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Abstract: We consider quantum channel-estimation for
depolarizing channels and phase-flip channels extended
by ancilla qubits and fed with a GHZ or W state. After appli-
cation of the channel one or several qubits can be lost, and
we calculate the impact of the loss on the quantum Fisher
information that determines the smallest uncertainty with
which the parameters of these channels can be estimated.
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1 Introduction

With the rise of quantum information processing the need
to precisely characterize quantum devices has become an
important practical issue. Contrary to classical bits, qubits
have a continuous range of possible pure states, and their
phase coherence is crucial for quantum algorithms. Under
the influence of the environment, qubits suffer decoher-
ence processes which can manifest themselves not only
in a flip of the hit, but also in a loss of phase coherence.
If the corresponding error rates are small enough, quan-
tum error-correction can be applied, which, when con-
catenated, allows one to ultimately perform meaningful
quantum computations. For the development of the hard-
ware and optimization of the quantum error correction it
is, however, crucial to precisely know the error mecha-
nisms and rates. This amounts to performing a “quantum
channel-estimation”. For a single qubit, the set of possi-
ble quantum channels and their possible parametrizations
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are well known by now [3, 6, 19], and quantum channel-
estimation amounts hence to estimating these parameters.

Quantum channel-estimation is therefore very simi-
lar to quantum parameter estimation (g-pet), where one
tries to estimate the parameters that determine a quan-
tum state. Q-pet is very well developed, starting with
work by Helstrom and Holevo in the 1970s and Braunstein
and Caves in the 1990s [8-10, 23-25]. This led to the im-
portant insight that the smallest possible uncertainty of
the estimation of a parameter is fully determined by the
parameter-dependence of the quantum state. The quan-
tum Cramér-Rao bound (QCRB) quantifies this smallest
uncertainty and generalizes corresponding results from
classical statistical analysis from the 1940s [14, 41]. The
theoretical framework has been used to analyze the ulti-
mate possible sensitivity of gravitational wave observato-
ries [29], Mach-Zehnder and atomic interferometers [22, 26,
35, 44], measurements of time [9], mass [4, 5], tempera-
ture and chemical potential [13, 32, 33, 42], parameters of
space-time [1, 7], and many more.

In addition to the optimization over all possible mea-
surements and data analysis schemes that is inherent in
the QCRB, quantum channel-estimation allows one to also
optimize over the input state. It has long been known that
using highly entangled states can enhance the precision
of certain measurements beyond what is possible classi-
cally [21], even though measurements exist where such
enhancements do not need entanglement, or the natu-
rally occuring “entanglement” due to the symmetrization
of states of identical particles is enough for improved per-
formance [2, 16, 31].

Itis also known that the quantum advantage can break
down very rapidly with the smallest amount of decoher-
ence. For example, Markovian decoherence, no matter
how small, always leads back to the so-called standard
quantum limit of the uncertainty of atomic clocks, when
these are operated with a highly entangled GHZ state [27].
From interferometry it is well known that GHZ states are
also maximally fragile against loss of qubits: Even the loss
of a single one turns the state into a uniform mixture of
the original pure components in the Hilbert space of the
remaining particles, and hence erases any useful phase in-
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formation [28]. W states are more robust here, as are “en-
tangled coherent states” [46].

One might wonder then, how useful highly entan-
gled states are for measuring decoherence processes them-
selves. Interestingly, it was found by Fujiwara and Imai
that the best estimation of a Pauli quantum channel of a
single qudit can be achieved by sourcing a maximally en-
tangled state into the channel extended by just one more
qudit [20]. Frey et al. studied the depolarizing channel and
considered the performance of several extension schemes
[17], and Collins and coworkers examined the depolarizing
channel and the phase-flip channel fed with mixed states
[11, 12].

In the present work we investigate channel estimation
for the depolarizing channnel and the phase-flip channel,
when these channels are extended by using several ancilla
qubits. We consider GHZ states and W states as input and
investigate the effect of loss of one or several of the qubits,
both the original one or the ancillas, on the precision with
which the parameters of the channels can be estimated.

2 Quantum estimation of channels

2.1 Channels

Let B; = B(H;) be the space of bounded linear opera-
tors acting on a first Hilbert space H; and B, = B(H>)
the space of bounded linear operators acting on a sec-
ond Hilbert space H,. A quantum channel & is a com-
pletely positive trace preserving (CPTP) convex-linear map
& : By — B, that maps a density matrix (i.e. a posi-
tive linear operator with trace one) to another density ma-
trix, p € By — 0 € B,. The condition of complete pos-
itivity means that the channel should be a positive map
(i.e. maps positive operators to positive ones), but also that
the extension £ ® Id of the channel to ancillary Hilbert
spaces J, where it acts by the identity operator, should
be a positive map, i.e. (¢ ® Id)(A) = O for any positive op-
erator A in B(H; ® H), the space of bounded operator act-
ing on the bipartite system 3(; @ H [36]. Trace preserva-
tion is defined as tr[€(p)] = tr[p], and convex linearity as
EQ i pipi) = X pi€(p;) for all p; with 0 < p; < 1 and
> i Pi = 1. According to Kraus’ theorem, a quantum chan-
nel can be represented as

&(p) =Y EpE}, §)

where the Kraus operators {E;} satisfy 3, E;Ei = J,, the
identity operator on the target Hilbert space H, [30].
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In the following we study the two physically important
channels “depolarizing channel” and “phase-flip chan-
nel” for a single qubit [36]. The depolarizing channel de-
scribes relaxation,

Eaep(p) = P% +(1-pp, )

i.e. the qubit is replaced with probability p (the “depolar-
ization strength”) by the totally mixed state. Its Kraus de-
composition is given by

4
Eaep(@) = Y _EipE}, 3)

i=1

with the four Kraus operators:

- J1-3P - /P -, /B -, /B
Ey=4/1-3,3,E \/:X,E3 \/:Y,E4 \/:Z,

where X, Y and Z are the three Pauli matrices.
The phase-flip channel has the Kraus representation

2
En(p) =D FipFi, ()

i=1

with the Kraus operators

Fi=+1-pJ, F,=\pZ, (5)

i.e. with probability p the phase of the qubit is flipped.

