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ABSTRACT: Explaining the origin of supermassive black holes via a primordial origin is
severely challenged by the tight spectral distortion constraints on the amplitude of the
primordial perturbations. Following the first calculation of how the y constraints are modified
by non-Gaussianity in a companion paper, we here make the first robust constraints on
primordial black hole formation under large non-Gaussianity. Even the infinite fyi, limit is
insufficiently non-Gaussian but much higher-order non-Gaussianity of the form R = R% may
allow the formation of any mass primordial black hole without conflicting with distortion
constraints. We caution that such extreme models face other challenges.
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1 Introduction

Supermassive black holes (SMBHs) are observed in the centres of virtually all galaxies where
good observations have been made, even at high redshift. Explaining the origin of these
SMBHs remains a challenge by all proposed methods, such as the direct collapse of large gas
clouds, runaway mergers, or massive accretion onto the first star remnants. Given that it
is hard to find an astrophysical origin, many have speculated they could have a primordial
origin. See [1] for a recent review.

However, explaining SMBHs via a primordial black hole (PBH) seed is also challenging,
primarily because of tight cosmic u-distortion constraints which limit the allowed amplitude
of the primordial power spectrum on scales larger than about 10 parsec, which includes
the length scales relevant for SMBH formation if they are primordial [2, 3]. In general, the
dissipation of acoustic waves in the baryon-photon plasma generated by density perturbations
leads to spectral distortions which constrains the primordial power spectrum [4-8]. Assuming
the initial density perturbations are Gaussian distributed the formation of even just one PBH
with initial mass > 10* My, is completely excluded by the p-distortion constraints. We note
that the possibility of a PBH seed with mass around 103 M, has also been considered and
this is safe from spectral distortion constraints [9-11], but one then still has to explain how
accretion is sufficient for them to reach a much greater mass, already at high redshift.



The two primary routes (other than massive amounts of accretion) to evade the p-
distortion constraints are either to invoke a PBH formation mechanism different from the
standard mechanism of a direct collapse of large amplitude perturbations after horizon entry
(for recent PBH reviews see [12-15]) or to invoke large non-Gaussianity [16-19]. In this paper
we focus on non-Gaussianity, which is expected to help because PBHs are necessarily very
rare objects which form deep in the tail of the probability density function (pdf), whilst
spectral distortions are primarily generated by the most likely perturbations around the peak
of the pdf. Therefore, it may be possible to reduce the average amplitude of the perturbations
whilst adding large positive skewness to enhance the tail to generate PBHs. However, the
assumption that the p constraints won’t also tighten has never been tested with an actual
calculation — with only the appendix of [20] making (an approximate) estimate of the impact
of non-Gaussianity on the u-distortions.!

Because only a significant amount of non-Gaussianity is expected to successfully evade
the p-distortion constraints, see e.g. [16-19], one should not expect the p constraints to
remain unchanged relative to the Gaussian p constraints. In our companion paper — Sharma
et al. [31] — we have made the first accurate calculation of the sky-averaged pu-distortion
subject to local non-Gaussianity, assuming that this non-Gaussianity is confined to the small
scales that are relevant for PBH generation. This calculation covers any possible value of
fxi. Here, we see how those constraints combine with PBH constraints to test whether
SMBHs could have a primordial origin.

In this paper we show that local non-Gaussianity with primordial curvature perturbations
obeying R = R¢ + 3fnL(RE — (RE))/5 is insufficient to change the bound on the allowed
PBH mass in any significant way, even in the infinite fyi, limit, and that much higher-order
non-Gaussianity is needed to evade spectral distortion constraints.

Electron-positron annihilation takes place while the horizon mass is around 10° M. The
consequent reduction in the equation of state has been invoked in [32, 33| as a means to
explain a peak in PBH production at this mass scale. However, [34] argue the impact of
neutrino free streaming could negate the pressure reduction meaning that PBH production
would not be enhanced. In either case, the reduction in pressure is much less significant
than during the QCD transition, and even the QCD transition only leads to a reduction in
the required power spectrum amplitude to generate a given PBH fraction by of order 10%,
compared to the value in a purely radiation dominated universe [34-37].

The plan of our paper is as follows: in section 2 we introduce some formalism and show
the constraints on the PBH and p distortions for Gaussian fluctuations. In section 3 and
section 4 we extend the results to non-Gaussian fluctuations, starting with perturbative
values of (local) fnt, and then going to non-perturbative non-Gaussianity, including extreme
forms of non-Gaussianity consisting of Gaussian perturbations raised to a large integer power.
We discuss possible issues with invoking large non-Gaussianity as a means to evade the
distortion constraints near the start of section 4. We conclude in section 5 and derive the
relation between the PBH collapse fraction and the power spectrum amplitude for extreme
forms of non-Gaussianity in appendix A.

'We note that several references have considered the impact of non-Gaussianity on spatial variations of
the p-distortion [21-30], but not on the global value. Combining these measurements may help to break the
degeneracy between the variance and non-Gaussianity of the primordial perturbations.



