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Abstract: We consider quantum channel-estimation for

depolarizing channels and phase-�ip channels extended

by ancilla qubits and fedwith aGHZorWstate. After appli-

cation of the channel one or several qubits can be lost, and

we calculate the impact of the loss on the quantum Fisher

information that determines the smallest uncertainty with

which the parameters of these channels can be estimated.
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1 Introduction
With the rise of quantum information processing the need

to precisely characterize quantum devices has become an

important practical issue. Contrary to classical bits, qubits

have a continuous range of possible pure states, and their

phase coherence is crucial for quantum algorithms. Under

the in�uence of the environment, qubits su�er decoher-

ence processes which can manifest themselves not only

in a �ip of the bit, but also in a loss of phase coherence.

If the corresponding error rates are small enough, quan-

tum error-correction can be applied, which, when con-

catenated, allows one to ultimately perform meaningful

quantum computations. For the development of the hard-

ware and optimization of the quantum error correction it

is, however, crucial to precisely know the error mecha-

nisms and rates. This amounts to performing a “quantum

channel-estimation”. For a single qubit, the set of possi-

ble quantumchannels and their possible parametrizations
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are well known by now [3, 6, 19], and quantum channel-

estimation amounts hence to estimating these parameters.

Quantum channel-estimation is therefore very simi-

lar to quantum parameter estimation (q-pet), where one

tries to estimate the parameters that determine a quan-

tum state. Q-pet is very well developed, starting with

work by Helstrom and Holevo in the 1970s and Braunstein

and Caves in the 1990s [8–10, 23–25]. This led to the im-

portant insight that the smallest possible uncertainty of

the estimation of a parameter is fully determined by the

parameter-dependence of the quantum state. The quan-

tum Cramér-Rao bound (QCRB) quanti�es this smallest

uncertainty and generalizes corresponding results from

classical statistical analysis from the 1940s [14, 41]. The

theoretical framework has been used to analyze the ulti-

mate possible sensitivity of gravitational wave observato-

ries [29],Mach-Zehnder andatomic interferometers [22, 26,

35, 44], measurements of time [9], mass [4, 5], tempera-

ture and chemical potential [13, 32, 33, 42], parameters of

space-time [1, 7], and many more.

In addition to the optimization over all possible mea-

surements and data analysis schemes that is inherent in

the QCRB, quantum channel-estimation allows one to also

optimize over the input state. It has long been known that

using highly entangled states can enhance the precision

of certain measurements beyond what is possible classi-

cally [21], even though measurements exist where such

enhancements do not need entanglement, or the natu-

rally occuring “entanglement” due to the symmetrization

of states of identical particles is enough for improved per-

formance [2, 16, 31].

It is also known that thequantumadvantage canbreak

down very rapidly with the smallest amount of decoher-

ence. For example, Markovian decoherence, no matter

how small, always leads back to the so-called standard

quantum limit of the uncertainty of atomic clocks, when

these are operated with a highly entangled GHZ state [27].

From interferometry it is well known that GHZ states are

alsomaximally fragile against loss of qubits: Even the loss

of a single one turns the state into a uniform mixture of

the original pure components in the Hilbert space of the

remaining particles, and hence erases any useful phase in-
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formation [28]. W states are more robust here, as are “en-

tangled coherent states” [46].

One might wonder then, how useful highly entan-

gled states are formeasuring decoherence processes them-

selves. Interestingly, it was found by Fujiwara and Imai

that the best estimation of a Pauli quantum channel of a

single qudit can be achieved by sourcing a maximally en-

tangled state into the channel extended by just one more

qudit [20]. Frey et al. studied the depolarizing channel and

considered the performance of several extension schemes

[17], and Collins and coworkers examined the depolarizing

channel and the phase-�ip channel fed with mixed states

[11, 12].

In the present work we investigate channel estimation

for the depolarizing channnel and the phase-�ip channel,

when these channels are extended by using several ancilla

qubits. We consider GHZ states and W states as input and

investigate the e�ect of loss of one or several of the qubits,

both the original one or the ancillas, on the precision with

which the parameters of the channels can be estimated.

2 Quantum estimation of channels

2.1 Channels

Let B
1
= B(H

1
) be the space of bounded linear opera-

tors acting on a �rst Hilbert space H
1
and B

2
= B(H

2
)

the space of bounded linear operators acting on a sec-

ond Hilbert space H
2
. A quantum channel E is a com-

pletely positive trace preserving (CPTP) convex-linear map

E : B
1
→ B

2
that maps a density matrix (i.e. a posi-

tive linear operator with trace one) to another density ma-

trix, ρ ∈ B
1
7→ σ ∈ B

2
. The condition of complete pos-

itivity means that the channel should be a positive map

(i.e.maps positive operators to positive ones), but also that

the extension E ⊗ Id of the channel to ancillary Hilbert

spaces H, where it acts by the identity operator, should

be a positive map, i.e. (E ⊗ Id)(A) ≥ 0 for any positive op-

erator A inB(H
1
⊗H), the space of bounded operator act-

ing on the bipartite system H
1
⊗ H [36]. Trace preserva-

tion is de�ned as tr

[
E(ρ)

]
= tr[ρ], and convex linearity as

E(
∑

i piρi) =

∑
i piE(ρi) for all pi with 0 ≤ pi ≤ 1 and∑

i pi = 1. According to Kraus’ theorem, a quantum chan-

nel can be represented as

E(ρ) =
∑
i
EiρE†i , (1)

where the Kraus operators {Ei} satisfy
∑

i E
†

i Ei = I
2
, the

identity operator on the target Hilbert spaceH
2
[30].

In the followingwe study the twophysically important

channels “depolarizing channel” and “phase-�ip chan-

nel” for a single qubit [36]. The depolarizing channel de-

scribes relaxation,

E
dep

(ρ) = p I
2

+ (1 − p)ρ , (2)

i.e. the qubit is replaced with probability p (the “depolar-

ization strength”) by the totally mixed state. Its Kraus de-

composition is given by

E
dep

(ρ) =
4∑
i=1

Ei ρ E†i , (3)

with the four Kraus operators:

E
1
=

√
1 − 3

p
4

I, E
2
=

√
p
4

X, E
3
=

√
p
4

Y , E
4
=

√
p
4

Z ,

where X, Y and Z are the three Pauli matrices.

The phase-�ip channel has the Kraus representation

E
ph
(ρ) =

2∑
i=1

Fi ρ F†i , (4)

with the Kraus operators

F
1
=

√
1 − p I , F

2
=

√p Z , (5)

i.e. with probability p the phase of the qubit is �ipped.

