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Abstract: This article presents a novel approach to the decomposition of unitary operations
for 3-qubit systems by 28 controlled rotations and no permutations. The QR decomposition
is described, which is based on the concept of the discrete signal-induced heap transform
(DsiHT) and its quantum analogue. This transform is generated by a given signal and
may use different paths, or orders, of processing the data, and, among them, one can find
paths that allow one to construct efficient quantum circuits for implementing multi-qubit
unitary gates. The case of real unitary matrices is considered. The proposed approach is
described in detail, and quantum circuits are presented for computing 3-qubit operations.
This approach allowed us to write simple Qiskit codes to implement the decomposition
of 3-qubit operations. Examples with quantum circuits for the quantum 3-qubit quantum
cosine and Hartley transforms are described.

Keywords: quantum decomposition; QR decomposition; quantum signal-induced heap
transform; quantum cosine transform

1. Introduction

Of greatest interest is the problem of constructing efficient quantum circuits for com-
puting multi-qubit operations. Universal codes to build such quantum circuits are very
desired. A quantum gate is a unitary matrix, and therefore we need effective tools for matrix
decomposition, or factorization. Many methods of QR decomposition of real matrices are
known. We mention Givens rotations [1-3], the general method of heap transforms [4], the
Gramm-Schmidt process [5], and the method of Householder transformations [6]. Methods
with Givens rotations are also used in quantum computation when building the circuits for
unitary operations on multi-qubit superpositions [7-16]. The main goal is to decompose
the given operation into a set of simple gates, for example, the controlled-rotation gates,
Pauli gates, phase shift gates, and CNOTs [17]. In quantum circuits, all such gates operate
only on adjacent bit planes (BPs), which differ by only one bit, for example, a gate on
bit planes 0 (00) and 1 (01), but not on 1 (01) and 2 (10). Operations on bit planes 1 and
2 require additional permutation(s) to accomplish them on the adjacent bit planes, such
as 0 and 1. Such adjacent bit planes are also called adjacent qubits. In many works, to
place all gates on the adjacent BPs, Gray code-based permutations on the basis states are
performed [16,18,19].

Different fast algorithms for many discrete unitary transforms have been developed.
We mention the fast algorithms for the N-point discrete Fourier transforms, as well as
the Hadamard, Hartley, cosine, and slant transforms [20-24]. In quantum computation,
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signals/images are represented by the quantum superpositions, and we are interested in
the case when N is a power of 2. For the quantum analogues of these transformations, it
is common to choose the fast algorithms described by the signal-flow graphs and matrix
representations that are convenient for building the quantum circuits. The fast eight-
point discrete cosine transform described by Vetterli and Lindenberg in 1986 [25] was
used for quantum circuit of the 3-qubit DCT-II in [26]. The eight-point DCT of type IV
described by Rao and Yip in 1990 [27] was used in [28]. The fast eight-point discrete Hartley
transform described by Bracewell in 2001 [29] was used in [30]. The paired transform
fast Fourier transform [31] was used for quantum Fourier transform [32]. On the other
hand, as mentioned above, the existing QR methods for unitary matrices include unitary
matrices. The method of QR decomposition of a real matrix 8 x 8 uses 28 rotations [33,34].
When comparing the above methods of the DCT-II and Hartley transform matrices, the
corresponding quantum circuits use a smaller number of rotations, but a significant number
of two- and one-qubit controlled CNOT gates. In addition, the DCT-IV uses two 3-qubit
quantum Fourier transforms. The presence of multiple CNOT gates is associated with
multiple switching of information flows from one qubit to others. In addition, these circuits
are unique for different matrices. It is not possible to combine all of these different unique
variants into one simple quantum circuit. We think that the QR-decomposition method is
universal, as it can be used for any unitary matrix with a single unique quantum circuit. As
we mentioned above, the only disadvantage of this method is the set of rotations which
operates on the bit planes that are not adjacent bit planes. The solution to this problem is
possible without the need for permutations or CNOTs and Gray codes. This provides the
ability to create a universal quantum circuit, not only for existing unitary transformations,
but for any gate in quantum computing.

In this work, a method of the discrete signal-induced heap transform (DsiHT)-based
QR decomposition is described in detail and quantum circuits for implementing unitary op-
erations on 3-qubit superpositions are presented. The concept of the DsiHT was introduced
by Grigoryan in 2006 [35] as a transform generated by one or more signals. We provide a
new view of the QR decomposition of unitary matrices and quantum circuits, by describing
the following:

1.  New effective paths for the DsiHTs of different lengths. No additional permutations
with Gray codes or CNOT gates are required at each state of the decomposition.

2. Only Given rotations are gates required to perform the operation with unitary real
matrices.

3. A universal and transparent circuit for quantum 3-qubit operations with a maximum
of 28 controlled-rotation gates and depth of 18.

4. The circuit for the 3-qubit quantum Hartley transform (QHyT) with 21 controlled-
rotation gates and 1 local rotation gate.

5. A simple circuit for generating any 3-qubit operation with a real unitary matrix.

6. A general method for constructing circuits for multi-qubit operations with maximum
of (4" /2 —2"~1) rotation gates and no permutations for n > 1 qubits.

The rest of the paper is organized as follows. In Section 2, we briefly describe the
concept of the DsiHT. Section 3 describes the method of QR decomposition of the real square
matrix by the DsiHTs. The case of 3-qubit quantum signal-induced heap transform (QsiHT)
is considered in detail with quantum circuits. The quantum circuit of a 3-qubit unitary
operation is presented. In Section 4, the 3-qubit quantum Hartley transform, and quantum
cosine transform of type II (QCT-II) and of type IV (QCT-IV) are described with the circuits.
The results of the simulation in Qiskit are also given in Appendix A. The application of
the proposed QsiHT in preparing 3-qubit Dicke states is described in Section 5. This work
focuses on the unitary operation described by real matrices. In the Section 6, we mention
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that the proposed method of QR decomposition for constructing quantum circuits for
n-qubit unitary operations by using the QsiHT with fast paths can be applied as well.

2. The Concept of the DsiHT

The N-point DsiHT is the transform that is generated by a given signal, x, of length, N.
The DsiHT is defined as a transformation that moves the energy of this signal to one point;
in other words, it gathers all the energy in one heap, for example, at the first point. Such a
transformation can be composed, for example, from a successive set of rotations. The main
characteristic of the DsiHT is the path, that is, the order in which it is assembled from the
basic two-point rotations of the generator elements [35]. As example, Figure 1 shows two
diagrams of composing the four-point DsiHT. Each unitary transformation, Ty, k = 1,2,3,

is the Givens rotation, which is described as T : (x,y) — (:I:\/x2 +v?, 0) ,or

Tx __|cost® —sind| |x|
y| [sin® cosd | |y|

Here, the angle is defined by the inputs as ¢ = —arctan(y/x), and ¢ = £7/2if x = 0.

/2 + 2 )
0 :

The path of the transformation, which is shown in Figure 1a, is the traditional path, and
this transformation is called the DsiHT with the weak carriage-wheel (see [24] for more
detail). Two rotations are on the adjacent BPs, that is, 0 and 1, and 0 and 2. The last rotation
operates on BPs 0 and 3, which are not adjacent. The transform of the generator is equal to

Tx = (+|x]|,0,0,0) = (i\/x% +x2 422 +x§,0,0,0>. @)

The number ||x|| denotes the norm of the signal, x, that is the square root of the signal
energy, E[x] = x3 + x2 + x3 + x3.

(@) Path#1 e ‘ (b) Path #2

........

Figure 1. Two diagrams for the 4-point DsiHTs for (a) path #1 and (b) path #2.

The second path of the DsiHT, which is illustrated in Figure 1b, is the path of the
DsiHT with the strong carriage-wheel [24]. This path also shows that one of the rotations
operates on the non-adjacent BPs. These BPs are 1 (01) and 2 (10). Different rotations,
Ty, k = 1,2,3, are used for these two DsiHTs.

Example 1. Consider the vector x = (1,—-2,3,1)/+/15. The matrix of the four-point DsiHT by
path #1, which is generated by the vector x, is

0.2582 —0.5164  0.7746 0.2582
0.8944  0.4472 0 0
—0.3586  0.7171 0.5976 0
—0.0690  0.1380 —0.2070 0.9661
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This matrix can be written in the integer form:
1 -2 3 1
2 1 0 0
Hy1 =D p 4
=Dl o o o (4)
1 -2 3 -14

where the diagonal matrix is D1 = {0.2582, 0.4472, —0.1195, —0.0690}. The angles of rotations
are Ay, = {01, 02,93} = {63.4349°, —53.3008°, —14.9632° }.
The matrix of the four-point DsiHT by path #2, which is generated by the same vector x, is

0.2582 —0.5164 0.7746 0.2582
0.9661 0.1380 —0.2070 —0.0690
Hyp = 5)
0 0.8452 0.5071 0.1690
0 0 —-0.3162 0.9487
We can also write this matrix as
1 -2 3 1
—14 -2 3 1
Hyr = D , 6
42 > 0 5 3 1 (6)
0 0 -1 3

where the diagonal matrix is D, = {0.2582, —0.0690, 0.1690, 0.3162}. The angles of rotations for
this transform are Ay = {75.0368°, 57.6885°, —18.4349° }.

