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Abstract
The mysterious metallic phase showing T-linear resistivity and a universal scattering rate
1/7 = apkgT/h with a universal prefactor ap ~ 1 and logarithmic-in-temperature singular
specific heat coefficient, the so-called ‘Planckian metal phase’ was observed in various
overdoped high-T; cuprate superconductors over a finite range in doping. Revealing the mystery
of the Planckian metal state is believed to be the key to understanding the mechanism for
high-T. superconductivity. Here, we propose a generic microscopic mechanism for this state
based on quantum-critical local bosonic charge Kondo fluctuations coupled to both spinon and a
heavy conduction-electron Fermi surface within the heavy-fermion formulation of the
slave-boson —J/ model. By a controlled perturbative renormalization group analysis, we
examine the competition between the pseudogap phase, characterized by Anderson’s
Resonating-Valence-Bond spin-liquid, and the Fermi-liquid state, modeled by the electron
hopping (effective charge Kondo effect). We find a quantum-critical metallic phase with a
universal Planckian 7iw/kg T scaling in scattering rate near an extended localized-delocalized
(pseudogap-to-Fermi liquid) charge-Kondo breakdown transition. The d-wave superconducting
ground state emerges near the transition. Unprecedented qualitative and quantitative agreements
are reached between our theoretical predictions and various experiments, including optical
conductivity, universal doping-independent field-to-temperature scaling in magnetoresistance,
specific heat coefficient, marginal Fermi-liquid spectral function observed in ARPES, and Fermi
surface reconstruction observed in Hall coefficients in various overdoped cuprates.
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Our mechanism offers a microscopic understanding of the quantum-critical Planckian metal
phase observed in cuprates and its link to the pseudogap, d-wave superconducting, and Fermi
liquid phases. It offers a promising route for understanding how d-wave superconductivity
emerges from such a strange metal phase in cuprates—one of the long-standing open problems in
condensed matter physics since 1990s—as well as shows a broader implication for the Planckian
strange metal states observed in other correlated unconventional superconductors.

Supplementary material for this article is available online

Keywords: high-Tc cuprate superconductors, Planckian dissipation, strange metal,
non-Fermi liquid, spin liquid, quantum phase transitions and quantum criticality,

Kondo physics in heavy-fermion systems

1. Introduction

Over the past three decades, metallic behavior that can-
not be described within the Fermi liquid (FL) paradigm
has commonly been observed in a wide variety of strongly
correlated quantum materials. Yet, the emergence of such
metals is poorly understood. This non-Fermi liquid beha-
vior often exists near a quantum phase transition, and
shows ‘strange metal (SM)’ phenomena with (quasi-)linear-in-
temperature decreasing resistivity and divergent logarithmic-
in-temperature specific heat coefficient as 7 — 0.

One particularly intriguing class of SM states is the
‘Planckian metal’, observed in the normal state of unconven-
tional superconductors, including cuprate superconductors [ 1—
3], iron pnictides and chalcogenides [4-8], organic [9, 10]
and heavy-fermion compounds [10-13], and twisted bilayer
graphene [14]. It shows perfect T-linear scattering rate,
reaching ‘Planckian dissipation limit’ allowed by quantum
mechanics, 1/7(T) = apkgT/k with ap ~ 1. This generic and
mysterious phenomenon deserves further theoretical study.
Here, we focus on the Planckian metal physics in high-
T. cuprates. In cuprates, d-wave superconductivity (dSC)
emerges out of this exotic state of matter with decreasing
temperatures, it was argued that revealing the mystery of the
Planckian metal state is the key to understanding the mech-
anism for high-T, superconductivity in cuprates [15, 16].
Experimental observations in heavy-fermion superconduct-
ors suggest that o is a non-universal constant but depends
on the strength of the Kondo correlations [17]. By contrast,
in overdoped cuprates the Planckian perfect T-linear scatter-
ing rate with the same « persists from very high temperat-
ures (7'~ 300 K) to very low temperatures (7' — 0) over a
wide range of samples near optimal doping, indicating that
the Planckian state in overdoped cuprates might be a uni-
versal feature. The Planckian behavior across the entire tem-
perature range, in particular for the low temperature regime
(T —0) in cuprates, is unlikely to be explained by phonons
whose contributions are mainly at high temperatures, even
though electron-phonon coupling is also known to give rise
to T-linear resistivity in normal metals [18]. Note that if phon-
ons were to significantly contribute to the linear-T resistivity
in cuprates, one would expect the slope to deviate at a cer-
tain characteristic temperature as phonon scattering becomes

significant with increasing temperature. However, no such
slope change is clearly observed experimentally [19], indic-
ating that the contribution from phonons to 7-linear resistivity
is negligible. Meanwhile, frequency-to-temperature (iw /kgT)
scaling from optical conductivity measurement [20] and field-
to-temperature (B/T') scaling in magnetoresistance as well as
other quantum critical-like properties extending over a range
from the critical doping to the end of the dSC dome in various
hole-doped [21] and electron-doped [22, 23] cuprates strongly
suggest that a Planckian state is a quantum critical ‘phase’
[16]. These observations lead to fundamental questions: What
is the microscopic mechanism for this exotic phase of matter
and its links to quantum criticality and the neighboring phases?
The Planckian metal state lies in between the pseudogap and
FL phases with localized and itinerant characters of electrons,
respectively. This points to an appealing scenario in which the
Planckian metal phase may arise near a possible localized-
delocalized quantum critical point due to competition between
the pseudogap and FL phases, and the dSC is reached by
condensing this quantum critical metal.

It is challenging to develop a controlled approach for this
exotic state of matter. Recently, this state has been realized
theoretically via controlled large-N approach of the #-J model
with random hopping and exchange couplings, the ‘SYK
model’ [24-26] and in the Hubbard model by Quantum Monte
Carlo [27]. Nevertheless, a microscopic understanding of this
state in terms of critical spin and charge fluctuations within
the well-established non-random Hubbard or 7~/ model frame-
work has yet to be developed.

In this work, we address the microscopic mechanism
for the Planckian metal phase in cuprates via different
approaches from the previous ones [28-31] based on recently
developed heavy-fermion perspective of the two-dimensional
slave-boson #-J model, known to offer qualitative under-
standing of cuprate phase diagram, in the formulation of
the Kondo—Heisenberg lattice model [32]. Within our frame-
work, the Kondo-Heisenberg slave—boson (KHSB) /—J model,
the Planckian metal phase appears as a result of local dis-
ordered bosonic charge fluctuations coupled to a fermionic
spinon band and a heavy-electron band near a localized—
deloclaized quantum critical point due to the competition
between the pseudogap and FL phases. In this approach, the
hopping of electrons is expressed in terms of effective Kondo
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Figure 1. (a) Schematic plots for the dispersive f-spinon (blue curve) and the weakly dispersive £ (orange curve) bands (corresponding to
hole doping ¢), associated with their chemical potentials, yy and pe. The green dashed line denotes the energy level (Lagrange multiplier) A
for the slave boson. The shaded areas represent filling of the f- and £-bands. ap here denotes the lattice constant. (b) Fermi surfaces of the
f-spinon band (blue) and of the £ band with different levels of hole doping (orange for hole doping J, green for 1 4 6, and red in between §
and 1 4 6). (c) Main plot: Schematic plot of strange-metal state. The blue dashed curves represent the Kondo-like hopping term. Upper left:
Feynman diagram for the interaction vertex of the Kondo-like hopping term. Upper right: the RVB spin-singlet bond in the f-spinon band

and the spinon-holon bound state (the ¢ field).

