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Abstract
The recent success of the fusion ignition experiment at Lawrence-Livermore National Labo-
ratory has renewed excitement for inertial confinement fusion. Designing such experiments
relies on computational modeling using radiation hydrodynamic codes run on massively
parallel supercomputers which simulate hydrodynamic flows, radiation diffusion, and ther-
monuclear burn.Constructing a quantumalgorithm for radiation hydrodynamics that provides
a quantum speedup is of great interest. A recent quantum algorithm that solves the Navier-
Stokes equations of hydrodynamics with a quadratic speedup marks a first step towards this
goal. Here we take the next step and present a quantum algorithm for nonlinear radiation
diffusion that also has a quadratic speedup. To verify the algorithm we consider radiation
striking a cold, optically thick target that generates a Marshak wave in the target. Results of
numerical simulation of the quantum algorithm are compared with those of a standard partial
differential equation solver and excellent agreement is found.

Keywords Quantum algorithms · Nonlinear radiation diffusion · Quantum simulation

1 Introduction

The never ending need for clean, plentiful energy has been an important driver for science and
technology development in nuclear fusion. The recent achievement of ignition during an iner-
tial confinement fusion (ICF) experiment at Lawrence-Livermore National Laboratory [1–4]
is a significant milestone that has generated great excitement. The plan and design of such an
ICF experiment relies heavily on computational modeling based on radiation hydrodynamic
codes such as Hydra [5, 6] and Flash [7–9] that run on massively parallel supercomputers,
and which simulate hydrodynamic flows, radiation diffusion, and thermonuclear burn. Such
simulations are computationally expensive, with 3D simulations requiring millions of hours
of CPU time, and as much as 30 days to complete.

Given the difficulty of radiation hydrodynamics simulations, it is natural to ask whether
a quantum computer might speed up these simulations. A first step towards constructing a
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quantum algorithm for radiation hydrodynamics is already possible as a quantum algorithm
for simulating hydrodynamic flows exists that provides a quadratic speedup [10]. This quan-
tum algorithm, which solves the nonlinear Navier-Stokes equations, was soon extended to a
quantum algorithm for solving systems of nonlinear partial differential equations (PDE) [11]
with a quadratic speedup. Here we take a second step towards a quantum radiation hydrody-
namics algorithm by showing how the quantum PDE (QPDE) algorithm [11] can be used to
simulate the nonlinear dynamics of radiation diffusion with a quadratic speedup.

The structure of this Paper is as follows. We first briefly describe the physical assump-
tions leading to radiation diffusion and write down the nonlinear PDE that governs its time
development (Section 2). We then explain how the QPDE algorithm can be used to solve the
nonlinear radiation diffusion equation (Section 3). To verify the quantum algorithm we apply
it to the problem of radiation striking a cold, optically thick target that causes a Marshak
wave [12] to propagate through the target. We numerically simulate application of the QPDE
algorithm to this problem and compare the results found with those obtained using a standard
PDE solver (Section 4). The agreement is excellent. Finally, we close with some directions
for future work (Section 5).

2 Nonlinear Radiation Diffusion

At the heart of every ICF experiment are tens of thousands of multi-physics simulations
using radiation hydrodynamic (RH) multi-physics codes that provide design support, and
improve the experiment’s chances for success. In RH simulations, the modeling of radiation
transport presents an exciting, but challenging obstacle. Indeed, in RH multi-physics codes,
radiation transport tends to dominate CPU time. The radiative transfer equation is semi-
classical in nature. In the kinetic equation, the photons are treated like any other gas. The
quantum mechanical effects enter through the absorption, emission and scattering terms.
Each of these three processes describes, at a micro-physical level, the quantum mechanical
interaction of matter and radiation. The challenges of solving the radiation transport problem
has led researchers to solve a simpler problem. In many applications where the plasma
is dense (such as in ICF) the diffusion approximation to the full transport problem is an
excellent approximation. By going to the diffusion limit of the transport equation, the number
of degrees of freedom in 3D are reduced from seven to five for multi-group and seven to
four for Planckian. This approximation is by far the most used approximation in RH multi-
physics codes. Underlying the Planckian radiation diffusion equation is the concept of local
thermodynamic equilibrium [13, 14] which supposes collisions in the plasma are sufficiently
frequent that local thermodynamic equilibrium is quickly established with local temperature
T (x, t). Furthermore, the plasma is assumed to be optically thick so that the photon mean
free path is small compared to the length scale over which local (thermal) equilibrium varies,
causing the radiation to come into local equilibrium with the plasma. The optical thickness
also causes the radiation specific intensity to be weakly anisotropic, and the radiation energy
flux to be proportional to the spatial gradient of the radiation energy density ε(x, t). Under
these conditions, the radiation transport equation reduces to the nonlinear radiation diffusion
equation (NRDE):

