattered

particles. This matrix is well known to be invariant under the Yangian.

However, it is not clear at all that the complicated scalar factor of the S-

matrix should come directly from the Yangian. Furthermore, even though

the conserved charges have, in many cases, been rigorously constructed in

the classical theories, their survival in the quantum theory is usually not

easy to see. We refer the reader to the discussion in [45, 46] about conserved

charges of the principal chiral field.

Let us have a look at the mathematical side of Yangians. They are infinite

dimensional symmetry algebras extending traditional Lie algebras. Indeed,

they can be considered as deformations of the algebra g[u] of polynomials in

u with values in a simple Lie algebra g. The original definition of Yangians

was given in [47], where the algebraic structure behind rational solutions to

the Yang-Baxter equation was investigated. It is named after C.N. Yang,

who found the first rational R-matrix with su(n) invariance as given above.

If one thinks of scattering problems, the parameter u will be related to the

rapidity of the particles. An important property of Yangians is that they al-

low for a so-called quantum double construction [48]. On the classical level,

this “doubles” the polynomial algebra g[u] to the loop algebra g[u, u−1].

The importance of this construction lies in the fact that these quantum

doubles have a universal R-matrix, which is an R-matrix defined in terms

of the abstract generators of the Yangian Double. It satisfies an abstract

Yang-Baxter equation, and is inverted by the action of the antipode map.

Upon specifying a representation, this universal R-matrix should automati-

cally lead to crossing invariant solutions of the Yang-Baxter equation. One

problem is that the representation theory, especially for Yangians of alge-

bras other than sl(n), is not well understood. Furthermore, the universal

R-matrix is defined as an infinite product, as there are infinitely many gen-

erators of the Yangian. There are ordering issues, and, to our knowledge,

such an explicit evaluation of the whole R-matrix has not been done so far
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for algebras of rank greater than one. Another problem of the construction

of [48] is that the resulting S-matrices on representations are not unitary.

Consequently, the interest in universal R-matrices in the physics literature

has been somewhat limited.

Another way to construct the Yangian is via monodromy matrices. These

are the same monodromy matrices underlying the algebraic Bethe ansatz,

or quantum inverse scattering method (see e.g. [49, 50]), which is a method

to find the spectrum of integrable models. Indeed, consider e.g. integrable

models with su(n) invariance. The monodromy matrices are usually thought

of as n× n matrices, where each entry of the matrix corresponds to an ab-

stract generator. For a realisation on a spin chain, the abstract part becomes

a big matrix acting on the Hilbert space of the spin chain. Additionally, the

monodromy matrix depends on a spectral parameter, and the expansion

in this parameter around infinity leads, at lowest order, to the usual Lie

algebra generators, whereas the higher orders correspond to the non-local

charges discussed before. Furthermore, the trace of the monodromy ma-

trix also contains the local conserved charges, if one expands about certain

special poles. The commutation relations of the Yangian are defined via

the famous RTT relations. These impose relations for the entries of the

monodromy matrix, which are essentially the Yangian generators. RTT re-

lations are derived from the Yang-Baxter equation, as for lattice models the

monodromy matrix can be constructed as a product of R-matrices. Indeed,

the RTT relations were known before the formal, mathematical definition

of the Yangian given in [47].

Yangians also play an important role in integrable spin chain models.

Indeed, the simple Heisenberg XXX spin chain with nearest-neighbour in-

teraction and su(n) symmetry is invariant under Yangian charges, at least in

the infinite length limit, when boundary terms can be neglected. The spec-

trum can be computed with the algebraic Bethe ansatz (see [50]), where the

fundamental object is the su(n) monodromy matrix, which, as we argued

before, is the defining object of the Yangian. Furthermore, one can also

obtain Bethe equations by considering excitations over a ferromagnetic vac-

uum, and the resulting S-matrix is invariant under the Yangian of su(n−1).

Its scalar factor in this case is trivial. Interestingly, if one scatters spinons
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defined over the antiferromagnetic vacuum, one gets an S-matrix invariant

under the Yangian of su(n), which now has a crossing invariant dressing fac-

tor resembling the structure as found in other relativistic integrable models

with su(n) symmetry (see also [50]).

Indeed, the Yangian seems to be the central algebraic object underlying a

range of integrable models4. In particular, the Heisenberg XXX spin chain,

which appears in one-loop N = 4 Super Yang-Mills theory, is invariant

under a Yangian, and the charges on the string side of the AdS/CFT cor-

respondence are also related to a Yangian. Hence, it is natural to expect

that the Yangian plays an important role in the AdS/CFT correspondence

itself. Indeed, also at higher loops in the gauge theory, Yangian charges

have been found in [52, 53], even though just in restricted subsectors. A full

proof of quantum integrability is currently beyond reach. Indeed, quantum

integrability is hard to show even in standard relativistic integrable sys-

tems. However, in many classically integrable models, one could proceed by

assuming that the conserved charges survive quantisation. Provided that

quantum conserved charges exist, one can conjecture the factorisation of the

S-matrix, and derive the two particle S-matrix. The same procedure was

proposed for the AdS/CFT correspondence [54], and all-loop Bethe equa-

tions, conjectured to describe the spectrum of long operators, were written

down in [55] without a proof of quantum integrability. These Bethe equa-

tions were later derived from the asymptotic S-matrix, which was obtained

purely from the Lie algebra symmetry [56]. This S-matrix scatters magnons

on the spin chain underlyingN = 4 Super Yang-Mills theory , or world sheet

excitations in the light-cone gauged fixed string theory [57]. Interestingly,

the underlying Lie algebra of the S-matrix is the centrally extended psu(2|2)

algebra, and the central charges already encode the momentum dependence

of the underlying particles. psu(2|2) is the only simple Lie superalgebra

which allows for more than one non-trivial central charge, and the existence

of those charges modifies the behaviours of tensor products of representa-

tions. In particular, the tensor product of two fundamental representations

is generically irreducible, which explains why the S-matrix is fixed without

4Furthermore, many integrable models without Yangian symmetry have q-deformed sym-
metry. Indeed, trigonometric S-matrices are related to quantum affine algebras, which
in some sense can be considered as deformations of the Yangian. q-deformed quantum
groups appeared at the same time as Yangians [47, 51]
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referring to a higher symmetry such as the Yangian. However, the S-matrix

was later shown to be still invariant under a Yangian based on centrally

extended psu(2|2) symmetry [58].

An important piece of the S-matrix and the Bethe equations which is not

fixed by Lie algebra symmetries is the scalar prefactor. As string theory

in the light cone gauge is not relativistically invariant, the S-matrix is not

of difference form. This is in contrast to standard S-matrices related to

the Yangian and caused by the fact that the underlying Lie algebra is cen-

trally extended. However, crossing seems an intrinsic algebraic feature of

quantum groups. Indeed, in [59], this fact was used, without knowing the

underlying Hopf algebra, to derive a crossing equation for the AdS/CFT

S-matrix. Furthermore, on the classical string theory side, the Bethe ansatz

was conjectured to contain a complicated dressing phase [60], based on ear-

lier investigations of finite gap solutions in [61]. The one-loop corrections

to this phase were subsequently investigated in [62, 63] and analytically

continued to weak coupling, where the phase is trivial at the leading few

orders in perturbation theory. Finally, the all loop result of the phase was

conjectured in a strong coupling asymptotic expansion in [64], and its weak

coupling continuation in [65]. Later, the crossing equation was solved ex-

plicitly and shown to reproduce the conjectured phases [66].

Having included the correct dressing phase, the asymptotic Bethe equa-

tions seem to correctly describe the whole spectrum of long operators in

the gauge theory, or fast spinning strings in AdS5 × S5 . This has been

confirmed in many tests based on semi-classical, fast spinning strings of

the type introduced in [21, 67]. However, the asymptotic Bethe equations

seem to break down when the interaction range of the Hamiltonian becomes

longer than the spin chain the Hamiltonian is acting on, as was confirmed

in [68]. Luscher corrections can be used to obtain the first corrections to

the anomalous dimension of short operators, such as the Konishi operator

[69]. These corrections were first introduced on the strong coupling side

[70], where finite-size corrections to certain string excitations dual to the

magnons on the gauge side were obtained. These excitations on the string

side are called giant magnons, and were initially introduced in [71]. In

general, the order from which finite size corrections should play a role is
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not as clear as from the weak coupling side. Indeed, in [72], the strong

coupling expansion of the Bethe equation for the Konishi operator was in-

vestigated, and the first terms agree with the physical expectations. Higher

terms violate the analytic structure and depend logarithmically on the cou-

pling constant. Interestingly, the Luscher corrections still depend on the

asymptotic S-matrix, which now has to depend on different representations,

namely on those describing bound state particles in the mirror theory. The

mirror theory is related to the original theory by Wick rotation. The reason

for the appearance of the mirror theory is as follows. To define an S-matrix,

one needs to define scattering states. This requires one to separate in and

out state, so one should define the theory on an infinite line. If the theory

is defined on a cylinder of finite length, one can Wick rotate, and consider

the theory with finite periodic time, or, analogously, finite temperature,

and take instead the Wick rotated time coordinate, which is now spatial,

to infinity. Hence, one can define a scattering theory for the Wick rotated

theory. This trick was introduced in [73] to derive spectral equation for the

original theory. These equations are called Thermodynamic Bethe ansatz

equations, or TBA equations. The main problem for the applicability of

this trick to the AdS/CFT correspondence is that string theory in the light

cone gauge is not Lorentz invariant, hence the Wick rotated mirror theory

looks quite different from the original theory. Nevertheless, the mirror the-

ory was investigated in [74]. Later, another important ingredient towards

the TBA equations, the string hypothesis, was written down in [75]. Ul-

timately, TBA equations and their associated Y-systems were conjectured

in [76, 77, 78, 79]. In principle, TBA equations only describe the ground

state energy, but analytic continuation often leads to excited state TBA

equations [80], which are supposed to describe the whole spectrum of any

operator.

In the present state, the TBA equations are fairly difficult to evaluate

for specific states, even just numerically. Indeed, a goal would be to find

an integral equation, similar to the Destri-deVega equation describing the

spectrum of sine-Gordon theory [81], or the integral equation describing the

spectrum of the SU(2)× SU(2) principal chiral field [82]. What we should

note is that the bound state S-matrices underlying the TBA equations are

still invariant under the same Yangian of the centrally extended psu(2|2)
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symmetry [83]. Only the representation is different to the fundamental

S-matrix, as we are now dealing with bound states in the mirror theory.

Hence, even if the definition of Yangian charges on field theories on a finite

cylinder is not well-defined, the Yangian is still present in the corresponding

mirror theory on the infinite line.

Finally, we note that on the N = 4 Super Yang-Mills theory side, the S-

matrix we are considering is not directly related to the gluon amplitudes in

four space-time dimensions. What we scatter here are magnons on the spin

chain. In this sense, the S-matrix we are investigating has the sole purpose

to find the right spectrum of the single-trace local operators. Excitingly,

it was found that the tree level space-time gluon scattering amplitudes in

N = 4 Super Yang-Mills theory are also invariant under a Yangian [84]. A

further investigation of the Yangian might shed light to the behaviour of the

amplitudes at higher loops as well. We refer the reader to [85, 86, 87, 88]

for more information on Yangians in scattering amplitudes, and [89, 90] for

general references on scattering amplitudes.

Outline

We have seen that Yangians appear in many integrable systems, such as

the XXX Heisenberg spin chain, relativistic integrable field theories and the

AdS/CFT correspondence in the large N limit. Hence, it is well worth to

gain a better understanding of Yangians. In this thesis we will introduce

mathematical features of Yangians in chapter 2. Besides recalling some def-

initions and features from the literature, we also include some new results

concerning a modification of the universal R-matrix of Yangians, such that

its representation satisfies the physically important property of unitarity

and crossing. Furthermore, we obtain R-matrices for all superalgebras of

type sl(n|m), generalising previous work on R-matrices based on simple Lie

algebras. These results are based on recent work with Adam Rej [91]. Chap-

ter 2 also focuses particularly on the centrally extended psu(2|2) algebra,

which is the symmetry algebra appearing in the light cone string theory.

It has some mathematically distinct features, making it special amongst all

simple superalgebras. We also include some results found in collaboration

with Alessandro Torrielli [92] concerning the Yangian in Drinfeld’s second
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realisation, which is suitable for the construction of the universal R-matrix

as well as for the study of the representation theory. As many physical

results discussed in the later chapters can be derived directly from the Yan-

gian, chapter 2 plays a major role in this thesis.

Chapter 3 reviews some well known integrable systems, such as the prin-

cipal chiral field, or su(n) symmetric Heisenberg spin chains. We do not

include new physical results, but propose a new powerful derivation of the

scattering matrix of the principal chiral field and other relativistic integrable

field theories. Namely, we argue that one does not need to separate ordinary

Lie algebra symmetry from the additional requirements of the Yang-Baxter

equation and crossing and unitarity. Instead, the Yangian provides a uni-

fied algebraic framework, which directly leads to the full scattering matrix,

up to a possible CDD factor. Consequently, we derive the S-matrix of the

principal chiral field directly from the universal R-matrix of the underlying

Yangian.

In chapter 4, we review some features of the AdS/CFT correspondence,

focusing on its integrability properties.

Chapter 5 deals particularly with the S-matrix arising in the light-cone

gauge of string theory, or in the scattering problem of magnons of the spin

chain on the Yang-Mills side of the AdS/CFT correspondence. We include a

derivation of the S-matrix at strong coupling purely from classical Yangian

symmetries, as found in the publication [93] in collaboration with Niklas

Beisert. Furthermore, we derive the weak coupling S-matrix also from the

Yangian. These results have been published in [94]. As we have established

the mathematical machinery of universal R-matrices in chapter 2, we can

obtain this S-matrix in a straightforward fashion. Finally, we speculate

about the form of the all-loop universal R-matrix.
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2 Yangians of Lie Superalgebras

In this chapter we will assemble some features of Yangians and their classical

limits. Yangians are quantum groups which enlarge Lie algebras to infinite

dimensional symmetry algebras. They play a prominent role in many inte-

grable models. In particular, they are often related to the infinitely many

conserved charges of an integrable model. One way to define them is through

the monodromy matrices and the RTT relations. This was the way Yangians

historically appeared in the investigation of the quantum inverse scattering

problem, see the reviews [49, 50]. The mathematics of the Yangian in this

realisation is reviewed in [95]. From the perspective of S-matrices, Yangians

are closely related to rational solutions of the Yang-Baxter equation. They

are mathematically defined as deformations of the algebra of polynomials

with values in a Lie algebra. So before discussing Yangians in section 2.2,

we will start by describing these polynomial algebras and their related loop

and Kac-Moody algebras in section 2.1. In particular, we will show how

to construct the loop algebra as a classical double of the polynomial alge-

bra. This double automatically contains a classical r-matrix, which satisfies

the classical Yang-Baxter equation. In section 2.2 we will then construct a

Yangian double, which contains a quantum R-matrix satisfying the quan-

tum Yang-Baxter equation. Furthermore, the Yangian R-matrix satisfies

the crossing equation, and can be chosen such that it leads to unitary R-

matrices on representations. In particular, we directly recover the integrable

and crossing-invariant su(n) S-matrices. This is a new result and can be

found in the preprint [91], written in collaboration with Adam Rej. Fur-

thermore, the analysis done in this thesis is valid for Yangians based on Lie

superalgebras, whereas previous investigations were only true for simple Lie

algebras.

The focus in this thesis lies on Lie algebras of type sl(n|m) and their Yan-

gians, as the physical applications we are dealing with in the later chapters
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have this symmetry. We will also discuss the peculiarities of the special

series sl(n|n) and the algebra psl(2|2). They have the unique property that

they allow for a non-trivial central extension. These central charges will be

of greatest importance for the physics in relation with the S-matrix of the

AdS/CFT correspondence, as discussed in chapter 5. In particular, psl(2|2)

allows for three independent central charges. This distinguishes it from all

other simple Lie superalgebras. We contribute some new results towards

the Yangian of psl(2|2) in Drinfeld’s second realisation, which is important

for the construction of the universal R-matrix and the study of the rep-

resentation theory (see e.g. the recent studies of long representations of

psu(2|2)nu(1)3 [96]). These results were mainly published in our paper [92]

with Alessandro Torrielli, but we have changed the conventions and also

included some new results.

2.1 Lie Algebras and Lie Bialgebras

We start by recalling important definitions for Lie algebras and Lie super-

algebras in section 2.1.1, and for loop algebras in section 2.1.2. General

references for this part are [97, 98, 99]. In section 2.1.3, we define Lie bial-

gebras, and focus on the example of loop algebras, which can be constructed

as a classical double from the polynomial algebra. One can find more back-

ground information on Lie bialgebras as well as classical r-matrices in the

textbook [100].

2.1.1 Lie Superalgebras

A Lie superalgebra g is a vector space equipped with a Lie superbracket or

supercommutator. Let us denote a basis by

Ja, a = 1, . . . , dim(g), (2.1.1)

then we denote the supercommutator by

[Ja, Jb} = fabcJ
c, (2.1.2)

where fabc are the structure constants of g. We denote by
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|a| ≡ |Ja| =

{
0 , a bosonic

1 , a fermionic
(2.1.3)

the degree of the generator Ja. Then the supercommutator is just

[Ja, Jb} = JaJb − (−1)|a||b|JbJa. (2.1.4)

An important concept is that of a non-degenerate invariant supersymmetric

bilinear form. We will always assume its existence for the Lie superalgebras

we are dealing with in this thesis, or the existence of an extension of the

algebra which has such form. We will denote this form by

κab =
(
Ja, Jb

)
. (2.1.5)

For simple Lie algebras this form is just the usual Killing form (up to an

overall factor), and in general on representations one has, up to rescaling,

κab = str(JaJb), (2.1.6)

where str denotes the supertrace over the representation space. This follows

as we also have to assign a degree to the vectors we are representing. Let

e.g. the representation space be n + m dimensional, such that the first n

elements are bosonic, and the last m are fermionic. Then the generators of

the Lie superalgebra can be schematically written in block form(
A B

C D

)
, (2.1.7)

such that A is an n × n matrix acting only on the n bosons, and D is an

m×m matrix acting only on the fermions. As these two blocks to not change

the statistics of bosons or fermions they are acting on, they are themselves

of bosonic nature, i.e. they constitute the degree 0 generators of g. C and

D swap bosons and fermions, and are henceforth the fermionic, or degree 1

generators of g. The supertrace in this block form is given by

str

(
A B

C D

)
= tr(A)− tr(D). (2.1.8)
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As the Killing form, i.e. the supertrace over the adjoint representation,

vanishes in the case of psu(n|n), which is of importance for the physics

dealt with in this thesis, we will define the invariant form as the supertrace

over the fundamental representation. A further property is that the form

acts on the bosonic and fermionic blocks separately, i.e.

κab = 0 (2.1.9)

if |a| = 0 and |b| = 1, or the other way round. Supersymmetry means that

the form satisfies

κab = (−1)|a||b|κba = (−1)|a|κba, (2.1.10)

where the last equation holds because of the equation above. Invariance is

the property that

(
Ja, [Jb, Jc}

)
=
(

[Ja, Jb}, Jc
)

(2.1.11)

Chevalley-Serre basis

The Chevalley-Serre basis allows for a unified description of simple Lie su-

peralgebras by encoding their commutation relations with their Cartan ma-

trix A, or with their corresponding Dynkin diagram. It is also useful for

applications in physics, as it directly involves the important Cartan subal-

gebra, the maximal subalgebra of commuting generators.

Let A be the r×r Cartan matrix, Hi, E
+
i and E−i be the Cartan generator

and positive and negative simple root generators, respectively. Then these

generators satisfy

[Hi,E
+
j ] = AijE

+
j

[Hi,E
−
j ] = −AijE−j

[E+
i ,E

−
j } = δijHi. (2.1.12)

These 3r generators form, in general, not a linear basis of the Lie superalge-

bra. When commuting positive simple root generators with each other one

will get, in general, new positive root generators. For simple Lie superalge-
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bras, one does only get a finite number of additional positive root generators,

and a corresponding number of negative roots. Note that for bosonic sim-

ple Lie algebras, simplicity of the algebra requires the Cartan matrix to be

non-degenerate. We will see that this condition of non-degeneracy is not

necessary in the case of Lie superalgebras. In particular, the important se-

ries of psl(n|n) has a degenerate Cartan-matrix. How to precisely construct

the additional generators is encoded in the Serre relations

[E+
i , [E

+
i , [..., [E

+
i ,E

+
j }}}} = 0, (2.1.13)

where one applies the commutator |Aij |+ 1 times. In the case of simple Lie

algebras, these Serre relations together with the Chevalley-Serre relations

completely determine the Lie algebra structure. Hence, all information is

encoded in the Cartan matrix. For superalgebras, however, one usually

needs some additional Serre relations. We will later spell them out in the

case of gl(n|m).

Let us note that the Cartan Matrix can usually be derived from the inner

product in the root space. This is also related to the invariant form κ.

Indeed, if αi, i = 1, . . . r are the simple roots corresponding to the root

generators E+
i , and the root product is denoted by (αi, αj), then the Cartan

matrix can be written as follows:

Ãij = 2
(αi, αj)

(αi, αi)
, if (αi, αi) 6= 0

Ãij =
(αi, αj)

(αi, α′i)
, if (αi, αi) = 0. (2.1.14)

Here, α′i is chosen such that (αi, α
′
i) is minimal. Note that for simple Lie

algebras (αi, αi) 6= 0, so one can always normalise the diagonal elements to

2. In this thesis, we will usually work with the symmetric Cartan matrix,

which is simply given by

Aij = (αi, αj) . (2.1.15)

It can be obtained from Ãij by multiplication with a diagonal matrix.

The whole Cartan-Weyl basis, which is a particularly nice form of a linear

basis of a Lie superalgebra, is parametrised by a set of all roots βk. To
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each such root belongs a root generator E+
βi

if βi is positive, and a second

generator E−βi if it is negative. Furthermore, there are Cartan generators

Hβ, which together form a vector space dual to the root space, i.e. one

has Hβ(γ) = γ(Hβ) = (β, γ) The number of linearly independent Cartan

generators is by definition the rank r of the Lie superalgebra, and, upon

rescaling, one can obtain the Chevalley-Serre generators Hi.

2.1.2 Loop Algebras

Let g be a Lie superalgebra with a linear basis Ja as before.

The algebra g[u] is defined as the algebra of polynomials in u with values

in g, i.e. the elements are linear combinations of the monomials

Jan = unJa0, a = 1, . . . , dim(g), n = 0, . . . ,∞, (2.1.16)

such that the generators of zeroth degree form the basis of the Lie superal-

gebra g, i.e. Ja0 = Ja.

Likewise, we define the loop algebra g[u, u−1] to be the algebra of all

Laurent Series in u with values in g, i.e. it is generated by

Jan = unJa0, a = 1, . . . , dim(g), n = −∞, . . . ,∞. (2.1.17)

In this thesis, we will always work with completed algebras allowing for

linear combinations of infinitely many generators.

In terms of the structure constants of the underlying Lie algebra (2.1.2)

the commutation relations of the loop and polynomial algebras read

[Jan, J
b
m} = fabcJ

c
n+m. (2.1.18)

From this relation it is clear that g[u] is a subalgebra of g[u, u−1]. Likewise,

one can define a closed subalgebra g[u−1]u−1 which consists of generators

of purely negative degree.

We also introduce an invariant form on the loop algebra: We extend the

bilinear invariant form (2.1.5) of the Lie superalgebra g to loop algebras

g[u, u−1] by putting

(
Jan, J

b
m

)
= Res(str(JanJ

b
m)) = κabδn,−m−1. (2.1.19)
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It is straightforward to see that this product is again invariant. Furthermore,

if one considers the generators of g[u, u−1] as functions of u with values in

g, this inner product can be seen as taking the residue over u. This also

means that this product splits g[u, u−1] in such a way that

(g[u], g[u]) = 0,(
g[u−1]u−1, g[u−1]u−1

)
= 0,(

g[u], g[u−1]u−1
)
6= 0. (2.1.20)

This way of splitting the loop algebra will be important for the construction

of the classical r-matrix.

Note that if we want to describe the loop algebra by roots, we can take the

set of roots βi of the underlying Lie superalgebra, and add one imaginary

root δ. If, as before, one introduces a Chevalley-Serre basis for the Lie

superalgebra, i.e. generators Hi, E
+
i and E−i , then the generators E+

i,k and

E−i,k correspond to the roots αi + kδ and −αi + kδ, respectively. Likewise,

one can add kδ to the Cartan generators Hi, denoting them by Hi,k. We

will refer to all Hi,k as Cartan generators, as they commute with each other.

However, as they are now related to the imaginary root vector δ, Hi,k are

sometimes called imaginary roots in the literature.

Finally, we would like to mention that loop algebras have a central ex-

tension and an external derivation, leading to the definition of affine Kac-

Moody algebras. We will not deal with these extensions in this thesis.

However, it is interesting to note that the mathematics leading to this cen-

tral extension, as well as the structure of the derivation, is quite similar

to the central extension of the simple Lie superalgebras psl(n|n) to sl(n|n),

which we will discuss in section 2.3.3.

2.1.3 Lie Bialgebras

A Lie bialgebra g is a Lie superalgebra with an additional structure δ :

g → g ∧ g called the cobracket, which has to satisfy the so-called cocycle

condition

δ([Ja, Jb}) = [δJa, Jb}+ [Ja, δJb} (2.1.21)
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and is skew-symmetric as well as linear. Here, by [δJa, Jb} we mean the

adjoint action of Jb on δJa, i.e. [δJa, Jb} = [δJa, Jb ⊗ 1 + 1 ⊗ Jb}. The

cocycle condition just means that the cobracket acts as a derivation on

the Lie bracket. Furthermore, the skew-symmetric, or anti-supersymmetric

tensor product is defined as

Ja ∧ Jb = Ja ⊗ Jb − (−1)|a||b|Jb ⊗ Ja, (2.1.22)

i.e. in case both generators are fermionic, the tensor product is in fact sym-

metric.

The cobracket will become the coproduct upon quantisation, i.e. the

structure equipping Hopf algebras with an action on tensor products of

representations. Furthermore, the cobracket is the dual to the normal Lie

bracket on the dual Lie algebra. That is, if, as before, fabc are the structure

constants of the Lie algebra, and the cobracket has structure constants γab
c,

i.e.

δ(Jc) = γab
cJa ⊗ Jb, (2.1.23)

then the dual Lie superalgebra g∗ with generators Ja has commutations

relations

[Ja, Jb} = γab
cJc, (2.1.24)

The dual basis is fixed by the usual requirement
(
Ja, J

b
)

= δba. Then this

means that the structure constants of the commutator of the dual g∗ are

the same as the structure constants of the cobracket of g. Likewise, g∗ can

also be promoted to a Lie bialgebra with the cobracket

δ(Jc) = −fabcJa ⊗ Jb. (2.1.25)

As we assume the existence of an non-degenerate form κab we just have

Ja = κabJ
b, (2.1.26)

with κabκ
bc = δca.
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Quasitriangular Lie bialgebras

In this thesis we are only interested in a particular subclass of bialgebras,

namely those where the cobracket is generated by an r-matrix. These Lie

bialgebras are called coboundary.

A classical r-matrix r is an element in g⊗ g such that

δ(Ja) = [Ja, r}. (2.1.27)

For generic r the above equation defines a cobracket precisely if r12+r21 and

[r12, r13] + [r12, r23] + [r13, r23] are invariant under the adjoint action of g.

Here, we introduced the notation rkl which means that the first tensor factor

in r lives in the k’th tensor product under consideration, and the second in

the l’th. That is, if r =
∑

i ai ⊗ bi, for some elements ai, bi of the Lie algebra,

then r21 =
∑

i bi ⊗ ai. If one is working on higher tensor products one should

think of the missing coefficients as identities, i.e. r12 =
∑

i ai ⊗ bi ⊗ 1 if we

consider triple tensor products.

Now in what follows we want to consider r-matrices which satisfy the

classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0. (2.1.28)

If the classical Yang-Baxter equation holds we call the Lie bialgebra quasi-

triangular.

Before proceeding, let us look at the example of the polynomial algebra

g[u]. Then one can see that

r =
t

u1 − u2
, (2.1.29)

with t = κabJ
a⊗Jb being the quadratic Casimir acting on the tensor product,

is a classical r-matrix. To show this we note that

[t12, t13 + t23] = [t12, κab(J
a ⊗ 1⊗ Jb + 1⊗ Ja ⊗ Jb)] = κab[t12, J

a]⊗ Jb = 0.

(2.1.30)

Likewise, [t23, t12 + t13] = 0.

But then

29



[
t12

u1 − u2
,

t13

u1 − u3
] + [

t13

u1 − u3
,

t23

u2 − u3
]

= [t12, t23]

(
1

u2 − u1

1

u1 − u3
+

1

u1 − u3

1

u3 − u2

)
= −[

t12

u1 − u2
,

t23

u2 − u3
], (2.1.31)

so the classical Yang-Baxter equation holds. Note that the polynomial al-

gebra acts on different tensor factors with a different spectral parameter ui.

Furthermore, the classical r-matrix (2.1.29) does not really live in g[u]⊗g[u].

It is henceforth more natural to consider it as an r-matrix of the loop alge-

bra g[u, u−1]. We will investigate this in the next section. Here, we would

like to mention that (2.1.29) still defines a consistent cobracket on g[u] via

(2.1.27), which is given by

δ(Jak) = [Jak, r} =
1

2

k−1∑
l=0

facdJ
c
l ∧ Jdk−l−1. (2.1.32)

Mathematically, one is interested in classifying the solutions to the classical

Yang-Baxter equation. Indeed, the r-matrix t
u1−u2 is in fact the simplest so-

lution of the classical Yang-Baxter equation in the case where r is a rational

function of two spectral parameters u1 and u2. Other cases involve spectral

parameters which are periodic or elliptic functions of the spectral param-

eter. If the underlying Lie algebra is simple, the solution to the classical

Yang-Baxter equation have been classified in [101].

2.1.4 The Classical Double

Given a Lie bialgebra g with structure constants fabc, γab
c as before, the

classical double is a construction to automatically obtain a quasitriangular

Lie bialgebra. Indeed, if Ja is a basis of g, and Ja is its dual basis in g∗,

then the double of g is the vector space D(g) = g + g∗ with the classical

r-matrix

r :=
∑
a

Ja ⊗ Ja. (2.1.33)
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By plugging this formula into (2.1.27) one can see that this r-matrix equips

the double with a cobracket such that, if we restrict to the subspace g ⊂
g + g∗, we recover the initial bialgebra structure defined by the structure

constants fabc, γab
c. Likewise, g∗ is embedded into D(g) provided that one

swaps the tensor factors of the cobracket. Furthermore, the Yang-Baxter

equation automatically holds for r-matrices of the form (2.1.33). As the

r-matrix is embedded into D(g)⊗D(g) as

r ∈ g⊗ g∗, (2.1.34)

we can also consider r as the trivial operator mapping g to g. Let us see how

this construction works for the case where g equals the polynomial algebra

g[u]. We have established the invariant product in the loop algebra 2.1.19,

and can clearly see that generators with negative degree are paired with

non-negative degree generators. Indeed, the dual generator for Jan, n ≥ 0 is

Ja,−n−1 = κabJ
b
−n−1, so the loop algebra g[u, u−1] can be seen as a double

of the polynomial algebra g[u]. Furthermore, the classical r-matrix is given

by

r = −
∞∑
n=0

dim(g)∑
a=1

Jan ⊗ Ja,−n−1. (2.1.35)

Taking into account that Jan = unJa, we get

r =
∑
n=0

un1J
a ⊗ u−n−1

2 Ja =
t

u1 − u2
. (2.1.36)

Hence we have derived the classical r-matrix for the polynomial and loop

algebras introduced before. As it appeared via the construction of the dou-

ble, it automatically satisfies the classical Yang-Baxter equation, confirming

the explicit calculation (2.1.31).