2 Gaussian fluctuations: formalism and bounds on PBH abundance

In this section, we first present the constraints on the PBH abundance in the SMBH range as
well as the best possible PBH constraint which consists of 1 PBH in our cosmological horizon.
We present Press-Schechter theory as a means to convert these constraints onto an amplitude
of the primordial power spectrum. We also discuss the modelling uncertainties in our results.

2.1 Observational PBH constraints

There are a huge number of constraints on the fraction of dark matter which can consist of
PBHs, parameterised by the dimensionless ratio fpgpg. For the supermassive black hole mass
range, key constraints include X-ray and CMB distortion constraints from BH accretion? and
dynamical halo friction, see [12] for a review and references therein. Constraints are mass
dependent and also depend on the PBH mass function but for a monochromatic (or narrow)
mass spectrum are typically around fppy < 107* [38-40] (for model dependent constraints
via magnetic fields see [41, 42]). The constraints do not significantly change unless considering
a very broad mass spectrum which would correspond to a very broad power spectrum and is
not of great interest when attempting to evade distortion constraints.

The abundance in PBHs today compared to the DM density (fppy) is related to the
fraction of the universe in PBHs at formation () via the simple relation (for a monochromatic
mass spectrum)

Meq 1/2
o)

~ 2.48 ( (2.1)

PDM ltoday

where Mqq >~ 2.7 x 10'7 My, is the horizon mass at radiation-matter equality and the numerical
factor arises because fppy is measured relative to dark matter and the ratio of DM at equality
is prot/ppM = 2(1 4+ Qbaryon/2pM) >~ 2.4 [43]. This relation assumes the PBH mass will be
constant after formation, whilst in reality accretion is expected to be significant for SMBHs,
but it is very hard to estimate since it is a non-linear process [1].

Assuming that SMBHs do have a primordial origin, the minimum value of 8 required
to seed all SMBHs has not been quantified to the best of our knowledge, but the value is
clearly going to be significantly smaller than the corresponding value of fgypg today related
to [ using eq. (2.1), given that (1) quasars demonstrate that at least some SMBH accrete
significantly and (2) SMBHs come in a large range of masses meaning that if they originated
from a narrow PBH mass function then the heaviest SMBHs today gained most of their
mass via accretion. Given these uncertainties, we often show constraints on fpgy = 107° (by
mapping back to a primordial value of the collapse fraction  without including accretion)
which is chosen as a value consistent with observational upper bounds on the PBH abundance
yet still greater than the value which would be required to seed all SMBHs.

Constraints on the u-distortion are often reported as a function of (inverse comoving)
scale k whilst those on PBHs as a function of mass, which we equate to the horizon mass

2Not to be confused with the distortion constraints on PBH formation studied in this paper.



at horizon entry (Mpg) of k using®

g -1/6 k -2
Mppn = My ~ 17 ( —2— S—_— 2.2
PBH = 0H (10.75) (106Mpc_1> © (22)

where g is the number of relativistic degrees of freedom which we approximate as equal to
10.75 for the rest of this paper since we are interested in PBH formation at temperatures
well below the QCD scale.

Using Press-Schechter theory, the collapse fraction of the universe at PBH formation
is given by

PPBH
8=

_ / P@)ds~ [ P(R)R, (2.3)
formation dc

Ptot Re

where P is the probability density function (not to be confused with the power spectrum), ¢

is the density contrast and R is the curvature perturbation. The values §. and R. are PBH

collapse thresholds that can be estimated from simulations, see [48] for a review and references

therein. Going to the final expression in eq. (2.3) is expected to be a reasonable approximation

in the case of a narrowly peaked power spectrum, such as we study here [49, 50] (but see [51]).
To be concrete, we assume a Dirac delta-function power spectrum

Prlk) = Ak.o(k — k), (2.4)

with variance normalised to satisfy

A=o? = /OOO d—:m(k). (2.5)

We note that a delta function spike is of course unphysical, but it serves a useful purpose
as the narrowest spike possible in principle, it simplifies analytical calculations, and it is
the power spectrum shape which can generate the heaviest possible PBHs while remaining
consistent with p distortion constraints. Ref. [47] showed that both the required power
spectrum amplitude and PBH mass function do not significantly vary when considering a
fairly narrow lognormal mass function. In general, broad power spectrum peaks lead to
broader constraints from p-distortions and hence restrict the formation of heavier PBHs more
tightly, even though the amplitude required to form PBHs is slightly reduced.

Assuming Gaussian perturbations the pdf can be easily integrated to find

1 R
= gmnic (=) 2.6

=3 V2A (26)
where ErfC is the complementary error function. There have been many numerical and
analytic calculations of the values of the collapse thresholds (for a discussion of how the
collapse threshold depends on the density profile and how this is related to the power spectrum
shape see e.g. [52-55]) and for definiteness we take R, = 0.67 in agreement with [56]. More

3We note this is quite crude since in reality, a spread of PBH masses will form and that there is not even
an agreement on the relation between the peak PBH mass value and the horizon mass [44-46], with estimates
ranging by about a factor of 5 in either direction, see e.g. [47]. This uncertainty is important but outside the
scope of this paper.



accurate techniques exist for calculating the PBH abundance, but we have checked that
for this choice of R, the power spectrum amplitude required to generate a given value of
feeu (or equivalently ) matches the values derived in [47] to good accuracy but with far
less computational cost.