∂ε

∂t
− ∇ ·

[ c
3
λR(ρ, T )∇ε

]
= 0. (1)

Here ε = aT 4;a = 8π5k4/15h3c3;λR(ρ, T ) is theRosselandmean free path (see below);
and ρ(x, t) is the fluid mass density. The solution satisfies the initial condition ε(x, 0) =
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ε0(x), and in the verification problem below, Dirichlet boundary conditions ε(y, t) = g(y, t),
where y is a point on the boundary.

3 Quantum PDE Algorithm

We now describe how the QPDE algorithm [10, 11] is applied to the NRDE. The result is
a quantum radiation diffusion (QRD) algorithm, which at its coarsest level of description
consists of two steps.

The first step is to discretize space while leaving time as a continuous parameter. Thus the
spatial continuum parameterized by x is replaced by a spatial grid containing M uniformly
spaced grid-points parameterized by x(I) = x0 + I�, where I = (i1, i2, i3), 1 ≤ ik ≤
mk (k = 1, 2, 3), M = m1m2m3, and � is the spacing between grid-points along any
coordinate direction. The radiation energy density ε(x, t) is now restricted to grid-points:
εI(t) ≡ ε(x(I), t). Absent a spatial continuum, spatial partial derivatives no longer exist
and must be approximated. There are many ways to do this. Here we use a finite difference
approximation. This replaces spatial partial derivatives of ε(x, t) with algebraic expressions
of the {εI(t)}. As will be discussed below, approximation of the spatial divergence term in
the NRDE leads to an algebraic expression fI(ε) at each grid-point x(I). Time t is now the
only continuous parameter and so the partial time derivative in the NRDE becomes a total
derivative. The result of the spatial discretization is the reduction of the NRDE to a coupled
set of ordinary differential equations (ODEs),

dεI

dt
= fI(ε), (2)

with an ODE associated with each grid-point x(I). We will determine the driver functions
{ fI(ε)} below. The initial and boundary conditions for (2) are obtained by evaluating the
initial and boundary conditions of the NRDE at the grid-points x(I).

The second step is to use a quantum nonlinear ODE algorithm to solve (2). Refs. [10,
11] used a quantum algorithm due to Kacewicz [15], though any quantum nonlinear ODE
algorithm would do. We briefly describe the application of Kacewicz’ algorithm to (2). To
unclutter the notation,wewill suppress the subscripts on εI(t) and fI(t). Kacewicz’ algorithm
returns an approximate, bound solution α(t) to the exact solution ε(t) of (2) over the time
interval 0 ≤ t ≤ T . The algorithm: guarantees the error in the approximate solution is less
than ε with probability 1− δ, where ε and δ are user-supplied; and gives a quadratic speedup
over classical nonlinear ODE algorithms [15].

