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Abstract

The existence of hydrodynamic attractors in various microscopic theories and phe-

nomenological models has paved the way for understanding hydrodynamization in out-of-

equilibrium systems. The thesis studies a far-away-from equilibrium system undergoing

Bjorken flow, a boost-invariant expansion in the longitudinal direction. It explores the e↵ect of

continuous symmetry breaking and the corresponding phase transition on hydrodynamization

in the Bjorken expanding system. Followed by this, it computes the real-time hydrodynamic

correlation functions of the expanding system using the holographic method. In addition, the

thesis also investigates the thermalisation of a hybrid system coupled in a semi-holographic

framework.

We begin with a review of the necessary theoretical background required to follow the

work included in the thesis. Then we discuss the construction of an e↵ective description of

a dissipative superfluid by extending the quantum e↵ective approach of Son and Nicolis and

incorporating dissipation in Müller-Isreal-Stewart (MIS) formalism. We include the Goldstone

boson and the condensate together with the hydrodynamic modes as the e↵ective degrees of

freedom. We show that the evolution of the superfluid undergoing boost invariant expansion

is governed by the conventional hydrodynamic attractor with unbroken U(1) symmetry and an

even number of novel non-dissipative fixed points with broken symmetry. If the initial tem-

perature is super-critical, then the condensate becomes exponentially small very rapidly and

the system is trapped by the hydrodynamic attractor for a long intermediate time before it re-

heats rapidly and switches to one of the symmetry-breaking fixed points eventually. Finally, we

show that the fixed points are unstable against inhomogeneous perturbations that should lead

to spinodal decomposition. We conclude that these features should be generic beyond the MIS

formalism.

Next, we develop a method to compute the Schwinger-Keldysh correlation functions of

an expanding system in a holographic approach in the limit in which the state hydrodynamizes.



We implement the horizon cap prescription of Crossley-Glorioso-Liu to an asymptotically dy-

namical AdS d+1 geometry which is dual to Bjorken flow in the boundary. We provide a new

and elegant proof of consistency of the horizon cap prescription with the KMS (Kubo-Martin-

Schwinger) periodicity and the ingoing boundary condition for the retarded propagator at any

arbitrary frequency and momentum. The trick of Weyl rescaling the Bjorken flow at the bound-

ary lifts to appropriate bulk di↵eomorphism, which implies that the dual black hole’s event

horizon attains constant surface gravity and area at a late time. Subsequently, at late time the

temperature and entropy density for the dual state maps to a constant which otherwise has a

perfect fluid-like expansion. One of our key results is that in the limit of perfect fluid expan-

sion, the Schwinger-Keldysh correlation functions are simply thermal at an appropriate temper-

ature when expressed in terms of reparametrized spacetime arguments. A generalized bi-local

thermal structure holds to all orders. We also argue a transseries form of the hydrodynamic

correlation functions that can decode the details of the initial state.

Finally, we investigate the thermalization of a hybrid system involving a weakly self-

interacting perturbative and a strongly self-interacting non-perturbative (holographic) sector,

democratically coupled in semi-holographic framework. We first provide a generic proof of

thermalisation, in which the entropy of the full system is maximised only when the physical

temperatures of the respective sectors coincide at any fixed total energy. We show that if we

consider a generic state in which observable like the full energy-momentum tensor is like in a

pseudo-equilibrium state, the total entropy of this non-equilibrium state is that of global equi-

librium. Then we study dynamical situations such as an e↵ective two-fluid model described

by BRSSS formalism. We show that there exist macroscopic fluctuations about any pseudo-

equilibrium state which keep the total energy fixed and take the system to a non-equilibrium

state whose total entropy is close to that of global equilibrium entropy up to a good degree

of precision. Based on these results we formulate how to study the thermalization of the full

isolated hybrid system in the full quantum theory in the large N limit.
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Synopsis

The robust success of heavy ion colliders, namely Relativistic Heavy Ion Colliders

(RHIC) at Brookhaven National Laboratory and Large Hadron Colliders (LHC) at CERN, in

recreating the hot and dense QCD matter has unveiled new opportunities in understanding the

dynamics of strongly interacting gauge theories. The QCD matter formed in the head-on colli-

sion of two nuclei evolves into a deconfined state of quarks and gluons known as Quark Gluon

Plasma(QGP) in the intermediate stage. Various experimental observations such as rapid ther-

malization (at about 1fm/c), low ratio of shear viscosity to entropy density, and collective flow

provide evidence of strong interaction and fluid-like behaviour of the QGP. The most relevant

e↵ective theory that describes the observables of collective flow is relativistic hydrodynamics

with a low value of the ratio of shear viscosity to entropy density.

One of the surprising aspects of the phenomenology of QGP is that a hydrodynamic de-

scription is valid even when it is far away from equilibrium and has large pressure anisotropies.

Various phenomenological causal models of hydrodynamics, such as Baier-Romatschke-Son-

Starinets-Stephanov (BRSSS) theory [1] which is a refinement of Müller-Israel-Stewart (MIS)

theory [1, 2], have been developed and applied in rather extreme conditions. The term hydro-

dynamization has been coined to describe such phenomena in which the evolution of a system

when monitored by coarse-grained variables such as the energy-momentum tensor and con-

served currents, can be described by hydrodynamics even far away from equilibrium. A recent

theoretical understanding of hydrodynamization [3, 4] arises from the discovery of hydrody-

namic attractors [5] which have been shown to exist in various microscopic descriptions such

as kinetic theory and the holographic description of N = 4 Super Yang-Mills theory at large N

and strong coupling.

Chiral symmetry, and the associated chiral phase transition from the unbroken to bro-

ken phase which accompanies the deconfinement-confinement transition, play a prominent role

in the dynamics of the expanding nuclear matter formed in heavy ion collision. The phase di-
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agram of QCD shows smooth crossover at smaller baryon chemical potential and a first order

transition at larger values separated by a critical point. Lattice simulations suggest that the criti-

cal point shows O(4) scaling. The e↵ect of finite but small quark masses on chiral susceptibility

has been studied by lattice methods [6, 7].

In the chiral limit (vanishing quark masses), the Goldstone modes should be included

together with the hydrodynamic variables parameterizing the conserved currents governed by

the Ward identities. In case of small quark masses, we obtain pseudo-Goldstone bosons in-

stead of the Goldstone bosons. The construction of an e↵ective description of the composite

dissipative system of pseudo-Goldstone bosons interacting with usual hydrodynamic degrees of

freedom is a direction of intense research.

Superfluid fluctuations should have significant e↵ects on macroscopic flow of matter

formed in heavy ion collisions if the system gets close to the critical point in the course of

its evolution in time, as shown in [8]. At length scales below a dynamically determined de-

coherence length scale, which can be larger than the microscopic scales in a superfluid, the

fluctuations are of quantum origin. Stochastic hydrodynamics [9] is a formalism for incorpo-

rating macro(meso)scopic classical statistical fluctuations at length scales larger than the mean

free path, and studying how they alter the long-time evolution of the system. However, for

superfluids, a quantum generalization of stochastic hydrodynamics is necessary for incorporat-

ing the e↵ects of macro(meso)scopic fluctuations between the decoherence length scale and the

mean free path.

Experimental evidence suggests an interplay between strong and weak degrees of free-

dom in the QCD matter formed in heavy ion collision from the very initial stage till the time

the particle reaches the detector. Semi-holographic approach [10–12], incorporates both these

degrees of freedom consistently in a single framework. In this framework, the low energy sec-

tor coupled with the holographic sector is expected to thermalise with the latter. In this case,

fluctuation plays a crucial role in leading the system towards global equilibrium from a pseudo-

equilibrium state. Particularly in the large N limit, fluctuation dominates the understanding of

2



quantum thermalisation of the system.

The work included in the thesis is divided into three parts. The first part deals with

constructing the e↵ective description of a dissipative relativistic superfluid and understanding

the nature of the Bjorken flow [13] of such a system.

The second part deals with the development of a holographic method for computing

real-time hydrodynamic (out-of-equilibrium) correlation functions of a strongly coupled rela-

tivistic system undergoing Bjorken flow. This is not only the first step for the study of a quantum

superfluid incorporating macroscopic fluctuations, but also for a more fundamental understand-

ing of non-equilibrium dynamics with diverse applications to the phenomenology of heavy-ion

collisions.

In the third work included in the thesis, we study the thermalisation of a democratically

coupled system in the semi-holographic framework.

MIS formalism of superfluidity

In the first work, we have developed a causal MIS formalism for superfluid in which we add

both the order parameter and dissipation to the Son-Nicolis e↵ective action framework [14,15].

We have restricted ourselves here to the case of a U(1) symmetry breaking but our work can

be easily generalized to non-Abelian cases. Our formalism reproduces the superfluid di↵usion

mode found in other e↵ective approaches [16] while pointing towards spinodal instabilities

below a certain temperature.

We use our MIS-superfluid formalism to study symmetry breaking in out-of-

equilibrium situations in the context of Bjorken flow. For initial temperature above the critical

temperature, Tc, the condensate decays exponentially fast while the phase evolves over a similar

timescale to satisfy the Josephson condition. Then the full system gets trapped very close to

a conventional hydrodynamic attractor over a very long period of time during which the sys-

tem approaches a perfect fluid expansion with unbroken symmetries. However, the long time

3



physics is somewhat surprising.

It turns out that the superfluid system has an even number of symmetry breaking non-

dissipative fixed points in which the full system undergoes expansion at a constant temperature

(determined by the equation of state and the potential) and with a constant value of the conden-

sate. These fixed points are possible because the condensate lowers the energy with respect to

the vacuum, allowing the expanding system to maintain a self-consistent constant temperature.

When the initial temperature T , is above the critical temperature Tc and otherwise the

initial conditions are generic, the superfluid system switches rapidly to one of these symmetry-

breaking fixed points after spending time in very close proximity to the conventional hydrody-

namic attractor with unbroken symmetries. The basin of attraction of these fixed points has

complicated interlacing and possibly fractal boundaries. If T < Tc initially, then the superfluid

system generically evolves to one of the fixed points without getting trapped near the hydro-

dynamic attractor (unless the initial condition is close to the boundary between the basins of

attraction of the fixed points). We observe that the symmetry-breaking fixed points are inde-

pendent of the relaxation mechanism, and are determined only by the equation of state and

the potential of the condensate. Furthermore, the hydrodynamic attractor is a feature in any

phenomenological framework incorporating relaxation. Therefore, the dynamic features of su-

perfluid flow, especially concerning the role of the hydrodynamic attractor and the fixed point

should be universal. We also analyze the linearized perturbations around thermal equilibrium

and show that the fixed points are unstable against inhomogeneous perturbations that should

lead to spinodal decomposition.

Schwinger Keldysh correlation function of Bjorken flow

To study the real-time correlation function of a strongly coupled non-equilibrium system in the

hydrodynamic limit, we have implemented a holographic approach. We generalize the horizon

cap prescription due to Crossley, Glorioso and Liu (CGL) [17] to a dynamical asymptotically
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AdS d+1 (anti-de Sitter) bulk geometry dual to the Bjorken flow in the field theory, and obtain the

out-of-equilibrium correlation functions in the hydrodynamic limit in the late time expansion.

The horizon cap prescription originally proposed for the static black brane dual to the thermal

state realizes the Schwinger-Keldysh contour by a horizon cap, in which the ingoing Eddington-

Finkelstein radial coordinate goes around the horizon in the complex plane in a little circle of

radius ✏ before going back to the real axis and reaching the second boundary. Thus the two

arms of the Schwinger-Keldysh contour at the two boundaries are connected continuously in

the bulk through the bulk radial contour. The horizon cap implements the appropriate analytic

continuation of bulk fields from one arm of the bulk geometry to the other with the sources

specified independently at the two boundaries.

We first provide a novel, elegant and simple proof that the CGL horizon cap prescrip-

tion reproduces the Kubo-Martin-Schwinger (KMS) periodicity at thermal equilibrium which

relates the various real-time correlation functions, and that it also reproduces the Son-Starinets

ingoing boundary prescription for the retarded correlation function (implying that it is given by

causal response) at arbitrary frequency and momenta. This proof relies on deriving a simple

matrix factorization of thermal correlation functions and also showing that the on-shell action

is localised at the two boundaries receiving contributions only from the cross terms between

the in-going and out-going modes.1 Both of these features are also crucial for the extension

of the CGL method to the out-of-equilibrium hydrodynamic Bjorken flow and also for crucial

consistency checks of the prescription.

The primary tool for extending the CGL prescription into the hydrodynamic regime

is the utilization of a Weyl rescaling of the Bjorken flow. At late time this rescaling maps

the perfect fluid expansion to a flow with constant temperature and entropy density. However,

there is no time-translation symmetry (time-like Killing vector). The Weyl rescaling leads to

expansion in the longitudinal direction and contraction in the transverse direction with proper

time evolution in a way such that the total spatial volume density is a constant. This Weyl
1The in-going and out-going modes are defined at the horizon but each of them extend all the way to the

boundary. The Dirichlet boundary conditions at the two boundaries give a unique solution of the sclar field in the
full geometry.
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transformation can be lifted to a bulk di↵eomorphism. At late proper time, the dual black hole’s

event horizon (and also the apparent horizon which coincides with it at late time) reaches a fixed

location. The area and surface gravity of the event horizon remain constant at late time, but the

event horizon shrinks in the directions transverse to the flow while expanding in the longitudinal

direction. The latter necessitates the viscous and higher order hydrodynamic corrections (in this

Weyl rescaled version) so that the horizon is smooth. The computation of viscous and higher

order corrections is just a special case of the fluid/gravity correspondence [18] and has been

worked out up to very high orders for the Bjorken flow.

The out-of-equilibrium correlation functions of a scalar operator can be obtained from

the on-shell action of a scalar field in the doubled version of the bulk Bjorken flow geometry. At

the leading order, the Klein-Gordon equation for the bulk massive scalar field dual to the oper-

ator can be mapped to that in the static black brane with appropriate co-moving momenta, thus

generalizing the result of Janik and Peschanski for the homogeneous case [19], after adequate

spacetime reparametrizations manifested via the Weyl rescaling mentioned above. It follows

that the Schwinger-Keldysh (real time) correlation functions at late time can be mapped to ther-

mal correlation functions with appropriate reparametrizations of the proper time, the rapidity

and the transverse coordinates, up to an overall Weyl rescaling.

We show that the scalar field can be solved order by order in the late time expan-

sion such that the regularity of the horizon cap is preserved provided the latter is located at

the perturbative event horizon. Furthermore, with an additional log correction to the time-

reparametrization, we obtain systematic corrections to the real time correlation functions to the

perfect fluid limit in the late time expansion. We show that the all order result for the hydrody-

namic Schwinger-Keldysh correlation functions exhibits a hidden thermal structure (mimicking

the matrix factorization property) which satisfies crucial field theory consistency conditions that

are relevant even out of equilibrium. The pinning of the horizon cap to the event horizon mimics

the causal nature of Schwinger-Keldysh correlation functions which govern the evolution of the

real time correlation functions in the dual field theory. We also comment on the trans-series
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resummation of hydrodynamic correlation functions and how Stokes data can capture initial

conditions.