However, even if the curvature perturbations are precisely Gaussian the non-linear
relation between the curvature perturbation and ¢ leads to a minimum possible level of
non-Gaussianity in the density contrast (and compaction function, which is often used to
study PBH formation). The impact of this non-linear relation is substantial and it results
in the constraint on the power spectrum being a factor of 2.0 larger (weaker) than it would
be if the linear relation was used (independently of the value of 3) [47, 57, 58], and we take
this factor into account in the constraints we show relating fppy to the power spectrum
amplitude by modifying eq. (2.6) to

1 Re
5~ S ErC (\/Z) (2.7)
We assume this multiplicative factor applies in the same way when the curvature perturbations
are intrinsically non-Gaussian, as done by [17].

Assuming Gaussian perturbations, the constraint on the power spectrum amplitude is
only logarithmically sensitive to 3, and hence the amplitude required to form only 1 PBH
inside the current cosmological horizon is not much smaller than the current constraint from
the non-detection of PBHs. The constraint to have zero PBHs of scale k today measured in
terms of the  parameter is [59] (see also [16, 60] where this is called the incredulity limit)

B < Brpeu(k) ~ 1.2 x 107 (k Mpc) 3, (2.8)

where (1.pgy denotes the PBH fraction at formation corresponding to a single PBH in
today’s cosmological horizon.

To give an order of magnitude estimate, forming 1 PBH with mass 10% M, corresponds
to frper ~ 10722 (and fppy ~ 1071%) which is over 10 orders of magnitude tighter than the
corresponding observational constraint on 5, but the corresponding constraint on the power
spectrum amplitude is only tighter by a factor of 2.3. Note that the 1-PBH limit corresponds
to a constant number density and hence corresponds to value of fpgg that depends on Mppy.

2.2 Gaussian power spectrum constraints

Assuming the curvature perturbations are Gaussian but including the impact of the non-
linear transformation between R and the density perturbation dp [57, 58] we plot the PBH
constraints for several values of fppy and the single PBH eq. (2.8) limit, assuming a Dirac-
delta function peak, in figure 1.

For the p constraint, we use the accurate numerical techniques described in e.g. [61, 62]
and summarized in our companion paper [31] to calculate the power spectrum amplitude
which saturates the COBE-FIRAS pu-type distortion constraint. We use the updated value
of u < 4.7 x 1075 of Bianchini and Fabbian [28], which is a factor 2 tighter than the
constraint originally reported by the COBE collaboration [63] and slightly tighter than
the TRIS result [64].
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Figure 1. Constraints on the power spectrum amplitude assuming Gaussian curvature perturbations
and a Dirac delta power spectrum. The upper z-axis shows the horizon mass in solar mass units
(which is approximately the PBH mass) corresponding to each k. value.

The maximum PBH mass which can be generated by a peaked power spectrum and
without overproducing spectral distortions is determined by the large k£ value where the PBH
and p-distortion constraints meet for any given power spectrum peak, and the corresponding
horizon mass eq. (2.2) gives an approximate estimate of the PBH mass which would form
on this scale. One can see from figure 1 that there is no significant change in the value
of k (or Mppy) even when going from fppy = 1 to generating just a single PBH in our
entire observable universe. This is partly because 5 is exponentially sensitive to the power
spectrum amplitude, and partly because the p constraint varies sharply with k in the tail of
the constraint. For the latter reason, the intersection is also not very sensitive to changes
in the p constraint. Broader power spectra lead to broader p constraints and hence a lower
possible maximum mass, see e.g. [47, 61].

3 Beyond Gaussian fluctuations

In this section, we show how to extend the calculation of the constraints to non-Gaussian
curvature perturbations, but we first start by highlighting some of the challenges which
non-Gaussian models face when being used as a means to generate PBHs.

One issue with PBHs formed from non-Gaussian perturbations is that they will form
in clusters, and there are observational constraints on such clustering which may rule out



evading p-distortion constraints for supermassive PBH generation via large non-Gaussianity,
although the constraint will depend on the shape and amplitude of non-Gaussianity [65-67].
There are also tight limits on any non-Gaussian correlation between PBH-forming scales
and CMB scales via the constraint on photon-DM isocurvature perturbations [68-70]. These
constraints are very tight when most of the DM is in PBHs but weaken significantly when
feBu < 1, and such small values are expected for the supermassive mass range. The scale
corresponding to SMBH formation is only around 3 orders of magnitude smaller than CMB
scales, so the standard assumption that these scales are uncoupled (even if the PBH scales
are much more non-Gaussian) is not obviously true. Nonetheless, we here assume the usual
CMB scales are sufficiently decorrelated from the large non-Gaussianity present on the PBH
forming scales that this is not a problem, in which case the non-Gaussianity constraint from
anisotropic p-distortions via pu — T correlations would also not apply [21, 22, 24-30]. In effect,
we are assuming that fxr, is scale-invariant over the small range of scales relevant for the
large amplitude peak responsible for forming PBHs, but that its value varies strongly between
the peak and the usual larger CMB scales. The clustering and isocurvature constraints will
be irrelevant in the limit of very few PBHs (because this makes clustering impossible) but
may be important when a primordial seed for all or most SMBHs is being considered.