Kacewicz’ algorithm consists of five steps. The first partitions the time interval 0 ≤ t ≤
T into n primary subintervals by introducing n + 1 uniformly spaced intermediate times
t0 = 0, . . . , ti = ih, . . . , tn = T , where h = T /n. The i th primary subinterval [ti , ti+1] is
denoted Ti , with i = 0, . . . , n−1. Step-two partitions each primary subinterval Ti into Nk =
nk−1 secondary subintervals by introducing Nk + 1 uniformly spaced intermediate times
ti,0 = ti , . . . , ti, j = ti + j h̄, . . . , tNk = ti+1, where h̄ = h/Nk = T /nk . The j th secondary
subinterval [ti, j , ti, j+1] in Ti is denoted Ti, j . The third step associates with each primary
subinterval Ti a parameter yi . The parameter y0 is set equal to the ODE initial condition,
y0 ≡ ε0, while the remaining parameters y1, . . . , yn−1 approximate the exact solution ε(t)
at the times t1, . . . , tn−1, respectively. (Step-five will explain how these n−1 parameters are
assigned values.) Step-four uses Taylor’s method [16, 17] to approximate the exact solution
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ε(t) in each of the secondary subintervals Ti, j using a truncatedTaylor seriesαi, j (t) expanded
about the time ti, j . The approximate solution αi (t) in primary subinterval Ti is defined by
αi (t) = αi, j (t) for t ∈ Ti, j , and is required to be continuous throughout Ti . Thus αi, j (t) and
αi, j+1(t) must agree at their common boundary time ti, j+1: αi, j (ti, j+1) = αi, j+1(ti, j+1).
The final condition placed on αi (t) is that αi (ti ) ≡ yi . The fifth step derives a relation that
allows the {yi } to be determined iteratively:

yi+1 = yi +
∫ ti+1

ti
dt f (αi (t)) (0 ≤ i ≤ n − 2). (3)

Kacewicz’ algorithm uses a quantum integration algorithm to evaluate the integral on the
RHS of (3). It is important to appreciate that this is the only task in this quantum algorithm
that requires a quantum computer. All other calculations are done on a classical computer.
In the work reported below, we use Novak’s quantum integration algorithm [18] to evaluate
the integrals. The procedure for determining the {yi } begins with y0 ≡ ε0. Knowing y0
determines the approximate solution α0(t) (see Refs. [10, 11, 15] for details). Inserting α0(t)
into theODEdriver function f (ε) determines the integrand in (3) for i = 0. Novak’s quantum
algorithm is used to approximate the integral and the value returned is (classically) added to
y0 to give y1. Knowing y1 gives α1(t) which is substituted into f (ε) and its integral over
T1 is approximated using Novak’s algorithm. The value returned is added to y1 to give y2,
etc. At the end of the iteration procedure all approximate solutions α0(t), . . . , αn−1(t) are
determined and the approximate ODE solution is α(t) = αi (t) for t ∈ Ti .

Kacewicz [15] showed that his quantum nonlinear ODE algorithm provides a quadratic
quantum speedup over classical nonlinear ODE algorithms. Refs. [10] and [11] then showed
that the QPDE algorithm inherits this quadratic speedup. As the QRD algorithm is an appli-
cation of the QPDE algorithm, it too inherits a quadratic quantum speedup.

In the Supplementary Information (SI) associatedwith this Paperwe describe howNovak’s
Quantum Integration Algorithm (QIA) is constructed. This algorithm is seen to rely on the
QuantumAmplitudeEstimationAlgorithm (QAEA) [19] to do itswork. The SI then describes
the construction of the QAEAwhich, in turn, uses the Quantum Phase Estimation Algorithm
(QPEA) [20] to do its work. The latter algorithm is well-known and described in textbooks
on quantum computing [21]. The QPDE algorithm is seen to rely on a Russian doll-like
hierarchy of quantum algorithms that make use of three quantum oracles: one in Novak’s
QIA, and two in the QPEA. Ref. [22] presented quantum circuits that implement all three
oracles and determined the quantum resources needed to implement them. The SI recaps
the quantum resources discussion, as well as the issue of quantum speedup for quantum
algorithms using quantum oracles that are implemented with quantum circuits.