Thermalization in semiholography

In this part of the thesis, we investigate thermalization of a hybrid system involving a

weakly self-interacting perturbative sector and a strongly self-interacting non-perturbative

(holographic) sector. The two sectors are coupled using e↵ective metric coupling technique

inspired by semi-holographic framework. The e↵ective metrics of each subsector is determined

by the energy-momentum tensor of the complementary one in a way which leads to a conserved

energy-momentum tensor of the full system in the physical background metric. This setup man-

ifests a continuum of pseudo-equilibrium states in the large N limit where the two sectors can

equilibrate at two arbitrary and distinct physical temperatures. Earlier, it was shown in [20],

that the setup nevertheless admits a consistent thermodynamic description in which demanding

the equality of the two physical temperatures of the respective subsectors is consistent with the

thermodynamic identities of the full system, and furthermore the total entropy of the system is

also the sum of the entropies of the two sectors with respective e↵ective spatial volume correc-

tions. The latter is consistent with statistical mechanics since the two sectors are isolated except

for the e↵ective metric background being determined in a self-consistent way.

We first give a generic proof that the entropy of the full system is maximised only when

the two physical temperatures of the two sectors coincide at any fixed total energy. This result

completely establishes that the semi-holographic framework leads to a consistent and unique

global equilibrium state in the large N limit.

We furthermore study dynamical situations, such as an e↵ective two fluid model and a

kinetic system coupled to a holographic black hole via the e↵ective metric coupling [20], and

show that there exists non-equilibrium macroscopic fluctuations about any pseudo-equilibrium

state which keep the total energy fixed and increases the total entropy. However, any non-
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equilibrium macroscopic fluctuation about the global equilibrium state only reduces the entropy.

Based on these results we formulate how to study the thermalization of the full isolated hybrid

system in the full quantum theory in the large N limit. In particular, we show that the entangle-

ment of the two systems provide a natural origin of the fluctuations which will lead to the large

N dynamics of thermalization.

************

We conclude the thesis with a summary of the results, and discussing the planned future

research which extends the work described here and which should lead to a better understanding

of macroscopic dynamics of relativistic quantum systems, particularly quantum gauge theories.
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Chapter 1

Introduction

With the advent of heavy-ion colliders, namely Relativistic Heavy-ion Colliders (RHIC) at

Brookhaven National Laboratory and Large Hadron Collider (LHC) at CERN, the relativis-

tic heavy-ion collision has unveiled new opportunities in understanding the fundamental nature

of strongly interacting gauge theories. The hot and dense nuclear matter formed in the head-on

collision of Lorentz contracted disc of large nuclei such as Au or Pb, in the intermediate stage

evolves into a deconfined state of quarks and gluons known as Quark Gluon Plasma(QGP). Such

an exotic state of matter forms the key to understand and explore the deconfined and confined

states of quarks and gluons via the phase diagram of QCD (quantum chromodynamics) [32].

Moreover, this deconfined phase of quarks and gluons pervaded the Universe for a few seconds

after the Big Bang [33].

Experimental observations for heavy ion collision at the colliders exhibit collective

phenomena like elliptic flow [34, 35], giving evidence of strong interaction among the partons

liberated by collisions. This strongly interacting partonic matter rapidly approaches thermal

equilibrium which is consistent with the relatively short thermalization time of order ⌧ ⇠ 1fm/c

[36]. The expansion and cooling of the QGP suggest the dependence of temperature on space

and time, implying a scenario close to local thermal equilibrium. Moreover, the estimated value

of certain observables such as the ratio of shear viscosity (⌘) to entropy density (s) of the QGP
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formed at CERN and RHIC lie in the ballpark of the ratio ⌘/s = 1/(4⇡) [37], computed by

Policastro, Son and Starinets [38] and was later conjectured to be the universal lower bound by

Kovtun, Son, and Starinets [39]. The most relevant e↵ective theory that captures these fluid-like

features of QGP is the relativistic theory of hydrodynamics [9, 40, 41]. Surprisingly, one of the

remarkable aspects of the phenomenology of QGP is that a hydrodynamic description is valid

even when it is far away from equilibrium and has large pressure anisotropies. The e↵ective the-

ory of hydrodynamics studies the long-range behaviour of fluid near local thermal equilibrium,

governed by the conservation equation of the energy-momentum tensor and global currents.

The applicability of hydrodynamics to a dynamical evolution away from local equilibrium led

to further development in the theory. Various causal models like Muller-Israel-Stewart (MIS)

theory [2,42], where the dissipation is treated as a dynamical variable, Baier-Romatschke-Son-

Starinets-Stephanov (BRSSS) theory [1] which systematically studies the second order gradient

expansions, have been developed and applied in rather extreme conditions. In addition, there

are extensive studies to acknowledge the diverging behaviour of the hydrodynamic gradient

expansion [25, 26] and its consistency with the theory of resurgence at large order [43].

The applicability of hydrodynamics to a system far away from equilibrium has been ex-

plained by the discovery of hydrodynamic attractors [25]. Attractor is a feature of a dissipative

system that can be defined as a state of the system towards which the non-equilibrium dynamics

of the system evolves irrespective of any initial conditions. The attractors can be represented

as a point or set of points, curve, surface or complicated fractal structure. The emergence of

attractor phenomena in a causal hydrodynamic model as well as in microscopic theories such

as kinetic theory [44, 45] and the holographic description of N = 4 Super Yang-Mills (SYM)

theory at large N and strong coupling [24], can be attributed to the observation that the non-

hydrodynamic modes present in the dynamics decay to same late time behaviour, governed by

hydrodynamic degrees of freedom for arbitrary initial conditions. Moreover, the attractors can

be also defined as the resummation of hydrodynamic gradient expansion up to all orders. This

phenomenon in which the evolution of a system is controlled by macroscopic variables such as

energy-momentum tensor and conserved currents, and described by hydrodynamics, even at far
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away from equilibrium has been termed as hydrodynamization [23].

The fluid description of the QGP includes only the hydrodynamic variables such as

fluid velocity, temperature and charge densities via the constitutive relations of the energy-

momentum tensor and global currents (refer to chapter 2). However, the presence of chiral

symmetry breaking, the salient feature of the nuclear matter is not captured in this usual hy-

drodynamic description. Chiral symmetry and the associated chiral phase transition from the

unbroken to the broken phase, which involves the deconfinement-confinement transition, play

a significant role in the dynamics of the expanding nuclear matter produced by heavy ion colli-

sions [46]. The evolution of the nuclear matter through the chiral unbroken and broken phase

can be understood by studying the QCD phase diagram 1.1. A phase diagram is the graphical

representation of the physical states of a system under di↵erent conditions of thermodynamical

variables. The QCD phase diagram tells the tale of distinct phases of QCD matter that occur and

co-exist at di↵erent ranges of temperature T and chemical potential µ. The phase diagram of

QCD is an active research subject which has shown much progress with lattice simulation [32]

and experimental searches at experiments in RHIC and CERN.

Figure 1.1: Schematic view of QCD phase diagram [21].

Here we sketch a schematic understanding of the QCD phase diagram: We start with

zero temperature T and chemical potential µ, where vacuum exists and then vary the temper-

ature along with µ. At a low value of T and baryon chemical potential µ, there exists the

colour-neutral bound state of quarks and gluons which is the chiral symmetry broken phase.
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At higher temperatures, we have the deconfined state of quarks and gluons which respects the

approximate chiral symmetry that becomes exact with zero quark mass. These two phases at

some intermediate temperature show a smooth crossover at smaller baryon chemical potential

which is a good approximation of QCD transition in the early Universe and a first-order transi-

tion at a relatively higher value of chemical potential separated by a second-order critical point

marked by a star. Now with temperature close to zero, if we increase the chemical potential

we find that at a low value of µ there exists a phase boundary between nuclear matter and vac-

uum. Then with a further increase in µ, there exists a more compressed phase of nuclear matter,

which brings us closer to the neutron star. Besides these phases of QCD matter, for higher

value of the chemical potential at low temperature, one predicts a color-flavor-locked (CFL)

phase of color-superconducting quark matter [47, 48] and some other unknown phase marked

as non-CFL quark liquid.

The existence of this crossover region in the phase diagram indicates the presence of a

small but finite quark mass, implying that the chiral symmetry has been explicitly broken. This

complicates the distinction between the confined and deconfined QCD phases by any global

symmetry. Lattice simulations suggest that the critical point shows O(4) scaling [46,49]. Using

the O(4) scaling function, the lattice computation of the chiral condensate as a function of quark

mass has been able to explain the properties of chiral crossover [6, 7]. Also, there has been an

e↵ort to understand the scaling of dynamic correlators in the crossover region by performing the

real-time simulation of the O(4) critical region [50]. However as mentioned, the e↵ect of neither

explicit nor spontaneous chiral symmetry breaking has been incorporated in the hydrodynamic

description of nuclear matter formed in heavy ion collisions.

In the chiral limit, hydrodynamic description obeys the underlying symmetry of QCD,

U(1)⇥S UL(2)⇥S UR(2), while below the transition temperature, the symmetry is spontaneously

broken to U(1) ⇥ S UV(2), resulting into the development of chiral condensate. In this limit be-

low the transition temperature, the occurrence of Goldstone modes necessitates their inclusion

in the hydrodynamic description which leads to an e↵ective theory similar to the non-abelian
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superfluid [15, 51]. Further, the presence of small but finite quark mass implies the generation

of pseudo-Goldstone modes due to the explicit breaking of the symmetry. Recently, the e↵ect

of this pseudo-Goldstone mode has been incorporated into the hydrodynamics using stochastic

formalism, where it has been shown that the hydrodynamic transport coe�cients get a correc-

tion from the quark masses [52]. Therefore, this shows the need to include the dynamics of

the broken symmetry together with the hydrodynamic variables characterizing the conserved

currents governed by the Ward identities. Hence, the formulation of an e↵ective description

of the composite dissipative system of pseudo-Goldstone bosons interacting with ordinary hy-

drodynamic degrees of freedom is a direction of intense research. This can further lead to the

understanding of the interplay between the symmetry-breaking dynamics and that of the hydro-

dynamic attractors.

The study of hydrodynamic description in the regime of continuous symmetry break-

ing describes the theory of superfluidity. Superfluidity, first discovered in helium�4 isotopes by

Pyotr Kapitsa [53] and independently by John F. Allen and Don Misener [54] in 1937, is a char-

acteristic of fluid with zero viscosity which means the fluid can flow without loss of kinetic en-

ergy. The theory of superfluidity was developed long ago by Landau [55] in the non-relativistic

case which was later extended to the relativistic domain [56,57]. In heavy ion collisions, owing

to the limited size of the system, superfluid fluctuation plays an essential role in the dynamical

evolution of the system, especially near the O(4) critical point of QCD. In [8], using stochastic

hydrodynamic formalism, it has been investigated how these fluctuations modify the transport

coe�cients of QCD. They have also provided a phenomenological understanding of the ef-

fect of the chiral fluctuations on the momentum spectrum of soft pions near pseudo-critical

points. Stochastic hydrodynamics is a formalism for incorporating macro(meso)scopic clas-

sical statistical fluctuations at length scales larger than the mean free path, and studying how

they alter the long-time evolution of the system [9]. At length scales below a dynamically deter-

mined decoherence length scale, which can be larger than the microscopic scales in a superfluid,

the fluctuations are of quantum origin. Therefore for superfluids, a quantum generalization of

stochastic hydrodynamics is necessary for incorporating the e↵ect of this fluctuation at a length
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scale shorter that the scattering time and the mean free path by using techniques such as the

holographic approach.

The AdS/CFT correspondence, an example of the holographic principle, is a proposed

relationship between the quantum gauge theories and the quantum theory of gravity in one

higher dimension with appropriate boundary conditions. In the limit of strong coupling and

large N, the quantum gravity theory reduces to the classical theory of gravity. The duality

forms an important toolkit to study the strongly interacting dynamics of quarks and gluons by

solving the dynamics of the classical Einstein equation of the gravity dual. In quantum gauge

theories, real-time correlation functions are important for various observables such as S-matrix

which leads to the computation of scattering amplitudes. At finite temperature and density of

the gauge theory, the real-time correlation functions are essential to apprehend the response of

the thermal ensemble to fluctuations that drives the system out of equilibrium. Further, these

correlation functions also provides an understanding of decoherence and thermalization in the

weak coupling limit.

The first prescription to study the real-time correlation function using the holographic

method is due to Son and Starinets [51], where they have computed the retarded correlation

function of thermal states. Schwinger Keldysh formalism [58] gives a systematic way to

study real-time correlation functions in non-equilibrium and thermal systems via path order-

ing. The implementation of this formalism to holographic dual was first achieved by Son and

Herzog [59], where they mapped the Schwinger Keldysh contour to a thermal black brane. In

addition to this, di↵erent ways were developed using holographic techniques to compute the

real-time correlation functions such as Skenderis and van Rees prescription [31, 60, 61] which

is best defined for initial states that can be built using Euclidean path integrals. However, the

computation of Schwinger-Keyldsh correlation functions for non-equilibrium processes which

hydrodynamizes at a late time such as the dynamics of QGP, does not require any understanding

of initial states. For such cases, the computation of hydrodynamic Schwinger-Keldysh correla-

tion functions demands a simpler approach.
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Further, in heavy ion collisions, the evolution of the QCD matter is not only governed

by the strongly interacting degrees of freedom (non-perturbative) but also by weakly interact-

ing degrees of freedom (perturbative). Both these degrees of freedom play a crucial role from

the very initial stage of color glass condensate to the freeze-out stage until the particle reaches

the detector. The presence of both these interactions can be attributed to one of the features of

QCD called asymptotic freedom. Asymptotic freedom indicates asymptotically weaker inter-

action of the quarks and gluon with an increase in energy or decreases in the length scale. The

dynamics of QCD in this limit have been well explained by the perturbative theory. While at

low energy, the strong interaction of quarks and gluons resulting in composite hadrons requires

non-perturbative descriptions such as Gauge/gravity duality and lattice simulation. Therefore,

there seems a need for a single framework that can incorporate both these degrees of freedom

consistently. Such a unified and consistent framework is provided by the semi-holographic

approach.

The semi-holographic framework was initially developed in the context of holographic

non-fermi liquid models by Polchinski and Faulkner [10]. Later this model has been generalised

by Mukhopadhyay and Policastro to study the e↵ective description for a large set of non-Fermi

liquids [11]. In this formulation a strongly coupled conformal theory with a gravity dual is cou-

pled to a dynamical boundary field, hence the term semi-holography. In the context of heavy

ion collisions, this model couples classical Yang-Mill fields defining the weakly coupled gluon

modes to strongly coupled soft modes, defined by strongly coupled holographic theory [12].

The model has been constructed in a way to have phenomenological implications. This is

achieved by the democratic coupling mechanism [62] in which one can describe the physical

system consistently at any given scale including both perturbative and non-perturbative e↵ects

without the knowledge of microscopic details of both the sectors. This democratic coupling

has been utilized to study hybrid fluid model [20], where it was shown that the setup admits a

consistent thermodynamic description provided the physical temperatures of the two subsectors

are equal and consistent with the full system thermodynamic identities. In addition, the total

entropy of the system is a sum of the entropies of the individual sectors with e↵ective spatial
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volume corrections which is consistent with statistical mechanics. The hybrid fluid model has

been extended by adding viscosity using MIS formalism [63]. This viscous fluid model shows

the emergence of hybrid hydrodynamic attractors and also captures the feature which is rem-

iniscent of the Bottom-up scenario of thermalisation in the heavy-ion collision. Further, the

coupling of MIS with holography in a democratic manner [64] suggests a possibility of the MIS

sector to thermalise with the holographic sector. This motivates the study of thermalisation in

semi-holographic framework where fluctuation plays a crucial role in driving the system to-

wards global equilibrium. Particularly in the limit of large N, the quantum thermalisation of the

system is dominated by macroscopic fluctuations.