When considering very non-Gaussian tails to the pdf we should consider the impact of
type II perturbations (those with d significantly larger than §. whose formation has recently
been simulated [71]), which have been claimed to form separate universes rather than PBHs
though [72] argues against this. For (approximately) Gaussian perturbations the type II
perturbations are exponentially suppressed compared to the usual type I perturbations
which form PBHs and are hence irrelevant, but if the tails are sufficiently flat then they
may become relevant [18].

3.1 Local non-Gaussianity: perturbative and non-perturbative limits

Primordial non-Gaussianity of the local type, which arises when deviations from Gaussianity
are local in real space, is usually characterised by a Taylor expansion of the comoving
curvature perturbation about its mean

R(F) = Ra(#) + Jar (Ra(@)” = (Ra(@)?) + v Ra(@)® + - (3.1)

where fNL = 3fn1/5 and gnr, = 99n1L/25 are non-linearity parameters quantifying the
magnitude of non-Gaussianity. We denote the variance of curvature as A = (R?) and that
of the underlying Gaussian field as Ag = (R%).

Perturbative non-Gaussianity means that the linear term dominates, i.e. | fNL]Aé/ <,
and |gnp]Ag < 1. Since in this limit A and Ag are almost equal, these conditions are
equivalent to |fxr,|A'/? <« 1, and |jni|A < 1. Non-perturbative non-Gaussianity implies the
contrary, with either the fr,, gnr, or even higher-order terms dominating to the extent that
the power spectrum is completely dominated by this non-linear term.

In most of this paper, we assume that gy, is negligible and focus on the non-Gaussianity
arising from fNL. We focus on fNL > 0 because this corresponds to positive skewness which
boosts PBH production, but we note that unlike the extremely asymmetric response of PBH
constraints to the sign of the non-Gaussianity [73-75], the u constraints depend primarily



on the magnitude of fyr, [31]. We discuss gni, in section 4.3 and appendix A and extend
the expansion of eq. (3.1) to higher orders in section 4.4.

3.2 Perturbative non-Gaussianity constraints

Here we show constraints both in the truly perturbative limit of fNL\/Z < 1 and the
borderline case of perturbativity (f NLVA = 1) where the perturbative treatment is no longer
really valid, but we include this to give an estimate of the maximum possible impact of
‘perturbative’ non-Gaussianity.

Using the fact that (R&) = 3(R%)? = 34%, eq. (3.1) shows that the total variance
is given by

A= (R? = Ag + 2f% A%, (3.2)

The spectral distortion for an arbitrary value of fyr, for a spectrum centred at the
scale k, is given by

= e+ e = AcWa(ks) + FRLAGWT D (k) (3.3)

W,SNGQ) and useful

More details are given in paper I, including the definitions of W, and
fitting functions [31]. We can then compute the variance A which saturates the observational
1 constraint for each chosen value of fI%LAG or fI%LA.

The technique for determining the PBH constraints with arbitrary values of fyy, is
detailed in paper [75] and explained for certain limiting cases in appendix A. Following those
techniques we first work in terms of the variance Ag of the Gaussian perturbations, since the
relevant formulas for fpgy are defined in terms of that variable [75].4 We then convert this

result into a total variance A using eq. (3.2) and the fact we want to set fyr, by the condition
RoA=x, (3.4)

for a given value of x, which quantifies the relative non-Gaussian contribution to the total
variance. In the next figure, we display our results for k = 0.01 and x = 1.° Plugging
this value of fx, into eq. (3.2) we find the variance to be related to the variance of the
Gaussian perturbations by

A:%(H\/m). (3.5)

Hence for fl%LA = 0.01 the variance only varies from the amplitude of the Gaussian power
spectrum at the percent level, but for the borderline perturbative case of fl%LA =1 we
have A = 2Aq, corresponding to equal contributions from the Gaussian and y? parts of
the curvature perturbation.

Figure 2 shows how the distortion and PBH constraints change for both of these limits,
where we have varied fyi, as a function of k, (the position of the peak) such that it always

“We note that modern techniques to determine the PBH abundance subject to non-Gaussianity have found
the impact of finite fnr, is significantly reduced compared to the calculation of [75], see e.g. [50, 76], but this
would not change our main conclusions.