hybridization between a composite fermionic spinon-holon
bound state representing conduction band and a charge-neutral
gapless fermionic spinon band with a Fermi surface (see figure
1 (a) and (b)), while as the Heisenberg exchange coupling
is described by resonating-valence-bond (RVB) spin-liquid
with both hopping of fermionic spinons and singlet pairing
between them. The mean-field theory of this approach captures
qualitatively the pseudogap, FL, and d-wave superconducting
phases. In particular, it advances the previous slave-boson —J
approach by capturing aspects of coherent quasi-particle excit-
ation observed at nodal Fermi pocket in the pseudogap phase.
Meanwhile, the spin-liquid state here is further stabilized by
coupling to charge Kondo hybridization, similar to the Kondo-
stabilized spin-liquid mechanism in heavy-fermion systems
[33]. Here, by perturbative renormalization group analysis,
we study the quantum phase transition of the model bey-
ond mean-field and seek the possible emergence of Planckian
metal state due to spin and charge fluctuations near critical-
ity. Our approach is highly motivated by the striking simil-
arity in SM phenomenology between cuprates [21, 34] and
heavy-fermion Kondo lattice systems [35, 36], in which the
Fermi surface volume reconstructs over the entire SM region
in both systems. This indicates a Kondo-breakdown-like phys-
ics observed in heavy-fermion systems may appear in cuprates
where the SM state and Fermi surface reconstruction occur
simultaneously near the Kondo breakdown QCP due to coup-
ling of local charge fluctuations to the Fermi surface [17,
37, 38]. A related yet distinct heavy-fermion Kondo lattice
approach was proposed in [39] to address the evolution from
the pseudogap metal with small Fermi surfaces to the conven-
tional FL with a large Fermi surface.

Via the controlled RG analysis, a stable quantum crit-
ical Planckian SM phase over a finite range in doping
with universal T-linear scattering rate (o~ O(1) being a
universal constant independent of microscopic couplings)
is realized near a localized—delocalized Kondo breakdown

transition. Therein, the local bosonic charge (effective Kondo)
fluctuations coupled to composite fermionic conduction band
and gapless fermionic spinons (see figure 1(c)). The univer-
sal quantum critical w/T-scaling is found in this phase in
dynamical scattering rate, in excellent agreement without fine-
tuning with the optical conductivity measurement [20], and the
universal doping-independent field-to-temperature scaling in
magnetoresistance over an extended doping range in [21] in
the SM region of various overdoped cuprates. The marginal
FL single-electron spectral function and crossover in Fermi
surface volume in this phase are both in excellent agreement
with ARPES [40] and Hall measurements [21, 34], respect-
ively. Our results in thermodynamic properties near the trans-
ition well captures the power-law singularity in specific heat
coefficient observed in a class of cuprates near pseudogap end
point [34, 41]. Our study indicates that this exotic phase is a
quantum critical phase governed by the critical charge (effect-
ive Kondo) fluctuations at the localized—delocalized Kondo
breakdown quantum critical point arising from the competi-
tion between the pseudogap (Cooper-pair formation) and FL.
(electron hopping) phases. It provides a coherent understand-
ing of the quantum-critical SM state within the context of the
global phase diagram of cuprate superconductors and recon-
ciles the seemingly inconsistent scenarios of the SM state
observed in cuprates. Our mechanism offers a promising route
for understanding how dSC emerges from such a SM phase
in cuprates—one of the long-standing open problems in con-
densed matter physics since 1990s. It shows a broader implic-
ation for the universal Planckian SM states observed in other
correlated unconventional superconductors.

2. Results

Before presenting our model Hamiltonian, we would like to
make general remarks on the applicability of the /—J model
for cuprtaes. The simple one-band 2D Hubbard model has
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been considered as an appropriate ‘minimum parent’ model
to qualitatively capture the key features of high-T, cuprates
[42], including the anti-ferromagnetic Mott insulating state at
half-filling, the d-wave superconducting dome in the interme-
diate doping range, the pseudogap phase (charge-density-wave
and spin-density-wave states) in underdoped region, FL on the
overdoped side, and the SM state near optimal doping [27].
In the strongly correlated limit where #/U < 1, the Hubbard
model is effectively reduce to the +—J model [43]. The -
J model has been extensively used as an effective model
for describing cuprates (see for example [44]). This is jus-
tified since typical cuprates fall into the strongly correlated
regime with very small /U ( t~0.4 eV, U~5—10 eV,
t/U ~0.04 —0.08) [44]. The t—J model studied by various
analytical and numerical methods has been shown to provide
qualitative and some quantitative understanding of important
aspects of cuprates phenomena, including: doping vs. temper-
ature phase diagram, the d-wave superconducting dome, the
pseudogap (d-wave superconducting) phase in terms of phase
incoherent (phase coherent) RVB Cooper pair, respectively,
various broken symmetry states and Fermi-arc observed in the
pseudogap phase [32, 44, 45]. It therefore serves as a simpli-
fied yet an appropriate model for cuprates. Whether the +—J
model can be extended to describe other materials showing
similar Planckian metal behaviors, or whether there exists a
single microscopic mechanism that unifies the understanding
of the similar Planckian metal states across different materials
is an outstanding open problem, which deserves further study
elsewhere.

2.1 Heavy-fermion formulation of the slave-boson t—J model

We start from the Hamiltonian of the slave-boson rep-
resentation of 7-J model on a 2D lattlce [32], descrlblng
as H=H,+ H; with H, = tz (i) wc](,f chmcm
and HJ—JHZ S S;. Here, (1, u,JH) denotes the (hop-
ping strength, chemlcal potential, Heisenberg coupling),
and (i,j) the nearest- neighboring sites, and the local
spin operator S; = 22 ,c »Ooo'Cig'. Under the slave-
boson representation c — f b; with fi, (b;) being fer-
mionic charged-neutral SpanIl (bosonic spinless charged
holon), we further factorize the H, and H; terms via
Hubbard-Stratonovich transformation following [32], i.e

Hl%tZ(iJ),U [(ﬁo’bj +fj0'b:r) €ij70— +HC:| and HJ%
D)o (—Xuﬁaﬁo +Ayoflfl_,+ H~C~) , & =sgn(o).

Note that we decompose the Heisenberg interaction into
both the particle-hole and particle-particle forms. Here, ;..
Xij» and A; represent the auxiliary Hubbard—Stratonovich
fields living between sites i and j, as a result, their degrees of
freedom for the bond fields are twice as many as that for b and
f. The x;; and A;; fields represent the spinon hopping and pair-
ing bond fields, respectively, whose condensate play the role of
the effective hopping and pre-formed singlet d-wave Cooper
pairing of spinons in the RVB spin liquid. The model shows
a U(l) gauge symmetry: fi, — fipe'%, b; — b;e'%, y;—
xie' %% and & , — &; »€'(%+%) hence the Ward identity is

expected to be satisfied. A finite and uniform mean-field y =
(xij) is assumed. The ¢; , field, previously proposed in [32,
46, 47], describes a gauge charge-2e spinon-chargeon bound
state; it further advances the original slave-boson approach by
capturing the nodal Fermi pocket (arc) quasi-particle excita-
tions in the pesudogap phase of cuprates. The hopping term
H,, after the decomposition, behaves as an effective Kondo
coupling in the charge sector. If the slave boson b gets Bose
condensed, the ¢ fermion becomes a physical conduction elec-
tron. Terms containing slave boson occupation number 7}, are
neglected in the Hubbard—Stratonovich transformation for H;
and H;. The constraints bl.Tbi + Zgﬁofig =1 is imposed [32,
48, 49]. Four distinct mean-field phases are realized in this
model, depending on whether or not the two boson fields b
and A get Bose-condensed (see figure 3(b) and [32]): the
pseudogap phase, known as Z, fractionalized FL or Z, FL*,
(Landau Fermi liquid, FL) is reached when A #£0, (b) =
0(A =0,(b) # 0); while the U(1) FL* (d-wave superconduct-
ing) phase arises when (b) = A =0((b) #0,A #0). The
Z, FL* and U(1) FL* phases realized here are examples of
the previously proposed fractionalized FL states in [50] in
the context of heavy-fermion Kondo lattice systems with a
small Fermi surface volume and charge-neutral fractionalized
spinon excitations which carry a gauge charge characteriz-
ing the topological order. The spinons in these two fraction-
alized spin-liquid phases are deconfined due to the existence
of a spinon Fermi surface, and are thus stable against U(1)
gauge field fluctuations [51, 52]. Meanwhile, these two frac-
tionalized phases are energetically more stable compared to
that in the earlier approach of slave-boson 7—J model [49] by
the charge Kondo hybridization term, similar to the Kondo-
stabilized spin-liquid mechanism in heavy-fermion systems
[33, 53].