The thesis has been organised as follows: Chapter 2 describes the relevant theoreti-

cal concepts required to follow later chapters in the thesis. This chapter reviews the theory of

relativistic hydrodynamics followed by a discussion on the AdS/CFT correspondence and the

Schwinger-Keldysh formalism. In chapter 3 we discuss the formulation of an e↵ective descrip-

tion of a dissipative relativistic superfluid by including both order parameter and dissipation

to the Son-Nicolis e↵ective action framework [14, 15] using MIS formalism. Here we have

restricted ourselves to U(1) symmetry breaking. Then in chapter 4, we develop a holographic

method for computing real-time hydrodynamic correlation functions of a strongly coupled rela-

tivistic system which hydrodynamizes at a late time using the horizon cap prescription of Cross-

ley, Glorioso and Liu (CGL) [17]. The computation of this hydrodynamic real-time correlation

function prepares the foundation to study quantum superfluid by incorporating macroscopic

fluctuations. In addition, it can also provide a fundamental understanding of non-equilibrium

processes with applications to the phenomenology of heavy-ion collisions. In chapter 5, we

study the thermalisation in a hybrid system coupled in a democratic manner via the e↵ective

metric of the weakly self-interacting perturbative sector and a strongly self-interacting non-

perturbative sector in the semi-holographic framework. Chapter 6 summarises the thesis and

discusses the future research plan to extend the work done to have a better understanding of the

dynamics of relativistic quantum systems in macroscopic length scale. In the end, the longer

calculations are included in the Appendices.
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Chapter 2

Theoretical background

2.1 Relativistic Hydrodynamics

Hydrodynamics is an e↵ective description of many-body physics that explains the long wave-

length limit of the underlying microscopic theory. It investigates small fluctuations in local

thermal equilibrium where the macroscopic length scale is much larger than the microscopic

scale. In recent years, hydrodynamic modelling of various non-equilibrium processes has

gained much momentum owing to its success in characterising the out-of-equilibrium observ-

ables. One such example is the hydrodynamic description of the QGP phase formed in heavy

ion collision [65–68].

The validity of hydrodynamic applicability can be examined based on the Knudsen

number Kn, defined as a ratio of the microscopic to the macroscopic scale of the underlying

theory. Typically for Kn ⌧ 1, the system approaches the local thermal equilibrium and can hold

an e↵ective description of hydrodynamics while a large value of the Kn renders the application

of hydrodynamics questionable. However, there are evidences where a system away from local

equilibrium holds a fluid dynamical description. For instance, in [22], it has been observed that

the Knudsen number defined as the ratio of relaxation time to the expansion rate (or gradient of

energy density) attains a large value of 0.5 for ⌘/S = 0.08. This value marks the edge of validity
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of the hydrodynamic description of the QGP formed in ultra-relativistic heavy ion collision, as

seen in Fig. 2.1. In such cases, the success of hydrodynamic applicability has been attributed to

the discovery of the hydrodynamic attractor [25, 69, 70].

Figure 2.1: Spacetime evolution of Knudsen number Kn✓ in a Pb+Pb collision of the 20 � 30
centrality class at the LHC, for eBC (energy density is proportional to the density of binary
collision) initial state. In the left panel, the initial time ⌧0 = 0.2 fm, while in the right panel,
⌧0 = 1.0 fm, the shear viscosity to entropy density ratio is ⌘/s = 0.08. Figure taken from [22].

A system in a hydrodynamic regime is characterized by the conservation equation of

the energy-momentum tensor T µ⌫ and other global currents Jµa ,

rµT µ⌫ = 0, (2.1)

rµJµa = 0. (2.2)

The stress tensor T µ⌫ and conserved currents follow a constitutive relation and can be expressed

as gradient expansion of local hydrodynamic degrees of freedom ( eg. velocity, temperature

etc), respecting the symmetry of the system.

In this section, we study the conformal symmetry of hydrodynamics along with its

action formalism and gradient expansion. We also discuss Bjorken flow, the one-dimensional

boost-invariant flow of fluid and hydrodynamic attractors.
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2.1.1 Conformal symmetry of hydrodynamics

A theory is said to follow conformal symmetry if the action S[�, gµ⌫] is invariant under Weyl

transformation,

gµ⌫ ! e�2�(x)gµ⌫ (2.3)

where �(x) is an arbitrary function of space-time coordinate. Subsequently, the stress tensor,

defined as T µ⌫ ⌘ � 1
2
p
�g

�S
�gµ⌫

, is traceless at the classical level while at the quantum level, the

stress tensor has a non-vanishing trace,

gµ⌫T
µ⌫
cl = �

1
2
�S

��(x)
= 0, (2.4)

gµ⌫hT µ⌫i = Wd[gµ⌫] (2.5)

where Wd is the Weyl anomaly [71,72] in d dimensions which is identically zero for odd d. For

any even d = 2k, W2k contains 2k derivatives of the metric. For instance, for d = 4, the Weyl

anomaly W4 has four derivatives,

W4[gµ⌫] = �
a

16⇡2 (Rµ⌫�⇢Rµ⌫�⇢ � 4Rµ⌫Rµ⌫ + R2) +
c

16⇡2 (Rµ⌫�⇢Rµ⌫�⇢ � 2Rµ⌫Rµ⌫ +
1
3

R2), (2.6)

Rµ⌫�⇢ and Rµ⌫ are the Riemann tensor and Ricci tensor, a and c are constants ( in N = 4 Super

Yang-Mills (SYM) theory a = c = 1
4 (N2

c � 1) [73]).

In a hydrodynamic theory, the existence of Weyl anomaly depends on the order of

hydrodynamic gradient expansion. For second-order hydrodynamics, the anomaly in d = 4

dimension vanishes because of the fourth-order derivatives in W4[gµ⌫]. This implies, for a larger

even d� dimension, one needs to keep even higher orders in hydrodynamics for a non-vanishing

Weyl anomaly. Thus, one can ignore the anomaly and assume that lower-order hydrodynamic

theory is invariant under Weyl transformation. In this case, following the Weyl transformation

26



(2.3), the traceless energy-momentum tensor transforms homogeneously as,

T µ⌫ ! e(d+2)�(x)T µ⌫. (2.7)

Likewise, one can also show that the global current under the Weyl rescaling of the metric

follows a homogeneous transformation,

Jµ ! ed�(x)Jµ, (2.8)

d is the space-time dimension of the theory. In general, any tensor Qµ1···µm
⌫1···⌫n is said to be con-

formally invariant if it transforms homogeneously under Weyl transformation (2.3), Qµ1···µm
⌫1···⌫n !

ew�(x)
Q
µ1···µm
⌫1···⌫n . Here, w is a real number and is known as conformal weight which is (d + 2) for

energy-momentum tensor and d for global currents.

2.1.2 Hydrodynamics from action formalism

Hydrodynamic descriptions can be thought of as a large wavelength (infrared) e↵ective de-

scription of quantum field theory. There are various approaches [74–76] to understand the

constitutive relation of hydrodynamics from e↵ective action formalism. In [75], the author has

formulated the e↵ective action of an uncharged fluid from Lagrangian fluid element1 variables

in a systematic derivative expansion and derived the non-dissipative energy-momentum tensor

up to second-order. In the case of a charged fluid, one can refer [78] to study the derivation of

the perfect fluid energy-momentum tensor from the e↵ective action formalism.

We start with an e↵ective action S [gµ⌫],

S [gµ⌫] =
Z

dd x
p
�gp(T ) (2.9)

1Lagrangian description of fluid flow means, individual fluid cells are labelled and their position and velocity
are defined as a function of time [77].
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where p(T ) is the pressure of the perfect fluid and T is the temperature and g is the determinant

of the d dimensional spacetime metric gµ⌫. The temperature T has been defined through a new

variable �µ as,

T ⌘ (��µgµ⌫�⌫)�1/2 (2.10)

where �µ = uµ/T and uµ is the fluid velocity normalised to uµuµ = �1. By varying the action

with respect to the metric gµ⌫ and using the thermodynamic identities s = @p
@T and ✏ + p = sT ,

we recover the energy-momentum tensor of the perfect fluid.

�S =

Z
dd x

⇣
�
p
�gp(T ) +

p
�g

@p
@T

�T
⌘

=

Z
dd x
p
�g

⇣
gµ⌫p(T ) + sT 3�µ�⌫

⌘
�gµ⌫

=

Z
dd x
p
�g

⇣
gµ⌫p(T ) + sTuµu⌫

⌘
�gµ⌫ (2.11)

where we recognize the energy-momentum tensor to be,

T µ⌫ = (✏ + p)uµu⌫ + gµ⌫p. (2.12)

Here ✏ is the energy density and s is the entropy density of the fluid. Further, under di↵eomor-

phisms of xµ,

xµ ! xµ + ⇠µ, (2.13)

we get

�gµ⌫ = rµ⇠⌫ + r⌫⇠µ (2.14)

which directly leads to the conservation of the energy-momentum tensor after partial integra-
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tion,

rµT µ⌫ = 0. (2.15)

Hence, from the e↵ective action (2.9), we have recovered the energy-momentum tensor for

the perfect fluid and further, the di↵eomorphism invariance gives the conservation of energy-

momentum tensor. This action formalism will be used in chapter 3 for the MIS formalism of

superfluid.

2.1.3 Hydrodynamics as gradient expansion

Hydrodynamic constitutive relations can be expressed in terms of the gradient of hydrodynamic

variables like fluid velocity, temperature and chemical potential. In this section, we analyse

hydrodynamics as gradient expansion up to the second order.

Perfect fluid

At local equilibrium or zeroth order of gradient expansion, a system living on a d dimensional

metric gµ⌫ is defined by an isotropic stress tensor and conserved current of the form,

T µ⌫(0) = ✏ uµu⌫ + p(✏)�µ⌫, (2.16)

Jµa(0) = qauµ (2.17)

where ✏ is the energy density, and qa is the net charge density of the fluid. uµ is the normalised

relativistic velocity (uµuµ = �1) which in the local rest frame takes the form uµ = (1, 0, 0, ..., 0|    {z    }
(d�1)

).

The fluid pressure p(✏) is given by the thermodynamic equation of state. In the case of a

conformal system, the tracelessness of the energy-momentum tensor gives the equation of state

to be p(✏) = ✏/(d � 1) where ✏ can be defined in terms of temperature T as, ✏ = const T d. �µ⌫
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is the spatial projection operator given by

�µ⌫ = uµu⌫ + gµ⌫ (2.18)

which satisfies the condition,

�µ⌫u⌫ = 0, �µ⇢�⇢⌫ = �
µ
⌫ . (2.19)

In absence of any sources, the conservation equation (2.1) gives the relativistic Euler equation,

rµT
µ⌫
(0) = 0, (2.20)

and the conservation equation for current is

rµJ
µ
a(0) = 0. (2.21)

The projection of (2.20) in the direction parallel and perpendicular to fluid velocity gives the

fundamental equation for energy and momentum,

u⌫rµT
µ⌫
(0) ⌘ D✏ + (✏ + p)rµuµ = 0, (2.22)

�↵⌫rµT
µ⌫
(0) ⌘ (✏ + p)Du↵ + r↵p = 0 (2.23)

where D ⌘ uµrµ and r↵ ⌘ �µ↵rµ. In addition, using the thermodynamic identities one can find

that the entropy current defined as sµ = s uµ is conserved i.e., rµsµ = 0. This shows that there

is no entropy production for a perfect fluid.

Dissipative fluid

Dissipative fluids can be studied by adding perturbations to the equilibrium state. The pertur-

bative corrections can be expressed as a gradient of hydrodynamic variables. At the first order
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of gradient expansion which gives the well-known Navier-Stokes equation, rµT µ⌫ = 0, the

energy-momentum tensor and the conserved current read as,

T µ⌫ = T µ⌫(0) + ⇧
µ⌫
(1), (2.24)

Jµa = Jµa(0) +J
µ
a (2.25)

where Jµa and ⇧µ⌫(1) are first order in gradient of hydrodynamic variables. The correction terms

chosen are arbitrary and can be fixed by the choice of reference frame. In the case of the

Landau frame, the energy density ✏ and the fluid velocity uµ are treated as timelike eigenvalue

and eigenvector of the stress tensor in the local rest frame,

T µ⌫ u⌫ = �✏uµ. (2.26)

This implies that there is no flow of energy density in the local rest frame and the correction⇧µ⌫(1)

follows the transverse condition, ⇧µ⌫(1)u⌫ = 0. The other commonly chosen frame is the Eckart

frame where there is no flow of charge density in the local rest frame. In the thesis, we will

follow the convention of the Landau frame.

To obtain the expression for ⇧µ⌫(1) and Jµa in terms of hydrodynamic variables, we use

the conservation equation of energy-momentum tensor projected along the fluid velocity,

u⌫rµT µ⌫ ⌘ D✏ + (✏ + p)rµuµ + u⌫rµ⇧
µ⌫
(1) = 0, (2.27)

and the thermodynamic identities along with the second law of thermodynamics,

✏ + p = sT + µaqa, dp = sdT + qadµa, and rµsµ � 0, (2.28)

T is the local temperature and µa is the chemical potential. These identities together with (2.27)
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gives

rµsµ ⌘ �
⇧
µ⌫
(1)

T
rµu⌫ �Jµarµ

µa

T
� 0 (2.29)

where the positivity condition demands that

⇧
µ⌫
(1) = �⌘�

µ⌫
� ⇣�µ⌫r�u� and J

µ
a = �ab @

µ
⇣µb

T

⌘
. (2.30)

Here �µ⌫ is the first-order derivative in fluid velocity,

�µ⌫ = (r↵u� + r�u↵)�↵��µ⌫ �
2

d � 1
r�u��µ⌫, (2.31)

and ⌘(✏) and ⇣(✏) are the first-order transport coe�cients, known as shear viscosity and bulk

viscosity. These are associated with shear stress ⇡µ⌫ = �⌘�µ⌫ and bulk stress⇧ = �⇣r�u�. ab is

the transport coe�cient connected to the charge di↵usion constant. These transport coe�cients

are given as input based on the microscopic details of the theory. Further, for a conformal

system, the bulk viscosity ⇣ = 0 which implies that ⇧µ⌫(1) is traceless (Note: By definition the

shear stress is traceless i.e. ⇡µµ = 0 ).

Acausality

The relativistic Navier-Stokes equation leads to acausality for being parabolic in nature [23,79].

This acausality can be understood easily by considering the di↵usion equation obtained by

adding linear perturbations to the initial equilibrium state of the system. The dispersion relation

of the corresponding di↵usion equation turns out to be,

! = i
⌘0

✏0 + p0
k2 (2.32)
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which can be used to determine the velocity of propagation with wavenumber k,

vT (k) =
d!
dk
= 2i

⌘0

✏0 + p0
k, (2.33)

⌘0, ✏0, and p0 are some initial equilibrium conditions associated with shear viscosity, the energy

density, and the pressure of the system. Equation (2.33) shows that for larger values of k,

the velocity of propagation vT (k) can exceed the speed of light. Thus violating causality at

short wavelength. Hydrodynamics being a long wavelength theory, k ! 0 limit does not seem

to cause any threat to causality. However, hydrodynamics is an initial value problem which

requires well-posed initial conditions. It has been observed in various examples [79, 80] that

this acausality leads to instabilities in solving the Navier Stokes equation numerically for any

generic initial conditions.

The problem of acausality leads to a series of approaches to modify the hydrodynamic

equations to a causal one. In this section we discuss two simple solutions to it, the MIS theory

[25] and the BRSSS theory [1].