We also define extensions of these channels by the
identity to n ancilla qubits, on which the channels act
through the identity operation. For the depolarizing chan-
nel we have

4
M (0) = (Eaep@1d---21d) (0) = Y TipI], (6)
i=1

where the Kraus operators I'; of the extended channel are
defined as I'; = E; ® I,

Similarly, we extend the phase-flip channel to n an-
cilla qubits by

2
M) = (e @ld--01d) () = Y Apa] @)
i-1

with the new Kraus operators A; = F; @ J%".

2.2 Quantum parameter estimation

Quantum parameter estimation theory (q-pet) [8, 9, 23,
24] provides a lower bound on the variance of an un-
biased estimator @est of a parameter 6 on which a state
p(0) depends. Its importance arises from the facts that
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(1) it is optimized already over all possible measurements
(POVM measurements, generalizing projective von Neu-
mann measurements [38]), and all possible data analysis
schemes in the form of unbiased estimators (i.e. estimators
that on the average give back the true value of the parame-
ter); and (ii) the bound is reachable at least asymptotically,
in the limit of an infinite number of measurements. This
so-called quantum Cramér-Rao bound (QCRB) is given by

Var(Best) = €]

1
MI(p(6))°

with M the number of independent measurements and
I(p(6)) the quantum Fisher information (QFI). In [8] it was
shown that I(p(6)) is a geometric measure on how much
p(6) and p(0 + dO) differ, where d@ is an infinitesimal in-
crement of 6. The QCRB thus offers the physically intuitive
picture that the parameter 6 can be measured the more
precisely the more strongly the state p(6) depends on it
(see below for a precise definition). The geometric measure
is given by the Bures-distance,

ds (p,0)? =2 (1 - /Flp, 0)) , ©)

where the fidelity F(p,o0) is defined as F(p,0) =
Ip/20%/?|13, and ||A||; = trv/AAT denotes the trace norm
[34]. With this, I(p(9)) = 4 dg ((6) , p(6 + d6)) /d6> [8].
The Bures-distance is in general difficult to calculate for
mixed states, but for pure states p(8) = [P(6))(Y(0)|,
the QFI reduces to the overlap of the derivative of the
state, |09 (6)), with itself and the original state, I(p(6)) =
4((0g(0) | 091(6) ) — | 0g¥(8) | Y(6))|) [37].

When the state is not pure we can still give a closed for-
mula by using the spectral representation of the state. For

d
p©) => pil i) (Wil

(10)
i-1
the QFI can be written as
d d )
(96p)’ 2(p;i - py) ,
() = S~ QeP)” | 2P e
b= 3 5 3 Ty o)
pi70 pi+p;#0

where the first term is called classical contribution and the
second quantum contribution.

The QFI obeys the “monotonicity property” under 6-
independent channels &

I(E(p(9))) < 1(p(6)), (11)

with equality for unitary channels U, defined by U(p) =
Up U' [39] with U unitary. The QFI has also the property of
convexity, meaning that for two density matrices p(6) and
o(6) and O < A < 1 we have [18]

1(Ap(6) + (1 - V) (6)) < A1(p(6)) + (1 - 1) I(a(6)) . (12)
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A last useful property of the QFI is the additivity:

1(p(6) ® 0(8)) = 1(p(6)) + I(a(6)) . 13)

For a state that depends on several parameters 6 =
(64, ..., 6r), the QCRB generalizes to an inequality for the
co-variance matrix of the estimators of the 6;, with a lower
bound given by the inverse of the quantum Fisher informa-
tion matrix. In contrast to the single parameter case, this
inequality can in general not be saturated (see [43] and ref-
erences therein) but one can still try to optimize the trade-
off in joint estimation (see [15, 45] for estimation of phase
and noise simultaneously).

2.3 Quantum channel-estimation
2.3.1 General considerations

We consider channels €, depending on a scalar parameter
0, and perfectly known initial states p independent of 6.
After the evolution of p through the channel, we obtain a
state parametrized by 0 with QFI

1(p(6)) = 1(E4(p))

that can still be optimized over p. Due to the convexity of
the QFI, its maximal value can be achieved with a pure
state. The fact that a quantum channel is a completely pos-
itive map allows one to extend it to a larger Hilbert space by
acting with an arbitrary quantum channel A on the Hilbert
space of the ancilla,

(14)

e =g A. (15)

According to an argument by Fujiwara [18], the largest
QFI with a parameter independent A can be achieved al-
ready by choosing for A the identity channel in the ancil-
lary Hilbert space: Since £¢ ® A can be decomposed as
(Id ® A)(€ g ® Id), monotonicity of the QFI implies that the
best choice for (Id ® A) is a unitary channel, which is the
case when A is a unitary channel. The simplest solution
consists in taking the identity channel and thus, in the fol-
lowing, when we refer to extensions, we always mean an
extension by the identity channel in the Hilbert space of the
ancilla.

2.3.2 Estimation of depolarizing and phase-flip
channels

For both depolarizing and phase-flip channels, the param-
eter to be estimated is p. To avoid cumbersome notation,
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we omit the dependence on p in the states, the channels,
and the QFIL.

