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Abstract: The minimal length conjecture is merged with a generalized quantum uncertainty formula,

where we identify the minimal uncertainty in a particle’s position as the minimal measurable length

scale. Thus, we obtain a quantum-induced deformation parameter that directly depends on the

chosen minimal length scale. This quantum-induced deformation is conjectured to require the

generalization of Riemannian spacetime geometry underlying the classical theory of general relativity

to an eight-dimensional spacetime fiber bundle, which dictates the deformation of the line element,

metric tensor, Levi-Civita connection, Riemann curvature tensor, etc. We calculate the deformation

thus produced in the Levi-Civita connection and find it to explicitly and exclusively depend on the

product of the minimum measurable length and the particle’s spacelike four-acceleration vector,

L2 ẍ2. We find that the deformed Levi-Civita connection preserves all properties of its undeformed

counterpart, such as torsion freedom and metric compatibility. Accordingly, we have constructed

a deformed version of the Riemann curvature tensor whose expression can be factorized in all

its terms with different functions of L2 ẍ2. We also show that the classical four-manifold status of

being Riemannian is preserved when the quantum-induced deformation is negligible. We study the

dependence of a parallel-transported tangent vector on the spacelike four-acceleration. We illustrate

the impact of the minimal-length-induced quantum deformation on the classical geometrical objects

of the general theory of relativity using the unit radius two-sphere example. We conclude that the

minimal length deformation implies a correction to the spacetime curvature and its contractions,

which is manifest in the additional curvature terms of the corrected Riemann tensor. Accordingly,

quantum-induced effects endow an additional spacetime curvature and geometrical structure.

Keywords: modified gravity; minimal length scale; generalized uncertainty principle; general relativity;

deformed phase space

1. Introduction

1.1. Generalized Uncertainty Principle

The Heisenberg uncertainty principle (HUP) is one major aspect of the conceptual
difference between classical and quantum physics. Certainly, it arises from pure quantum
mechanical effects stemming from the wave–particle duality, which tells us that there is
an inherent fuzziness in nature at some microscopic length scale. It is intuitively expected
that if gravitational effects are taken into consideration near the proper fundamental
length scale, the added fuzziness and its implications should be taken into account by
deforming (modifying) HUP into an extended or generalized version commonly dubbed
as the ‘generalized uncertainty principle’ (GUP), or equivalently the modified dispersion
relations’ [1–13], which has been used extensively in attempts to explain the origin of
the gravitational field and how a particle behaves in it near fundamental length scales.
Before we proceed further with the GUP, it might be instructive to mention that there exist
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other approaches that endeavor to modify quantum mechanics (QM) at subatomic scales
by assuming, for example, that Planck’s constant is not universal but rather runs with a
particle’s interaction cross sections [14] or with the interaction energy [15].

The GUP is a modified Heisenberg uncertainty relation that predicts a deformed
canonical commutator. Given the geometrical nature of the classical theory of general
relativity (GR), it is natural to expect that the endeavor of modifying HUP to GUP should
be accompanied by a program for modifying the underlying geometrical framework.

There are three main approaches to a GUP, which are reviewed here [16,17]. For
example, the GUP model we are adopting in the present paper is a generalized uncertainty
relation that characterizes the minimal length as a (nontrivial) minimal uncertainty in
position measurements (see, for example, Equation (1) in Ref. [6]). This model was
originally constructed by Michele Maggiore [7] mainly using string theoretic arguments
and independently by Achim Kempf [18] using formal nonrelativistic quantum mechanical
and group theoretical arguments.

We have already used this GUP model in a recent paper [19] to study the possible
implications on the geodesic equation, while in the present study, we implement the same
GUP model, within the same geometrical embedding (but in a slightly different exposition),
to study its impact on the metric tensor, Levi-Civita connection, parallel transport, and
symmetries of the Levi-Civita connection, which is elaborated in Sections 3 and 4.

1.2. Motivating the Minimal Length Scale Scenario

Over the past few decades, much effort has gone towards creating a unified formalism
combining QM and GR, or alternatively accounting for their main effects and consequences
in a consistent fashion, which has resulted in the creation of a number of potential candidate
theories (models). To name a few, string theory (ST), loop quantum gravity (LQG), and
doubly (deformed) special relativity (DSR) are typical examples of available roads to a
theory of quantum gravity (QG) [20]. To be precise, DSR has been argued to provide an
effective limit of quantum gravity in an almost-flat regime.

Due to long-standing unresolved challenges, it is predicted that a definitive solution
is still far away despite these and other attempts. (an extensive though incomprehensive
survey can be found in Ref. [21]). Consequently, it can be inferred that there is a need to
approach QG differently.

In this quest, one viable track might be the modification of the underlying spacetime
geometry at fundamental scales to incorporate quantum effects within the framework of a
GUP model. This is the track to QG we are exploiting in Section 2 here.

Generally, ST, LQG, DSR, and various gedanken experiments suggest the inevitability
of the existence of a fundamental physical minimum length (scale) and/or a modifica-
tion of the HUP near the Planck scale to the GUP in a way that prevents the length
(energy/momentum) uncertainty from being arbitrarily small (large) [7,20,22].We are not
here in a position to formally compare different QG theories/models incorporating the
concept of minimal length scale. However, it might be illuminating to highlight that, for
example, in ST [20], it has been discovered that there is such an uncertainty that is believed
to be generally a spacetime uncertainty that implies a bound determined by the string
scale, which may not be the same as the Planck scale. In LQG [20], the area and volume
operator’s eigenvalues are constrained, while the early universe’s curvature is constrained
to a Planckian value in the simplified model of loop quantum cosmology. In DSR [20,23,24],
the minimal length scale is an invariant of the theory that is consistently set to be a Planck
length scale; it is an observer-independent scale.

As a result of these several limitations, it might be inaccurate to refer to a “minimal
length”, as there is always no bound on the length itself, only on the powers of spatiotem-
poral distances. In order to avoid confusion, it is best to refer to a “minimal length scale"
in a more generic sense while leaving the specifics of how this scale is used to measure
physical quantities up for debate. Finally, it is important to emphasize here that this is not
the case in the GUP approach we are adopting in the present paper [6,18], where we have
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the choice of identifying the length uncertainty as the minimal measurable length. More
interestingly, we also have the choice of fixing the scale of minimal length to Planck length
or else. So far, and as far as we know, there is no theoretical or empirical compelling reason
to fix the minimal length scale to a specific value. This argument is formally elaborated
using Equations (1)–(4) in Section 2.

The present study manifestly introduces a minimal length approach. However, it
might be even more more illuminating to shed some light on the possible connection
between the concept of minimal length scale and that of maximal acceleration scale.