An often overlooked fact in the literature is the fact that there is an

ambiguity how to construct the loop algebra as a double from the polynomial

algebra. Indeed, one could equally well define the double of g[u−1]u−1, which

would yield the classical r-matrix
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r =
∞∑
n=0

dim(g)∑
a=1

Ja−n−1 ⊗ Jna . (2.1.37)

On evaluation representations, (2.1.37) would be completely equivalent to

(2.1.35). Indeed, both choices differ just by the invariant element

∞∑
n=−∞

dim(g)∑
a=1

Ja−n−1 ⊗ Jna . (2.1.38)

The classical double construction is well-known to lead to a quasi-triangular

Lie bialgebra. However, in physics one would like to have a unitary r-matrix,

which, at the classical level means that

r(u1 − u2) = −r(u2 − u1). (2.1.39)

This is realised on representations for both choices (2.1.35) and (2.1.37),

as the invariant element evaluates to 0. Abstractly, one can construct a

triangular Lie bialgebra, i.e. one where the classical r-matrix satisfies

r21 = −r12, (2.1.40)

by choosing the antisymmetric combination

r =
1

2

∞∑
n=0

dim(g)∑
a=1

Ja−n−1 ∧ Jna . (2.1.41)

Triangularity automatically guarantees unitarity on representations, even

though, as we have seen, in this case it does not matter. However, we will

see later that for the Yangian the unsymmetrised versions of the quantum

Yangian do not automatically lead to unitary R-matrices.

2.2 Yangians

The Yangian Y(g) based on a Lie superalgebra g is a deformation of the

polynomial algebra g[u], or, more precisely, a deformation of the universal

enveloping algebra of g[u]. It is a Quantum Group, by which we mean a

quasitriangular Hopf Algebra. Hopf Algebras are appearing naturally in

many areas of physics, in particular, in integrable systems. They equip a
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symmetry algebra with additional structures such as the coproduct, which

defines the action of the symmetry generators on multiparticle states. Fur-

thermore, they usually posses an antipode, which is often associated with

antiparticle representations. As the coproduct and antipode are rather triv-

ial for ordinary Lie superalgebras, Hopf algebras are not widely studied for

systems with only Lie algebra symmetry. The situation changes for most

integrable models in two dimensions, which often have a more complicated

symmetry structure than just Lie algebras and are indeed often Quantum

Groups. Quasitriangularity means that the Hopf algebra is equipped with a

universal R-matrixR. Such an R-matrix can often be used to define an inte-

grable model by means of the RTT formalism, where both R and T here are

representations of the same universal R-matrix R. Furthermore, the RTT

relations can also be used to define the Yangian (see the review [95] on Yan-

gians in this realisation). Indeed, there are several equivalent ways to define

the Yangian, and it depends on the problem one is studying which approach

is the best. Universal R-matrices also give rise to S-matrices. Quasitrian-

gularity is basically the property which guarantees that the Yang-Baxter

equation as well as a crossing equation hold. Even though it was known

before that S-matrices are somehow related to the universal R-matrix, a

direct derivation of scattering matrices just from the universal R-matrix is,

to our knowledge, a new application of universal R-matrices, and published

in the paper [91] and in this thesis for the first time.

We begin by giving the definition of Hopf algebras and Quantum Groups

in section 2.2.1. For further references we refer the reader to the textbooks

[100, 102]. Then we define the Yangian in the first realisation in section 2.2.2

following [47], and in section 2.2.3 we define the Yangian in Drinfeld’s second

realisation, following [103]. The references mentioned deal with Yangians of

ordinary Lie algebras, whereas generalisations of the Yangian to superalge-

bras have been studied e.g. in [104, 105]. The second realisation is suitable

for the construction of the Yangian double, which is a quantisation of the

classical double of the polynomial algebra, as encountered in section 2.1.4.

The Yangian double for simple Lie algebras has been worked out in [48] and

was generalised to superalgebras in [106]. We will develop our own approach

to the Yangian double of superalgebras, as published in [91]. Only in this

approach does the universal R-matrix lead to unitary, crossing invariant
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S-matrices on representations. This is of crucial importance for physical

applications, and indeed, the resulting R-matrices for su(n) algebras will be

shown to describe the scattering in su(n) integrable field theories in section

3.1. Furthermore, the results of [106] are not valid for sl(n|n), and we are

not sure about the conventions used in this paper. Hence, we present the

results independently of [106].

2.2.1 Quantum Groups

Let us first describe the mathematical notion of what we mean by a Quan-

tum Group. We mean a quasi-triangular Hopf-Algebra which possesses a

universal R-matrix, which satisfy some conditions which imply the Yang-

Baxter as well as the crossing equations. Let us start by describing a Hopf

Algebra. It is, first of all, an associative algebra, i.e. a vector space which

posses a multiplication, and also an identity element. In this thesis, we are

mainly considering complex algebras, but we can also choose to work over

the real numbers. It is useful to write the multiplication as a map

µ : A⊗ A→ A, (2.2.1)

where A is the Hopf algebra we are considering. Note that generically the

multiplication map is just defined on the direct product of two copies of the

algebra, but we extend it linearly to the tensor product. Then we can write

the law of associativity as the following commuting diagram:

A⊗ A⊗ A
id⊗µ−−−−→ A⊗ A

µ⊗id
y yµ

A⊗ A
µ−−−−→ A

Furthermore, we also define the identity of the algebra as a map

η : C→ A, (2.2.2)

such that the following two diagrams commute:

A⊗ C id⊗η−−−−→ A⊗ A

∼=
y yµ
A

id−−−−→ A
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C⊗ A
η⊗id−−−−→ A⊗ A

∼=
y yµ
A

id−−−−→ A

Defining an associative multiplication and the identity in such way might

look more complicated than necessary, but the advantage is that it allows

one to straightforwardly define the remaining properties of the Hopf algebra.

In particular, a Hopf algebra is also a coalgebra, that is a vector space which

posses a comultiplication map

∆ : A→ A⊗ A (2.2.3)

which is defined by the commuting diagram

A⊗ A⊗ A
id⊗∆←−−−− A⊗ A

∆⊗id
x x∆

A⊗ A
∆←−−−− A

We see that this diagram is identical to the defining diagram of the multipli-

cation map µ, up to the fact that all arrows are reversed. This explains the

origin of the name coproduct. Likewise, the coalgebra possesses a counit,

i.e. a reversed identity, or unit map

ε : A→ C, (2.2.4)

which is defined via the following commuting diagram:

A⊗ C id⊗ε←−−−− A⊗ A

∼=
x x∆

A
id←−−−− A

C⊗ A
ε⊗id←−−−− A⊗ A

∼=
x x∆

A
id←−−−− A

Of course, a Hopf algebra is not merely an algebra and a coalgebra at the

same time, but all defined structures should be compatible in a certain way.

In particular, we demand that the coproduct and the counit are algebra
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homomorphisms, i.e. equations like

∆(XY) = ∆(X)∆(Y) (2.2.5)

hold for all X,Y ∈ A.

Furthermore, a Hopf algebra posses an antipode map

S : A→ A, (2.2.6)

which is an antihomomorphism with respect to the algebra structure, i.e.

S(XY) = (−1)|X||Y|S(Y)S(X). (2.2.7)

The importance of a coproduct ∆ is the fact that it is usually used to define

tensor products of representations of A, i.e. if

π1,2 : A→ End(V1,2), (2.2.8)

are two representations of A on two vector spaces V1,2, then A acts on the

tensor product V1 ⊗ V2 as

π1 ⊗ π2∆(X), (2.2.9)

for all X ∈ A. If one is interested in defining tensor products of more than

two representation spaces, one can apply the coproduct several times. Coas-

sociativity guarantees that the order in which the coproducts are applied

does not matter.

Let us look at one of the simplest examples of a Hopf algebra, the universal

enveloping algebra of a Lie superalgebra g. The supercommutator of g is

this language is simply realised in the usual way,

[X,Y} = µ(X,Y)− (−1)|X||Y|µ(Y,X), (2.2.10)

for all X,Y ∈ g as embedded into the enveloping algebra. Likewise, the

coproduct is realised by

∆X = X⊗ Id + Id⊗ X, (2.2.11)

where we have to observe that the tensor product is graded. This means

that when multiplying two elements A1 ⊗ B1 and A2 ⊗ B2 in the tensor
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product, we have to observe the rule

(A1 ⊗B1)(A2 ⊗B2) = (−1)|B1||A2|A1A2 ⊗B1B2. (2.2.12)

Likewise, as the coproduct enables us to act on tensor products v1 ⊗ v2,

where v1, v2 are vectors of some unspecified representation space, then we

have to observe that

(X⊗ Id + Id⊗ X)(v1 ⊗ v2) = (Xv1)⊗ v2 + (−1)|X||v1|v1 ⊗ (Xv2). (2.2.13)

An equivalent way to realise the presence of fermions, which is sometimes

more advantageous for implementation on a computer, is to work with the

usual tensor product, i.e. (A1⊗B1)(A2⊗B2) = A1A2⊗B1B2, and instead

introducing the Fermi operator

FXF = (−1)|X|X, (2.2.14)

i.e. it commutes with all bosonic generators, and one picks up a minus sign

when commuting it with a fermion. Then the coproduct is realised as

∆X = X⊗ Id + F |X| ⊗ X. (2.2.15)

The general rule is that the Fermi operator appears on the left-hand side of

a fermionic factor in a tensor product.

The coproduct defines, as mentioned before, the action of the Hopf al-

gebra on tensor products of representations. The simple coproduct for the

universal enveloping algebra represents the intuition that a Lie algebra gen-

erator acts on a tensor product like a sum over the actions on each factor in

the tensor product. When we have a superalgebra, the grading of the tensor

product, or equivalently, the Fermi generator, guarantees that we pick up a

minus sign whenever we pull one fermion over another fermion.

We finally mention that the antipode for the enveloping algebra is simply

given by

SX = −X, (2.2.16)

if we work with the graded tensor product. This is related to the fact that
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the antipode is often used to define antiparticles representation. Let the

original representation π defining the action of the generators on a vector

space V correspond to the particle representation. Then the antiparticle

representation correspond to the dual, or contragredient representation π̄,

which is defined by taking a minus sign and supertranspose of the origi-

nal representation π. The generalisation for Hopf algebras is to define an

antiparticle representation by taking the supertranspose of the antipode,

i.e.

π̄(X) = π(S(X))st. (2.2.17)

We will see later that Yangians, which also contain a copy of the universal

enveloping algebra of the underlying Lie algebra, have a more complicated

coproduct, which is why we introduced these structures.

Quasitriangular Hopf Algebras

Let us now come to the important concept of a quasi-triangular Hopf alge-

bra. This is a Hopf algebra A, with a universal R-matrix R which satisfies

the axioms

(∆⊗ Id)(R) = R13R23

(Id⊗∆)(R) = R13R12, (2.2.18)

as well as the property of almost cocommutativity

∆op(X)R = R∆(X). (2.2.19)

Here, ∆op denotes the opposite coproduct

∆op = P∆. (2.2.20)

P is the permutation operator, flipping the two factors of the tensor product.

Hence, almost cocommutativity is behind the idea that the R-matrix can

be used to define an S-matrix on representations,

S = PR, (2.2.21)
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which maps the tensor product V1 ⊗ V2 of two representation spaces of

the Hopf algebra A to V2 ⊗ V1. Indeed, if the Hopf algebra has a generic,

complicated coproduct, it is by no means clear that V1 ⊗ V2 and V2 ⊗ V1

are isomorphic as Hopf algebra modules. which mathematically is just an

intertwiner of two representation spaces.

From the quasi-triangularity properties it follows that R satisfies the

Yang-Baxter equation

R23R13R12 = R12R13R23 (2.2.22)

as well as the crossing equation

(S ⊗ Id)(R) = R−1. (2.2.23)

Indeed, the Yang-Baxter equation follows from permuting the first two ten-

sor factors in the first equation of (2.2.18),

R23R13 = (∆op ⊗ Id)(R)

= R12(∆⊗ Id)(R)R−1
12 = R12R13R23R−1

12 . (2.2.24)

Taking R−1
12 to the other side, we get

R23R13R12 = R12R13R23. (2.2.25)

Let us also show how the crossing equation follows. The antipode of a Hopf

Algebra satisfies the equation

µ(S ⊗ Id)∆(X) = η(ε(X)), X ∈ A, (2.2.26)

with ε being the counit and η the unit map, i.e. it maps the complex number

1 to the identity element in the Hopf algebra, which we will often just call

1 as well. The counit satisfies

(ε⊗ Id)∆X = X, (2.2.27)

so we have
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(ε⊗ Id⊗ Id)(∆⊗ Id)(R) = R

= (ε⊗ Id⊗ Id)R13R23

= ((ε⊗ Id⊗ Id)R13)R. (2.2.28)

Hence,

(ε⊗ Id⊗ Id)R13 = Id⊗ Id, (2.2.29)

and as the second tensor factor plays no role, we have

(ε⊗ Id)R = Id. (2.2.30)

Now we write the R-matrix as some sum over unspecified elements of the

algebra, R =
∑
r1 ⊗ r2. Then

(µ(S ⊗ Id)∆(r1))⊗ r2 = (η ⊗ Id)(ε(r1)⊗ r2) = η(1)⊗ Id = Id⊗ Id

= (µ(S ⊗ Id)⊗ Id)R13R23 = (µ⊗ Id)(S(r1)⊗ Id⊗ r2)(Id⊗ r′1 ⊗ r′2)

= (S(r1)⊗ r2)(r′1 ⊗ r′2) = (S ⊗ Id)(R)R. (2.2.31)

Hence,

(S ⊗ Id)(R) = R−1. (2.2.32)

2.2.2 Yangians in Drinfeld’s first Realisation

Consider a Lie superalgebra g with basis Ja. We introduce an additional

set of generators Ĵa, which have the following commutation relations:

[Ja, Jb} = fabcJ
c, (2.2.33)

[Ja, Ĵb} = fabcĴ
c. (2.2.34)
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[Ĵa, [Ĵb, Jc}}+ [Ĵb, [Ĵc, Ja}}+ [Ĵc, [Ĵa, Jb}}

=
~2

4
fagdf

bh
ef
ck
ffghkJ

{dJeJf ]. (2.2.35)

The resulting algebra is infinite dimensional, as the commutator of Ĵa with

Ĵb will, in general, not be a linear combination of the generators Ja or Ĵa.

Indeed, the relation (2.2.35) tells one about the behaviour of the commu-

tators of higher order, and is henceforth referred to as a Serre relation for

the Yangian. This is in analogy to the case of simple Lie algebra, whose full

linear basis could be constructed from a minimal set of Chevalley-Serre gen-

erators by observing compatibility with the Serre relations. Note also that

to raise or lower indices, we use the bilinear form κ introduced in (2.1.5),

which needs to be non-degenerate for these purposes.

In the important case if the Yangian is of type gl(n|m) there exists an

evaluation representation such that

Ĵa = uJa. (2.2.36)

Even though this looks like the loop algebra, or polynomial algebra, we note

that the coproduct is different. It is given by

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja

∆(Ĵa) = Ĵa ⊗ 1 + 1⊗ Ĵa + ~
1

2
[Ja ⊗ 1, t] = Ĵa ⊗ 1 + 1⊗ Ĵa + ~

1

2
fabcJ

b ⊗ Jc,

(2.2.37)

where t is the quadratic Casimir of the underlying Lie algebra g, defined on

the tensor product g⊗g. Hence, we see that the universal enveloping algebra

of g is embedded into the Yangian as a Hopf subalgebra. Furthermore, we

recover the polynomial algebra g[u] in the limit ~ → 0. In this sense, Y(g)

is considered as a deformation of the universal enveloping algebra of the

polynomial algebra g[u], and ~ is the corresponding deformation parameter.

Even though ~ does not necessarily correspond to the Planck constant,

such deformation is often referred to as a quantisation, or a deformation

quantisation. If ~ 6= 0, then we can actually scale ~ away, i.e. without loss

of generality set to ~ = 1.
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The Antipode for the Yangian

The action of the antipode for the Yangian is most easily calculated using

Drinfeld’s first realisation, as we have a general formula for the coproduct

in this case, valid for any generator Ĵa. We apply the formula

0 = η(ε(Ĵa)) = µ(S ⊗ Id)∆(Ĵa)

= µ(S(Ĵa)⊗ 1 + 1⊗ Ĵa − ~
1

2
fabcJ

b ⊗ Jc)

= S(Ĵa) + Ĵa − ~
1

2
fabcJ

bJc, (2.2.38)

and get

S(Ĵa) = −Ĵa + ~
1

2
fabcJ

bJc. (2.2.39)

Note that if the underlying Lie superalgebra is simple, the above formula

for the antipode can be simplified to

S(Ĵa) = −Ĵa + ~
1

4
cJa, (2.2.40)

where c is the eigenvalue of the quadratic Casimir on the adjoint represen-

tation. This eigenvalue in turn is proportional to the dual Coxeter number.

2.2.3 Yangians in Drinfeld’s second Realisation

Yangians are particularly interesting as they lead to rational solutions of the

Yang-Baxter equation. As in the classical case of Lie bialgebras, where we

could construct a classical r-matrix based on the double of the polynomial

algebra g[u], which turned out to be the loop algebra g[u, u−1], we will now

show that there is a universal R-matrix associated to the double of Y(g). As

Y(g) is a quantisation of g[u], the double will be a quantisation of g[u, u−1].

To write down a universal R-matrix we first need an appropriate linear

basis, such that for each generator in the Yangian we know its dual gen-

erator. Then, similarly to the case of the classical double, the universal

R-matrix will be the canonical element

R =
∑

X⊗ X∗, (2.2.41)
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where the sum is taken over the whole Yangian with unspecified basis X,

and its corresponding dual basis X∗.

The first realisation of the Yangian, as given in the previous section, is not

suitable for the construction of the universal R-matrix. This is due to the

fact that only finitely many generators Ja and Ĵa are realised explicitly in

this basis. The infinitely many other generators are in principle constructed

by observing the Serre relations, but such construction is not possible in

an explicit form. This was one of the main reasons why a new realisation

of the Yangian was given in [103]. This realisation defines the Yangian in

a Chevalley-Serre type basis, and is called Drinfeld’s second realisation of

the Yangian. This realisation is isomorphic to the realisation given in the

previous section.

One introduces generators Hi,n, E+
i,n, E−i,n, i = 1, . . . ,rank(g) such that

again the degree zero generators are identified with the generator of the

underlying Lie superalgebra. With the help of the symmetric Cartan matrix

A, the Yangian is defined as follows

[Hi,m,Hj,n] = 0, [Hi,0,E
+
j,m] = Aij E

+
j,m,

[Hi,0,E
−
j,m] = −AijE−j,m, [E+

i,m,E
−
j,n} = δi,j Hj,n+m,

[Hi,m+1,E
+
j,n]− [Hi,m,E

+
j,n+1] =

1

2
Aij{Hi,m,E+

j,n},

[Hi,m+1,E
−
j,n]− [Hi,m,E

−
j,n+1] = −1

2
Aij{Hi,m,E−j,n},

[E+
i,m+1,E

+
j,n} − [E+

i,m,E
+
j,n+1} =

1

2
Aij{E+

i,m,E
+
j,n],

[E−i,m+1,E
−
j,n} − [E−i,m,E

−
j,n+1} = −1

2
Aij{E−i,m,E

−
j,n],

Sym{k}[E
+
i,k1

, [E+
i,k2

, . . . [E+
i,knij

,E+
j,l} . . . }} = 0,

Sym{k}[E
−
i,k1

, [E−i,k2 , . . . [E
−
i,knij

,E−j,l} . . . }} = 0,

i 6= j, nij = 1 + |Aij |. (2.2.42)

Here, the superanticommutator is defined as {A,B] := AB + (−1)|A||B|BA.

Again, as in the case of the Chevalley-Serre basis of Lie superalgebras, one

needs to add extra Serre relations if we have a proper Lie superalgebra, i.e.

with non-zero fermionic part.
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The advantage of this presentation of the Yangian is that, unlike in the

case of the first realisation, we have explicit relations for the generators of

arbitrary degree n, Jan, n ≥ 0. As mentioned before, the generators of degree

0 are identified with the generators of the underlying Lie superalgebra g.

The generators of degree 1 are in principal associated with the generators

Ĵa of the Yangian in the first realisation, but not in a direct way. In fact,

one derives that to match the defining relations in the first realisation one

needs the following isomorphism:

Hi,0 = Hi, E+
i,0 = E+

i , E−i,0 = E−i ,

Hi,1 = Ĥi − vi, E+
i,1 = Ê+

i − wi, E−i,1 = Ê−i − zi, (2.2.43)

where

vi =
1

4

∑
β

(αi, β) {E−β ,E
+
β ]− 1

2
H2
i ,

wi =
1

4

∑
β

(−1)βi{E−β , [E
+
i ,E

+
β }]−

1

4
{Hi,E+

i },

zi = −1

4

∑
β

{[E−i ,E
−
β },E

+
β ]− 1

4
{Hi,E−i }. (2.2.44)

The sums over β goes over all positive roots.

Note that even though the second realisation explicitly contains generator

of arbitrary degree, we have not established a full linear basis of the Yan-

gian yet. First of all, we need to add root generators corresponding to the

non-simple roots of the underlying Lie superalgebra. This can be done in a

similar fashion as for the underlying Lie algebra, but is still quite non-trivial.

We give an explicit realisation in the case Y(sl(n|m)). Furthermore, the Yan-

gian contains arbitrary powers of the generators, i.e. elements of the form

(E+
β1,k1

)n1 . . . (E+
βr,kr

)nr(H1,l1)m1 . . . (Hs,ls)
ms(E−β1,x1)p1 . . . (E−βt,xt)

pt . All such

elements form a linear basis provided one avoids double counting. This is

guaranteed if one orders the roots, and then sticks to the block form above,

which reads schematically EHF , i.e. one starts with the ordered positive

roots, then the Cartan generators and then the ordered negative roots.
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2.2.4 The Yangian Double

We will now define the double DY(g) of the Yangian Y(g), which natu-

rally contains a universal R-matrix. We have established the Yangian in

Drinfeld’s second realisation, which contains already generators of arbitrary

positive degree. We will first construct a linear basis of the whole Yan-

gian, and then appropriate dual generators. However, unlike in the classical

limit, it turns out that the explicit description of the dual generators is more

involved here.

First, we note that the generators in the second realisation, Hi,n, E+
i,n,

E−i,n form only a Chevalley-Serre type basis of the Yangian. To get a linear

basis, as in the case of the underlying Lie superalgebra, we have to construct

a corresponding Cartan-Weyl basis. Indeed, such generators are simply of

the form E+
β,n, E−β,n, where E+

β,0, E−β,0 correspond to the generators of g,

i.e. β is a positive root vector. Unlike for g, for the Yangian one cannot

construct them explicitly. However, we know that there should be genera-

tors of exactly this form as the Yangian is a deformation of the enveloping

algebra of g[u], hence there should be a one-to-one correspondence between

the appropriate generators. The obstruction can be seen from the defining

relations (2.2.42). Unlike for g[u], commutators of generators of degree n

and m are not of homogeneous degree n+m, but contain generators of lower

order. Mathematically speaking, the degree n does not provide a grading

on the Yangian, but only a filtration. If one has a root vector β+nδ, where

δ is the imaginary root vector, then there is not a unique way to construct

the corresponding root generator.

Furthermore, as we know that the classical double of g[u] is the loop alge-

bra g[u, u−1], the double Yangian DY(g) should now also contain generators

of the form Hi,n, E+
i,n, E−i,n, n < 0, as well as corresponding Cartan-Weyl

generators. Now we have two choices: we could simply proceed by setting

e.g. E+
i,n to be dual to E−i,−n−1, just as in the case of the polynomial algebra.

Then one could derive the algebra and coalgebra relations from the require-

ment that dual product imposes a non-degenerate invariant form which also

respects the algebra and coalgebra relations. However, it turns out that then

the generators of negative degree would not have a nice behaviour, at least

for those generators associated with the Cartan subalgebra. Instead, one
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would like them to be as closely related to the generators of the loop algebra.

In particular, on representations, one would like to have a simple evaluation

type representation. So we will follow the approach of [48] to construct the

quantum double. Here the generators of negative degree behave similarly

to the generators of positive degree, but the dual product on the Cartan

subalgebra is non-trivial.

The inner product is given by

(
E+
i,k,E

−
j,l

)
= (−1)|i|

(
E−j,l,E

+
i,k

)
= −δijδk,−l−1

(Hi,k,Hj,−l−1) = −Aij
(
Aij
2

)k−l (k
l

)
for k ≥ l, (2.2.45)

with all other products vanishing. Here, we will not list the coproduct and

the product relations for the dual generators, as we will not use them. They

have the same structure as in [48].

To construct the universal R-matrix, one needs to construct a dual basis

with respect to the inner product. To do this, it is useful to introduce

generating functions for the generators as follows

E+
i (λ) :=

∞∑
k=0

E+
i,kλ
−k−1 , (E+)∗i (λ) := −

−∞∑
k=−1

E−i,kλ
−k−1 ,

E−i (λ) :=

∞∑
k=0

E−i,kλ
−k−1 , (E−)∗i (λ) := −

−∞∑
k=−1

E+
i,kλ
−k−1 , (2.2.46)

H+
i (λ) := 1 +

∞∑
k=0

Hi,kλ
−k−1, H−i (λ) := 1−

−∞∑
k=−1

Hi,kλ
−k−1. (2.2.47)

The parameter λ is the formal parameter of the generating functions. It

should be noted that on evaluation representations with spectral parameter

u the generating function will depend on the difference u− λ, so effectively

λ may be interpreted as the spectral parameter.

The dual of the function J(λ1) =
∑∞

k=0 Jkλ
−k−1
1 is defined as the function
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J∗(λ2) = −
∑−∞

k=−1 J
∗
kλ
−k−1
2 such that

(J(λ1), J∗(λ2)) =
1

λ1 − λ2
. (2.2.48)

This is equivalent to introducing the generator J∗l dual to Jk in the sense of

(
Jk, J

∗
−l−1

)
= −δk,l. (2.2.49)

According to this definition the root generators are already written in terms

of a dual basis. What remains to be found is the dual basis for the Cartan

generators. Note that here the superscripts ± indicate the expansion of

H±i (λ) at λ = 0 and λ =∞ respectively. On evaluation representations one

finds that H+
i (λ) and H−i (λ) represent formally the same function. Their

scalar product is given by [48]

(
H+
i (λ1),H−j (λ2)

)
=
λ1 − λ2 +

Aij

2

λ1 − λ2 − Aij

2

. (2.2.50)

It turns out to be useful to consider the formal logarithms log(H±i (λ)) due

to the following property

(
log(H+

i (λ1)), log(H−j (λ2))
)

= log
λ1 − λ2 +

Aij

2

λ1 − λ2 − Aij

2

. (2.2.51)

Therefore,(
d

dλ1
log(H+

i (λ1)), log(H−j (λ2))

)
=

1

λ1 − λ2 +
Aij

2

− 1

λ1 − λ2 − Aij

2

.

(2.2.52)

If one introduces the shift operator

Tf(λ2) = f(λ2 + 1), (2.2.53)

then the above formula may be written as(
d

dλ1
log(H+

i (λ1)), log(H−j (λ2))

)
= (T−Ajk/2 − TAjk/2)

δik
λ1 − λ2

. (2.2.54)

This is a matrix equation and to complete the task of the diagonalisation
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one needs to invert the operator

Dij = T−Aij/2 − TAij/2 . (2.2.55)

Note that on evaluation representations T effectively shifts the spectral pa-

rameter u2 due to the aforementioned fact that the Drinfeld currents depend

on the difference λ− u. For the sake of the following discussion it is useful

to introduce the q-deformed symmetric Cartan matrix, i.e. we replace each

number x by its q-number

x→ [x]q =
qx − q−x

q − q−1
. (2.2.56)

Hence, the q-deformed Cartan matrix takes the following form

A(q)ij = [(αi, αj)]q =
q(αi,αj) − q−(αi,αj)

q − q−1
. (2.2.57)

The Dij operator is then related to the q-deformed Cartan matrix through

Dij = −(T 1/2 − T−1/2)A(T 1/2)ij . (2.2.58)

2.2.5 The Universal R-Matrix

In the previous section we have established the Yangian double DY(sl(n|m))

by generalising the analysis of [48] for the case of simple Lie algebras. The

universal R-matrix can now be easily stated with the help of the diago-

nalised form (2.2.54) since it is simply the canonical element of the Yangian

double, i.e. the sum over all elements of the Yangian Y(sl(n|m)) tensor its

appropriate dual. One should stress that the Yangian consists not only of

the Chevalley-Serre generators (2.1.12) and their commutators, but also of

all powers of the corresponding generators. Schematically, the dual product

decomposes as follows

(
E+HE−, (E+)∗(H)∗(E−)∗

)
=
(
E+, (E+)∗

)
(H,H∗)

(
E−, (E−)∗

)
,

(2.2.59)
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just as in the case for simple Lie algebras [48]. Hence, the universal R-matrix

has the quasi-triangular structure

R = R+RHR− . (2.2.60)

The positive and negative root parts are given in terms of ordered products

R+ =
→∏

β,k≥0

exp(−(−1)|β|F |γ|E+
β+kδ ⊗ E−β−(k+1)δ) ,

R− =

←∏
β,k≥0

exp(−F |β|E−β+kδ ⊗ E+
β−(k+1)δ). (2.2.61)

Here, F is the usual Fermi-number generator. The product is only taken

over positive roots β ∈ sl(n|m). The symbol δ denotes the imaginary root.

An important feature of (2.2.61) is that the product in R+ is taken in

a specified order, whereas for R− the reverse ordering is applied. Such

ordering can be defined inductively. Let two roots γ1, γ3 be already ordered

as γ1 < γ3. Then we say γ1 < γ2 < γ3 if we can write [E+
γ1 ,E

+
γ3} = E+

γ2 .

This procedure for the root ordering was introduced for Yangians based on

simple Lie algebras in [48]. We also refer to [91] for the explicit ordering of

roots of sl(n|m).

The Cartan part of the universal R-matrix is the significantly more com-

plicated

RH =
∏
i,j

exp

( ∞∑
t=0

((
d

dλ1
log(H+

i (λ1))

)
t

⊗
(
D−1
ij log(H−j (λ2)

)
−(t+1)

))
.

(2.2.62)

The superscripts t and −(t + 1) denote the respective coefficients of the

expansion of the generating functions in λ1 � 1, λ2 � 1. Tensoring them

together is thus equivalent to taking the residue at λ1 = λ2. In the case

of integer-valued Cartan matrices we find that the inverse of the q-Cartan

matrix is also q-integer valued up to an overall constant q-number [l]q.