Conformal MIS theory

In MIS theory [2, 42], the problem of causality has been resolved by promoting the shear stress

tensor, ⇡µ⌫, to an independent dynamical variable that follows the relaxation type equation of

the form,

(⌧⇡D + 1)⇡µ⌫ = �⌘�µ⌫, D = uµrµ (2.34)

where ⌧⇡ is a phenomenological parameter known as relaxation time. The equation (2.34) along

with the energy-momentum conservation equation forms the set of dynamical equations in MIS

formalism. The relaxation type equation (2.34) introduces damped non-hydrodynamic modes

in the theory which modifies the dispersion relation. The modified dispersion relation leads to
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a finite velocity of propagation provided the relaxation time satisfies the condition,

⌧⇡ �
2
T
⌘

s
(2.35)

where s is the entropy density. Therefore the theory is causal as long as the relaxation time

obeys the above condition (2.35).

BRSSS theory

BRSSS theory [1] allows systematic addition of all possible terms of second-order gradient

expansion to the first-order hydrodynamics. The stress tensor reads as,

T µ⌫ = T µ⌫(0) + ⇧
µ⌫
(1) + ⇧

µ⌫
(2)|      {z      }

⇧µ⌫

. (2.36)

Following the Landau frame of reference and conformal invariance of the system, the second-

order correction ⇧µ⌫(2) should also be transverse and traceless as earlier. With these constraints,

this order has eight contributions to the stress tensor which further reduces to five combinations

that transform homogeneously under Weyl transformations.

O
µ⌫
1 = Rhµ⌫i � (d � 2)

⇣
r
hµ
r
⌫i ln T � rhµ ln Tr⌫i ln T

⌘
, (2.37)

O
µ⌫
2 = Rhµ⌫i � (d � 2)u↵R↵hµ⌫i�u�, (2.38)

O
µ⌫
3 = �hµ��

⌫i�, O
µ⌫
4 = �

hµ
�⌦

⌫i�, O
µ⌫
5 = ⌦

hµ
�⌦

⌫i� (2.39)

where ⌦µ⌫ is the vorticity defined as, ⌦µ⌫ = 1
2�
µ↵�⌫�(r↵u��r�u↵). Further for convenience and

easy comparison with MIS theory, one redefines the combination of Oµ⌫1 to hD�µ⌫i2 + 1
d�1 (r.u)

2hAµ⌫i ⌘ 1
2�
µ↵�⌫�(A↵� + A�↵) � 1

d�1�
µ⌫�↵�A↵�.
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[1, 81], such that the final expression up to second-order in gradient expansion becomes,

⇧µ⌫ = �⌘�µ⌫ + ⌘⌧⇧
h
hD�µ⌫i +

1
d � 1

�µ⌫(r.u)
i
+  [Rhµ⌫i � (d � 2)u↵R↵hµ⌫i�u�]

+ �1�
hµ
��

⌫i� + �2�
hµ
�⌦

⌫i� + �3⌦
hµ
�⌦

⌫i� (2.40)

where ⌧⇧, , �1,2,3 are the transport coe�cients which are determined by the underlying micro-

scopic theory. The first constant ⌧⇧ has a time dimension and can be thought of as a relaxation

time.  is zero when we are in a flat space. The constants �1,2,3 are non-linear in velocity and

can be ignored if we wish for small perturbations. Also if we consider irrotational flow, terms

associated with �2,3 can be neglected. However, in a non-linear viscous fluid, the flow is char-

acterized by all the six transport coe�cients which can be explicitly determined for a fluid with

holographic dual [18, 82, 83] and also for fluid whose underlying microscopic theory is kinetic

theory [84]. In particular, forN = 4 Super Yang-Mills (SYM) in d = 4 dimension the values of

the six transport coe�cients [83] are given by,

⌘

s
=

1
4⇡
, ⌧⇧ ⌘ ⌧⇡ =

2 � ln 2
2⇡

,  =
⌘

⇡T

�1 =
⌘

2⇡T
, �2 =

⌘ ln 2
⇡T
, �3 = 0 (2.41)

which can be written in generic closed form for a d� dimensional fluid dual to AdSd+1 [82,85],

⌘ =
1

16⇡G(d+1)
N

⇣4⇡
d

T
⌘d�1
=

s
4⇡
, ⌧⇧ =

d
4⇡T

h
1 +

1
d

Harmonic
⇣2
d
� 1

⌘i
,

 =
d

2⇡(d � 2)
⌘

T
, �1 =

d
8⇡

⌘

T
,

�2 =
1

2⇡
Harmonic

⇣2
d
� 1

⌘ ⌘
T
, �3 = 0. (2.42)

Further, with the identification ⇧µ⌫ = ⇡µ⌫ = ⌘�µ⌫ and D⌘ = ⌘r.u, the BRSSS expan-

sion up to second order (2.40) can be written as,
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⇧µ⌫ = �⌘�µ⌫ � ⌧⇧
h
hD⇧µ⌫i +

d
d � 1

⇧µ⌫(r.u)
i
+  [Rhµ⌫i � (d � 2)u↵R↵hµ⌫i�u�]

+
�1

⌘2⇧
hµ
�⇧

⌫i� +
�2

⌘
⇧hµ�⌦

⌫i� + �3⌦
hµ
�⌦

⌫i� (2.43)

which on truncating at first order reduces to the MIS equation (2.34),

(⌧⇧D + 1)⇧µ⌫ = �⌘�µ⌫. (2.44)

Entropy and Entropy current

As discussed above, the demand of causality modifies the relativistic hydrodynamic equations

by including a dynamical dissipative term and by extending the first-order hydrodynamic to

second-order gradient expansion. In these cases, one can question whether the modified theory

has a positive entropy current.

To study the positive divergence of entropy current we use (2.27) and the thermody-

namic identity to define the entropy current as,

Trµ(suµ) = �⇧µ⌫rµu⌫ (2.45)

where s corresponds to equilibrium entropy density and ⇧µ⌫ holds a second-order derivative

structure for BRSSS theory and is equivalent to ⇡µ⌫ for MIS theory. Here one can write rµu⌫ in

terms of �µ⌫/2 using its definition in (2.27). This gives the entropy current as,

Trµ(suµ) = �⇧µ⌫�µ⌫/2. (2.46)

Then by using the BRSSS expansion (2.40), the dissipative entropy current (2.46) takes the
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form,

rµ(suµ) =
1

2⌘T
⇧µ⌫⇧µ⌫ +

⌧⇡
⌘T
⇧µ⌫

2

h
hD⇧µ⌫i +

d
d � 1

⇧µ⌫r.u
i
+ · · · . (2.47)

Further, with the identification ⌘/⌧⇧ = const.T�d, the equation (2.47) can be rearranged to give,

rµ(snequµ) =
1

2⌘T
⇧µ⌫⇧µ⌫ �

h ⌧⇡
⌘T

d
d � 1

⇧µ⌫⇧
µ⌫
r↵u↵

i

+
h ⌧⇡
2⌘T

d
d � 1

⇧µ⌫⇧
µ⌫
r.u

i
+ · · · (2.48)

where we have used the lowest order equation (2.22) in terms of temperature T as D ln T =

�
1

d�1r.u. The non-equilibrium entropy sneq is defined as

sneq = s �
⇣ ⌧⇧
4⌘T
⇧µ⌫⇧

µ⌫
⌘
. (2.49)

We find that the entropy current (2.48) for BRSSS theory is non-decreasing with the assump-

tion that the contribution from terms like ⇧µ⌫O
µ⌫
2 /⌘T which are not total derivative are small.

However, in the case of MIS, the third term is absent from the equation (2.44) which means that

the MIS theory does not have a well-defined non-decreasing entropy current. Therefore, to get

a positive definite entropy current in MIS one can modify the equation by adding the extra term

d
d�1⇧

µ⌫
r.u, such that the equation becomes,

⌧⇧
h⇧µ⌫

⌧⇧
+ D⇧µ⌫

i
+ ⌧⇧

d
d � 1

⇧µ⌫r↵u↵ = �⌘�µ⌫. (2.50)

This gives the well-defined positive definite entropy current (2.48) for MIS theory where the

non-equilibrium entropy is defined as (2.49). Further, following [86], we can also reproduce

positive divergence of entropy current (2.49) in MIS theory as well as in BRSSS expansion

by using Weylcovariant derivative D↵. With the Weyl covariant derivative, the MIS equation
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becomes,

⇧µ⌫ + ⌧⇧u↵D↵⇧
µ⌫ = �⌘�µ⌫ �

�2

⌘
(⌦µ↵⇧

↵⌫ +⌦⌫↵⇧
↵µ) (2.51)

where the action ofD↵ on a tensor and its definition is mentioned in appendix A.

2.1.4 Bjorken flow and Weyl rescaling

Bjorken flow [13] is a simple model describing the expanding plasma produced by heavy ion

collisions. This model is based on the assumptions of boost invariance and translational and ro-

tational symmetries in the transverse directions of the expanding system. The evolution occurs

inside a forward light cone as shown in Fig. 2.2. It is convenient to describe the Bjorken flow in

 ]=

t

z

τ= t2 - z2 =const.
z/t=tanh[ζ ]= const.

z=tz=-t

Figure 2.2: The schematic diagram of the Bjorken flow illustrates the evolution of an expanding
system on the forward light cone. Here z is the longitudinal direction along which the system
expands. The transverse directions have been suppressed. Initial data is specified on a constant
⌧ hyperboloid.

the Milne proper time ⌧ and the rapidity ⇣ which are related to the Minkowski (lab frame) time

t and the longitudinal coordinate z (along which the system is expanding) as

t = ⌧ cosh ⇣ and z = ⌧ sinh ⇣.

The transverse coordinates x? are the same in both Milne and Minkowski coordinate systems.

In the Milne coordinates, the Minkowski metric takes the form

ds2 = �d⌧2 + ⌧2d⇣2 + ds2
?

(2.52)
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where ds? is the line element in the transverse plane.

The symmetries of the Bjorken flow imply that the expectation value of any operator

depends only on the proper time ⌧. Thus an ansatz for the expectation value of the energy-

momentum tensor in a d-dimensional theory, which is also consistent with the transverse trans-

lational and rotational symmetries of the Bjorken flow, can take the form

hTµ⌫i = diag(✏(⌧), ⌧2 pL(⌧), pT (⌧), · · · , pT (⌧)|                {z                }
(d�2) times

), (2.53)

in the Milne coordinates for d > 2. Clearly, ✏, pL and pT denote the energy density, and

longitudinal and transverse pressures respectively.

The local conservation of energy and momentum rµT µ⌫ = 0, implies that

pL(⌧) = �✏(⌧) � ⌧@⌧✏(⌧), (2.54)

and the conformal Ward identity T µµ = 0 imposes

pT (⌧) =
2

d � 2

 
✏(⌧) +

1
2
⌧@⌧✏(⌧)

!
. (2.55)

Consequently, the evolution of the energy-momentum tensor is determined by ✏(⌧) in a confor-

mal field theory.

At large proper time ⌧, the Bjorken flow admits a hydrodynamic description [87]. To

explicitly map the energy-momentum tensor (2.53) to that of a fluid, we need to set the flow

velocity as

uµ = (1,~0),

i.e. d⌧ is co-moving with the flow in the Milne coordinates. In a conformal system, the large

proper time expansion of ✏(⌧) is given by a single parameter, namely

µ := ✏0⌧
d

d�1
0 (2.56)
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which is determined by the initial conditions — ✏0 is a constant energy density, and ⌧0 can be

chosen to be the value of ⌧ where we intialize. The large proper time expansion of ✏(⌧) takes

the form

T ⌧
⌧ = �✏(⌧) = �µ⌧�

d
d�1

0
BBBBB@1 +

1X

n=1

�n µ
�

n
d ⌧�n d�2

d�1

1
CCCCCA (2.57)

where �n are (state-independent) constants that are determined by the transport coe�cients of

the microscopic theory. As for instance, �1 is related to the shear viscosity ⌘ as

�1 = �
⌘(✏)
✏

d�1
d

(2.58)

which should indeed be a constant in a conformal theory. The leading term of the expansion

/ ⌧�d/(d�1) gives an exact solution of the Euler equations, and thus represents the expansion of a

conformal perfect fluid.

Weyl rescaled Bjorken flow

In what follows in chapter 5, Weyl transformation of the Bjorken flow plays a crucial role in

computing the real-time correlation function of Bjorken flow in hydrodynamic limit. In a con-

formal theory, the hydrodynamic equations are Weyl covariant [83]. We are ignoring the Weyl

anomaly for the moment, but we will explicitly mention it later. Under a Weyl transformation

which transforms the metric and the energy-momentum tensor as

ds2
! eds

2
= ⌦(x)2ds2, Tµ⌫ ! eTµ⌫ = ⌦(x)�d+2Tµ⌫, (2.59)

the new solutions of the hydrodynamic equations are given by

uµ ! ũµ = ⌦(x)�1uµ, ✏ ! ✏̃ = ⌦(x)�d✏, (2.60)
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in any conformal theory. Consider the combined operation of the time reparametrization

� = ⌧
d�2
d�1⌧

1
d�1
0 , (2.61)

and the Weyl scaling with

⌦(�) =
✓⌧0

�

◆ 1
d�2
, (2.62)

under which the Milne metric (2.52) transforms to (with ⇣̂ = ⇣⌧0)

eds
2
= �

(d � 1)2

(d � 2)2 d�2 +
�2

⌧2
0

d⇣̂2 +

 
�

⌧0

!� 2
d�2

ds2
?
, (2.63)

and the energy-momentum tensor given by (2.53), (2.54) and (2.55) transforms to

eT�� = ⌦
�d+2⌧0(�)2✏(⌧(�))

=
(d � 1)2

(d � 2)2

 
�

⌧0

! d
d�2

✏(⌧(�))

=
(d � 1)2

(d � 2)2e✏(�),

0
BBBBBB@Note e✏(�) :=

 
�

⌧0

! d
d�2

✏(⌧(�))

1
CCCCCCA

eT⇣̂⇣̂ = ⌦
�d+2

 
⌧(�)
⌧0

!2

pL(⌧(�))

= �

 
�

⌧0

! 3d�4
d�2 ⇣

✏(⌧(�)) + ⌧(�)✏0(⌧(�))
⌘

=

 
�

⌧0

!2 1
d � 1

⇣
e✏(�) � (d � 2)�✏̃0(�)

⌘
,

eTii = ⌦
�d+2PT (⌧(�))

=
2

d � 2
�

⌧0

⇣
✏(⌧(�)) +

1
2
⌧(�)✏0(⌧(�))

⌘

=

 
�

⌧0

!� 2
d�2 1

d � 1

⇣
e✏(�) + �✏̃0(�)

⌘
, (2.64)

with eTii denoting the diagonal transverse components and 0 denoting the derivative w.r.t. the

argument of the corresponding function. It follows that in the hydrodynamic limit, the Bjorken
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expansion (2.57) takes the resultant form

eT�
� ⌘ �e✏(�) = �

 
�

⌧0

! d
d�2

✏(⌧(�)) = �✏0

0
BBBBB@1 +

1X

n=1

�n ✏
�

n
d

0 ��n

1
CCCCCA . (2.65)

The Weyl scaled metric (2.63) has the property that

p
�eg =

d � 1
d � 2

, (2.66)

is a constant, and the spatial volume factor is unity, same as in the Minkowski coordinates.

However, the longitudinal volume expands, while the transverse volume contracts with the evo-

lution. Also note that for the Weyl scaled Bjorken flow (2.65), we have

lim
�!1

e✏(�) = ✏0. (2.67)

Therefore, instead of a perfect fluid expansion, the flow attains a constant temperature, en-

ergy and entropy densities at late time although no time-like Killing vector exists in the back-

ground metric. The latter feature leads to viscous and higher-order corrections. The large

(reparametrised) proper time expansion is determined by ✏0, the final thermal value of the en-

ergy density, while ⌧0 appears in the Weyl scaling factor ⌦ as explicit in Eq.(2.62).