1.3. Maximal Acceleration

The possibility of the existence of a maximal acceleration limit was originally suggested
by Eduardo Caianiello [25] as a by-product of his endeavor to ‘geometrize QM’ through
the identification of the physical spacetime of a quantum particle as a four-dimensional
hypersurface locally embedded in eight-dimensional phase space, leading to the reformula-
tion of the mechanics of physical objects being limited not only by maximal velocity but
also by maximal acceleration.

Based on energy–time HUP, Caianiello [26] also suggested later a maximal acceleration,
Amax, such that Amax = 2mc3/ℏ = c2/R, where m denotes the mass of a massive particle, c
denotes the speed of light, ℏ denotes the reduced Planck’s constant, and R was interestingly
enough interpreted by Caianiello to be some radius of particle rotation or generally a
length scale of the order of the ‘linear dimension’ of the particle, which cannot exceed the
limit set by (∼c2/R), i.e., a minimal length scale. The connection between minimum length
and maximal acceleration is hereby clear enough.

More recently, Ricardo Torromé [27] reformulated Caianiello’s maximal acceleration
formula in a covariant form and introduced a couple of possible interpretations for the
mass scale (m) as either the rest mass of the accelerated particle, of the order of the lightest
neutrino mass scale, or some universal mass scale of the order of the Planck mass. The latter
is the most common choice within the framework of ST-inspired models [28]. Torromé also
emphasized that the maximal acceleration, in his model, is invariant under arbitrary local
coordinate changes. This feature is certainly in contrast to Caianiello’s original approach.

Using a totally different approach based on black hole thermodynamics, Howard
Brandt [29] derived equations clearly suggesting the possibility of the existence of a maxi-
mal acceleration scale as a direct result of the existence of a maximum temperature limit for
black holes by studying their radiation and thermal equilibrium. More interestingly, Brandt
also showed that such a maximal acceleration limit is directly related to the existence of a
minimal black hole radius, a minimal length scale of the order of the Planck length. Finally,
we have to highlight that Brandt’s model uses an invariant metric, and thereby, the metric
is observer independent. It also depends on some universal mass scale near the Planck
mass scale, but does not depend on the particle mass.

Moreover, it is quite relevant and worth mentioning in this context that Frederic
Schuller [28] managed to encode dynamical symmetries of Born–Infeld theory in a pseudo-
complex geometry on the tangent bundle of generally curved spacetime manifolds. Schuller
obtained a ‘dynamically lifted’ new ‘kinematised’ version of Einstein field equations that
suggest not only the existence of a maximal acceleration limit for particles but also the
emergence of anticommutation relations that might be valid for a ‘first quantization’ of
general relativity.

To this point, we conclude this short discussion on maximal acceleration by the
following remarks:

• Maximal acceleration and minimal length scales seem to be naturally intertwined in
different physical contexts.

• Maximal acceleration and minimal length can, in principle, be formulated in either
observer-dependent or observer-independent geometrical frameworks.

• Some of the prominent maximal acceleration approaches may evolve to be promising
candidates in the quest of the quantisation of GR.
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In Section 2, we develop a formal though simple relationship between the minimal
measurable length and the maximal acceleration. However, we emphasize that our formal
analysis thereafter makes almost exclusive explicit reference to the minimal length.

1.4. Finsler Geometry

Finsler geometry is considered to be a natural generalization to the Riemannian
geometry whenever the metric depends on the particle’s velocity (momentum), and thereby,
an analysis on the (co-)tangent bundle (phase space) is in order. Thus, and without delving
into unnecessary technical details, Finsler geometry is viewed to share significantly similar
features with the geometrical embedding scenario we assume in the present study, which
is adapted based on Caianiello’s fiber bundle eight-manifold [30]. We assume such an
eight-manifold to host the quantum effects of gravitational fields and embed them in the
fabric of classical spacetime geometry, which is formally elaborated in our technical analysis
developed in Section 3.

The implementation of Finsler geometry in the context of ‘geometrizing’ quantum
mechanics and quantum field theory has been the quest of some authors for a couple of
decades or so.

In connection with the main scope of the present study, we find it more convenient to
highlight the following relevant contributions:

• Brandt [31] investigated Finsler fields in the arena of the maximal acceleration invari-
ant spacetime tangent bundle.

• Torromé [27] developed a covariant version of Caianiello’s model, which is a typical
example where diverse types of structures including Finsler’s appear in a natural way.

• Giovanni Amelino-Camelia and collaborators [32] established a link between Finsler
geometry, models with curved momentum space and DSR symmetries that have been
recently of interest in the QG literature.

• Florian Girelli and collaborators [33] proposed that QG phenomenology may be
associated with an energy-dependent geometry (modified dispersion relations) that
corresponds to a Finsler geometry. The symmetries arising in this context have a role
in other QG alternative scenarios, such as DSR and emergent spacetime-like models.

• One of the authors of the present paper (A.T.), in his recent paper [34], introduced an
approach to ‘quantize’ the fundamental tensor (metric tensor) and first fundamental
form (line element) by extending the four-dimensional Riemann manifold to the eight-
dimensional Finsler manifold, in which the quadratic restriction on the length measure
is relaxed. A.T. emphasizes that these results represent “quantum-induced corrections
but not a full quantization”.

Apart from the wide range of similar features shared by Finsler’s and Caianiello’s
manifolds, we choose to limit our analysis reported in the present paper to the geometrical
framework of Caianiello’s fiber bundle setup [30] and save the direct exposition to Finsler-
type manifolds to a future project. We believe that the implementation of Finsler manifolds
might generally deepen and strengthen the conceptual and formal background from a
geometrical point of view. However, per the assumed scope of the present paper, we do
not expect it to result in any notable impact on the results of the calculations supporting
the main conclusions thus reached.

1.5. Relative Locality

Now let us briefly discuss the observer-dependent property of the particle metric and
trajectories in momentum space, which goes in the literature as “relative (non-)locality” or the
“principle of relative locality” [35].

The relevance to the geometrical setup we implement in the formal analysis presented
in the next Sections is because we choose to follow the main ideas underlying Caian-
iello’s original geometrical construction [30,36,37]. This geometrical framework is formally
motivated and developed in Section 3.
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In this framework, the physical picture leading to the property of observer dependence
(or relative locality) may be simplified as follows: particles live in a four-spacetime manifold
embedded, at fundamental microscopic levels, in an eight-dimensional phase space. As a
consequence, a particle subject to different interactions has different trajectories (different
velocities) in momentum space and is thereby naturally seen by different observers to live
in different observer-dependent four-dimensional geometries.

This perspective of relative locality is believed to be compatible with a conjecture
according to Gary Gibbons and Stephen Hawking [38] that reads “in a typical quantum
theory of gravity, the spacetime metric should be observer-dependent”.

In this vein, more recently and also more relevant to the formal geometrical con-
struction adopted in the present study, Amelino-Camelia and collaborators [35] proposed
a deepening of the relativity principle according to which the invariant arena for non–
quantum physics is phase space rather than spacetime. In this framework, absolute locality
is replaced by ‘relative locality’, which (interestingly enough) results from deforming
momentum space.