Figure 2a shows path #3 for the four-point DsiHT. All three rotations in this transform
operate on the adjacent BPs. These BPs are 0 and 2, 1 and 3, and then 0 and 1. This path is
considered good for building the circuit of the corresponding 2-qubit QsiHT. The quantum

circuit of the transformation is shown in Figure 2b. Here, three controlled-rotation gates

are used (see for detail [36]). The transform of an input signal, z, is calculated by the same

diagram, as shown in Figure 2c.

T l x{V
100 L Xo T3 £ Zy T3 z?
i ' Ty T, Ty
P01 oxg ©) Z 7
o | " N S I o 1
P10 1 X2 0 T3 Z2 Z;
! E * z3 )
P11 X3 0 I, z
(a) Path #3 (b) (c)
Figure 2. (a) The block diagram and (b) the circuit for the 2-qubit QsiHT with path #3. (c) The
diagram of the transform on an input z = (20, Z1,22, 23)‘
The four-point DsiHT with this generator is described by the following matrix:
cost¥z —sindj 1 cos ¥ —sinty
sin d3 cos U3 cos —sin %, 1
Hys = . @)
1 1 sin % cos 1
1 sin ¢, cos % 1
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with angles A,.3 = {—71.5651,206.5651, —35.2644} in degrees. Therefore,
1 -2 3 1
1 |—-0.7071 —2.8284 —2.1213 1.4142
Hyg = —= 8)
V15 | —3.6742 0 1.2247 0
0 —1.7321 0 —3.4641

The determinant of this matrix is equal to 1, and Hy3x" = (1,0,0,0).
The 2-qubit quantum signal-induced transform (QsiDT), Hy, is defined as the 2-qubit
operation, generated by the 2-qubit superposition

[x) = I

1
||(XQ|00>+X1 |01>+X2|10>+X3‘11>), 9)
such that Hy |x) = |00). The transform is composed of three rotations with angles of Ay,
and with the same path as its discrete analog DsiHT uses.
Figure 3 shows the circuit for the transformation of the 2-qubit superposition:

7

Hys : |x) = %(|oo> ~2|01) +310) + [11)) — [00). (10)

Ry, R, T

1
0 =——=| 2 _
vis| 3 D U S R, — [00) =

1

3

O OO

93 = —35.26°, 9, = 206.56°, ¥; = —71.56°

Figure 3. The circuit for the 2-qubit QsiHT with the input superposition |x) = (1,~2,3,1)'/+/15.

Table 1 shows the difference between the above 2-qubit QsiHTs. The QsiHT by the first
two paths have one rotation on nonadjacent planes each. That requires one permutation of
planes 2 and 1 for path #1, and the permutations of planes 2 and 3 for path #2, which is
CNOT operation.

Table 1. Data of the circuits of the 2-qubit QsiHTs by three paths.

Path # Rotations  # Non-Ajacent Planes # Permutations Depth
#1 3 1 1 3
#2 3 1 1 3
#3 3 0 0 2

Thus, the above three three-point DsiHTs, Hy, use different sets of angles
Ay = {91, 9,03}, which are calculated from the same generator, x = (xo, X1, X2, X3).
The results of the calculations are the same (up to the sign):

Ha(x) = (x,0,0,0) = <i\/x5+x§+x§+x§,o,o,o>, k=312 (11)

The DsiHT with path #3 is considered more effective than paths #1 and #2. The
generated transform operates on an input of z = (2o, z1, 22, 23), using the same path, as
shown in Figure 2c,

Hy(z) = (z(()z>,z§1),z§1),zé1>). (12)



Information 2025, 16, 466

6 of 31

Such effective paths exist for the N-point DsiHTs when N > 2, and the larger this
number, N, the more such paths can be found. We call them the fast paths since they do
not require addition permutations of basis states.

To evaluate and simulate the proposed quantum algorithms in this paper, the Qiskit
Framework (version 1.3.2) is used [37]. However, any quantum simulation framework
can be used. Qiskit was chosen since the Qiskit framework is an open-source quantum
computing framework developed by IBM Quantum that provides the ability to design,
simulate, and execute quantum circuits. Qiskit provides various tools for creating quantum
circuits, modeling noise, and access to actual quantum hardware through IBM Quantum’s
cloud backends [36]. The probabilities of the quantum scheme shown in Figure 3 are given
in Table 2, when the transform is applied to a random normalized superposition state given
by |x) = (1,-2,3,1)'/+/15 for 1 thousand, 10 thousand, 100 thousand, and 1 million shots.

Table 2. Probabilities for the 2-qubit QsiHT for preparing the superposition,
|00) — |x) = (1,-2,3,1)'/V/15.

Basis Probabilities
States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
00 6.6667 x 1072 8.0000 x 102 7.0000 x 1072 6.6070 x 102 6.6823 x 102
01 2.6667 x 107! 2.7200 x 107! 2.6600 x 107! 2.6618 x 107! 2.6680 x 107!
10 6.0000 x 107! 5.7500 x 107! 6.0090 x 107! 6.0075 x 107! 5.9999 x 107!
11 6.6667 x 1072 7.3000 x 1072 6.3100 x 1072 6.7000 x 1072 6.6393 x 1072
MSRE 0 7.3796 x 1073 1.2522 x 1073 2.8134 x 10~* 8.5119 x 107>
3. DsiHT-Based QR Decomposition
In this work, we describe the QR decomposition of a square matrix, A, of size
2" x 2", r > 1 by the Givens rotations. The unitary matrix, A, is considered with real
coefficients. In the QR decomposition of matrix A, (2" — 1) DsiHTs are used [34]. Matrix A
is transformed sequentially into a diagonal matrix. Each of these DsiHTs moves the energy
of the columns of the matrix into the diagonal, R. This decomposition is illustrated below
for a 4 x 4 unitary matrix:
o o o o ~ 0 0 O ~ 0 0 O ~ 0 0 O
A |0 © © ©f oDsHT A= 0 % *x *| % DsiHT Ay = 0 ¢ 0 0| o DsiHT R— 0 « 0 O . 13)
o o o o 0 » * % 0 0 ¢ o 0O 0 * 0
o o o o 0 » * % 0 0 ¢ ¢ 0 0 0 x

The first DsiHT is generated by the first column, x1, of matrix A, and it will be changed
as x1 — (£]|x1]],0,0,0). After multiplying the matrix of this DsiHT by matrix A, the new
matrix, A1, will contain six zero coefficients, as shown above. The same process is repeated
to the 3 x 3 submatrix of matrix A;. Namely, the second three-point DsiHT is generated by
the three components of the second column of matrix A;. This transform is applied to the
3 x 3 sub-matrix and another four zero coefficients will be obtained in the new matrix, Aj.
The block diagram of this transform and its quantum circuit are both shown in Figure 4a.
The last two-point DsiHT is generated by the last two coefficients of the third column of
Aj and is applied to its 2 x 2 sub-matrix. This transform and its circuit are given in part
Figure 4b. Thus, the matrix diagonalization is complete. Matrix R is diagonal, with the
coefficients -1 on the diagonal. When processing this matrix in quantum computation,
each of the above DsiHTs is the 2-qubit QsiHT generated by the full column of matrix A,
A, or Ay. For instance, the second QsiHT will be generated by the second column (written
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as a 2-qubit superposition) of matrix A;. Therefore, this transform is not described by the
matrix of type 1 @ H3, where Hj3 is the matrix of the three-point DsiHT. One can note from
Figures 2 and 3 that the QR decomposition of matrix A uses six rotation gates and has a
depth of 4. It also means that 2-qubit operations can be calculated by only six rotations.

Xo

X1

v Xy

|x3

X
M R i Kl
T T, 0 X3 T, 7o

Xg ®
T I T
§1) 2 X1 [ )

XD

1

(a) Step 2 (b) Step 3

Figure 4. The block diagrams and circuit elements for the 2-qubit DsiHTs in Steps 2 and 3.