We also de�ne extensions of these channels by the

identity to n ancilla qubits, on which the channels act

through the identity operation. For the depolarizing chan-

nel we have

E(n)
dep

(ρ) =
(
E
dep
⊗ Id · · ·⊗ Id

)
(ρ) =

4∑
i=1

Γi ρ Γ†i , (6)

where the Kraus operators Γi of the extended channel are

de�ned as Γi = Ei ⊗ I⊗n.

Similarly, we extend the phase-�ip channel to n an-

cilla qubits by

E(n)
ph

(ρ) =
(
E
ph
⊗ Id · · ·⊗ Id

)
(ρ) =

2∑
i=1

Λi ρ Λ†i (7)

with the new Kraus operators Λi = Fi ⊗ I⊗n.

2.2 Quantum parameter estimation

Quantum parameter estimation theory (q-pet) [8, 9, 23,

24] provides a lower bound on the variance of an un-

biased estimator
ˆθ
est

of a parameter θ on which a state

ρ(θ) depends. Its importance arises from the facts that
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(i) it is optimized already over all possible measurements

(POVM measurements, generalizing projective von Neu-

mann measurements [38]), and all possible data analysis

schemes in the formof unbiased estimators (i.e. estimators

that on the average give back the true value of the parame-

ter); and (ii) the bound is reachable at least asymptotically,

in the limit of an in�nite number of measurements. This

so-called quantum Cramér-Rao bound (QCRB) is given by

Var(
ˆθ
est
) ≥

1

M I(ρ(θ)) , (8)

with M the number of independent measurements and

I(ρ(θ)) the quantum Fisher information (QFI). In [8] it was

shown that I(ρ(θ)) is a geometric measure on how much

ρ(θ) and ρ(θ + dθ) di�er, where dθ is an in�nitesimal in-

crement of θ. The QCRB thus o�ers the physically intuitive

picture that the parameter θ can be measured the more

precisely the more strongly the state ρ(θ) depends on it

(see below for a precise de�nition). The geometricmeasure

is given by the Bures-distance,

d
B
(ρ , σ)2 ≡ 2

(
1 −

√
F(ρ, σ)

)
, (9)

where the �delity F(ρ, σ) is de�ned as F(ρ, σ) =

||ρ1/2σ1/2||2
1
, and ||A||

1
≡ tr

√
AA† denotes the trace norm

[34]. With this, I(ρ(θ)) = 4 d
B

(
ρ(θ) , ρ(θ + dθ)

)
2

/dθ2 [8].

The Bures-distance is in general di�cult to calculate for

mixed states, but for pure states ρ(θ) = |ψ(θ)〉〈ψ(θ)|,
the QFI reduces to the overlap of the derivative of the

state, |∂θψ(θ)〉, with itself and the original state, I(ρ(θ)) =
4(〈 ∂θψ(θ) | ∂θψ(θ) 〉 − |〈 ∂θψ(θ) |ψ(θ) 〉|2) [37].
When the state is not pure we can still give a closed for-

mula by using the spectral representation of the state. For

ρ(θ) =
d∑
i=1

pi|ψi 〉〈ψi | , (10)

the QFI can be written as

I(ρ(θ)) =
d∑
i=1
pi≠0

(∂θpi)2
pi

+

d∑
i,j=1
pi+pj≠0

2(pi − pj)2

pi + pj
|〈ψj | ∂θψi 〉|2 ,

where the �rst term is called classical contribution and the

second quantum contribution.

The QFI obeys the “monotonicity property” under θ-
independent channels E

I(E(ρ(θ))) ≤ I(ρ(θ)) , (11)

with equality for unitary channels U, de�ned by U(ρ) =

Uρ U† [39] with U unitary. The QFI has also the property of

convexity, meaning that for two density matrices ρ(θ) and
σ(θ) and 0 ≤ λ ≤ 1 we have [18]

I(λρ(θ) + (1 − λ)σ(θ)) ≤ λ I(ρ(θ)) + (1 − λ) I(σ(θ)) . (12)

A last useful property of the QFI is the additivity:

I(ρ(θ)⊗ σ(θ)) = I(ρ(θ)) + I(σ(θ)) . (13)

For a state that depends on several parameters θ =

(θ
1
, . . . , θn), the QCRB generalizes to an inequality for the

co-variance matrix of the estimators of the θi, with a lower

boundgiven by the inverse of the quantumFisher informa-

tion matrix. In contrast to the single parameter case, this

inequality can in general not be saturated (see [43] and ref-

erences therein) but one can still try to optimize the trade-

o� in joint estimation (see [15, 45] for estimation of phase

and noise simultaneously).

2.3 Quantum channel-estimation

2.3.1 General considerations

We consider channels Eθ depending on a scalar parameter

θ, and perfectly known initial states ρ independent of θ.
After the evolution of ρ through the channel, we obtain a

state parametrized by θ with QFI

I(ρ(θ)) = I(Eθ(ρ)) (14)

that can still be optimized over ρ. Due to the convexity of

the QFI, its maximal value can be achieved with a pure

state. The fact that a quantum channel is a completely pos-

itivemapallowsone to extend it to a largerHilbert spaceby

actingwith an arbitrary quantum channelA on theHilbert

space of the ancilla,

Eext,Aθ = Eθ ⊗A . (15)

According to an argument by Fujiwara [18], the largest

QFI with a parameter independent A can be achieved al-

ready by choosing for A the identity channel in the ancil-

lary Hilbert space: Since Eθ ⊗ A can be decomposed as

(Id⊗A)(Eθ ⊗ Id), monotonicity of the QFI implies that the

best choice for (Id ⊗ A) is a unitary channel, which is the

case when A is a unitary channel. The simplest solution

consists in taking the identity channel and thus, in the fol-

lowing, when we refer to extensions, we always mean an

extension by the identity channel in the Hilbert space of the
ancilla.

2.3.2 Estimation of depolarizing and phase-flip
channels

For both depolarizing and phase-�ip channels, the param-

eter to be estimated is p. To avoid cumbersome notation,
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we omit the dependence on p in the states, the channels,

and the QFI.

For the depolarizing channel acting on one qubit, all

states related by a p-independent unitary transformation

U give rise to the same QFI, as

E
dep

(UρU†) = UE
dep

(ρ)U† , (16)

coupled to the fact that the QFI is invariant under

parameter-independent unitary transformations of the

state. For the phase-�ip channel, the initial state and in

particular the orientation of its Bloch vector matters, as in

general for an arbitrary unitary U

E
ph
(UρU†) ≠ UE

ph
(ρ)U† . (17)

2.4 Known results

In [20] Fujiwara and Imai investigated the problem of esti-

mating generalized Pauli channels acting on qudits — i.e.
systems with a d-dimensional Hilbert space and, in gen-

eral, d2 − 1 parameters {pi}1≤i≤d2−1 to estimate. The au-

thors were interested in the optimal protocol for estimat-

ing these parameters when one uses the channel m times.