Moreover, it is remarkable that the aspects of relative locality are seen naturally inter-
twined with any formal procedures involving deformed (curved) momentum space and/or
non–commutative geometry. In addition to Amelino-Camelia’s version of relative locality
[35], typical examples include but are not limited to Alain Connes’s non–commutative
geometry [39], both the two main formulations of DSR [23,40], and not to mention the
formal procedure adopted in the present study.

1.6. Phenomenology

Making contact with phenomenology is the most important part of any model. Minimal-
length-scale-inspired models have grown to become one of the most well-developed and
highly motivated fields in the phenomenology of quantum gravity. Consequently, before
we terminate our introduction, we are in order to address some of the expected phenomeno-
logical consequences of the existence of a minimal measurable length and the resulting
modification of the metric tensor and other geometrical structures. In this vein, it is im-
portant to comprehend the numerous efforts made to constrain the GUP deformation
parameter (β), motivated in Section 4, by optomechanical/interferometry studies, on the
one hand, and gravitational/cosmological data, on the other (see, e.g., Refs. [20,41] for a
review).

Moreover, one notable recent development, which is especially relevant to the question
of a minimal length scale, is the possibility that direct evidence for the discrete nature of
spacetime may be found in the emission spectra of primordial black holes, if such black
holes exist and can be observed [42,43].

An interesting though outdated account of some possible phenomenological conse-
quences of the original version of Caianiello’s model involving different particle mass scales
and thereby different maximal acceleration limits is reported in [36].

Even more interestingly, GUP can lead to some phenomenological quantum gravita-
tional models that can, in principle, be probed at relatively low energies [16,44].

Finally, and in the interest of being more concrete about the plausibility of measuring
(at least) the bounds of the GUP β , let us brief on a recipe recently suggested by Zhong-
Wen Feng and collaborators [45] to constrain the GUP by exploiting the first detected
gravitational wave (GW150914) data to set bounds on β without violating the equivalence
principle. In this endeavor, the authors of Ref. [45]:

• obtain the GUP-deformed commutator (similar to Equation (2) in Section 2 in the
present paper);

• decide the deformed dispersion relation (to the first order in β) from the deformed
commutator;

• calculate the deformed group speed of gravitons assuming them to be massless;
• calculate the difference between the deformed speed of massless gravitons and that of

light;
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• calculate the upper bound of the group velocity at the measured beak frequency and
finally,

• calculate the upper bound of β.

The present paper is organized as follows. In Section 2, GUP-inspired expressions
for the minimal measurable length and the corresponding maximal acceleration are de-
rived. Extending the four-dimensional manifold, M, to an eight-dimensional spacetime
tangent bundle, TM, and the possible quantum-induced deformation of the metric tensor
is introduced in Section 3. The possible deformation of the Levi-Civita connection on the
Riemannian manifold is discussed in Section 4. The parallel transport of a vector on the
Riemannian manifold is elaborated in Section 5. The deformed Riemann curvature tensor
is developed in Section 6. Section 7 is dedicated to a general summary and conclusion.

2. Minimal Measurable Length

As discussed in Section 1.3, the concept of minimal length L emerges from the point
that a minimal measurable length uncertainty is predicted in various theories of QG, as
a consequence of the expected added fuzziness of the spacetime structure due to grav-
itational impacts near the fundamental scales of sufficiently high energy necessary to
resolve a fundamentally small distance. We choose to adopt Kempf’s version of GUP [6],
which suggests

∆x ∆p ≥
h̄

2

[

1 + β(∆p)2 + β〈p〉2
]

, (1)

where 〈p〉 is the momentum expectation value and, ∆x and ∆p represent the length and
momentum uncertainties, respectively. The GUP parameter β = β0G/(c3h̄), with G the
gravitational constant and β0 being a dimensionless parameter that conveys the impacts of
gravity on HUP, which is one of the main principles of QM, and shapes the transition to
GUP. β0 is of the order of 1 according to different independent theoretical estimations [41],
while the available empirical bounds from recent cosmological observations of gravitational
and non–gravitational origin still need much improvement [41,46]. We assume here that β0

is left to be determined empirically (see Section 1.6).
The known commutation relation between length and momentum operators now

reads:

[x̂, p̂] = ih̄
(

1 + β p̂2
)

. (2)

The minimum uncertainty of position ∆xmin for all values of 〈p〉 is

∆xmin(〈p〉) = ℏ
√

β
√

1 + β〈p〉2. (3)

When 〈p〉2 = 0, the absolute minimum uncertainty of position becomes

∆x0 = ℏ
√

β. (4)

One can identify the minimum uncertainty of position, ∆x0, as the minimal measurable
length scale, which indicates the distance where quantum effects of the gravitational
interaction are expected to become significant; then the minimal measurable length becomes

L = ∆x0 = ℏ
√

β. (5)
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The minimal length may be assumed as a fundamental physical quantity obtained
from a combination of fundamental physical quantities such as G from gravity, ℏ from
quantum mechanics and c from special relativity [47]. That is,

L = lP =

√

ℏG

c3
, (6)

where lP denotes Planck length.
As we tried to motivate in Section 1.4, the concept of maximal acceleration can be

directly related to the concept of minimal length. In this context, if we choose to follow
Brandt [48], we may directly identify L = lP. Thus, the maximal acceleration Amax can be
expressed as

Amax =
c2

lP
=

√

c7

ℏG
. (7)

In this choice, the maximal acceleration is defined by the known physical constants.
However, we choose to follow Caianiello [26] and let the length parameter L be

arbitrary. In our perspective, this choice is not just to preserve the dimensionality of the
length required for the consistency of the following equations. There is an added value for
this choice that stems from a phenomenological point of view; L should be taken as a free
parameter, which may be constrained later using the available empirical data. This is left
for a future study.

For arbitrary L, the maximal acceleration is thus

Amax =
c2

L
. (8)

From Equations (5) and (8), one obtains:

Amax =

√

c4

ℏ2β
, (9)

which is an expression for Amax in terms of the GUP β exclusively.
Following this choice, we have obtained expressions for both L and Amax explicitly in

terms of the GUP β and a couple of physical constants. It also has to be highlighted here
that, unlike some treatments of Caianiello’s model [26], we choose here not to consider
any scenarios involving explicit dependence of the maximal acceleration on the mass in
general. Finally, our consideration in the next Sections dictates that our formal analysis
makes (almost) exclusively explicit reference to the minimal length rather than the maximal
acceleration.