Now, we consider a square unitary matrix, A, of size 8 x 8, with determinant detA # 0.
For this matrix, seven DsiHTs with different paths are used. In the first step, the eight-point
DsiHT is generated by the first column of A. We change the notation of matrix Hg of this
transform by Hy_7. The subscript indicates the bit planes on which the transform operates.
In the second step of the calculations, the seven-point DsiHT is generated by the vector that
is equal not to the full second column of the new matrix, Hy_7A, but to the reading from
the second row. The first row and column of the Hy_7A matrix will remain unchanged
in subsequent calculations. Thus, the seven-point DsiHT operates on the bit planes 1-7,
not 0-6. We denote the matrix of this transformation as H;_7. In the next step of the
decomposition, the six-point DsiHT is generated by the columns number, three, of the new
matrix H;_7(H O_7A), but to the reading from the third row. This six-point DsiHT with
matrix H,_7 operates on the bit planes 2-7, and so on. The last DsiHT operates on the bit
planes 6 and 7, and its matrix is denoted as Hg_y. In quantum computing, it is important to
remember the location of these generators for the next rotations.

The block diagram of the decomposition of the 8 x 8 matrix, A, is shown
in Figure 5. According to the described QR decomposition, or the operation triangu-
larization (factorization), it is fulfilled by seven DsiHTs,

T: A— R=H¢yHs 7Hy 7H3 7Hy 7H1 7Ho-7A. (14)

Here, matrix R is an upper triangular matrix. If matrix A is unitary and real, matrix R is a
diagonal matrix with the coefficients +1 on the diagonal. If R is the identity matrix, the
factorization, T, describes the decomposition of the inverse operation, AL

DsiHT
on
BPs 6.7

=

DsiHT DsiHT DsiHT DsiHT DsiHT DsiHT
on —> on —> on = on = on —> on = A
BPs 5—-7 BPs 4-7 BPs 3—7 BPs 2—-7 BPs 1-7 BPs 0—-7

Steps:  #7

Figure 5. The block diagram of the QR decomposition of the 3-qubit operation.
The block diagram of the calculation of operation A is shown in Figure 6,

A =T YR) = (He_7Hs_7Hy_7H3_7H>_7Hy_7Hy_7)'R

15
= Hy ,Hj ;H; ;Hy 7Hj ;Hs ;Hg ;R. )
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Here, all matrices, Hy_7, k — 0 : 6, are unitary, and Hl/<—7 denotes the matrix transpose
to Hy_7,k € {0,1,...,6}. The numbers of controlled-rotation gates are also shown for each
of the transforms. A maximum of 28 rotation gates are used for operation A on a 3-qubit
superposition. Each rotation in this diagram is performed by the single controlled-rotation
gate on the corresponding pair of adjacent bit planes.

—| R Hg_7 | Hs—7 [| Hiy (| H3_y || Hy—7 [ | Hi—y [ ] Ho—s

|z) — Alz)

# Rotations 1 2 3 4 5 6 7

Figure 6. The block diagram of the A operation when using the QR decomposition.

Now, we will describe each step of the decomposition in detail for 3-qubit operations.
Then, the 3-qubit quantum Hartley transform and cosine transforms of types II and IV will
be analyzed.

A. The case N = 8 (transform Hy_7): The block diagram of the eight-point DsiHT,
Hy_7, with the fast path is shown in Figure 7. The outputs with the open circles in this
diagram are zero.

Stage 1 Stage 2 Stage 3

Figure 7. The block diagram of the 8-point DsiHTs using the fast path with splitting into pairs.

The corresponding circuit for the 3-qubit QsiHT with seven controlled gates of rota-
tions is given in Figure 8. The matrices of rotations are defined by

Ry, = Wy, = [COS %% _Smﬁk], k=1:7. (16)

sin®,  cosd

1 2 3

|z) \ |
\ Y J Y \_Y_}

Stages: #1 #2 #3

4

Hg|z)

Figure 8. The circuit for the 3-qubit QsiHT with seven controlled-rotation gates.
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This transform generated by the first column of A is used in the first step in the QR
decomposition of the 8 x 8-square matrix, A — A1 = Hy_7A. Next, we describe six other
required transforms with the corresponding diagrams and quantum circuits.

B. The case N = 7 (transform Hj_7): The input is the 3-qubit superposition in the form
of x = (a,x1,..., x7), and the transform keeps the first amplitude, 4, unchanged. This
superposition corresponds to the second column of the matrix A;. The block diagram of
this eight-point DsiHT is shown in Figure 9. Before rotating the data, the CNOT gate is
used to move the component x; to the 0-bit plane, to have all rotations on the bit planes
which differ only in one bit. The fourth rotation operates on bit planes 0 (000) and 2 (010).
It could not operate on bit planes 1 (001) and 2 (010). One CNOT gate is also used at the
end of calculations to move amplitude, 4, back to bit plane 0. Thus, this transform requires
six elementary rotations and two CNOT gates. This transformation is applied to A; to
obtain the matrix Ay = Hy_7A;. It should be noted that the path of the DsiHT shown in
this diagram is only one of the possible ones. There are other ways to process this vector.
This path seems simple and the difference with the eight-point DsiHT with the fast path

is small.

000 a X
a

001  x, >@<:
x(3)

010  x, a !

N

100 x4 e 0

101 Xs

110 e e

111 0

Stages: #1 #2 #3 #4

Figure 9. The diagram of the 8-point DsiHT, H;_7, on bit planes 1-7.

The corresponding quantum circuit for this transformation is given in Figure 10. Six
controlled-rotation gates and two CNOT operations are used in this circuit.

1z)

»—T—ﬁ Ry,

1 2 3

Hg|z)

\ J
Y J Y l_Y_J

Stages: #1 #2 #3 #4

Figure 10. The circuit for the second 3-qubit QsiHT on bit planes 1-7.

Now, we consider another path for this transformation, which uses only six rotations
with a distinct set of angles. The diagram of the DsiHT with this path is shown in Figure 11.
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000 ,
001  x,
010 x,
011 X3
100 x4
101 Xs
110 e
11

Figure 11. The second diagram of the 8-point DsiHT, H;_y, on bit planes 1-7.

The quantum circuit for the 3-qubit QsiHT with this new path is given in Figure 12.
This circuit does not use the X gate.

93 ] Yy T [
— Rﬂl H Rﬁz J-‘ l ngs
|z) Hg|z)
\ . J \ . J \
Stages: #1 #2 #3 #4

Figure 12. The second circuit for the 3-qubit QsiHT on bit planes 1-7.

Rotation number 1 (or 2 and 5) operates on an input (x, y) as follows:
0

R x|  |cos®y —sindy| |x
%lyl  |sin®y cos®y ||y +/x2+y

Here, the property atan(x/y )+ atan(y/x) = 71/2 can be used and the Givens rotation can

, Oy = atan? (17)

be considered,

X|  |cosq@y —singy| |x
y| |singy cosey ||y
Then, instead of the matrix Ry,, we can use Ry, , or Ry, , on the same input (x,y), to
get the result in Equation (18).

/%2 1 12
Ry = + x0—|—y , P4 = —atan% (18)

4

Example 2. Consider the input (x,y) = (3, —4). Then,

R@[ x ] _ l cosp —sing ] [ _z _ [ 0.6 —08 H 3 ] _ [5 ] ¢:_atan—74:53'13010_ 19
y sing  cos¢

0.8 0.6 —4 0
For the angle & = ¢ + 90° = 143.1301°, we obtain

cos® —sind 3 —0.8 —-0.6 3 0 3
[ sind  cos® 1 l —4 ] ] [ — ] [ ]' atan (20)

0.6 —-0.8 4 5 —4°
C. The case N = 6 (transform H,_7): The input is the 3-qubit superposition in the
formofx; = (a,b, x2,..., x7), and the transform keeps the first two amplitudes, a and b,

x
Y

Ry
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unchanged. The block diagram of this eight-point DsiHT is shown in Figure 13. After the
fourth rotation, the next rotation operates on bit planes 2 (010) and 6 (110).

000 a o
001 b e
010
011
100
101
110
111

Figure 13. The diagram of the 8-point DsiHT on bit planes 2-7.

The quantum circuit for transform H;_7 is given in Figure 14. Five controlled-rotation
gates are used in this circuit. After applying this transform on matrix Aj, in this stage of
the QR factorization, we obtain the new matrix, Az = H,_7Aj.

o ® T ng5
4 R,_94
—— Ry, [ Ro,[| Ro, l o
\ v J | o
Stages: #1 #2 #3

Figure 14. The circuit for the 3-qubit QsiHT, H_7, on bit planes 2-7.