The concrete definition of the inverse D−1
ij on the set of functions of the

spectral parameter determines the scalar part of the R-matrix. According

to (2.2.58), the operator D may be expressed solely through the translation

operator T , for which the action on functions of spectral parameter is well-

defined. Clearly, one may define D−1
ij by expanding it in a power series
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around either T = 0 or T =∞. It turns out, however, that both expansions

do not result in the same scalar part RH . We would like to argue that the

guiding principle should be unitarity. Indeed, the Yangian Double is not

triangular, i.e. the equation

R12R21 = Id (2.2.63)

does not hold. Only a balanced expansion in power series in T and T−1

will lead to unitary dressing factors. It follows immediately from (2.2.57)

that A(q−1) = A(q) so that the operator Dij defined in (2.2.58) satisfies

Dij(q) = −Dij(q
−1). The same must hold for its inverse D−1

ij (q) thus one

may write

D−1
ij (q) = 1

2

(
D−1
ij (q)−D−1

ij (q−1)
)
. (2.2.64)

We propose to expand the first term at q = 0 and the second one at q =∞
and setting q → T 1/2 in the expansions. Subsequently, the principal branch

of the square root should be applied. We conjecture that the resulting

R-matrix contains a unitary dressing factor satisfying the corresponding

crossing equation. Moreover, in all cases studied in what follows the dressing

factor found in this way is a meromorphic function up to a square root of

a CDD factor. This suggest that this may be a general feature of this

procedure. Please note also that analytic properties of a given solution to

crossing and unitarity equations are dictated by the concrete physical model

and cannot be determined with help of the universal R-matrix.

Generic Cartan matrices of superalgebras, in particular those correspond-

ing to the gl(n|n) algebra where the external u(1) automorphism is rescaled

and shifted by the identity, have non-integer elements and the aforemen-

tioned prescription needs to be applied. Integer-valued Cartan matrices

allow for further simplification since there exists a matrix C(q)

A(q)C(q) = [l]qId , (2.2.65)

such that its elements are polynomials in q and q−1. Here, l is assumed to

take minimal value for which such C(q) exists. The inverse of (2.2.58) may

now be written as

D−1 = C(T 1/2)
1

T−l/2 − T l/2
. (2.2.66)

50



When expanded in the vicinity of T =∞∓1, one finds

R±H =∏
i,j,k

exp

(
±
(
d log(H+

i (λ1))

dλ1

)
t

⊗
(
Cij(T

1/2) log(H−j (λ2 ± (k + 1/2)l)
)
−t−1

)
.

(2.2.67)

For sl(n) algebras l = n and the above formulae reduce to the one proposed

in [48]. The scalar part leading to a unitary dressing factor may be formally

written as

RH =

√
R+
H

R−H
(2.2.68)

This formula, however, remains also valid for the supersymmetric counter-

part sl(n|m) with l = n − m and n 6= m. Clearly, the case of n = m

is special and the definition of C(q) becomes redundant for non-canonical

choice of the extension parameters. Thus the matrix C(q) is convenient for

classification purposes only, but becomes ill-defined in the general case of

real-valued Cartan matrices.

2.3 sl(n|m) Lie Superalgebras and their Extensions

Of particular importance for the physics we are dealing with in this thesis are

Lie superalgebras of type sl(n|m) or gl(n|m), as well as their real forms. This

series includes the Lie algebras of type sl(n) in the special case sl(n|0). We

will define sl(n|m) for n 6= m in section 2.3.1, and treat the special case n =

m separately in section 2.3.2. Due to its importance for later applications in

physics, and as it has some remarkable mathematical features, we devote the

additional section 2.3.3 to the study of the centrally extended psl(2|2)nC3

algebra. We refer the reader to the references [98, 99] for the general theory

of Lie superalgebras, and [107] for background on the centrally extended

psl(2|2) nC3 algebra.

2.3.1 sl(n|m)

Let us give the definition of Lie superalgebras of type gl(n|m) in terms of

their n + m dimensional fundamental representation. The representation

space is spanned by n bosons and m fermions
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|φa〉, a = 1, . . . n,

|ψα〉, α = 1, . . .m. (2.3.1)

They can be written as n+m dimensional column vectors such that |φa〉 is

the vector with a 1 in the a’th row and 0 otherwise, whereas |ψα〉 has a 1

in the n+ α’th row.

We will generally denote bosons by lower case Latin characters a, b, c, . . . ,

and fermionic indices by Greek characters α, β, γ, . . . . For some purposes

we will combine the bosonic and fermionic indices into upper case Latin

characters I, J, . . . . Using those indices, gl(n|m) is simply the Lie algebra

consisting of all (n + m) × (n + m) dimensional matrices, where a useful

base is given by the matrices

EIJ , I, J = 1, . . . , n+m, (2.3.2)

which have a 1 at the J ’th row and the I’th column and 0 otherwise.

Furthermore, the generators EIJ , I, J ≤ n as well as EIJ , I, J > n

are bosonic, whereas EIJ , I ≤ n, J > n and EIJ , J ≤ n, I > n are

fermionic. We will use the notation |IJ | = 0, 1 to characterise whether EIJ

is bosonic or fermionic. Hence, the commutation relations read

[EIJ , EKL} = δJKEIL − (−1)|IJ ||KL|δILEJK . (2.3.3)

The non-degenerate bilinear form in this basis is simply given by

(EIJ , EKL) = str(EIJEKL) = δJK str(EIL) = δJKδIL(−1)I . (2.3.4)

Then, the quadratic Casimir is given by

C =

n+m∑
I,J=1

(−1)|J |EIJEJI =

n+m∑
I=1

n∑
J=1

EIJEJI −
n+m∑
I=1

n+m∑
J=n+1

EIJEJI . (2.3.5)

On the tensor product, this Casimir

t =
n+m∑
I,J=1

(−1)|J |EIJ ⊗ EJI (2.3.6)
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will reduce to the graded permutation operator P. It is often useful to write

the matrices of gl(n|m) in the following block form:

(
Ra

b Sa
α

Qα
a Lαβ

)
. (2.3.7)

Here, Ra
b forms a basis of gl(n), Lαβ forms a basis of gl(m), and Qα

a and

Sa
α are fermionic generators forming n×m or m× n blocks, respectively.

The advantage of this notation is that we have clearly separated bosons and

fermions. Latin and Greek indices indicate the action on bosons or fermions

of the basis (2.3.1), and in matrix form, a generator Xxy means that the

appropriate generator has a 1 in the x’th column and the y’th row of the

appropriate bosonic or fermionic block. For instance, Ra
b has a 1 in the

element where column a and row b intersect, and 0 otherwise. Hence, the

translation to the indices I, J used above is given by

a = I for 1 ≤ I ≤ n

α+ n = I for n < I ≤ n+m. (2.3.8)

A basis for the n+m dimensional representation space (2.3.1) is then given

by vectors V I , I = 1, . . . n+m, with

V I = φa, I = a,

V I = ψα, I = α+ n. (2.3.9)

The degree of an index is denoted by |I|, so the short-hand notation of

the degree of a generator EIJ , which was denoted by |IJ |, translates to

|IJ | = |I|+ |J |.

In the a, α convention it is manifest that the fermionic generators Qα
a,

Sa
α form fundamental and antifundamental representations of the bosonic

gl(n) and gl(m) subalgebras. This is realised by the natural commutation
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relations

[Lαβ,Q
γ
a] = δγβQ

α
a

[Lαβ,S
a
γ ] = −δγαSa

β

[Ra
b,Q

γ
c] = −δcaQγ

b

[Ra
b,S

c
γ ] = δcbS

a
γ . (2.3.10)

The standard gl(n) and gl(m) commutation relations are given by

[Ra
b,R

c
d] = δcbR

a
d − δadRc

b

[Lαβ,L
γ
δ] = δγβL

α
δ − δαδ Lγβ. (2.3.11)

Of course, these are special cases of (2.3.3) with m = 0 or n = 0, respec-

tively. Another advantage of dividing the generators into blocks is that their

action on the fundamental representation (2.3.1) is realised in a canonical

fashion. The non-vanishing actions are given by

Ra
b|φc〉 = δcb |φa〉,

Lαβ|ψγ〉 = δγβ |ψ
α〉,

Qα
b|φc〉 = δcb |ψα〉,

Sa
β|ψγ〉 = δγβ |φ

a〉. (2.3.12)

The quadratic Casimir in this realisation is given by

C =
∑

Ra
bR

b
a − LαβL

β
α + Qα

aS
a
α −Sa

αQ
α
a. (2.3.13)

It is important to note that the algebras gl(n|m) are not simple. This can

be easily seen, as they have a central element

∑
a

Ra
a +

∑
α

Lαα =
∑
I

EII . (2.3.14)

In the case n 6= m, one can factor it out by removing all matrices with

non-vanishing supertrace

54



str

((
R S

Q L

))
= tr(R)− tr(L) = 0. (2.3.15)

As all the diagonal elements Ra
a, L

α
α introduced earlier have supertrace 1

or −1, we change their fundamental representation towards

Ra
a =


0 . . . 0 . . .
...

. . .

0 1
...

. . .

−
1

n


1 0 . . .

0
. . .

...

1

 (2.3.16)

and likewise

Lαα =


0 . . . 0 . . .
...

. . .

0 1
...

. . .

−
1

m


1 0 . . .

0
. . .

...

1

 . (2.3.17)

As before, Lαα and Ra
b are written as m × m or n × n matrices, which

are understood to be embedded block-wise into the superalgebra, and no

summation convention was used. Using the basis vectors |φa〉, |ψa〉 as before,

we get

Ra
b|φc〉 = δcb |φa〉 −

1

n
δab |φc〉,

Lαβ|ψγ〉 = δαβ |ψγ〉 −
1

m
δγβ |ψ

α〉. (2.3.18)

Note that those shifts do not alter the sl(n) or sl(m) commutation relations

(2.3.11).

However, the action on the fermions is slightly modified, we now get
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[Lαβ,Q
γ
a] = δγβQ

α
a −

1

m
δαβQ

γ
a

[Lαβ,S
a
γ ] = −δγαSa

β +
1

m
δαβS

a
γ

[Ra
b,Q

γ
c] = −δcaQγ

b +
1

n
δabQ

γ
c

[Ra
b,S

c
γ ] = δcbS

a
γ −

1

n
δabS

c
γ (2.3.19)

This does not mean that the fermions form a different representation with

respect to the bosonic subalgebras than before. Indeed, as we have imposed

the constraint
∑

aR
a
a = 0,

∑
α L

α
α = 0, it is more natural to consider

n− 1 independent generators Ra
a −Ra+1

a+1, a = 1, . . . n− 1, and likewise

Lαα−Lα+1
α+1, α = 1, . . .m−1. These combinations are supertraceless even

in the original gl(n|m) basis, and we will later use them for the Chevalley-

Serre basis.

Demanding that the supertrace vanishes removes only one diagonal gen-

erator from gl(n|m), but now we have imposed two constraints reducing

gl(n) and gl(m) to sl(n) and sl(m), respectively. Hence sl(n|m) contains

one more u(1) generator C. Indeed, if we commute two fermions, we get

{Qα
a,S

b
β} = δbaL

α
β + δαβR

b
a + δαβ δ

b
aC. (2.3.20)

Here, we have put

C|φa〉 =
1

n
|φa〉

C|ψα〉 =
1

m
|ψα〉. (2.3.21)

To go from gl(n|m) to sl(n|m) in the EIJ basis we can simple set

EIJ → EIJ −
1

n−m
δIJ
∑
I

EII . (2.3.22)

Note that this removes only exactly one u(1) generator. However, the sim-

ple bosonic sl(n) and sl(m) subalgebras are not manifestly realised, as the

bosonic blocks are not traceless. Only the supertrace over the whole space

vanishes. Also, this shift apparently does not work for n = m. Indeed, this
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Figure 2.1: The distinguished Dynkin diagram of sl(n|m).

is not an artefact of the basis, but reminiscent of the fact that sl(n|n) is in-

deed mathematically different from the general series gl(n|m). We will treat

this case separately in the next subsection. For now, we would like to give

a choice of the Chevalley-Serre basis. We will work with the distinguished

Dynkin diagram of figure 2.1.

Then the corresponding symmetric Cartan matrix reads

A =



2 −1 0 . . .

−1 2 −1 . . .
... 0

0 . . .
. . . −1 0

... . . . −1 2 −1

0 . . . 0 −1 0 1 0 . . .

1 −2 1 0 . . .

0 1 −2 1 . . .

0
...

. . . 1

0 . . . 1 −2



. (2.3.23)

This defines the commutation relation (2.1.12) of the generators HI , E
+
I and

E−I , where I = 1, . . . , n + m − 1. In this distinguished basis, the roots E+
n

and E−n are fermionic, and all other generators are bosonic. To make contact

with our previously used bases we see that a choice for such Chevalley-Serre

basis is given by
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HI = EI,I − EI+1,I+1, 1 ≤ I < n

Hn = En,n + En+1,n+1,

HI = −EI,I + EI+1,I+1, n < I ≤ n+m

E+
I = EI,I+1,

E−I = EI+1,I , 1 ≤ I ≤ n

E−I = −EI+1,I , n < I ≤ n+m.

(2.3.24)

Note that in this basis is left invariant by the shift 2.3.22. Put differently,

all Chevalley-Serre generators already have vanishing supertrace. Indeed,

building a complete linear basis by commuting the simple root generators,

one always gets the algebra sl(n|m), as the supercommutator of generators

with vanishing supertrace again has vanishing supertrace. In the case n 6=
m, the remaining generator I =

∑
I EI,I turning sl(n|m) into gl(n|m) is

hence just a trivial u(1) charge not connected in any sense to the other

sl(n|m) generators. This also means this u(1) charge has vanishing Killing

form with each of the other generators of sl(n|m). Indeed, the derived

algebra of sl(n|m) is again sl(n|m), i.e. [sl(n|m), sl(n|m)} = sl(n|m). Hence,

for each J1 ∈ sl(n|m), we can find some J2, J3 ∈ sl(n|m) such that [J2, J3} =

J1. Then we have for the Killing form

(
J1, I

)
=
(
[J2, J3}, I

)
=
(
J2, [J3, I}

)
= 0. (2.3.25)

It follows that gl(n|m) is a trivial central extension of the simple Lie super-

algebra sl(n|m), just as in the case of the (non-super) Lie algebras gl(n),

which are trivial central extensions of sl(n). Again we emphasise that for

n = m the situation will be different, and we will investigate this case in

the next section.

Let us, for completeness, also spell out the Chevalley-Serre generators in

the basis Lαα, Ra
b,Q

α
a, S

b
β. We put
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Ha = Ra
a −Ra+1

a+1, 1 ≤ a < n,

Hn = Rn
n + L1

1 + C,

Hα+n = −Lαα + Lα+1
α+1, α ≤ m

E+
a = Ra

a+1, 1 ≤ a < n,

E+
n = Sn

1,

E+
α+n = Lαα+1, 1 ≤ α < m,

E−a = Ra+1
a, 1 ≤ a < n,

E−n = Q1
n,

E−α+n = −Lαα+1, 1 ≤ α < m, (2.3.26)

2.3.2 sl(n|n)

Within the family of Lie superalgebras sl(n|m), the case n = m is special

in several aspects. The u(1) generator C, as introduced in (2.3.20), becomes

central, as can be seen directly from the representation (2.3.21). This means

that removing generators with non-vanishing supertrace from gl(n|m) is not

sufficient to obtain a simple Lie superalgebra. Put differently, sl(n|n) is the

only subseries of the special linear superalgebras sl(n|m) where the identity

generator is part of the algebra. To obtain a simple Lie superalgebra we

project the identity out and consider

psl(n|n) = sl(n|n)/ < C > . (2.3.27)

Let us stress the important fact that the central charge we projected out is

a nontrivial central charge, i.e. sl(n|n) is a non-trivial central extension of

psl(n|n). This is different e.g. to the case of gl(n), which is a trivial central

extension of sl(n). Indeed, this means we cannot find a basis such that C

decouples from the other generators, i.e. does not appear on the right-hand

side of commutators of psl(n|n) generators. Furthermore, this also implies

that on representations, C cannot have arbitrary eigenvalues.

Note that for psl(n|n) there is no 2n-dimensional fundamental represen-

tation. This can be understood as follows: All 2n× 2n-dimensional super-

matrices, i.e. gl(n|n), have 2n Cartan generators, which correspond to the

2n diagonal matrix elements. Imposing the two conditions of factoring out
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the identity as well as demanding vanishing supertrace leaves one with the

2×(n−1) Cartan generators of the two bosonic subalgebras sl(n). However,

when commuting a positive fermionic root generator with its dual negative

root, one will always end up with a generator which is not a direct sum of

the Cartan generators of the sl(n)’s. Hence, for psl(n|n), it is often useful to

work with projective representations, which are representations of sl(n|n),

where each matrix is just defined modulo the identity element.

We can write the partition of gl(n|n) into its simple part psl(n|n) and

two u(1) charges as

gl(n|n) = u(1) n psl(n|n) n u(1), (2.3.28)

where A n B indicates a non-direct product such that B is an ideal in

AnB. The u(1) on the right-hand side corresponds to the central charge C,

which completes psl(n|n) to sl(n|n). Furthermore, the u(1) on the left-hand

corresponds to the generator which is removed by requiring the vanishing

of the supertrace. It acts as an external derivation on sl(n|n), and will be

denoted by H2n.The action on the remaining Chevalley-Serre generators is

given as follows:

[H2n,Hj ] = 0,

[H2n,En] = En,

[H2n,Fn] = −Fn,

[H2n,Ej ] = [H2n,Fj ] = 0, j 6= n. (2.3.29)

Due to this diagonal action it can henceforth be considered as an additional

Cartan generator. In the literature, this generator is sometimes called outer

automorphism, as each derivation of a Lie superalgebra also defines an au-

tomorphism via the adjoint action of its exponential. Note that as any

multiple of H2n can be used to define an automorphism, we have a one di-

mensional vector space of external derivations, and a one-parameter family

of external automorphisms. This is in contrast with all other series of simple

Lie superalgebras, which have only a discrete set of external automorphisms.

Another curious point to note is that for the simple algebra psl(n|n) the

definition of its rank is somewhat ambiguous. Indeed, the Chevalley-Serre
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basis consists of 3× (2n+ 1)− 1 generators, as (2.3.26) for generic sl(n|m),

but as mentioned, with C = 0. This constraint removes one Cartan gener-

ator, but one is still left with 2n + 1 positive and 2n + 1 negative simple

root generators. Furthermore, a consequence is that the Cartan matrix is

degenerate for psl(n|n), but also for the central extension sl(n|n). How-

ever, if one extends the algebra further to gl(n|n), one obtains an extended

Cartan-matrix

Agl(n|n) =



2 −1 0 . . . . . . . . . . . . . . . . . . 0

−1 2 −1 0 . . . . . . . . . . . . . . .
...

0
. . .

. . . −1 0 . . . . . . . . . . . .
...

... . . . −1 2 −1
. . . . . . . . . . . . 0

0 . . . 0 −1 0 1 0 . . . . . . 1
... . . . . . . . . . 1 −2 1 0 . . . 0
... . . . . . . . . . 0 1 −2 1

. . .
...

... . . . . . . . . .
... . . .

. . .
. . . 1

...
... . . . . . . . . . 0 . . . . . . 1 −2 0

0 . . . . . . 0 1 0 . . . . . . 0 0



..

(2.3.30)

This matrix describes the action of a generalised Chevalley-Serre basis which

includes the generators of sl(n|n) and the additional Cartan generator H2n,

defined via (2.3.29). It is non-degenerate.

As H2n does not appear on the right-hand side of any commutator of

generators of gl(n|n), one is free to rescale H2n by a constant µ, without

changing the structure of the algebra. The only difference will be that the

commutators with En, Fn, which now read

[H2n,En] = µEn,

[H2n,Fn] = −µFn. (2.3.31)

Furthermore, one can add a multiple of the identity to H2n, as this will not

change any commutators at all. The shifted and rescaled generator H2n is
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then represented by

H2n =
µ

2

(
n∑
I=1

EI,I −
2n∑

I=n+1

EI,I

)
+

λ

2n

2n∑
I=1

EI,I . (2.3.32)

The rescaling and the shift modify the Cartan matrix, which now reads

Agl(n|n) =



2 −1 0 . . . . . . . . . . . . . . . . . . 0

−1 2 −1 0 . . . . . . . . . . . . . . .
...

0
. . .

. . . −1 0 . . . . . . . . . . . .
...

... . . . −1 2 −1
. . . . . . . . . . . . 0

0 . . . 0 −1 0 1 0 . . . . . . µ
... . . . . . . . . . 1 −2 1 0 . . . 0
... . . . . . . . . . 0 1 −2 1

. . .
...

... . . . . . . . . .
... . . .

. . .
. . . 1

...
... . . . . . . . . . 0 . . . . . . 1 −2 0

0 . . . . . . 0 µ 0 . . . . . . 0 λµ



.

(2.3.33)

2.3.3 psl(2|2)nC3

As we have seen in the last section, psl(n|n) is a special series of Lie superal-

gebras in the sense that it allows for a non-trivial central extension, and also

has a continuous one-parameter family of outer automorphism. The case

n = 2 is even more special, as it allows for in total three non-trivial central

charges, as well as three independent outer automorphisms forming an sl(2)

algebra. This feature crucially modifies the representation theory and allows

physical models with such symmetry to have special features. In particular,

we will see in chapter 5 that all three additional central charges are required

in the AdS/CFT correspondence, so that the central charge corresponding

to energy eigenvalues can have non-trivial values on representations.

In this chapter we only want to describe the mathematical features of

the centrally extended psl(2|2)nC3. We start by describing the sl(2) outer

automorphism, which will, upon application on psl(2|2), automatically lead

to the central extension.
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Using the same conventions as in the previous two sections, psl(2|2) con-

sists of two sl(2)’s generated by Ra
b and Lαβ, with all indices running from

1 to 2 now. The indices at the fermionic generators Sa
α,Qα

a are arranged,

as before, in such a way that they transform in fundamental and antifun-

damental representation of the two bosonic subalgebras. As these are now

simply sl(2) algebras, the fundamental and antifundamental representation

are actually isomorphic. It is convenient to raise all indices of the fermions,

and combine the fermions corresponding to positive roots with the negative

roots into one doublet Qaβc as follows:

Qaβ1 = εacQβ
c, Qaβ2 = εβγSa

γ . (2.3.34)

Hence, the new index c = 1, 2 appears in a similar fashion as the Latin and

Greek indices. These did correspond to representation indices of the sl(2)

algebras generated by Ra
b and Lαβ. Interestingly, one can define 3 external

generators Ba
b, a, b = 1, 2, with B1

1 + B2
2 = 0, which act on psl(2|2) as

follows:

[Ba
b,Q

cδe] = δebQ
cδa − 1

2
δabQ

cδe

[Ba
b,R

a
b] = [Ba

b,L
α
β] = 0. (2.3.35)

Here, we combined the supercharges Qα
b,S

a
β into one doublet of generators

Indeed, one can convince oneself that the Ba
b’s generate an sl(2) algebra

[Ba
b,B

c
d] = δcbB

a
d − δadBc

b. (2.3.36)

The global transformations they generate are given by

Qaβ1 → aQaβ1 + bQaβ2

Qaβ2 → cQaβ1 + dQaβ2, (2.3.37)

with four complex numbers a, b, c, d which, for compatibility with the com-

mutation relations, have to satisfy the condition

ad− bc = 1. (2.3.38)
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Then, all previous psl(2|2) relations are satisfied as before, apart from the

appearance of three additional charges Ca
b, which are central with respect

to psl(2|2):

{Q111,Q221} = C1
2

{Q112,Q222} = −C2
1 (2.3.39)

We can combine the full commutation relations for all fermionic generators

as

{Qaαa,Qbβb} = εabεαγεabLβγ + εacεαβεabRb
c + εabεαβεacCb

c . (2.3.40)

If we denote the three independent central charges C,P,K, such that

C1
1 = −C2

2 = C, C1
2 = P, C2

1 = −K. (2.3.41)

we see that C appears precisely in the way as in (2.3.20). C is central as for all

gl(n|n), but the crucial difference in the case n = 2 is that it is accompanied

by 2 further central charges. Likewise, the generator B1
1 is quite similar

to the generator H2n introduces for gl(n|n), but again accompanied by two

further external derivations. Note that if one would set P = K = 0, and

does not consider the action of B1
2 and B2

1, then one would indeed recover

the algebra gl(2|2). However, if one considers the fully centrally extended

algebra psl(2|2) n C3, then it is quite clear that the sl(2) automorphisms

Ba
b cannot act on the fundamental representation. This is because Ba

b act

on the central charges as

[Ba
b,C

c
d] = δcbC

a
d − δadCc

b, (2.3.42)

which can be derived from consistency with the commutation relations

(2.3.35). Note that the same consistency requires the eigenvalues of the

central charges to be related to the parameters of the sl(2) rotations as
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C =
ad+ bc

2
P = ab

K = cd. (2.3.43)

Furthermore, the fundamental representation of the fermionic generators

needs to be modified to

Qα
a|φb〉 = a δba|ψα〉, Qα

a|ψβ〉 = b εαβεab|φb〉,

Sa
α|φb〉 = c εabεαβ|ψβ〉, Sa

α|ψβ〉 = d δβα|φa〉. (2.3.44)

As the automorphisms do not act on the bosonic part of the theory, their

action remains unchanged. For completeness we give their representation:

Ra
b|φc〉 = δcb |φa〉 −

1

2
δab |φc〉, Lαβ|ψγ〉 = δγβ |ψ

α〉 − 1

2
δαβ |ψγ〉. (2.3.45)

Note that for generic parameters a, b, c, d, the fundamental representation

does not allow for a triangular decomposition, which means that there is

no basis such that the positive (negative) roots can be represented in the

upper (lower) triangular block. The fundamental representation is also not

of highest weight type. Instead, it is a cyclical representation.

For some purposes, it is useful to consider the maximally extended algebra

sl(2) n psl(2|2) nC3, (2.3.46)

where indeed sl(2) acts as an outer automorphism on the ideal psl(2|2)nC3.

The problem of considering this big algebra is that the sl(2) automorphism

cannot be represented on the four dimensional fundamental representation,

and it is hence of limited interest for the applications dealt with in this

thesis. The automorphisms are also not compatible with many other finite-

dimensional representations. However, the physics of the AdS/CFT corre-

spondence requires the existence of the central charges. This renders the

invariant form to be degenerate, for the same reason as sl(n|n) has a de-

generate form. For generic n we only have one central charge, and the
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degeneracy could be lifted by considering the extension by the sole external

derivation H2n, giving the algebra gl(n|n). It is easy to see that extending

psl(2|2)nC3 to sl(2)npsl(2|2)nC3 lifts this degeneracy, but also obstructs

the construction of representations. This is a certain dilemma, as e.g. the

construction of the R-matrix for the corresponding Yangian, as done in sec-

tion 2.2.3, requires the existence of a non-degenerate form, whereas physics

needs representations. We will overcome this dilemma, at least for the clas-

sical r-matrix, in section 5.1.3.

2.4 Yangian of sl(n|m)

As we have seen in section 2.2.2, the Yangian in Drinfeld’s first realisation

can be defined for any Lie superalgebra with non-degenerate invariant bi-

linear form. Hence, we can straightforwardly use the definitions (2.2.33)

for the case of the simple Lie superalgebras psl(n|m), but also their exten-

sion gl(n|m). This will be discussed in section 2.4.2. As we will see, this

is also true when n = m, as well as for the case of sl(2) n psl(2|2) n C3.

However, we recall that sl(n|n) and psl(2|2) n C3 do not posses a non-

degenerate form. Consequently, the sl(2) automorphisms are necessary to

define a consistent Yangian structure. This is potentially problematic, as

the automorphisms are, in most cases, incompatible with the psl(2|2) nC3

representations. If the automorphisms would appear in the coproduct of the

Y(psl(2|2)nC3) generators, it could indeed be problematic to define tensor

products of Y(psl(2|2)nC3). However, it turns out that the automorphisms

do not appear explicitly in the coproducts of Y(psl(2|2) n C3). Hence,

one can define tensor products of Y(psl(2|2) n C3), despite the fact that

the automorphisms cannot be represented on most representation spaces of

psl(2|2)nC3. Furthermore, it is consistent to define the Yangian of sl(n|n)

and psl(2|2) n C3 in Drinfeld’s second realisation. the particular case of

psl(2|2) n C3 will be investigated in section 2.4.4, with the results mainly

based on [92]. Before introducing the Yangian, we will briefly discuss its

classical counterpart, the Lie bialgebra structure corresponding to the loop

algebra of gl(n|m), in section 2.4.1. Section 2.4.3 deals with the evaluation

of the universal R-matrix on the fundamental representation of the Yangian

of gl(n|m), as investigated in [91].
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2.4.1 The Lie Bialgebra of gl(n|m)

Before coming to the actual Yangian, let us briefly state the classical Lie

bialgebra of gl(n|m), or, rather, of gl(n|m)[u, u−1]. If we use the basis gen-

erators EIJ , as introduced in (2.3.3), then the classical r-matrix, derived

from the classical double construction as shown in section 2.1.4, reads

r =
∑
k,J

(−1)JEIJ,k ⊗ EJI,−k−1 =
∑
J

(−1)J
EIJ ⊗ EJI
u1 − u2

=
P

u1 − u2
. (2.4.1)

The resulting cobrackets of the generators EJI,k of the polynomial algebra

read explicitly

δ(EKL,k) =
k−1∑
l=0

(
(−1)|J |EKJ,l+k ⊗ EJL,−l−1

)
(2.4.2)

Hence, the classical r-matrix is simply the graded permutation operator,

divided by the difference of the spectral parameters of the associated rep-

resentation spaces. This is in line with the observation that the quadratic

Casimir of gl(n|m) reduces to the permutation operator on the tensor prod-

uct of two fundamental representations (2.3.6). For the centrally extended

psu(2|2) n u(1)3, we are again facing the dilemma of having no Casimir.

However, the extended algebra sl(2)npsu(2|2)nu(1)3 has a non-degenerate

form with associated quadratic Casimir

t = Ra
b⊗Rb

a−Lαβ⊗Lβα+Qα
a⊗Sa

α−Sa
α⊗Qα

a+Ba
b⊗Cb

a+Ca
b⊗Bb

a.

(2.4.3)

Interestingly, the resulting cobrackets of the generators of psl(2|2) n C3,

which are spelled out in table 2.1, do not include any automorphism Bb
a.

This will be crucial when constructing the Yangian of psl(2|2)nC3 in section

2.4.4. However, the classical r-matrix related to the Casimir (2.4.3), and we

will study the solution to this problem in section 5.1.3.