3. The Deformation of Metric Tensor

To include quantum effects of the gravitational interaction on the spacetime geometry
near the fundamental scale at which such effects are expected to become important, we
follow the main ideas of Caianiello’s original model [30,36,37], which suggests that the
classical GR and thereby the classical spacetime geometry can be described by a four-
dimensional spacetime embedded as a hypersurface in an eight-dimensional manifold, M8.
The four-velocity space is assumed to include the quantum regime, where one expects to see
the quantum (GUP)-induced effects at a minimal length scale. The extended dimensions,
the eight dimensions xA, in the manifold M8 are

xA = (xµ, (L/c)ẋµ), (10)

where xµ is the four spacetime dimensions (four-dimensional submanifold of the manifold

M8), ẋµ =
dxµ

ds
is the four-velocity, and A = 0, . . . , 7, µ = 0, . . . , 3, L is the minimal length.
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Here, as explained above in Section 2, L may be defined according to Kempf’s GUP model
as a minimal uncertainty of position (5), L = ∆x0 = ℏ

√

β [6]; or one can assume the value

of minimal length to be the Planck length, (6), L = lp =
√

(ℏG/c3).
In light of the main purpose of this paper, the geometrical embedding described above

is regarded only as a formal procedure to generate, from a given metric gµν, a new metric
g̃µν, which differs from gµν by a correction (deformation) factor, which is determined just
below.

The deformed line element (ds̃2) with metric, gAB, in the eight-dimensional manifold
M8 [29,49] is thereby given by

ds̃2 = gABdxAdxB, (11)

where gAB is a result of an outer product as the following gAB = gµν ⊗ gµν.
In Equation (11), we substitute for dxA and dxB by the differential form of Equaiton (10):

ds̃2 =

(

1 + Lgµν
dxµ

ds

dẋν

ds
+ Lgµν

dẋµ

ds

dxν

ds
+ L2gµν

dẋµ

ds

dẋν

ds

)

ds2, (12)

where c = 1, ds2 = gµνdxµdxν is the classical line element,

ds̃2 = ds2 + L2gµν ẍµ ẍνds2 (13)

where ẍµ =
dẋµ

ds
is the acceleration of the particle, µ and ν are dummy indices, and

~̇x · ~̇x = −1; then ~̇x · ~̈x = 0,

ds̃2 = (1 + L2 ẍ2)ds2 (14)

where ẍ2 = gµν ẍµ ẍν. The deformed line element in four-dimension spacetime, as a projec-
tion from eight dimensions into four dimensions, is

ds̃2 = g̃µνdxµdxν, (15)

where g̃µν is the deformed (modified) metric tensor.
The deformed metric tensor g̃µν is the quantum-induced metric of the spacetime hy-

persurface, which is embedded in the extended manifold M8. The relation between the de-
formed metric tensor and the classical metric tensor is obtained by equating Equations (14)
and (15),

g̃µν = (1 + L2 ẍ2)gµν, (16)

where ẍ2 = gαγ ẍα ẍγ, γ, and α are dummy indices, and µ and ν are free indices. For
flat spacetime,

η̃µν = (1 + L2 ẍ2)ηµν, (17)

where ηµν defines the Minkowski metric.
The relation between the correction factor (1 + L2 ẍ2) and GUP can be derived by

substituting for L from Equation (16) by Equation (5),

g̃µν = (1 + ℏ
2βẍ2)gµν. (18)
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The correction factor of the deformed metric tensor can also be reformulated in terms of
the maximal acceleration Amax. This can be performed by substituting for L in Equation (16)
from Equation (7); the deformed metric tensor is

g̃µν =

(

1 +
1

A2
max

ẍ2

)

gµν, (19)

where c = 1 is set and the GUP definition of maximal acceleration from Equation (9),

Amax =
1

ℏ
√

β
, is used.

4. The Deformation of Levi-Civita Connection in Riemannian Manifold

A “connection” is defined as a geometric object on a smooth manifold connecting
nearby tangent spaces. The tangent vector fields are covariant derivatives on that manifold.
When covariant derivatives reduce to the ordinary partial derivatives, the connection
is called Levi-Civita connection or Christoffel symbol, which dictates how to perform
the parallel transport of tangent vectors on a manifold. In classical GR, the connection
plays the role of the gravitational force field, where the metric tensor is the corresponding
gravitational potential.

The minimal length approach suggests the deformation of the metric tensor as follows.

• For curved space,

g̃µν = gµν + L2 ẍ2 gµν = gµν + qµν. (20)

With Equation (5), qµν can be suggested as a GUP-contributed part, which reads

qµν = βℏ2 ẍ2 gµν. (21)

• For flat space,

η̃µν = ηµν + βℏ2 ẍ2 ηµν = ηµν + hµν, (22)

where hµν = βℏ2 ẍ2 ηµν.

Both gµν and g̃µν share common properties. They turn the covariant tensor into a
contravariant tensor and vice versa. The symmetry property of a deformed metric tensor is

g̃µν =
1

2
(g̃µν + g̃νµ), (23)

and the left-hand side (lhs) of Equation (23) is

g̃µν = gµν + L2 ẍ2gµν, (24)

and the right-hand side (rhs) of Equation (23) is

1

2
(g̃µν + g̃νµ) =

1

2
(gµν + L2 ẍ2gµν + gνµ + L2 ẍ2gνµ). (25)

It is known (see, e.g., Section 7.3.4 in Ref. [50]) that gµν in classical GR is symmetric
in its indices; then, in third and fourth terms of Equation (25), gνµ is replaced by gµν.
Following this by performing some straightforward algebraic manipulations, one obtains:

1

2
(g̃µν + g̃νµ) = gµν + L2 ẍ2gµν (26)

One can see that Equations (24) and (26) are the same; then the rhs of Equation (23) is
the same as the rhs of this equation. The deformed metric tensor is symmetric under the
interchange of its indices µ and ν.
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For the deformed Levi-Civita connection, let us replace gµν in Equation (A14) with the
deformed metric tensor g̃µν (20), where the partial derivatives are obviously commutative
as well. The deformed metric tensor is compatible; see Appendix B. Thus, the deformation
of the Levi-Civita connection (A14) can be expressed as

Γ̃
γ
βµ =

1

2
g̃αγ(g̃αβ,µ + g̃αµ,β − g̃βµ,α). (27)

For curved space, by substituting Equations (20) and (A9) into Equation (27), one
obtains:

Γ̃
γ
βµ =

1 + 2L2 ẍ2

1 + L2 ẍ2

1

2
gαγ

(

gαβ,µ + gαµ,β − gβµ,α

)

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
βµ, (28)

where g̃αγ =
gαγ

(1 + L2 ẍ2)
.