They showed that the optimal protocol (in terms of the QFI

matrix) consists in making m independent estimations of

the channel extended to a single ancillary qudit with the

same dimension of Hilbert space and to input a pure, max-

imally entangled state |ψm.e.

d 〉

|ψm.e.

d 〉 =
d∑
i=1

1√
d
|ui〉 ⊗ |vi〉 (18)

with {|ui〉} and {|vi〉} two orthonormal bases (〈 ui | uj 〉 =
〈 vi | vj 〉 = δij).

In the speci�c case of the qubit (d = 2), the Pauli chan-

nels are the channels constructed with Pauli matrices as

Kraus operators,

E
Pauli

(ρ) = (1 − p
1
− p

2
− p

3
)ρ + p

1
XρX + p

2
YρY + p

3
ZρZ ,
(19)

i.e. the estimation of Pauli channels for qubits is in general

a 3-parameter estimation problem. It reduces to the esti-

mation of the depolarizing channel by setting p
1
= p

2
=

p
3
= p/4, while the phase-�ip channel corresponds to the

case p
1
= p

2
= 0. The well-known four Bell states

|ϕ
±
〉 = |00〉 ± |11〉√

2

, |φ
±
〉 = |01〉 ± |10〉√

2

, (20)

are special cases of maximally entangled states for d = 2,

and thus achieve the optimal QFI for the estimation of

{p
1
, p

2
, p

3
}, the three parameters attached to Pauli chan-

nels for qubits.

Frey et al. analyzed the depolarizing channel acting

on qudits using di�erent extension schemes, including se-

quential protocols, where the same probe undergoes m
times the channel before any measurement is done [17].

A fair �gure of merit for the comparison is then the QFI

per channel application. The schemes studied were (i )
the non-extended original channel E

dep
; (ii ) the channel

extended by the identity in an ancillary q-dimensional

Hilbert space, E
dep
⊗ Id; (iii ) the original channel ap-

plied in parallel to two di�erent qudits, E
dep
⊗ E

dep
; (iv )

the channel extended by a known depolarizing channel

with depolarizing strength η, E
dep,p ⊗ E

dep,η, where the

subscripts p and η denote the respective depolarizing

strengths, and (v ) the m times iterated use of the chan-

nels in schemes (i, ii, iii ). Pure input states were consid-

ered, with a maximally entangled state in all the schemes

with more than one qudit, and in addition partially entan-

gled states in scheme (ii ).
From the work of Fujiwara and Imai [20] it is clear that

the best scheme is (ii ) with amaximally entangled state as

input. It also turns out that the multiple use of the probes

is useless in the sense that the QFI per channel use is al-

ways smaller or equal in the sequential schemes than in

the non-sequential ones. Depending on the dimension d
of the Hilbert space of the qudit, and on the depolariza-

tion strength p, the simple scheme (i ) or the double use of

the channel (iii ) fair better. Partially entangled pure states

in scheme (ii ) lead to a QFI lying between the one of the

optimal scheme and the one of the simple scheme. When

the additional depolarization η in scheme (iv ) is too large,

it becomes more e�cient to just use the simple channel or

the doubled channel.

Collins considered mixed states for the estimation of

the phase-�ip channel [11] and in [12] Collins and Stephens

did the same for the depolarizing channel. They studied

sequential protocols, where there is just one qubit avail-

able on which the channel is applied m times, and also

parallel or multi-qubit protocols. For these they investi-

gated the e�ect of correlation amongmore than two qubits

on the e�ciency. Again the �gure of merit was the QFI per

channel application, and the results were compared to the

protocol with just one channel and one qubit (SQSC pro-

tocol). Depending on purity and depolarization strength,

both sequential and correlated protocols can outperform

the SQSC protocol. Especially for extremely small purity of

qubits, adding more ancillas in the correlated protocol in-

creases the QFI, and the correlated protocol proves to be

better than the sequential one.
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Fujiwara and Imai’s optimal metrological strategy for

the estimation of Pauli channels implies that no gain in

the QFI is to be expected by extending the channels to an-

cillary Hilbert spaces with a dimension greater than the

one of the original space. Nevertheless, such extensions

still have an interest in the case where one faces the loss of

particles. In this non-ideal situation, addingmore ancillas

to the probe may eventually prove useful. We thus study

channel estimation with W and GHZ states composed of

n+1qubits (the original probeand n ancillas) as input, and
investigate in particular the robustness of these schemes

under loss of particles.

2.5 Benchmark

We �rst calculate two benchmarks for the QFI: The �rst

one, Iopt
Eθ

, corresponds to the optimal case identi�ed by

Fujiwara and Imai [20], namely extending the quantum

channel by the identity to a second qubit and feeding

it with a maximally entangled state: Iopt
Eθ

= I((Eθ ⊗
Id)(|ψm.e. 〉〈ψm.e. |)).

The second one, Isep
Eθ

, is given by directly estimat-

ing the parameter of the channel acting on a single

qubit and optimizing over all pure input states: Isep
Eθ

=

max| ψ 〉〈 ψ | I(Eθ(|ψ 〉〈ψ |)). This latter scheme is, in terms

of QFI, equivalent to the case where one uses an extended

channel (of the form (6) or (7), or in fact an arbitrary θ-
independent extension acting separately on the original

system and the ancillas) but inputs a separable state. In-

deed, due to the additivity of the QFI we have

I((Eθ ⊗A) (ρ ⊗ σ)) = I(Eθ(ρ)⊗A(σ))
= I(Eθ(ρ)) + I(A(σ))
= I(Eθ(ρ)) ,

since the stateA(σ) is θ-independent. Thuswe refer to this

case as “separable strategy”.

2.5.1 Depolarizing channel

In the non-extended case, the QFI for the depolarizing

channel depends only on the purity of the input state.

When starting with a pure state of a single qubit we obtain

for the QFI

Isep
dep

=

1

p(2 − p) . (21)

The optimal strategy leads to

Iopt
dep

=

3

p(4 − 3p) . (22)

In more detail, the depolarizing channel transforms a Bell

state as

E(1)
dep

(ϕ
+
) = (1 − 3

p
4

)ϕ
+
+

p
4

(ϕ
−
+ φ

+
+ φ

−
) , (23)

where ϕ
±
= |ϕ

±
〉〈ϕ

±
| , φ

±
= |φ

±
〉〈φ

±
|. I.e. the channel

creates a mixture between ϕ
+
and a state orthogonal to it,

ϕ
−
+φ

+
+φ

−
[40]. This makes the schememore sensitive to

the value of the parameter than for the separable strategy.