For the depolarizing channel acting on one qubit, all
states related by a p-independent unitary transformation
U give rise to the same QFI, as

Eaep(UpU") = U yep(p)U”, (16)

coupled to the fact that the QFI is invariant under
parameter-independent unitary transformations of the
state. For the phase-flip channel, the initial state and in
particular the orientation of its Bloch vector matters, as in
general for an arbitrary unitary U

Epn(UpU") # UEn(p)U" . (17)

2.4 Known results

In [20] Fujiwara and Imai investigated the problem of esti-
mating generalized Pauli channels acting on qudits — i.e.
systems with a d-dimensional Hilbert space and, in gen-
eral, d’ - 1 parameters {p;},.;.42_; to estimate. The au-
thors were interested in the optimal protocol for estimat-
ing these parameters when one uses the channel m times.
They showed that the optimal protocol (in terms of the QFI
matrix) consists in making m independent estimations of
the channel extended to a single ancillary qudit with the
same dimension of Hilbert space and to input a pure, max-
imally entangled state [p7")

d

e - Z%w ® vi)

i=1

(18)

with {|u;)} and {|v;)} two orthonormal bases ((u; |u;) =
(vilvj) = 6.

In the specific case of the qubit (d = 2), the Pauli chan-
nels are the channels constructed with Pauli matrices as
Kraus operators,

Epauii(P) = (1 = p1—p2 —p3)p + p1XpX + p2YpY + p3ZpZ,

(19)
i.e. the estimation of Pauli channels for qubits is in general
a 3-parameter estimation problem. It reduces to the esti-
mation of the depolarizing channel by setting p; = p; =
p3 = p/4, while the phase-flip channel corresponds to the
case p; = p, = 0. The well-known four Bell states

) = |00) +|11) _ |01) +]10)
YA R

are special cases of maximally entangled states for d = 2,
and thus achieve the optimal QFI for the estimation of

=) ; (20)
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{p1, P2, P3}, the three parameters attached to Pauli chan-
nels for qubits.

Frey et al. analyzed the depolarizing channel acting
on qudits using different extension schemes, including se-
quential protocols, where the same probe undergoes m
times the channel before any measurement is done [17].
A fair figure of merit for the comparison is then the QFI
per channel application. The schemes studied were (i)
the non-extended original channel €gep; (ii) the channel
extended by the identity in an ancillary g-dimensional
Hilbert space, €4ep ® Id; (iii) the original channel ap-
plied in parallel to two different qudits, €gep ® Egeps (V)
the channel extended by a known depolarizing channel
with depolarizing strength 1, €gep,p ® Egep,y» Where the
subscripts p and n denote the respective depolarizing
strengths, and (v) the m times iterated use of the chan-
nels in schemes (i, ii, iii ). Pure input states were consid-
ered, with a maximally entangled state in all the schemes
with more than one qudit, and in addition partially entan-
gled states in scheme (ii ).

From the work of Fujiwara and Imai [20] it is clear that
the best scheme is (ii ) with a maximally entangled state as
input. It also turns out that the multiple use of the probes
is useless in the sense that the QFI per channel use is al-
ways smaller or equal in the sequential schemes than in
the non-sequential ones. Depending on the dimension d
of the Hilbert space of the qudit, and on the depolariza-
tion strength p, the simple scheme (i) or the double use of
the channel (jii ) fair better. Partially entangled pure states
in scheme (ii) lead to a QFI lying between the one of the
optimal scheme and the one of the simple scheme. When
the additional depolarization 7 in scheme (iv) is too large,
it becomes more efficient to just use the simple channel or
the doubled channel.

Collins considered mixed states for the estimation of
the phase-flip channel [11] and in [12] Collins and Stephens
did the same for the depolarizing channel. They studied
sequential protocols, where there is just one qubit avail-
able on which the channel is applied m times, and also
parallel or multi-qubit protocols. For these they investi-
gated the effect of correlation among more than two qubits
on the efficiency. Again the figure of merit was the QFI per
channel application, and the results were compared to the
protocol with just one channel and one qubit (SQSC pro-
tocol). Depending on purity and depolarization strength,
both sequential and correlated protocols can outperform
the SQSC protocol. Especially for extremely small purity of
qubits, adding more ancillas in the correlated protocol in-
creases the QFI, and the correlated protocol proves to be
better than the sequential one.
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Fujiwara and Imai’s optimal metrological strategy for
the estimation of Pauli channels implies that no gain in
the QFI is to be expected by extending the channels to an-
cillary Hilbert spaces with a dimension greater than the
one of the original space. Nevertheless, such extensions
still have an interest in the case where one faces the loss of
particles. In this non-ideal situation, adding more ancillas
to the probe may eventually prove useful. We thus study
channel estimation with W and GHZ states composed of
n+1 qubits (the original probe and n ancillas) as input, and
investigate in particular the robustness of these schemes
under loss of particles.

2.5 Benchmark

We first calculate two benchmarks for the QFI: The first
one, Iglzt, corresponds to the optimal case identified by
Fujiwara and Imai [20], namely extending the quantum
channel by the identity to a second qubit and feeding
it with a maximally entangled state: Ig‘;t = I((& ®

The second one, Isgeap , is given by directly estimat-
ing the parameter of the channel acting on a single
qubit and optimizing over all pure input states: Isgeep =
max| y(y | [(€g( ¥ ) (). This latter scheme is, in terms
of QFI, equivalent to the case where one uses an extended
channel (of the form (6) or (7), or in fact an arbitrary 6-
independent extension acting separately on the original
system and the ancillas) but inputs a separable state. In-
deed, due to the additivity of the QFI we have

I((€g ® A) (p ® 0)) = I(E4(p) ® A(0))
= I(Ep(p)) + I(A(0))
=1(Eg(p)),

since the state A(0) is 6-independent. Thus we refer to this
case as “separable strategy”.