The Weyl scaling depends explicitly on ⌧0. However, note that for ⌧0 ! ⇠⌧0, we obtain

from (2.61) that � ! ⇠1/(d�1)�. Thus the Weyl factor given by (2.62) scales as ⌦ ! ⇠1/(d�1)⌦,

implying that eds
2
! ⇠2/(d�1) eds

2
and ✏0 ! ⇠�1/(d�1)✏0. Therefore, the dimensionless variables

✏�1/d
0 ��1 (which provides the proper time expansion parameter) and �neT�

� are invariant under

⌧0 ! ⇠⌧0, and are thus independent of ⌧0.

2.1.5 Hydrodynamic attractors

The emergence of hydrodynamic attractors resolves the puzzle of the applicability of relativis-

tic hydrodynamics to a far away from equilibrium system with large pressure anisotropies. The
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terminology attractor arises from the observation that the non-equilibrium system for any arbi-

trary initial conditions evolves to the same late-time behaviour, hence an attractor. This attractor

incorporates all orders of hydrodynamic gradient expansion and at a su�cient late time, it co-

incides with the relativistic Navier-Stokes equation. Hence the term hydrodynamic attractor

which at late time is characterised by hydrodynamic degrees of freedom, explains the applica-

bility of the hydrodynamic theory in a far away from equilibrium system. The feature of the

attractor being ignorant of the initial condition makes it a strong phenomenological candidate

to identify universal behaviour in heavy ion collisions by distinguishing between observables

that are and are not dependent on initial conditions.

In the context of heavy ion collisions, hydrodynamic attractors came into existence

while investigating the boost-invariant expansion of plasma by Heller and Spalinski [25]. In

addition, various microscopic theories based on the first principle show the decay of non-

equilibrium solution to the hydrodynamic attractor for arbitrary initial conditions i.e., the tran-

sition to hydrodynamic behaviour [23]. The onset of hydrodynamic behaviour in a far away

from equilibrium system can be studied by considering the example of Bjorken flow in which

the whole physics is encoded in the energy density ✏ or the e↵ective temperature T . Here, the

evolution of the energy density approaches a hydrodynamic attractor [25, 26] where the energy

density at late time has a perfect fluid-like behaviour. The attractor is a generic property of a

many-body relativistic system irrespective of whether its degrees of freedom interact weakly or

strongly (see [5] for a recent review).

The symmetry of the Bjorken flow, as mentioned above in section 2.1.4, ensures that

the hydrodynamic degrees of freedom are functions of proper time ⌧. Therefore, the energy

density ✏, and the longitudinal and transverse pressure, pL and pT , as defined above are functions

of ⌧. The departure of the pressures from the equilibrium pressure given by the equation of

states, p = ✏/(d � 1), measures the anisotropy in the system i.e, how far the system is from the
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local equilibrium. Based on this, one defines the normalised pressure anisotropy variableA as

A =
pT � pL

p
, (2.68)

whose evolution with proper time is studied with respect to the dimensionless variable w =

⌧T (⌧). This dimensionless variable can be thought of as a proper time in units of inverse tem-

perature. This pressure anisotropy also admits a hydrodynamic expansion in w,

A(w) =
X

n=1

anw�n, (2.69)

similar to the energy density above. Generally, one studies the evolution of A as a function of

w to the attractor curve, marking the onset of hydrodynamic description, as shown in Fig. 2.3.

This shows that irrespective of large pressure anisotropy, the system is governed by relativistic

hydrodynamics.

Moreover, the hydrodynamic attractor can be defined as the evolution obtained by

resummation of the hydrodynamic gradient expansion up to all orders [25]. The hydrody-

namic gradient expansions such as (2.57) and (2.68) for arbitrary higher orders result in fac-

torial growth of the coe�cients with zero radius of convergence, as shown in the Fig. 2.4.

The standard technique to remove factorial divergence is the Borel transform of the original

series [88],

BA(⇠) =
X

n=0

an

n!
⇠n. (2.70)

This transformed series has a finite radius of convergence due to the removal of the leading n!

growth. The subsequent inverse Borel transform, also known as Borel resummation is defined

by the Laplace transform,

LA(⇠) =
Z

C

e�w⇠
B̃A (2.71)
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Figure 2.3: The left plot is the MIS attractor. It shows the evolution of the arbitrary initial
conditions given by blue curves to the numerically determined attractor curve, the red one. The
relaxation time ⌧⇡ is considered 3 times the relaxation time of N = 4 SYM. The magenta and
green dotted curves correspond to the hydrodynamics truncated at first and second-order deriva-
tives. The right plot is the attractor of N = 4 SYM plasma. The blue curves are the solutions
for arbitrary initial conditions obtained by numerical simulation in AdS/CFT and the red colour
is the Borel resummed attractor. The dotted magenta is first-order hydrodynamics. The bottom
figure shows resummed attractor in dotted Cyan for MIS, the red one is the numerical attractor
and the dotted magenta and green are the first-order and second-order hydrodynamics. Figure
taken from [23–25].

where C is the integration contour in complex plane that connects from ⇠ = 0 to ⇠ = 1. B̃A

is the analytic continuation of the Borel series achieved by Páde approximation [89]. This

analytic continuation introduces singularities (simple pole) in the Borel plane which is related

to the finite radius of convergence of the Borel series. The accumulation of these simple poles

in the complex plane gives an image of branch cut in the plane and the distance of the closet

pole from the origin is given by the inverse slope of the coe�cients. For holographic theory,

the nearest pole to the origin is associated with the lowest quasinormal modes [26] while in
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Figure 2.4: The figure shows linear growth in the ratio of the coe�cients an+1 and an for BRSSS
hydrodynamics. This growth implies factorial divergence of the coe�cients. Figure taken
from [23].

quantum field theory, they can be associated with instantons [90].

The presence of singularities in the Borel plane introduces complex ambiguities in

the Borel resummation, making the integration, contour dependent. This ambiguity as per the

theory of resurgence indicates the contribution of an infinite set of exponentially suppressed

non-perturbative corrections (non-hydrodynamic modes) to the hydrodynamic series. Hence,

the hydrodynamic series takes the form of transseries [25],

A(w) =
X

m

⌦(w)m
X

n

an,mw�n. (2.72)

The non-perturbative corrections are encoded in ⌦(w) where ⌦(w) = Cw��e�⇠0w, � is a constant

which can be determined by analysing the residue along the branch cut. ⇠0 is the pole closest

to the origin in branch cut and as mentioned is associated with the quasinormal modes or the

instantons depending on the theory. The constant C is a complex parameter that must be cho-

sen such that the ambiguity in the integration contour is cancelled by the subsequent terms in

the transseries, yielding a real final result. This cancellation determines the parameter up to an

arbitrary real constant which is parameterised by di↵erent initial conditions at early time. In

the space of initial conditions one particular configuration finally gives the attractor solution.

Therefore, the transseries form of hydrodynamic expansion captures the information about the
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initial condition via the complex parameter C also known as Stokes parameter, unlike the di-

vergent hydrodynamic expansion where the knowledge of the initial state of evolution vanishes.

For further details in transseries form of hydrodynamics, one can refer to [91–94].

In N = 4 SYM [26] or HJSW hydrodynamics [43], the poles are accumulated away

from the positive real axis as shown in Fig. 2.5, hence one can perform the integration (2.71)

by considering the contour along the positive real axis. The Borel resummability indicates the

presence of Borel resummed all order hydrodynamics. This resummation results in a resummed

attractor as shown in Fig. 2.3. However, for hydrodynamic models like MIS or BRSSS [25], the

poles are accumulated on the positive real axis, as in Fig. 2.5, causing di�culty in integration

along this axis. Here the integration is carried out by choosing the integration contour at an

angle to the real axis by avoiding the poles. In this instance, the ambiguity in the contour can

be eliminated by fixing the parameter, as stated previously where the real part of C is assumed

to be associated with the integration constant for the MIS or BRSSS di↵erential equation [25],

and hence determined by the initial conditions. This then gives the Borel resummed attractor in

MIS or BRSSS, shown in Fig. 2.3.

Figure 2.5: The figure shows the accumulation of poles of symmetric Pade approximant of the
Borel transform of hydrodynamic gradient expansion. The high concentration of the poles gives
an image of a branch cut and the pole closest to the origin governs the radius of convergence of
the Borel transformed series. The left plot shows the poles obtained by doing Borel transform
of energy density for N = 4 SYM (páde approximation is done up to order of 240.). The right
plot shows the poles obtained by doing the Borel transform of anisotropy measureA for BRSSS
hydrodynamics. Figure taken from [23, 26].
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Hydrodynamization

A non-equilibrium system is said to hydrodynamize if the evolution of the system is governed by

hydrodynamic degrees of freedom. This transition to the hydrodynamics of a non-equilibrium

system is known as hydrodynamization [95]. Hydrodynamization refers to the state of a dynam-

ical system in which the average values of the energy-momentum tensor and conserved currents

follow the constitutive relations of hydrodynamics up to a good approximation. It can also be

defined in terms of the hydrodynamic attractor in phase space, which is the result of Borel re-

summed divergent series of the late-time e↵ective hydrodynamic expansion (for a recent review

see [5]). The Fig. 2.6 compares the time evolution of pressure anisotropy in a system governed

by Bjorken flow according to numerical holography, EKT (E↵ective Kinetic Theory) and RTA

(Relaxation Time Approximation) kinetic theory. In all these cases, the evolution of the initial

conditions converges to first-order viscous hydrodynamics roughly around w̃ ⇡ 1 with large

pressure anisotropy A = 0.6 � 0.8. w̃ = w/(4⇡⌘/s), is the rescaled variable which gives a uni-

versal feature toA at late time for microscopic theories such as strongly coupled hCFTs and the

kinetic theory models [23]. The time when the systems are described by hydrodynamic degrees

of freedom is known as hydrodynamization time. Precisely, the hydrodynamization time can be

defined as the time when both the longitudinal and transverse pressure admits a first-order hy-

drodynamic description up to certain accuracy [3]. The work [96], explores hydrodynamization

in a hybrid viscous fluid model coupled in a semi-holographic framework and shows how hy-

drodynamizaiton works in an asymptotically free gauge theory with both weakly and strongly

interacting degrees of freedom.

2.2 Holography and AdS/CFT correspondence

The holographic principle first formulated by t’Hooft [97] and further refined by Susskind [98],

states that in a theory of quantum gravity, the information stored in any region of the spacetime

scales as the surface area enclosing the region rather than the volume of the region itself. This
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Figure 2.6: Comparison of hydrodynamization of EKT (dashed-dotted red), RTA kinetic theory
and N = 4 SYM (blue curve), with di↵erent values of ⌘/s. The dashed brown curve is for
⌘/s = 1/4⇡ and the dotted green is for ⌘/s = 0.624. The dashed magenta is the first-order
hydrodynamics. Figure taken from [23].

argument was inspired by black hole thermodynamics in which the maximum entropy of a black

hole, known as the Bekenstein-Hawking entropy is proportional to the surface area of the black

hole,

S BH =
A

4G
(2.73)

where G is the Newton constant. One concrete example of holography is the AdS/CFT cor-

respondence, or gauge/gravity duality. The AdS/CFT correspondence is a proposed duality

between conformal field theory and the theory of gravity in one higher dimension with an ap-

propriate boundary condition. Precisely, it describes the same physics from two di↵erent per-

spectives by relating the strongly coupled gauge theories to the weakly coupled classical gravity

descriptions.

The correspondence originally proposed by Maldacena [99] can be formally stated in

the context of AdS 5/CFT4 as [100],
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N = 4 Super Yang-Mills (SYM) theory with gauge group S U(N) and coupling constant

gY M is dynamically equivalent to type IIB string theory with coupling constant gs and string

length ls =
p
↵0 on AdS 5 ⇥ S 5 with radius of curvature L. The correspondence maps the

free parameters, gs and the dimensionless ratio L/ls on the string side to the free parameters

on the field theory side, gY M and N, by

g2
Y M = 2⇡gs and 2g2

Y MN = L4/l4
s

where g2
Y MN = � is the t’Hooft coupling and ↵0 is the Regge slope [101]. This statement

is referred to as the strongest form of the AdS 5/CFT4 correspondence. In the t’Hooft limit,

N ! 1 with � fixed and arbitrary, one realises the strong form of the correspondence where

the AdS side reduces to classical string theory with gs ! 0. In this limit, the string theory is

realised by tree-level diagrams and all quantum corrections are neglected. Therefore, one can

map 1/N expansion on the field theory to a string genus expansion for fixed �. Since we are

interested in strong/weak duality, we consider the weak form of AdS/CFT conjecture in the

sense that the strongly coupled N = 4 SYM on field theory side with � ! 1 is mapped to

point-particle limit, ls/L! 0, of type IIB string theory (IIB supergravity) on AdS 5 ⇥ S 5 space.

The correspondence establishes one-to-one relation between the gauge invariant op-

erators in N = 4 SYM and classical gravity field in AdS 5 ⇥ S 5. This mapping is termed as

AdS/CFT dictionary and is a result of the coincidence of the symmetries on both sides where

the isometries SO(4,2) ⇥ SO(6) of AdS 5 ⇥ S 5 has a one-to-one mapping with the supergroup

SO(4,2) ⇥ SO(6) of N = 4 SYM theory. Explicitly this argument leads to equality between the

generating functional of connected correlation functions of gauge invariant operators in the field

theory to the on-shell action of the classical gravity theory with an appropriate near-boundary

expansion of the gravity field�where the leading term acts as a source �(0) to the corresponding

field operators O.

W[�(0)] = Son�shell
S ugra [�]. (2.74)
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The connected correlation function of the gauge invariant operator Oi can be obtained by func-

tional di↵erentiation of the generating functional or the on-shell action with respect to the

sources �(0),

hO(x1) · · · O(xn)i = (�1)n+1
�n
S

on�shell
S ugra

��(0)(x1) · · · ��(0)(xn)
. (2.75)

2.2.1 Scalar field in the bulk

The proposed relation between the gravity field and the operator of the dual field theory can be

understood better by studying an example of a scalar field in bulk. Consider a scalar field � in

AdSd+1 space whose action reads as,

S = �
1
2

Z
drddx

p
�g(gmn@m�@n� +m2�2). (2.76)

The AdS d+1 space is defined by the Poincaré metric given by,

ds2 = gmndxmdxn =
L2

r2 (dr2 + ⌘µ⌫dxµdx⌫). (2.77)

In this metric, the Klein-Gordon (KG) equation for the scalar field computed from the action

takes the form,

(2g � m2)� = 0 (2.78)

where

2g ⌘
1
p
�g

@m

⇣p
�ggmn@n

⌘
=

1
L2

⇣
r2@2

r � (d � 1)r@r + z2⌘µ⌫@µ@⌫
⌘
.