With the two benchmarks (21,22) we can check whether

extending the channel still leads to an improvement com-

pared to the separable strategy when qubits can be lost by

comparing the QFI to Isep
dep

, but also how far the QFI is sta-

ble against losing qubits compared to the optimal strategy,

a property that we call “robustness”.

2.5.2 Phase-flip channel

The case of the phase-�ip channel is slightly di�erent.

Due to the anisotropy of the channel, the QFI of the non-

extended strategy depends on the polar angle θ of the

Bloch vector. The QFI is optimized by states |ψxy〉 = (|0〉 +
e

−i φ|1〉)/
√
2 (i.e. θ = π/2), and has the value

Isep,xy
ph

=

1

p(1 − p) . (24)

The optimal strategy leads to

Iopt
ph

=

1

p(1 − p) , (25)

which is equal to Isep,xy
ph

≡ Isep
ph

, showing that the state

|ψxy〉 is optimal for the separable strategy (since Iopt
ph

is an

upper bound for the QFI of the separable strategy, and this

upper bound is reached with the states |ψxy〉). For ideal

phase-�ip channels the extension is thus useless, in the

sense that we can achieve the same sensitivity with sep-

arable states or entangled ones ¹. Here both benchmarks

(24) and (25) are equal. Hence there is no metrological in-

terest in adding any ancillas. Nevertheless, from a mathe-

matical perspective it is still interesting to see the e�ect of

adding ancillas and losing a fraction of them.

1 This is a well known fact. Indeed, in [20](part 4.) the authors em-

phasized that when estimating the parameter of a Pauli channel lying

on the boundaries of the tetrahedron of the simplex representing the

di�erent Pauli channels, non-maximally entangled states may be as

e�cient as maximally entangled ones. They also noticed that for the

phase damping channel and for the bit �ip channel a separable state

is already optimal.
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2.6 Used input states

For feeding our extended channels we consider two kinds

of entangled states, GHZ states and W states. The GHZ

(Greenberger-Horne-Zeilinger) state for n + 1 qubits is de-

�ned as

|ψGHZ-n〉 = 1√
2

(|0, 0n〉 + |1, 1n〉) , (26)

with |0, 0n〉 = |0〉
1
⊗ |0〉

2
⊗ · · · ⊗ |0〉n+1, |0, 1n〉 =

|0〉
1
⊗|1〉

2
⊗ · · ·⊗|1〉n+1, |1, 0n〉 = |1〉1⊗|0〉2⊗ · · ·⊗|0〉n+1

and |1, 1n〉 = |1〉1⊗ |1〉2⊗ · · ·⊗ |1〉n+1. Here and in the fol-

lowing, the �rst Hilbert space is the one of the probe and

all the others are for ancillas, and we take n ≥ 1. When

n = 1, the GHZ state |ψGHZ-1〉 is equal to the Bell state |ϕ
+
〉.

GHZ states are very prone to decoherence, in the sense

that if even a single qubit is lost (traced out), we end up

with a mixed non-entangled state (see eq.(41) below). We

de�ne the density matrix ρGHZ-n
= |ψGHZ-n〉〈ψGHZ-n|.

The W state for n + 1 qubits, W-n for short, is de�ned

as

|ψW-n〉 = 1√
n + 1

n+1∑
i=1
|1i〉, (27)

with |1i〉 = |0〉1 ⊗ · · ·⊗ |0〉i−1 ⊗ |1〉i ⊗ |0〉i+1 ⊗ · · ·⊗ |0〉n+1,
∀i ∈ {1, · · · , n + 1}, i.e. it corresponds to a single exci-

tation distributed evenly over all qubits. The case n = 1

gives also a Bell state: |ψW-1〉 = |φ
+
〉. We also de�ne ρW-n

=

|ψW-n〉〈ψW-n| .

3 Estimation of the ideal quantum
channels

We start with the situation where no qubits are lost, and

determine the QFI for both GHZ and W states for the two

channels that we are interested in.

3.1 Depolarizing channel

3.1.1 GHZ states

For the depolarizing channel acting on the GHZ state, we

de�ne

ρGHZ-n
dep

≡ E(n)
dep

(ρGHZ-n
) (28)

=

2 − p
4

(|0, 0n 〉〈0, 0n | + |1, 1n 〉〈1, 1n |)

+

1 − p
2

(|1, 1n 〉〈0, 0n | + |0, 0n 〉〈1, 1n |)

+

p
4

(|1, 0n 〉〈1, 0n | + |0, 1n 〉〈0, 1n |) . (29)

The density matrix has rank four for n ≥ 1 (while for n = 0

it has rank 2), but eigenvalues and eigenvectors are still

found easily,

σdep
1

=

p
4

, σdep
2

=

p
4

, σdep
3

= 1 −

3p
4

, σdep
4

=

p
4

|sdep
1

〉 = |0, 1n〉, |sdep
2

〉 = |1, 0n〉,

|sdep
3

〉 = 1√
2

(|0, 0n〉 + |1, 1n〉) ,

|sdep
4

〉 = 1√
2

(|0, 0n〉 − |1, 1n〉) .

The eigenvectors are independent of p, and the QFI re-

duces to its classical part,

IGHZ-n
dep

=

3

p(4 − 3p) = I
opt

dep

. (30)

The QFI is independent of the number of ancillas for n ≥ 1
and equals the QFI corresponding to the optimal case.

3.1.2 W states

For the depolarizing channel and the W states we have

ρW-n
dep
≡ E(n)

dep

(ρW-n
)

=

p
2(n + 1)

(
|0, 0n 〉〈0, 0n | +

n+1∑
i=2
|1, 1i 〉〈1, 1i |

+

n+1∑
i,j=2
i≠j

|1, 1i 〉〈1, 1j |
)
+

2 − p
2(n + 1)

( n+1∑
i=1
|1i 〉〈1i |

+

n+1∑
i,j=2
i≠j

|1i 〉〈1j |
)
+

1 − p
n + 1

n+1∑
i=2

(|1i 〉〈11 | + |11 〉〈1i |) ,

with |1, 1i〉 = |1〉1 ⊗ |0〉2 ⊗ · · · ⊗ |0〉i−1 ⊗ |1〉i ⊗ |0〉i+1 ⊗
· · ·⊗|0〉n+1, ∀i ∈ {2, · · · , n+1}. Thematrix representation

in the computational basis has a block structure whose

blocks are studied in the appendix, with three non-zero

blocks:

– a �rst trivial 1×1 block composed by the eigenvalue

p
2(n+1) .