We shall explore the phase diagram in U(1) FL* phase
beyond mean-field by including fluctuations of both ¢- and J-
terms. We will not include U(1) gauge fluctuations in our RG
analysis since the spinons are deconfined and stable against
them due to the presence of a spinon Fermi surface [51]. The
leading effective action in units of the half-bandwidth of the f—
spinon band D =~ 4x ~ 4Jy beyond the mean-field level reads
(h=kg =1)[32]

S=- Zﬁwgf_
+25kT95

koa

: (k)fko - szgb_l
k

K&, +> el6 (ke
ka

mZ(ka p€k+pJ+HC)

kpoa
mz Uifl ety + Hee )
with k = (k,w) and p = (p,v),  being the fluctuating field for

the d-wave RVB pairing order parameter A. In the phases with
(by =0, the bare hopping parameter ¢ is strongly suppressed
by the disordered bosons, leading to an effective hopping g =
217/68. Here, J = 2Jy is the effective exchange, Gy(k) = (iw —

) Ge (k) =¢ " (iw—&) ', Gy = (iw—N)"", and G, =
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(J/2)~! denote the bare Green’s functions (see appendix B).
The momenta relevant for the bosonic ¢ field are near the anti-
node. Our perturbative expansion in bare couplings g, J is con-
trolled since g/D, J/D < 1 (for an estimated J/t ~ 0.3). To
study the charge dynamics and transport properties, we go bey-
ond static mean-field level of ¢ field by generating its dynam-
ics and dispersion via second- order hopping process at fixed
g = g4 such that (~! = (g?po/D) ! appears as a prefactor in
Ge, with py = 1/D being the constant density of states at Fermi
level for f spinon band. The f-spinon band is approximated
by a linear-in-momentum dispersion, namely g = h — iy ~
v|k| with iy = —2x (cosk, + cosky) and pp = 1 — A being the
effective chemical potential for f spinon (x is the chemical
potential for the original conduction electron, see appendix
A). Here, the spinon band is fixed at half-filling, s = 0. The
band structure for the £ fermion shows a hole-like disper-
sion, & = —(ex — pe. The Lagrange multiplier A > 0 is intro-
duced to enforce the local constraint for slave boson. The slave
boson (b field) is effectively treated as a local boson with a flat
band of energy A and with a negligible dispersive band (see
appendix B). In the pseudogap and U(1) FL* phases, the chem-
ical potential of the £ band ¢ fixes hole doping 4 for the sys-
tem such that N;! Do <§i}705,,,(,> = 4. Note that equation (1)
is also applicable when d-wave preformed Cooper pair order,
relevant for temperatures slightly above the superconducting
transition temperature of cuprates, is replaced by the pair dens-
ity wave state, considered as a hallmark of pseudogap phase at
higher temperatures [54, 55].

2.2. Renormalization group analysis

The perturbative RG analysis is applied to the effective action
of the modified slave-boson model equation (1) by consid-
ering the one-loop diagrams shown in figure 2. It is con-
venient to define the dimensionless bare coupling constants
g —g/D,J— J/D, and absorb 1/¢ in G into g by a rescal-
ing, g — g =g//(, & = /CE. Our RG analysis is perturbat-
ively controlled as g < 1 (the bare value g < g is set), and
J < 1. Our RG approach can be further controlled by the e-
expansion technique with a small parameter € = d — z within
the convergence radius |e| < 1. We set the dynamical expo-
nent z=1 due to the linearized dispersion of f, and spatial
dimension d = 2 here. The RG scaling equations of the running
renormalized dimensionless couplings, g(¢) po and J(£) po read
(see appendix C)

% =—(5) @©Wr0) + @O p),
d(JE-fz} po) _ _ (g) (7€) po) + ((€) po) ( (£) po)
uOm, @

where scaling parameter ¢ = —InD >0. The RG flow
equations of equation (2) is shown in fi gure 3(a) where the crit-
ical fixed point occurs at C, = (J*po, g*po) \/7 \/7
For simplicity, the U(1) gauge-field ﬂuctuatlons are not
included in our RG analysis; nevertheless, its effect on

(a)

_——— e ———

gb

(

f)

Figure 2. The Feynman diagrams for the self-energy and vertex
correction being used in the RG analysis. (a) The graphical
representation of the bare propagator of various fields/operators.
Feynman diagrams of the (b)—(f) self-energy and (g) vertex
correction for Hj.

—_— s AN\ TTOTTD

00000000000
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transport and thermodynamic properties are addressed in
Discussions (see also appendix E1).

RG flow and phase diagram. As shown in figure 3(a),
our one-loop RG flow diagram supports a quantum critical
point (QCP) at C,, separating the four phases: the pseudogap
PSG (FL) phase is reached when the Heisenberg coupling
J becomes relevant (irrelevant), while the hopping (effect-
ive Kondo) term g becomes irrelevant (relevant); the d-wave
superconducting state (U(1) FL*, SM) phase arises for both
g and J being relevant (irrelevant), respectively. Near C,,
the correlation length 7(¢) shows a power-law divergence
as: 1(¢) ~ ¢~% with the exponent v = 1, indicating linear-in-
doping crossover scales T, Tr. o< 1~ o |0 — 0|, correspond-
ing to the PSG—SM and SM — FL crossovers, respectively
[56]. We shall see below that the systems with initial couplings
flowing to the mean-field U(1) FL* fixed point show SM fea-
tures with universal quantum critical Planckian scaling in elec-
tron scattering rate; therefore beyond mean-field under RG, it
corresponds to the SM fixed point.

2.3. Physical observables near the QCP

To highlight the significance of our results and make a clear
comparison of our results to the experiments, before we
present our results, we would like to briefly summarize the key
experiments and discuss the corresponding debated issues on
the SM state of high-T, cuprates in literature both in transport
and thermodynamic properties.

First, the perfect T-linear resistivity over a wide range in
temperature has been a hallmark of SM state in normal state
of high-T, cuprates close to optimal doping since its discov-
ery in late 1980s’ [57-59]. Early experimental studies sug-
gested the funnel-shaped SM normal state as a function of
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Figure 3. (a) Plot of the RG flow for the Heisenberg and hopping terms. Paths I, II, III in (a) indicate the three types of phase diagram that
can be accessed from the RG equations. (b): three possible distinct types of phase diagrams (I, II, III) corresponding to paths (I, II, III) from
the RG flow diagram in (a). Tn, 7", and T denote the temperature crossovers for the anti-ferromagnetic order, pseudogap, and FL states,

respectively. In (b)-I, §. and ., represent the critical points associated respectively with PSG-SM and SM-FL transitions once

superconductivity is suppressed.

temperature and doping is expected to end at a hidden QCP
inside the superconducting dome [60]. However, more recent
studies on different cuprate compounds revealed an exten-
ded SM phase ranging from slightly under-doped to over-
doped region when superconductivity is suppressed by a large
magnetic field [21, 34]. One important debate is: whether the
SM state with T-linear resistivity is considered as a quantum
critical state due to the hidden QCP or it is a entirely new
phase of matter over an extended doping range, which might
not be related to quantum criticality? Our study offers a uni-
fied framework to reconcile these two seemingly inconsistent
pictures.