2.4.2 Y(gl(n|m))

Let us start by considering the fundamental representation of gl(n|m) with

generic generators Ja. Then the corresponding first level Yangian generators
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δ(Cb
a)n =

n−1∑
k=0

(Cb
c)k ∧ (Cc

a)n−k−1

δ(Rn)ab = +
n−1∑
k=0

(Rk)
a
c ∧ (Rn−1−k)

c
b

−
n−1∑
k=0

[
(Sk)

a
γ ∧ (Qn−1−k)

γ
b −

1

2
δab (Sk)

d
γ ∧ (Qn−1−k)

γ
d

]
δ(Ln)αβ = −

n−1∑
k=0

(Lk)
α
γ ∧ (Ln−1−k)

γ
β

+
n−1∑
k=0

[
(Qk)

α
c ∧ (Sn−1−k)

c
β −

1

2
δαβ (Qk)

δ
c ∧ (Sn−1−k)

c
δ

]
δ(Qn)αb = −

n−1∑
k=0

(Lk)
α
γ ∧ (Qn−1−k)

γ
b −

n−1∑
k=0

(Rk)
c
b ∧ (Qn−1−k)

α
c

−
n−1∑
k=0

Ck−1 ∧ (Qn−k−1)αb +
n−1∑
k=0

εαγεbdPk ∧ (Sn−1−k)
d
γ

δ(Sn)aβ = +
n−1∑
k=0

(Rk)
a
c ∧ (Sn−1−k)

c
β +

n−1∑
k=0

(Lk)
γ
β ∧ (Sn−1−k)

a
γ

+

n−1∑
k=0

Ck ∧ (Sn−k−1)aβ +

n−1∑
k=0

εacεβδKk ∧ (Qn−1−k)
δ
c (2.4.4)

Table 2.1: Cobrackets of psl(2|2) nC3.
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Ĵa are represented as

Ĵa = uJa, (2.4.5)

where u is some complex number called the spectral parameter. As shown

in [100], for sl(n) this satisfies all defining relations of the Yangian, whereas

for other simple Lie algebras such simple evaluation representation does not

work. The proof carries over to gl(n|m). We have introduced the Yangian as

a deformation of the polynomial algebra g[u], but from the perspective of the

fundamental representation there is actually no difference to the Yangian.

The crucial difference comes into play when considering tensor products.

The action on tensor products is given by the coproduct (2.2.37). Now, if ui

labels the spectral parameter corresponding to tensor factor i, the coproduct

of the Yangian generators in the first realisation on two representation spaces

reads

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja (2.4.6)

∆(Ĵa) = Ĵa ⊗ 1 + 1⊗ Ĵa +
1

2
fabcJ

b ⊗ Jc

= u1J
a ⊗ 1 + 1⊗ u2J

a +
1

2
fabcJ

b ⊗ Jc. (2.4.7)

Note that here we put ~ = 1. Introducing the basic matrices EIJ , as in

(2.3.3), and using the quadratic Casimir (2.3.5), we get

∆ÊKL = ÊKL ⊗ 1 + 1⊗ ÊKL +
1

2
[EKL ⊗ 1,

∑
IJ

(−1)|J |EIJ ⊗ EJI}

= ÊKL ⊗ 1 + 1⊗ ÊKL +
1

2

∑
J

(
(−1)|J |EKJ ⊗ EJL − (−1)|K|+|KL||JK|)EJL ⊗ EKJ

)
.

(2.4.8)

Note that one can quickly convince oneself that this is a quantisation of the

cobrackets (2.4.2), i.e. δ ∼ ∆−∆op.

With this information one can already derive the R-matrix on evaluation
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representations. Indeed, the r-matrix is defined as the intertwiner

R∆(X) = ∆op(X)R (2.4.9)

for all generators of the Yangian X. On the fundamental representation we

get the well-known Yang R-matrix

R = 1 +
1

u1 − u2
P, (2.4.10)

where P is, as before, the graded permutation operator, which permutes

the two representations. Note that if u ∼ 1
~ , then this quantum R-matrix is

expanded as

R = 1 + ~r, (2.4.11)

with the classical r-matrix of (2.4.1).

Of course, one cannot fix the scalar factor of the R-matrix by solving

equation (2.4.9). In this thesis, we are mainly interested in a different,

more powerful approach to obtain R-matrices from Yangians, namely via

universal R-matrices, as studied in section 2.2.5 . Hence, we should study

the fundamental evaluation representation of the Yangian in the second

realization. Indeed, if we take the Chevalley-Serre basis (2.1.12) of gl(n|m),

and consider the defining relation (2.2.42), we can straightforwardly derive

the evaluation representation in this case. Motivated by the form of the

isomorphism between the first and the second realisation (2.2.43) we make

the ansatz

Hi,k = (u+ ai)
kHi,0

E+
i,k = (u+ ai)

kE+
i,0

E−i,k = (u+ ai)
kE−i,0. (2.4.12)

Take e.g. the relation

[Hi,k+1,E
+
j,l]− [Hi,k,E

+
j,l+1] =

1

2
Aij{Hi,k,E+

j,l}. (2.4.13)
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Plugging in our ansatz we get

→ (ai − aj)AijE+
j,0 =

1

2
Aij{Hi,0,E+

j,0}. (2.4.14)

For gl(n|m) this gives us enough conditions to fix all but one ai. Indeed, if

we put a1 = 1/2, we get

ai =
i

2
, i ≤ n

ai =
2n− i

2
, n < i. (2.4.15)

One can check that all other defining relations (2.2.42) are also satisfied with

these parameters. We have also checked explicitly that the isomorphism

(2.2.43) is compatible with this choice, up to an overall shift in u.

2.4.3 The R-matrix on the Fundamental Representation

In this section we will systematically evaluate the universal R-matrix on the

fundamental representation of gl(n|m) and its Yangian in Drinfeld’s second

realization, as studied in the last section. The first step towards the explicit

evaluation of the Cartan part (2.2.62) of the universal R-matrix is to invert

the operator D given in (2.2.55).

The factors R+ and R− are fairly easy to evaluate due to the nilpotence

of the roots

R+ =

1
2

(m+n−1)(m+n)∏
k=1

exp(
1

u
(−1)|βk|F |βk|E+

βk
⊗ E−βk)

=

1
2

(m+n−1)(m+n)∏
k=1

(
1 +

1

u
(−1)|βk|F |βk|E+

βk
⊗ E−βk

)
, (2.4.16)
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R− =

1
2

(m+n−1)(m+n)∏
k=1

exp(
1

u
F |βk|E−βk ⊗ E

+
βk

)

=

1
2

(m+n−1)(m+n)∏
k=1

(
1 +

1

u
F |βk|E−βk ⊗ E

+
βk

)
. (2.4.17)

Here, u = u1−u2 is the difference of the spectral parameters on both factors

of the tensor product. The product in R+, R− is taken in a particular order,

as defined in [91]. On the fundamental representation the individual blocks

commute, however. Thus what remains is the evaluation of the (2.2.62). Let

us first show that the factor (2.2.62) is convergent. Indeed, each element of

RH =
∏
ij(RH)ij is of the form

(RH)ij ∼
∞∏
n=0

an+ b

an+ b+ hi

an+ b+ hi − hj
an+ b− hj

. (2.4.18)

Using the following product representation of the Gamma function

Γ(z) = lim
M→∞

1

z
e−z(

∑M
k=1 1/k−logM)

M∏
n=1

1

1 + z/n
ez/n , (2.4.19)

one easily finds

(RH)ij ∼
∞∏
n=0

an+ b

an+ b+ hi

an+ b+ hi − hj
an+ b− hj

=
Γ( b+hia )Γ(

b−hj
a )

Γ(
b+hi−hj

a )Γ( ba)
. (2.4.20)

The matrix (2.2.62) is diagonal since the Cartan algebra elements are diag-

onal. Using the prescription (2.2.64) one finds

(RH)11;11 ≡ R0(u) =


√
h(u)

Γ( 1−u
n−m)Γ( u

n−m)
Γ(− u

n−m)Γ( u+1
n−m)

, n 6= m,

u+ 1
2

u− 1
2

, n = m.

(2.4.21)

The function h(u) is a simple ratio of trigonometric functions and, as follows

from the discussion in the following section, may be dropped being solely

a CDD factor. Surprisingly, this factor coincides for m = 0 with the u(n)

dressing factor found in [108]. Moreover, for m > 0 and m 6= n it is identical

to the u(N) dressing factor with N = n−m.
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Evaluating the remaining elements of RH and combining them with the

formulas (2.4.16) and (2.4.17) one finds the following compact result for the

R-matrix

R = R0(u)

(
u

u+ 1
+

1

u+ 1
P
)
.

(2.4.22)

Here, P denotes the graded permutation operator

PVi ⊗ Vj = (−1)|i||j|Vj ⊗ Vi. (2.4.23)

The matrix part of this R-matrix is the supersymmetric version of the Yang’s

R-matrix. It does not depend on whether the expansion is taken for T � 1

or T � 1 in the Cartan part. This is expected, as this is the only solution

to the rational Yang-Baxter equation on those representation spaces.

2.4.4 Yangian of psl(2|2)nC3

The principal definition of the Yangian works for the algebra sl(2)npsu(2|2)n
u(1)3, as this has a non-degenerate invariant form. As argued before, we

are particularly interested in the fundamental evaluation representation, on

which the automorphisms do not act.

Considering the generic coproduct of a Yangian generator,

∆(Ĵa) = Ĵa ⊗ 1 + 1⊗ Ĵa +
1

2
fabcJ

b ⊗ Jc, (2.4.24)

we notice that in principle the automorphisms can appear on the right-hand

side even for generators of psl(2|2)nC3. This would be a problem as then one

could not act with this coproduct on a tensor product of two representations,

if the automorphisms do not act on the individual representations. Luckily,

it turns out that the automorphisms do not appear on the right-hand side

of coproducts of psl(2|2) n C3 generators. This can be seen by recalling

that psu(2|2) n u(1)3 forms an ideal in sl(2) n psu(2|2) n u(1)3. Hence, the

non-trivial part of the coproduct
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[t, Ja ⊗ 1] = [tpsl(2|2) + Bx
y ⊗ Cyx + Cxy ⊗By

x, J
a ⊗ 1] (2.4.25)

is also in psu(2|2)nu(1)3⊗psu(2|2)nu(1)3 for all elements Ja in psl(2|2)nC3.

Having established this fact, we indeed find that tensor products of repre-

sentations of psu(2|2)nu(1)3 can be lifted to representations of the Yangian.

2.4.5 Drinfeld’s Second Realisation of Y(psl(2|2)nC3)

In [92] it was shown that one can also define the Yangian of the centrally

extended psl(2|2) n C3 in a consistent way in Drinfeld’s second realisation.

This is non-trivial, as the generic isomorphism between first and second

realisation, valid for simple Lie algebras, is not working directly. It is how-

ever this realisation which is used for the construction of of the universal

R-matrix. In this section, we give the details of [92], but also include some

new results on how to include one of the outer automorphisms into the al-

gebra. Such automorphisms were already necessary to be included in the

classical r-matrix (see section 5.1.3), to lift the degeneracy of the invariant

form. So one expects that it also plays a role for the quantum R-matrix.

The first crucial remark is that the second realisation of the Yangian seems

incompatible with the distinguished Dynkin diagram. Indeed, one can show

that the some defining relations from (2.2.42), like

[Hi,m+1,E
+
j,n]− [Hi,m,E

+
j,n+1] =

1

2
Aij{Hi,m,E+

j,n},

are not possible to satisfy for the fermionic root E+
j,2, if one assumes simple

evaluation type representations

Hi,m = (u+ ai)
mHi,0, E±i,m = (u+ ai)

mE±i,0. (2.4.26)

One could cure this problem by allowing for more complicated representa-

tions, or introduce additional Fermi number generators. We are not sure

if such choices are particularly natural, and will henceforth work with the

fermionic Dynkin diagram, where such problems do not arise. This is prob-

ably related to the fact that all simple roots are fermionic and hence treated

on an equal footing. We note that also the Bethe equations of the AdS/CFT
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correspondence, which derive from the centrally extended S-matrix, cannot

be written in all Dynkin bases [55], so this might be related to the problems

we face here.

Let us introduce the purely fermionic Chevalley-Serre basis. The extended

Cartan matrix is given by

A =


0 1 0 0

1 0 −1 −1

0 −1 0 2

0 −1 2 0

 , (2.4.27)

and the corresponding Chevalley-Serre generators, satisfying the standard

relations (2.1.12), are given in terms of the generators used in section 2.3.3,

by

H1 = −R1
1 + L1

1 − C,

H2 = −R1
1 − L1

1 + C,

H3 = R1
1 − L1

1 − C,

E+
1 = Q2

1,

E+
2 = S2

2,

E+
3 = Q1

2,

E−1 = −S1
2,

E−2 = Q2
2,

E−3 = −S2
1. (2.4.28)

The fourth Cartan generator can be realised by

H4 = R1
1 + L1

1 −B1
1, (2.4.29)

which would satisfy the standard Chevalley-Serre relations, but does not

act on the fundamental representation due to the involvement of the auto-

morphism B1
1. However, note the following observation. If one represents

the generator B1
1 as

75



B1
1 =

1

4C
(E11 + E22 − E33 − E44) , (2.4.30)

then H4 correctly produces the Cartan matrix from the invariant product

on the fundamental representation, which is given by

Aij = str(HiHj). (2.4.31)

However, H4 will then not act diagonally on the roots. As B1
1 is an external

automorphism, we might just redefine the abstract action on the roots in

such a way that is compatible with (2.4.30).

Let us now give the definition of the Yangian in Drinfeld’s second realisa-

tion. For psl(2|2)nC3, we find that the Chevalley-Serre generators Hi,k, E
+
i,k

and E−i,k, where as usual k = 0 corresponds to the Lie generators (2.4.28),

satisfy the standard relations (2.2.42). However, the isomorphism to the

first realisation (2.2.43) does not exactly the standard form. Instead, the

special elements (2.2.44) appearing in (2.2.43) need to be modified to

v1 = −1

2
H2

2,0 +
1

4
(R2

1R
1

2 + R1
2R

2
1 − L2

1L
1

2 − L1
2L

2
1

+Q1
1S

1
1 + Q2

2S
2

2 −S1
1Q

1
1 −S2

2Q
2

2)− 1

2
PK,

v2 = −1

2
H2

1,0 +
1

4
(R2

1R
1

2 + R1
2R

2
1 + L2

1L
1

2 + L1
2L

2
1

+Q2
1S

1
2 −Q1

2S
2

1 −S1
2Q

2
1 + S2

1Q
1

2) +
1

2
PK,

v3 = −1

2
H2

3,0 +
1

4
(−R2

1R
1

2 −R1
2R

2
1 + L2

1L
1

2 + L1
2L

2
1

−Q1
1S

1
1 −Q2

2S
2

2 + S1
1Q

1
1 + S2

2Q
2

2)− 1

2
PK,
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w1 = −1

4
(E+

2,0H2,0 + H2,0E
+
2,0) +

1

4
(S1

1L
1

2 + L1
2S

1
1 −S2

2R
1

2 −R1
2S

2
2 − 2Q1

2K),

w2 = −1

4
(E+

1,0H1,0 + H1,0E
+
1,0) +

1

4
(Q2

1R
1

2 + R1
2Q

2
1 + Q1

2L
2

1 + L2
1Q

1
2 + 2S1

1P) +
1

2
S1

1P,

w3 = −1

4
(E+

3,0H3,0 + H3,0E
+
3,0) +

1

4
(S1

1R
2

1 + R2
1S

1
1 −S2

2L
2

1 − L2
1S

2
2 − 2Q2

1K),

z1 = −1

4
(E−2,0H2,0 + H2,0E

−
2,0) +

1

4
(Q1

1L
2

1 + L2
1Q

1
1 −Q2

2R
2

1 −R2
1Q

2
2 − 2S2

1P),

z2 = −1

4
(E−1,0H1,0 + H1,0E

−
1,0) +

1

4
(S1

2R
2

1 + R2
1S

1
2 + S2

1L
1

2 + L1
2S

2
1 + 2Q1

1K) +
1

2
Q1

1K,

z3 = −1

4
(E−3,0H3,0 + H3,0E

−
3,0) +

1

4
(Q1

1R
1

2 + R1
2Q

1
1 −Q2

2L
1

2 − L1
2Q

2
2 − 2S1

2P).

(2.4.32)

Note the appearance of the central charges C,K,P, which is certainly not

expected from the general form (2.2.44). Indeed, the difference to (2.2.44),

when naively plugging in the generators, is given by

(v1)standard − v1 = +
1

2
PK, (2.4.33)

(v2)standard − v2 = −1

2
PK, (2.4.34)

(v3)standard − v3 = +
1

2
PK, (2.4.35)

(w2)standard − w2 = −1

2
S1

1P, (2.4.36)

(z2)standard − z2 = −1

2
Q1

1K. (2.4.37)

Here, we have labelled the standard special elements appearing in (2.2.44)

by the subscript standard. We can now evaluate these special elements on
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the fundamental representation, or alternatively make the same ansatz as

for sl(n|m),

Hi,k = (u+ ai)
kHi,0

E+
i,k = (u+ ai)

kE+
i,0

E−i,k = (u+ ai)
kE−i,0. (2.4.38)

Then we find the following interesting result:

a1 = 0,

a2 = C,

a3 = 0 (2.4.39)

That means the spectral parameter corresponding to the second set of

Chevalley-Serre generators is shifted by the eigenvalue of the central charge

C. As C can have continuous values in the centrally extended case, it is not

a shift by half-integers, as in the case of gl(n|m) studied in section 2.4.2.

It is quite interesting that the rapidity, which parametrises the momentum,

is shifted by the energy. Such combination also appears in the all-loop S-

matrix, which can be seen as an indication that this S-matrix can be derived

from a Yangian double.
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3 Integrable Models

In this chapter we will review several integrable models. In particular, we

will discuss relativistic integrable field theories in section 3.1 and integrable

spin chains in section 3.2. We will focus on discussing models with Yangian

symmetries. Indeed, we will argue that the Yangian is a central object in

the investigation of those theories. On the example of the principal chiral

field, we will see that the Yangian leads, by direct evaluation of the universal

R-matrix derived in section 2.2.3, to the exact S-matrix of this model. This

offers a new perspective on the S-matrix formalism in integrable models.

Previously S-matrices have usually been obtained by first using the invari-

ance with respect to the Lie algebra symmetry, which combined with the

Yang-Baxter equation yields the matrix structure of the S-matrix. Alterna-

tively to the Yang-Baxter equation, one can use Yangians or other Quantum

Groups to fix the matrix structure of the S-matrix [109, 110]. This is be-

cause the Yang-Baxter equation can be used as a defining relation for the

Yangian, as reviewed in [95]. The scalar factor of the S-matrix is then fixed

by exploiting crossing symmetry, as well as imposing unitarity and analyt-

icity. Often, crossing, unitarity and Lie algebra symmetry are considered

as independent concepts, whereas e.g. in [110] it has been already pointed

out that Quantum Groups can include all those symmetries. Our approach

goes further, as we show that, in the case that the underlying Quantum

Group is a Yangian, we can reconstruct the full S-matrix including a coss-

ing symmetric, unitary prefactor, directly from the universal R-matrix. As

we have extensively studied the Yangian in the last chapter, the derivation

of the S-matrix is straightforward. This demonstrates the usefulness of our

new approach to S-matrices.

It is well known that there are different links between spin chain models

and integrable field theories. The existence of the same symmetry in two

models can be seen as a first evidence for a link of the models. We will
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not elaborate on the details of how integrable field theories arise as limits

of spin chains, and refer the reader to the review [111]. In [111], the same

integrable models are discussed as in this thesis, but from the perspective

of functional equations rather than the symmetry algebras. Interestingly,

the techniques used to solve the crossing equations are quite similar to the

techniques of constructing the universal R-matrix, as studied in chapter 2.

The S-matrices are the fundamental object in constructing the Bethe

equations, which were proposed in [112] for the Heisenberg Hamiltonian.

Bethe equations for symmetries of higher rank were investigated in [113,

114]. We will discuss the ideas of the Bethe ansatz only briefly, and refer

the reader to the reviews [50, 115, 116].

3.1 Integrable Field Theories

In this section we would like to discuss some features of integrable relativis-

tic field theories in 1+1 dimensions. A crucial object of these theories is the

S-matrix, which can be derived provided some quite general properties hold,

namely, if the S-matrix is factorisable and satisfies the Yang-Baxter equa-

tion, it is crossing invariant and it is unitary. These properties are closely

related to the abstract algebraic properties of quasi-triangular Hopf alge-

bras, which we discussed before. We discuss these properties of S-matrices

in section 3.1.1. A review on integrable field theories and their S-matrices

can be found in [117]. In section 3.1.2 we introduce another important ob-

ject in integrable models, the Lax connection. Section 3.1.3 deals with the

Principal Chiral Field, which is shown to be classically invariant under a

Yangian. We then reproduce its complete S-matrix by exploiting this Yan-

gian symmetry1. More information on Yangians in integrable field theories

can be found in the review [118].

1We assume there is no quantum anomaly, as argued in [34, 45]
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3.1.1 The S-matrix of Integrable Field Theories

Let us investigate a generic field theory defined in 1 + 1 dimensions. It is

often useful to work with light cone momenta

pi = p0
i + p1

i , p̄i = p0
i − p1

i , (3.1.1)

where the index i denotes particle i with mass mi. For simplicity we will

take all masses to be equal. The light cone momenta can then be written

in terms of rapidities θi as

pi = meθi p̄i = me−θi , (3.1.2)

where θi is a positive (negative) real number if the particle moves in positive

(negative) direction along the real line. The transformation

θi → −θi (3.1.3)

transforms a particle moving in positive direction to one moving in negative

direction. This can also be seen by expressing the original Lorentzian energy

and momentum in terms of the rapidity,

p0
i =

1

2
(pi + p̄i) = m cosh(θi)

p1
i =

1

2
(pi − p̄i) = m sinh(θi). (3.1.4)

Furthermore,

θi → iπ − θi (3.1.5)

leads to a change in sign of the energy, which is why this transformation

corresponds to an antiparticle transformation.

We would now like to investigate the scattering of particles. The S-

matrix connects an in-state in the infinite past with an out-state in the

infinite future. Scattering of all incoming particles can only take place if

the particle to the furthest on the left is the fastest, and the one to the right

is the slowest. Hence, we sort our in-state as

|Aa1(θ1)Aa2(θ2) . . . Aan(θn)〉in (3.1.6)
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such that

θ1 > θ2 > · · · > θn. (3.1.7)

Here, |Aai(θi)〉 denotes a particle of type ai with rapidity θi
2. The S-matrix

is now simply the operator

Sa1,...,anb1,...,bn
|Aa1(θ1) . . . Aan(θn)〉in = |Abm(θ′m) . . . Ab1(θ′1)〉out, (3.1.8)

which maps an in-state to an out-state. It depends on the rapidities of the

scattered particles as well as on the type of particles it scatters. Note that

the order of rapidities of the particles of the out-state is reversed compared

to the in-state, i.e.

θ′1 < θ′2 < · · · < θ′m. (3.1.9)

Generically, the particle labels ak, bl of the in and out state will correspond

to a representation of some symmetry algebra, in many cases a simple Lie

algebra. The classical way to look at it is to say that a particle carries a

Lie algebra index, and consider the rapidity as something additional, inde-

pendent from the Lie algebra. We would like to advertise that Quantum

Groups are a more natural way unifying the matrix structure with the ra-

pidity dependence. Indeed, in the case of Yangian symmetry, the rapidity θ

is related to the spectral parameter u of the Yangian. Hence, one can con-

sider a particle described by a state |Aai(θi)〉 as living on the representation

of the Yangian, and the rapidity comes in naturally.

Before investigating the precise symmetry structures for certain models,

let us continue with some fairly general arguments for integrable relativistic

field theories. Consider the total energy and momentum, which in the light

cone are just given by

P |Aa1(θ1)Aa2(θ2) . . . Aan(θn)〉 =
n∑
k=1

meθk |Aa1(θ1)Aa2(θ2) . . . Aan(θn)〉

P̄ |Aa1(θ1)Aa2(θ2) . . . Aan(θn)〉 =
n∑
k=1

me−θk |Aa1(θ1)Aa2(θ2) . . . Aan(θn)〉.

(3.1.10)

2To be precise, the particle should be represented by a wave packet such that the domi-
nant contribution comes from a momentum corresponding to the rapidity θi.
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These are of course conserved in a scattering process. We remark that in

Hopf algebra language this simply means that energy and momentum act

with the trivial coproduct on multi-particle states.

In a scattering process, energy and momentum conservation certainly

restrict the S-matrix, but the effects become much more dramatic if one has

an infinite set of higher spin conserved currents. Consider charges with spin

s acting as

Qs|Aa1(θ1)〉 = esθ1 |Aa1(θ1)〉. (3.1.11)

If infinitely many of them are conserved, then the scattering process of n to

m particles,

|Aa1(θ1)Aa2(θ2) . . . Aan(θn)〉in → |Ab1(θ′1)Ab2(θ′2) . . . Abm(θ′m)〉out, (3.1.12)

leads to infinitely many equations

esθ1 + esθ2 + · · ·+ esθn = esθ
′
1 + esθ

′
2 + · · ·+ esθ

′
m . (3.1.13)

These equations can generally only be satisfied if n = m, i.e no particle

production or annihilation takes place. Furthermore, the momenta can only

be permuted, so the set of outgoing equals the set of incoming momenta.

This would already greatly simplify the S-matrix structure. However, even

more is true [39]. As the charges Qs roughly act as ps, the action on a

particle described by

ψ(x) ∝
∫ ∞
−∞

dpe−a
2(p−p1)2+ip(x−x1), (3.1.14)

i.e. a wave packet with momentum centred at p1, is given by

eiQ3ψ(x) ∝
∫ ∞
−∞

dpeip
3−a2(p−p1)2+ip(x−x1), (3.1.15)

so if one expands the argument in the exponent about p1, one gets a shift

of x1 by something depending on p1. As the different incoming particles

are assumed to have different momenta, we can hence use the higher spin

conserved charges to separate the n → n scattering into 2 → 2 particle

scattering processes3. Hence, the n → n particle S-matrix factorises into a

3In [40] it was shown that indeed the existence of two conserved charges of higher spin
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product of 2-particle scattering matrices, i.e.

S(θ1, . . . , θn)) =
∏

S(θk, θl). (3.1.16)

Here, the two particle S-matrix S(θk, θl). is understood to act only on par-

ticles k and l.

Even more, one can argue that the order of the two particle scattering

matrices composing the n particle scattering process does not matter. This

leads to the important Yang-Baxter equation, which is hence a necessary

equation to hold for the theory to be integrable.

S(θ1, θ2)S(θ1, θ3)S(θ2, θ3) = S(θ2, θ3)S(θ1, θ3)S(θ1, θ2). (3.1.17)

The Yang-Baxter equation itself just states that the order of the two-particle

scattering processes within a factorised process of scattering three particles

does not matter. As we will see in the case of the S-matrix of the AdS/CFT

correspondence in chapter 5, the existence of an S-matrix which satisfies

the Yang-Baxter equation is often seen as a strong hint for integrability,

even though the existence of conserved charges at the quantum level was

not shown there yet. Indeed, the Yang-Baxter equation is not a sufficient

condition for the integrability of the theory. This is clear if one considers e.g.

a theory without flavour, such that the S-matrix is just a scalar. This could

be for instance φ4 theory in 1 + 1 dimensions. This theory is not integrable.

Interestingly, it can be made integrable by adding terms of higher order in

the field, ultimately leading to the sinh-Gordon theory, see [117].

Due to the factorisation property of S-matrices in integrable field theories,

one of the main remaining problems is to find the two particle S-matrix. In

general, if we scatter two particles 1 and 2, the S-matrix will depend on the

two rapidities θ1, θ2. This situation is depicted in figure 3.1.

As we argued before, we have p3 = p2 and p1 = p4, so the momenta are

only permuted. However, if we have a relativistic theory, then relativistic

is sufficient for the factoristaion, whereas in [39] infinitely many conserved charges are
assumed to exist. However, in most known cases, if one has one additional conserved
charge, one also finds infinitely many others. We believe that the reason for this is
that we usually have Quantum Groups like the Yangian as the symmetry algebra in
integrable models. The corresponding monodromy matrix generates both local and
non-local conserved charges. The non-local charges are not commuting and form
a Yangian, and indeed, one extra Yangian charge is usually sufficient to generate,
together with the underlying Lie algebra, the whole Yangian.
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Figure 3.1: Two particle scattering process.

invariance implies also that the two particle S-matrix depends only on the

difference of the two rapidities. Indeed, the S-matrix should depend only on

invariant quantities, and one can express the invariant Mandelstam variable

s = (pµ1 + pµ2 )2 (3.1.18)

as

s

m2
= cosh2(θ1)− sinh2(θ1) + cosh2(θ2)− sinh2(θ2) +

2 cosh(θ1) cosh(θ2)− 2 sinh(θ1) sinh(θ1)

= 2 + 2 cosh(θ1 − θ2),

(3.1.19)

i.e. s depends only on θ = θ1 − θ2.

An important issue is that if we apply the S-matrix to a two particle state,

where the difference of rapidities of the two particles is θ = θ1−θ2, and then

apply the S-matrix again, the initial and final states are indistinguishable.

As the momenta got permuted after the first application of the S-matrix,

this means that the second S-matrix depends on the relative rapidity −θ =
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θ2 − θ1. This situation is depicted in figure (3.2).
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Figure 3.2: Unitarity of the S-matrix.

In terms of rapidity depending S-matrices we have

S(θ)S(−θ) = Id, (3.1.20)

or with indices

S(θ)b1b2a1a2S(−θ)c1c2b1b2
= δc1a1δ

c1
a1 . (3.1.21)

This property of the S-matrix is called unitarity.

As this S-matrix acts like

S(θ2 − θ1)a1,a2b1,b2
|Aa1(θ1)Aa2(θ2)〉in = |Ab2(θ2)Ab1(θ1)〉out, (3.1.22)

it is considered as the forward scattering matrix a1, a2 → b1, b2. If we

consider the crossed S-matrix a1, b̄1 → b̄2, a2, we see that the antiparticle b̄1

has momentum −p2. The situation is shown in figure 3.3.

The invariant in this channel is the Mandelstam variable

t = (p1 − p3)2 = (p1 − p2)2, (3.1.23)
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Figure 3.3: The crossed S-matrix.

which can be expressed in term of the crossed rapidity (3.1.5) as

t

m2
= 2 + 2 cosh(iπ − θ). (3.1.24)

We should note that, as after all both s and t depend only on θ, they are not

really independent variables. This is of course expected in 1+1 dimensions.

Cross-channel unitarity reads

S(iπ − θ)b̄1b2a1ā2S(iπ + θ)c1c̄2
b̄1b2

= δc1a1δ
c̄2
ā2 . (3.1.25)

Now, crossing invariance precisely means that the t-channel matrix should

equal the s-channel matrix, i.e. in components we have

S(iπ − θ)b̄1b2a1ā2 = S(θ)a1,a2b1,b2
. (3.1.26)

This is the crossing equation.

If one has a relativistic integrable model, one can now use the Yang-

Baxter equation, combined with crossing and unitarity, to derive the two-

particle S-matrix. This will generically completely fix the S-matrix up to
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one undetermined factor X(θ), which satisfies

X(θ)X(−θ) = 1,

X(θ)X(iπ − θ) = 1. (3.1.27)

Such factor is called a CDD factor. It cannot be fixed by the symmetries

directly, but is instead fixed by assumptions on the pole structure of the

S-matrix. Certain poles in the S-matrix correspond to bound states of the

fundamental particles, so knowledge about the particle content of the the-

ory can be used to fix the CDD factor.