The most convenient approach to get the solution of the KG-equation is to perform Fourier

transform of the field � in the xµ coordinate and consider the field to be in the form of plane
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wave ansatz, �(r, x) = ei~k.~x�k(r). Then the equation for the mode �k(r) becomes,

r2@2
r�k(r) � (d � 1)r@r�k(r) � (m2L2 + k2r2)�k(r) = 0. (2.79)

This equation has two independent solutions which near the boundary, r ! 0, has the following

feature,

�k(r) ⇡ A(k)r�+ + B(k)r�� (2.80)

where �± is the root of the equation (2.79) near the boundary3, defined as,

�± =
d
2
±

r
d2

4
+ m2L2. (2.81)

By definition, �+ � �� and �� can be expressed as �� = d � �+. These roots �± are referred

to as normalisable and non-normalisable. �+ gives the normalisable solution which means the

action evaluated on this solution is finite. This leads to normalisable mode. �� corresponds to

the non-normalisable mode. Near the boundary, the bulk field in the spacetime coordinates can

be expanded in these modes as,

�(r, x) = (�(0)(x)r�� + O(r) + · · · ) + (�(+)(x)r�+ + O(r) + · · · ) (2.82)

where the non-normalisable mode defines the boundary source �(0)(x) via

�(0)(x) ⌘ lim
r!0
�(r, x)r��� = lim

r!0
�(r, x)r�+�d, (2.83)

and the normalisable mode �(+)(x) is identified with the vacuum expectation value for a dual

scalar field operator of dimension �+.

Generally, for a consistent theory, we expect that m2 should be positive or zero. Note

that for m = 0, we have �+ = d which means the dual operator is marginal, and for m > 0,
3Near the boundary for �r(k) = Exp(� r) the equation becomes, �(� � d) � m2L2 = 0.
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�+ > d, which means the dual operator is irrelevant. However, m2 can be negative satisfying the

Breitenlohner-Freedman bound [102, 103], m2L2
� �d2/4. This condition states that the bulk

scalar field�with mass, 0 > m2L2
� �d2/4, are dual to the relevant/marginal scalar field theory

operators of conformal dimension �+ with the condition d � �+ � d/2. For further details one

can refer to [100].

2.2.2 Holographic renormalization

Correlation functions obtained in quantum field theory are a↵ected by UV divergences which

can be removed by the well-known methods of renormalisation. The duality relates this UV

divergence on the field theory side to the IR divergence on the gravitational side and vice versa.

On the gravity side, the long distance (IR) is equivalent to near the boundary. Holographic

renormalisation [60, 104–106] ensures renormalised correlation function by dealing with these

IR divergences via near-boundary analysis.

Here we review the holographic renormalisation of the stress-tensor of gravity based

on the discussion in [105]. We consider a (d+1) dimensional bulk manifoldMwhich is foliated

by a series of d dimensional timelike hypersurface defined by constant bulk radial coordinate,

r. Near the boundary at r ! 1, the bulk manifold leads to AdS spacetime. The dual conformal

field theory lives on this d dimensional spacetime boundary. For any hypersurface defined

by r = constant is spanned by the coordinates (xµ, r) and can be referred to as the boundary

@Mr to the region of spacetimeMr which is interior to @Mr. This boundary is defined by the

induced metric �µ⌫ which is a function of xµ and r and is evaluated at the boundary value of

r. The bulk spacetime M can be expressed in terms of this induced metric �µ⌫ in ADM-like

decomposition [107],

ds2 = N2dr2 + �µ⌫(dxµ + Nµdr)(dx⌫ + N⌫dr) (2.84)

where Nµ is normal to r = constant hypersurface.
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Now to compute the quasi-local stress tensor for the interior region we need to vary the

gravitational action with respect to �µ⌫. The renormalised gravitational action with cosmological

constant ⇤ = d(d � 1)/2l2 (l is the AdS radius) read as,

S = �
1

16⇡G

Z

M

dd+1x
p

g
⇣
R � ⇤

⌘
�

1
8⇡G

Z

@M

dd x
p
��⇥ +

1
8⇡G
Sct(�µ⌫). (2.85)

The second term in the action is the Gibbons-Hawking term which is included here because the

manifoldMr has a boundary @Mr. This term ensures well-defined variational principles. ⇥ is

the trace of extrinsic curvature of the boundary defined by the induced metric �µ⌫. The counter

term Sct ensures a finite stress tensor. It should be chosen properly to remove the divergences

arising due to the boundary limit of @Mr which is the AdS boundary @M of spacetimeM. The

variation of the action in general includes a bulk term and a boundary term. Since we consider

on-shell action, only the boundary term contributes to the action,

�S =

Z

@Mr

ddx ⇡µ⌫��µ⌫ +
1

8⇡G

Z

@Mr

ddx
�Sct

��µ⌫
��µ⌫. (2.86)

Here ⇡µ⌫ is the conjugate momentum of �µ⌫ obtained at the boundary,

⇡µ⌫ =
1

16⇡G
p
�(⇥µ⌫ � ⇥�µ⌫), (2.87)

where ⇥µ⌫ is the extrinsic curvature defined as,

⇥µ⌫ = �
1
2

(rµn̂⌫ + r⌫n̂µ). (2.88)

n̂⌫ is the outward pointing normal vector to the boundary @Mr. Therefore, the quasi-local stress

tensor for the interior region, obtained by the variation of the renormalised gravitational action

with respect to the induced metric �µ⌫ read as,

T µ⌫ =
1

8⇡G

h
⇥µ⌫ � ⇥�µ⌫ +

2
p
��

�Sct

��µ⌫

i
. (2.89)
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Since we are interested in the stress tensor of the boundary field theory, we evaluate T µ⌫ in

the limit @Mr ! @M which generically leads to divergence. To cancel the divergence in this

procedure of renormalisation one considers Sct to be local functional of the boundary metric

[108]. This sets Sct uniquely. For instance, the stress tensor for the boundary quantum field

theory for AdS5 becomes,

T µ⌫ =
1

8⇡G

h
⇥µ⌫ � ⇥�µ⌫ �

3
l
�µ⌫ �

l
2

Gµ⌫
i

(2.90)

where Gµ⌫ = Rµ⌫ � 1
2R�µ⌫ is the Einstein tensor of �µ⌫.

Further, holographic renormalisation is also important to compute conformal anoma-

lies on AdS space from the gravitational action [100]. These anomalies also known as trace

anomalies, render the trace of the energy-momentum tensor non-zero for odd (d + 1)� dimen-

sional AdS space. This is a consequence of the correspondence, as odd (d + 1)� dimensional

bulk theory is dual to even d� dimensional conformal theory where the trace is non-vanishing.

For example, for d = 2 dimensional conformal theory at the boundary the trace anomaly is

T µµ = � c
24⇡R and the subsequent anomaly on AdS3 space is T µµ = � l

16⇡GR, where R is the curva-

ture of the induced metric �µ⌫. These two anomalies agree when c = 3l/2G. While, for d = 3,

the trace of the energy-momentum tensor on both sides is zero.

2.2.3 Fluid/gravity correspondence

The AdS/CFT correspondence can be extended to study e↵ective descriptions of strongly cou-

pled theory at long wavelength. In this limit, any interacting quantum field theory should equili-

brate locally with high energy density, admitting a fluid dynamic description. In addition, with

appropriate boundary conditions, the Einstein equation in this regime reduces to non-linear

equation of fluid dynamics of d dimensional e↵ective theories. This duality between the field

theory at the boundary and gravity, at long wavelength, is termed as fluid/gravity correspon-

dence [1, 18, 38, 83].
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Consider a theory of pure gravitational dynamics in asymptotically AdSd+1 space. Ein-

stein’s equation with negative cosmological constant ⇤ is given by 4,

RMN �
1
2

RgMN + ⇤gMN = 0, ⇤ =
�d(d � 1)

2l2 (2.91)

where l is the AdS radius and is set to one for convenience, RMN is the Ricci tensor and R

is the Ricci scalar. In addition to the usual AdSd+1 solution, the equation admits a family of

solutions given by the boosted black branes along the spatial direction xi. For regularity in the

future horizon, those family of solutions can be given by the ingoing Eddington-Finkelstein

(EF) coordinates,

ds2 = �2uµdxµdr � r2
⇣

f (br) uµu⌫ � �µ⌫
⌘

dxµdx⌫ (2.92)

with �µ⌫ = ⌘µ⌫ + uµu⌫ and

f (br) = 1 �
1

(br)d , uv =
1

p
1 � �2

and ui =
�i

p
1 � �2

. (2.93)

Here uµ is the relativistic fluid velocity and b = 1/rh which is related to the Hawking temperature

by T = d/(4⇡b). The d dimensional vector xµ now has (v, xi) as coordinates, where v is the

ingoing Eddington-Finkelstein time coordinate 5. The metric (2.92) describes the uniform black

brane at constant temperature T moving with a velocity �i with �2 = �i�i.

The metric solution at the boundary leads to d dimensional perfect fluid with a con-

served energy-momentum tensor. Now to describe dissipative fluid, one needs to add perturba-

tion to this equilibrium solution. This can be achieved by promoting the constant parameter b

and �i as a slowly varying function of v and xi which modifies the metric (2.92) to

ds2 = �2uµ(x↵)dxµdr � r2
⇣

f (b(x↵)r) uµ(x↵)u⌫(x↵) � �µ⌫(x↵)
⌘

dxµdx⌫. (2.94)

4The uppercase letters (M,N, · · · ) corresponds to the bulk direction and the Greek letters (µ, ⌫, · · · ) represents
boundary direction and the lowercase letters (i, j, · · · ) represents spatial direction.

5The time coordinate v is defined as v = t+r⇤, where r⇤ is the tortoise coordinate and t the usual time coordinate
[100].
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This modified metric denoted by gµ⌫(ui, b) with arbitrary functions is not a solution to Einstein’s

equation. The new solution can be obtained by solving the Einstein equation order by order in

derivative expansion. This can be achieved by adding derivative corrections to the fluid velocity

ui, b and the metric gµ⌫(ui, b),

ui =

nX

m=0

ui,(m)✏m, b =
nX

m=0

b(m)✏m, gµ⌫ =
nX

m=0

g(m)
µ⌫ (ui, b)✏m. (2.95)

Here ✏ counts the order in the expansion. We insert the above ansatz in the Einstein equation

and solve order by order in ✏. Suppose the equation is solved up to the order ✏n�1, then at the

order ✏n we get (d+1)(d+2)/2 inhomogeneous di↵erential equations for the component of g(n)
µ⌫ .

The di↵erential operator of these equations is given in terms of g(0)
µ⌫ (ui,(0), b(0)) and the source

includes the derivative of ui,(0) and b(0). These equations can be distinguished as follow:

• d(d + 1)/2 dynamical equations which fixes the unknown coe�cient g(n)
µ⌫ .

• d + 1 constraint equations which include the conservation and the tracelessness of the

boundary energy-momentum tensor up to order n � 1 in the ✏ expansion,

rµT
µ⌫
(n�1) = 0, T µµ(n�1) = 0. (2.96)

This determines the coe�cients ui,(n�1) and b(n�1).

For example, following this perturbative procedure, one can compute the first and second-order

contribution to the metric and energy-momentum tensor and determine the transport coe�cients

as in [18, 100].

2.2.4 Holographic dual of Bjorken flow

The gravitational dual of the Bjorken flow [19,26,109–111] has been extensively studied in the

literature with the late time evolution to perfect fluid. This provides a primary example of the
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fluid/gravity correspondence where large order resummation of the hydrodynamic series [26]

has been explicitly carried out revealing the hydrodynamization [25] of a far-from-equilibrium

state. When a state hydrodynamizes, the energy-momentum tensor can be described as an

optimally truncated (divergent and asymptotic) hydrodynamic series even when it is far from

equilibrium [25, 26].

We consider an asymptotically AdS d+1 metric dual to a d� dimensional conformal field

theory governed by Bjorken flow at the boundary. The metric in ingoing Eddington-Finkelstein

like coordinate takes the form

ds2 = �
2
r2 drd⌧ �

A(r, ⌧)
r2 d⌧2 +

✓
1 +

⌧

r

◆2
eL(r,⌧)d⇣2 +

eK(r,⌧)

r2 ds2
?
, (2.97)

with the following Dirichlet boundary condition

A(r, ⌧)! 1, K(r, ⌧)! 0 and L(r, ⌧)! 0 as r ! 0. (2.98)

r is the radial coordinate. These boundary conditions ensure that the boundary metric is the

Milne metric (2.52). The corresponding vacuum solution, which is pure AdSd+1 spacetime with

desired boundary metric is,

ds2 = �
2
r2 drd⌧ �

1
r2 d⌧2 +

✓
1 +

⌧

r

◆2
d⇣2 +

1
r2 ds2

?
, (2.99)

and is dual to the vacuum state of the Milne metric (2.52).

Now to study the late-time evolution of the geometry dual to Bjorken flow, the Einstein

equations (2.91) can be readily solved in the late-time expansion, as functions of the scaling

variable

s = r
✓⌧0

⌧

◆ 1
d�1
, (2.100)
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and with the expansion parameter being

⇣
µ̃1/d⌧

d�2
d�1

⌘�1
(2.101)

where µ̃ := "0⌧
d

d�1
0 is a constant which will be related to the single parameter µ of the Bjorken

flow defined in (2.56) (or equivalently to ✏0, below). Explicitly,

A(r, ⌧) = 1 � "0sd +

1X

i=1

⇣
µ̃1/d⌧

d�2
d�1

⌘�i
a(i)("

1
d
0 s),

L(r, ⌧) =
1X

i=1

⇣
µ̃1/d⌧

d�2
d�1

⌘�i
l(i)("

1
d
0 s),

K(r, ⌧) =
1X

i=1

⇣
µ̃1/d⌧

d�2
d�1

⌘�i
k(i)("

1
d
0 s). (2.102)

The functions a(i), l(i) and k(i) satisfy ordinary di↵erential equations with source terms at each

order. These functions can be determined using the method discussed below.

Determining a(i), l(i) and k(i)

We require that these functions do not blow up at the perturbative horizon which is at sh = "
�1/d
0 ,

i.e. at

rh = "
�

1
d

0

 
⌧

⌧0

! 1
d�1

. (2.103)

Together with the Dirichlet boundary conditions (2.98), these finiteness conditions ensure that

we obtain solutions which are free of naked singularities in the perturbative expansion and

which are unique up to terms which are determined by a single coe�cient [26]. This coe�cient

captures the residual gauge freedom of the ingoing Eddington-Finkelstein coordinates which is

the reparametrization of the radial coordinate r (without spoiling the manifest translational and

rotational symmetries along the transverse directions). Usually, this residual gauge freedom is

fixed by setting the radial location of the apparent or event horizon at (2.103) to all orders in

the late proper time expansion [112]. Here we consider the example of d = 4 to illustrate the
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computation of a(i), l(i) and k(i).

The late-time expansion of the six Einstein’s equations (Err, Ert, Ett, E⇣⇣ , Es?s?) based

on the ansatz (2.97) along with (2.102), at each subleading order, can be repackaged to the

following three equations

2k00(i)(x) + l00(i)(x) = S 1,i ,

⇣
x4 + 3

⌘
(k0(i)(x) � l0(i)(x)) + x

⇣
x4
� 1

⌘
(k00(i)(x) � l00(i)(x)) = S 2,i ,

3
2

x2a00(i)(x) � 6xa0(i)(x) + 6a(i)(x) � 2x5
⇣
2k0(i)(x) + l0(i)(x)

⌘
= S 3,i (2.104)

where S 1,i, S 2,i and S 3,i are the sources at the i-th order which depend on a( j), l( j), k( j) and their

derivatives, for j < i. Now at each subleading order, the most general solutions to these equa-

tions are given by,

2k(i)(x) + l(i)(x) = ⇢i + ↵ix + PI1,i ,

k(i)(x) � l(i)(x) = ⇠i �
i

4
log(1 � x4) + PI2,i ,

a(i)(x) = �ix4 + ↵i
x(3 + x4)

3
+ PI3,i (2.105)

where the Greek letters with subscript i correspond to the integration constants at i-th order

and PI1,i, PI2,i and PI3,i are the particular solutions determined by the sources S 1,i, S 2,i and S 3,i

respectively. The expressions for the PIs for i = 1 are simple,

a(1)(x) = ↵1
x(1 + x4)

3
+

2x4(1 + x)
3

,

k(1)(x) = ↵1
x
3
+

1
2

g(x),

l(1)(x) = ↵1
x
3
� g(x) (2.106)

where

g(x) =
4
3

x �
1
3

ln(x2 + 1) �
2
3

ln(x + 1) �
2
3

arctan x. (2.107)
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For i = 2, the solution is given in the appendix B. The expressions for the particular solution

get increasingly complicated at higher orders. However, the simple structure of the homoge-

neous solution remains the same in every order. The integration constants associated with the

homogeneous solutions can be fixed in every order in the following way:

• The fixation of ↵i can be done by setting the radial location of the event/apparent horizon

at each order as in appendix C. The other way to set this integration constant has been

detailed in chapter 4 ((4.83) � (4.85)) which ultimately leads to a fixed location of the

event horizon. The same pattern repeats for the rest of ↵i>2.