– a second block G(n)(a) with a = p
2(n+1) .
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Figure 1: QFI with no loss of qubits. Top plot (depolarizing channel):
dotted line: GHZ (optimal strategy); 1-dash line: W-5; 2-dash line: W-
10; 3-dash line: W-20; full line: separable state. Bottom plot (phase-
flip channel): dotted line: GHZ (optimal separable scheme); 1-dash
line: W-5; 2-dash line: W-10; 3-dash line: W-20; 4-dash line: W-50.

– a third block K(n+1)(a, b, a) with a =

2−p
2(n+1) and b =

1−p
n+1 .

This leads to the QFI

IW-n
dep

=

1

p(2 − p)

(
3p − 4(1 + n(n + 4))/(1 + n)2

)
(3p − 4) . (31)

Even if this analysis is restricted to n ≥ 1, the eq.(31) for

n = 0 gives the correct QFI. We notice that IW-n
dep

decreases

as function of n, i.e. adding ancillas reduces the e�ciency

of the scheme (see top plot in Fig. 1 or bottom plot in Fig.

2). When we go to an in�nite number of ancillas,

IW-n
dep

−→
n→∞

1

p(2 − p) = I
sep

dep

, (32)

i.e. we come back to the case without ancilla.

3.2 Phase-flip channel

3.2.1 GHZ states

Let ρGHZ-n
ph

= E(n)
ph

(ρGHZ-n
). Applying the Kraus operators,

one obtains immediately

ρGHZ-n
ph

=

1

2

(|0, 0n 〉〈0, 0n | + |1, 1n 〉〈1, 1n |)

+

1 − 2p
2

(|1, 1n 〉〈0, 0n | + |0, 0n 〉〈1, 1n |) . (33)

The QFI for p, IGHZ-n
ph

, is easily found as the operator

has rank two. The eigenvalues σphi and eigenvectors |sphi 〉
of ρGHZ-n

ph

are
σph
1

= p , σph
2

= 1 − p

|sph
1

〉 = 1√
2

(|0, 0n〉 − |1, 1n〉) , |sph
2

〉 = 1√
2

(|0, 0n〉 + |1, 1n〉) .

(34)

The eigenvectors are independents of p, whichmeans that

theQFI has just the (classical) contribution from the eigen-

values,

IGHZ-n
ph

=

1

p(1 − p) = I
opt

ph

. (35)

We see that the QFI for a (n + 1)-qubit GHZ state used to

estimate a phase-�ip channel is independent of the num-

ber of ancillas and is equal to the optimal QFI achieved by

using either a separable state or a Bell state (but requires

more resources in terms of qubits).

3.2.2 W states

The state after acting with the phase-�ip channel on theW

states, ρW-n
ph

≡ E(n)
ph

(ρW-n
), is given by

ρW-n
ph

=

1

n + 1

n+1∑
i=1
|1i 〉〈1i | +

n+1∑
i,j=2
i≠j

|1i 〉〈1j |


+

1 − 2p
n + 1

(n+1∑
i=2

(|1
1
〉〈1i | + |1i 〉〈11 |)

)
. (36)

The matrix representation of this state in the computa-

tional basis admits a direct sum decomposition (block

structure of thematrix) with a single non-zero block, of the

general form K(n+1)(a, b, a), where a = 1

n+1 and b = 1−2p
n+1 .

Using eq.(62) and the normalized version of eq.(63) we

can compute the QFI,

IW-n
ph

=

4n
(1 + n)2

1

p(1 − p) =
4n

(1 + n)2 I
opt

ph

. (37)
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This result shows that the QFI decreases with increasing

number of ancillas in the W state (see bottom plot in Fig.

1 or bottom plot in Fig. 3): In agreement with the known

result on optimality, the prefactor f (n) =

4n
(1+n)2 satis�es

f (n) ≤ 1 for n ≥ 1. When n goes to in�nity, f (n) tends to

zero, leading to vanishing QFI. Even though our analysis

is restricted to n ≥ 1, for n = 0 the W state reduces to |1〉
which has vanishing QFI such that eq.(37) is still correct.

In Fig. 1weplot theQFI for depolarizing andphase-�ip

channel as a function of p when no qubits are lost. We see

that the GHZ states gives the highest QFI (we do not have

to specify the number of ancillas in the GHZ states since it

does not change the QFI). For the W states we observe the

decrease of the QFI when increasing the number of ancil-

las, and the convergence either to the performance of the

separable strategy for the depolarizing channel, or to zero

for the phase-�ip channel.

4 Losing particles
In the section 3 we looked at the QFI for GHZ andW states

in the ideal situation of no particle loss in order to check

how far we are from the optimal case. We now investigate

the e�ect of losing one particle.

4.1 General considerations

Consider a general extended quantum channelE
ext

= EP⊗
IdA acting on ρ as

E
ext
(ρ) =

∑
k
EkρE†k =

∑
k
(Fk ⊗ IA) ρ (F†k ⊗ IA) . (38)

We use subscripts P and A for probe (the �rst system) and

ancilla, respectively.

We model the loss of one of the systems by tracing it

outafter applying the channel. Physically itmeans that the

state undergoes properly the channel, and that after this

and before the measurement, one of the systems is lost.

We denote the state which underwent the channel evolu-

tion E
ext

and then the loss of the probe as ρEext

A . Direct cal-

culation shows that in all generality

ρEext

A ≡ TrP
[
E
ext
(ρ)
]
= TrP [ρ] , (39)

the reduced initial state of the ancilla. In this case there is

nothing left to estimate: we cannot get any information on

the extended channel by measuring only the ancilla.

If it is the ancilla that is lost after the application of the

extended channel on the initial state we have

ρEext

P ≡ TrA
[
E
ext
(ρ)
]
= EP( TrA [ρ] ) . (40)

In this case, losing the ancilla after extending the chan-

nel is equivalent to starting with the non-extended chan-

nel acting on the reduced state of the probe. Losing the

probe after applying the channel, or startingwith an initial

state which already su�ered the loss of the probe is hence

equivalent. From this point of view, our subsequent study

amounts to considering new initials states.

4.2 Depolarizing channel

We start the study of the e�ect of the loss of an ancilla by

the depolarizing channel.