2.5.1 Depolarizing channel

In the non-extended case, the QFI for the depolarizing
channel depends only on the purity of the input state.
When starting with a pure state of a single qubit we obtain
for the QFI

1
. (21)
P p(2-p)
The optimal strategy leads to
%Pt = _3 22

dep = p(4-3p) "
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In more detail, the depolarizing channel transforms a Bell
state as

Eip@)=1-3019. + L@+ 010, @
where ¢. = | . )(P:|, 9+ = | @+ )@+ |. Le. the channel
creates a mixture between ¢. and a state orthogonal to it,
¢- + @+ +@- [40]. This makes the scheme more sensitive to
the value of the parameter than for the separable strategy.
With the two benchmarks (21,22) we can check whether
extending the channel still leads to an improvement com-
pared to the separable strategy when qubits can be lost by
comparing the QFI to IZZI;, but also how far the QFI is sta-
ble against losing qubits compared to the optimal strategy,
a property that we call “robustness”.

2.5.2 Phase-flip channel

The case of the phase-flip channel is slightly different.
Due to the anisotropy of the channel, the QFI of the non-
extended strategy depends on the polar angle 8 of the
Bloch vector. The QFI is optimized by states [(pxy) = (|0) +
e 1?1))/v/2 (i.e. 8 = 71/2), and has the value

Sep,xy _ 1

—_. 24
b p(1-p) (24)
The optimal strategy leads to
o 25
P p(1-p)’ (25)

which is equal to I;ip’xy = I;ip, showing that the state

|y is optimal for the separable strategy (since Igﬁt is an
upper bound for the QFI of the separable strategy, and this
upper bound is reached with the states |ixy)). For ideal
phase-flip channels the extension is thus useless, in the
sense that we can achieve the same sensitivity with sep-
arable states or entangled ones !. Here both benchmarks
(24) and (25) are equal. Hence there is no metrological in-
terest in adding any ancillas. Nevertheless, from a mathe-
matical perspective it is still interesting to see the effect of
adding ancillas and losing a fraction of them.

1 This is a well known fact. Indeed, in [20](part 4.) the authors em-
phasized that when estimating the parameter of a Pauli channel lying
on the boundaries of the tetrahedron of the simplex representing the
different Pauli channels, non-maximally entangled states may be as
efficient as maximally entangled ones. They also noticed that for the
phase damping channel and for the bit flip channel a separable state
is already optimal.
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2.6 Used input states

For feeding our extended channels we consider two kinds
of entangled states, GHZ states and W states. The GHZ
(Greenberger-Horne-Zeilinger) state for n + 1 qubits is de-
fined as

1
V2

with 0,0n) = [0)1 ® [0)2 ® **+ ® [O)ns1, [0,1n) =
10)1®[1)2®+-®[1)ns1, [1,0n) = [1)1©[0)2 @+ @ |0)ns1
and |1,1,) = 1)1 ®|1)2 ®*++ ®|1)p+1. Here and in the fol-
lowing, the first Hilbert space is the one of the probe and
all the others are for ancillas, and we take n > 1. When
n = 1, the GHZ state [)141) is equal to the Bell state |¢p.).
GHZ states are very prone to decoherence, in the sense
that if even a single qubit is lost (traced out), we end up
with a mixed non-entangled state (see eq.(41) below). We
define the density matrix p®H%7 = |pGHZ™Y (yyCHZR

[WSHZmy = (10, 00) + 1, 1)) , (26)

The W state for n + 1 qubits, W-n for short, is defined

as
n+1

W-n 1
= 1), 27
with [1;) =[0)1 ® -+ ®]0);-1 ®[1); ® |0)j41 @+ +* ® |0)ns1,
vi € {1,---,n + 1}, i.e. it corresponds to a single exci-

tation distributed evenly over all qubits. The case n = 1
gives also a Bell state: [(pV'1) = |@.). We also define pV'™" =

P

3 Estimation of the ideal quantum
channels

We start with the situation where no qubits are lost, and
determine the QFI for both GHZ and W states for the two
channels that we are interested in.

3.1 Depolarizing channel

3.1.1 GHZ states

For the depolarizing channel acting on the GHZ state, we
define
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GHZ-n = ‘Sg?p (pGHZ-rl) (28)

P dep
2

72 (10,00)(0,0n | +[1,1n)(1, 1n )

1-p
2

+2.(11,00)(1,00]+]0,10)(0, 1n]) . (29)

+

(|1a1n><0,0n‘+|O’0n><1aln|)

The density matrix has rank four for n > 1 (while forn =0
it has rank 2), but eigenvalues and eigenvectors are still
found easily,

Ufep= %, gepz%’agepz 1_3719’02@:%7
1S9P) = 10, Ln), [s3P) = |1, On),

d 1
s5F) = 7 (10,0n) +11,15)) ,

d 1
s, ) = 5 (10,00) = 1,1n)) .

The eigenvectors are independent of p, and the QFI re-
duces to its classical part,

IGHZ-n _ 3 _ yopt
dep

S R—
p(a=3p) ~ e

The QFI is independent of the number of ancillas forn > 1
and equals the QFI corresponding to the optimal case.

(30)

3.1.2 W states

For the depolarizing channel and the W states we have

Picy = EagpP™ ")

n+1
=L( . .
e D) \o,on><o,on|+;|1,11><1,1,\
n+1 2—p n+1
#1510 1) + 50 2B (211001
1,j=2 i=1
i
n+1 1_p n+1
£ 1Y1) + 0 h S0 (1)L,
1,j=2 i=2
i

with [1,1;) = [1)1 ® [0)2 ® -+ ® [0);-1 ® |1); ® [0)js1 @
©++®]0)ps1, Vi € {2, -+ , n+1}. The matrix representation
in the computational basis has a block structure whose
blocks are studied in the appendix, with three non-zero
blocks:

- a first trivial 1x1 block composed by the eigenvalue
p
2(n+1)*

— asecond block G™(a) with a = 5D
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Figure 1: QFI with no loss of qubits. Top plot (depolarizing channel):
dotted line: GHZ (optimal strategy); 1-dash line: W-5; 2-dash line: W-
10; 3-dash line: W-20; full line: separable state. Bottom plot (phase-
flip channel): dotted line: GHZ (optimal separable scheme); 1-dash
line: W-5; 2-dash line: W-10; 3-dash line: W-20; 4-dash line: W-50.