Having established the two particle S-matrix, we can compose multi-

particle S-matrices of two particle S-matrices using factorizability. Then,

one can use the Bethe ansatz to diagonalise the scattering process. If we

consider the field theory on a large cylinder, periodic boundary conditions

allow one to solve for the momenta, or rapidities. Combined with the dis-

persion relation, this allows one to find the asymtotic energy spectrum of

the theory on a large cylinder.

We would like to comment on this general approach to find the S-matrix

for integrable models. We have argued that crossing, unitarity and the Yang-

Baxter equation are quite general features of an S-matrix in integrable field

theories. Additionally, the S-matrix should be invariant under the symmetry

algebra, which is usually just taken to be a Lie algebra. Then, crossing,

unitarity and the Yang-Baxter equation are somewhat disconnected from

the Lie algebra symmetry. We would now like to advertise the point of view

that quantum groups offer a unified approach to S-matrices of integrable

field theories. We have seen in section 2.2.1 that quasi-triangular Hopf

algebras automatically lead to S-matrices which satisfy crossing and the

Yang-Baxter equation4. In particular, Yangians extend ordinary Lie algebra

symmetry, and provide rational S-matrices. Hence, with this logic, all we

have to do is to show our model haas a quantum group symmetry, and all

desired properties for the S-matrix follow directly. We will follow this logic

by studying precise examples in section 3.1.3 for the principal chiral field.

4Unitarity should be related to triangularity. We have given a prescription to yield
unitary S-matrices from the Yangian Double, despite that it is only quasi-triangular.
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3.1.2 Lax Connection and Conserved Charges

Another important concept in integrable models is the Lax pair and the

monodromy matrix. Indeed, the trace of the monodromy matrix, which is

called the transfer matrix, is the object which generates all the conserved

local charges, rendering a model integrable. To start with, the equations

of motion of the integrable field theory under investigation must have the

property that they can be written in terms of the flatness condition for the

connection (∂0 + L0, ∂1 + L1), i.e.

[∂0 + L0, ∂1 + L1] = 0 (3.1.28)

must imply the equations of motion. The precise form of the Lax matrices

L0, L1 will depend on the model. Generically, they will depend on a spectral

parameter λ. This will be important, as this means we have a one-parameter

family of flat connections.

Let us consider the monodromy matrix associated to the Lax connection.

It is defined by

T (t, λ) = P exp

(
−
∫ 2π

0
L1(x, λ)dx

)
, (3.1.29)

where P is the path-ordering operator. Its time derivative is given by

∂tT (t, λ) = ∂t lim

←∏
k

(1− L1(xk, λ)dx)

= − lim
∑
r

r+1∏
k=n

(1− L1(xk, λ)dx)∂tL1(xr, λ)dx

1∏
k=r−1

(1− L1(xk, λ)dx)

= − lim
∑
r

r+1∏
k=n

(1− L1(xk, λ)dx)(∂xL0(xr, λ) + [L1(xr, λ), L0(xr, λ)])dx

1∏
k=r−1

(1− L1(xk, λ)dx)

= L0(2π, λ) exp

(
−
∫ 2π

0
L1(y, λ)dy

)
− exp

(
−
∫ 2π

0
L1(y, λ)dy

)
L0(0, λ)

= [L0(0, λ), T (t, λ)].

(3.1.30)
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Here, we have used that the theory is defined on a cylinder with periodicity

2π, and suppressed the time dependence for L. As we find that the time

derivative of T (t, λ) is a commutator, this implies that the trace of T (t, λ)

is time independent. Furthermore, even ∂t tr(Tn(t, λ) = 0 is true. If we

expand those quantities in λ, we get infinitely many conserved charges.

The precise form of the expansion will influence the nature of the conserved

charges. Indeed, a priori it is not clear which charges, if any, can be written

as integrals of local densities. Such charges were used in the arguments to

show factorisability of the S-matrix. Indeed, local charges can be obtained

by expanding about the poles, see [119]. In [34], also non-local charges,

which are traditionally obtained from the expansion about ∞, were shown

to lead to the absence of particle production and the factorisation of the

S-matrix.

3.1.3 Principal Chiral Field

In this section we study the 1 + 1 dimensional Principal Chiral Field with

SU(n)× SU(n) symmetry. This is one of the simplest integrable field the-

ories one can write down. We will show in particular its relation to the

Yangian, culminating in the reproduction of the complete S-matrix just

from Yangian symmetry.

The action of the theory is given by

S =
1

2λ

∫
d2x tr(G−1∂µG)(G−1∂µG), (3.1.31)

where G takes values in the SU(n) group, and λ is a coupling constant,

which plays no role for the investigation of the classical theory in this section.

The Principal Chiral Field posses local as well as non-local conserved

charges, and the latter form a Yangian. All these charges have been inves-

tigated in [120, 46]. Let us start by describing the usual Noether charges.

SU(n) acts globally from the left and from the right in the usual way,

G→ ULGU
−1
R , (3.1.32)

with UL ∈ SU(n)L and UR ∈ SU(n)R. This transformation is apparently a
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symmetry of the Lagrangian, and the corresponding conserved currents are

jµL =
1

λ
∂µGG−1

jµR = − 1

λ
G−1∂µG. (3.1.33)

The conservation equation

∂µjµ = 0 (3.1.34)

implies, as usual, that the associated charges

Qa
0 =

∫ ∞
−∞

ja0 (x)dx (3.1.35)

are constant in time. Here, we have made the Lie algebra index a explicit.

Now one can convince oneself that the charge

Qa
1 =

∫ ∞
−∞

ja1 (x)dx− λ

2
fabc

∫ ∞
−∞

jb0(x)

∫ x

−∞
jc0(y)dydx (3.1.36)

is also conserved. This follows from the fact that the current satisfies the

flatness condition

∂µjν − ∂νjµ − λ[jµ, jν ] = 0. (3.1.37)

Note that the index 0, 1 at the currents corresponds to the specification of

the space-time index µ, whereas the 0, 1 at the charges Q corresponds to a

numeration of infinitely many such charges. In particular, the charges Q0

Poisson commute to a su(n) Lie algebra, whereas the charges Q1 correspond

to the additional Yangian generators of Y(su(n)), as we introduced them in

(2.2.33). Indeed, it was shown that all defining relations for the Yangian

are satisfied (see [118]). Having in mind that the Lie Group acts from the

left and the right, there are also two corresponding copies of the Yangian.

The Poisson brackets of the currents [121, 122, 123] are given by

{ja0 (x), jb0(y)} = fabcjc0(x)δ(x− y),

{ja0 (x), jb1(y)} = fabcjc1(x)δ(x− y) +
1

λ
δabδ′(x− y). (3.1.38)

These hold again for left and right SU(n) separately. The derivative of the

delta function, which renders the Poisson brackets non-ultra local, compli-

cates the investigation of the commutation relations. We will not discuss
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the consequences of these terms in detail, as we will now merely state the

local conserved charges, but not derive their Poisson brackets. It is useful to

work in light cone coordinates x± = 1
2(t ± x), where the flatness condition

takes the form

∂−j+ = ∂+j− = −λ[j+, j−]. (3.1.39)

Then it is easy to see that

∂+T−− = ∂−T++ = 0, (3.1.40)

where

T±± = −λ
2

tr(j±j±) (3.1.41)

are the non-vanishing components of the energy-momentum tensor. How-

ever, the higher spin charges

∂+T
n
−− = ∂−T

n
++ = 0 (3.1.42)

are then also conserved.

Let us now choose an orthonormal basis of su(n) with respect to the

Killing form, i.e.
(
Ja, Jb

)
= −δab. Furthermore, consider the tensors

da1,...,am associated to Casimir operators C of su(n) via

C = da1,...,amJ
a1 . . . Jam . (3.1.43)

They can be chosen to be totally symmetric. These details can be found in

any Lie algebra book, see e.g. [97]. In terms of d invariance of the Casimir

means

dc(a1,...,am−1
fam)bc = 0, (3.1.44)

where the brackets () denote symmetrisation of the appropriate indices.

Then one finds that

∂±da1,...,amj
a1
∓ j

a2
∓ . . . jam∓ ∝ da1,...,am

m∑
k=1

ja1∓ . . . j
ak−1
∓ fakbc j

b
∓j

c
± . . . j

am
∓

= 0, (3.1.45)

using the flatness condition for the current.

The corresponding conserved charges are of higher spins, and hence should
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imply the factorisation of the S-matrix. Furthermore, it was shown in [46]

that these local charges commute with the Yangian charges, and, by taking

certain combinations of the conserved charges, one could construct a basis

of Poisson commuting local charges.

As we have seen in section 3.1, if one has established the factorisation

of the S-matrix, the usual way to derive the S-matrix in a relativistic, in-

tegrable quantum field theory is solve for the two particle S-matrix. This

is usually done by solving the Yang-Baxter equation, imposing unitarity as

well as crossing invariance. The remaining CDD ambiguity is then fixed by

investigating the particle content of the theory. All these equations are fairly

complicated. We will advocate here another method to find the S-matrix,

as established in our recent work [91]. We learned that the principal chiral

field is invariant under two copies of the Yangian Y(su(n)) . Furthermore,

we know that the (double) Yangian is quasi-triangular, i.e. it has a universal

R-matrix, which, on representation, automatically satisfies the Yang-Baxter

and crossing equation, and, upon the right choice of the diagonalisation of

the Cartan part, is also unitary (2.4.21). As an S-matrix satisfying all those

equations is unique up to a CDD ambiguity, the S-matrix of the principal

chiral field should be of the form

S(θ)PCF = XPCF (θ)S(θ)Y(su(n)) ⊗ S(θ)Y(su(n)), (3.1.46)

where S(θ)Y(su(n)) is the Y(su(n)) invariant S-matrix, coming from a repre-

sentation of the universal R-matrix of sections 2.2.5,2.4.3. XPCF is a CDD

factor, which is fixed by making the diagonalisation of the Cartan part of

the Yangian compatible with the particle spectrum of the theory. We recall

the result for the Y(su(n)) S-matrix in the antisymmetric expansion of the

shift operator (2.4.21),

S(u)Y(su(n)) =

√√√√Γ( u
n−m)Γ(1 + u

n−m)

Γ( 1+u
n−m)Γ(1− 1−u

n−m)

Γ( 1−u
n−m)Γ(1− 1+u

n−m)

Γ( −un−m)Γ(1 + −u
n−m)

(
1

u+ 1
Id +

u

u+ 1
P
)
.

(3.1.47)
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If we put θ = uN
2πi , we recover the precise result from [124, 43],

S(θ)PCF =
sinh(θ/2 + iπ

N )

sinh(θ/2− iπ
N )

(
Γ(1− θ

2πi)Γ( 1
N + θ

2πi)

Γ(1 + θ
2πi)Γ( 1

N −
θ

2πi)

)2

(
P+ +

θ + 2πi/N

θ − 2πi/N
P−
)
⊗
(
P+ +

θ + 2πi/N

θ − 2πi/N
P−
)
,

(3.1.48)

provided that we put the CDD factor to

XPCF (θ) = 1. (3.1.49)

Note that, as here the square of the Y(su(n)) S-matrix is involved, this

also resolves the square root ambiguity encountered in (2.4.21). Further-

more, we have used the operators P+, P− projecting on the symmetric and

antisymmetric part of the tensor products. They are defined as usual by

P± =
1

2
(Id± P). (3.1.50)

This S-matrix leads to the Bethe Ansatz equations

eipkL =
M∏
l 6=k
Skl(θk − θl), (3.1.51)

describing the phase shift of a particle with momentum pk, when it lives on

the cylinder with radius L together with M − 1 other particles. The intu-

ition is that if particle pk goes once around the cylinder, it will scatter the

M − 1 other particles and acquire a phase shift
∏M
l 6=k Skl(−θk + θl) from the

scattering, and eipkL from the free propagation, and the total phase shift

should equal one. We will not deal with the precise derivation or solution

of the Bethe Ansatz in this thesis, and refer the reader to [41, 42, 43] for

the solution at finite n, and [125, 126] for the solution for large n. We also

refer to the review [111].

Let us now construct the Lax connection for the principal chiral field. We

had argued that the current j is flat (3.1.37). Let us rescale this current by
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1
λ for convenience, and write it as a one-form

j = jµdx
µ = j0dt+ j1dx = j0dt− j1dx. (3.1.52)

The flatness condition reads

dj + j ∧ j = 0. (3.1.53)

Then the Hodge dual is

∗j = jµdx
µ = j1dt+ j0dx (3.1.54)

where we have used the Lorentzian signature (+,−). It follows that

d ∗ j = 0 (3.1.55)

is equivalent to the equation of motion ∂µj
µ = 0.

Then we consider the connection

L = αj + β ∗ j, (3.1.56)

with α, β some constants, and get

dL+ L ∧ L = dj + α2j ∧ j + β2 ∗ j ∧ ∗j = (α2 − α− β2)j ∧ j. (3.1.57)

As a consequence, the current is flat precisely if

(α2 − α− β2) = 0. (3.1.58)

This implies that we have constructed a one parameter family of flat con-

nections. A parametrisation usually found in the literature is given by

introducing a parameter u such that

α =
1

2
(1± cosh(u)), β =

1

2
sinh(u). (3.1.59)

Then we denote the families by L(u), and construct the monodromies in

the same way as in 3.1.2.
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3.2 Spin Chain Models

In this section, we will discuss one of the simplest spin-chain models, the one

dimensional Heisenberg XXX spin chain with su(n) symmetry. We give its

definition in section 3.2.1. In section 3.2.2, we deal with the symmetry of the

XXX spin chain, and show that the su(n) symmetry is enlarged to a Yangian

by using the Yangian in Drinfeld’s first realisation. The Hamiltonian can

also be derived directly from the R-matrix via the RTT relations, which

makes the symmetries explicit. This construction is reviewed in [49, 116].

The definition of Yangians via RTT relations is reviewed in [95]. We discuss

the Bethe ansatz for the spin chain in its simple coordinate form in section

3.2.3. References on Bethe ansatze can be found in [50, 127, 128, 116].

3.2.1 XXX Spin Chains

A spin chain is a one-dimensional lattice of L sites, where at each site one has

a spin-degree of freedom. In this thesis, we will only be interested in closed

spin chains, i.e. we impose periodic boundary conditions on the lattice.

However, it is also natural to consider open spin chains. Furthermore, we

will deal with spin chains where the spins form a vector space which on which

su(n) acts in the fundamental representation. Let us denote the basis of the

representation space by

|φa〉, a = 1, . . . n. (3.2.1)

The Heisenberg XXX spin chain is given by L such spins interacting with

the simple nearest neighbour Hamiltonian

H = λ
L∑
k=1

Hk,k+1,

Hk,k+1 = I − Pk,k+1. (3.2.2)

For the closed spin chain, the L + 1’th site is identified with the first one.

The permutation operator flips two neighbouring sites,

P|XY 〉 = |Y X〉. (3.2.3)

If one generalises this Hamiltonian to superalgebras, one should simply sub-

stitute the permutation operator with the graded permutation operator,
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which picks up a minus sign whenever two fermions are interchanged. If

the constant λ is positive, the Hamiltonian has a ferromagnetic vacuum,

whereas if λ is negative, the ground state is antiferromagnetic.

Now as usual in physics the task is to find the eigenvalues of this Hamil-

tonian. Despite the fact that this Hamiltonian is extraordinarily simple, its

diagonalisation is, for fixed n, but arbitrary L, not straightforward. This

is because the Hamiltonian as a matrix grows with nL. It is only due to

the fact that this Hamiltonian is integrable that we can find a more efficient

method to diagonalise it, which is the Bethe ansatz. Crucial is the existence

of higher conserved charges. We will discuss non-local charges in the next

section.

3.2.2 The Yangian of the XXX Spin Chain

The Hamiltonian (3.2.2) is invariant under su(n). We choose the same

notation as in section 2.3 and note that

Pk,k+1 =
∑
IJ

EkIJ ⊗ Ek+1
JI . (3.2.4)

Here, EkIJ denotes the action of EIJ on the k’th factor of the tensor product,

i.e.

EkIJ = Id⊗ · · · ⊗ EIJ ⊗ · · · ⊗ Id (3.2.5)

But the action of EIJ on the tensor product of L fundamental representa-

tions is just given by the standard coproduct
∑L

k=1E
k
IJ , and we get

[

L∑
k=1

EkIJ ,

L∑
l=1

ElST ⊗ El+1
TS } =

L∑
l,k=1

(δkl(δJSE
k
IT − δITEkSJ)⊗ Ek+1

TS

+δk(l+1)E
k
ST ⊗ (δJTE

k+1
IS − δISE

k+1
TJ ))

=
L∑
k=1

((EkIT ⊗ Ek+1
TJ − E

k
SJ ⊗ Ek+1

IS ) + EkSJ ⊗ Ek+1
IS − E

k
IT ⊗ Ek+1

TJ ))

= 0

(3.2.6)

Hence, the Heisenberg XXX Hamiltonian is invariant under the Lie algebra

su(n). We now proceed to the Yangian, and recall the coproduct of the
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generators ÊKL in the first realisation (2.2.37):

∆ÊKL = ÊKL ⊗ 1 + 1⊗ ÊKL +
1

2
[EKL ⊗ 1,

∑
IJ

EIJ ⊗ EJI}

= ÊKL ⊗ 1 + 1⊗ ÊKL +
1

2

∑
J

(EKJ ⊗ EJL − EJL ⊗ EKJ)

= ÊKL ⊗ 1 + 1⊗ ÊKL +
1

2

∑
J

(EKJ ∧ EJL) . (3.2.7)

We work here on the simplest evaluation representation, namely the one

were the spectral parameter vanishes, i.e. ÊsKL = 0. Then, the coproduct

on the L-times tensor product is simply given by

∆L−1ÊKL =
1

2

L−1∑
s=1

L∑
t=s+1

∑
J

(
EsKJ ∧ EtJL

)
.

(3.2.8)

Taking tensor products of representations does not give information whether

the chain is closed or open. This is a property of the corresponding Hamilto-

nian. Let us consider for the moment the open chain. Commuting the Yan-

gian generator with the Heisenberg Hamiltonian leads to boundary terms,

which vanish in the L− >∞ limit. This can be seen from

1

2
[P, EKJ ∧ EJL] = EKL ∧ Id, (3.2.9)

and arguing that the cross-terms cancel out. Then one gets

[
∑
k

Pk,k+1,
1

2

L−1∑
s=1

L∑
t=s+1

∑
J

(
EsKJ ∧ EtJL

)
] = E1

KL − ELKL. (3.2.10)

These terms can be neglected upon working on asymptotic states. They

also vanish upon imposing periodic boundary conditions, but in this case,

the resulting algebra is not a proper Yangian algebra any longer. Having

established the first Yangian charges, one can use them to commute them

to the whole Yangian algebra. The monodromy matrix is then the formal

power series consisting of all Yangian charges. Conversely, one can derive

the whole Hamiltonian from the transfer matrix. We will not pursuit this

derivation, and refer the reader to the reviews. The transfer matrix and
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Yangian are closely related to the algebraic Bethe ansatz. Instead, we will

present the physical ideas of the coordinate Bethe Ansatz in the next sub-

section.

3.2.3 Bethe Ansatz for the su(n) Spin Chain

We now present the ideas of the coordinate Bethe Ansatz, which is a method

to calculate the spectrum of the Heisenberg spin chain. The idea is to con-

sider a vacuum state, where all the spins at each site point into the same

direction. Then one excites such vacuum state by flipping a spin, and, by

taking linear combinations of such states with one spin flipped, one calcu-

lates the eigenstate of the Hamiltonian and the corresponding energy eigen-

value, which yields the dispersion relation. Such an excitation will be called

a magnon. Then one goes on and considers several magnons and calculates

the scattering matrix, which describes the scattering of two magnons. As

the model is integrable, the S-matrix describing the scattering of multiple

magnons factorises into the product of two-particle S-matrices, in the same

way as it was happening for integrable field theories. Finally, imposing

appropriate boundary conditions for the wave function leads to the Bethe

equations, which one can solve for the momenta, and, via the dispersion

relation, for the energies of the magnons. Let us start by describing the

vacuum of the spin chain. The ferromagnetic vacuum of (3.2.2) with length

L is just the state

|0〉 = |φn, . . . , φn〉, (3.2.11)

where we have put L φn’s into the state. Of course, we could have chosen any

other of the n φi’s as the ground state. Note also that for our discussions, it

does not matter whether the constant λ in (3.2.2) is positive or not. In the

case of an antiferromagnetic choice λ < 0, 3.2.11 is not a true vacuum of the

system, but still a suitable state to construct the Bethe Ansatz. One can

imagine that one just diagonalises the negative Hamiltonian in that case.

We now proceed to consider states where single sites have a “spin flipped”

compared to the vacuum, i.e. at one site we have a different vector than

φn. We denote a state where at the k′th site we have a vector φa, with

a = 1, . . . , n− 1 and φn’s at the other sites, by

|φak〉 = |φn, . . . , φn, φa, φn, . . . , φn〉. (3.2.12)
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Such states are not eigenstates of the Hamiltonian. However, direct calcu-

lation shows that the plane wave

|φa(p)〉 =
∑
k

eipk|φak〉 (3.2.13)

is an eigenstate with the energy

E(p) = λ(2− 2 cos(p)) = 4λ sin2(
p

2
) (3.2.14)

As we would like to find all eigenstates of the Hamiltonian, the way to

proceed is to consider states with two spin flips now. Direct calculations

shows that the state of two plane waves,∑
k,l

eip1k+ip2l|φakφbl 〉, (3.2.15)

is not an eigenstate of the Hamiltonian. In some sense it is almost an

eigenstate, up to the terms in the above sum where k = l ± 1. The idea is

to consider a linear combination of this plane wave state with two spin flips

as above with a plane wave state where the two spin flips are exchanged, or

scattered. This leads to the ansatz

|φa,b(p1, p2)〉 =
∑
k<l

eip1k+ip2l|φakφbl 〉+ Sabcd (p1, p2)
∑
k<l

eip2k+ip1l|φckφdl 〉,

(3.2.16)

where Sabcd (p1, p2) is the S-matrix. For the above state to be an eigenstate

one has to put

Sabcd (p1, p2) =
e−ip1−ip2 + 1

e−ip1 − 2eip2−ip1 + eip2
δac δ

b
d −

1− eip1 − eip2 + eip1+ip2

1− 2eip2 + eip1+ip2
δadδ

b
c.

(3.2.17)

Note that δac δ
b
d is simply the (n− 1)× (n− 1) dimensional identity matrix,

whereas δadδ
b
c is the (n− 1)× (n− 1) dimensional permutation operator.

Furthermore, the energy of this state is simply the sum of the energies of

the two magnons,

H|φa(p1)φb(p2)〉 = (E(p1) + E(p2))|φa(p1)φb(p2)〉

E(pi) = 4λ sin2(
pi
2

). (3.2.18)

100



Let us do introduce the new variable

ui =
1

2
cot

pi
2
. (3.2.19)

Then the S-matrix takes the simple rational form

S(u1 − u2) =
u1 − u2

u1 − u2 + i

(
Id− i

u1 − u2
P
)
. (3.2.20)

Note that this is precisely the S-matrix we derived from Y(su(n− 1)) Yan-

gian symmetry (2.4.22), but here the S-matrix has no complicated scalar

prefactor as in (2.4.22). This is of course not unexpected. The choice of

the vacuum state (3.2.11) breaks the Lie algebra symmetry from su(n) to

su(n−1). However, we discussed that the whole chain has Y(su(n)) symme-

try. Indeed, the vacuum also breaks this higher symmetry to Y(su(n− 1)).

However, as the eigenstate basis is now basically Fourier transformed, i.e. we

have momentum eigenstates, the representation of the Yangian now contains

the evaluation parameter u, which equals precisely (3.2.19). Henceforth, it

also automatically satisfies the Yang-Baxter equation, and is furthermore

unitary, i.e.

S12(u1 − u2)S21(u2 − u1) = Id. (3.2.21)

As we have solved the two-magnon problem, we still have to diagonalise

all further states with more than two magnons. This is where we can use

that the system is integrable. Indeed, the idea is to start with a plane

wave state consisting of M spin-flips with flavour a1, . . . , aM propagating

with corresponding momenta p1, . . . , pM , and consider linear combinations

of such states were the k momenta are permuted. The coefficients in those

linear combinations are then taken to be S-matrices which precisely describe

the permutation of the momenta. If one permutes e.g. l of the M momenta,

the appropriate S-matrix is the l particle S-matrix. This l particle S-matrix

factorises, by integrability, into two particle S-matrices. In particular, let

us denote the M magnon eigenstate by

|φa1,...,aM (p1, . . . , pM )〉 =
∑
π

∑
l1,...,lk

eip1π(1)+···+ipMπ(M)Sπ|φa1l1 , . . . , φ
aM
lM
〉.

(3.2.22)

Here, Sπ is an S-matrix which realises the permutation π. If π is decomposed
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into transpositions

π = (i1, j1) . . . (ir, jr), (3.2.23)

then

Sπ = Si1,j1 . . .Sir,jr . (3.2.24)

By the Yang-Baxter equation, the particular decomposition of the permuta-

tion into transpositions does not matter. One can now convince oneself that

the states (3.2.22) are eigenstates of the Hamiltonian, and the eigenvalue is

again simply the sum of the eigenvalues of the single plane wave states, i.e.

H|φa1,...,aM (p1, . . . , pM )〉 = (E(p1) + · · ·+ E(pM ))|φa1,...,aM (p1, . . . , pM )〉.
(3.2.25)

Hence, we have constructed eigenstates of the Hamiltonian for arbitrary

length L of the spin chain, and an arbitrary number of magnons5.

As in this thesis we are interested with closed spin chains, an important

issue are boundary conditions. If one has M magnons as before, and we

consider the scattering of magnon l with all the M − 1 other magnons, we

came back to the starting position in the periodic chain. Hence, the total

phase shift of the magnon l is given by

M∏
k 6=l

Skl(pk, pl)|φa1,...,aM (p1, . . . , pM )〉 = eiplL|φa1,...,aM (p1, . . . , pM )〉.

(3.2.26)

In the case that the initial spin chain had just su(2) symmetry, the S-matrix

just has u(1) as residual symmetry, and is hence a scalar, i.e. (3.2.20) reduces

to

S(u1 − u2) =
u1 − u2 − i
u1 − u2 + i

. (3.2.27)

If we invert (3.2.19), getting

eip =
u+ i/2

u− i/2
, (3.2.28)

5We refer the reader to [129, 130] for discussions about the completeness of the eigen-
states.
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we can write the Bethe equations as

(
ul + i/2

ul − i/2

)L
=

M∏
k 6=l

uk − ul − i
uk − ul + i

. (3.2.29)

These are algebraic equations for the spectral parameters uk, which are re-

lated to the momenta. After solving for the momenta, we get the energy

eigenvalues just by plugging into the dispersion relation 3.2.14. If the orig-

inal symmetry algebra is su(n), with n > 2, the idea is to stepwise reduce

the rank of the algebra, till one arrives at su(2) Bethe equations (3.2.29).

We will not study the details of the nested Bethe Ansatz in this thesis, and

refer the reader to the literature [113, 114].
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4 The AdS/CFT Correspondence

The AdS/CFT correspondence, discovered in the late 1990s [13, 14, 15],

relates, in its most general form, conformal field theories in a flat d di-

mensional space to string theory on a ten dimensional space. This ten

dimensional space is the direct product of a d+ 1 dimensional Anti-de Sit-

ter space, denoted by AdSd+1, and a 9 − d dimensional internal manifold.

These theories are dual to each other in the sense that if one considers the

full theory, one gets field theory in a perturbative expansion of the coupling

constant, whereas the natural expansion parameter of string theory is the

inverse coupling. One can consider the field theory as living on the bound-

ary of the AdS space. This is why the AdS/CFT correspondence is often

seen as a realisation of the holographic principle [131, 132]. In this the-

sis we will be only concerned with the best tested case of correspondences,

namely between N = 4 Super Yang-Mills theory with SU(N) gauge group

in four dimensions and IIB string theory defined on an AdS5 × S5 space.

Moreover, we will only deal with the planar, large N limit, as the theories

seem to become integrable only in this limit. Integrability allows for novel

all-loop tests of the AdS/CFT correspondence, which indicate that, at least

in the planar limit, the involved gauge and string theories are physically

exactly equivalent. This seems rather surprising, as from naively looking at

the action and the particle content, gauge theory in four and string theory

in ten dimensions seem to have little in common. However, already in the

seventies [8] it was realised that a certain expansion of gauge theory, where

the expansion parameter involves the coupling constant as well as the rank

of the gauge group, N , resembles the perturbative expansion encountered in

string theory. The AdS/CFT correspondence makes such relation of gauge

and string theories precise and involves a much stronger claim, namely, of

the exact duality of the involved theories.

The reason why the AdS/CFT correspondence works well for the case of
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large N AdS5×S5 is the large amount of supersymmetry and subsequently

its integrability. Classical integrability was argued to exist for the bosonic

[29] and the full supersymmetric sigma model [28] and on the dual gauge side

in [25, 27, 28], whereas quantum integrability is currently only conjectured.

Under this assumption the all-loop S-matrix [56] and the all-loop Bethe [55]

and TBA equations [76, 77, 78, 79] could be written down. We will discuss

the S-matrix in chapter 5. Recently, N = 6 Chern-Simons Theory in three

dimensions was related to IIA string theory on AdS4×CP3 [133]. These the-

ories allow for a planar limit as well. Again, there is strong evidence that in

the planar limit these theories are exactly equivalent. This is because there

is strong evidence that these theories are also integrable [134, 135, 136]. The

AdS/CFT correspondence is also used in many other examples. One can try

to break symmetries and still learn many things about the involved theo-

ries. As the correspondence is generically a strong/weak duality, AdS/CFT

is a unique tool which allows to use perturbation theory at one side of the

correspondence to understand the strong coupling behaviour on the other

side. This can be useful e.g. when one wants to study quantum gravity and

uses field theory to do so. Likewise, one might be interested in field theory

questions and can use string theory via the correspondence. Ultimately, one

might be interested in obtaining a string theory dual to QCD, but as both

supersymmetry and conformal symmetry are broken, and QCD contains

additional fundamental fermions, this might still be a long way to go.

We begin this chapter by stating some features of string theory on AdS5×
S5 in section 4.1, and continue in section 4.2 to introduce the dual gauge

theory. Section 4.3 shows how integrable structures appear in the AdS/CFT

correspondence.

As in this section we do not present new results, we refer the reader to the

reviews [137, 9] for some background on the AdS/CFT correspondence, and

[138, 139, 140, 9] for some general background on string theory. Integrability

in the AdS/CFT correspondence has been reviewed in [24, 141, 142, 143,

111]

4.1 String theory on AdS5 × S5

String theory on AdS5×S5 has 2 independent parameters: The string slope

α′, which is related to the tension T = 1
2πα′ of an individual string, and
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the string coupling gs, which controls the interaction of several strings with

each other. The relation with the joint radius R of AdS5 and S5 is given by

R4 = 4πgsNα
′2. N is an integer which will turn out to be identical to the

rank of the gauge group of the dual gauge theory. On the string side, it is

related to the flux of the five form field. We are interested in a limit where

gs → 0, so the strings are not interacting. To keep the radius finite we will

send N →∞, such that

λ = gsN (4.1.1)

remains finite. λ will correspond to the ’t Hooft coupling on the gauge the-

ory side, and the limit is called the ’t Hooft, or planar limit.