4.2.1 GHZ states

When tracing out a qubit from the GHZ state we end up

with the mixed state

Tr
1

[
ρGHZ-n

]
= ρGHZ-n

1
=

(
|0, 0n−1 〉〈0, 0n−1 |

+ |1, 1n−1 〉〈1, 1n−1 |
)
/2 . (41)

We are interested in the QFI IGHZ-n
dep,1

of the state ρGHZ-n
dep,1

≡

Tr
1

[
E(n)
dep

(ρGHZ-n
)

]
. The subscript ”1” on the states, on the

trace, and on the QFI indicates that we lost one ancilla. In

virtue of eq.(40) we can also write the state ρGHZ-n
dep,1

as

ρGHZ-n
dep,1

= E(n−1)
dep

( Tr
1

[
ρGHZ-n

]
) (42)

=

2 − p
4

(|0, 0n−1 〉〈0, 0n−1 | + |1, 1n−1 〉〈1, 1n−1 |)

+

p
4

(|1, 0n−1 〉〈1, 0n−1 | + |0, 1n−1 〉〈0, 1n−1 |) .

(43)

For n = 1 the state has only rank two, and is actually the

totally mixed state of one qubit, which is a stationary state
of the depolarizing channel and thus leads to a vanishing
QFI,

IGHZ-1

dep,1
= 0 . (44)

From eq.(43) we obtain directly the QFI for n > 1,

IGHZ-n
dep,1

=

1

p(2 − p) , (45)

which is the sameQFI as for the non-extended channel ap-

plied to a pure state, Isep
dep

. This means that instead of start-

ing with a pure state of a single qubit, we can also start

with the mixed state (41) and use the extended channel.
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Figure 2: E�ect of the loss of one ancilla qubit on the QFI for the
depolarizing channel. Top plot: dotted line: optimal strategy / GHZ
with no loss; 1-dash line: W-2 with no loss; 2-dash line: W-2 with
one lost; 3-dash line: W-5 with no loss; 4-dash line: W-5 with one
lost; full line: separable scheme / GHZ with one qubit lost. Bottom
plot (p = 0.2): full circles: GHZ with no loss; diamonds: W states
with no loss; triangle up: W states with one ancilla lost; squares:
separable scheme / GHZ with one ancilla lost.

4.2.2 W states

After propagation of a W state through the extended de-

polarizing channel and the subsequent loss of an ancilla

qubit, the state of the system

ρW-n
dep,1

≡ Tr
1

[
E(n)
dep

(ρW-n
)

]
=

1

n + 1 (|0, 0n−1 〉〈0, 0n−1 | + |11 〉〈11 |)

+

2 − p
2(n + 1)

n∑
i,j=2
|1i 〉〈1j | +

1 − p
n + 1

n∑
i=2

(|1
1
〉〈1i |

+ |1i 〉〈11 |) +
p

2(n + 1)

n∑
i,j=2
|1, 1i 〉〈1, 1j | , (46)

has a block structure with three non-vanishing blocks:

– a �rst non-contributing 1 × 1 block composed by the

eigenvalue

1

n+1 .

– a second block G(n−1)(a) with a = p
2(n+1) .

– a third block K(n)(a, b, c) with a = 2−p
2(n+1) , b =

1−p
n+1 and

c = 1

n+1 .

This leads to

IW-n
dep,1

=

n − 1
n + 1

n(2p − 3) − 9
p(2p − 3)(2n − p(n − 1)) . (47)

We show in Fig. 2 the e�ect of the loss of one ancilla

when estimating the depolarizing channel. In the top plot

theQFI is represented as a function of p for GHZ stateswith

and without loss, and also for W-2 and W-5 with and with-

out loss. We see that although W-2 is more e�cient than

W-5 in the ideal case, when one qubit is lost W-5 fairs bet-

ter than W-2. In the bottom plot we represent the QFI as a

function of the number of initial ancillas. We see that by

increasing n the two curves representing theW states with

one ancilla lost and the W states without loss converge to

the QFI achieved with the separable strategy.

4.3 Phase-flip channel

We now turn our attention to the phase-�ip channel. For

the GHZ state we have ρGHZ-n
ph,1

≡ Tr
1

[
E(n)
ph

(ρGHZ-n
)

]
=

E(n−1)
ph

(ρGHZ-n
1

). But the mixed state ρGHZ-n
1

is a stationary

state of E(n−1)
ph

, and thus there is nothing to estimate,

IGHZ-n
ph,1

= 0.

For the W state the state of the system is ρW-n
ph,1

≡

Tr
1

[
E(n)
ph

(ρW-n
)

]
= E(n−1)

ph

( Tr
1

[
ρW-n

]
). Direct calculation

gives

ρW-n
ph,1

=

1

n + 1 |0, 0n−1 〉〈0, 0n−1 | +
n

n + 1ρ
W-(n−1)
ph

. (48)

Note that ρW-n
ph,1

can be written as a direct sum. Since the

�rst block does not depend on p, we can compute the QFI

directly from the second block,

IW-n
ph,1

=

n
n + 1 I

W-(n−1)
ph

=

4(n − 1)
n(n + 1)

1

p(1 − p) . (49)

We see in the topplot of Fig. 3 that this timeW-2 has a larger

QFI than W-5 with and without loss. In the bottom plot we

observe the convergence of the QFI to zero for theW states

in the ideal case and with one ancilla lost.

5 Generalization to the loss of l
ancillas

Now we consider the situation where we lose l ancillas,
1 ≤ l ≤ n. Since this loss channel acts only on the an-

cilla space it commutes with the channel acting on the
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Figure 3: E�ect of the loss of one ancilla qubit on the QFI for the
phase-flip channel. Top plot: dotted line: GHZ with no loss / optimal
separable scheme; 1-dash line: W-2 with no loss; 2-dash line: W-2
with one qubit lost; 3-dash line: W-5 with no loss; 4-dash line: W-5
with one qubit lost; full line: GHZ with one qubit lost. Bottom plot
(p = 0.2): full circles: GHZ with no loss / optimal separable scheme;
diamonds: W states with no loss; triangle up: W states with one
ancilla lost; squares: GHZ with one ancilla lost.

probe, and the situation is equivalent to starting with a

state which underwent already the loss of the ancillas.

5.1 Depolarizing channel

5.1.1 GHZ states

When one starts with a GHZ state and loses l qubits, the
state becomes

Trl

[
ρGHZ,n

]
= (|0, 0n−l 〉〈0, 0n−l | + |1, 1n−l 〉〈1, 1n−l |)/2 .