4 Verification Problem

To verify the QRD algorithm we consider a radiation source at temperature T0 in contact,
through a planar interface, with a cold, semi-infinite, optically thick slab of matter. As dis-
cussed earlier, local thermodynamic equilibrium is assumed so that the radiation entering the
slab at x = 0 evolves according to the NRDE. As the radiation diffuses, it heats the matter,
giving rise to a travelling thermal front known as a Marshak wave [12]. The Marshak wave
problem is a standard test problem for evaluating the quality of numerical solutions of the
NRDE.
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FollowingMarshak, we assumed the diffusion is one-dimensional, and that hydrodynamic
effects can be ignored so that the matter remains at rest and at constant density ρ0. We further
assume that the Rosseland mean free path has a power-law dependence,

λR(ρ, T ) = λ0

(
ρ

ρ0

)ν (
T

T0

)γ

, (4)

where λ0 is a characteristic length-scale. Note that for our purposes, the density factor on
the RHS disappears as ρ is constant. The simulations discussed below used: γ = 5.6;
boundary conditions ε(0, t) = aT 4

0 and ε(∞, t) = aT 4
i with Ti � T0; and initial condition

ε(x, 0) = aT 4
i for 0 < x < ∞.

To begin we rewrite the NRDE in dimensionless form.We define the characteristic energy
density ε0 = aT 4

0 and the dimensionless energy density ε = ε/ε0. We also define dimen-
sionless time τ = ct/λ0 and position z = x/λ0. With these definitions the NRDE becomes,

∂ε

∂τ
− ∂

∂z

[
D(ε)

∂ε

∂z

]
= 0, (5)

where we have supressed the “bar” in ε, and D(ε) = εγ/4/3. The boundary conditions are
now ε(0, τ ) = 1 and ε(∞, τ ) = (Ti/T0)4, and the initial condition is ε(z, 0) = (Ti/T0)4.

As seen earlier, the first step in applying the QRD algorithm to (5) is to discretize space.
We thus introduce a spatial grid with M grid-points z1, . . . , zM . The second term on the RHS
of (5) is approximated using a first-order forward difference approximation for the outer
spatial derivative and a first-order backward difference for the inner spatial derivative. The
result is the first-order accurate driver function f I (ε),

f I (ε) = DI+1εI+1 − (DI+1 + DI )εI + DI εI−1

�z2
, (6)

where εI (τ ) = ε(zI , τ ), DI (ε) = (εI )
γ /4/3, and�z is the spacing between grid-points. The

spatial discretization reduces (5) to the system of ODEs appearing in (2) with (6) inserted on
the RHS. The initial condition used in the simulations is εI (0) = 0.01 (2 ≤ I ≤ M − 1),
and the boundary conditions are ε1(τ ) = 1 and εM (τ ) = 0.01.

The second step in the QRD algorithm is to use Kacewicz’ quantum ODE algorithm to
solve (2) with the given driver function f I (ε) and initial and boundary conditions. To that
end, we numerically simulated determining an approximate solution of this ODE problem
using Kacewicz’ quantum algorithm. To test the quality of the quantum simulation results,
we also used a standard PDE solver to obtain an approximate solution of (5) with the given
initial and boundary conditions. We compared the resulting solution with that of the quantum
simulation. These results appear in Fig. 1.

For the quantum simulation we used four different grid-sizes M = 151, 201, 301, 401,
and a single grid-size M = 401 for the standard PDE solver. The standard PDE solver
solution is plotted in all four subfigures so that convergence of the quantum solution to it
can be seen as the grid-size M increases. In each subfigure, the solid curves give the results
of the standard PDE solver simulation, while the “crosses” are the results of the quantum
simulation. Each subfigure shows the propagating Marshak wave at five different times. We
see that, even for the smallest grid-size,M = 151, the agreement between the two simulations
is quite good. The agreement increases as the grid-size increases, so that the two simulations
are indistinguishable at M = 401. There is thus excellent agreement between the quantum
and standard simulations.
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Fig. 1 Comparison of quantum and standard PDE solver simulation results for the Marshak wave problem.
We compare the approximate solution found through numerical simulation of the QRD algorithm applied
to the Marshak wave problem with that found using a standard PDE solver. The quantum simulation was
done using four different grid-sizes (M = 151, 201, 301, 401), while a single grid-size was used for the
standard PDE solver (M = 401). Figures 1a-1d present the quantum simulation results for grid-sizes M =
151, 201, 301, 401, respectively, each at five different times. Each subfigure also plots the standard PDE solver
result. The "crosses" are the quantum solution and the solid curves give the standard PDE solver solution.
We see that agreement between the quantum and standard solutions is excellent, and indistinguishable for
M = 401