One can immediately see that vanishing L2 ẍ2 straightforwardly retrieves the unde-
formed Levi-Civita connection, Γ

γ
βµ. This is also the case, at vanishing L2 (no minimal

length scale) and/or at vanishing ẍ2 (the test particle is not accelerating). In other words,
in this case, there is no GUP-induced deformation of GR. It was shown for Equation (20)
that both deformation ingredients are interdependent. The parameterization of the four
coordinates on M in eight coordinates on TM emerges as spacelike four-acceleration ẍ2

and creates an additional geometric structure. Equation (28) reveals that the deformation of
the Levi-Civita connection is exclusively localized in its coefficient, while the undeformed
connection Γ

γ
βµ possesses unity as a coefficient. The deformed connection obtains the

coefficient (1 + 2L2 ẍ2)/(1 + L2 ẍ2). This means that the Levi-Civita connection preserves,
on the one hand, its geometric nature as in classical GR, for instance, and, on the other hand,
the deformation via additional curvature on the eight-dimensional manifold, especially at
the energy scale in which L2 ẍ2 becomes significant.

5. Parallel Transport on Riemannian Manifold

It is known that in flat space, one may choose a coordinate system, such as the
Minkowskian in which the covariant derivatives are just equal to ordinary derivatives.
However, one may also choose curvilinear (e.g., spherical) coordinates where the Christoffel
symbol is not vanishing even in flat space. In curved space, however, the differentiation
of the basis vectors can be expressed by the Levi-Civita connection. In both the flat and
curved spaces, the covariant derivatives can be defined as the rates of change of the tangent
vector fields (ordinary derivatives, for instance) with the normal component subtracted,
i.e., parallel transport. Vanishing covariant derivatives of a vector ~v = vαeα means that ~v is
parallel-transported, i.e., keeping ~v a constant as possible,

d

dλ
vα + Γ

α
σρ

dxσ

dλ
vρ = 0, (29)

where λ is a parameter along the parallel-transport curve and the dependence of the parallel
transport on the connection Γ

α
σρ is known. With the deformation, Γ

α
σρ is to be replaced by

Γ̃
α
σρ (28), i.e., Equation (29) can then be rewritten as

d

dλ
vα +

(1 + 2L2 ẍ2)

(1 + L2 ẍ2)
Γ

α
σρ

dxσ

dλ
vρ = 0, (30)

d

dλ
vα = −

1

1 + L2 ẍ2
Γ

α
σρ

dxσ

dλ
vρ −

2L2 ẍ2

1 + L2 ẍ2
Γ

α
σρ

dxσ

dλ
vρ. (31)
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Figure 1 shows the Levi-Civita connection between the vector ~v parameterized in λ
~v(λ) and its parallel-transported counterpart at λ + dλ; ~v(λ + dλ).

Figure 1. In vector form, the Levi-Civita connection and parallel transport are depicted. See text for

details.

The parallel transport can define the curvature of a manifold by taking the parallel
transport of a vector over a closed loop; then a definition of curvature tensor may be
obtained.

The equation of the parallel transport of the vector vα around a loop with a deformed
connection is

δvα = δaδb[Γ̃α
µσ,λ − Γ̃

α
µλ,σ + Γ̃

α
νλΓ̃

ν
µσ − Γ̃

α
νσΓ̃

ν
µλ]v

µ, (32)

where δvα is the changing of vα by the transport around the loop, and δaδb is the area of
the loop.

6. Deformed Riemann Curvature Tensor

In GR, the components of the Riemann curvature tensor, R
γ
βµν, can be constructed

from the Levi-Civita connection [51],

R
γ
βµν = Γ

γ
βν,µ − Γ

γ
βµ,ν + Γ

γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ. (33)

This expression holds for all connections regardless of their metric compatibility or
torsion freedom property. Accordingly, the deformed Riemann tensor can be expressed in
terms of the deformed Levi-Civita connections and their derivatives as follows:

R̃
γ
βµν = Γ̃

γ
βν,µ − Γ̃

γ
βµ,ν + Γ̃

γ
σµΓ̃

σ
βν − Γ̃

γ
σνΓ̃

σ
βµ. (34)

One substitutes Equation (28) into Equation (34) for the deformed Levi-Civita connec-
tion in terms of the classical one,
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Γ̃
γ
σµ =

1 + 2L2 ẍ2

1 + L2 ẍ2

gγα

2

(

gµα,σ + gσα,µ − gσµ,α
)

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
σµ, (35)

Γ̃
γ
σν =

1 + 2L2 ẍ2

1 + L2 ẍ2

gγα

2
(gνα,σ + gσα,ν − gσν,α) =

1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
σν, (36)

Γ̃
σ
βµ =

1 + 2L2 ẍ2

1 + L2 ẍ2

gσα

2

(

gµα,β + gβα,µ − gβµ,α

)

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

σ
βµ, (37)

Γ̃
σ
βν =

1 + 2L2 ẍ2

1 + L2 ẍ2

gσα

2

(

gνα,β + gβα,ν − gβν,α

)

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

σ
βν (38)

Thus, the derivative of the deformed Levi-Civita connection is straightforwardly
derived:

Γ̃
γ
βµ,ν =

1 + 2L2 ẍ2

1 + L2 ẍ2

[

g
γα
,ν

2

(

gµα,β + gβα,µ − gβµ,α

)

+
gγα

2

(

gµα,β,ν + gβα,µ,ν − gβµ,α,ν

)

]

+
2
(

1 + L2 ẍ2
)

−
(

1 + 2L2 ẍ2
)

(1 + L2 ẍ2)
2

L2
(

gξζ ẍξ ẍζ
)

,ν
Γ

γ
βµ

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
βµ,ν +

L2 gξζ,ν ẍξ ẍζ

(1 + L2 ẍ2)
2

Γ
γ
βµ, (39)

where ξ and ζ are dummy indices, ẍ
ξ
,ν = 0, and ẍ

ζ
,ν = 0, as elaborated in Appendix A.

Similarly,

Γ̃
γ
βν,µ =

1 + 2L2 ẍ2

1 + L2 ẍ2

[

g
γα
,µ

2

(

gνα,β + gβα,ν − gβν,α

)

+
gγα

2

(

gνα,β,µ + gβα,ν,µ − gβν,α,µ

)

]

+
2
(

1 + L2 ẍ2
)

−
(

1 + 2L2 ẍ2
)

(1 + L2 ẍ2)
2

L2
(

gξζ ẍξ ẍζ
)

,µ
Γ

γ
βν

=
1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
βν,µ +

L2 gξζ,µ ẍξ ẍζ

(1 + L2 ẍ2)
2

Γ
γ
βν. (40)

With gξζ gξζ = 1, we replace gξζ,ν ẍξ ẍζ by ẍ2gξζ,νgξζ in Equations (39) and (40). By
substituting into Equation (34), the minimal length-induced correction to the Riemann
curvature tensor is

R̃
γ
βµν =

1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
βν,µ +

L2 ẍ2

(1 + L2 ẍ2)2
gηζ,µgηζ

Γ
γ
βν −

1 + 2L2 ẍ2

1 + L2 ẍ2
Γ

γ
βµ,ν

−
L2 ẍ2

(1 + L2 ẍ2)2
gηζ,νgηζ

Γ
γ
βµ +

(1 + 2L2 ẍ2)2

(1 + L2 ẍ2)2
Γ

γ
σµΓ

σ
βν −

(1 + 2L2 ẍ2)2

(1 + L2 ẍ2)2
Γ

γ
σνΓ

σ
βµ. (41)