~  athird block K™*(a, b, @) with a = 5B and b =
1_
=k,
This leads to the QFI
Won 1 (Bp-4Q+nn+4)/1+n)?)
Idep = . (€3]
p(2-p) (Bp-4)

Even if this analysis is restricted to n > 1, the eq.(31) for
n = 0 gives the correct QFI. We notice that Idep decreases
as function of n, i.e. adding ancillas reduces the efficiency
of the scheme (see top plot in Fig. 1 or bottom plot in Fig.
2). When we go to an infinite number of ancillas,

sep

1
IW n >,
€p

© e p2-p) G2)

i.e. we come back to the case without ancilla.
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3.2 Phase-flip channel

3.2.1 GHZ states

Let pGpZm = Sgg (p®H%M). Applying the Kraus operators,

one obtams immediately

GHZ-n

1
Pph :*(|0,0n><0,0n|+‘1,ln><1,1n|)

12p

(11,10)(0,0n[ +]0,0n)(1,1n]) . (33)

The QFI for p, IGHZ " is easily found as the operator
has rank two. The elgenvalues o?h and eigenvectors \s?h>

OprHZYl
d=p , "=1-p
h 1 h 1
|s57) = ﬁﬂo, On) = [1,1n)) , [s5) = ﬁ(\0,0n>+\1,1n>) .

(34)
The eigenvectors are independents of p, which means that
the QFI has just the (classical) contribution from the eigen-

values,
GHzn _ 1

P p(1-p)
We see that the QFI for a (n + 1)-qubit GHZ state used to
estimate a phase-flip channel is independent of the num-
ber of ancillas and is equal to the optimal QFI achieved by
using either a separable state or a Bell state (but requires
more resources in terms of qubits).

— yopt

- 1% (35)

3.2.2 W states

The state after acting with the phase-flip channel on the W

states, p." = 8;’3 (p™W™), is given by

n+1 n+1

o = Z|1 (11+ > 111
i,j=2
i#]

'|+1i><11|)>- (36)

n+1
n+1 (Z(I 1o
The matrix representation of this state in the computa-
tional basis admits a direct sum decomposition (block
structure of the matrix) with a single non-zero block, of the
general form K™*V(a, b, a), where a = ;1; and b = 1-22.
Using eq.(62) and the normalized version of eq.(63) we

can compute the QFI,

4n opt

™ 4n 1 _
(1+n)27ph”

M () p(i - p) 67
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This result shows that the QFI decreases with increasing
number of ancillas in the W state (see bottom plot in Fig.
1 or bottom plot in Fig. 3): In agreement with the known
result on optimality, the prefactor f(n) = (11‘72)2 satisfies
f(n) < 1 forn > 1. When n goes to infinity, f(n) tends to
zero, leading to vanishing QFI. Even though our analysis
is restricted to n = 1, for n = 0 the W state reduces to |1)
which has vanishing QFI such that eq.(37) is still correct.

In Fig. 1 we plot the QFI for depolarizing and phase-flip
channel as a function of p when no qubits are lost. We see
that the GHZ states gives the highest QFI (we do not have
to specify the number of ancillas in the GHZ states since it
does not change the QFI). For the W states we observe the
decrease of the QFI when increasing the number of ancil-
las, and the convergence either to the performance of the
separable strategy for the depolarizing channel, or to zero
for the phase-flip channel.

4 Losing particles

In the section 3 we looked at the QFI for GHZ and W states
in the ideal situation of no particle loss in order to check
how far we are from the optimal case. We now investigate
the effect of losing one particle.

4.1 General considerations
Consider a general extended quantum channel Eext = Ep®
Id, acting on p as

Sext(p) = Z EkPEJr = Z(Fk ® JA),O (Fz ®J4).
k k

(38)

We use subscripts P and A for probe (the first system) and
ancilla, respectively.

We model the loss of one of the systems by tracing it
out after applying the channel. Physically it means that the
state undergoes properly the channel, and that after this
and before the measurement, one of the systems is lost.
We denote the state which underwent the channel evolu-
tion Eex¢ and then the loss of the probe as pie’“. Direct cal-
culation shows that in all generality

piem = Tl'p [Eext(p)] = Tl'P [p] s

the reduced initial state of the ancilla. In this case there is
nothing left to estimate: we cannot get any information on
the extended channel by measuring only the ancilla.

Ifitis the ancilla that is lost after the application of the
extended channel on the initial state we have

P5 = Try [Eext(p)] = Ep(Tra [p]).

(39)

(40)
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In this case, losing the ancilla after extending the chan-
nel is equivalent to starting with the non-extended chan-
nel acting on the reduced state of the probe. Losing the
probe after applying the channel, or starting with an initial
state which already suffered the loss of the probe is hence
equivalent. From this point of view, our subsequent study
amounts to considering new initials states.

4.2 Depolarizing channel

We start the study of the effect of the loss of an ancilla by
the depolarizing channel.