®Note that in paper 1 [31] we instead plot results for fixed values of f2L Ac.
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Figure 2. The p and PBH constraints for Gaussian perturbations (solid), perturbative non-Gaussianity
with fI%LA = 0.01 (dashed) and the limit with the maximum possible perturbative non-Gaussianity
(dotted). Coincidentally, the PBH constraint with fpgg = 107> and fZ, A = 1 (dashed black) is
almost identical to the constraint with 1 PBH inside today’s horizon and f2; A = 0.01 (dotted green).
When including non-Gaussianity we note that only the Gaussian part of the power spectrum has a

Dirac delta-function power spectrum.

takes the value consistent with the value of x shown. The first thing to notice from the
figure is that the p constraints remain much stronger than the PBH constraints over most of
the scales where distortion constraints exist. To determine the maximum mass PBH which
can be generated consistently with the p-distortion constraint one should determine the
intersection of the appropriate PBH and p-constraint lines (solid with solid for Gaussian,
dotted with dotted for fl%LA =1, etc.). For Gaussian perturbations, the maximum mass is
~ 10* My, which is very similar to the maximum mass possible with fI%LA =1, but one would
have overestimated the mass by a factor of 2 if one compared the correct PBH constraint
to the Gaussian p constraint.

4 Non-perturbative non-Gaussianity

Having seen that even the maximum possible “perturbative” non-Gaussianity is insufficient
to substantially weaken the PBH constraints, in this section we study the limit of completely
non-perturbative non-Gaussianity. We first focus on the more commonly considered case
of chi-squared non-Gaussianity for which we make a detailed calculation. We then sketch
the even more extreme case of Gaussian cubed statistics and beyond. Before making these



calculations, we outline some general issues with large non-Gaussianity and also comment
that in practice the non-Gaussian perturbations act like a linear “background” perturbation
in any finite volume, meaning that the Gaussian (linear) term will not be completely absent
in practise [77-80]. But it’s still useful to consider this completely non-Gaussian limit as
an extreme scenario.

4.1 Distortions in the limit of local x2 non-Gaussianity

In this section we focus on a pure chi-squared non-Gaussianity, meaning that we can absorb
fNL into the power spectrum amplitude and write

R(F) = RA(F) — (RE). (4.1)

Provided that the Gaussian power spectrum has a delta-function peak, one can determine
the analytic shape and amplitude of the chi-squared power spectrum to be (as explained
in paper 1 [31])

k3 5 k2 1 k2

Prs, (k) = 5 H(2k, — k), (4.2)

where H is the Heaviside function. The variance of this power spectrum is given by
o
A = / Pra dlnk = 242, (4.3)
0

in agreement with the large fxi, limit of eq. (3.2).

The p-distortion can then be computed using techniques described in section 3.2 and
paper L. The constraints from this power spectrum variance are shown in figure 3. Notice that
the p constraint is normally similar to the Gaussian case, with the difference being primarily
towards the tails where the constraints tighten, due to the shape of the power spectrum
varying between the Gaussian and x? cases. The x? peak of eq. (4.2) is asymmetric and
broader to the left of the peak, which explains why the difference in the constraints becomes
significant for & > 10* Mpc~! where it is mostly the left-hand tail of the power spectrum
peak which generates a p-distortion. The PBH constraint tightens as expected (for all PBH
masses), demonstrating that PBH formation is for a large mass range more sensitive to
non-Gaussianity than the u constraints. However, the maximum mass PBH possible (i.e. the
intersection of the y and PBH constraints) does not change very significantly for fpgy = 107°
(it increases by a factor of a few), because of the broader u-distortion constraint in the x>
case. However, for smaller values of fpgy the difference becomes more important and for
the extreme 1-PBH limit the largest possible mass with y? statistics is almost an order of
magnitude larger than for Gaussian perturbations.

4.2 General values of fNL

In this section we collate the perturbative and non-perturbative results for any value of
fxr, > 0, summarising some of the key information shown in figures 2 and 3 in another way.

In figure 4, we plot the ratio of the variances leading to the same value of u or fppm,
first, for the chi-squared case compared to the Gaussian case (solid lines), and second, for the

,10,
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Figure 3. The p-distortion and PBH constraints on the variance for Gaussian (solid) and x-squared
(dashed) statistics.

fl%LA =1 case compared to the Gaussian case (dashed lines). We recall that the condition
fﬁLA = 1 roughly sets the boundary between the perturbative and non-perturbative non-
Gaussianity regime. For p-distortions, the ratio is independent of the observed value of p
because p depends linearly on the variance, and the ratio is close to unity except towards the
tails in k where the p constraints weaken. In contrast, the ratio of the PBH constraints is
always significantly less than one and is (mildly) dependent on the assumed constraint on the
PBH fraction. The fact that the lines for a pure x? non-Gaussianity are always significantly
below the equivalent lines for the perturbative limit non-Gaussianity demonstrates that it
is only in the extremely non-Gaussian regime that the PBH constraints change by more
than a factor of a few.

4.3 Distortions from large Gaussian cubed non-Gaussianity

Since even the non-perturbative limit of x? non-Gaussianity is insufficiently non-Gaussian to
make supermassive PBH formation compatible with the u-constraint, there is a substantial
literature on more extreme forms of non-Gaussianity, e.g. [16, 17, 19, 81]. The obvious next
step is Gaussian cubed statistics,

R =R, (4.4)

corresponding to infinitely large gnr..