Taking common factors and rearranging, one obtains:

R̃
γ
βµν =

(1 + 2L2 ẍ2)2

(1 + L2 ẍ2)2

(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

+
1 + 2L2 ẍ2

1 + L2 ẍ2

(

Γ
γ
βν,µ − Γ

γ
βµ,ν

)

+
L2 ẍ2

(1 + L2 ẍ2)2

(

gηζ,µgηζ
Γ

γ
βν − gηζ,νgηζ

Γ
γ
βµ

)

. (42)

In Equation (42), the partial derivatives of all metric tensors gηζ,µ and gηζ,ν can respec-
tively be replaced by metric tensors and Levi-Civita connections as follows:

gξζ,µ = gζλΓ
λ
ξµ + gξλΓ

λ
ζµ, (43)

gξζ,ν = gζλΓ
λ
ξν + gξλΓ

λ
ζν, (44)
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R̃
γ
βµν =

(1 + 2L2 ẍ2)2

(1 + L2 ẍ2)2

(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

+
1 + 2L2 ẍ2

1 + L2 ẍ2

(

Γ
γ
βν,µ − Γ

γ
βµ,ν

)

+
L2 ẍ2

(1 + L2 ẍ2)2

[(

δ
ξ
λΓ

λ
ξµ + δ

ζ
λΓ

λ
ζµ

)

Γ
γ
βν −

(

δ
ξ
λΓ

λ
ξν + δ

ζ
λΓ

λ
ζν

)

Γ
γ
βµ

]

. (45)

Using a delta tensor to transform the dummy indices, Equation (45) is re-expressed as

R̃
γ
βµν =

(1 + 2L2 ẍ2)2

(1 + L2 ẍ2)2

(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

+
1 + 2L2 ẍ2

1 + L2 ẍ2

(

Γ
γ
βν,µ − Γ

γ
βµ,ν

)

+
2L2 ẍ2

(1 + L2 ẍ2)2

[

Γ
λ
λµΓ

γ
βν − Γ

λ
λνΓ

γ
βµ

]

, (46)

substitute Equation (33) into Equation (46) for
(

Γ
γ
βν,µ − Γ

γ
βµ,ν

)

,

R̃
γ
βµν =

(1 + 2L2 ẍ2)2

(1 + L2 ẍ2)2

(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

+
1 + 2L2 ẍ2

1 + L2 ẍ2

(

R
γ
βµν + Γ

γ
σνΓ

σ
βµ − Γ

γ
σµΓ

σ
βν

)

+
2L2 ẍ2

(1 + L2 ẍ2)2

[

Γ
λ
λµΓ

γ
βν − Γ

λ
λνΓ

γ
βµ

]

, (47)

take
(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

as a common factor,

R̃
γ
βµν =

1 + 2L2 ẍ2

1 + L2 ẍ2
R

γ
βµν +

(1 + 2L2 ẍ2)2 − (1 + L2 ẍ2)(1 + 2L2 ẍ2)

(1 + L2 ẍ2)2

(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

+
2L2 ẍ2

(1 + L2 ẍ2)2

[

Γ
λ
λµΓ

γ
βν − Γ

λ
λνΓ

γ
βµ

]

, (48)

and simplify the second term of Equation (48):

R̃
γ
βµν =

1 + 2L2 ẍ2

1 + L2 ẍ2
R

γ
βµν +

(1 + 2L2 ẍ2)L2 ẍ2

(1 + L2 ẍ2)2

(

Γ
γ
σµΓ

σ
βν − Γ

γ
σνΓ

σ
βµ

)

+
2L2 ẍ2

(1 + L2 ẍ2)2

[

Γ
λ
λµΓ

γ
βν − Γ

λ
λνΓ

γ
βµ

]

. (49)

Equation (49) generalizes the Riemann curvature tensor by introducing the effect of
minimal length or GUP-quantum-induced deformation. At vanishing L2 and/or ẍ2, the
undeformed Riemann curvature tensor R

γ
βµν can be retrieved entirely.

The eminent ingredients added by the correction L2 ẍ2 can be illustrated in an example
of a sphere surface (two-dimensional manifold) with the radius r = 1. Compared with
the undeformed case, the deformed Reimann curvature tensor has additional geometric
structure that likely reveals supplementary insights to be discovered. The Cartesian coordi-
nates can be expressed by polar coordinates: radius r, inclination u1, and azimuth u2 as
x = cos(u2) sin(u1), y = sin(u2) sin(u1), and z = cos(u1).

As shown in Equations (35)–(38), the minimal-length-induced corrections originated
in L2 ẍ2 are combined in the deformed metric tensor and the connection. Therefore, one
needs just to determine the components of the classical metric tensor on a two-sphere,

gij =

[

1 0

0 (sin(u1))2

]

,
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and coefficients of the classical connections

Γ
1
11 = 0, Γ

2
11 = 0,

Γ
1
12 = 0, Γ

2
12 = cot(u1),

Γ
1
21 = 0, Γ

2
21 = cot(u1),

Γ
1
22 =

1

2
sin(2u1), Γ

2
22 = 0.

Then, the corresponding coefficients of a deformed Riemann curvature tensor are
given as

R̃1
212 =

1 + 2L2 ẍ2

1 + L2 ẍ2

[

sin(u1)
]2

+

(

2L2 ẍ2 − 1
)

L2 ẍ2

(1 + L2 ẍ2)
2

[

cos(u1)
]2

, (50)

which means that at the poles, where u1 = {0, π}, R̃1
212 = (2L2 ẍ2 − 1)L2 ẍ2/(1 + L2 ẍ2)2,

i.e., is finite, as well as at the equator, where u1 = π/2, R̃1
212 = (1 + 2L2 ẍ2)/(1 + L2 ẍ2),

i.e., is finite as well. These two examples highlight the significance of the minimal length
contributions encoded in L2 ẍ2. In the classical limit, i.e., vanishing L2 and/or ẍ2, only finite
R1

212 signals curved spaces, as this exclusively depends on the inclination. For instance, at
the poles, the space is flat! With this correction, this is not necessarily the case everywhere.
The only exception might be ẍ2 = 0.5 in units of 1/L2. Here, both classical and deformed
coefficients R1

212 indeed vanish, at u1 = {0, π}, while their values, at u1 = π/2, are also
coincident and positive.