D. The case N = 5 (transform H3_7): The input is the 3-qubit superposition in the
form of x; = (a,b,¢, x3,..., x7), and the transform keeps the first three amplitudes, 4, b,
and c, unchanged. The block diagram of the 3-qubit QsiHT and its circuit are shown in
Figure 15. Four controlled gates of rotations are required for this case. At this stage of QR
factorization, we obtain the new matrix, Ay = H;_7A3.

000
001
010
011
100
101
110
111

Figure 15. The diagram and the circuit of the 3-qubit QsiHT, H3_7, on bit planes 3-7.

E. The case N = 4 (transform Hy_7): The input is the 3-qubit superposition in the form
ofx; = (a,b,c, d,x4,..., x7), and the transform keeps the first half of the input unchanged.
The block diagram of this 3-qubit QsiHT is shown in Figure 16. The quantum circuit for
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this transformation is also given in this figure. At this stage of QR factorization, we obtain
the matrix As = Hy_7Ay.

000 | a e rAAAAAAATAAA*
001 ? : 2o |-
o |2 T |

100 x: x? —| Roi | Ro,

P : i
11 | x, ; 0 Stage: #1 #2

Figure 16. The block diagram and the circuit for the 3-qubit QsiHT, Hy_7, on bit planes 4-7.

F. The case N = 3 (transform Hs_7): The input is the 3-qubit superposition in the form
of x; = (a,b,¢c, d, e, x5,%, x7), and the transform processes only the last three amplitudes.
The block diagram of this 3-qubit QsiHT is shown in Figure 17. Two rotations operate on
bit planes 6 (110) and 7 (111), and then on 5 (101) and 7 (111). The quantum circuit for this
transformation is also given in this figure. After applying this transform on As, we obtain
the matrix Ag = Hs_7As.

000 a e T
001 ? .

010 i e Ry,
011 e

100 X @ — Rﬁ14444414444447
101 5

110 | e 0 ! Y

111 X7 0 Stages: #1 #2

Figure 17. The block diagram and the circuit for the 3-qubit QsiHT, Hs_7, on bit planes 5-7.

G. The case N = 2 (transform Hg_7): The input is the 3-qubit superposition in the form
of x; = (a,b,c,d,e, f,x¢, x7), and the transform processes only the last two amplitudes.
The block diagram of this QsiHT is shown in Figure 18, together with the corresponding
controlled-rotation gate. This transform describes the last stage of QR factorization with
the matrix, Ay = Hg_7As.

000 | a e
001 h e

010 | ¢ e ’

011 d e

100 ; :

1(1)2) X6 >@<: x) | Rg, |-
11 | *7 0

Figure 18. The block diagram and the circuit element for the 3-qubit QsiHT, H¢_7, on bit planes 6
and 7.

All seven DsiHTs described above are used in the QR decomposition of the 8 x 8-
matrix, A = QR. Namely, these seven transforms are used for calculating the matrix,
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T(A) = R. Matrix R is diagonal. Thus, to calculate matrix R, the number of 2-bit controlled-
rotation gates is equal to

u(r)=7+6+5+---+1=(8x7)/2=28. (21)

These are the numbers of elementary gates for the triangularization of any 3-qubit gate.
The diagonal matrix, R, in this decomposition should be considered separately because it is
different for different matrices, A.

3.1. Three-Qubit Gate Circuits

Now, we can put together all seven circuit elements described above to build a quan-
tum circuit for computing the 3-qubit operation with the triangular matrix, R. Figure 19
shows the circuit for the matrix factorization, T : A — R. It should be noted that this circuit
can be used for any operation described by the square matrix 8 x 8 with nonzero determi-
nant. In the above case, operation A is unitary, and matrix R is diagonal with coefficients
+1 on the diagonal. To simplify the notations in the circuit, we use the same notations for
angles on the different stages of decompositions; that is, for transforms Hy_,, k = 0 : 6. For
instance, the notation ¢; presents the different angles for each of these transforms. It must
be noted that A~! = A’ = R'T = RT. Thus, we add the diagonal gate, R, to the end of this
circuit, and we obtain the quantum circuit for the inverse operation, A~

Ry

1

Diagonal matrix
Hq_;

Figure 19. The 2nd quantum circuit for the triangularization of the 3-qubit operation.

3.2. Inverse Transform and 3-Qubit Gate Circuit

By using the QR decomposition of a unitary matrix by the QsiHTs, TA = R, the unitary
operation, A, on the 3-qubit superposition can be written as

A =T YR)=QR=Hy ;H{ ;H) ;H; ;H} ,H5 ;H ;R. (22)
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After inverting all circuit elements of seven QsiHTs in the circuit in Figure 19, we
obtain the quantum circuit for operation A, which is given in Figure 20. This is the general
circuit to implement any 3-qubit unitary operation with a real matrix. A maximum of
28 control rotations are needed to calculate the 3-qubit operation, A. All rotations are
fulfilled on the adjacent bit planes. The depth of the circuit is equal to 18. This circuit does
not use any permutation elements or CNOT gates, but only rotation gates as shown in

Table 3.
| g o TS L e e e !
N B R [
] @y i Ra, | R T
- A 7 L N %) S s w7
| Lo P

Diagonal matrix

Figure 20. The quantum circuit for the 3-qubit operation A by QsiHT-based QR decomposition with
the fast path.

Table 3. Data of the 3-qubit QsiHT-based circuit for a 3-qubit operation.

QsiHT # Rotations # Non-Adjacent Planes # Permutations/CNOTs Depth
H;_, 1 0 0 1
HL_, 2 0 0 2
H, 3 0 0 2
H, 4 0 0 3
H} 5 0 0 3
H]_, 6 0 0 4
H)_, 7 0 0 3
Total 28 0 0 18

4. Examples of the QR Decomposition-Based Quantum Transforms

In this section, we consider the eight-point discrete Hartley transform (DHyT) and its
analogue, the 3-qubit quantum Hartley transform (QHyT). The 3-qubit DCT-II and DCT-IV
are also described.
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4.1. Quantum Hartley Transform

In the N-point DHyT, the basis functions t,,(n) = cos(27tnp/N ) +sin(27tnp/N ) are
used instead of complex exponential basis ¢, (1) = cos(27tnp/N ) +isin(2mnp/N) in
the DFT [23]. Therefore, the transform is real. The eight-point DHyT of a signal x;, is
calculated by

7
Xy = \}g,;)xn [cos (287[11;7) +sin(28nnp>}, p=0,1...,7. (23)

The matrix of the eight-point transform is equal to

A = [anmly p—o7 = \}g [COS (gnp> + sin(%np)} R (24)

The 3-qubit quantum Hartley transform (QHyT) of the 3-qubit quantum superposition
|x) = x0]000) + x1 [001) + - - - + x7|111) is defined as

|A(x)) = X |000) + X1 [001) + X5 |010)+ - - - + X7 |111). (25)

In the QR decomposition by the QsiHTs, matrix A is transformed into the
diagonal matrix,

T:A—R= (H6_7H5_7H4,7H3_7H2_7H1,7H0_7)A = dlag{l, 1, 1, 1, 1, 1, 1, —1} (26)

This diagonal matrixis R = Iy & I & Z, where Z is the Pauli Z-rotation gate [1 0;0, —1].
The angles for all rotations in this transformation are given in Table 4. Here, the symbol &
denotes the direct sum, or the Kronecker sum, of matrices.

Table 4. Angles of the rotations for the 3-qubit QHyT.

& 9 ¥ B4 s 36 8,
Hy_7 —45° —45° —45° —45° —45° —45° —45°
Hy_; 225° 45° —73.6751°  253.6751° = —66.6542°  —68.3826°
Hy_7 ~15.6999°  130.4825°  195.6999° 52.5708° —58.7095°
Hs_7 148.7095° 270° 52.5708° 270°
Hy 7 225° 135° —67.5000°
Hs_; 0° 247.5000°
He_7 0°

We can note that many angles are —45°. The operations of rotation by the angles of 0°,
90°, 180°, 270°, 135°, and 225° are described by the following matrices:

e I - L e T ) @7)
V2| -1 1 0 -1 |21 -1 V2l 1 -1
Ropse = —Ryse, Rizse = —R_y50 = HoX,
0 -1 10 0 1 (28)
R ° = /R o = — ,R 0 — X
90 [1 0 180 l()l] 270 [_1 0]

where Hj is the Hadamard matrix. Therefore, the circuit in Figure 19 for the QHyT
decomposition can be simplified, as shown in Figure 21. The number of controlled-rotation
gates is 21 plus 1 local gate of rotation in this circuit. The rotation gate Hy_7 is the identity
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operation. The controlled Pauli Z-rotation is also shown in this figure. If we connect this
gate to the circuit, we obtain the quantum circuit of the inverse 3-qubit Hartley transform.
The matrix of this inverse transform can be written as

A=A =Leohe Z)(H6_7H577H4—7H377H277H1—7H077)' (29)

____________ Hy 7 __________ e iiiieeeeeeee2 Hy 4 L
| 1 L 1
]
N . L o | L
! T Re| 0 I T o |
1 ! 1 1
1 ! ! 1
- ] I BRI W
1
e 1 G G | ! :
i R191 R197 R193 = e | i R191 R192 o H
1 ! 1 1
e H2_7 ________ ! B e TR H3_7 _________ !
alsivlsistsiitatuatsbtuutets M ieletetulststutets et T e et S P
[ 1 T | 1 ! !
] [ Lo i |
| 1 ! 1 | f i 3
= ! T Ry, ! ! Ry, E : : | ¢ ‘
! ! ! 1 1 X 1 !
X | 1 1 J_ 1 | i i — — i
. R1917R192 \ 1 R791 hd : / R191: i Z !
! ! ! 1 ! | i |
1 ! ‘' /o ____ | _ 3 Y i |
_______ Hy, ="~ Hy Hy., \\Dlagonal matrp,(/

Figure 21. The quantum circuit for the QR factorization of the 3-qubit QHyT.