A more exotic and intriguing property of SM state with
T-linear resistivity in cuprates (as well as in other correl-
ated unconventional superconductors) is that by analyzing
the DC-resistivity it shows a universal Planckian scattering
rate, see, for example [2, 10]. It was argued in [15] that the
reason why the d-wave superconducting transition temperat-
ure T¢ is so high in cuprates is due to the fact the normal
state of it is a Planckian metal with a scattering rate reach-
ing the Planckian dissipation limit—the maximum dissipation
allowed by quantum mechanics. To reach this Planckian limit,
the author in [15] further proposed that the quantum system
has to be quantum critical. A key debated issue is: what is the
possible microscopic origin of the proposed quantum critical-
ity if it exists at all? Experimentally, to extract the scattering
rate from DC-resistivity and show that it is Planckian relies on
the DC-Drude formula p(T) = ::1@»2 —rry With the effective mass
m* estimated independently from specific heat [2] or quantum
oscillation experiments [61] , and where 7 is the charge car-
rier density n = 1;5 [2], where V is the unit cell volume [2]
(and where n/m* is assumed to be temperature independent).
However, this approach—by combing different experimental
measurements in the same equation-may reduce the quant-
itative accuracy in determining the Planckian coefficient «
since the estimated value for m* via specific heat measure-
ment may quantitatively differ from that via quantum oscil-
lation experiment.

By contrast, a more quantitatively accurate and consist-
ent experimental approach to obtain the Planckian scattering
rate is via AC-conductivity measurement as shown in [20,
62] for heavy-fermion compounds. Indeed, one can probe the

scattering rate ﬁ and the effective mass m* simultaneously
by considering the AC conductivity [20, 62]. This is easily
noticed by considering the generalized AC drude formula for

the conductivity that accounts for the mass enhancement 2 (‘“)
[20]:
eji
12ds
U(W?T) = 1 . m*(w,T) 9 (3)
7(w, ) w—,

where d. is distance between two CuO, planes and K is
the spectral weight for a single plane K = %qﬁ(o) , with

f 827 d k de“ [20], such that K is a function of
the ratlo

ent. The two unknown parameters being the the scattering rate
- (J’T) and the effective mass # can be deduced simul-
taneously by considering both the real and the imaginary part
the conductivity [20]:

1 e’K 1
T(w,T)  Rd, © {J(w,T)} ’ @

m* (w,T) K 1
m  hd, Im [wa (w,T)] ' )

Second, ARPES is a direct transport probe to local single-
particle spectral function. Since 1999, there has been exper-
imental reports via ARPES [63-65] on the Marginal Fermi
Liquid (MFL) behavior proposed in [66] in the SM state of
cuprates with the following self-energy:

S (k,w) = 2 (k,w) + %’ (k,w) = A {wlog <:> - igx]

(6)

where x = max(|w|,T) [66]. The similar MFL behavior has
also been observed in more recent ARPES studies on the SM
state of cuprate [40]. The significances of these results are:
(i) The quasi-particle weight z = 1/(1 — ) —0as log(w) at
the Fermi surface, indicating the breakdown of the FL pic-
ture (with a finite z); (ii) The single-particle scattering rate
%' is proportional to x ~ max(|w|,T); and the leading order
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contribution to X’/ is independent of momentum both perpen-
dicular to and around the Fermi surface, indicating a ‘local’
self-energy; (iii) The combination of momentum independ-
ence of self-energy and the linear dependence on x of X'/ in
the MFL form of the self energy, equation (6), leads to a res-
istivity that is linear in 7. However, the microscopic theory
of MFL and its link to universal Planckian scattering rate, as
well as possible local quantum criticality near optimal dop-
ing is still an open problem [67]. Our theoretical framework
provides a mechanism for this universal MFL state.

Finally, the T-logarithmic enhancement of specific heat
coefficient (or y-coefficient) upon decreasing temperature is
another hallmark of SM state in cuprtaes [34, 41, 67]:

Cel

=v|1+gIn &
kBT*’Y g T )

where g is some coupling constant and 7 is a cutoff scale.
Such singular behavior in y-coefficient can be accounted for
within the MFL proposal in [66, 67] as well as within our the-
oretical framework (see below). Interestingly, the value of ~
in low temperature limit has been reported to show a rapid
increase as doping approaches a critical value §* ~ 0.19 [34,
41]. However, whether this rapid increase in -y is a signature
of quantum criticality with a power-law divergence (y ~ (§ —
d*)~™) [41, 67, 68] or it is not a true divergence but a finite
enhancement due to the Lifshitz transition where the Fermi
surface changes from a hole-like to an electron-like band
structure [69] is still under debate. We find that our charge-
Kondo-breakdown scenario within the heavy-fermion slave-
boson —J model supports a power—law singular (7 — 0) near
the QCP with the divergent power-law exponent m ~ 0.5, in
agreement with the results shown in [41] and [34]. Below we
present our results in details.

(N

2.3.1. Conductivity and scattering rate. The total con-
ductivity oyt = pgtl can be computed via the rule by
Ioffe and Larkin [70]: o\ = 0¢ 0f/(40¢ + 0f). Because the
slave boson is localized and has negligible dispersion, it
does not contribute to the conductivity. Since the effect-
ive mass of the ¢ band is much heavier than that for the f
spinons, myg/myg~ 1/{ > 1, resistivity is dominated by the
&-band, leading to pyor = 1/0v &~ 1/0¢ = pe. In the the-
ory of local (momentum independent) self-energy, the ver-
tex corrections are negligible, and the optical conductiv-
ity can be obtained directly from the self-energy, o(w) =
(i®(0)/w) ffooo de[np(e)— np(e +hw)] /[iw + Xk (e) — X,

(e +hw)], where ® () is the transport function (see [20]
for details). Therefore, electron transport time is equival-
ent to the relaxation time since oy, ~ 0¢. The total scatter-
ing rate is hence dominated by the contribution from the &
field: 1/7ior ~ 1/7¢. In the SM state with (b) = A =0, the
gauge-invariant (physical) electron operator can be construc-
ted from §;; and ¢;; as ¢ = ¢ \ﬁgo;\[] The dynamical scatter-
ing (relaxation) rate at 7 =0 is calculated via the imaginary
part of the electron self-energy: 7(w)= —h/2%.'(w) and
Y (w) = (1/2)2{(w), where £{'(w) at T =0 is obtained via

second-order RG renormalized perturbation close to the QCP
with bare couplings being replaced by the renormalized ones
ie. g, g5 — g(¢), showing a universal local MFL self-energy
insensitive to couplings [71], including a constant and a linear-
in-[w| term, i.e. £ (w) = a — ¢ |w| with v~ 3g%py = 3D and
¢ = % This local self-energy ¥¢ comes as a consequence of
the local nature of the slave boson in our approach. The con-
stant « is generated by the fluctuating non-condensed local
slave-bosons through self-energy of the ¢ field, reminiscent
of electrons in metals being scattered by disordered random
impurities.

2.3.2. Quantum critical phase with universal Planckian scat-
tering rate.  Close to the QCP in the scaling regime where
conformal symmetry is present, the scattering rate at finite
temperatures can be derived from the scattering rate 7 =0,
1/7(w,T=0), by a conformal transformation [20, 73, 74].
Strikingly, following path III of figure 2(a) over the region
where both g(¢) and J(¢) are irrelevant, we discover a quantum
critical Planckian SM ‘phase’ with universal quantum-critical
w/T-scaling in the scattering rate that is independent of coup-
ling constant (see Appendices E1 and F):

- (). 6) o)

with x = hiw/kgT and 79 = 7(w = 0,7 =0). Surprisingly, as
shown in figure 4(a), the universal Planckian scattering rate of
equation (8) is in excellent agreement with the recent optical
conductivity measurement in [20] without fine-tuning. Note
that the experimental data on optical conductivity shown in
figures 4(a)and (b) do not cleanly collapse into a single curve
atlow frequency [20], possibly due to enhanced low-frequency
noise or the presence of some small mass in the scattering
mediator. In the high-frequency, low-temperature limit x > 1,
the scattering rate divided by kgT shows a universal scal-
ing behavior, Tk;(TT) ~ (2/m)x. Conversely, in the DC-limit
(x — 0), the scattering rate manifests the Planckian scattering
rate, revealing a universal feature that is insensitive to micro-
scopic coupling constants: 1/7 = apkgT/h with ap =~ 8/, in
reasonably good agreement with DC-scattering rate estimated
in various overdoped cuprates [2, 20]. We find that this uni-
versal feature of the scattering rate, which is insensitive to
coupling constants in our theory, originates from the cancel-
lation of the same RG renormalized running coupling con-
stant g2(¢) in X¢ and in the denominator of G (arising from
the second-order hopping process that generates dynamics and
energy dispersion of the £-band). Due to this cancellation, all
initial (bare) values of g and J which flow to the U(1) FL*
fixed point at g = J = 0 form an extended ‘phase’ by showing
the same Planckian strange-metal behavior (see equation (8)).