4.2.1 GHZ states

When tracing out a qubit from the GHZ state we end up
with the mixed state

Tr, {pGHZ-n} =p?HZ-n _ (| 0,051 )(0, 01 |
11, L1 (L L [) /2. (4D)
We are interested in the QFI ISHZT of the state pSHZI =

dep,1 dep,1 —
T, [el (o042

trace, and on the QFI indicates that we lost one ancilla. In

virtue of eq.(40) we can also write the state pGi ;' as

. The subscript ”1” on the states, on the

pgg)zy-f _ 8("’1)(Tr1 {pGHZ-n] ) (42)

dep

_2-p
7

+ 2 (11,000)(1, 001 [ 10, 244 )(0, Lt ) -
(43)

(‘ Or On—l ><09 On—l | + I 19 1n—1 >< 1) 1n—1 |)

For n = 1 the state has only rank two, and is actually the
totally mixed state of one qubit, which is a stationary state
of the depolarizing channel and thus leads to a vanishing

QFI,
JGHZL _

dep,1 — (44)

From eq.(43) we obtain directly the QFI forn > 1,

: 1
IGHZ no_ , ( 45)
L " p2-p)
which is the same QFI as for the non-extended channel ap-
plied to a pure state, I;?;. This means that instead of start-
ing with a pure state of a single qubit, we can also start

with the mixed state (41) and use the extended channel.
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Figure 2: Effect of the loss of one ancilla qubit on the QFI for the
depolarizing channel. Top plot: dotted line: optimal strategy / GHZ
with no loss; 1-dash line: W-2 with no loss; 2-dash line: W-2 with
one lost; 3-dash line: W-5 with no loss; 4-dash line: W-5 with one
lost; full line: separable scheme / GHZ with one qubit lost. Bottom
plot (p = 0.2): full circles: GHZ with no loss; diamonds: W states
with no loss; triangle up: W states with one ancilla lost; squares:
separable scheme / GHZ with one ancilla lost.

4.2.2 W states

After propagation of a W state through the extended de-
polarizing channel and the subsequent loss of an ancilla
qubit, the state of the system

[83’;}(;)""'")}

(10,00-1)¢0,0p-1 | +[11)(11])

W-n
pdep,l

n+1

2(n+1)Z:|1 {1 |+1 pzﬂll

1) (1) + 1)Z|11 (L,15], (46)

has a block structure with three non-vanishing blocks:

— a first non- contributing 1 x 1 block composed by the
eigenvalue —1;.

~ asecond block """V (a) with a = D
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- athird block K™ (a, b, ¢) with a = %, b =12 and
c=-L.
This leads to
wn _n-1 n2p-3)-9 “7)
dp.l = n+1p2p-3)2n-pn-1)°

We show in Fig. 2 the effect of the loss of one ancilla
when estimating the depolarizing channel. In the top plot
the QFIis represented as a function of p for GHZ states with
and without loss, and also for W-2 and W-5 with and with-
out loss. We see that although W-2 is more efficient than
W-5 in the ideal case, when one qubit is lost W-5 fairs bet-
ter than W-2. In the bottom plot we represent the QFI as a
function of the number of initial ancillas. We see that by
increasing n the two curves representing the W states with
one ancilla lost and the W states without loss converge to
the QFI achieved with the separable strategy.

4.3 Phase-flip channel

We now turn our attention to the phase flip channel. For
the GHZ state we have pg}ﬁlzl'" = [E(H)(pGHZ n)}

Sgﬁ D(pSHZn) But the mixed state p§H%™ is a stationary

state of Egﬁ 1), and thus there is nothing to estimate,

GHZ-n _
18z _ o,

For the W state the state of the system is pJi", =

Try {Sgg(pw‘")} = é’g;l‘l)(Trl {pw'"} ). Direct calculation
gives

W-(n-1)

TS ()

W-
pph?l n+1‘0 On- 1><0a0n—1|
Note that pph } can be written as a direct sum. Since the
first block does not depend on p, we can compute the QFI

directly from the second block,

w-n-1) _ 4n-1) 1
n+1ph nn+1)p(1-p)°
We see in the top plot of Fig. 3 that this time W-2 has a larger
QFI than W-5 with and without loss. In the bottom plot we
observe the convergence of the QFI to zero for the W states
in the ideal case and with one ancilla lost.

W-n n

Inh = (49)

5 Generalization to the loss of 1
ancillas
Now we consider the situation where we lose [ ancillas,

1 < | < n. Since this loss channel acts only on the an-
cilla space it commutes with the channel acting on the
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Figure 3: Effect of the loss of one ancilla qubit on the QFI for the
phase-flip channel. Top plot: dotted line: GHZ with no loss / optimal
separable scheme; 1-dash line: W-2 with no loss; 2-dash line: W-2
with one qubit lost; 3-dash line: W-5 with no loss; 4-dash line: W-5
with one qubit lost; full line: GHZ with one qubit lost. Bottom plot

(p = 0.2): full circles: GHZ with no loss / optimal separable scheme;
diamonds: W states with no loss; triangle up: W states with one
ancilla lost; squares: GHZ with one ancilla lost.

probe, and the situation is equivalent to starting with a
state which underwent already the loss of the ancillas.

5.1 Depolarizing channel
5.1.1 GHZ states

When one starts with a GHZ state and loses [ qubits, the
state becomes

Try [p%%7] = (10,0,1)(0, 001 +1 1, Lyt ) (1, Lot /2

(50)
Losing one ancilla or I = 2 ancillas makes no difference
for the QFI. Indeed the GHZ state is so sensitive to loss of
particles that losing one qubit or more always leads to a
mixed state of the same form (see Sec.1). We thus have for
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the depolarizing channeland 1 <l<n-1

sep _ 1

GHZ-
Idep,lrl = dep — p(z _p) ’ (51)
and forn =1
5 = 0. (52)

5.1.2 W states

For the W state, the situation is substantially different
since the form of the state depends on the number of lost
ancillas:

: 5 l
p}Nn = Tr [pW"} = m\o,on_1><0,0n-l|

n+1-1 wm

n+1 (53)

For the depolarizing channel, the state

pien1 = T |pien

_20-p(l-1)
—W|O,On—l><0,on—l|
+w|1 )1 |+2;pn+zkl|1.><1.|
2(n+1) 1 1 2(n+1) & 1 ]
n+1-1
+ 1-p

n+1

DU (Li+]1) (1))
i2

n+1-1
p
—_— 1,1;)(1,1;
IR
i,j=2
has three non-vanishing blocks:
— afirst 1x1 block composed by the eigenvalue 212’(1,’; (+11)1) .