(50)

Losing one ancilla or l ≥ 2 ancillas makes no di�erence

for the QFI. Indeed the GHZ state is so sensitive to loss of

particles that losing one qubit or more always leads to a

mixed state of the same form (see Sec.1). We thus have for

the depolarizing channel and 1 ≤ l ≤ n − 1

IGHZ-n
dep,l = Isep

dep

=

1

p(2 − p) , (51)

and for n = l
IGHZ-l
dep,l = 0 . (52)

5.1.2 W states

For the W state, the situation is substantially di�erent

since the form of the state depends on the number of lost

ancillas:

ρW-n
l = Trl

[
ρW-n

]
=

l
n + 1 |0, 0n−l 〉〈0, 0n−l |

+

n + 1 − l
n + 1 ρW-(n−l)

. (53)

For the depolarizing channel, the state

ρW-n
dep,l ≡ Trl

[
ρW-n
dep

]
=

2l − p(l − 1)
2(n + 1) |0, 0n−1 〉〈0, 0n−1 |

+

2 + p(l − 1)
2(n + 1) |11 〉〈11 | +

2 − p
2(n + 1)

n+1−l∑
i,j=2
|1i 〉〈1j |

+

1 − p
n + 1

n+1−l∑
i=2

(|1
1
〉〈1i | + |1i 〉〈11 |)

+

p
2(n + 1)

n+1−l∑
i,j=2
|1, 1i 〉〈1, 1j | , (54)

has three non-vanishing blocks:

– a �rst 1×1 block composed by the eigenvalue

2l−p(l−1)
2(n+1) .

– a second block G(n−l)(a) with a = p
2(n+1) .

– a third block K(n+1−l)(a, b, c)with a =

2−p
2(n+1) , b =

1−p
n+1

and c = 2+p(l−1)
2(n+1) .

They lead to the QFI

IW-n
dep,l =

{
− 2p

(
− 2(l(l + 2) − 1)n2 + l(l(3l + 2) − 9)n

+ l(l(3l +4)−9) +8n +2
)
+ (l −1)(l +3)(n +1)p2(2l − n −1)

+ 4l(l + 2)(n + 3)(l − n)
}
/

{
(n + 1)p((l − 1)p − 2l)

((l + 3)p − 2(l + 2))(l(2 − 2p) + (n + 1)(p − 2))
}
. (55)
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Figure 4: QFI for the depolarizing channel for a W state with n an-
cillas and l lost ones (p = 0.2). The full line corresponds to the
separable strategy or GHZ with loss, the dashed line to the case
where no ancillas are lost (l = 0) and the 1-dash line to the case
where all ancillas are lost (l = n).

One checks that by setting l to zero or to onewe recover

our previous results (31) and (47), respectively. In terms

of gain due to extension, we can calculate the number of

lost ancillas as a function of the number of initial ancillas

such that the scheme stays more e�cient than the sepa-

rable strategy. This function is cumbersome but actually

behaves mainly linearly with a slope of 0.5. This means

that whenmore than half the ancillas are lost, the strategy

of using W states becomes less e�cient than the separa-

ble strategy. But for depolarizing channel, this strategy is

equivalent to the use of a GHZ state with some ancillas lost

(45,51). Thus this bound gives us also the value of l as a

function of n for which it is worth to start with a GHZ state

rather than with aW state. This is visualized in Fig. 4, rep-

resenting the QFI for the depolarizing channel as a func-

tion of n and l, andwhere the full black line represents the

QFI for the separable strategy or GHZ with loss.

In Fig. 5 we demonstrate the e�ect of the loss on the

estimation of the depolarizing channel. In the top plot we

show the QFI as a function of p. We plot the optimal result

(dotted line) and the separable strategy (full line). The dif-

ferent dash lines show W-8 with either no loss, or two, or

six ancillas lost. In agreement with the bound discussed

in the previous paragraph, for six ancillas lost in W-8 , the

protocol is less e�cient than the separable one / GHZwith

loss. In the bottom plot we show the QFI for the depolar-

izing channel as a function of the number of lost ancillas.

We observe that W states with a larger number of ancillas

are more resistant to the loss of qubits, but have a lower

initial QFI. There is a compromise for the optimal choice

of n in a W state between initial QFI and robustness to the

loss. When the number of lost ancillas equals roughly half

the number of initial ancillas, the W states become less ef-

�cient than the GHZ states (this is more clear in the sub-

plot). When all the ancillas are lost, the QFI still not van-

ishes, provided that n > 1: Setting l to n in eq.(55), leads to

IW-n
dep,n =

(n − 1)2
(2 + (n − 1)p)(p + n(2 − p)) , (56)

which converges to Isep
dep

when n goes to in�nity. For n = 1,

IW-1

dep,1

= 0.
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Figure 5: QFI for depolarizing channel for arbitrary loss. Top plot:
dotted line: GHZ with no loss; 1-dash line: W-8 with no loss; 2-dash
line: W-8 with 2 lost; 3-dash line: W-8 with 6 lost; full line: separa-
ble strategy / GHZ with one lost. Bottom plot (p = 0.2): 1-dash line:
W-15 with no loss; full circles: W-15 with loss; 2-dash line: W-20 with
no loss; squares: W-20 with loss; 3-dash line: W-25 with no loss; di-
amonds: W-25 with loss: triangle up: separable strategy / GHZ with
one lost.

5.2 Phase flip channel

Again, for the sake of comparison, we give a brief look at

the phase-�ip channel. For the GHZ states and 1 ≤ l ≤ n
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the QFI vanishes,

IGHZ-n
ph,l = 0 . (57)

In the case of the phase-�ip channel, the state (53) af-

ter application of the channel and loss of l ancillas has the
form of a direct sum involving a known state, leading to

the QFI

IW-n
ph,l =

n + 1 − l
n + 1 IW-(n−l)

ph

=

4(n − l)
(n + 1)(n + 1 − l)

1

p(1 − p) . (58)

As expected, the QFI decreases as function of l: The more

ancillas are lost the worse is the estimation. When all an-

cillas are lost the QFI vanishes, since the resulting state is

insensitive to the phase-�ip channel.

This is demonstrated in Fig. 6. The top plot shows the

QFI as a function of p. In the bottom plot p = 0.2, and we

plot the QFI as a function of the number of lost ancillas for

W states. The more ancillas we add the smaller the initial

QFI, but also the QFI decreases more slowly as function

of l. This leads to an optimal number of initial ancillas for

a given number of ancillas lost, even though we have to

remember that for the phase-�ip channel the best strategy

is to not use any ancillas at all (see Sec.2.5).

5.3 Gain versus robustness

There is a competition between the initial value of the

QFI and the robustness for W states for both channels (al-

though for the phase-�ip channel we know that the opti-

mal scheme is the non-extended one).