Note that equation (8) is a generic universal (coupling-
constant independent) scattering rate we predict for the uni-
versal Planckian metal states observed in cuprates. However,
there is a broad implication of our equation (8) for other
materials: it appears that this coupling-constant independent
universal scaling form might not be unique to cuprates, and

®)
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Figure 4. w/T scaling of scattering rate and the effective mass enhancement. Theoretical fitting for both (a) the scattering rate 7/7 and (b)
the effective mass enhancement m* /m — 1 = g(x) from our theory exhibits a universal scaling behavior as a function of x = 7w /kg T (black
solid lines). The function g(x) is defined in equation (F13) of appendix F2. In addition, theoretical results of 77/7 and m* /m — 1 obtained in
[20] are added for comparison (red dashed line). The experimental data shown in (a) and (b) is reproduced from [20]. (c) Derivative of the
magnetoresistance, divided by yug, for T12201 with 7. = 23 K at various temperatures collapses onto a universal scaling function given by
equation (9) when X is replaced by B“—T“H Here, B ~ 4.66 and yug ~ 0.0049 are fitting parameters. Additionally, the scaling behavior of the
magnetoresistance derivative can also be described by an alternative Marginal Fermi-Liquid (MFL) form (green dashed line) given in
equation (F9). For further details, see appendix F1. Magnetoresistance at 7. = 26.5 K exhibits similar scaling, as shown in figure S4 in
appendix F1. Experimental data in (c) is reproduced from [21]. (d) Resistivity calculated from the scattering rate predicted within our theory
(equation (8)) (red line) and equation (E57) (black dashed line) using the DC Drude formula p,, = (m*d/ nez) (1/7) = AT where d = 0.64
nm [72] is the interlayer spacing and where A; = (8/7) (ks /%) ((m*d) /(ne?)), obtained by taking the DC limit of equation (8), m* /ne? with
n=(1-20)/(a*) =5.95 (nm)?, a=0.378 nm, [72] § = 0.15, m* = 5.8my, (red line) and m* = 16.69m,, (black dashed line), m;, being the
bare electron mass, which agrees with estimation from [2] and with the high-T static value of the effective mass in [20] (red line), with for
comparison in-plane resistivity data (blue circles) reproduced from [19] showing T-linear dependence up to 800K. From equation (E57), we

also fitted the observed residual resistivity po ~ 0.02mQ- cm by the constant py = m*dA /(ne’hi) where we find that A ~ 2 - 10~3eV.

Equation (E57) is valid below the horizontal pink dashed line.

could in general describe systems other than cuprates. This
further suggests that the cancellation in coupling constant
dependence in the electron self-energy (or scattering rate) is
likely a generic feature of universal Planckian metal state and
expected to also occur in other materials showing similar uni-
versal Planckian metal behavior. Nevertheless, the constant
pre-factor 4/7 in equation (8) is unique to our specific +—J
model for cuprates, and this value may vary within differ-
ent models. Whether our result also applies to other materi-
als showing similar Planckian metal behavior deserves further
study.

Since the whole T-linear mystery and its phenomenolo-
gical description via the MFL theory lays in the T-linear
behavior extending from very low up to high temperat-
ures, we further extract the DC-resistivity from the most
general form of equation (8), valid for any finite temperatures
in the scaling regime. By taking the DC-limit (w —0) in
equation (8), a perfect T-linear resistivity, ranging from
very low to very high temperatures, can be derived via
the Drude formula: p = (m*/ne?)(1/7) = A;T where A| =
(8/m) (kg /h)(m* /ne*). Note that in 2D metallic systems with
isotropic Fermi surface, close to our case for SM phase, n/m*
can be considered as a temperature-independent constant fixed
by the Fermi energy ef via eg = likp?/2m* with n oc kp2. By
a reasonable estimate of n/m* value, the T-linear resistivity
data for LSCO in reference [19] is well fitted by our theory

for DC-resistivity based on equation (8) (see figure 4(d)). The
quantum critical scenario we propose here offers a mechan-
ism for explaining the 7-linear mystery— 7-linear resistivity
observed (in TI1-2201 or LSCO) extending from 7-38 K up
to 700-1000 K without changes in slope and having T as
the only visible scale—since temperature is the only relevant
scale in the quantum critical region. In appendix E4, we derive
the similar 7T-linear resistivity via an alternative approach by
a low-temperature expansion within the Boltzmann transport
formula, see equation (E57), which also provides a good fit to
the experimental data for 7 linear resistivity (see figure 4(d)).

Meanwhile, the electron mass renormalization m} — m (0)
is well captured by a universal scaling form: m} /m,(0) — 1 =
g(x) with the scaling function g(x) obtaining from the real part
of the dynamical self-energy X 5’ via Kronig—Kramers relation
(see figure 4(b) and appendix G).

Moreover, we find that the magnetoresistance derivat-
ive dp(H,T)/dpoH in the strange-metal region of cuprate
superconductor at finite temperatures and external magnetic
fields (but zero frequency) observed in [21] is well-described
by the universal quantum critical scaling in the frequency-
derivative of AC-resistivity dp(w,T)/dhiw, predicted within
our theory for the entire Planckian metal phase (assuming 7w
plays an effective role as magnetic field poH in the scaling
region). As shown in figure 4(c), across the extended strange-
metal region, the field derivative of magnetoresistance of
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Figure 5. Spectral intensity for the SM phase: (a) Spectral weight as a function of frequency w at the anti-nodal point, and (b) spectral
weight as a function of momentum k, at a zero frequency. Experimental data OD86 (red) and OD81 (blue) are reproduced from [40]. Greens
curves in (a) and (b) corresponds to our theoretical fitting to OD81, with temperature being fixed at 7= 250 K. (c) Density plot for the

spectral weight as a function of w and k, (see appendix G for details).

overdoped cuprates exhibits a doping-independent, universal
H/T scaling: (vyup)~'dp(H, T)/d(noH) = BX/\/1+ (BX)?,
where « and + are fitting parameters, and 3 = yup/akp
and X = poH/T here. By the following identifications, o —
8m* /mne*, yup — 2m* /wne?, poH — hw/4, we find that
the frequency derivative of the AC resistivity p(w,T) =
(m*/ne*)(1/7(w,T)) from our theory agrees well with the
experimental results for (yug)~'dp(H,T)/d(uoH) (see the
blue dashed line of figure 4(c)):

ne*  mdp(w,T)

_ _ 2
% 2 dw) coth (X) — Xcsch” (X), )

with X =fiw/4kgT in equation (9). This suggests that fre-
quency and magnetic field play equivalent roles near quantum
criticality associated with the SM state. Note that the inter-
pretation of B/T-scaling in cuprates is still controversial. A a
different interpretation of the B/T-scaling in some cases based
on ordinary electrons has been reported in [75].

2.3.3. Single-particle spectral function. ~ Our theory offers a
mechanism for the phenomenological MFL ansatz [66]: The
complete electron self-energy ¢, is reminiscent of the MFL
behavior with a distinction that X¢ here is insensitive to coup-
ling constant. The resulting single-particle spectral function
Alw,k,T) = -7~ 'G¥(w,k,T) = -7 'Refw — 5 — B] ' th-
us shows an excellent fit to the recent ARPES measurement
for overdoped cuprates in the SM region [40] (see figure 5 and
appendix G).