In the t ’Hooft limit string theory is described by a non-linear sigma

model [16]. The bosonic part of the action takes the usual form

S =
1

α′

∫ 2π

0
dσ

∫ ∞
−∞

dτGMNγ
ab∂aX

M∂bX
N . (4.1.2)

It describes the embedding of a world-sheet cylinder with radius 2π and

metric γab into the AdS5 × S5 target space with metric GMN . The radius

R of the Anti de-Sitter space is the same as the radius of the sphere, which

is required for consistency upon adding the fermionic part to the action. In

general, a d dimensional sphere can be written as a coset

Sd =
SO(d+ 1)

SO(d)
, (4.1.3)

whereas a d dimensional AdS space is considered to be the coset

AdSd =
SO(d− 1, 2)

SO(d− 1, 1)
. (4.1.4)

Written in this way the global symmetry algebras are manifestly given to

be so(d+ 1) in the case Sd, and so(d− 1, 2) for AdSd. As the bosonic part

of the AdS5×S5 sigma model is a direct product space of S5 and AdS5, the

bosonic symmetry algebra of AdS5×S5 is just the direct sum so(4, 2)⊕so(6).

Using the well-known isomorphisms

so(4, 2) ∼= su(2, 2), so(6) ∼= su(4), (4.1.5)
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the elements of so(4, 2)⊕ so(6) ∼= su(4)⊕ su(2, 2) can be though of in block

form as (
B1 0

0 B2

)
, (4.1.6)

with B1 ∈ su(4), and B2 ∈ su(2, 2). Now there is a unique simple Lie

superalgebra which has su(4)⊕ su(2, 2) as the bosonic subalgebra. It is the

algebra psu(2, 2|4), which is a real form of psl(4|4), i.e. part of the algebras

psl(n|n) we have studied in section 2.3. If we consider (4.1.6), then getting

psu(2, 2|4) is quite natural if we think of filling the zero-blocks in (4.1.6) with

as many fermionic elements as possible. Recall that on the fundamental

representation the anticommutator of fermions will automatically lead to a

central extension, i.e. to the algebra su(2, 2|4), just as we have discussed in

2.3.2. We will briefly discuss the supersymmetric extension of the action in

section 4.3.1, but will first proceed by introducing the dual gauge theory in

the next section.

4.2 N = 4 Super Yang-Mills Theory

The other side of the AdS/CFT correspondence is N = 4 Super Yang-Mills

theory, which is the four dimensional supersymmetric Yang-Mills theory

with SU(N) gauge group and maximal supersymmetry. The Lagrangian is

given by

L = tr

(
1

4
FµνFµν +

1

2
DµφnDµφn −

1

4
g2
YM [φn, φm][φn, φm]+

ψ̇aα̇σ
α̇β
µ Dµψβa −

1

2
igYMψαaσ

ab
m ε

αβ[φm, ψβb]−
1

2
igYM ψ̇

a
α̇σ

m
abε

α̇β̇[φm, ψ̇
b
β̇
]

)
.

(4.2.1)

All fields transform in the adjoint of the SU(N) gauge group. Let us describe

the fundamental fields appearing in the Lagrangian. First of all, we have

the gauge field Aµ, with µ = 0, 1, 2, 3 being the usual Lorentz index. The

gauge field appears in the Lagrangian in form of the usual gauge invariant

objects, the covariant derivative

Dµ = ∂µ − igYMAµ, (4.2.2)
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as well as the field strength

Fµν =
i

gYM
[Dµ, Dν ] = ∂µAν − ∂νAµ − igYM [Aµ, Aν ]. (4.2.3)

Furthermore, the Lagrangian contains 6 scalar fields φn, n = 1, . . . , 6, which

transform in the fundamental representation of so(6). so(6) is called the R-

symmetry. Finally, there are the fermionic fields ψαa, ψ̇
a
α̇ which transform

both under the R and Lorentz symmetries. The Greek indices α, α̇ run from

1 to 2 and correspond to the usual splitting of the Lorentz algebra

so(1, 3) = su(2)⊕ su(2), (4.2.4)

which is due to the fact that the Lorentz algebra is not simple. Then α, α̇

correspond to the 2 dimensional representations of the two su(2)’s. The

indices a, b = 1, . . . , 4, correspond to the spinor representation of the so(6)

R-symmetry, which makes use of the isomorphism

so(6) = su(4). (4.2.5)

The matrices σmab and σα̇βµ are the chiral gamma matrices of su(4) and su(2)⊕
su(2), respectively. They allow one to write e.g. a Lorentz 4-vector V µ in

terms of the left/right su(2)’s, i.e.

V α̇β = σα̇βµ V µ. (4.2.6)

The way the Lagrangian is written shows that the so(1, 3) Lorentz symme-

try as well as the so(6) R-symmetry are manifest. Let us briefly describe

our notations for the whole symmetry algebra. We will work with the iso-

morphisms to the appropriate su(n) algebras, so we denote a basis of the

R-symmetry by

Rb
a, a, b = 1, . . . , 4, (4.2.7)

which satisfy the usual su(4) relations

[Rb
a,R

d
c ] = δbcR

d
a − δdaRb

c, (4.2.8)

just as outlined in section 2.3 for the general case sl(n|m). As before, we

have traceless matrices, which implies
∑

Ra
a = 0. The Lorentz generators
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are split into two sets of su(2) generators denoted by

Lβα, α, β = 1, 2,

Lβ̇α̇, α̇, β̇ = 1, 2, (4.2.9)

which again satisfy the usual su(2) relations. Note that for each of the su(2)

algebras, we again impose the trace condition, e.g.
∑

α L
α
α =

∑
α̇ L

α̇
α̇ = 0.

Let us comment on the further symmetries. First of all, the bosonic sym-

metry is enhanced. Indeed, the Lorentz algebra is enlarged to the Poincare

algebra, as expected. Furthermore, it was argued in [144] that the theory is

conformal even in the quantum case, and the beta function vanishes to all

orders. The conformal algebra in four dimensions is

so(2, 4). (4.2.10)

The additional generator of so(2, 4), which are not in so(1, 3), are the 4

translation generators Pµ, the special conformal generators Kµ, and the

dilatation generator D. Again, we will often make use of the isomorphism

so(2, 4) = su(2, 2), and we will rewrite the Lorentz indices in the same way

as in (4.2.6). Then the commutator of translation and boost reads

[Kαβ̇,Pγ̇δ] = δβ̇γ̇L
α
δ + δαγ L̇

β̇
δ̇ + δαγ δ

β̇

δ̇
D (4.2.11)

Furthermore, the theory is supersymmetric and contains four sets of super-

charges. We will denote the supercharges by Qb
β, Q̇α̇a, S

α
a and Ṡaα̇, with

the same indices as before. The indices manifestly realise the action of the

bosonic generators. The nontrivial commutation relations are given by

[Sα
a,Pβ̇γ ] = δαγ Q̇β̇a, [Kαβ̇, Q̇γ̇c] = δβ̇γ̇S

α
c,

[Ṡaα̇,Pβ̇γ ] = δα̇
β̇
Qa

γ , [Kαβ̇,Qc
γ ] = δαγ Ṡ

cβ̇,

{Q̇α̇a,Q
b
β} = δbaPα̇β, {Ṡaα̇,Sβ

b} = δabK
βα̇,

(4.2.12)
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{Sα
a,Q

b
β} = δbaL

α
β + δαβR

b
a +

1

2
δbaδ

α
β (D− C),

{Ṡaα̇, Q̇β̇b} = δab L̇
α̇
β̇ − δ

α̇
β̇
Ra

b +
1

2
δab δ

α̇
β̇

(D + C).

Here, we have introduced the central charge C, and together with all the

other generators we get the algebra

psu(2, 2|4) n u(1) = su(2, 2|4). (4.2.13)

The superconformal algebra

psu(2, 2|4) (4.2.14)

is obtained by projecting out C. It is a real form of the simple Lie su-

peralgebra psl(4|4), and the corresponding series of Lie superalgebras were

discussed in section 2.3.2. We should note that the existence of supersym-

metry of the theory is crucial for the persistence of conformal symmetry at

the quantum level.

Now, we would briefly like to comment on the ’t Hooft limit of this gauge

theory. Usually, one fixes the rank N of the gauge group, and remains with

the coupling constant gYM as the only free parameter in the theory. The

idea of [8] was to consider N as a parameter of the gauge theory. Physical

quantities in perturbation theory can be expanded in a double series in gYM

and 1
N . Then, one can introduce a new, effective coupling constant

λ = g2
YMN, (4.2.15)

and take a limit N → ∞ and gYM → 0 such that λ is fixed. In this limit

only planar Feynman diagrams contribute to physical quantities, and hence,

the theory dramatically simplifies.

4.3 Integrability in AdS/CFT

In this section we study how integrability appears in the AdS/CFT corre-

spondence. Section 4.3.1 deals with the classical integrability of the string

sigma model, which is shown via the existence of a Lax connection. In

N = 4 Super Yang-Mills theory , integrability appears in the action of
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the dilatation operator on single trace local operators. This is explored in

section 4.3.2.

4.3.1 Integrability of the AdS Sigma Model

Consider now an element G of the supergroup SU(2, 2|4). Then we can

construct a one-form

A = −G−1dG, (4.3.1)

which takes values in su(2, 2|4). It satisfies the flatness condition

∂µAν − ∂νAµ − [Aµ, Aν ] = 0, (4.3.2)

similarly as for the su(n) principal chiral field (3.1.3). However, the action

we construct now is different, and is written down by exploiting the Z4

automorphism of su(2, 2|4). This automorphism imposes a grading,

su(2, 2|4) = su(2, 2|4)(0) + su(2, 2|4)(1) + su(2, 2|4)(2) + su(2, 2|4)(3) (4.3.3)

on su(2, 2|4), so we can write each element as a direct sum over the graded

components. In particular, we can write the one-form A as

A = A(0) +A(1) +A(2) +A(3). (4.3.4)

Then we define the action on the supersymmetric coset

PSU(2, 2|4)

SO(5)× SO(4, 1)
(4.3.5)

as

S = − R2

4πα′

∫ (
γαβ str(A(2)

α A
(2)
β ) + κεαβ str(A(1)

α A
(3)
β )
)
. (4.3.6)

Note that the Z4 respects the supersymmetric grading, i.e. the zeroth and

second components are bosonic, whereas the first and third component are

fermionic. As one can check that su(2, 2|4)(0) = so(4, 1) ⊕ so(5), the com-

ponent A(0) does not appear in the action. This is in line with the intuition

that in the coset (4.3.5), SO(5)× SO(4, 1) is cancelled out.
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Let us summarise some features of this action. First of all, one can explic-

itly construct conserved Noether currents, and show that the corresponding

charges form an su(2, 2|4) algebra. Then, one has a reparametrisation in-

variance of the world-sheet cylinder, which ultimately leads to the Virasoro

constraints. Furthermore, one has a peculiar fermionic symmetry called

kappa-symmetry, which fixes the real parameter κ appearing in (4.3.6) to

be κ = ±1, and, most importantly, reduces the number of fermionic degrees

of freedom by one half. Finally, the Lagrangian is classically integrable. A

Lax connections was constructed in [28]

L(z) = A(0) +
1

z
A(1) +

1

2
(z2 +

1

z2
)A(2) +

1

2κ
(z2− 1

z2
) ∗A(2) + zA(3) (4.3.7)

and shown to satisfy the flatness condition

∂αLβ − ∂βLα = [Lα, Lβ]. (4.3.8)

We have used the two dimensional Hodge operator ∗. Note that this equa-

tion holds only if kappa symmetry holds, i.e. κ = ±1. Hence, it seems

Kappa symmetry is crucial for the integrability of the model. The flatness

conditions implies that the trace of the monodromy

T (τ, λ) = P exp

(
−
∫ 2π

0
L1(τ, σ, z)dσ

)
(4.3.9)

is conserved, just as we discussed for general integrable field theories in

section 3.1.2. However, it remains to be shown that those conserved charges

are in involution. This was done in [145], where it was conjectured that the

Lax connections requires the following modification:

L(z)→ L(z) +
1

2
√
λ

(1− z4)(C(0) + z−3C(0) + z−1C(3)). (4.3.10)

Here, C(k) are secondary constraints in the Hamiltonian analysis. We also

refer the reader to [146], where this Lax connection was derived.

The Poisson structure, resulting from the extended Lax connection where

the constraints are not imposed, is nontrivial, containing non-local terms,

112



similar as in the case of the principal chiral field. We believe that much

work remains to be done in this line, to fully uncover the algebraic structure

underlying the AdS/CFT system. In particular, no proper quantisation of

the sigma model and the charges has been done yet, so a proof of quantum

integrability remains to be found. Let us spell out the Poisson brackets,

which have been found in [145]:

{L1(σ1, z1), L1(σ2, z2)} = [r−12(z1, z2), L1(σ1, z1)]δ(σ1 − σ2)

+[r+
12(z1, z2), L2(σ1, z2)]δ(σ1 − σ2)− (r+

12(z1, z2)− r−12(z1, z2))∂σ1δ(σ1 − σ2).

(4.3.11)

Here, the classical r-matrix is given by

r12(z1, z2) =
3∑

n=0

(Ωn ⊗ 1)T psu(2,2|4)
12

eiπn/2z1 − z2
, (4.3.12)

and

r+
12(z1, z2) = −f(z1)

4z3
1

r12(z1, z2),

r−12(z1, z2) =
f(z2)

4z3
2

r21(z1, z2). (4.3.13)

Ω is the Z4 automorphism of psu(2, 2|4) introduced before in connection

with the grading of psu(2, 2|4). This means r12(z1, z2) here is a twisted

r-matrix. It is not directly related to the classical r-matrix with centrally

extended psu(2|2) n u(1)3 invariance discussed in section 5.1.3, which is

related to the weak/strong coupling limit of the scattering matrix. Here,

the r-matrix generates the Poisson structure (4.3.11). Nevertheless, there

is a remarkable similarity of the algebraic structure. Using this Poisson

structure it was shown in [145] that the conserved charges (4.3.9) are in

involution. This implies that the classical sigma model is integrable. Note

that this classical r-matrix also has a nice abstract algebraic formulation in

terms of a Lie dialgebra [147], in a similar way as the classical r-matrix of

the psu(2|2)nu(1)3 scattering problem has an underlying universal r-matrix

(see section 5.1.3) related to a Lie bialgebra.
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4.3.2 Integrability in N = 4 Super Yang-Mills Theory

We have established that the classical string sigma model, describing the

motion of strings on an AdS5×S5 backgrounds, is integrable. As the sigma-

model is defined on a two dimensional world-sheet cylinder, we can consider

the AdS5 × S5 sigma model as a generalisation of other two-dimensional

integrable field theories. We learned that N = 4 Super Yang-Mills theory

in the large N limit is dual to the AdS5 × S5 string sigma model. If we

assume integrability to survive quantisation, we should certainly expect

integrability to appear in N = 4 Super Yang-Mills theory. In particular, we

know that systems with infinitely many degrees of freedom are usually just

integrable in dimensions less than three, whereas here we consider N = 4

Super Yang-Mills theory in four dimensions. It turns out that the spectral

problem of finding anomalous dimensions of single-trace local operators can

be seen as an effective one dimensional problem. The crucial insight of

[25] was to map such single-trace local operators to a spin chain. This

generalised earlier observations [148, 149] of the appearance of integrable

lattice models in QCD. In [25], the authors took just single trace operators

composed of the so(6) scalar fields, which have the form

tr(φa1φa2 . . . φaL), (4.3.14)

with ak = 1, . . . , 6. As the fields φa live in a trace, one can consider such

operator as a closed spin chain of length L, and each φa defines a spin degree

of freedom, transforming in the fundamental representation of so(6). The

classical dimension of those scalar fields is just 1, but now one is interested

in calculating the quantum corrections of the dimension, i.e. the anomalous

dimension. In fact, the whole dimension of an operator is the eigenvalue of

the dilatation generator D of the conformal algebra, i.e. we consider the

eigenvalue problem

DO = ∆O, (4.3.15)

where O is a generic single-trace local operator, and ∆ is its dimension. The

dimension has an expansion

∆ =
∑

λk∆(k), (4.3.16)
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where ∆(0) is simply the classical dimension. As mentioned before, we are

only interested in the planar limit, so λ denotes, as before, the ’t Hooft

coupling constant. Likewise, we can expand the dilatation generator itself

as a power series

D =
∑

λkD(k). (4.3.17)

Now the above interpretation of a single trace-local operator as a spin chain

is merely a picture, but now the dilatation generator can be seen as a Hamil-

tonian acting on such chain. The observation in [25] was that the first

correction to the classical dilatation generator, D(1), is proportional to the

Heisenberg XXX spin-chain Hamiltonian with nearest neighbour interaction

and so(6) symmetry. As this Hamiltonian is integrable, in the same way as

the spin-chains with su(n) symmetry, which we discussed in section 3.2, one

can diagonalise it with the help of the Bethe Ansatz. Soon after the discov-

ery of one-loop integrability in the so(6) sector, integrability was argued to

survive at higher loops [27] in the expansion of D in λ. It turns out that

one can consider each of the higher D(k) as Hamiltonians, whose interaction

grows linearly with k, i.e. D(k) interacts with its kth nearest neighbours.

Furthermore, Bethe Ansatz equations describing the whole one-loop spec-

trum of a spin chain with psu(2, 2|4) symmetry have been derived in [26],

and the complete one-loop Dilatation generator D(1) has been written down

in [150]. It was argued in [30, 31] that the superconformal algebra at tree

level is enlarged to a Yangian. As we have also established non-local charges

forming a Yangian algebra at the string sigma model, it is natural to ex-

pect that there should be a Yangian for the full quantum AdS/CFT system.

However, as the range of the interaction grows order by order in perturba-

tion theory, and indeed also the Lie algebra generators themselves depend

on the coupling constant, finding the Yangian even in perturbation theory

is complicated. All perturbative checks performed in some subsectors to

certain lower loop orders have confirmed that there are Yangian charges in

each case [52, 53]. A complete proof of integrability would require to find

full all-loop charges, which can be expanded in weak coupling but also in

strong coupling, giving the non-local charges of the sigma model [28] at lead-

ing order in strong coupling. Then there should be infinitely many related

conserved local charges, which guarantee integrability in the way as argued

in section 3.1. This has currently not been achieved. However, the picture
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becomes clearer if one constructs magnons states out of the spin chain, and

considers the scattering problem, in the same way as we did for su(n) spin

chains in section 3.2. Likewise, there will be an associated scattering prob-

lem on the string side. This line of thought was proposed in [54], and will

be followed in the next chapter.
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5 The Magnon S-Matrix of

AdS/CFT

In this chapter we would like to study the S-matrix of AdS/CFT. This S-

matrix is the central object to derive spectral equations, as was advocated

in [54]. It was found in its all loop-form by exploiting the centrally ex-

tended psu(2|2) n u(1)3 symmetry [56], up to an overall factor. This factor

was later conjectured in [64, 65], based on earlier observations that there

has to be a non-trivial phase in the Bethe equations of classical strings [60].

This phase was generalised to quantum strings at one-loop [62, 63], and

those results are compatible with the fact that at weak coupling there is

no phase at the first three loops. A derivation of the full scalar factor in

an integral form [151] directly from crossing symmetry [59] was done in [66].

In its weak-coupling form, the S-matrix describes the scattering of magnons

of the psu(2, 2|4) spin chain, whereas at strong coupling it describes the

scattering of world-sheet excitations of the string sigma-model. As in the

light-cone gauge Lorentz symmetry is broken, the existence of crossing sym-

metry is not clear. However, crossing seems indeed to survive [59], and one

can derive it from a Hopf Algebra which was found later in [152, 153]. This

can be seen as a confirmation for the strength of the algebraic methods ad-

vocated in this thesis. Diagonalisation of the S-matrix leads to the all-loop

Bethe Ansatz [55] of AdS/CFT, which completely describes the spectrum of

long operators, or corresponding string states with large rotational charges.

Furthermore, the S-matrix [83] of the so-called mirror-model [154, 74], which

is obtained by Wick rotation from the original theory, is, in principle, un-

derlying the TBA equations. These TBA equations are believed to describe

the full spectrum of the AdS/CFT correspondence, and they and their asso-

ciated Y-system were first conjectured in [76, 77, 78, 79]. The derivation of

the TBA equations relies on the string hypothesis [75]. Hence, the S-matrix
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plays a central role in the spectral problem of the AdS/CFT correspondence,

and we devote this chapter to the study of it.

We begin by introducing the S-matrix of the string sigma model in section

5.1. We will not calculate the S-matrix explicitly in perturbation theory, but

follow the logic to reconstruct everything from symmetry. The symmetry

at this level turns out to be a Lie bialgebra, which is the classical limit of

the Yangian. These results have been published in our paper with Niklas

Beisert [93]. In section 5.2, we derive the one-loop S-matrix appearing on

the spin chain of N = 4 Super Yang-Mills theory , which is a representation

of the universal R-matrix studied in section 2.2.5. We do not need to do

any new calculations to obtain the desired result, as we have established

the underlying mathematics in chapter 2. This is in the line of thought

followed in this thesis. As we have studied the mathematics underlying

the symmetries encountered in the AdS/CFT correspondence, the physics

(in form of the S-matrix) follows straightforwardly. The results of section

5.2 have been published in [94], were an explicit derivation of the universal

R-matrix of u(2|2) was done.

5.1 The Worldsheet S-Matrix of the String Sigma

Model

In this section we would like to study the S-matrix at strong coupling, as

it arises in perturbative string theory. The string action defined in section

4.3.1 contains many gauge degrees of freedom. Hence, before we proceed,

we need to study string theory in a suitable gauge, so we can define a phys-

ical scattering problem. A common gauge choice is the light cone gauge,

which we will discuss in section 5.1.1. This choice will not only break the

global psu(2, 2|4) symmetry, but also the two dimensional Lorentz symme-

try. Hence, the applicability of methods similar to those encountered in

relativistic field theories, as studied in section 3.1, is questionable. Never-

theless, we will see later that the algebraic structures encountered in the

light-cone string theory are quite similar to those in other integrable field

theories. In section 5.1.2, we briefly discuss how the S-matrix arises per-

turbatively in the light-cone string theory [57]. Instead of working out the

118



details of the derivation, we construct the S-matrix from the underlying

symmetry in section 5.1.3. This derivation is based on the publication [93].

The symmetry at this level is the Lie bialgebra of u(2|2). It has some pe-

culiar mathematical features, which make this case distinct from other Lie

bialgebras encountered in chapter 2. We recall that Lie bialgebras are the

classical limit of Yangians, or other Quantum Groups in general.

5.1.1 String Theory in the Light Cone Gauge

Just as in flat space, string theory on the AdS5×S5 background has several

gauge degrees of freedoms, which we need to fix. One possibility is to choose

the light-cone gauge. The time-like directions live on the AdS5 part of the

AdS5 × S5 space, so we choose one direction labelled by t. Then a suitable

choice for the space-like coordinate of the light-cone is a big circle on the

S5, which we call φ. Hence, we take the light cone coordinates

x± = φ± t. (5.1.1)

The charges corresponding to the translations in t and φ are given by

E = −
√
λ

2π

∫ r

−r
ptdσ,

J =

√
λ

2π

∫ r

−r
pφdσ, (5.1.2)

i.e. they are just the usual energy and angular momentum. For the moment,

we will choose as the world sheet a cylinder of circumference 2r, instead of

the previous normalisation to 2π. The world sheet is parametrised by the

world-sheet time τ and the spatial coordinate σ. As we are interested in

deriving a scattering matrix, and thus need to construct asymptotic states,

we should decompactify the cylinder, i.e. send r →∞. The light cone mo-

menta, generating translations in the light cone coordinates chosen above,

are given by

p± =
1

2
(pφ ∓ pt). (5.1.3)

Now the uniform light-cone gauge consists of identifying x+ with the world-

sheet time τ ,
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x+ = τ. (5.1.4)

The corresponding momentum is then simply

p+ = 1. (5.1.5)

Furthermore, the total light-cone momentum is related to the length of the

world-sheet by

P+ =

√
λ

2π

∫ r

−r
p+dσ =

√
λr

π
. (5.1.6)

With P+ being fixed, P− takes the role of the light-cone energy. It is the

only remaining non-compact charge to be determined, as the other charges

are the remaining angular momenta on the sphere and the AdS space, and

will hence get quantised. In particular, P− depends on the coupling constant

λ, or, more precisely, it will be a power series in 1√
λ

. Furthermore, due to

the Virasoro constraints it is not independent of the other fields.

Choosing the light-cone gauge also breaks the psu(2, 2|4) symmetry into

generators which either commute or do not commute with P−. It turns out

that the residual symmetry algebra commuting with P− is the algebra

u(1) n psu(2|2)⊕ psu(2|2) n u(1). (5.1.7)

The u(1) charge on the right of this sum corresponds to the light-cone energy.

Due to the direct sum structure of the two psu(2|2) summands one can split

the remaining 8 bosonic light-cone fields in such a way that they carry one

index from the one psu(2|2), and another index corresponding to the other

psu(2|2). Furthermore, if kappa symmetry is fixed, one also remains with 8

fermionic degrees of freedom.

Let us denote the 8 bosonic fields which are transverse to the light-cone by

Zαα̇ and Yaȧ, where α, α̇ = 1, 2 are two su(2) indices belonging to the AdS

space, whereas a, ȧ = 1, 2 are again su(2) indices, which now belong to the

S5. One can translate to the more familiar so(4) indices in the usual way,

by multiplication with Gamma matrices. These four su(2)’s are the bosonic

subalgebras of psu(2|2)⊕psu(2|2). The fermions are precisely what connects

the AdS5 with S5 subspaces, which would otherwise be independent. In the
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light cone gauge, the fermions carry indices

ψaα̇, ψαȧ. (5.1.8)

Then, the action of psu(2|2) ⊕ psu(2|2) is manifestly realised on all funda-

mental fields in the light-cone. Indeed, the fundamental fields transform in

the fundamental representation with respect to each of the two psu(2|2)’s,

as outlined in section 2.3. The undotted indices correspond to the one

psu(2|2), whereas the dotted indices belong to the second psu(2|2).

As we discussed in section 2.3.3, one problem is that on the fundamental

representation of psu(2|2)nu(1), the u(1) charge has to be fixed to 1
2 due to

the shortening condition. This is problematic, as this charge plays the role

of the light cone Hamiltonian, so its eigenvalues should be a continuous, real

valued function of the coupling constant λ. The solution to this problem

on the string side was found in [155], confirming the previous investigations

on the gauge side [56]. The first observation is that physical states of the

string have to satisfy the level matching condition, which means that the

total momentum of all excitations propagating around the string world-sheet

has to be zero. If one goes off-shell by relaxing the level-matching condition,

then both psu(2|2)’s undergo a central extension, just as described in section

2.3.3. The off-shell symmetry algebra is now given by

u(1) n psu(2|2)⊕ psu(2|2) n u(1)3. (5.1.9)

Note that the 3 central charges are shared by the two psu(2|2)’s. As ex-

plained in section 2.3.3, the eigenvalue of the light cone Hamiltonian can

now take continuous values. We remark that the central charge correspond-

ing to the light-cone Hamiltonian was denoted by C in section 2.3.3. For

further discussions it is useful to consider the mode decomposition of our

fundamental fields,

Yaȧ(σ, τ) =
1√
2π

∫
dp

1

2ωp
(eipσaaȧ(p, τ) + e−ipσεabεȧḃa†

bḃ
(p, τ)),

Zαα̇(σ, τ) =
1√
2π

∫
dp

1

2ωp
(eipσaαα̇(p, τ) + e−ipσεαβεα̇β̇a†

ββ̇
(p, τ)).

(5.1.10)
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ωp is given by ω2
p = 1 + p2. Then the operators a†(p, τ) create excitations

on the world-sheet, propagating around the world-sheet with momentum

p. We will call those excitations magnons, in line with the later discussed

magnons on the Yang-Mills side of the AdS/CFT correspondence. Note that

these excitations are not the giant magnons of [71], which arise in a differ-

ent kinematical regime. Similar mode decompositions exist for the fermions

as well as for the canonically conjugate momenta in the light-cone gauge.

To study them, we should derive the light-cone action and corresponding

Hamiltonian order by order in perturbation theory. We will not need the

explicit form, as we only want to illustrate how the S-matrix arises directly

from string theory. A better derivation of the S-matrix will be later given

by using symmetry.

The symmetry algebra can be thought of as acting on the individual

momentum eigenstates. The crucial observation is that when one has a

state consisting of M magnons

a†(p1, τ) . . . a†(pM , τ)|0〉, (5.1.11)

where |0〉 is the light cone vacuum, the level matching condition only says

that all momenta together should add up to zero, i.e.

M∑
i=1

pi = 0. (5.1.12)

Hence, one can relax the level matching condition for individual excitations,

and the centrally extended algebra will act on individual magnons. Each

individual magnon can have non-trivial energy depending on the coupling

constant. Furthermore, we can now study the problem when two such exci-

tations hit each other, i.e. we will discuss the scattering matrix describing

the scattering of two magnons. This will be done in the next section.

5.1.2 The Worldsheet S-Matrix

After fixing the symmetries of the string sigma model, we can calculate

the S-matrix of worldsheet excitations in perturbation theory. The leading

contribution was calculated in [57], whereas the two-loop correction was ob-

122



tained in [156]. By integrability, the scattering matrices for M magnons will

factorise into two-particle S-matrices, and again the order of the two-particle

scattering processes will not matter. In [57], it was explicitly checked that

there is no 2→ 4 particle process, which is a necessary condition for integra-

bility, namely, that there is no particle production. Let Spsu(2|2)×psu(2|2)nu(1)3

denote the whole quantum S-matrix, which is invariant under the residual

light-cone symmetry psu(2|2)× psu(2|2) n u(1)3. As in the light-cone we

have 16 physical degrees of freedom, 8 bosonic and 8 fermionic fields, the

two-particle S-matrix is a 162×162 matrix. Due to the direct sum structure

of the underlying Lie algebra symmetry, as well as the integrability of the

model, the two-particle S-matrix factorises with respect to the algebra as

Spsu(2|2)×psu(2|2)nu(1)3 = Spsu(2|2)nu(1)3 ⊗ Spsu(2|2)nu(1)3 . (5.1.13)

The S-matrix will now scatter excitations with definite momentum, as cre-

ated by the creation operators appearing in (5.1.10). One should consider

free fields as in-state, mapping to free fields in the out-state. All sets of oper-

ators satisfying the same canonical commutation relations should be related

by similarity transformations, see [142] for details. We denote by M,N and

Ṁ, Ṅ two indices belonging to the two psu(2|2)’s, i.e. they combine the

previous 4 indices a, α, ȧ, α̇ belonging to the 4 su(2)′s. This is analogously

to the indices used in (2.3.8). The corresponding fields with momentum p

are denoted by φMṀ (p). Then the S-matrix acts as

SPṖQQ̇
MṀNṄ

|φPṖ (p1)φQQ̇(p2)〉, (5.1.14)

if one uses the matrix notation SPṖQQ̇
MṀNṄ

. The factorisation with respect to

the algebra then means that

SPṖQQ̇
MṀNṄ

= SPQMNS
Ṗ Q̇

ṀṄ
, (5.1.15)

up to a minus sign depending on the conventions for fermions. One can now

derive the S-matrix in perturbation theory. If the Hamiltonian in the light

cone is split into a free part H0, and an interaction part V , i.e. H = H0 +V ,

then the S-matrix is given by

S = T exp(−i
∫ ∞
−∞

dτV ), (5.1.16)
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with T denoting the time ordering operator.