— 11 —
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Figure 4. The ratio of the variance, comparing the constraints of the variance of either a pure x?2
perturbation to Gaussian (solid lines) or ‘perturbative’ non-Gaussianity with fﬁLA = 1 compared
to the Gaussian variance (dashed lines, all following the same colours). Note that the ratio for the
1 constraint is independent of the value of p. In contrast, the PBH constraints do depend on the
assumed value of fpgy but are only mildly dependent on k..

An analytic estimate of the variance required for PBH formation follows from the
techniques in [75]. Using the fact that (RE) = 5 x 3(R%)3 = 1543, we see that in the
limit of gnr, completely dominating, and as derived in appendix A, the variance is related
to the collapse fraction (gs by

15 R?

Ags = 1543, = — .
G ¢ 7 8 InvErfC3(28gs)

(4.5)

We show the corresponding constraints in figure 5. Unfortunately, we are unable to
determine the variance corresponding to the p constraint with Gaussian cubed non-Gaussianity,
but expect it to be comparable in amplitude to the Gaussian and x? constraints, which are
comparable to each other over a large range of k. This shows that even cubic non-Gaussianity
is at best borderline sufficiently non-Gaussian to allow the generation of even a single PBH
inside the observable universe. The largest possible PBH looks likely to be only a factor
of a few larger than for the Gaussian and 2 cases for fppg = 107°, but could potentially
be two orders of magnitude larger for the extreme (and rather academic) limit of 1 PBH
inside our universe. However, what is clear is that even in this case fpgy must be too small
to explain the origin of all SMBHs.
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Figure 5. The fppp constraints computed with non-perturbative Gaussian cubed perturbations
(dashed lines), with the corresponding Gaussian constraints (solid) shown for comparison. The
Gaussian and x? (dot-dashed) p-constraints are also plotted for comparison purposes.

4.4 Higher-order non-Gaussianity

Since even the infinite limits of fxi, and gni, are insufficiently non-Gaussianity to allow PBH
formation with very large masses, we here consider a general curvature perturbation of the form

R =R}, — (RE). (4.6)

but we caution that such extreme forms are not well motivated and that even if a model
can be found,® having all terms with smaller n set to zero is expected to require substantial
fine-tuning [77-80]. For positive integer n we can estimate the values of the power spectrum,
bispectrum and trispectrum in terms of the variance of the Gaussian perturbation (Ag) to be

Pr ~ Ad, Br ~ A?én/2 for even n, Tr ~ AZ for any n, (4.7)

whilst the bispectrum would be zero for odd n. In any case, the largest contribution to these
spectra is always the power spectrum whilst the non-Gaussian contributions are suppressed
by a factor of og = Aé/ toa positive power, which must always be much less than unity in
order to avoid over producing PBHs. Hence, the tightest constraints on the amplitude of the
variance coming from the u distortion in the k range of primary interest, which corresponds to
10 Mpc~! <k <104 Mpc~! is expected to be similar for any value of n. We have explicitly

5For a concrete model with n = 2 see [82].
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Figure 6. The fppy constraints computed with non-perturbative Gaussian to the power 4 (dashed) or
power 5 (dotted) perturbations, with the corresponding Gaussian (solid) values shown for comparison.
The Gaussian and x? (dot-dashed) u constraints are also plotted for comparison purposes.

shown this to be true for the cases of n = 1 and n = 2. The tails to small and large k
differ because the shape of the power spectrum peak is a function of n, but unfortunately
for n > 2 the convolution integrals which should be computed in order to determine the
power spectrum shape are too complicated to solve.

The PBH constraints for the extreme cases of n = 4 and n = 5 are shown in figure 6.
This is based on calculations presented in appendix A. For n = 4 the maximum PBH mass
increases substantially compared to the more Gaussian cases, with M > 107 M, becoming
realisable assuming fpgy = 107°. For even smaller values of fppm, it becomes possible to
generate some PBHs of any mass. For n = 5 the u constraint becomes weaker than the
PBH constraint even for fppyg > 1075,

4.5 Literature comparison

Here we compare our results to some other literature which studied the possibility of using
large non-Gaussianity to evade the p constraints. Our results for the PBH constraints are
most similar to those of Unal et al. [17], who considered the infinite limits of fNL and gNL,
and also included the non-linear relation between the curvature perturbation and density
perturbation. Our constraint curves are very similar, with the main difference arising because
they use a collapse threshold of 0.5, making their constraints on the power spectrum tighter
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than ours by a factor of (0.5/0.67)? ~ 0.56. Note from appendix A that the constraint on the
variance is proportional to R? even in the case of highly non-Gaussian fluctuations.