2.3.4. SM state: signature of QCP vs. quantum critical phase.

Our RG results offer further insights to the issue on the origin
of the Planckian SM state. The RG flow in figure 3(a) in gen-
eral may lead to three distinct temperature-doping (7', d) phase
diagrams by following the three paths I, II, and III depend-
ing on initial values of # and J with increasing doping, see
figures 3(b)-1, (b)-1I, (b)-III. Experimentally, the three paths
can be tuned by magnetic fields: When the external magnetic
field is weak, the couplings lie on path I in which a finite
range of couplings on this path flow to the superconducting
phase. This corresponds to figure 3(b)-1. At a critical magnetic
field, couplings follow path II and pass through the QCP at

C,; consequently, the SM state at finite T is controlled by a
single QCP. The most interesting case, however, is path III,
occurring at a larger field which completely suppresses super-
conductivity. For path III, there is a finite range of doping
where all initial values of ¢ and J (blue solid line in path
IIT of figure 3(a)) flow to the SM fixed point. In this case,
the Planckian SM behaviors at finite 7 persist over a finite
doping range as 7 — 0, corresponding to the quantum crit-
ical SM ‘phase’. Experimental signatures of both QCP [34,
41] and quantum critical phase [21] were reported in differ-
ent cuprates. These seemingly incoherent results can be coher-
ently unified in our generic RG phase diagram: the former may
follow a path close to path II, while the latter follows path III.

2.3.5. Thermodynamic property: divergence of specific heat
coefficient at the QCP. We further computed the spe-
cific heat coefficient in the SM phase near the QCP,
which shows logarithmic-in-7 MFL behavior: Cy/T ~ —[A 4+
B(J)]InT with A being a constant and B(J) is a power-law
divergent prefactor arising from quantum critical antiferro-
magnetic short-ranged spin fluctuations (the J term): B(J) ~
|J —J.| 7P with p = v/2 = 1/2, see appendix D for the estim-
ation of B(J). This power-law behavior of Cy/T aligns well
with the experimentally observed power-law divergence spe-
cific heat coefficient at low temperatures in Eu-LSCO and
Nd-LSCO near the pseudogap critical point [34, 41], i.e.
Cy/T|r—0 ~ |6 — 6.|7™ with m ~ 0.5, as shown in figure 6.
The dominant logarithmic-in-7 dependence, —B(J)In T, in our
theory originates from the van Hove singularity (VHS) of the
half-filled f-spinon band on a 2D square lattice (see the spinon
Fermi surface in figure 1(b) and appendix D), while the sub-
leading constant term —AIn7 is contributed from the self-
energy X .

It was pointed out in [41] that the VHS in the electron DOS
could not simply account for the log(1/7T) divergence of the
specific heat because of disorder and/or interplane hopping.
Nevertheless, we think that VHS of f spinons is more robust
against disorder and/or interplane hopping compared to that
from the electron band. The reasons are as follows. Firstly,
the occupation for f—spinons in SM phase where slave bosons
are non-condensed ((b;) = 0) is fixed to half-filling with VHS
Fermi surface (fi,ﬁa = 1) by the local slave-boson constraint:
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Figure 6. Power-law divergence of the electronic specific heat
coefficient Cy/T for various samples around the optimal doping.
Experimental data are reproduced from [41]. The blue line
corresponds to the power-law fit (cf equation (D8)).

/' fie +b!b; = 1. In our SM phase extended to a finite doping
range (with a small Fermi surface), the f spinons always stay at
half-filled as doping is varied over the entire phase. This makes
f spinon Fermi surface robust against doping. Secondly, the
2D charge-neutral f spinons are stabilized by forming RVB
singlets, and are expected to be less affected by the charged
disorder and/or interplane charge transfer. Nevertheless, the
spinon Fermi surface should change when the electron Fermi
surface changes from small to large. This should shift the
spinon Fermi surface away from the VHS. When this occurs,
the system already reaches the FL phase, and the VHS effect
is suppressed. The T-logarithmic singular specific heat coeffi-
cient is expected to be smeared out (see figure 7(a) in [34]).

2.3.6. Fermi surface reconstruction across the SM region.
Our heavy-fermion two-band formulation of the slave-boson
t—J model offers a natural explanation on the enlargement of
FS)volume from a smaller FS with hole density ¢ in pseudogap
phase to a larger one with hole density 1+ in the FL
phase ((b) =4, & ~Vof,, Zoﬁﬁfig =1-0) across the
SM region (figure 1(b)) [21, 76, 77].

In the pseudogap and SM phases with non-condensed
bosons, the £&-band shows a small hole Fermi surface (hole
doping §). When bosons get condensed across the FL phase
boundary, the Fermi surface volume undergoes a sudden
jump from 6 to 1+, in parallel to that occurred at Kondo-
breakdown transition in heavy-fermion systems [35, 36]. This
is due to the participation of the half-filled spinon band to the
Fermi surface by Kondo hybridization between the f- and the
&-bands; therefore the hole Fermi surface volume of a normal

conduction electron band with a hole density 1+ § (corres-
ponding to a doped hole density § relative to half-filling)
is recovered, in accordance with the Luttinger theorem (see
figure 1(b)). This scenario offers a qualitative understanding
of the rapid increase observed in the normal-state Hall num-
ber near the critical doping of YBCO and Nd-LSCO [34].

Nevertheless, a smooth crossover of the Fermi surface
volume from § to 14§ is possible in the SM phase via
a mixture of two fluids: (i) normal metal with T-quadratic
resistivity by partial boson condensation and a large Fermi
surface volume (1 +¢), and (ii) SM with T-linear resistiv-
ity without boson condensation and with a small Fermi sur-
face volume (§). This two-fluid picture may arise within our
model when the mean-field slave-boson b-field get partial
condensation, (b) =x < /5. As one goes from SM to FL
phases, the condensate fraction is expected to increase with
increasing doping till a full condensation x = /9 is reached.
The partially condensed slave-boson in principle exists as
a possible solution of our mean-field equations. When this
occurs, two types of conduction electrons—the normal elec-
trons and the SM electrons—may co-exist. The normal elec-
tron band shows a large Fermi surface and T-quadratic res-
istivity linked to condensed bosons, while the SM electron
band exhibits a small Fermi surface and 7-linear resistivity
linked to the non-condensed bosons. Both kinds of electrons
are coupled through Kondo-like effective hopping term of our
model and are expected to contribute to the total Fermi surface.
Therefore, a smooth crossover of the Fermi surface volume
from 6 to 14§ is possible in the SM phase by a mixture
of the small and large Fermi surfaces. This two-fluid picture
resembles the mixture of 7-linear and 7T-quadratic resistiv-
ity in SM region of certain cuprates where a smooth change
in Fermi surface volume from Hall coefficient measurement
was observed [21]. Further study on our proposed scenario is
needed.

3. Discussions

First, we make some remarks on the rich phenomena of the
pseudogap phase in cuprates, possible theoretical proposals
for its origin, as well as experimental evidence for the RVB
preformed Cooper pair in this phase, supporting our theoret-
ical framework for the pseudogap phase. The pseudogap phase
shares the phase boundary with SM state by 7™ line (onset
temperature of a spin-gap) on the underdoped side. It is a
much poorly conducting phase (compared to the SM and the
FL phases) where resistivity increases with decreasing tem-
peratures due to the suppression of electron local density of
states near the Fermi energy by developing the spin gap near
anti-nodal points. The T*-line approximately marks the dif-
ferent transport behaviors between the pseudogap and the SM
phases. As a result, with decreasing temperature across 7~ line
from above, the system changes from the SM state with 7-
linear decreasing resistivity to the pseudogap state with res-
istivity increased with decreasing 7.

The origin of the pseudogap phase of cuprates is a long-
standing debated issue. There have been different opinions
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regarding this enigmatic phenomena. These different opinions
in the literature can be approximately classified into two dif-
ferent groups with qualitatively two different kinds of origins
proposed for the pseudogap phase [78, 79]: 1. it is caused by
the preformed Cooper pairing for T > T, following the idea
of Anderson’s RVB singlet pairing; 2. it is due to some broken
symmetry phases, such as: pair-density-wave state [80], time-
reversal symmetry broken (loop-current state) [67], or the
nematic phase [56]. However, it goes beyond the scope of our
paper to discuss and compare these different proposals in great
details. Here, we follow the first proposal above by assuming
the pseudogap phase is mainly driven by the RVB singlet pre-
formed Cooper pairs.