• The integration constant �i is fixed by mapping the coe�cients of x4 terms in (2.105) to

a4(⌧), l4(⌧) and k4(⌧) of (2.112) and then solving the constraint equations (2.113).

• The constants ⇢i and ⇠i are fixed by demanding that the metric asymptotes to (2.63) at the

boundary.

• Finally, the integration constants i are fixed such that the dual geometry is regular at the

horizon to all orders.

For i = 1, 2, this gives

�1 =
2
3
, 1 = 2, ⇠1 = 0, ⇢1 = 0,

�2 = �
1

54
�
11 + 6 log(2)

�
, 2 = �

1
3

(2 log(2) � 3), ⇢2 = �
1
3
,

⇠2 =
1

288
i
⇣
� 24⇡↵1 + 48iC � (48 � 96i)Li2

 
1
2
+

i
2

!
+ (48 + 96i)Li2

 
1
2
�

i
2

!
+ (7 + 6i)⇡2

� 96i � 48⇡ + 72i log2(2) � (24 � 60i)⇡ log(2) + 48⇡ log(2) + 24i⇡ log(1 � i)
⌘

(2.108)

where C is the Catalan’s constant, C = 0.915966.

One can verify that these solutions reproduce the same late-time expansion of the stress
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tensor

T⌧⌧ ⇡ ⌧�4/3
�

2
3
⌧�2 +

1 + 2 log(2)
18

⌧�8/3 + · · · , (2.109)

T⇣⇣ ⇡
1
3
⌧2/3
�

2
3
+

5(1 + 2 log(2))
54

⌧�2/3 + · · · , (2.110)

Tx?x? ⇡
1
3
⌧�4/3

�
(1 + 2 log(2))

54
⌧�8/3 + · · · . (2.111)

It is crucial to emphasize that the residual gauge freedom involving the reparametriza-

tion of the radial coordinate is a proper di↵eomorphism, i.e. it leaves both the boundary metric

(which is the flat Milne background (2.52)) and also the hTµ⌫i of the dual Bjorken flow extracted

from holographic renormalization invariant. It’s useful to see this explicitly. For illustration,

let’s consider the AdS 5 case. We start with the asymptotic expansion of the metric functions,

which after solving the Einstein equation (2.91) order by order in r takes the form:

A(r, ⌧) = 1 + ra1(⌧) + r2
 
a1(⌧)2

4
� a01(⌧)

!
+ r4a4(⌧) + · · · ,

K(r, ⌧) = ra1(⌧) � r2 a1(⌧)2

4
+ r3 a1(⌧)3

12
+ r4k4(⌧) + · · · ,

L(r, ⌧) = ra1(⌧) � r2
 
a1(⌧)2

4
+

a1(⌧)
⌧

!

+r3
 
a1(⌧)3

12
+

a1(⌧)2

2⌧
+

a1(⌧)
⌧2

!
+ r4l4(⌧) + · · · . (2.112)

Above, the function a1(⌧) is related to the residual gauge freedom, and can be chosen arbitrarily.

Furthermore, the constraints of Einstein’s equations (2.91) impose

a04(⌧) = �
a1(⌧)4

12⌧
�

4
3⌧

a4(⌧) �
8
3⌧

k4(⌧),

l4(⌧) + 2k4(⌧) = �
a1(⌧)
⌧3 �

3
4

a1(⌧)2

⌧2 �
1
4

a1(⌧)3

⌧
�

3
32

a1(⌧)4. (2.113)
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Using these constraints, one can find via holographic renormalization that

hTµ⌫i =
3

16⇡GN
⇥ (2.114)

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�a4(⌧) 0 0 0

0 ⌧2
⇣
a4(⌧) + ⌧a04(⌧)

⌘
0 0

0 0 �a4(⌧) � 1
2⌧a04(⌧) 0

0 0 0 �a4(⌧) � 1
2⌧a04(⌧)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Firstly, the above result is exact to all orders in the late proper time expansion. Secondly,

we readily find that hTµ⌫(⌧)i is determined by a4(⌧) alone and is independent of the arbitrary

function a1(⌧) capturing the residual gauge freedom in the asymptotic expansion after utilizing

the constraints (2.113) in the renormalized Brown-York stress tensor (2.90). Thus hTµ⌫(⌧)i

is invariant under the residual gauge transformation. Furthermore, comparing (2.114) with

(2.53), (2.54) and (2.55) (for d = 4) we find that hTµ⌫(⌧)i takes the general form of the energy-

momentum tensor of Bjorken flow with the identification

✏(⌧) = �
3

16⇡GN
a4(⌧). (2.115)

One can repeat the same exercise in arbitrary dimensions (d > 2) and show that hTµ⌫(⌧)i ob-

tained from holographic renormalization takes the general form given by (2.53), (2.54) and

(2.55) with the identification

✏(⌧) = �
d � 1

16⇡GN
ad(⌧) (2.116)

where ad(⌧) is the coe�cient of rd in the asymptotic expansions of A(r, ⌧).

Further, extracting ad(⌧) from (2.102) we obtain that at the leading order in the late

proper time expansion

✏(⌧) ⇡
d � 1

16⇡GN
"0

✓⌧0

⌧

◆ d
d�1
=

d � 1
16⇡GN

rh(⌧)�d =
d � 1

16⇡GN

 
4⇡T (⌧)

d

!d

(2.117)
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where we have used (2.103), and also � = T�1 = 4⇡rh
d to define an instantaneous Hawking

temperature T (⌧) given by

T (⌧) =
d
4⇡
"

1
d
0

✓⌧0

⌧

◆ 1
d�1
. (2.118)

Once again comparing with the general (hydrodynamic) late proper time expansion (2.57), we

find that

✏0 =
d � 1

16⇡GN
"0. (2.119)

For the case of AdS 5, the identification 1
GN
= 2N2

⇡ implies that at late proper time

T (⌧) ⇡
1
⇡
"1/4

0

✓⌧0

⌧

◆ 1
3
, ✏(⌧) ⇡

3
8
⇡2N2T (⌧)4 =

3
8⇡2 N2"0

✓⌧0

⌧

◆ 4
3
. (2.120)

For any d, ✏(⌧) is given by a perfect fluid expansion given by (2.117) at late time with

pL(⌧) ⇡ pT (⌧) ⇡
1

d � 1
✏(⌧) ⇡

1
16⇡GN

rh(⌧)�d. (2.121)

Thus, at late proper time, the energy density ✏(⌧) and the pressures pL(⌧) and pT (⌧) are thus

given by the thermal equation of state obtained from a static black brane geometry, but with a

time-dependent temperature (2.118) which satisfy the Euler equations.

2.3 Schwinger Keldysh formalism

In zero temperature quantum field theory, the computation of observables such as S-matrix

whose elements are known as scattering amplitudes, is achieved via Lehmann-Symanzik-

Zimmermann (LSZ) reduction technique (eg. reader can refer to [113]) to the vacuum ex-

pectation value of time-ordered products of field operators. The operators acting on the vacuum

state create an asymptotic state that corresponds to particles at infinite past or future. However,

for field theory at finite temperatures, the computation of the expectation value of field opera-

tors becomes di�cult. This is due to random interactions in the medium which do not preserve
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the vacuum states. In these cases, Schwinger-Keldysh (SK) formalism (also known as real-time

formalism) [58, 114–117] allows the computation of the expectation value of operators with

arbitrary states.

The idea of the SK formalism is to construct a real-time contour consisting of two

branches labelled as + and � running parallel to the real axis as shown in Fig. 2.7. The +

branch runs forward in time and the � branch runs backwards in time which corresponds to

time ordering T and anti-time ordering T̄ . This real-time contour formalism introduces the

notion of path ordering, P, where the path ordering automatically takes into account both time

ordering and anti-time ordering in the following manner,

PO(x)O(y) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

TO(x)O(y) if x0, y0
2 C+,

T̄O(x)O(y) if x0, y0
2 C�,

O(x)O(y) if x0
2 C�, y0

2 C+,

O(y)O(x) if x0
2 C+, y0

2 C�

(2.122)

where we have inserted operators at di↵erent positions x and y in the contour to show how path

ordering encodes the time and anti-time ordering of the operators. Note in this formalism, the

fields on the two branches of the contour are assumed to be distinct.

Figure 2.7: Real-time contour in the Schwinger-Keldysh formalism. C is the contour and x0 is
the time. Figure taken from [27].

In this section, we will discuss the computation of the correlation functions using SK

formalism and the implementation of SK-contour in bulk geometry. We also briefly mention

2PI e↵ective action.

65



2.3.1 Correlation functions using the Schwinger Keldysh formalism

Consider a non-equilibrium system whose initial state is defined by the density matrix ⇢. The

corresponding generating functional of the system is given by,

Z[J+, J�] = exp(iW[J+, J�]) = Tr(⇢P exp (i
Z

dd x(J+O+ � J�O�)) (2.123)

where P is the path ordering and J± is the source associated with the operator O± at the two

branches of the contour, shown in Fig. 2.7. The negative sign in the exponent is due to time

reversal in the second contour. The di↵erentiation of this generating functional with respect to

the source at each branch gives the real-time correlation function G(x, y) where the correlation

function has four components and can be written in matrix form as,

G(x, y) =

0
BBBBBBBBB@

G++(x, y) �G+�(x, y)

�G�+(x, y) G��(x, y)

1
CCCCCCCCCA

(2.124)

where,

• G++(x, y) = �ihT (O+(x),O+(y))i.

• G��(x, y) = �ihT̄ (O�(x),O�(y))i.

• G+�(x, y) = ihO�(y)O+(x)i.

• G�+(x, y) = ihO�(x)O+(y)i.

Here G++(x, y) is the time-ordered correlation function, also known as Feynman propagator,

G��(x, y) is the anti-time ordered correlation function and the other two G+�(x, y) and G�+(x, y)

are referred as greater and lesser correlation function. These four correlation functions are not

independent of each other and they satisfy the following algebraic relation,

G++(x, y) +G��(x, y) = G+�(x, y) +G�+(x, y). (2.125)
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Further the retarded and the advanced propagator GR(x, y) and GA(x, y) which are defined as,

GR(x, y) = �i✓(x0
� y0)h[O(x),O(y)]i, (2.126)

GA(x, y) = �i✓(y0
� x0)h[O(y),O(x)]i (2.127)

can be expressed in terms of these real-time correlation functions as,

GR(x, y) = G++(x, y) �G+�(x, y), (2.128)

GA(x, y) = G++(x, y) �G�+(x, y). (2.129)

Above ✓(x0) is the step function. In the thermal equilibrium case, these correlation func-

tions are further related by the fluctuation-dissipation relation, also known as the Kubo-

Martin-Schwinger (KMS) relation which arises from the trace as discussed below. For a

system in thermal equilibrium, generally, the SK closed time contour can be taken to be

C = [ti, t f ] [ [t f , t f � i�] [ [t f � i�, ti � i�] [ [ti � i�, ti � i�] with 0  �  �, as shown in

Fig. 2.8.

In this case, the density matrix describing the system is the thermal density matrix ⇢�.

For the system in the canonical ensemble, the density matrix ⇢� is defined as,

⇢� =
e��H

Tr e��H . (2.130)

Above � is the inverse of the temperature T and H is the Hamiltonian that governs the dynamics

of the system. The expectation value of an operator O(t) 6 (in the Heisenberg picture) in this

ensemble is given by

hO(t)i = Tr(⇢�O(t)) =
P

n e��Enhn|O(t)|ni
P

n e��En
=

P
n e��Enhn|eiHtOe�iHt

|ni
P

n e��En

=

P
n e��Enhn|O|ni
P

n e��En
, (2.131)

6In the limit, T ! 0, one can recover the vacuum expectation value, limT!0 Tr(⇢�O) = hO|O|Oi.
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where |ni denotes the eigenstates of the Hamiltonian H and En the corresponding eigenvalues.

We have used e�iHt
|ni = e�iEnt

|ni and its conjugate relation above. We note that the expectation

value of any operator in the thermal ensemble is time-independent. To compute the thermal

correlation functions [59] one can di↵erentiate the generating functional (2.123) with respect

to the sources where the density matrix is the thermal density matrix. Then following the

discussion in [59], the relation among the correlation functions in momentum space can be

written as,

G++(k) = Re GR(k) + i coth
�!

2
Im GR(k),

G+�(k) =
2ie�(���)!

1 � e��!
Im GR(k),

G�+(k) =
2ie��!

1 � e��!
Im GR(k),

G��(k) = �Re GR(k) + i coth
�!

2
Im GR(k) (2.132)

where for � = �/2 we can obtain a symmetric matrix, G�+(k) = G+�(k). In thermal equi-

librium, all correlation functions can be thus obtained simply from the imaginary part of the

retarded propagator in momentum space, as the real part of the retarded propagator can be fur-

ther obtained from the imaginary part via the Kramers-Kronig relation that follows from the

causal nature of the retarded correlator which implies that it is analytic in the upper half com-

plex frequency plane.

Note that (2.125), (2.126) and (2.127) hold only for � = 0 or � = �.

Figure 2.8: Thermal time contour in the Schwinger-Keldysh formalism. Figure is taken from
[28].
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Kubo-Martin-Schwinger condition

The thermal density operator ⇢� can be viewed as an evolution operator for the imaginary time

shift, on which the field operator evolves as,

e��HO(x0
� i�, ~x)e�H = O(x0, ~x)

With this identity and cyclic property of trace one finds that the expectation value of the path-

ordered operators obeys the KMS symmetry. For instance, the two-point correlation function

obeys the relation,

hO1(0, ~x)O2(t, ~x)i = Tr(e��HO1(0, ~x)O2(t, ~x))

= Tr(e��HO1(0, ~x)e��He�HO2(t, ~x))

= hO2(t � i�, ~x)O1(0, ~x)i (2.133)

which implies that the path-ordered correlation of O1(0, ~x) and O2(t, ~x) is periodic. This equal-

ity is called the Kubo-Martin-Schwinger (KMS) symmetry and it thus implies periodicity of

bosonic correlation functions on the SK contour. For fermions, we have anti-periodicity and

similar fluctuation-dissipation relations. More generally, for arbitrary �, we obtain the relations

(2.132) simply by considering the KMS relation in momentum space.

2.3.2 2PI e↵ective action

The classical action S [�] entering the generating functional Z[J] reflects interaction among

the fields at the tree level, neglecting the higher-order corrections. However, the higher-order

corrections are important to encapsulate various non-equilibrium phenomena such as early ther-

malisation in heavy ion collision [118]. These higher-order corrections are incorporated in the

generating functional via loop corrections. This is achieved by the introduction of n-particle

irreducible (nPI) quantum e↵ective action which forms a functional integral technique that pro-
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duces all orders of interactions solely from the tree-level contributions. The nPI e↵ective action

coincides with the classical action at the lowest level of perturbation theory.