Nakama et al. [16, 81] and Hooper et al. [19] include a study of the following phenomeno-
logical parametrisation of the pdf

1 N

P(R) = *(lR\/(%))p’ 4.8

R) = SvasraT1/n)° (4.8)

which has been normalised to satisfy [0 P(R)dR = 1, where the variance of the curvature
perturbation R is given by

_2I(1+3/p)

= m&? (4.9)

o2 = / " R2P(R)dR
—o0
Note that for p = 2 the perturbations are Gaussian and o = &, as expected. For p < 2 the tail
is flattened but the derivative of P(R) is discontinuous at R = 0, making this pdf unphysical.
The case with p = 1 has the same tail to large R > 0 as the x? distribution but is not equivalent
(with eq. (4.8) being symmetric, unlike the y? distribution). Smaller values of p correspond to
flatter tails and hence an enhanced PBH abundance. The advantage of this parameterization
of the curvature perturbation is that it is straightforward to calculate the PBH abundance
using Press-Schechter theory, within the limitation that one needs to use approximate methods
for determining the PBH abundance using the curvature perturbation directly.

Taking results from appendix A, from eq. (A.2) and eq. (A.3) one can find a relation
between the extreme non-Gaussian curvature perturbation of eq. (4.6) and the pdf of eq. (4.8).
With odd n the tail of the pdf goes like 2/n which hence corresponds to p = 2/n in the tail of
eq. (4.8). For even n there is no such simple relation in general, but one can see from eq. (A.7)
that n = 2 corresponds to having the same pdf tail as p = 1. The pdfs are not equivalent
except in the large R tails, but this is the part of the pdf which is relevant for PBH formation.

Based on our result that a Gaussian cubed (n = 3) perturbation is not sufficiently
non-Gaussian to generate primordial SMBHs whilst evading the p constraint, while Gaussian
to the fifth power is sufficiently non-Gaussian suggests that one requires p to be less than
somewhere in the range 2/5-2/3. This agrees with the result of Nakama et al. [16], who
suggest the threshold is around p = 0.5. Compared to them, on the one hand, we use
a pu constraint a factor of 2 tighter, but on the other hand, we include the unavoidable
non-Gaussianity caused by the non-linear relation between the curvature perturbation and
density contrast, which weakens the PBH constraint on the variance by a factor of 2. Thus
our results should indeed be similar.

Hooper et al. [19] suggest a similar constraint on p and propose a curvaton model with
a non-quadratic potential as a means to generate a sufficiently non-Gaussian perturbation
including a kinetic coupling to the inflaton to generate the required peak in the power
spectrum, but do not find a concrete model which works.

The case of pure x? statistics section 4.1 leads to the exponential tail corresponding
to p = 1. This behaviour in the tail of the pdf has been motivated by numerous authors
studying stochastic inflationary effects, e.g. generated during ultra-slow-roll inflation in some
cases [18, 83-88]. Our results show that these exponential tails are insufficiently non-Gaussian
to generate primordial SMBHs whilst evading the ;o constraints. The observation that y?
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statistics reduce the required power spectrum variance by an order of magnitude (see figure 3)
is consistent with the stochastic inflation analysis of [89]. From figure 1 one can infer that one
needs a reduction in the variance by about 3 orders of magnitude to generate PBHs of any
mass and in this paper, we have argued that this inference will remain approximately true
even when the distortion constraint is recalculated to include the impact of non-Gaussianity.
Of course, the fact that the pdfs only agree in the tail means the required variance to generate
a given abundance of PBHs will not be exactly the same if the pdf is not exactly the same
everywhere, but we have checked that the difference between the pure x? and p = 1 pdfs
is of order 10%, which is insignificant compared to the orders of magnitude gap between
the PBH and distortion constraints as shown in figure 3.

5 Conclusions

As is well known, the tight constraint on cosmic p-distortions rules out the formation of
supermassive PBHs, assuming Gaussian perturbations. Given that the origin of SMBHs
remains a mystery, and that they are even observed at high redshift, numerous efforts have
been made to invoke sufficiently extreme forms of non-Gaussianity in order to evade the u-
constraints and allow the formation of PBHs with any mass [16, 17, 19, 20, 81]. However, none
of these papers have recalculated the p-distortion constraint which means their conclusions
may not be correct.

In our companion paper [31] we have made the first full calculation of the u-distortion
subject to local non-Gaussianity parameterised by fx1,, and in this paper we have made
the first comparison between the corresponding PBH and p-constraints, showing how the
respective constraints change when dropping the assumption of Gaussian perturbations.
We note that many previous papers have considered the correlation of 1" and p-distortion
perturbations as a means to constrain non-Gaussianity on small scales, but they have not
calculated the averaged background value of p [21-30] and we also assume that the large
non-Gaussianity does not correlate to CMB scales.

Because PBH formation takes place deep in the tail of the pdf, the formation rate
is highly sensitive to non-Gaussianity and the required power spectrum amplitude can
change significantly (by more than an order unity correction) even for perturbative levels
of non-Gaussianity, whilst the p constraints are primarily sensitive to the peak of the pdf
and hence do not change significantly. However, towards the large k tail of the range of
scales which distortions can constrain the p constraint tightens significantly, reducing the
maximum mass with which any PBH can form. Hence — in the interesting limit of highly
non-Gaussian perturbations — it is incorrect to neglect the change (the strengthening) of
the p-distortion constraint.