Figure 22 shows the grayscale images of matrix A, together with matrices Hj_y,
k = 0 : 6, and the matrix Q in Figure 22a. These images illustrate the process of QR
decomposition of the DHyT matrix. The images, X, are displayed as 128(X + 1). Matrix
R is not the identity matrix. Therefore, the last column of matrix Q differs from the last
column of matrix A. All required angles of rotation in Table 4 are shown on the unit circle
in Figure 22b.

The matrix of the 3-qubit DHyT can be written as

A= QR = Hy 1H}_;Hj ;Hj ;Hj ;HY 5(1® L& 2). 30)

The quantum circuit for the 3-qubit QHyT is given in Figure 23. The angles are
¢r = —O and Hy, = Hl’9k for k = 1 : 7. The set of angles, ¢y, is given in Table 5. In
the beginning of this circuit, the controlled Pauly Z gate is used for the diagonal matrix,
R=LoL&Z
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Key angles of the DHyT

0
-0.5
-1

-1 -05 0 0.5 1

(a) (b)

Figure 22. (a) Images of the matrices of the transforms and (b) the rotation angles of the
3-qubit QHyT.

_________________________________

| »
A ; © R‘Pz ] P1 |
1 1
. . 1 |
Diagonal matrix W, s W, T
e (N e T :
1 - a ! | R - o o 1
[ t T ®
] ] I o [Be] I |
| ! 1 1
— R
R ! Pa !
= 1 [ ! 1
i e Ry, Ry, [ X © Ro,tH Ro.[ Ry, .
A o |
Hj_, TTTTTTTTTTTTTs Hy , ==~~~ "7""="°~

1
1

1 1 |

1 L 1

: | L !

= | T R, Ry, || A, !
1 1 X

i | l b l 1

i L || I .

: R(p5 b e R‘Pz R‘Pl : E = e 4, :

i , B |
————————————————— Hi 7 - L - Hy_y —m-mmmm !

Figure 23. The quantum circuit for the 3-qubit QHyT by the QsiHT-based QR decomposition.
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Table 5. Angles of the rotations in the circuit of Figure 23.

P1 P2 3 P4 s Ps @7
H} 45° 45° 45° 45° 45° 45° 45°
H, —225° —45° 73.6751°  —253.6751°  66.6542° 68.3826°

H, 15.6999°  —130.4825° —195.6999°  —52.5708°  58.7095°

H, —148.7095°  —270° —52.5708° —270°

H, , —225° —135° 67.5000°

HL , 0° —247.5000°

H_, 0°

We can see from Table 5 that there are a few simple rotations,

V211 1 V2l 1 41

0 -1 1 -1 -1
R27002[1 O], Az:ﬂ[ 1 _1]

In the circuit of the 3-qubit QHyT, 21 controlled rotations and 1 local rotation are used,

1 1 -1 1 -1 -1
Ryse = —= [ ]/ R_1352 = —Rys0, R_2p50 = Ryzse = —= [ ] = Hp, (31)

plus the controlled Z gate. The depth of the circuit is equal to 15 (in Table 6).

Table 6. Data of the 3-qubit QsiHT-based circuit for the 3-qubit QHyT.

QsiHT # Rotation Gates # Permutations/CNOTs Depth
H{_, 0 0 0
HL 1 0 1
Hy 3 0 2
H, 4 0 3
H} 5 0 3
H_, 6 0 4
H)_, 3 0 3
Total 22 0 16 —1=15

4.2. The Quantum Cosine Transforms

In this section, we consider a discrete cosine transform (DCT) which is widely used in
signal processing, especially in data compression. This real transform is used in different
definitions. We describe the QR decomposition of DCTs of type II and type IV.

A. The eight-point DCT-II of a signal x,,, n = 0 : 7, is calculated by [20,27]

X, = 15 xucos(Zn+05)p), Xo—Xos, p=0,1,....7. (32)
211:0 8 \ﬁ
The matrix of the eight-point transform can be written as
1. Yy B
A= Eohag{1/ﬁ,1,1, L1y [cos(g(n + 0.5)p)L’p:O:7, detA = 1. (33)
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The 3-qubit quantum cosine transformation of type II (QCT-II) is defined as
the operation

7 7
|x) = Zoxnln> — |A(x)) = ZOXPIW- (34)
n= p=

where |n) and |p) are the computation basis states in the space of 3 qubits.
The QR decomposition of this matrix by the DsiHTs results in the identity matrix:

T: A— R=(H, ,Hs 7Hy 7Hs 7Ho 7H;_7Hy 7) A = diag{1,1,1,1,1,1,1,1}. (35)
Therefore, the inverse DCT-Ilis A~! = A’ = Hy_yHs_7Hy4_7H3_7Hy_7H,_7Hp_7 and
A=Q=Hy ;H|_;H; ;H3 ;H; ;H; ;H; ;. (36)

The rotation angles in this decomposition are given in Table 7. All twenty-eight angles
are different, and it is impossible to know if the circuit in Figure 20 can be simplified for
the QCT-II.

Table 7. Angles of the rotations for the 3-qubit QCT-II.

p1=—"0 @2=—1, @3=—"03 @a=—14 ps5=—"05 pe=—0s @7=—07
H6_7 54.2099° 41.9865° 38.1565° 27.0123° 45.7905° 25.5322° 29.8868°
Hi_7 —239.1933°  —260.8834°  —263.6365°  —234.8910° 71.5637° 66.8008°
H} 21.8316° —131.1512° 66.6715° —81.5250° 82.3595°
H§77 —34.6365° 82.9254° —64.6260° 88.5914°
Hfl_7 —133.8364° —160.1517° 21.3514°
Hé77 40.3104° 39.0568°
H. —27.4650°

For comparison, we consider the quantum circuit design (QCD) of the 3-qubit QCT-I
using its fast computation flow graph [26]. The number of gates and depth of two methods
are given in Table 8.

Table 8. Comparison of circuits for the 3-qubit QCT-I.

# Rotation Gates # Permutations/CNOTs Depth
QR by QsiHT 22 0 18
QCD 12 12 20

B. The eight-point DCT-1V of a signal x,,, n = 0: 7, is calculated by [27]

1 N s
X, =— xpcos( = (n+0.5)(p+0.5)), p=01,...,7 (37)
b V8 n;) " (8 )
The matrix of the eight-point transform can be written as

1 T
A= [cos(g(n +0.5)(p+ 0.5))]n,p:0:7, detA = 1. (38)

The quantum analog, that is, the QCT-IV, of the DCT-IV is defined as in Equation (34).
Unlike the DCT-II, the matrix of the DCT-IV is symmetric. Therefore, matrix Al = A = A
that is, A? = Ig. The QR decomposition of matrix A by the DsiHTs results in the identity
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matrix, as in the case of the DCT-II; that is, Equation (35) holds for the DCT-IV. The angles
of rotation in this decomposition are given in Table 9.

Table 9. Angles of the rotations for the 3-qubit QCT-IV.