Figure 2 shows the coefficients of Riemann and Ricci curvature tensors in a sphere
surface (two-dimensional manifold) with the radius r = 1, Equation (50). For the sake of
simplicity, we assume that the squared spacelike acceleration ẍ2 is given in units of 1/L2.
This assures correct dimensions and sets an upper bound on ẍ2 in units of 1/L2.
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Figure 2. Coefficients of the Riemann (upper, green) and Ricci (bottom, blue) curvature tensors in

sphere surface with unity radius. The coefficients of R1
212 and R22 vary with u1 and ẍ2 in units of

1/L2. See text for details.

Figure 2 depicts the dependence of R̃1
212 and R̃22 on both u1 and ẍ2. It is apparent

that the minimal length contributions are significant everywhere. the second term in
Equation (50), which is the same for Riemann and Ricci tensors, may reveal additional
geometrical structures and curvatures in a future study.
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7. Summary and Conclusions

The minimal length scale scenario emerging from many quantum gravity approaches
is conjectured to integrate gravity in quantum mechanics through the generalization of
the Heisenberg uncertainty principle to a generalized uncertainty principle (GUP). GUP
can be used to help incorporate the quantum effects of the gravitational interaction on the
spacetime geometry near the minimal scale of the length at which such effects are expected
to become important. Eventually, it is expected that the key geometrical objects involved
in the classical description of spacetime geometry within the framework of the classical
theory of general relativity (GR) will be deformed (modified).

To achieve the quantum-induced deformation of geometrical structures on spacetime
manifold M, we have identified the minimum uncertainty of distance ∆x0 in Kempf’s GUP
model as the minimal measurable length scale L. Then we have followed the main ideas
and formal procedure (recipe) for the calculation of the quantum-induced curvature in a
relativistic eight-dimensional spacetime tangent bundle (phase space) TM in the Rieman-
nian manifold first suggested by Caianiello [25] and further developed later by Brandt [29].
The local coordinates xµ on M are combined with the tangent vectors ẋµ = dxµ/ds on TM.

It has to be emphasized that the adapted recipe (following Caianiello [30]) we are
adopting in the present study in the interest of eventually calculating the expected defor-
mations in the main geometrical structures of the classical GR, such as the metric tensor,
connection, and Riemann curvature tensor, has the following features.

• Unlike Caianiello’s approach [26], our approach is explicitly independent of any
particle mass scale.

• It explicitly manifests a minimal length scale that can naturally be related to a maximal
acceleration scale via some quantum deformation parameter and/or some fundamen-
tal physical constants depending on the minimal length scale chosen.

• Unlike Brandt’s approach [29], in our approach, the metric and other geometrical
objects are observer dependent.

• Again, unlike Brandt’s approach [29], there is no universal length scale (or mass scale)
strictly required to define the minimal length (or maximal acceleration). We do not
have or need to identify the minimal length scale to be exactly Planck scale (unless
phenomenological constraints are imposed, which is left for a future project).

• No formal ’quantisation’ scheme is assumed (at least for the scope of the present paper).
However, one may safely assume a semiclassical or effective quantization scheme.

To the best of our knowledge, what we consider as a novel contribution in the present
study might include the following:

• Exploitation of Kempf’s GUP-inspired minimal length uncertainty as the minimal
measurable length scale in the context of studying the quantum effects of gravitational
interaction.

• Use of the above summarized Caianiello’s recipe [26,30] to derive the possible defor-
mation (modification) factor of the Levi-Civita connection (see Equation (28)), which
is found to exclusively depend on the product of the minimal length scale and the
particle’s proper four-acceleration. This result has not been published before.

• Discussion of the properties of the GUP-deformed Levi-Civita connection justifying
its preservation of the embedded four-manifold nature of being Riemannian.

• Derivation of the dependence of a normalized parallel-transported vector on the
spacelike four-acceleration. This study manifests that the minimal length uncertainty
and the deformation recipe are significant, especially at the energy scale in which L2 ẍ2

becomes significant.
• Calculation of the deformed Riemann curvature tensor, which well illustrates that

GUP-induced deformation may be another significant source of curvature, especially
in the limit where L2 ẍ2 is significant.

We conclude that the correction of the Levi-Civita connection is exclusively factorized
in the coefficient (1 + 2L2 ẍ2)/(1 + L2 ẍ2) (see Equation (28)), which combines minimal
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length uncertainty (GUP effect), geometric structural, non–commutative algebraic, and
gravitational ingredients. On the one hand, this means that the deformed Levi-Civita
connection preserves all properties of its undeformed counterpart, such as torsion freedom
and metric compatibility. On the other hand, its geometric nature as connecting nearby
tangent spaces on a smooth manifold is also preserved on discrete spaces. Moreover, we
have derived how the deformed Levi-Civita connection shapes the parallel transport of a
tangent vector on a Riemannian manifold.

We also conclude that the deformation via an additional quantum-induced curvature
on an eight-dimensional manifold likely reveals a fine geometric structure. This is well
understood from the results of the calculation of the GUP-induced deformed Riemann
curvature tensor here (see Equation (49)). The quite simple example of the two-sphere of the
unit radius discussed in Section 6 and visualized graphically in Figure 2 should be helpful
in grasping the geometrical impact of our suggested quantum-induced deformation on
such geometrical objects as the Riemann curvature and its contraction. In the expression for
the deformed Riemann curvature (see Equation (49)), all terms are factorized by different
polynomial functions of L2 ẍ2 in such a way that the classical Riemann curvature is retrieved
in the limit when L2 ẍ2 becomes negligible.

At the macroscopic level, where ℏ → 0, the modification (deformation) of the metric
tensor, Levi-Civita connection, Riemann curvature tensor, etc., vanishes, and their classical
GR forms are restored. This ensures that such modifications have a quantum origin that
manifests exclusively at the appropriate fundamental scales where L2 ẍ2 becomes significant.
The extra curvature of the deformed manifold exists if and only if dẋµ 6= 0, and it is entirely
due to the proper acceleration of the test particle rather than any other matter or energy–
momentum sources.
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Appendix A. The Deformed Metric Tensor Compatibility

The covariant derivative of the deformed metric tensor can be defined as a partial
derivative in the free-falling frame (Minkowski space),

∇σ g̃µν = ∂σ g̃µν, (A1)

∂σ g̃µν =
(

1 + L2 ẍ2
)

∂σgµν + gµνL2(ẍ2),σ (A2)

where g̃µν = (1 + L2 ẍ2)gµν, and L is a constant. Use the following definition ẍ2 = gµν ẍµ ẍν;
then Equation (A2) is

∂σ g̃µν =
(

1 + L2 ẍ2
)

∂σgµν

+ L2(gµν,σ ẍµ ẍν + gµν ẍ
µ
,σ ẍν + gµν ẍµ ẍν

,σ)gµν (A3)

The derivative of ẍµ with respect to the spacetime coordinates,

ẍ
µ
,σ =

∂

∂xσ

∂2xµ

∂s2
(A4)
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by using the commutation property of partial derivatives,

ẍ
µ
,σ =

∂2

∂s2

∂xµ

∂xσ
(A5)