~ asecond block G"""!(a) with a = ICrL
- athird block K"*1)(a, b, )with a = 225, b = L2
_ 2+p(l-1)
and ¢ = 2(n+1) *
They lead to the QFI

e, - { ~2p ( “2(l +2) - Dn? + 1AL +2) - 9)n
+I(I(31+4)—9)+8n+2) +(1-1)(1+3)(n+1p*l1-n-1)
+ 411+ 2)(n+3)(1 - n)} /{(n + Dp((I-1)p-21)

((+3)p-2(+2)1Q2 - 2p) + (n+ 1)(p - z))} . (59
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Figure 4: QFI for the depolarizing channel for a W state with n an-
cillas and I lost ones (p = 0.2). The full line corresponds to the
separable strategy or GHZ with loss, the dashed line to the case
where no ancillas are lost (I = 0) and the 1-dash line to the case
where all ancillas are lost (I = n).

One checks that by setting [ to zero or to one we recover
our previous results (31) and (47), respectively. In terms
of gain due to extension, we can calculate the number of
lost ancillas as a function of the number of initial ancillas
such that the scheme stays more efficient than the sepa-
rable strategy. This function is cumbersome but actually
behaves mainly linearly with a slope of 0.5. This means
that when more than half the ancillas are lost, the strategy
of using W states becomes less efficient than the separa-
ble strategy. But for depolarizing channel, this strategy is
equivalent to the use of a GHZ state with some ancillas lost
(45,51). Thus this bound gives us also the value of [ as a
function of n for which it is worth to start with a GHZ state
rather than with a W state. This is visualized in Fig. 4, rep-
resenting the QFI for the depolarizing channel as a func-
tion of n and 1, and where the full black line represents the
QFI for the separable strategy or GHZ with loss.

In Fig. 5 we demonstrate the effect of the loss on the
estimation of the depolarizing channel. In the top plot we
show the QFI as a function of p. We plot the optimal result
(dotted line) and the separable strategy (full line). The dif-
ferent dash lines show W-8 with either no loss, or two, or
six ancillas lost. In agreement with the bound discussed
in the previous paragraph, for six ancillas lost in W-8 , the
protocol is less efficient than the separable one / GHZ with
loss. In the bottom plot we show the QFI for the depolar-
izing channel as a function of the number of lost ancillas.
We observe that W states with a larger number of ancillas
are more resistant to the loss of qubits, but have a lower
initial QFI. There is a compromise for the optimal choice
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of n in a W state between initial QFI and robustness to the
loss. When the number of lost ancillas equals roughly half
the number of initial ancillas, the W states become less ef-
ficient than the GHZ states (this is more clear in the sub-
plot). When all the ancillas are lost, the QFI still not van-
ishes, provided that n > 1: Setting [ to n in eq.(55), leads to

(n-1)?
Q+n-p)p+n2-p)’

which converges to I;‘Zg when n goes to infinity. For n = 1,

W-n _
Idep,n -

(56)

I(‘fé'ﬁ,l =
I
6r W\
o \\‘
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Figure 5: QFI for depolarizing channel for arbitrary loss. Top plot:
dotted line: GHZ with no loss; 1-dash line: W-8 with no loss; 2-dash
line: W-8 with 2 lost; 3-dash line: W-8 with 6 lost; full line: separa-
ble strategy / GHZ with one lost. Bottom plot (p = 0.2): 1-dash line:
W-15 with no loss; full circles: W-15 with loss; 2-dash line: W-20 with
no loss; squares: W-20 with loss; 3-dash line: W-25 with no loss; di-
amonds: W-25 with loss: triangle up: separable strategy / GHZ with
one lost.

5.2 Phase flip channel

Again, for the sake of comparison, we give a brief look at
the phase-flip channel. For the GHZ statesand 1 < Il < n
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the QFI vanishes,
IGHZ-n 0.

ph,l — (57)

In the case of the phase-flip channel, the state (53) af-
ter application of the channel and loss of I ancillas has the
form of a direct sum involving a known state, leading to
the QFI

4(n-1) 1
(n+1)n+1-Dp(1-p)°

As expected, the QFI decreases as function of I: The more
ancillas are lost the worse is the estimation. When all an-
cillas are lost the QFI vanishes, since the resulting state is
insensitive to the phase-flip channel.

This is demonstrated in Fig. 6. The top plot shows the
QFI as a function of p. In the bottom plot p = 0.2, and we
plot the QFI as a function of the number of lost ancillas for
W states. The more ancillas we add the smaller the initial
QFI, but also the QFI decreases more slowly as function
of I. This leads to an optimal number of initial ancillas for
a given number of ancillas lost, even though we have to
remember that for the phase-flip channel the best strategy
is to not use any ancillas at all (see Sec.2.5).

(58)

wn _n+1 -1 W-(n-1) _
it = =yt T =

5.3 Gain versus robustness

There is a competition between the initial value of the
QFI and the robustness for W states for both channels (al-
though for the phase-flip channel we know that the opti-
mal scheme is the non-extended one).