There are a number of experimental evidences to sup-
port the existence of Cooper pairing in the pseudogap phase.
As pointed out in [81], superconducting (Bogoliubov) quasi-
particle peaks observed in ARPES, a signature of strong super-
conducting fluctuations, have been observed in the pseudogap
region of cuprates for T, < T < Ty With Ty < T (imme-
diate above the superconducting dome or in between T*
line and the superconducting phase). This behavior has been
interpreted as a signature of preformed Cooper pairing and
was considered as one prominent candidate to explain the
pseudogap: the strong superconducting fluctuations above 7.
destroy phase coherence but not the pairing [82]. Nevertheless,
the Cooper-pair formation above T, is somewhat disentangled
from the pseudogap state or T, does not fully coincide with
T*. Similar behavior has been observed in [78, 83]. A recent
experimental evidence in [79] was reported to more directly
and strongly tie pseudogap state to the formation of preformed
Cooper pairing in cuprates by low temperature local shot-noise
spectroscope. The shot-noise power S; is proportional to the
quasi-particle charge g, Sy = 2g|l| with I being the tunneling
current. For normal state electron tunneling, g = e, while as
q = 2e for Cooper pair tunneling. Their data from differen-
tial conductance spectra shows that the pseudogap energy Apg
(the size of pseudogap with suppressed tunneling density of
states) coincides with the onset energy scale of Cooper pairing
Apqir where quasi-particle charge shows a sharp increase from
qg=e to g > e with decreasing energy. The authors interpret
their results as a demonstration of equivalence of pseudogap
and pairing energy. Though the origin of the pseudogap is
still a much debated open problem, we think our proposal—
pseudogap state as a preformed Cooper pairing state—is jus-
tified to be a reasonable scenario supported by various experi-
ments, and it serves as an appropriate starting point to address
the quantum critical SM phase in cuprates.

We now comment on the possible occurrence of broken
symmetry phases (such as: dimerization, flux phase formation)
within our mean-field theory. Although it is quite likely that
these broken symmetry states are not occurring at the sizable
doping relevant for the SM QCP, it is worthwhile discussing
to what extent the uniform RVB state is stable. It is known
that within mean-field approaches to Hubbard and 7—J model
close to the half-filling on square lattice with only nearest-
neighbor couplings the uniform RVB state is unstable against
formation of broken symmetry phases, such as: dimerized or
flux phases. For example, in the large-N [SU(N)] approach to

the half-filled Hubbard-Heisenberg model studied in [84], in
the square lattice limit and with decreasing J/ ratio, the uni-
form RVB state is first unstable against the dimerized plaquette
(box) phase at large J/1, then is unstable against the flux phase
for smaller J/t till J/t — 0. For a realistic value of J/f ~ 0.3
in the —J model close to half-filling, the flux phase is expec-
ted to be the ground state. The authors in [32] discussed this
issue and found that replacing uniform RVB by the staggered
flux phase will not change the electronic observables. This is
because the -fermions, carrying the gauge charge of 2, pick
up an Aharonov—Bohm phase of 27 when circulating an ele-
mentary plaquette, which leaves their low energy properties
unchanged. Nevertheless, the uniform RVB phase can be sta-
bilized by introducing a small next-nearest-neighbor hopping
¢’ and Heisenberg exchange J' terms as studied in [84].

It is known that in the absence of SC the spin-liquid Kondo
lattice investigated in [33] is unstable towards phase separation
(see, e.g. [85]). To address this issue, we solved the mean-field
saddle-point equations of our KHSB 7~/ model. We find the
compressibility of the fermion fields in the SM, pseudogap,
and SC phases are all positive and finite, indicating that the
mean-field phases of our model are stable against phase sep-
aration (see appendix H for details). A possible reason to
explain the phase separation tendency in [85] would be as
follows: The strong Kondo hybridization therein is dispersive
(momentum dependent). In terms of slave-boson representa-
tion of the Kondo hybridization, it implies the slave-bosons
are very mobile. As a result, they tend to group together spa-
tially, separated from the spinons, to gain kinetic energy by
hopping between them. Thus, the total free energy is fur-
ther reduced. By contrast, our slave bosons (Kondo hybridiza-
tion) are local, dispersionless with much weaker in strength
((b) ~x < /). Therefore, the phase separation does not
occur here.

In [32] section V.B, the authors emphasizes the diffi-
culties for their model in describing the transition from the
U(1)-FL* phase to the FL state. In particular they mention
that a continuum theory with a finite Fermi velocity for the
composite fermionic fields F (the £-fields here) would not be
compatible with the hard-core dimer constraint which the F
field must obey at the lattice level. We think the origin of this
difficulty lies in the fact that the effective action for the F-
fermions (equation (29)) is obtained from the effective action
(equation (11) therein) where both slave-bosons and f-spinons
have already been integrated out. As a result, the F-fermions in
equation (11) does not lead to a quadratic dispersion on square
lattice due to the hard-core dimer constraint. By contrast, both
f-spinon and slave-boson fields in our effective action (our
equation (1)) are kept intact (without being integrated out).
We find that the dynamics and quadratic band dispersion of
our £-fermions can be generated perturbatively by calculating
the leading non-trivial self-energy correction, X¢, via Random
Phase Approximation approach where the dynamics and dis-
persion of the £ fermion are generated by integrating out the
higher energy modes in its self-energy. (see appendix B for
details). Therefore, the above difficulty does not appear within
our effective action, and the U(1)-FL*-FL phase transition can
be captured here.
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The Umklapp scattering is usually expected to be import-
ant for electrical resistivity by relaxing electron momentum
(charge current). Here, we propose an alternative relaxa-
tion mechanism without Umklapp scattering via local charge
Kondo fluctuations where electrical charge current decays into
charge-neutral spinon current and local charge fluctuations
despite forward scattering [86].

Note that the U(1) gauge field fluctuations play an import-
ant role in the traditional U(1) slave boson approach to —J
model [28, 29]. Within this approach, the quasi-particle mass
and dispersion are generated by the single electron Green’s
function, a convolution of spinon and holon (slave-boson)
Green’s function, where the massive gauge field fluctuations
play an important role to get the finite quasi-particle mass
m* ~ 1/J in the half-filled limit (6 — 0). Similarly, the gauge
field fluctuations lead to ac-conductivity o,.(w) ~ §/md(w),
which vanishes in the Mott limit (6 — 0). We find that the con-
tributions from gauge field fluctuations are also present in our
approach to the slave-boson #—J model. However, due to the
much heavier £-band compared to that of f-spinon, we find that
their contributions are subleading and are negligible compared
to the leading Planckian scattering rate mentioned above,
within the temperature range of our interest (see appendix E):
(1/755) / (17¢) ~ (T/D) 3 (1/D)*5* < 1. Similarly, the
scattering rate contributed from the gauge field coupled to the
spinon is estimated as: (1/T7gauge> /(1/7¢) ~(T/D)'/? < 1.
By including the gauge filed fluctuations, we find that the
total resistivity py is approximately given by pio ~ pe, as
pe ¥ /pe < 1 and pf™** /pe < 1. The total ac-conductivity
is approximated given by the conductivity of the &-field:
Otot(w) = 1/prot(w) ~ o¢(w). We find that o¢(w) within our
approach does indeed recover the expected Mott physics in
§ — 0 limit: 02 (w) ~ & x §(w) [87]. We also find that gauge
field leads to a negligible contribution to our specific heat
coefficient: v(T) ~ (b/D) x (T/D)*/* with b~ 0(6%) < 1.
Meanwhile, due to the much narrow £-band (or heavy effect-
ive mass of the ¢-field), the physical quasi-particle mass is
dominated by m, though there exists a negligible contribu-
tion from the single-electron Green’s function convoluted by
spinon and holon Green’s function via [28] where gauge field
plays an important role. We find that the quasi-particle mass of
the ¢-field behaves as: mg o< 1/(8J), which diverges in § — 0,
recovering the Mott insulating phase of the half-filled Hubbard
model with divergent quasi-particle mass m* ~ 1/, as was
proposed by Anderson [88]. Very recently, there has been
new experimental evidence for this Mott physics relation with
m* ~1/6 to exist for a wide doing range (0.1 < § < 0.3) in
cuprate (LSCO) [3] by measuring the slope (A; coefficient)
of T-linear resistivity p ~ AT with A; x m* o 1/§ and spe-
cific heat coefficient y o m* o 1/4. Note that, due to the local
nature of the slave boson in our approach, the T-linear scat-
tering rate contributed from U(1) gauge field found in [28] is
absent here.