?1 P2 3 P4 s P P7
H|_, 43.8777° 41.2348° 36.6148° 18.6577° 40.3456° 21.1890° 25.0769°
H,_, —245.3159°  —264.7019°  —258.4007°  —227.7519° 76.3370° 59.1865°
H) 34.0185° 121.3416° 75.6782° —85.4238° 76.5663°
H, —24.3033° 88.5066° —51.7026° 85.6373°
Hy —118.9189°  —110.0985° 19.5831°
HL_, —46.1548° 44.2326°
H]_, 36.0155°
Figure 24 shows the grayscale images of matrix A of the DCT-II in Figure 24a. The
image of X is displayed as 128(X + 1). All required angles of rotations in Table 7 are shown
on the unit circle in Figure 24b. The matrix of the DCT-IV as a grayscale image is shown
in Figure 24c, and all angles, ¢, of the DsiHTs in the QR decomposition of this transform
(from Table 9) are shown in Figure 24d.
8x8 matrix DCT-IT ’ 28 angle-key of 3-Q QCT-II 8x8 matrix DCT-IV ; 28 angle-key of 3-Q QCT-IV
(a)
Figure 24. The image of matrix and the angles of the QR decomposition (a,b) of the 8 x 8 DCT-II and
(c,d) of the 8 x 8 DCT-IV.
4.3. Three-Qubit Real Unitary Gate
The circuits in Figure 19 can be used to generate any 3-qubit real unitary operation.
For that, we only need to fill Table 10 with 28 angles and choose a diagonal matrix, R, with
coefficients +1. The unitary transform is calculated as
A =Hy ;Hj ;H; ;H; 7Hj ;Hs 7Hg 7R. (39)
Table 10. Angles of the rotations for the 3-qubit QsiHTs.
% ¥ U3 Uy L L3 ¥y
Hy_7 113.30° 146.08° —134.28° 148.81° 47.64° —144.88° —79.74°
Hy_7 16.87° 164.70° 167.36° —123.26° 169.41° 164.58°
Hy 7 —5.26° 108.10° —128.92° —28.16° 149.66°
Hs 7 105.19° 165.42° 56.06° —167.14°
Hy 7 125.68° 156.24° 64.34°
Hs_7 92.78° 87.53°
Hg_7 —38.79°
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[ —0.0475
—0.1102
0.1092
0.0734
0.5620
—0.5762
—0.4842

| —0.2931

If, among these angles, there are angles of 0°, and +90°,180°, and 270°, then the above
circuit can be simplified.
The angles of Table 10 were generated randomly by the following function, using
MATLAB R2024b:
%
% call: key_angles3Q.m
% Artyom M. Grigoryan, EE UTSA, February 7, 2025
function [U1,U2,U3,U4,U5,U6,U7]=key_angles3Q
p2=2*pi;
Ul = -pi+p2.*rand(1,7);
U2 = -pi+p2.*rand(1,6);
U3 = -pi+p2.*rand(1,5);
(
(
(

U4 = -pi+p2.*rand(1,4);
U5 = -pi+p2.*rand(1,3);
U6 = -pi+p2.*rand(1,2);
U7 = -pi+p2.*rand;
end
O/O

and the diagonal matrix by the commands:

% Diagonal matrix diag{1,1,1,1,1,1,1, -1, or 1}.
R=eye(8); r=rand;
if r<0.5
R(8,8)=-1;
end

%
This set of angles with the diagonal matrix R = Ig defines the 3-qubit unitary operation
with the following unitary matrix (with the determinant equal to 1):

0.8332 03004 —-0.2381 —0.2182  0.1212 —0.2694 0.1472
—0.4434 05928 —0.1126 —0.0978 0.5086 —0.0687  0.3928
0.1079 0.5645 0.2071 0.6875 —0.0839 —0.0340 —0.3661
—0.1707 —0.0255 —-0.9244  0.2328 —-0.1969 —0.0843 —0.1005
0.1208 —0.3809 —0.0009 0.3992  0.5425 —0.0925 0.2495
0.0814 —0.1823 0.0528 0.4955 —0.1925 —0.0668 0.5816
—0.0645 —0.2438 —0.0031 0.0527 04511 —-0.4962 —0.4994
0.2074 —0.0367 —0.1741 0.0910  0.3821 0.8094 —-0.1732

(40)

Different 3-qubit unitary transformations, or gates, differ in the table of angles. In
other words, the above table of 28 angles is the key characteristic of the 3-qubit gate. We
call this table the table of keys of the gate. The same for n-qubit gates, where n > 2. For
4-qubit gates, the number of such angles in the table of keys is 120, and 2"~!(2" — 1) in the
general case. The main advantages of the proposed QR decomposition by the DsiHT with
fast paths are as follows:

e It does not require any permutations, including CNOT operations, for any unitary
gate in the quantum computation,

e  Only the Given rotations are gates required to perform the operation with unitary
real matrix,

e It gives us a simple (transparent) calculation quantum circuit,

e It generates a unique table of keys.
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4.4. Simulations in Qiskit

To validate the correctness and practical implementation of the proposed 3-qubit
quantum transforms, QHyT, QCT-II, and QCT-IV, each circuit was implemented using the
Qiskit framework, with their codes available at https://ceid.utsa.edu/agrigoryan/. Simu-
lations were conducted across various shot counts (1000, 10,000, 100,000, and 1,000,000),
measuring how closely the experimentally obtained quantum state distributions matched
their theoretical counterparts. Specifically, the analysis focused on probability distribu-
tions, state amplitudes, and mean squared relative error (MSRE) for each configuration.
The results are summarized in the following tables and are visually graphed in their
corresponding figures.

Each transform is represented by two key simulation tables. The first table reports
the output probability distribution resulting from the quantum scheme applied to a stan-
dard input (the |000) initial state). This captures the transform’s native behavior and how
the basis states are redistributed by the algorithm. The second table presents the corre-
sponding amplitude distribution when the transform is applied to a random normalized
superposition state given by |x) = (2,7,3,9,8,6,5, 1)' //269.

The quantum Hartley transform is characterized by a uniform theoretical probability
distribution across all basis states. Each of the eight basis states is expected to have a
probability of 0.125 (in Table A1l). This theoretical uniformity is largely preserved in
simulations. At low shot counts (around 1000 shots), deviations from uniformity are
noticeable. However, as the number of shots increases, these fluctuations diminish, and
the empirical distribution approaches the ideal states. Moreover, the MSRE decreases from
3.24 x 1073 at 1000 shots to just 7.75 x 10~ at 1,000,000 shots.

The amplitude analysis for QHyT using the normalized input superposition previously
mentioned further supports the simulation’s accuracy. The expected dominant amplitude
for state |000) is 0.8838, and this behavior is preserved across all shot counts. Minor
deviations in less dominant states remain within acceptable bounds. The corresponding
MSRE drops from 4.39 x 10~ at 1000 shots to 1.20 x 10~* at 1,000,000 shots (in Table A2).
Figure A1 demonstrates this graphically, with a strong overlap between theoretical and
sampled bars for all states.

Unlike QHyT, the 3-qubit quantum cosine transform II (QCT-II) features a non-uniform
theoretical probability distribution. Certain states, such as |001) and |010), dominate the
distribution, and this non-uniformity is captured in the simulations. Even at low shot
counts, dominant states retain relatively higher probabilities. For example, |001) stabilizes
to 0.2409 at 1,000,000 shots, which is close to the theoretical 0.2405 (in Table A3). Low-
probability states also match well, and the MSRE improves from 2.78 x 1073 to 1.52 x 10~%.

Table A4 for QCT-II presents the amplitude results using the normalized superposition
input. Amplitude values show a strong peak at |101) = 0.7869 and significant values at
|111) = 0.5153. Simulated amplitudes align closely with these values, even at lower shot
counts. Near-zero amplitude states are also accurately captured. The MSRE decreases from
4.41 x 103 at 1000 shots to 5.36 x 10~ at 1,000,000 shots. Figure A2 supports this visually.

QCT-1V presents a more complex distribution due to the theoretical probabilities
ranging from 0.0024 (|111)) to 0.2476 (|000)) (see Table A5). These are still effectively
reproduced in the simulations. As expected for low shot counts, larger deviations are
observed, but at 100,000 shots, the probabilities closely resemble theoretical values. MSRE
improves from 3.38 x 102 to 1.28 x 10~*. As with the previous quantum schemes, QCT-IV
is also evaluated using the normalized superposition input. The dominant amplitude
at |000) = 0.8458 remains consistent, and low-amplitude states like |100) are properly
minimized. The MSRE drops from 3.92 x 1072 to0 1.04 x 10~* (in Table A6).

The following trend emerges across all the transforms:
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e Increasing shot count improves convergence and lowers MSRE.

e  Complicated transforms like the QCT-IV show more initial variance but stabilize with
enough shots.

e  Amplitudes, both large and small, are consistently and accurately recovered.

Figure A3 demonstrates the comparison between theoretical and sampled bars for all
states for the 3-qubit QCT-IV.