For the depolarizing channel, when looking at the bot-

tom plot in Fig. 5, we see that while in the ideal case (l = 0)

W-15 is more e�cient than W-25, this is already no longer

true when six ancillas are lost as the inset clearly shows.

More generally there exists for a given�xednumber l of an-
cillas lost an optimal number n

opt,dep
(l) of initial ancillas

in theW state, see top plot of Fig. 7. The function n
opt,dep

(l)
has a complicated form, but its leading term is given by

n
opt,dep

(l) '
(
2 +

2√
2 − p

)
l , (59)

which for p = 0.2 gives roughly 3.5l. We see that this is

in good agreement with the inset of the top plot of Fig. 7.

Nevertheless, when increasing the number of ancillas in

the W state we get a QFI closer to the one of the separable

strategy, and thus the small gain in QFI may not justify the

use of so many ancillas. As an example, when losing �f-

teen ancillas, the best W state is W-55 (the leading term in

this case will give n
opt,dep

= 52 or 53), but its QFI equals

2.81 and the QFI for the separable strategy equals 2.77.
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Figure 6: QFI for phase-flip channel for arbitrary loss. Top plot: dot-
ted line: optimal strategy / GHZ with no loss; 1-dash line: W-10 with
no loss; 2-dash line: W-10 with 6 lost; 3-dash line: W-10 with 9 lost;
full line: GHZ with at least one ancilla lost. Bottom plot (p = 0.2):
1-dash line: W-15 with no loss; full circles: W-15 with loss; 2-dash
line: W-20 with no loss; squares: W-20 with loss; 3-dash line: W-25
with no loss; diamonds: W-25 with loss: triangle up: GHZ with loss
(GHZ without loss is not represented).

A similar behavior is observed for the phase-�ip chan-

nel. Although there the optimal strategy consists to not

add any ancilla, the study of the QFI for a �xed number

of lost ancillas leads also to a maximum as represented in

the bottomplot in Fig. 7.We canhere too calculate the opti-

mal number of initial ancillas as a function of lost ancillas

in a W state

n
opt,ph

(l) =


bl +
√
1 + lc ≡ l

f
if IW-l

f

ph,l > I
W-l

c

ph,l ,

dl +
√
1 + le ≡ l

c
if IW-l

f

ph,l < I
W-l

c

ph,l ,

{l
f
, l
c
} if IW-l

f

ph,l = I
W-l

c

ph,l ,

(60)

with bc the �oor function and de the ceiling function. Thus

n
opt,ph

scales roughly linearly with l.
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Table 1: Summary for the depolarizing channel

State Benchmark State Ideal case l ancillas lost

Maximally entangled Optimal: Iopt
dep

=

3

p(4−3p) . GHZ Still optimal. l ≥ 1: goes back to separable.
(n ancillas) l = n: QFI vanishes.

Separable Isep
dep

=

1

p(2−p) W Decreases with n. In between Exists an optimal n for a given l.
(pure state) (independent of the state). (n ancillas) optimal and separable. Adding ancillas can protect the QFI.
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Figure 7:Main plots: QFI as a function of the number of initial an-
cillas in a W state for a �xed number of lost ancillas. The full circles
correspond to three ancillas lost, the squares to four, the diamonds
to �ve, and the triangle to six. In the insets we see the optimal num-
ber of initial ancillas in a W state as a function of the number of lost
ancillas. The top plot corresponds to the depolarizing channel, the
bottom one to the phase-flip channel (p = 0.2).

6 Conclusions
We investigated the robustness of channel estimation

schemes for depolarizing and phase-�ip channels of

qubits extended to ancilla qubits, when one or several of

the qubits can get lost. Without loss of qubits, the optimal

estimation strategy consists for both channels in extend-

ing the channel by a single ancilla qubit that remains un-

touched, but feeding the whole channel with a maximally

entangled state [20].

For the depolarizing channel this leads, when no

qubit is lost, to a real improvement compared to the non-

extended case. For the phase-�ip channel the maximum

quantum Fisher information (QFI) can also be achieved

with anon-extended channel fedwith a speci�cpure state,

showing that no extension is necessary. We extended this

investigation to the case where an arbitrary number of

qubits can be added or lost, including the original probe

qubit. We used GHZ and W states as input states for the

channels.

For the GHZ states, the QFI in the absence of loss is

equal to the optimal one for both channels, independently

of the number of ancillas. In the presence of loss, for the

depolarizing channel and provided that not all the ancil-

las are lost — in which case the QFI vanishes —, the QFI is

independent of the number of lost ancillas and equals the

one of the non-extended case. For the phase-�ip channel

the loss of already one ancilla leads to a vanishing QFI.

For the W states, the QFI for the depolarizing channel

without loss decreases with the number of added ancillas.

While for one ancilla we are in the optimal case, when the

number of ancillas goes to in�nity the QFI goes to the QFI

of the separable strategy. The interesting point lies in the

fact that the W states are more resistant to loss, as for a

�xed number of lost ancillas, there always exists a W state

with larger QFI after the loss of these ancillas than the one

of the separable strategy. In this sense the W states, al-

though not optimal without loss of qubits, can lead to a

better estimation in non-ideal situations for the depolariz-

ing channel. We summarized the main results for depolar-

izing channel in the table 1. The resistance to loss is also

observed in the phase-�ip channel, but does not lead to

any improvement in estimation, since it is still better to not

add ancillas at all.
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A Appendix: decomposition of
matrices

In order to calculate the QFI we need to diagonalize the

density matrix. For the states in which we are interested,

there are twomatrices K(m)(a, b, c) and G(m)(a) that recur-
rently appear in the block decomposition of the states:

– The m × m matrix K(m)(a, b, c):

K(m)(a, b, c) =


a · · · a b
.

.

.

.
.
.

.

.

.

.

.

.

a · · · a b
b · · · b c

 . (61)

This matrix has rank two, the two non-zero eigenval-

ues

λ(K)
±

=

1

2

(
c + a(m − 1) ±

√(
c − a(m − 1)

)
2

+ 4b2(m − 1)
)
,

(62)

and the two corresponding non-normalized eigenvec-

tors

v(K)
±

= (2b, · · · , 2b, Y (K)
±
) , (63)

with Y (K)
±

= c−a(m−1)±
√(

c − a(m − 1)
)
2

+ 4b2(m − 1).
– The m × m matrix G(m)(a):

G(m)(a) =


a · · · a
.

.

.

.
.
.

.

.

.

a · · · a

 , (64)

which only non-zero eigenvalue is

λ(G,m) = ma , (65)

and the non-normalized corresponding eigenvector is

v(G,m)(a) = (1, · · · , 1) . (66)
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