The leading contribution in an expansion in 1√
λ

is denoted by

S = 1 +
2πi√
λ
T. (5.1.17)

Hence, T is given by

T = −
√
λ

2π

∫ ∞
−∞

dτV. (5.1.18)

Here, V itself should be truncated at leading order in perturbation theory.

We shall not present the detailed derivation of T here, and refer the reader

to [57, 142]. We only wanted to highlight the ideas leading to the S-matrix

directly from string theory. Instead, in the spirit of this thesis, we shall

reproduce the classical scattering matrix from symmetry in the next section.

5.1.3 The S-Matrix and Lie Bialgebra at Strong Coupling

In this section we will reproduce the classical contribution to the scattering

matrix from symmetry considerations. We have seen that in the light cone

gauge the global symmetry is, upon relaxing the level matching condition,

given by two copies of psu(2|2)nu(1)3. Furthermore, as integrability implies

that the S-matrix factorises with respect to the two copies of the algebra

(5.1.13), we only need to derive the psu(2|2)nu(1)3 invariant S-matrix. The

non-local charges associated to the Lax connection, as studied for the sigma

model before gauge fixing in section 4.3.1, seem to be related to the Yangian.

This was argued in [30], where related Yangian charges on the gauge side

were studied, Furthermore, in the pure spinor formalism, Yangian charges

which explicitly resemble those as found in other integrable field theories

(3.1.36) were constructed [157]. For this reason, we assume that in the light

cone gauge, psu(2|2) n u(1)3 should also be extended to the Yangian. The

classical version of the Yangian (double) is the Lie bialgebra based on the

loop algebra (psu(2|2)nu(1)3)[u, u−1]. We will show that two of the central

charges are dependent on the third charge and the loop parameter u, and

can be consistently eliminated.

Let us briefly recall the construction of the Lie bialgebra and classical
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r-matrix for gl(n|m), as studied in sections 2.1.4,2.4.1. If we denote a

basis of gl(n|m) by Ja, and the corresponding basis of the loop algebra

gl(n|m)[u, u−1] by Jan, then we established the classical r-matrix

r = −
∞∑
n=0

∑
a=1

Jan ⊗ Ja,−n−1. (5.1.19)

As raising and lowering the indices a corresponding to the Lie algebra is

done with a non-degenerate bilinear form, which does not exist for psl(2|2)n
C3, we should in principle extend the algebra to sl(2) n psl(2|2) n C3. As

discussed in section 2.3.3, the automorphisms have no fundamental matrix

representation, so this extension cannot give a physical answer. Physics

requires the r-matrix to be an ordinary 16 × 16 matrix. Let us have a

closer look at the fundamental matrix representation of psl(2|2) n C3. We

have three central charges C,P,K, whose eigenvalues on the fundamental

representations were given in terms of four complex numbers a, b, c, d with

the constraint ad−bc = 1. Furthermore, we argued that C should correspond

to the energy eigenvalue of the light cone Hamiltonian, which should depend

on the momentum p of the corresponding magnon as well as the coupling

constant
√
λ. Hence, the labels a, b, c, d should also depend on p and

√
λ.

We find that the following parametrisation for a, b, c, d at first order in

1

g
:=

2π√
λ

(5.1.20)

yields the correct dispersion relation [158] for C:

a = γ̃, b = − iαx

γ̃(x2 − 1)
, c =

iγ̃

αx
, d =

x2

γ̃(x2 − 1)
. (5.1.21)

Here, we introduced two parameters γ̃, α which do not appear in the eigen-

value of C, and are hence not physical. They are related to rescaling the

basis vectors. The spectral parameter x is related to the momentum p as

p = g
x

x2 − 1
. (5.1.22)

In this representation, the two central charges P,K are clearly not indepen-

dent. They are given by
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P

α
= −ip

g
= −αK. (5.1.23)

Hence, it is useful to introduce a new generator D, such that its eigenvalue

is given by

D =
p

g
=

x

x2 − 1
. (5.1.24)

Then, we have

P = −iαD, K = i
1

α
D. (5.1.25)

The energy eigenvalue C in those parameters was found in [159] and reads

C =
1

2

x2 + 1

x2 − 1
. (5.1.26)

Let us now investigate the extension to the loop algebra, in order to con-

struct the classical double and the classical r-matrix. We have seen in section

3.1.3 that for relativistic integrable models, the loop parameter, or, in quan-

tised form, the parameter u of the Yangian, is related to the rapidity. Here,

we do not have relativistic invariance, but nevertheless, u is a function of

the momentum. Indeed, the correct parametrisation is given by

u = x+
1

x
, (5.1.27)

where we choose a unitary representation for our loop algebra generators,

i.e.

Jan = (iu)nJa0. (5.1.28)

Hence, contrary to the case of ordinary simple Lie algebras, where the fun-

damental representations generically does not depend on continuous pa-

rameters, and parameter dependence is introduced via the loop algebra, in

the case of the loop algebra psu(2|2) n u(1)3[u, u−1] the loop variable does

not introduce any new independent parameter. This at least holds for the

physical application we have in mind, but it is also important for the math-

ematical features of the loop algebra which we will discuss now. The crucial

observation on the fundamental representation is that
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D =
2C

u
(5.1.29)

holds. Hence, at least on the fundamental representation, one can eliminate

yet another central charge, and remains with only one independent central

charge C. We will now show that one can impose the constraint (5.1.29) in

an abstract way in the loop algebra. In particular, adding the index n for

the degree of a generators as in (5.1.28), we get

Pn = −2iαCn−1, Kn = 2i
1

α
Cn−1. (5.1.30)

The first observation is that as these identifications mix generators of differ-

ent degree n, they obviously violate the generic loop algebra commutation

relations [Jan, J
b
m} = fabcJ

c
n+m. Instead, the fermionic generators commute

like

{(Qm)αb, (Sn)cδ} = δcb(Lm+n)αδ + δαδ (Rm+n)cb + δcbδ
α
δ (Cm+n),

{(Qm)αb, (Qn)γd} = 2αεαγεbdCm+n−1,

{(Sm)aβ, (Sn)cδ} = −2α−1εacεβδCm+n−1, (5.1.31)

modifying the relations (2.3.39) of psu(2|2) n u(1)3. Interestingly, this is

compatible with the Lie algebra structure. In particular, the Jacobi identity

holds. We note that such shift in the degree in the commutation relations

is not possible for loop algebras based on simple Lie superalgebras, hence it

is quite non-trivial that this identification here does not lead to incompati-

bilities with the defining relations.

As we have effectively reduced the loop algebra psu(2|2) n u(1)3[u, u−1] to

the loop algebra su[u, u−1](2|2), even though with deformed commutation

relations, we note that this algebra still does not have a non-degenerate

bilinear form, as needed for the construction for the classical r-matrix.

We have to investigate how the external automorphism algebra sl(2) acts

on su[u, u−1](2|2) after the above identification (5.1.30). The action of

sl(2) on the undeformed psl(2|2) n C3 algebra was described in equations

(2.3.35),(2.3.42). The goal is to reduce the three sl(2) generators to just

one generator, such that this remaining generator can act on the fundamen-

127



tal matrix representation, as required for physics. This generator should

be compatible with the commutation relations, and still lift the degener-

acy in the invariant product caused by the remaining central charges Cn.

As on the fundamental matrix representation the central charge triplet Ca
b,

before and after the reduction (5.1.30), acts like a multiple of the identity,

and henceforth commutes with all matrices, we also require that the sur-

viving automorphism should commute with all central charges. The unique

combination is given by

Bn := 2(Bn)1
1 +

2

α
(Bn−1)1

2 + 2α(Bn−1)2
1. (5.1.32)

This generator acts on the fermionic generators as

[Bm, (Qn)αb] = +(Qm+n)αb − 2αεαγεbd(Sm+n−1)dγ ,

[Bm, (Sn)aβ] = −(Sm+n)aβ − 2α−1εacεβδ(Qm+n−1)δc. (5.1.33)

The remaining commutation relations of B are trivial, as before:

[Bm,Cn] = [Bm, (Rn)ab] = [Bm, (Ln)αβ] = 0 (5.1.34)

Taking all the generators (Rn)ab, (Ln)αβ,Bn,Cn, (Sn)aβ, (Qn)αb together,

we obtain the loop algebra u(2|2)[u, u−1]. Due to the shift of degree in

(5.1.30), and consequently the modifications of the central elements and

automorphisms, it is not the standard u(2|2)[u, u−1] loop algebra, but has

deformed commutation relations as spelled out above.

We are now almost in a position to write down the classical r-matrix

for u(2|2)[u, u−1]. What we have to investigate is how the identifications

(5.1.30) modify the invariant inner product on the loop algebra. Recall that

the inner product on the loop algebra is defined by

(
Jan, J

b
m

)
= −κabδn,−m−1. (5.1.35)

On the fundamental representation, κ is given by

κab = str(JaJb). (5.1.36)
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As (5.1.30) was proclaimed via the observed identification on the funda-

mental representation, we argue that this identification does not change the

inner product on the psu(2|2) generators. This can also be checked explic-

itly by imposing the invariance of the inner product. For the automorphism

and the central element, we get the following inner product:

(Cn,Bm) = δn,−m−1. (5.1.37)

Furthermore, B allows for the following fundamental matrix representation:

B|φa〉 = − 1

4C
|φa〉, B|ψα〉 = +

1

4C
|ψα〉 (5.1.38)

Interestingly, the representation of B itself depends on the eigenvalue of the

central element C. This is clearly required to satisfy (5.1.37). Furthermore,

as B is an external automorphism, and henceforth never appears on the

right-hand side of any commutation relations, we can add a multiple of C

to it without modifying any commutation relations. This is in analogy with

the observations (2.3.32) for the automorphism of gl(n|n). In principle, in

the loop algebra u(2|2)[u, u−1], we could shift Bm by different multiples of

C for each m. We will not do so in this thesis, as the classical r-matrix is

invariant by such shifts. However, the r-matrix will have additional twists,

as we will see soon. These could in principle be affected by such shifts.

We have now described a complete, consistent matrix representation for

the generators of the deformed u(2|2)[u, u−1] algebra, and we also have de-

scribed an inner product, which is basically unaffected by the identifications

done. Furthermore, the basis generators we have chosen are already in a

dual basis. The classical r-matrix (5.1.19), as studied in section 2.1.4, is

written down as the canonical element in the double D(g[u]) = g[u, u−1].

It is important that g[u], as well as its dual g[u−1]u−1, are subbialgebras

of g[u, u−1]. This is clearly violated by the identifications we have done.

Indeed, if one commutes two fermionic generators of degree 0, we get from

(5.1.31)

{(Q0)αb, (Q0)γd} = 2αεαγεbdC−1,

{(S0)aβ, (S0)cδ} = −2α−1εacεβδC−1. (5.1.39)
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Hence, the commutator of two elements in g[u] is in g[u−1]u−1. However,

there is a surprisingly simple solution to this problem. We can consider the

two subalgebras g+, g− spanned by

g+ = 〈Rn,Ln,Qn,Sn,Cn−1,Bn+1〉n≥0,

g− = 〈R−1−n,L−1−n,Q−1−n,S−1−n,C−2−n,B−n〉n≥0. (5.1.40)

One can immediately convince oneself that these are indeed closed subalge-

bras, and, importantly, they are still dual subalgebras with respect to the

inner product (5.1.35). Hence, one can construct the classical double for

g+, which will again be the loop algebra u(2|2)[u, u−1], but with deformed

commutation relations. Furthermore, the classical r-matrix is also different,

and is given as follows:

r = rpsu(2|2) −
∞∑

m=−1

B−1−m ⊗ Cm −
∞∑

m=+1

C−1−m ⊗Bm (5.1.41)

Here, rpsu(2|2) is the standard classical r-matrix for psu(2|2), given by

rpsu(2|2) = +
∞∑
m=0

(R−1−m)cd ⊗ (Rm)dc −
∞∑
m=0

(L−1−m)γδ ⊗ (Lm)δγ

+

∞∑
m=0

(Q−1−m)γd ⊗ (Sm)dγ −
∞∑
m=0

(S−1−m)cδ ⊗ (Qm)δc.

(5.1.42)

As we have constructed the classical r-matrix via the classical double con-

struction, it follows immediately that it satisfies the classical Yang-Baxter

equation

[r12, r13] + [r12, r23] + [r13, r23] = 0. (5.1.43)

Furthermore, we could have equally well constructed it as a double of g−,

and, just as argued in section 2.1.4, taking an antisymmetric combination of

the two corresponding r-matrices results in a unitary r-matrix, see equation

2.1.41.
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Note that we can also subtract and readd the terms shifted in (5.1.41),

and obtain

r12 =
Tpsu(2|2),12 −B⊗ C− C⊗B

iu1 − iu2
− B⊗ C

iu2
+

C⊗B

iu1
, (5.1.44)

with Tpsu(2|2),12 being the standard Casimir of psu(2|2), acting on the tensor

product. The additional terms −B ⊗ C − C ⊗B complete the Casimir to

formally the standard Casimir of u(2|2). However, again the commutation

relations are deformed with respect to the standard u(2|2) algebra. The last

terms, −B⊗C
iu2

+ C⊗B
iu1

, can be interpreted as the classical limit of a Reshetikhin

twist [160]. This twist is necessary as the quantum psu(2|2)n u(1)3 genera-

tors act nontrivially on tensor products [152, 153], i.e. they have a deformed

coproduct. On the classical level investigated here, this twist implies that

the cobrackets resulting from the classical r-matrix (5.1.41) get modified.

They are defined in the usual way by

δ(Ja) = [Ja, r}, (5.1.45)

as studied in section 2.1.3. We have spelled them out explicitly in table 5.1.

These cobrackets differ from the standard cobrackets for the undeformed

u(2|2)[u, u−1] algebra, as spelled out in table 2.1 in section 2.4.1, exactly by

terms generated by the twist. In particular, even the fermionic generators

of degree zero have nontrivial cobrackets, in contrast to the standard co-

brackets of degree zero generators in a loop algebra.

Having established the abstract, universal form of the classical r-matrix,

we can straightforwardly evaluate it on the fundamental evaluation repre-

sentation, as defined in equations (2.3.44),(2.3.45) in section 2.3.3, using

the parametrisation for the labels as in (5.1.21), and the spectral parameter

(5.1.27). We get the result as listed in table 5.2.

This result was obtained by using the representation for the automor-

phism as in (5.1.38). It coincides with the light-cone S-matrix of [161].

To obtain a result compatible with the so-called AFS phase of the string

S-matrix at strong coupling [60], we have to add a term
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δ(Cn) = 0

δ(Bn) = +
n−1∑
k=0

(Qk)
α
b ∧ (Sn−1−k)

b
α

+
n−1∑
k=1

α−1βεbdεαγ(Qk−1)αb ∧ (Qn−1−k)
γ
d

−
n−1∑
k=1

αβεβδεac(Sk−1)aβ ∧ (Sn−1−k)
c
δ

δ(Rn)ab = +
n−1∑
k=0

(Rk)
a
c ∧ (Rn−1−k)

c
b

−
n−1∑
k=0

[
(Sk)

a
γ ∧ (Qn−1−k)

γ
b −

1

2
δab (Sk)

d
γ ∧ (Qn−1−k)

γ
d

]
δ(Ln)αβ = −

n−1∑
k=0

(Lk)
α
γ ∧ (Ln−1−k)

γ
β

+
n−1∑
k=0

[
(Qk)

α
c ∧ (Sn−1−k)

c
β −

1

2
δαβ (Qk)

δ
c ∧ (Sn−1−k)

c
δ

]
δ(Qn)αb = −

n−1∑
k=0

(Lk)
α
γ ∧ (Qn−1−k)

γ
b −

n−1∑
k=0

(Rk)
c
b ∧ (Qn−1−k)

α
c

−
n∑
k=0

Ck−1 ∧ (Qn−k)
α
b +

n−1∑
k=0

2αβεαγεbdCk−1 ∧ (Sn−1−k)
d
γ

δ(Sn)aβ = +
n−1∑
k=0

(Rk)
a
c ∧ (Sn−1−k)

c
β +

n−1∑
k=0

(Lk)
γ
β ∧ (Sn−1−k)

a
γ

+

n∑
k=0

Ck−1 ∧ (Sn−k)
a
β +

n−1∑
k=0

2α−1βεacεβδCk−1 ∧ (Qn−1−k)
δ
c

Table 5.1: Cobrackets of the Lie bialgebra generators.
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r|φaφb〉 =
1

2
(A12 −B12)|φaφb〉+

1

2
(A12 +B12)|φbφa〉+

1

2
C12ε

abεαβ|ψαψβ〉

r|ψαψβ〉 = −1

2
(D12 − E12)|ψαψβ〉 − 1

2
(D12 + E12)|ψβψα〉 − 1

2
F12ε

αβεab|φaφb〉

r|φaψβ〉 = G12|φaψβ〉+H12|ψβφa〉
r|ψαφb〉 = K12|φbψα〉+ L12|ψαφb〉

1

2
(A12 +B12) =

1

iu1 − iu2

1

2
(A12 −B12) =

(x1 − x2)2(x1x2 + 1)2

4x1x2(x2
1 − 1)(x2

2 − 1)(iu1 − iu2)
=

+1
2 + 1

4D1D
−1
2 + 1

4D
−1
1 D2

iu1 − iu2

1

2
C12 =

iγ̃1γ̃2(x1 − x2)

αx1x2(iu1 − iu2)
=
a1c2 − c1a2

iu1 − iu2

−1

2
(D12 + E12) = − 1

iu1 − iu2

−1

2
(D12 − E12) = − (x1 − x2)2(x1x2 + 1)2

4x1x2(x2
1 − 1)(x2

2 − 1)(iu1 − iu2)
=
−1

2 −
1
4D1D

−1
2 − 1

4D
−1
1 D2

iu1 − iu2

−1

2
F12 = − iαx1x2(x1 − x2)

γ̃1γ̃2(x2
1 − 1)(x2

2 − 1)(iu1 − iu2)
=
d1b2 − b1d2

iu1 − iu2

G12 =
(x2

1 − x2
2)(x2

1x
2
2 − 1)

4x1x2(x2
1 − 1)(x2

2 − 1)(iu1 − iu2)
=
−1

4D1D
−1
2 + 1

4D
−1
1 D2

iu1 − iu2

H12 =
γ̃1x2(x1x2 − 1)

γ̃2x1(x2
2 − 1)(iu1 − iu2)

=
a1d2 − c1b2
iu1 − iu2

K12 =
γ̃2x1(x1x2 − 1)

γ̃1x2(x2
1 − 1)(iu1 − iu2)

=
d1a2 − b1c2

iu1 − iu2

L12 = − (x2
1 − x2

2)(x2
1x

2
2 − 1)

4x1x2(x2
1 − 1)(x2

2 − 1)(iu1 − iu2)
=

+1
4D1D

−1
2 − 1

4D
−1
1 D2

iu1 − iu2

Table 5.2: The classical (light cone) r-matrix of AdS/CFT.
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C0 ∧ C−1 (5.1.46)

to the r-matrix. This combines with the twist to C−1 ∧ (B0 − C0), and

can hence be seen as a shift of the automorphism by −C0. As argued be-

fore, such shift does not modify the commutation relations. Furthermore,

such shift is the only remaining freedom not completely fixed by the sym-

metries at the classical level. This is because the antipode acts trivially

on the classical Lie bialgebra. Hence, there is no natural algebraic form

of the crossing equation acting at this level. Hence, one might in principle

add other terms compatible with the classical Yang-Baxter and unitarity

equations. Certainly, terms of the form

Cm ∧ Cn (5.1.47)

satisfy this requirement. Otherwise, we have succeeded in reproducing the

classical r-matrix purely from the symmetries.

5.2 The Magnon S-Matrix of N = 4 Super

Yang-Mills theory

In section 4.3.2, we have argued that N = 4 Super Yang-Mills theory in the

large N limit is integrable, and this integrability is realised by regarding

the action of the dilatation generator on single trace local operators as the

action of an integrable Hamiltonian on a spin chain. In principle, we can use

the techniques of diagonalisation of the Hamiltonian of the XXX Heisenberg

spin chain introduced in section 3.2 to derive the spectrum of the dilata-

tion operator. In section 3.2, we were dealing with su(n) spin chains with

nearest neighbour interaction. Now, the spin chain has psu(2, 2|4) symme-

try, which is noncompact and also long-ranged. The interaction range of

the Hamiltonian depends on the order in perturbation theory we are con-

sidering for the gauge theory. At order λ, the complete Hamiltonian was

derived in [150], and the Bethe equations were written down in [26]. The

full psu(2, 2|4) Yangian has only been found at tree level [30, 31]. Assuming

the Yangian to survive, we will reconstruct the one-loop S-matrix from the

universal R-matrix in section 5.2.1.
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Figure 5.1: Dynkin diagram of psu(2, 2|4) called “Beauty“

We should note that when the interaction range of the Hamiltonian is

longer than the length of the operator whose anomalous dimension we want

to calculate, there will be wrapping interactions [154]. This makes the spin

chain picture unsuitable, and the asymptotic Bethe ansatz will not work in

that case. Indeed, to calculate anomalous dimensions at wrapping order, one

needs to take into account Luscher corrections [70], and ultimately the TBA

equations [76, 77, 78, 79]. Here, we will derive only the asymptotic S-matrix,

whose diagonalisation leads to the asymptotic Bethe ansatz. However, as

the goal is to find a universal R-matrix in terms of the abstract generators,

as done for classical string theory in section 5.1.3, such universal R-matrix

should, upon choosing a suitable representation, yield the bound state S-

matrices leading to the TBA equations.

5.2.1 The One-Loop S-Matrix from Yangian Symmetry

In this section we would like to discuss the scattering matrix for magnons of

the psu(2, 2|4) spin chain at one-loop. We have seen in section 3.2, deriving

the scattering matrix for the su(n) spin chain requires choosing a vacuum

state, which breaks the symmetry to su(n − 1). The magnons transform

under this residual symmetry, and the S-matrix is henceforth invariant under

su(n − 1). Likewise, we have to choose a vacuum for the psu(2, 2|4) spin

chain. A suitable choice is the BPS state

ZL, (5.2.1)

where Z = φ5 +iφ6 is part of the scalar sector of the theory. If one considers

the Dynkin diagram 5.1, this vacuum state corresponds to L excitations of

the middle node.

The choice of the vacuum state breaks the symmetry to
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u(1) n psu(2|2)⊕ psu(2|2) n u(1)3. (5.2.2)

The two psu(2|2)’s correspond to the three nodes to the left/right of the

middle node in figure 5.1. The resulting S-matrix should hence be invariant

under (5.2.2). We can rewrite (5.2.2) as

u(2|2)⊕ u(2|2), (5.2.3)

such that the two u(1) charges in the decomposition u(2|2) = u(1)npsu(2|2)n
u(1) are identified in both copies of u(2|2). Due to the direct sum structure,

by integrability also the total S-matrix should factorise with respect to the

algebra factorisation, i.e. one should have

Su(2|2)⊕u(2|2) = Su(2|2) ⊗ Su(2|2). (5.2.4)

We will henceforth assume this factorisation, and focus on deriving the

u(2|2) invariant S-matrix. Note that the residual symmetry after symme-

try breaking with the BPS vacuum is the same as the residual symmetry

in the light-cone gauge, as studied in the previous section. The reason for

this is that via the AdS/CFT correspondence the gauge theory operator Z

corresponds to excitations propagating along a big circle on the S5 on the

string side. Note that for the moment, we have no reason to believe that

the u(2|2)’s undergo a central extension.

For the moment, let us assume that u(2|2) is enhanced to the Yangian,

as we would expect from the existence of Yangian charges in the unbroken

symmetry algebra. The fields of N = 4 Super Yang-Mills theory trans-

forming under the unbroken symmetry (5.2.2) are 8 bosons and 8 fermions,

which carry two indices belonging to the fundamental representation of the

two u(2|2)’s. This is in precise analogy to the fields in the light-cone string

theory, as studied in section 5.1.1.

We now form scattering states in the same fashion as for su(n) spin chains

considered section 3.2. This means that the u(2|2) magnons look like

|XM 〉 =
∑
n

eipn|Z . . . ZXMZ . . . Z〉, (5.2.5)
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with M = 1, . . . 4, and X1,2 = φ1,2 are bosons, whereas X3,4 = ψ1,2 are

fermions. Hence, the problem of finding the S-matrix Su(2|2)⊕u(2|2) from the

psu(2, 2|4) spin chain is equivalent to finding two copies of the S-matrix

Su(2|2), which can be though of as acting on excitations of a su(2|3) spin

chain.

As the magnons transform in the fundamental representation of u(2|2),

we expect the two-particle S-matrix Su(2|2) to be related to the appropriate

representation of the universal R-matrix of Y(u(2|2)). The universal R-

matrices for Yangians of sl(n|m) were studied in section 2.4.2, so we will

just briefly recall the results. We take the universal R-matrix from section

2.2.5, and evaluate it as in section 2.4.3 for gl(n|n), by simply putting n = 2.

We get the result

S =
i/2 + u

i/2− u

(
u

u+ i
Id− i

u+ i
P
)
. (5.2.6)

Here, we have used the Cartan matrix of the distinguished Dynkin diagram,

A =


2 −1 0 0

−1 0 1 1

0 1 −2 0

0 1 0 0

 , (5.2.7)

and chosen reality conditions as we deal with the real Lie algebra u(2|2).

This requires the spectral parameter of section 2.4.3 to be imaginary, i.e. we

have put u → −iu, such that the u used in this section is real for physical

particles.

Note that this S-matrix is obtained from a universal R-matrix in the same

way as the relativistic su(n) S-matrices. Interestingly, as our method to con-

struct universal R-matrices works well for all superalgebras sl(n|m), we note

that for n = m the complicated Gamma function prefactor disappears, and

we remain with the simple rational factor i/2+u
i/2−u . To get the precise weak

coupling limit of the spin chain S-matrix, the factor i/2+u
i/2−u should reduce to

1. This might be related to a twist of the S-matrix, which we are missing

at the presence. Note that i/2+u
i/2−u is just a phase of a freely moving particle

and appears also in the Bethe equations, so we are at present not sure if the
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appearance of i/2+u
i/2−u in the S-matrix has some deep physical meaning. We

are convinced that it cannot be purely by chance that the Gamma functions

cancel for n = m.

We should note that other choices for the outer automorphism, leading

to different Dynkin diagrams, as in 2.3.33, might restore Gamma functions.

But for generic sl(n|m), n 6= m and n 6= m ± 1, there are always Gamma

functions appearing in the S-matrix. Hence, we certainly believe it is no

coincidence that the universal R-matrix for u(2|2) almost produces the cor-

rect result needed for physics. Also, the S-matrix in string and gauge theory

looks slightly different, as noted in [162], and there is certainly a twist needed

to modify the coproduct of the Lie generators [152, 153], which also involves

a factor of the form i/2+u
i/2−u , even though the twist leading to this coproduct

seems to not directly lead to the S-matrix (5.2.6).

5.2.2 The All-Loop Magnon S-Matrix

The all-loop S-matrix was derived in [56] from gauge theory arguments,

up to its dressing factor. A crucial ingredient in the derivation is that

the psu(2, 2|4) spin chain has the property that some symmetry generators

change the length. This was first realised in the su(3|2) subsector1 [163].

Let us consider this subsector, and the corresponding spin-chain. The fields

transform in the fundamental representation of su(3|2) as defined in (2.3.18).

We label the basis vectors as before by {φ1, φ2, φ3 ≡ Z|ψ1, ψ2}. The third

bosonic basis state φ3 ≡ Z will form the spin chain vacuum state ZL, which

corresponds to a BPS state in N = 4 Super Yang-Mills theory . Hence,

excitation states look like

|X1, . . . XM 〉 =
∑

n1<<···<<nM

ei(p1n1+···+pMnM )|. . . Z,X1, Z, . . . Z,XM , Z, . . .〉.

(5.2.8)

As we mentioned before, the interaction range of the Hamiltonian depends

on the order of the expansion in perturbation in λ. We now want to de-

rive the all-loop S-matrix, which means the Hamiltonian has, in principle,

1We reverse su(2) and su(3) compared to [163], for compatibility with the conventions
of chapter 2.
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infinite range of interaction. That is the reason why we should consider

asymptotic states where the individual magnons are well separated, i.e.

n1 << · · · << nM . This apparently requires us to work with an infinitely

long chains. We emphasise that the Hamiltonian is not explicitly known to

higher orders in perturbation theory. Nevertheless, one can fix the all-loop

S-matrix purely by symmetry. This allows to extract the momenta via the

Bethe equations, and, as one has knowledge of the all-loop dispersion rela-

tion [158], one can extract the exact all-loop energies of asymptotic states.

Indeed, the structure of the dispersion relation is also fixed by the non-local

Hopf symmetry resulting from the length changing of the underlying spin

chain.

Let us consider the action of the symmetry generators which do not

change the vacuum state |Z〉L, as in the previous sections where we dis-

cussed the perturbative string and gauge S-matrices. It turns out that some

fermionic generators do change the length of the spin chain when acting on

magnons, which means that they insert or remove vacuum states Z into the

chain. The generators form a psu(2|2) n u(1)3 algebra, i.e. the manifest

su(2|2) algebra is centrally extended [56]. The action on one-particle states

of the symmetry generators is given by

Ra
b|φc〉 = δcb |φa〉 −

1

2
δab |φc〉,

Lαβ|ψγ〉 = δγβ |ψ
α〉 − 1

2
δγβ |ψ

α〉, (5.2.9)

Qα
a|φb〉 = a δba|ψα〉, Qα

a|ψβ〉 = b εαβεab|φbZ+〉,

Sa
α|φb〉 = c εabεαβ|ψβZ−〉, Sa

α|ψβ〉 = d δβα|φa〉, (5.2.10)

with the action of the fermionic generators including the markers Z±, which

indicates that a vacuum field Z is inserted or removed into the spin chain.

Indeed, on single magnon states, these extra markers have no physical

effect, as single magnons are excitations over infinitely many Z’s. The

crucial difference is that these markers modify the action on multi particle

states. Consider a two magnon state |XX〉. Then the action of e.g. a

generator Q inserting a Z would be
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∆Ra
b = Ra

b ⊗ 1 + 1⊗Ra
b,

∆Lαβ = Lαβ ⊗ 1 + 1⊗ Lαβ,

∆Qα
b = Qα

b ⊗ 1 + U+1 ⊗Qα
b,

∆Sa
β = Sa

β ⊗ 1 + U−1 ⊗Sa
β,

∆C = C⊗ 1 + 1⊗ C,

∆P = P⊗ 1 + U+2 ⊗P,

∆K = K⊗ 1 + U−2 ⊗ K,

∆U = U ⊗ U .

Table 5.3: The twisted coproduct of psu(2|2) n u(1)3.

Q|XX〉 = |Y ZX〉+ |XY Z〉, (5.2.11)

where we have say Q|X〉 = |Y Z〉. Recalling that we have asymptotic states

(5.2.8), we can shift the marker around the excitation Y , and redefining

the indices n1, n2 we get an additional phase eip, where p is the momentum

corresponding to the magnon around we shifted the marker. These shifts

mean that psu(2|2) n u(1)3 acts non-locally on tensor products, i.e. multi

particle states, and the correct algebraic structure is a Hopf algebra [152,

153]. The algebra relations of psu(2|2) n u(1)3 are not modified, but the

coproduct is non-trivial, and spelled out in table 5.32.