In general, the Qiskit simulations provide strong empirical support for the fidelity of
QHyT, QCT-II, and QCT-IV. As shot counts increase, both probabilities and amplitudes
converge to their theoretical values. Visual comparisons in the figures show near-perfect
agreement at 10,000 and 100,000 shots. These results confirm that using the QsiHT for the
construction of the transforms is reliable.

5. Application of the QsiHT for Preparing Dicke States

In this section we once again draw attention to the importance of choosing the right
path for efficient computation of quantum operations. Here, we focus on the 3-qubit
operations. As shown in Figure 6, the 3-qubit QsiHT with the fast path is calculated in
three stages; in other words, its quantum circuit with seven rotation gates in Figure 7 has
a depth of 3. For special classes of quantum superpositions, the number of rotation gates
can be reduced. As an example, we consider the 3-qubit DsiHT generated by Dicke state,
which is the equal superposition of all 3-qubit basis states with Hamming weight 2 [38],

|Df§> = \%(|o11>+|1o1>+ 110)). (41)

The corresponding 3-qubit QsiHT with fast path, or the eight-point DsiHT generated
by the vector x = (0,0,0,1,0,1,1,0)/ \/3, can be used. In this case, two rotation gates
in stage 1 are identity operations; that is, & = ¢¥; = 0. Therefore, the 3-qubit QsiHT
uses only five rotation gates. Figure 25 shows the block diagram of the simplified di-
agram of Figure 7. This transform can be used for any 3-qubit superposition of type
|x) = (a1]|011) 4 a2|101) + a3|110)), with the real coefficients under the condition that
a% + a5+ a% =1

000
001
010
011
100
101
110
11 | x7 ©

Stage 1 Stage 2 Stage 3

Figure 25. The simplified block diagram of the 8-point DsiHT generated by the vector x.

The corresponding quantum circuit for this transform is shown in Figure 26. The
five angles of the rotations are {—90°, —90°, —45°, —54.7356°, —90° }. The matrices of the
rotations are

01
R, o —
90 [ 1 0

0.5774 0.8165
—0.8165 0.5774

1 11
,R7 0 —= —
45 ﬂ[ 11

, R_547356° = [ ] (42)
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|z)

Ry,

2

\

Stage:

#1

#2 #3

9, = 95 = 05 = —90°, ¥ = —45°, ¥, = —54.7356°

Figure 26. The circuit for the 3-qubit QsiHT with five controlled-rotation gates.

For the input |z) =|D3), the result of calculation is Hg|D3) =|000). The circuit
for the inverse operation is given in Figure 27. This circuit can be used for the Dicke

state preparation.

1000)

—C
—o—e

Stage:

hd Ryso [7| Ros773e

ID3)

#3

Figure 27. The 3-qubit QsiHT-based circuit for preparation of the Dicke state, | D3).

S O O O o o~ O

|
—_

S O O O O o o

1

0
0
0
0
0

0 0 0

0 0 0

0 0 0
—0.8165 0 0
0 -1 0

0.4082 0 —-0.7071
0.4082 0 0.7071

0 0 0

, H,]000) = ‘

_ o O O O © © O

D3 > (43)

We can also consider other paths for the QsiHT generated by the same 3-qubit super-

position, | x), or Dicke state. As an example, Figure 28 shows such a path.

000
001
010
011
100
101
110
111

Figure 28. The block diagram of the 8-point DsiHTs generated by the vector |x).
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In the DsiHT with this path, the angles of the rotations are {¢;k=1:5} =
{90°,45°, —54.7356°, —90°, —90° }. The corresponding matrices of rotations are

0 -1 111 -1 0.5774 0.8165 01
Rgge = , Ryse = — , R_ °o = , Rogpe = . 44
%0 l 1 o * 2 l 11 24735 l —0.8165 0.5774 ] %0 [ -1 0 1 (“44)
The quantum circuit for this 3-qubit QsiHT is shown in Figure 29.
o )
] R191 l Rg4 $
Stage: #1 #2 #3 #4 #5

Figure 29. The circuit for the 3-qubit QsiHT generated by the state |Dg>

The quantum circuit for the inverse 3-qubit QsiHT is given in Figure 30. This circuit

for the preparation of the Dicke state, DS’ > , also uses five gates of rotation.

R54.73° T

| Rope R_ss0
|000) T |D3)
J’ Rgg e R_gpo [
Stage: #1 #2 #3 #4 #5

Figure 30. The circuit for the preparation of the Dicke state, \Dg>

The matrix of the rotation, R_4s50, is the Walsh—-Hadamard matrix. In the matrix form,
this circuit is described as

0 0 -1 0 0 0 0 0
0 1 0 00 0 0 0
00 0 -1 0 0 0 0
po 0570000000 S0me | ey
05774 0 0 0 0 07071 0  0.4082
05774 0 0 0 0 -0.7071 0  0.4082
| 00 0 0O 0 -1 0 |

The depth of the second circuit is equal to 5, and the circuit in Figure 27 has a depth
equal to 3. The number of rotation gates for both circuits is the same, five.

In the general case, when 1 > 2, the n-qubit QsiHT with the fast path is described by a
block diagram like the one in Figure 7. The quantum circuits for this transform, and inverse
operation have depth n and use (2" — 1) rotation gates each. It also means that the Dicke
D}'), where k < n, can be prepared by the n-qubit QsiHT, Hp» ‘ D} :‘ 0)*", with
the quantum circuit with depth n and using less than (2" — 1) rotation gates. As reported

state,

in [38], the known deterministic algorithm for preparing the Dicke state uses O(kn) gates
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and has depth O(n). Similar estimates can be analyzed and compared for other special
cases of quantum-state preparation [39-41].

6. Conclusions

In this work, we describe in detail the general method of QsiHT-based QR decompo-
sition for unitary operations. The quantum circuits for implementing unitary operations
on three-qubit superpositions are presented. The DsiHT is used with path which allows
us to accomplish the QR decomposition of the unitary matrix only by rotations with one
parameter. Such a path is called the fast path of the QsiHT. No permutations with Gray
codes and CNOT gates are used in the proposed methods. As examples, the quantum
cosine transforms of types II and IV, and the quantum Hartley transforms are described.
The presented method can also be used to construct quantum circuits for n-qubit operations,
when n > 3, since the fast paths with splitting for n-qubit DsiHTs can also be found. The
case of a unitary operation with real matrices is considered.

The presented method can be extended to the unitary operations with complex matri-
ces, A, by adding the phase gates to the rotations in the described QR decomposition by the
DsiHT. Such DsiHTs are called complex DsiHTs, and three complex matrix decompositions
by such transformations are described by Grigoryan in [34,42]. Although the present work
focuses on qubits of size n = 3, the DsiHT-based QR decomposition can be generalized
to larger qubit registers. As noted in Section 3.2, an n-qubit QsiHT along a “fast path”
yields a circuit of depth 1 using exactly 4" /2 — 2"~! controlled-rotation gates, and zero
permutations and CNOTs.