We summarize the main difference between our heavy-
fermion approach and the traditional approach [28] to the
slave-boson —J model in describing the SM state as follows:

The key difference is the different mean-field decoupling of
the slave-boson hopping term H; = —tz<i i) ﬁgbibjﬁg +
H.c.. In traditional mean-field approach, H;,—

>0 (—txijbj bj+H.c.+ |Xij|2/l‘>, while as in our approach

Hi=Y o (—U‘L&-j,gb} +He + &0 /z). Within our
approach, by defining the charge-carrying fermionic spinon-
holon bound pair (£-field), the physical conduction (hole) band
comes directly from the hopping of the ¢-field via second-
order in perturbation at the Hamiltonian level. The slave-
bosons are treated as local non-condensed disordered charge
impurity. This formulation facilitates to qualitatively describe
the observed Fermi-arc near nodal points in the pseudogap
phase [32], the strange metal ground state (phase) and the
Fermi surface reconstruction across it, as well as the phase
transitions between the SM phase and its neighboring phases
(pseudogap, d-wave superconducting, and FL phases). The
heavy £-band strongly suppresses the gauge field contribu-
tions to observables. By contrast, within the traditional U(1)
slave-boson approach to +—J model, both sipnons and holons
(slave-bosons) are mobile and acquire bands. The physical
electron (hole) band is formed indirectly through convolu-
tion of spinon and holon Green’s functions where gauge field
plays an important role. Meanwhile, since slave-bosons are
mobile within this approach, they always get Bose-condensed
for T < Tggc with Tggc being the Bose—Einstein condensation
temperature. As a result, the ground state is a superconducting
state for any finite doping before the system reaches the FL
phase. Hence, the SM state always remains in the normal state
and is unstable against superconductivity as T — Tggc from
above.

The Planckian metal phase we find here can be further
stabilized in the generalized version of our model in large-
N and multi-channel limit where fluctuations from gauge-
field and higher order processes are suppressed. The Planckian
phase in transport and thermodynamical coefficients within
our theoretical framework show distinct qualitative features:
the former is insensitive to but the latter strongly depend on
the microscopic couplings. This suggests possible breakup
of low-energy excitations in this phase into charged particles
(electrons) and the charge-neutral spinons; the former domin-
ates in transport while the latter in thermodynamics, reminis-
cent of the Kondo breakdown QCP in heavy-fermion system
[12]. In addition, Whether the quadratic temperature depend-
ence of the Hall angle observed in the SM region of cuprates
[16, 89-91], can be captured within our framework requires
further investigation .

To reach the Planckian bound, it was argued in [18] that a
strong inelastic scattering with local energy relaxation AE ~
kgT is required so that the equilibration time 7eq ~ i1/ AE ~
71/ kg Treaches the Planckian time scale. The charge fluctuating
effective Kondo term in our model offers a realization of such
strong inelastic scattering channel with a local energy relaxa-
tion rate 1 /7 ~ kgT/%, where electron loses its energy to local
slave boson by coupling to a spinon band.

It was pointed out that the strong disorder coupled to the
electron interactions is crucial to realize the Planckian SM
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state, as shown in the SKY model [24, 25]. Within our two-
band heavy-fermion slave-boson t—J model, local fluctuating
non-condensed slave boson plays the role of disorder embed-
ded in electron interaction in the fluctuating Kondo hybridiz-
ation. MFL and SM properties are thus expected, reminiscent
of the SKY models. Via the effective Kondo term, the fluctuat-
ing slave-boson also generates impurity-like scattering, lead-
ing to a residual scattering rate at 7 =0 due to the breaking
of the translational symmetry of the original Hamiltonian. A
formal link of our model to the SYK-like models deserves fur-
ther investigations.

Note that there exists materials (such as: Nd,Ce; _,Colns in
[17]) which show T-linear scattering rate with a non-universal
(coupling-constant dependent) Planckian coefficient (o ~ 1
but o depends on microscopic coupling constants). The mech-
anism for these materials is expected to be different from those
with universal Planckian coefficient since the cancellation in
coupling constant dependence in scattering rate is absent there.

Our mechanism shows a broader implication for the SM
state observed in other correlated unconventional supercon-
ductors, such as: in Magic-Angle Twisted Bi-layer Graphene
(MATBG) [14, 92] where the universal scaling in Planckian
scattering rate was observed, and in nickelate superconductors
[93] where a T-linear resistivity was observed in the quantum-
critical-fan-like region above the superconducting phase,
similar to that in cuprates. A topological heavy-fermion
Anderson/Kondo lattice approach to MATBG was proposed to
account for its flat-band structure [94-97]. We expect the pos-
sible enhanced charge fluctuations via Kondo hybridization in
the spin sector above the superconducting transition temperat-
ure of MATBG, similar to that for our case in the charge sector,
may play a role to account for the observed Planckian scatter-
ing rate. Meanwhile, the Kondo—Hubbard model was proposed
to serve as a promising minimum microscopic model for the
newly discovered nickelate superconductors [98], where the
local Kondo-breakdown transition, similar to our case, may
occur. The combined quantum critical bosonic charge fluc-
tuations in the correlated electron hopping and Kondo inter-
action in the putative quantum critical region may provide
a mechanism for its SM behavior. Our theoretical study on
Planckian metal in cuprates sheds lights on the understanding
of the Planckian metal states in other materials since 1. cancel-
lation in coupling constant dependence (or coupling-constant
free) in scattering rate is likely a generic feature of universal
Planckian metals across different materials, and 2. we offer
one mechanism for such cancellation in a model for cuprates.
Further extension of our approach is needed to clarify these
issues.

4. Conclusions

We provide a microscopic mechanism for the Planckian metal
phase in the Kondo—Heisenberg formulation of the slave-
boson #—J model based on the dynamical charge Kondo
breakdown near the localized-to-delocalized phase transition
in the form of critical charge (Kondo) fluctuations. The
slave-boson 7—J model was first mapped onto an effective

Kondo—Heisenberg model. Via perturbative RG analysis on
this effective model, we realized an extended quantum crit-
ical Planckian metal phase. Within the one-loop RG, we iden-
tified a QCP separating pseudogap, d-wave superconducting,
a normal FL and a SM phases. In particular, we find a stable
SM phase in our RG phase diagram close to this critical point
exhibiting T-linear scattering rate and w/T-quantum critical
scaling and the Planckian behavior where ap ~ O(1) that is
independent of coupling constant, in excellent agreement with
the optical conductivity and magnetoresistance measurements
in various overdoped cuprates. Our theoretical predictions on
the specific heat coefficient, effective mass enhancement, and
single particle spectral function in the SM state agree well with
the experimental observations and hence offers a microscopic
mechanism for the marginal FL. Ansatz. Our theoretical frame-
work offer a promising route to reveal the mystery of quantum
critical SM phase and its link to the generic phase diagram
of high-T, cuprate superconductors. It provides insights into
how dSC emerges from such a SM phase in cuprates—one of
the long-standing open problems in condensed matter phys-
ics since 1990s—as well as shows a broader implication for
Planckian SM states observed in other correlated unconven-
tional superconductors.
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