The generator U is a central generator of the enveloping algebra and has

the eigenvalue U = eip/2 on the fundamental representation. Furthermore,

the labels a, b, c, d are fixed to be

a =
√
g γ, b =

√
g
α

γ

(
1− x+

x−

)
, c =

√
g
iγ

αx+
, d =

√
g
x+

iγ

(
1− x−

x+

)
,

(5.2.12)

where x+, x− are related to the momentum as

eip =
x+

x−
. (5.2.13)

2We choose the conventions of [107], upon formally identifying the marker Y with Z1/2.
This leads to the S-matrix in the string frame [162].

140



They also satisfy the constraint

x+ +
1

x+
− x− − 1

x−
=
i

g
. (5.2.14)

γ and α are two further generators related to the rescaling of the basis

vectors. They do not appear in physical quantities. g is related to the ’t

Hooft coupling as

g =

√
λ

2π
. (5.2.15)

The central charges P,K of psu(2|2) n u(1)3 have to be cocommutative in

order for the coproduct to be compatible with the existence of an S-matrix.

This leads to the identifications

P = gα
(
1− U+2

)
, K = gα−1

(
1− U−2

)
. (5.2.16)

These identifications can be imposed abstractly, and are obviously com-

patible with the above representation labels. Furthermore, plugging these

identifications into the shortening condition for the fundamental represen-

tation, the third central charge C is given by

C2 =
1

4
−PK =

1

4
+ 4g2 sin2(p/2). (5.2.17)

As the eigenvalue of C corresponds to the energy of the underlying spin

chain, this identification is identical to the dispersion relation of the theory.

We stress that the derivation is purely in algebraic terms, and fixes the dis-

persion relation up to the choice of proportionality in front of sin2(p/2)3.

Let us now discuss the extension to the Yangian. We discussed the Yan-

gian of Y(psl(2|2) n C3) in section 2.4.4. Here, we only need to discuss

the modifications due to the braiding generator U . The Yangian algebra

relations remains unchanged, but the coproduct of the generators is now

twisted in the same way as the Lie algebra generators, and the coproduct

in the first realisation is explicitly given in table 5.4.

If one would formally switch off the braiding generator U , one would re-

3The S-matrix of the AdS4 × CP3 correspondence is formally found by substituting the
’t Hooft coupling by a more general function of λ [164]. Hence, the same algebraic
structure seems to exist in this theory.
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∆R̂a
b = R̂a

b ⊗ 1 + 1⊗ R̂a
b

+
1

2
Ra

c ⊗Rc
b −

1

2
Rc

b ⊗Ra
c

− 1

2
Sa

γU+1 ⊗Qγ
b −

1

2
Qγ

bU−1 ⊗Sa
γ

+
1

4
δab S

d
γU+1 ⊗Qγ

d +
1

4
δab Q

γ
dU−1 ⊗Sd

γ ,

∆L̂αβ = L̂αβ ⊗ 1 + 1⊗ L̂αβ

− 1

2
Lαγ ⊗ Lγβ +

1

2
Lγβ ⊗ Lαγ

+
1

2
Qα

cU−1 ⊗Sc
β +

1

2
Sc

βU+1 ⊗Qα
c

− 1

4
δαβ Q

δ
cU−1 ⊗Sc

δ −
1

4
δαβ S

c
δU+1 ⊗Qδ

c,

∆Q̂α
b = Q̂α

b ⊗ 1 + U+1 ⊗ Q̂α
b

− 1

2
LαγU+1 ⊗Qγ

b +
1

2
Qγ

b ⊗ Lαγ

− 1

2
Rc

bU+1 ⊗Qα
c +

1

2
Qα

c ⊗Rc
b

− 1

2
CU+1 ⊗Qα

b +
1

2
Qα

b ⊗ C

+
1

2
εαγεbdPU−1 ⊗Sd

γ −
1

2
εαγεbdS

d
γU+2 ⊗P,

∆Ŝa
β = Ŝa

β ⊗ 1 + U−1 ⊗ Ŝa
β

+
1

2
Ra

cU−1 ⊗Sc
β −

1

2
Sc

β ⊗Ra
c

+
1

2
LγβU−1 ⊗Sa

γ −
1

2
Sa

γ ⊗ Lγβ

+
1

2
CU−1 ⊗Sa

β −
1

2
Sa

β ⊗ C

− 1

2
εacεβδKU+1 ⊗Qδ

c +
1

2
εacεβδQ

δ
cU−2 ⊗ K,

∆Ĉ = Ĉ⊗ 1 + 1⊗ Ĉ

+
1

2
PU−2 ⊗ K− 1

2
KU+2 ⊗P,

∆P̂ = P̂⊗ 1 + U+2 ⊗ P̂

− CU+2 ⊗P + P⊗ C,

∆K̂ = K̂⊗ 1 + U−2 ⊗ K̂

+ CU−2 ⊗ K− K⊗ C.

Table 5.4: Coproduct of the twisted Yangian
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cover the standard Yangian of psu(2|2) n u(1)3, as studied in section 2.4.4.

We note that mathematically, we can generate U by twisting the coprod-

uct as

∆X = F∆oXF−1, (5.2.18)

where F = exp(ip/2⊗B1
1) is a Reshetikhin twist. p can be considered as an

abstract generator satisfying ∆p = p⊗ 1 + 1⊗ p, and B1
1 is one of the outer

automorphisms of psu(2|2) n u(1)3. Indeed, B1
1 acts only on the fermionic

generators in a diagonal way, and can hence be easily seen to generate the

coproduct (5.3), (5.4).

We would now like to investigate the representation of the Yangian gen-

erators on the fundamental representation of psu(2|2) n u(1)3. We have

already investigated the untwisted generators in the second realisation in

section 2.4.5. The generators of the first realisation can, in principle, be

represented in the same way as for the unextended su(2|2) algebra, namely

as

X̂ = uX, (5.2.19)

with some spectral parameter u. Similarly as in the case of the classical Lie

bialgebra, as studied in section 5.1.3, u should be related to the momentum

of the corresponding magnon, and hence be related to the generator U , or

the related parameters x+, x−. The correct identification, found in [58], is

given by

u =
ig

2

x+ + x−

1 + 1
x+x−

. (5.2.20)

Up to an overall shift on all tensor factors, this is the only combination com-

patible with cocommutativity of the new central generators P̂, K̂. Hence,

this identification is a necessary condition, should the Yangian be compati-

ble with an S-matrix on two fundamental representations.

We are now in a position to fix the S-matrix on the fundamental repre-

sentation. It is fully fixed up to a scalar factor by requiring
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[S,∆X] = 0, (5.2.21)

for all generators X of the Yangian Y(psu(2|2) n R3). The answer is given

in table 5.5.

Interestingly, this S-matrix is already fixed by invariance under the cen-

trally extended Lie algebra psu(2|2)nu(1)3, without reference to the Yangian

generators [56]. The additional invariance under the Yangian generators was

shown only later [58]. This is in contrast to all other simple Lie superal-

gebras, where invariance under the Lie algebra generators constrains the

S-matrix massively, but never fixes it. This fact is related to the distin-

guished properties of the representation theory of psu(2|2) n u(1)3, which

was studied in [107] (see also [165] for the unextended case). Most no-

tably, the tensor product of two fundamental representations is, for generic

values of the central elements, irreducible. For simple Lie superalgebras,

the tensor product usually decomposes into several irreducible components.

However, in these cases, the representation of the corresponding Yangian

will generically be irreducible. Hence, the complete S-matrix is usually

fixed by imposing Yangian invariance on top of the usual Lie algebra in-

variance. Alternatively, one can solve the Yang-Baxter equation on top of

the Lie algebra invariance. Note that the Yang-Baxter equation is defined

on the triple tensor product, making the computation harder than using

the Yangian invariance. The reason why solving the Yang-Baxter equation

seems equivalent to solving the commutation relations with the Yangian is

that the Yangian can be defined with the RTT relations.

As equation (5.2.21) is invariant under multiplication of S with an ar-

bitrary factor, the prefactor of S needs to be fixed by crossing symmetry

[59] and unitarity. This was done in [66], confirming the earlier conjectured

dressing factor of [64, 65]. We give the result of the dressing factor σ2 in

the integral form found in [151]:
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S12|φa1φb2〉 = A12|φ{a2 φ
b}
1 〉+B12|φ[a

2 φ
b]
1 〉+

1

2
C12ε

abεαβ|ψα2ψ
β
1 〉,

S12|ψα1ψ
β
2 〉 = D12|ψ{α2 ψ

β}
1 〉+ E12|ψ[α

2 ψ
β]
1 〉+

1

2
F12ε

αβεab|φa2φb1〉,

S12|φa1ψ
β
2 〉 = G12|ψβ2φ

a
1〉+H12|φa2ψ

β
1 〉,

S12|ψα1 φb2〉 = K12|ψα2 φb1〉+ L12|φb2ψα1 〉.

A12 = S0
12

x+
2 − x

−
1

x−2 − x
+
1

,

B12 = S0
12

x+
2 − x

−
1

x−2 − x
+
1

(
1− 2

1− 1/x−2 x
+
1

1− 1/x+
2 x

+
1

x−2 − x
−
1

x+
2 − x

−
1

)
,

C12 = S0
12

2γ1γ2

αx+
1

√
x+

2 x
−
2

1

1− 1/x+
1 x

+
2

x−2 − x
−
1

x−2 − x
+
1

,

D12 = −S0
12

√
x−1 x

+
2

x+
1 x
−
2

,

E12 = −S0
12

√
x−1 x

+
2

x+
1 x
−
2

(
1− 2

1− 1/x+
2 x
−
1

1− 1/x−2 x
−
1

x+
2 − x

+
1

x−2 − x
+
1

)
,

F12 = −S0
12

2α(x+
1 − x

−
1 )(x+

2 − x
−
2 )

γ1γ2

√
x+

1 x
−
1 x
−
2

1

1− 1/x−1 x
−
2

x+
2 − x

+
1

x−2 − x
+
1

,

G12 = S0
12

√
x−1
x+

1

x+
2 − x

+
1

x−2 − x
+
1

,

H12 = S0
12

√
x−1 x

+
2

x+
1 x
−
2

γ1

γ2

x+
2 − x

−
2

x−2 − x
+
1

,

K12 = S0
12

γ2

γ1

x+
1 − x

−
1

x−2 − x
+
1

,

L12 = S0
12

√
x+

2

x−2

x−2 − x
−
1

x−2 − x
+
1

.

Table 5.5: All-loop S-matrix
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σ2 =
R2(x+

1 x
+
2 )R2(x−1 x

−
2 )

R2(x+
1 x
−
2 )R2(x−1 x

+
2 )

R2 = exp 2i(χ(x1, x2)− χ(x2, x1))

χ(x1, x2) = −i
∮ ∮

dz1

2πi

dz2

2πi

1

x1 − z1

1

x2 − z2
log Γ(1 + ig(z1 +

1

z1
− z2 −

1

z2
))

(5.2.22)

The full psu(2|2) n u(1)3 invariant S-matrix is then completed by putting

S0
12 = σ

√
1− 1/x−1 x

+
2

1− 1/x−2 x
+
1

x−2 − x
+
1

x+
2 − x

−
1

. (5.2.23)

Recall that the full S-matrix of AdS/CFT is given by

Spsu(2|2)×psu(2|2)nu(1)3 = Spsu(2|2)nu(1)3 ⊗ Spsu(2|2)nu(1)3 , (5.2.24)

so the square root in 5.2.23 will not be troublesome.

Classical Limits

The S-matrix given in table 5.5 is a complete quantum S-matrix, depending

on the coupling g. If we take g → 0, we should recover the spin-chain

S-matrix as studied in section 5.2. To take this limit, it is important to

keep in mind that the spectral parameters x+, x−, and likewise the related

momentum p, depend also on the coupling. To get the correct limit one has

to rescale x+, x− with 1/g, and then gets for the S-matrix4

S12 =
u

u− i
Id− i

u− i
P (5.2.25)

in this limit, with u = u1 − u2. Note that the S-matrix coming from the

universal R-matrix of u(2|2) also has an extra prefactor, which, as discussed

in section 5.2, might be related to some twists.

4Here, we have also switched off the twist, working with the conventions of [56]. This is
the S-matrix in the spin-chain frame, see [162, 142] for discussions.

146



To study the behaviour of the S-matrix in the strong coupling regime

g →∞, it is useful to use the parametrisation

x± = x

√
1− 1

4g2(x− 1/x)2
± i

2g

x

x− 1/x
, (5.2.26)

as found in [159].

The parameter γ appearing in the representation labels and the S-matrix

scales as

γ =
1
√
g
γ̃, (5.2.27)

whereas α remains independent of g.

This limit corresponds to the near plane-wave regime [17, 166, 167, 25],

or the classical limit of spinning strings [22, 168, 169, 61]. The momentum

p scales as 1
g in this limit.

In this limit, the S-matrix behaves as [170]

S = Id +
1

g
r, (5.2.28)

with the classical r-matrix studied in section 5.1.3. It can also be repro-

duced algebraically in a different way [171] than in section 5.1.3. However,

it was not shown that this proposal leads to a consistend quasi-triangular

Lie bialgebra. Furthermore, only the classical r-matrix of section 5.1.3 leads

to the correct classical limit of bound state S-matrices, as shown in [172, 83].

In [83], also the full quantum S-matrix on higher representations was in-

vestigated. Indeed, the S-matrix for higher representations is not fixed by

the Lie algebra symmetry alone, but only by Yangian invariance. This shows

that for a complete physical picture one really needs the whole symmetry

algebra, which is the Yangian. Note that the Yangian in this situation is

the twisted Yangian Y(psu(2|2) nR3), where all three central elements are

considered to be independent. On both classical limits g →∞, g → 0, effec-

tively only one central charge survived, and the additional u(1) symmetry

related to the external automorphism of the algebra appeared explicitly. As
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argued in [56], the two central charges P, K are related to gauge trans-

formations on the gauge side. However, it is at present not clear if one

can consistently reduce them on the Yangian in an algebraically consistent

way. The full quantum Yangian behind the all-loop S-matrix should be a

mathematical quantisation of the Lie bialgebra of section 5.1.3, and hence

a deformed and twisted version of the Yangian Y(u(2|2)). Another hint for

this on the quantum level was found in [173, 93], where it was shown that

the Yangian generator corresponding to the external automorphism is also

a symmetry of the all-loop S-matrix.

For these reasons, we believe that the all-loop S-matrix should be a rep-

resentation of the universal R-matrix defined by

R = F21R+RHR−F−1

R+ =
→∏

i=1,...,6

∞∏
k=0

exp(−(−1)|β|F |β|E+
β+kδ ⊗ E−β−(k+1)δ) ,

R− =

←∏
i=1,...,6

∞∏
k=0

exp(−F |β|E−β+kδ ⊗ E+
β−(k+1)δ) ,

RH =
4∏
i,j

exp

( ∞∑
t=0

((
d

dλ1
log(H+

i (λ1))

)
t

⊗
(
D−1
ij log(H−j (λ2)

)
−(t+1)

))
.

(5.2.29)

The corresponding Chevalley-Serre basis is given in section 2.4.5, and the

operator Dij is related in the usual way to the Cartan matrix. Two im-

portant questions need to be answered before evaluating this formula for

the universal R-matrix. First of all, the twist F should contain the part

generating the braiding U , which is in principle done by putting

F = eip/2⊗B
1
1 . (5.2.30)

It can also contain other combinations of the central charges, as discussed

on the classical level in section 5.1.3. B1
1 has, a priori, no fundamental

evaluation representation, so we propose to take the only 4 × 4 matrix

compatible with the inner product instead. This was given in (2.4.30).

Furthermore, the precise mechanism of inversion of the operator Dij needs
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to be given. There might be subtleties, as the analytic structure of the

AdS/CFT S-matrix is far more complicated than the one of the S-matrices

found in other integrable field theories, as discussed in chapter 3. As we

observed, the construction of RH is similar to the explicit solution of the

crossing equation, so we believe that the inversion of D here should be done

along the line of [66], where an explicit solution of the AdS/CFT crossing

equation was obtained.

149



6 Conclusions and Outlook

In this thesis, we have investigated the application of Yangians to inte-

grable models. In particular, we propose that the Yangian is a unified

symmetry algebra for many integrable models, containing more informa-

tion about physical models than widely appreciated. Most notably, the

universal R-matrix of the Yangian was shown to lead to crossing invariant,

unitary S-matrices for the known models with su(n) invariance. Likewise,

the AdS/CFT S-matrix appearing in the Bethe Ansatz is invariant under

the Yangian, so it is likely that it can also be completely reconstructed by

purely algebraic means. The Yangian of the AdS/CFT S-matrix has some

special features, as the underlying Lie superalgebra is centrally extended.

Consequently, we studied the modifications necessary to generalise previous

results concerning universal R-matrices of simple Lie algebras to superalge-

bras, and in particular, to the case of the centrally extended psu(2|2)nu(1)3

algebra. We reconstructed the AdS/CFT S-matrix in the strong and weak

coupling regimes purely from the algebra, and also derived Drinfeld’s second

realisation of the full quantum Yangian. However, a rigorous derivation of

the underlying quantum double remains an important task to be completed.

The resulting universal R-matrix should also be related to the bound state

S-matrices of [172, 83, 96]. In this thesis, we only studied the Yangian on

the fundamental representation corresponding to fundamental magnons. As

the Yangian is an abstract algebraic structure, choosing a different, suitable

representation leads to the mirror theory, which is important for the deriva-

tion of the TBA equations. We refer the reader to [83, 174] for interesting

discussions. Indeed, some subsectors of the quantum S-matrix were shown

to be related to a universal R-matrix in [175], and in [176] the fundamental

S-matrix was rewritten in a way resembling the structure of represented uni-

versal R-matrices, as well as the classical r-matrix of AdS/CFT discussed

in this thesis.
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As the S-matrices of su(n) invariant models where reproduced purely

from the Yangian, and we made progress towards such construction for the

AdS/CFT S-matrix, we believe that similar constructions should work for

most of the other integrable models as well. Indeed, many known integrable

models are invariant under a Quantum Group, which is usually either a

Yangian in the rational case, or a quantum affine algebra for trigonomet-

ric R-matrices. Another advantage of our approach is that as it is purely

algebraic, we could generalise existing constructions straightforwardly e.g.

to superalgebras. To our knowledge, a systematic study of crossing and

unitary equations for superalgebras, in the line of thought of [108, 177] for

ordinary Lie algebras, has not been done. One reason is that e.g. simply

generalising theories like the principal chiral field from target space mani-

folds based on simple Lie groups to supergroups does not lead to theories

with physical unitarity.

Integrable models with supergroup symmetry have been studied mainly

in the condensed matter literature, see e.g. [178]. In particular, in [179, 180,

181] scattering matrices with osp(n|m) symmetry where investigated, and it

was also found that the S-matrix just depends on the dual Coxeter number,

similarly to the case of sl(n|m) R-matrices investigated in this thesis. We

believe that the universal R-matrices found in this thesis are indeed in prin-

ciple valid for any simple Lie superalgebra, so an important task would be

to reproduce the osp(n|m) S-matrices from our universal R-matrix formula.

However, the representation theory of Yangians based on Lie algebras other

than sl(n|m) is considerably more involved, as there are no simple eval-

uation representations. Henceforth, even the evaluation of the rank one

algebra osp(1|2) was quite involved [182]. Our formalism for the derivation

of the universal R-matrix was, however, different to what was known before

in the literature [48, 182], as our resulting S-matrices are unitary. Further-

more, our formalism is valid for algebras with non-integer valued Cartan

matrices. In particular, we believe that one can also find R-matrices for

the exceptional Lie superalgebra D(2, 1;α) from our formula. This algebra

has some applications in relation with the AdS/CFT correspondence, as the

centrally extended psu(2|2) n u(1)3 algebra can be obtained as a reduction

from D(2, 1;α) [183, 56]. In [184], an attempt has been made to also derive

the Yangian and the classical r-matrix of psu(2|2) n u(1)3 from D(2, 1;α).

Another situation where non-integer valued Cartan matrices can arise is the
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series of gl(n|n) algebras. These have a u(1) automorphism, which can be

rescaled and shifted by the central charge. This seems to affect the dressing

factor of the resulting S-matrices, as was observed in the case gl(1|1) studied

in [91].

As we mentioned, the S-matrix of AdS/CFT investigated in this thesis is

an internal scattering matrix, scattering magnons of spin chains, which are

related to single trace local operators. These operators are local in the four

space-time dimensions of N = 4 Super Yang-Mills theory . Proper gluon

scattering amplitudes of N = 4 Super Yang-Mills theory are, a priori, not

related to our S-matrix. However, symmetry seems again a unifying scheme.

Indeed, the original spin chain is psu(2, 2|4) invariant, and this Lie super-

algebra should be enhanced to the Yangian [30, 31]. Likewise, scattering

amplitudes in N = 4 Super Yang-Mills theory , which are by construction

invariant under psu(2, 2|4), were shown to be also invariant under a Yangian

[84, 85, 86, 87]. This Yangian is related to the dual superconformal symme-

try of the amplitudes [185]. As some amplitudes are related to strings on

twistor space [186], it was recently confirmed that states in twistor string

theory indeed form representations of a Yangian [187]. The gluon ampli-

tudes seem structurally quite different to the scattering matrices consider

in this thesis. It would be very interesting to investigate if the Yangian

symmetries can also restrict the amplitudes at higher loops.

The question of obtaining an all-loop result for amplitudes may hence be

solved in a similar way as the S-matrix of the spectral problem1. We have

seen that the S-matrix for the spectral problem in AdS/CFT is a coupling

dependent quantum S-matrix. It is invariant under the whole quantum Yan-

gian, and the coupling dependence entered through the eigenvalues of the

central charges. However, this does not at all constitute a proof of quantum

integrability, but the derivation of the S-matrix is rather based on the as-

sumption of quantum integrability. We note that even a rigorous derivation

of classical integrability is not straightforward. The existence of infinitely

many conserved charges follows from the existence of a flat current, as de-

rived in [28]. Their Poisson commutativity was only shown in [145], and the

1Fascinating progress in this direction has been made just when this thesis was com-
pleted. In [188], all-loop recursion formulas were given for the integrand of scattering
amplitudes.
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underlying classical symmetry algebra was studied in [146, 147]. The classi-

cal Poisson structure contains non-ultra local terms, i.e. derivatives of delta

functions. Similar terms appear in the Poisson brackets of the principal chi-

ral field or the O(n) sigma model [121, 122, 123]. This makes for instance

the evaluation of commutation relations of the charges difficult [46, 145]. In

the case of the principal chiral field, it was argued that the non-ultra local

terms come from a bad choice of a classical limit of the well-defined quan-

tum theory [189]. The existence of quantum conserved non-local charges

was argued to exist in [34] for the O(n) model and in [45] for other nonlin-

ear sigma models on symmetric spaces.

Recently, after convincing evidence that string theory on AdS4 × CP3

is also integrable [134, 135, 136] and exactly dual to N = 6 Chern-Simons

theory in three dimensions [133], attempts have been made to classify space-

time backgrounds on which string theory is integrable [190, 191]. Impor-

tant for such integrability is the existence of a Z4 grading of the symme-

try algebra. The arguments given so far for this classification are classical

or based on one-loop computations. In the pure spinor formalism of the

AdS5×S5 superstring, quantum non-local charges were also argued to exist

[192], but no explicit computations were performed. Explicit calculations

at one loop were done in [193, 194], and confirm the integrability of the

superstring at least in the pure spinor formalism. It is important to explic-

itly confirm the existence of infinitely many conserved charges in the full

quantum theory, to prove integrability and henceforth rectify the use of the

S-matrix formalism. Furthermore, one should, in principle, derive the same

algebraic structures both from the Yang-Mills and the string side of the

AdS/CFT correspondence. Henceforth, one should be able to fully verify

that the TBA equations conjectured in [76, 77, 78, 79] correctly describe

the spectrum of the AdS/CFT correspondence.

Another problem of the TBA equations, besides the lack of rigour in their

derivation, is that they are hard to evaluate. This is because there are in-

finitely many coupled TBA equations, and the evaluation even in the case

of the simplest operators is hard. In [76], the Y-system for the Konishi

operator has been solved to four loops, confirming an earlier result obtained

from the asymptotic Bethe ansatz complimented by Luscher corrections
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[69]. To this loop order, the result was also checked in perturbation theory

[195, 196]. To five loops, Luscher corrections have been computed analyt-

ically [197], and this result is in agreement with numerical investigations

of the TBA equations [198, 199, 200]. Furthermore, the Luscher correc-

tions have been computed for the whole sl(2) sector [201], and this result

is compatible with expectations from the BFKL equation. Attempts have

been made to find a dual string state for the Konishi operator [202]. On

the string side it is less clear when finite size corrections should become im-

portant. In [72] it was shown that already the next-to-leading order in the

expansion of the dressing phase of the Bethe ansatz leads to inconsistencies

in the analytic expansion. An important task for analytic studies as well as

improved numerics is to find equations which are easier to handle. For other

integrable models there are often integral equations which are equivalent to

TBA equations, but have the property to be easier to handle. Most notably,

for Sine-Gordon theory, there are the Destri-deVega equations [81], or, more

recently, integral equations for the principal chiral field with su(2) × su(2)

symmetry have been found in [82]. As the integral equations of the principal

chiral field follow from the S-matrix, which we have shown follows directly

from the Yangian, one might hope for a direct derivation of the integral

equations from the Yangian. This is however currently far off. However,

we note the appearance of q-deformed Cartan matrices in TBA equations

[111]. We have shown that asymptotic S-matrices can be directly related

to the Yangian. It would be interesting to investigate further the algebraic

structures for finite size systems, and if they can also lead directly to inter-

esting physical quantities.

Some of the difficulties of showing integrability of the AdS sigma model

are related to the fact that in the light-cone gauge, the sigma model is

not relativistically invariant. This makes it different to most other known

integrable field theories. One solution to overcome this problem is to not

use the light-cone gauge, but attempt some other covariant methods. One

idea is to use the so-called Pohlmeyer reduction, which should reduce the

original theory in such way that only physical degrees of freedom survive,

and the theory remains relativistically invariant. The Pohlmeyer reduction

was proposed in [203] for the AdS superstring, see also [204, 205] for further

progress in this direction. Interestingly, the leading S-matrix in the reduced
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theory [206] looks quite similar to the classical limit [207] of the q-deformed

S-matrix [208] of the spectral problem discussed in this thesis. As this clas-

sical S-matrix is constructed from a Lie bialgebra, which can be considered

as a deformation of the bialgebra discussed in this thesis, again quantum

groups or their classical limits seem to be responsible for the constraints on

the S-matrix.

Besides seeking for a further closure of the gap between the mathematics

of Yangians and their physical applications, an important task is to gener-

alise the mathematics. Some important generalisations are of direct phys-

ical concern, such as a better understanding of the representation theory

of Yangians of superalgebras, in particular the one based on the centrally

extended psu(2|2) n u(1)3 algebra. The dependence of the central charges

on each other in the quantum Yangian should have a similarly consistent

interpretation as for the classical Lie bialgebra studied in this thesis. Such

identification might then change the representation theory of the Yangian.

Furthermore, as we believe that the results concerning Yangians and their

universal R-matrices are valid for all simple Lie superalgebras, one should

explicitly show that they lead on representations to the scattering matrices

found in [180] for the case osp(n|m). One should also be able to construct

R-and S-matrices based on the exceptional Lie superalgebras. Another gen-

eralisation is towards trigonometric solutions of the Yang-Baxter equation,

whose symmetry is related to quantum affine algebras. Corresponding uni-

versal R-matrices have been constructed in [209]. Indeed, the quantum

affine algebra is in several aspects easier to treat than the Yangian. In

principle, one can also recover the Yangian in a special limit of the de-

formation parameter q. This is expected, as trigonometric S-matrices can

be reduced to rational S-matrices. In some cases, such as for XXX spin

chain, it is well understood what the q-deformation physically means. Basi-

cally, q corresponds to an anisotropy parameter, which generalises the XXX

spin chain to the XXZ spin chain. However, for other models, it is less

clear what a q-deformation should mean. In the context of the AdS/CFT

correspondence, q-deformation was related to Leigh-Strassler deformations

[210, 211, 212, 213], where integrability is only preserved for special values

of the deformation parameter. It is not clear if this is related to the above-

mentioned q-deformed S-matrix of the spectral problem.
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In this thesis, we mainly discussed field theories defined on a cylinder,

whose circumference is taken to infinity when considering the scattering

problem. Yangian charges exist precisely for such decompactification limit.

We note that there are also Yangian charges in theories with a boundary,

such as the principal chiral model [214] or the AdS/CFT correspondence

[215] with inserted boundaries. The corresponding boundary Yang-Baxter

equation yields solutions to the reflection matrices, which describe the re-

flection of a particle at the boundary. Hence, they act just on one repre-

sentation space, and not on the tensor product, as the previously discussed

two particle scattering matrices. The corresponding Yangian acting on the

boundary is a twisted Yangian [216]. It would be interesting if the bound-

ary scattering matrices can also be reconstructed algebraically, in line of

thought of this thesis. As the universal R-matrix of quantum groups gener-

ically lives on the tensor product of two copies of the quantum group, one

might have to consider a natural reduction of the R-matrix to one copy of

the Yangian. There are natural ways involving the antipode as well as the

multiplication map of the Hopf algebra, i.e. one might consider the element

µ(S ⊗ Id)(R).

The Yangian symmetries in the systems we were dealing with are well-

defined in the infinite length limit of the underlying world-sheet or corre-

sponding spin chain. The spin chain underlying N = 4 Super Yang-Mills

theory is long-ranged, as the interaction range grows in perturbation theory.

We had to consider infinitely long chains to construct asymptotic scattering

states, so for those states there is no problem of defining Yangian charges.

Following the TBA logic, the Yangian of the mirror model should also be

behind the finite size spectrum. It would be interesting to find out what

algebraic structure is ultimately acting on finite size spectrum, and if its

ultimately a Yangian at all, or only becomes a Yangian for infinite length

[217]. Note that curiously, for certain other long-ranged spin chains it was

possible to define Yangian charges also for closed chains [218, 219]. Other

long ranged spin chains with Yangian invariance were investigated in [220].

It seems that as long as the long-ranged Hamiltonian preserves integrability,

some Quantum Group symmetry also survives.
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Symmetries have played a prominent role in physics in the last century,

and it is appreciated that one needs to know the precise algebra relations.

The algebra determines the representation theory, and hence the physics. In

integrable models, many authors studied the underlying Lie symmetries and

appreciated the importance of the existence of additional conserved charges.

In this thesis, we advocated that it is worth to know also the commutation

relations of the additional conserved charges. In integrable models, this

algebra is usually a Quantum Group. In particular, if the Quantum Group

is a Yangian, as for the principal chiral field or the AdS/CFT correspondence

at strong and weak coupling, we showed that one can reproduce the complete

S-matrix just from the Yangian. Henceforth, we propose to study more

deeply the symmetries involved in integrable models, as we argue they are

more closely related to physics than is widely appreciated.
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