In future works, we plan to present a universal methodology to generate any n-
qubit QsiHT-based QR-decomposition circuits beyond 3 qubits by developing automated
layer-selection algorithms for the n-qubit QsiHT, evaluating depth-width trade-offs, and
benchmarking such qubit decompositions in both Qiskit and IBM’s quantum hardware.
Through IBM’s quantum hardware, we plan to translate our QsiHT circuits to incorporate
qubit-connectivity constraints and perform resource estimates such as circuit depth and
n-qubit error budgets to guide experimental implementation. Based on the results of the
experimental implementation, we plan to integrate zero-noise extrapolation and Pauli-
twirling techniques to characterize noise and minimize coherent errors.
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Abbreviations
The following abbreviations are used in this manuscript:
DsiHT  Discrete signal-induced Heap transform
QsiHT  Quantum signal-induced Heap transform
OR QR decomposition of the matrix
DCT Discrete cosine transform
QCT Quantum cosine transform
DHyT  Discrete Hartley transform
QHyT Quantum Hartley transform
MSRE  Mean square root error
BP Bit plane
Appendix A
Table Al. Probabilities for the 3-qubit QHyT in Qiskit.
Basis Probabilities
States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
000 1.2500 x 101 1.1900 x 107! 1.2870 x 10! 1.2510 x 107! 1.2485 x 107!
001 1.2500 x 101 1.1900 x 101 1.2100 x 101 1.2470 x 1071 1.2538 x 107!
010 1.2500 x 101 1.2200 x 101 1.2760 x 101 1.2546 x 101 1.2463 x 107!
011 1.2500 x 10! 1.2300 x 107! 1.2660 x 101 1.2465 x 107! 1.2510 x 107!
100 1.2500 x 10! 1.3100 x 107! 1.2520 x 1071 1.2531 x 107! 1.2490 x 107!
101 1.2500 x 10! 1.4200 x 107! 1.1880 x 101! 1.2522 x 107! 1.2493 x 107!
110 1.2500 x 101 1.3300 x 101 1.2660 x 101 1.2474 x 107! 1.2523 x 107!
111 1.2500 x 101 1.1100 x 101 1.2550 x 101! 1.2482 x 107! 1.2499 x 107!
MSRE 0.0000 3.2355 x 103 1.1201 x 1073 1.0297 x 10~* 7.7507 x 107>
Table A2.  Amplitudes for the 3-qubit QHyT with the input superposition |x) =
(2,7,3,9,8,6,5,1)' /1/269 in Qiskit.
Basis Amplitudes
States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
000 8.8382 x 107! 8.8034 x 107! 8.8386 x 107! 8.8439 x 107! 8.8367 x 10!
001 1.0778 x 101 1.1402 x 107! 1.1705 x 101 1.0977 x 10! 1.4147 x 107!
010 1.0778 x 101 1.1402 x 107! 1.0583 x 101 1.1050 x 10! 1.0768 x 107!
011 2.1557 x 1072 0.0000 2.4495 x 1072 2.4083 x 1072 1.5800 x 101
100 1.4197 x 107! 1.2247 x 107! 1.4595 x 10! 1.4032 x 107! 1.0781 x 101
101 2.0294 x 1071 1.9748 x 107! 1.9975 x 101 2.0032 x 1071 2.0363 x 1071
110 1.5766 x 101 1.7029 x 101 1.4900 x 101 15579 x 101 2.1354 x 1072
111 3.3011 x 1071 3.4059 x 1071 3.3151 x 107! 3.3005 x 101 3.3017 x 107!
MSRE 0.0000 43904 x 103 1.7733 x 1073 6.9689 x 10~* 1.2011 x 10~*
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Comparison of Theoretical and Sampled Amplitudes

0.8884 —e— Theoretical
1,000 shots

—~m- 10,000 shots

—- 100,000 shots

0.6663 - ~&+ 1,000,000 shots

0.4442 -

Amplitude

0.2221 4

0.0000 -

T T T T T T T T
000 001 010 011 100 101 110 111
Quantum States

Figure A1. Comparison of theoretical and sampled amplitudes for the 3-qubit QHyT with the input
superposition |x) = (2,7,3,9,8,6,5, 1)’ /269 in Qiskit.

Table A3. Probabilities for the 3-qubit QCT-II in Qiskit.

Basis Probabilities

States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
000 1.2500 x 1071 1.3100 x 1071 1.2630 x 1071 1.2432 x 1071 1.2448 x 1071
001 24048 x 107! 2.5300 x 107! 2.3880 x 107! 24113 x 107! 2.4092 x 107!
010 21339 x 107! 2.0400 x 107! 2.2010 x 107! 2.1394 x 107! 2.1318 x 107!
011 1.7284 x 1071 1.7500 x 10~! 1.6700 x 10~! 1.7293 x 107! 1.7255 x 107!
100 1.2500 x 107! 1.1800 x 107! 1.2620 x 1071 1.2684 x 107! 1.2581 x 1071
101 7.7165 x 1072 8.1000 x 102 7.5300 x 1072 7.5530 x 1072 7.6708 x 1072
110 3.6612 x 1072 2.5000 x 1072 3.7500 x 1072 3.5730 x 1072 3.6679 x 1072
111 9.5151 x 1073 1.3000 x 102 8.8000 x 1073 9.5800 x 1073 9.6760 x 1073

MSRE 0.0000 2.7843 x 1073 1.1848 x 103 3.5423 x 10~* 1.5218 x 1074

Table A4.  Amplitudes for the 3-qubit QCT-II with the input superposition |x) =
(2,7,3,9,8,6,5,1)' /1/269 in Qiskit.

Basis Amplitudes

States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
000 6.4670 x 102 5.4772 x 1072 6.4031 x 1072 6.6332 x 1072 7.8088 x 101
001 2.6580 x 107! 2.7749 x 107! 2.6115 x 10! 2.6327 x 1071 1.2230 x 1073
010 5.8332 x 1072 0.0000 5.3852 x 1072 5.8992 x 1072 1.2901 x 107!
011 1.2858 x 1071 44721 x 1072 1.3038 x 1071 1.2869 x 107! 7.5290 x 1073
100 2.1557 x 1072 1.3038 x 107! 2.0000 x 102 24698 x 1072 43500 x 104
101 7.8699 x 1071 7.8613 x 1071 7.9126 x 1071 7.8765 x 1071 1.2060 x 1073
110 1.4082 x 1071 1.5811 x 1071 1.4142 x 1071 1.4061 x 1071 6.1714 x 1072
111 5.1534 x 107! 5.0794 x 107! 5.1118 x 107! 5.1524 x 107! 1.8001 x 102

MSRE 0.0000 4.4057 x 1073 1.1436 x 1073 5.5883 x 1074 5.3591 x 107>
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Comparison of Theoretical and Sampled Amplitudes

0.8933 - —e— Theoretical
—&— 1,000 shots
—~m- 10,000 shots
—&- 100,000 shots

0.6700 --&- 1,000,000 shots

0.4467 \
0.2233 \

0.0000

Amplitude

T T T T T T T T
000 001 010 011 100 101 110 111
Quantum States

Figure A2. Comparison of theoretical and sampled amplitudes for the 3-qubit QCT-II with the input
superposition |x) = (2,7,3,9,8,6,5, 1)'/ V269 in Qiskit.

Table A5. Probabilities for the 3-qubit QCT-IV in Qiskit.

Basis Probabilities

States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
000 24760 x 107! 2.3700 x 107! 2.6950 x 107! 24690 x 107! 24702 x 107!
001 2.2893 x 107! 2.1600 x 107! 5.9600 x 102 22967 x 107! 22923 x 107!
010 1.9445 x 107! 2.0800 x 107! 1.6100 x 107! 1.9533 x 107! 1.9501 x 10~!
011 1.4939 x 107! 1.4400 x 107! 22900 x 102 1.4907 x 107! 1.4889 x 107!
100 1.0061 x 1071 1.1200 x 107! 1.6010 x 101 9.9720 x 102 1.0080 x 101
101 5.5554 x 1072 6.4000 x 1072 1.1530 x 10! 5.6180 x 1072 5.5681 x 102
110 2.1066 x 1072 1.5000 x 1072 1.9350 x 1071 2.0720 x 1072 2.0991 x 1072
111 24018 x 1073 4.0000 x 1073 1.8100 x 102 2.4100 x 1073 2.3770 x 1073

MSRE 0.0000 3.3835 x 1073 1.1433 x 103 2.2436 x 1074 1.2787 x 10~*

Table A6. Amplitudes for the 3-qubit QCT-IV with the input superposition [x) =
(2,7,3,9,8,6,5,1)' /1/269 in Qiskit.

Basis Amplitudes

States Theoretical 1000 Shots 10,000 Shots 100,000 Shots 1,000,000 Shots
000 8.4581 x 107! 8.5323 x 107! 8.4611 x 107! 8.4414 x 107! 8.4609 x 107!
001 45045 x 107! 4.3474 x 107! 4.4452 x 107! 45399 x 107! 45016 x 107!
010 4.7257 x 1072 7.0711 x 1072 5.0990 x 1072 4.7011 x 1072 4.7381 x 1072
011 2.7948 x 102 0.0000 3.0000 x 102 2.9496 x 1072 2.8018 x 1072
100 6.5434 x 1073 3.1623 x 102 1.0000 x 1072 7.0711 x 1073 6.2450 x 1073
101 1.4990 x 107! 1.5492 x 107! 1.4866 x 107! 1.5103 x 107! 1.4971 x 107!
110 2.3285 x 107! 22583 x 107! 24145 x 1071 23141 x 1071 2.3240 x 107!
111 4.4181 x 1072 44721 x 1072 5.0000 x 1072 42661 x 1072 44621 x 1072

MSRE 0.0000 3.9186 x 1073 1.6523 x 1073 6.0945 x 104 1.0447 x 1074

Figure A3 demonstrates the comparison between theoretical and sampled bars for all
states for the 3-qubit QCT-IV.
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Comparison of Theoretical and Sampled Amplitudes

0.8485 - ‘ —e— Theoretical
—&— 1,000 shots

~m- 10,000 shots

—&- 100,000 shots

0.6364 - --&- 1,000,000 shots

0.4243

Amplitude
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Figure A3. Comparison of theoretical and sampled amplitudes for the 3-qubit QCT-IV with the input
superposition |x) = (2,7,3,9,8,6,5, 1)' /+/269 in Qiskit.
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