5 Discussion

In this Paper we introduced a quantum algorithm that simulates the dynamics of nonlinear
radiation diffusion with a quadratic quantum speedup. We verified the algorithm by applying
it to a standard test problem of nonlinear radiation diffusion—a Marshak wave propagating
through a cold, optically thick, semi-infinite slab of matter. We numerically simulated appli-
cation of the QRD algorithm to this problem and compared the results with those produced
by a standard PDE solver. Excellent agreement was found.

As noted in the Introduction, the design of an ICF experiment makes heavy use of com-
putationally expensive radiation hydrodynamics codes which simulate radiation diffusion,
hydrodynamic flows, and thermonuclear burn. The significance of the QRD algorithm is
two-fold. First, it makes possible quantum simulation of radiation diffusion with a quadratic
quantum speedup. Second, togetherwith the quantumNavier-Stokes algorithm [10], quantum
algorithms with quadratic speedups now exist that can carry out two of the three core tasks
required to implement a quantum algorithm for radiation hydrodynamics. A major focus of
future work is construction of a quantum algorithm that simulates the thermonuclear (TN)
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burn of an ICF capsule with a quantum speedup. The overall structure of such an algorithm is
clear.When TN burn is present, the matter energy-balance PDEmust be decomposed into ion
and electron contributions. The two resulting matter PDEs are coupled through terms arising
from the Coulomb interaction. Note that fusion rate equations do not need to be solved to
account for the fusion process. Instead, given the temperature and density, and assuming that
the reacting ions are in a Maxwellian distribution, the fusion reactivity is tabulated, and a
fusion energy source term is determined and added to the ion equation. The resulting system
of PDEs, including radiation diffusion and hydrodynamics, is then solved using the QPDE
algorithm.

Our ultimate goal is to apply the QPDE algorithm to the simulation of the spherically
symmetric implosion of an ICF capsule. There exist many situations in the modeling of
an ICF capsule where the matter is not optically thick. This can occur in carboy forms,
low density materials, and high temperatures. In these situations, the matter and radiation
temperatures may not be equal. The non-equilibriumMarshak wave problem [23] allows this
important physical situation to be studied. Unlike the equilibrium Marshak wave problem
considered here, in the non-equilibrium problem, matter and radiation are not assumed to be
in local thermodynamic equilibrium with each other and so their local temperatures will not,
in general, be equal. To account for this change, it is necessary to: (i) introduce the matter
energy-balance PDE which must be simultaneously solved with the NRDE; and (ii) include
terms in each that dynamically couple the radiation and matter. This allows for a much richer
dynamics and the approach to mutual local thermodynamic equilibrium to be studied. Work
to extend the QRD algorithm to treat this problem is currently underway.

Computational algorithms for solving PDEs fall into two broad categories: explicit and
implicit. Each algorithm type has its pros and cons. Explicit algorithms are straightforward
to implement, though auxiliary conditions are needed to insure computational stability. On
the other hand, implicit algorithms are more complicated to implement, though usually yield
more stable computations, and often can be proved to be unconditionally stable. Which is
best to use depends upon the application, so a good computational toolbox should be able
to implement both. For radiation hydrodynamics applications arising in the design of ICF
experiments, it is important that implicit algorithms are available. Because of the disparate
time scales associated with radiation diffusion and hydrodynamic flows, present-day radia-
tion hydrodynamics codes simulate radiation diffusion implicitly, while hydrodynamic flows
are simulated explicitly. Ref. [11] showed that the QPDE algorithm (and hence the QRD
algorithm) is an explicit quantum algorithm. It also showed how the QPDE algorithm could
be implemented as an implicit quantum algorithm. Work has begun to write simulation code
for the implicit QRD algorithm, and to apply it to an appropriate verification problem.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10773-024-05800-x.
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