For the depolarizing channel, when looking at the bot-
tom plot in Fig. 5, we see that while in the ideal case (I = 0)
W-15 is more efficient than W-25, this is already no longer
true when six ancillas are lost as the inset clearly shows.
More generally there exists for a given fixed number [ of an-
cillas lost an optimal number nqp gep (D) of initial ancillas
in the W state, see top plot of Fig. 7. The function np gep ()
has a complicated form, but its leading term is given by

nopt,dep(l) =~ (2 + (59)

2 ) L
V2-p
which for p = 0.2 gives roughly 3.51. We see that this is
in good agreement with the inset of the top plot of Fig. 7.
Nevertheless, when increasing the number of ancillas in
the W state we get a QFI closer to the one of the separable
strategy, and thus the small gain in QFI may not justify the
use of so many ancillas. As an example, when losing fif-
teen ancillas, the best W state is W-55 (the leading term in
this case will give ngp; gep = 52 or 53), but its QFI equals
2.81 and the QFI for the separable strategy equals 2.77.
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Figure 6: QFI for phase-flip channel for arbitrary loss. Top plot: dot-
ted line: optimal strategy / GHZ with no loss; 1-dash line: W-10 with
no loss; 2-dash line: W-10 with 6 lost; 3-dash line: W-10 with 9 lost;
full line: GHZ with at least one ancilla lost. Bottom plot (p = 0.2):
1-dash line: W-15 with no loss; full circles: W-15 with loss; 2-dash
line: W-20 with no loss; squares: W-20 with loss; 3-dash line: W-25
with no loss; diamonds: W-25 with loss: triangle up: GHZ with loss
(GHZ without loss is not represented).

A similar behavior is observed for the phase-flip chan-
nel. Although there the optimal strategy consists to not
add any ancilla, the study of the QFI for a fixed number
of lost ancillas leads also to a maximum as represented in
the bottom plot in Fig. 7. We can here too calculate the opti-
mal number of initial ancillas as a function of lost ancillas
in a W state

U+Vi+l =1 if It > ot
Noprpn(@ = MT+V1+1 =1 if Iy <IiE, (60)

. Wolp _ gW-le
if Iph’l = Iph’l s

{Ig, Ic}

with | | the floor function and [] the ceiling function. Thus
Nopt,ph SCales roughly linearly with L.
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Table 1: Summary for the depolarizing channel
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State ‘ Benchmark H State ‘ Ideal case ‘ l ancillas lost
Maximally entangled | Optimal: Ig':; = ﬁ. GHz Still optimal. 1 = 1: goes back to separable.
(n ancillas) 1 = n: QFl vanishes.
Separable IZ‘;E’) = ﬁ w Decreases with n. In between | Exists an optimal n for a given L
(pure state) (independent of the state). || (n ancillas) | optimal and separable. Adding ancillas can protect the QFI.

2.9-

Q. 2.8~
)

S

2.7

2.6-

Figure 7: Main plots: QFl as a function of the number of initial an-
cillas in a W state for a fixed number of lost ancillas. The full circles
correspond to three ancillas lost, the squares to four, the diamonds
to five, and the triangle to six. In the insets we see the optimal num-
ber of initial ancillas in a W state as a function of the number of lost
ancillas. The top plot corresponds to the depolarizing channel, the
bottom one to the phase-flip channel (p = 0.2).

6 Conclusions

We investigated the robustness of channel estimation
schemes for depolarizing and phase-flip channels of
qubits extended to ancilla qubits, when one or several of
the qubits can get lost. Without loss of qubits, the optimal
estimation strategy consists for both channels in extend-
ing the channel by a single ancilla qubit that remains un-

touched, but feeding the whole channel with a maximally
entangled state [20].

For the depolarizing channel this leads, when no
qubit is lost, to a real improvement compared to the non-
extended case. For the phase-flip channel the maximum
quantum Fisher information (QFI) can also be achieved
with a non-extended channel fed with a specific pure state,
showing that no extension is necessary. We extended this
investigation to the case where an arbitrary number of
qubits can be added or lost, including the original probe
qubit. We used GHZ and W states as input states for the
channels.

For the GHZ states, the QFI in the absence of loss is
equal to the optimal one for both channels, independently
of the number of ancillas. In the presence of loss, for the
depolarizing channel and provided that not all the ancil-
las are lost — in which case the QFI vanishes —, the QFI is
independent of the number of lost ancillas and equals the
one of the non-extended case. For the phase-flip channel
the loss of already one ancilla leads to a vanishing QFI.

For the W states, the QFI for the depolarizing channel
without loss decreases with the number of added ancillas.
While for one ancilla we are in the optimal case, when the
number of ancillas goes to infinity the QFI goes to the QFI
of the separable strategy. The interesting point lies in the
fact that the W states are more resistant to loss, as for a
fixed number of lost ancillas, there always exists a W state
with larger QFI after the loss of these ancillas than the one
of the separable strategy. In this sense the W states, al-
though not optimal without loss of qubits, can lead to a
better estimation in non-ideal situations for the depolariz-
ing channel. We summarized the main results for depolar-
izing channel in the table 1. The resistance to loss is also
observed in the phase-flip channel, but does not lead to
any improvement in estimation, since it is still better to not
add ancillas at all.
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A Appendix: decomposition of

matrices

In order to calculate the QFI we need to diagonalize the
density matrix. For the states in which we are interested,
there are two matrices K™ (a, b, ¢) and G™(a) that recur-
rently appear in the block decomposition of the states:

The m x m matrix K™ (a, b, ¢):

a -+ a b

K™ (a, b, c) = : (61)
a -+ a b
b --- b ¢

This matrix has rank two, the two non-zero eigenval-
ues

AU _

% <c+a(m—1)1\/(c—a(m—l))2+4b2(m—1)> ,
(62)

and the two corresponding non-normalized eigenvec-
tors

v - @b, ,2p,YH), (63)

with YﬁK) = c—a(m—l)i\/(c —a(lm - 1))2 +4b%2(m - 1).

The m x m matrix G™(a):

a oo a
Cm@=|: .. |, (64)
a oo a
which only non-zero eigenvalue is
AG™ _ ma, (65)

and the non-normalized corresponding eigenvector is

viem(q) = (1,+++,1). (66)
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