ẍ
µ
,σ =

∂2

∂s2
δ

µ
σ = 0 (A6)

where δ
µ
σ =

∂xµ

∂xσ
. Additionally, the same thing for ẍν

,σ,

ẍν
,σ = 0 (A7)

Substitute ẍ
µ
,σ and ẍν

,σ in Equation (A3) by Equations (A6) and (A7), respectively,

∂σ g̃µν =
(

1 + L2 ẍ2
)

gµν,σ +
(

gµν,σ ẍµ ẍν
)

L2gµν, (A8)

taking gµν,σ as a common factor,

∂σ g̃µν =
(

1 + 2L2 ẍ2
)

gµν,σ (A9)

The metric tensor gµν in a free-falling frame is the Minkowski metric tensor ηµν; then
Equation (A9) is

∂ση̃µν =
(

1 + 2L2 ẍ2
)

ηµν,σ = 0 (A10)

where ηµν,σ = 0. According to Equation (A10), the covariant derivative of a deformed
metric tensor is vanishing in a free-falling frame; then the covariant derivative vanishes for
all frames, or

∇σ g̃µν = 0 (A11)

Appendix B. Definition and Some Properties of Levi-Civita Connection

A “connection” is defined as a geometric object connecting nearby tangent (curved)
spaces, i.e., permitting differentiability of the tangent vector fields or assuring them a
restricted dependence on the manifold in a fixed vector space. This is a function assigning
to each tangent vector and each vector field a covariant derivative or a new tangent vector.
In differential geometry, the generic form of the connection was suggested as [51]

Γ
µ
λν =

{µ

λν

}

+ K
µ
λν +

1

2
(Q

µ
λν. + Q

µ
νλ. − Q

µ
.νλ) (A12)

where a dot in lower indices refers to the position of the upper index,
{µ

λν

}

is the Christof-
fel symbol, and Qµνλ = −Dµ(Γ)gνλ is the covariant derivative of the metric tensor.

K
µ
λν =

1

2
(T

µ
.λ ν − T

µ
λ.ν − T

µ
ν.λ) is the contortion, and T

µ
λν = Γ

µ
λν − Γ

µ
νλ = 2Γ

µ

[λν]
is the tor-

sion. The latter represents the antisymmetric part of the connection.
The theory of GR assumes the metric compatibility of the connection, which implies

the linear independence of the partial derivative tangent vectors and accordingly leads to
vanishing Dµ(Γ)gνλ.

The metric compatibility means that a flat space can be found locally in a suitable
frame (Minkowski space). In a free-falling frame, for example, gνλ = ηνλ; then Dµ(Γ)gνλ

vanishes for gνλ = ηνλ. In such a frame, the covariant derivative of a tensor is the same for
all observers and frames, i.e., Dµ(Γ)gνλ = 0 [50].

The theory of general relativity also assumes that the geodesics match with the metrical
geodesics. Other assumptions, i.e., nonsymmetric energy–momentum tensor or finite
torque density, are also possible but within the framework of other theories (models) of
gravity, e.g., Einstein–Cartan–Sciama–Kibble theory [52]. The latter is straightforwardly
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given by extremizing ds2, the spacetime interval [53]. For the torsion-free assumption, K
µ
λν

vanishes, the metric plays the role of the gravitational field potential, and the Riemann
geometry is symmetric (also the energy–momentum tensor is symmetric). Then, the
connection reduces to the Christoffel symbol,

Γ
µ
λν =

{µ

λν

}

. (A13)

The assumption of symmetric connection coefficients leads to commutative partial
derivatives, see Equation (A16).

Under the conditions of the metric compatibility, the symmetry of the metric tensor
indices, and the partial derivative commutation, there is one particular version of the “con-
nection” coefficients or Christoffel Symbols that is relevant, that is, Levi-Civita connection.
Then, the Levi-Civita connection can be expressed as

Γ
γ
βµ =

1

2
gαγ(gαβ,µ + gαµ,β − gβµ,α), (A14)

where Γ
µ
αβ = Γ

µ
βα.

The symmetry property of the Levi-Civita connection depends on (a) the symmetry
property of the indices of the metric tensor and (b) the commutation of the partial derivatives;
see Section 4.2 of Ref. [54] for the formal justification. The deformed Levi-Civita connection
(28) fulfills both (a) and (b) conditions because:

(i) as for condition (a), in any coordinates, the deformed Levi-Civita connection can be
expressed in the deformed metric tensor and its derivatives,

Γ̃
γ
βµ =

1

2
g̃αγ(g̃αβ,µ + g̃αµ,β − g̃βµ,α), (A15)

where the deformed metric tensor is symmetric under the interchange of the lower indices;
then the deformed Levi-Civita connection is symmetric as well under the interchange of
the lower indices;

(ii) as for condition (b), the Levi-Civita connection can be expressed by the second
derivative of the old coordinates with respect to the new ones as

Γ̃
γ
βµ =

∂xγ

∂Xα

∂2Xα

∂xβ∂xµ
, (A16)

where xλ and Xα represent different coordinates in curved space, and the commutation of
the partial derivatives is still satisfied in the deformed Levi-Civita connection (28). This
is also valid even when Xα is deformed to encounter the existence of a minimal length
uncertainty.

Therefore, based on the above-indicated arguments, one finds that the deformed
Levi-Civita connection is symmetric in its lower indices Γ̃

γ
(βµ)

so that

Γ̃
γ
(βµ)

= Γ̃
γ
βµ = Γ̃

γ
µβ, (A17)

which implies that the deformed Levi-Civita connection is torsion-free as the following
equation suggests:

T
γ
βµ = Γ̃

γ
βµ − Γ̃

γ
µβ = 2Γ̃

γ
[βµ]

= 0, (A18)

where Γ̃
γ
[βµ]

= 0.

Finally, let us conclude here that because the deformed Levi-Civita connection is both
symmetric under the interchange of its lower indices and torsion-free, the four-spacetime
manifold is still a Riemannian manifold.
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Appendix C. The Derivative of ẍ
µ with Respect to the Spacetime Coordinates

The acceleration, ẍµ, of the particle is a function of the world line, s only. The to-

tal derivative,
d2xµ

ds2
, can be replaced by

∂2xµ

∂s2
. The derivative of ẍµ with respect to the

spacetime coordinates can be expressed as

ẍ
µ
,σ =

∂

∂xσ

∂2xµ

∂s2
. (A19)

By using the commutation property of partial derivatives,

ẍ
µ
,σ =

∂2

∂s2

∂xµ

∂xσ
(A20)

ẍ
µ
,σ =

∂2

∂s2
δ

µ
σ = 0, (A21)

where δ
µ
σ =

∂xµ

∂xσ
. Additionally, the same argument can be used for ẍν

,σ,

ẍν
,σ = 0 (A22)
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