For a pure x? non-Gaussianity we are able to perform a full calculation of both the pu
and PBH constraints and find that the maximum mass with which PBHs can be generated
remains comparable to the case of Gaussian perturbations, no matter which value of fpgy is
desired. Our tentative results for a Gaussian cubed perturbation show that such statistics
may be close to sufficiently non-Gaussian to generate a tiny fraction of supermassive PBHs
of any mass, but at a level insufficient to explain the origin of all SMBHs.
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Unfortunately, the techniques we have developed to determine the p distortion constraint
for x-squared non-Gaussianity cannot easily be extended to more extreme forms of non-
Gaussianity so we cannot definitively determine which more extreme form of non-Gaussianity
might allow primordial SMBH production of any mass. However, one can see from figures 3
and 4 that the tightest constraint on the variance of the perturbations due to the u distortion,
which applies over a large range of scales corresponding to the mass range 10° Mo < M <
10 My, barely changes. We explain the reasons carefully in our companion paper and
expect this result to remain true for more extreme forms of non-Gaussianity. Using results
developed in the appendix, we extend the calculation of the PBH constraints to Gaussian to
higher powers than squared and conclude from figure 6 that a Gaussian perturbation raised
to the fifth power would in principle be sufficiently non-Gaussian to allow the formation of a
significant fraction of PBHs of any mass without conflicting with the distortion constraints.

We caution that even if a working model with large non-Gaussianity can be found which
evades the p-distortion constraints, and if an actual inflationary model to generate can be
constructed, the other challenges described near the start of section 4 remain. In addition,
there are potentially tighter but less well-understood and model-dependent constraints coming
from dark matter substructure, including ultracompact minihaloes, on a more limited range
of scales, see e.g. [56, 90-95] and a constraint from BBN [96].

Throughout this paper, we have assumed PBHs form via the direct collapse of large
amplitude density perturbations shortly after horizon entry. Alternative formation mechanisms
exist (for examples generating supermassive PBHs see e.g. [97-99]) and the calculation of
the p constraint would have to be redone for each scenario. However, PBH formation in all
these cases takes place later than horizon entry (meaning on subhorizon scales relevant for
CMB distortions and still on a scale comparable to the PBH which forms), so one should
not — in general — expect these cases to easily evade the tight CMB spectral distortion
constraints which apply during PBH formation.
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A Calculating the PBH abundance with extreme non-Gaussianity

We here summarise the calculation which determines the power spectrum amplitude as a
function of § (or fppn) for non-Gaussian perturbations. We follow [75] and refer the reader
to that paper for the calculation with finite values of fNL or gnr,. We here focus on the
simpler cases of the extreme non-Gaussian limit of section 4.4

R = h(Re) = R — (RE), (A1)
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for positive integer n. To the best of our knowledge we extend this calculation to n = 4 and
n = 5 for the first time. These correspond to the infinite limits of Any, and iny, respectively [100].
We reiterate that large non-Gaussianity needs to be treated with caution, see section 3.

The crucial idea is to transform from the non-Gaussian (NG) probability density function
(PDF) to a Gaussian PDF using the following transformation

dh;\(R)

PNGdR:Z T

| Pg(h™YdR, (A.2)

where P has a Gaussian distribution. The sum is over all solutions of the equation h(Rg) = R.
For even values of n there are always two identical solutions with R > R, and for odd n
there is always one solution.

We start by considering odd n, which is the simpler case since in this case (Rg) = 0.
Therefore, h~*(R) = RY™ and changing variables to

U R Rl/n ;l:/”
BB i (A3
oG o oq

Y

one can use Press-Schechter theory to find

Ban = %ErfC (\%) . (A.4)
We invert this to find
2/n
Ac =0t = 2InvErf(632(2ﬂc;n)7 (A.5)

where InvErfC in the inverse of the complementary error function and hence the variance
(for odd n) satisfies
(n—1)N R2

— 1\ A” —
(n—1)i4 27 InvErfC™(28gn) | (4.6)

For even n the subtraction of the (R{) term means we cannot derive a general expression,
but we here derive the solution for n = 2 and 4, starting with the case of pure x? non-
Gaussianity, for which (R%) = 0Z4. We here have h™! = £,/R + 02 and hence using the

variables
+/R+ 0 +1/Re+ 0 o
Y= T; Ye = T; ( . )

one finds
Bq2 = ErfC (%) , = |ye| = V2InvErfC (Bg2), (A.8)

which we can rearrange to find the variance is
2R?
5
(2 vErfC? (Bga) — 1)

Agz = 20’é =
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Finally, for n = 4, and using (R¢) = 30¢;, we have h ™1 = £ (R + 30¢,) 1/4, and changing

to the same variables as before,

one

+,/R + 304 +./R. + 302
¢ - ¢ (A.10)

y = 77 yC - —7
oG oG
finds
B = ErfC (‘\%’) L = Jye] = VAIWERC (Be) | (A.11)

8

which we can rearrange (using (R,) = 7!lo§,) to find the variance is

96 R2
.
(4 InvErfC* (Bae) — 3)

Ags = 96 A = (A.12)
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