The nPI e↵ective action is a powerful non-perturbative approximation scheme that can

be used to understand thermalisation as well as far from equilibrium dynamics from the first

principle. Based on the discussion in [29], one can formulate the 2PI e↵ective action from the

classical action S [�] by doing Legendre transformation of the connected generating functional

W[J,R] given as,

Z[J,R] = exp(iW[J,R])

=

Z
D � exp

⇣
i
h
S [�] +

Z

x
Ja(x)�a(x) +

Z

xy

1
2

Rab�a(x)�b(y)
i⌘

(2.134)

where �a is the N� component real scalar field, Ja and Rab are the two sources. The corre-

sponding 2PI e↵ective action of this generating functional is defined as,

�[�,G] = W[J,R] �
Z

x

�W[J,R]
�Ja(x)

Ja(x) �
Z

xy

�W[J,R]
�Rab(x, y)

Rab(x, y) (2.135)

= W[J,R] �
Z

x
�a(x)Ja(x) �

Z

xy
�a(x)�b(y)Rab(x, y) �

1
2

Tr(GR) (2.136)

where �a =
�W[J,R]
�Ja(x) is the macroscopic field obtained by decomposing the field�a(x) as�a(x)!

�a(x) + ⌘a(x), ⌘a(x) being quantum correction and �W[J,R]
�Rab(x,y) =

1
2 (�a(x)�b(y) +Gab(x, y)). Gab(x, y)

is the connected two-point Green’s function. Further, using the definition of W[J,R] one can

write the 2PI e↵ective action as,

�[�,G] = S [�] +
i
2

Tr ln G�1 +
i
2

Tr ln G�1
0 (�)G + �2[�,G] + const. (2.137)

Here G�1
0,ab = �i�2S [�]/(��a(x)��b(x)) is the inverse classical propagator and �2[�,G] relates

to the self energy ⌃ab(x, y; �,G) via its functional G derivative i.e., ⌃ab(x, y; �,G) ⌘ 2i ��2[�,G]
�Gab(x,y) .

The diagrammatic representation of two-loop and three-loop 2PI e↵ective action along with its

self-energy ⌃ab(x, y; �,G) is shown in the Fig. 2.9. The self-energy can be obtained by opening
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one propagator line from the graph contributing to �2[�,G].

Figure 2.9: The diagram shows a two-loop and a three-loop graph for �2[�,G] and the corre-
sponding self-energy. The diagram has been taken from [29].

In the case of non-equilibrium dynamics, one needs to specify the initial state given

by the density matrix ⇢ as mentioned above. This density matrix at a given time t0 can be in

mixed state (Tr⇢2(t0 = 0) < 1) or pure state (Tr⇢2(t0 = 0) = 1). The corresponding generating

functional for the non-equilibrium dynamics at the initial state given by ⇢(t0 = 0) is defined as,

Z[J,R, ⇢] = Tr
n
⇢(0)TCe

i(
R

x J(x)�(x)+ 1
2

R
xy Rab(x,y)�(x)�(y))

o
(2.138)

where TC is the time ordering along the real time path C, shown in Fig. 2.7. This generating

functional can be further factorized into parts one of which includes the initial conditions and

the other includes quantum dynamics. The factorization can be achieved by expressing (2.138)

in terms of the eigenstate |�(i)
i of the Heisenberg field operator�(i)(t = t0, x) at initial time t0 = 0

as,

Z[J,R, ⇢] =
R

d�(1)(x)d�(2)(x)h�(1)
|⇢(0)|�(1)

i

h�(2)
|TCe

i(
R

x J(x)�(x)+ 1
2

R
xy Rab(x,y)�(x)�(y))

|�(1)
i (2.139)

where �(i)(x) are the eigenvalues. Using the time contour 2.7, one can express

Z[J,R, ⇢] =
Z

d�(1)(x) d�(2)(x) h�(1)
|⇢(0)|�(1)

i

|                                      {z                                      }
initial condition

Z �(2)(x)=�(2)(0�,x)

�(1)(x)=�(1)(0+,x)
D�ei(S [�]+

R
x J(x)�(x)+ 1

2

R
xy Rab(x,y)�(x)�(y))

|                                                           {z                                                           }
quantum dynamics

.

(2.140)
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After absorbing the contribution from the initial states in the sources J and R, one can obtain

the 2PI e↵ective action �[�,G] for a closed time path using this generating functional (2.140).

The 2PI e↵ective action formalism in thermal equilibrium recovers the standard form

of fluctuation-dissipation relation from the evolution equation of the propagator G [29]. While

in non-equilibrium, we get an exact coupled evolution equation which is equivalent to any kind

of identity of two-point Greens function such as Schwinger-Dyson/Kadano↵-Baym equations.

In [119], Cox and Berges showed that the Kadano↵-Baym equations can be treated numerically

and also found that the studied scalar field reaches thermal equilibrium even in 1 + 1 dimen-

sions, even though there is no binary collision on the level of Boltzmann equations. It was also

shown in [120] that for a chiral quark meson model in 2PI formalism, the pre-thermalisation

of various essential observables occurs on time scales shorter than thermal equilibration time.

Moreover, the 2PI formalism provides an e�cient framework to understand in and out of equi-

librium quantum fields using suitable resummation techniques [29]. This resummation allows

to compute self-consistent n-point functions to the desired accuracy. Fig. 2.10 shows large-N

resummation in the O(N) scalar field.

Figure 2.10: The left figure shows 2PI e↵ective action to NLO in 1/N consists of an infinite
series of diagrams which can be resummed by introducing self-consistent coupling, marked by
big dots in the right figure. The diagram has been taken from [30].
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2.3.3 Bulk dual of Schwinger Keldysh contour

The gauge/gravity duality discussed above suggests the computation of boundary correlation

function from the gravity side by identifying the on-shell action of the bulk field with the gen-

erating functional of the field theory. Owing to this duality, it seems natural to implement the

Schwinger Keldysh contour in the bulk and compute the real-time correlation function from the

on-shell action. For the equilibrium state, the construction of contour in the bulk and compu-

tation of the respective correlation function is a complete story. However, the challenge lies in

defining the real-time correlation function of the SK- contour in out-of-equilibrium situations.

The first step towards the implementation of the Schwinger-Keldysh contour in the

bulk is due to Son and Herzog [59]. They mapped the Schwinger Keldysh contour at thermal

equilibrium (Fig. 2.8) with the eternal black hole geometry (Fig. 2.11). The two boundaries

of the geometry are identified with the forward and backward arms of the Schwinger-Keldysh

contour with the backward arm displaced by �i�/2 (note � = T�1) along the imaginary axis. For

a d+1� dimensional asymptotic AdS space, the metric defining the eternal black hole geometry

reads as,

ds2 = � f (r)dt2 +
dr2

f (r)
+ r2d~x2 (2.141)

where f (r) has zero at the event horizon rh i.e., at r = rh and the inverse of temperature � is

given by � = 4⇡
f 0(r0) . The singularity at the horizon due to f (r) motivates change of coordinate to

Kruskal coordinate U and V defined as,

U = �e�
2⇡
� u, V = e

2⇡
� v, for R-region, (2.142)

U = e�
2⇡
� u, V = �e

2⇡
� v, for L-region. (2.143)

Here v = t + r⇤ and u = t � r⇤ are like the ongoing and outgoing coordinates. r⇤ is the tortoise
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coordinate which near the horizon has the behaviour,

r⇤ =
�

4⇡
log(r � rh) + · · · . (2.144)

This coordinate removes the singularity and one can go beyond the horizon. For shift in time,

t ! t + ↵, we find that

U ! e�
2⇡
� ↵U and V ! e

2⇡
� ↵V (2.145)

whose e↵ect in the R-region and L-region is opposite. This shows that t increases in the R-

region while decreases in the L-region. Note that the expression of U and V in the L-region can

be simply obtained from the R-region by taking t ! t � i�/2. With t being opposite on both

the sides, one can identify the full extended black hole geometry with the Schwinger Keldysh

contour 2.8, provided � = �/2. Then the correlation function can be computed by following

the standard AdS/CFT procedure of obtaining the on-shell action which gets contribution from

the boundary solution only.

Figure 2.11: The figure shows the Penrose diagram for the eternal Schwarzschild AdS black
hole. The red lines on the top and the bottom represents singularities. The solid line that
meets at 45� is the horizon that meets at the bifurcation surface at the centre. L and R are the
asymptotic regions outside the black hole. Figure taken from [28].

Further, to compute the bulk field solution of the whole geometry one can follow the

trick of obtaining the solution in one region and then analytically continue it to the other. For

example, for a bulk scalar field, the solution of the Klein-Gordon equation can be written as a
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linear combination of two independent solutions �1 and �2, which near the boundary satisfies

the condition

lim
r!1

�1(r, x) = �1(x) and lim
r!1

�2(r, x) = �2(x) (2.146)

where �1(x) and �2(x) are the boundary sources. Near the horizon, the solutions in the R-region

behave as,

�1 = e�i!u = e�i!v(r � rh)
i�!
2⇡ and �2 = e�i!v (2.147)

where modes depending on u are outgoing and on v are ongoing. Here we have used u =

v� �
2⇡ log(r�rh). Following the prescription in [121], one can analytically continue this solution

to L-region for arbitrary �. The analytic continuation of v! v � i� and (r � rh)! e�2⇡i(r � rh)

implies that the solution in the L-region di↵ers from the R-region by a factor of e�!e��! for �1

and e��! for �2,

�1 =
⇣
(r � rh)

i�!
2⇡ e�i!v

⌘
e�!e��! and �2 = e�i!ve��!. (2.148)

Then with the solution of the entire geometry, one can compute the generating functional at the

boundary by integrating over the bulk field with the source as a boundary condition.

The most concrete prescription of boundary SK-contour for real-time gauge-gravity

duality for general initial states is due to Skenderis and van Rees [31,61,122]. The overall idea

of the prescription is as follows, the gravity side SK-contour is constructed by associating the

real-time branch of the dual SK-contour with the Lorentzian spacetime and the imaginary-time

branch with the Euclidean spacetime. The di↵erent branches are then joined together using

appropriate matching conditions, roughly, the bulk field and its derivative have to be continuous

along the glueing surface. The arbitrary initial state defined by the density operator ⇢ is prepared

in the Euclidean path integral and the generating functional for the entire contour is written as

a combination of the Euclidean and Lorentzian path integral. Using this full path integral one
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can follow the standard technique to compute the generating functional (2.123). Further by

di↵erentiating this generating functional with the two sources defined at the boundary one can

obtain real-time correlation functions. However, in this construction, it is not easy to compute

the generic initial states using Euclidean path integrals.

Figure 2.12: The two Lorentzian segments M1 and M2 which are the two copies of a part of an
eternal black hole correspond to the two branches of the dual SK- contour. The vertical segment
in Fig. 2.8 is filled in with Euclidean black hole solution which topologically fills the imaginary
time circle with a disk. The Lorentzian segments are added to the Euclidean black hole solution
by making a cut in the disk, up to the centre of the disk. Thus, completing the construction of
the SK contour in the bulk. Figure taken from [31].

Recently, Crossley-Glorioso-Liu (CGL) gives the simple horizon cap prescription to

realize Schwinger Keldysh contour in the bulk at thermal equilibrium [17]. The horizon cap

prescription connects two copies of a complexified black brane geometry defined in Eddington

Finkelstein (EF) gauge at the horizon rh via anti-clockwise rotation of 2⇡. Here � = 0, as there

is no analytic continuation of the ingoing coordinate in EF gauge. Further, to have the same ori-

entation in the fully complexified spacetime, the direction of the v coordinate is reversed. This

construction will be discussed in detail in chapter 5 and will be extended to out-of-equilibrium

bulk geometry to compute hydrodynamic real-time correlation functions.
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Chapter 3

MIS formalism of superfluidity

Superfluidity, as defined in [123] is a frictionless flow of conserved charges. The superfluid

phase was first discovered in the helium isotopes [53,54] where the liquid helium at low pressure

and absolute zero temperature showed frictionless (zero viscosity) flow through a thin capillary

tube. Here the conserved charge is considered to be the mass or the atoms of the helium. The

phase transition of helium from normal fluid to superfluid phase, especially Helium-4, can be

attributed to the formation of condensate below the transition temperature, where the helium

atoms can occupy a single quantum state. This phase transition associated with conserved

charges of the system can be characterized by the symmetry of the system. In the superfluid

phase, the symmetry of the system accompanied by the conserved charges is spontaneously

broken.

The theory of superfluidity studies hydrodynamics describing normal fluids with con-

tinuous symmetry breaking by including dynamics of Goldstone modes1 with the hydrodynamic

degree of freedom. Superfluidity can exist for a large variety of systems with di↵erent charac-

teristic temperature scales below which the transition to superfluid phase occurs. For instance,

ultra-cold atomic gases, dense quarks and nuclear matter below certain critical temperature

show superfluidity.
1As per Goldstone’s theorem [124–127], Goldstone modes are gapless excitations in the long-wavelength limit

which exist due to spontaneous breaking of continuous symmetry.
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In general, superfluid phase transitions in out-of-equilibrium systems is of interest for

the physics of heavy-ion collisions [128, 129], cold atoms [130] and the early Universe [131].

Given the success of hydrodynamic theories for understanding out-of-equilibrium matter with

both weak and strong self-interactions, there is su�cient motivation to construct frameworks

that can describe superfluids by incorporating Goldstone mode(s) and the order parameter(s)

(condensate(s)) associated with spontaneous breaking of global internal symmetries in hydro-

dynamic theories. Recently the demonstration of the ubiquitous presence of hydrodynamic

attractors in a wide variety of phenomenological frameworks (eg. kinetic theory, holography,

etc) has given us insights into how a system hydrodynamizes far away from equilibrium such

that first order hydrodynamics can describe the evolution of the energy-momentum tensor and

conserved currents even in presence large pressure gradients [23, 25, 132, 133]. It is therefore

pertinent to ask if one can construct similar frameworks that incorporate Goldstone boson(s) and

order parameter(s) along with hydrodynamic modes for superfluid states far from equilibrium.

A general framework for superfluids at finite density has its roots in the pioneering

work of Son [15] (and generalized to finite temperature by Nicolis [14]), which utilized the

quantum e↵ective action for describing the low energy dynamics of the Goldstone bosons and

superfluid vortices. An attractive feature of Son’s approach is that the only microscopic input

needed is simply the equation of state of the system at finite chemical potential and temperature

(see [134] for a survey of related approaches and a broader discussion). Remarkably, the ther-

modynamic description emerges naturally from the energy-momentum tensor and conserved

currents obtained from the quantum e↵ective action and is not imposed by hand. The original

context in which Son developed this approach was to describe baryonic matter at finite baryon

density with spontaneous breaking of U(1) baryon symmetry relevant for physics of neutron

stars. Recently, generalizations of the quantum e↵ective action have been studied incorporating

both the pions and the hydrodynamic modes at finite chemical potential and temperature [52].

Further extensions to the case of phases with spontaneous spacetime symmetry breaking such

as supersolids, etc [135–138] have been investigated as well but this is beyond the scope of this

work.
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In this work, we include the order parameter and add dissipation by merging the Son-

Nicolis framework with the Müller-Israel-Stewart (MIS) formalism [2, 42] enabling a causal

description. We use this to study symmetry breaking in out-of-equilibrium situations in the

context of Bjorken flow. The study of evolution of many-body systems under Bjorken flow is

particularly of interest not only for heavy-ion physics [133], but also for cold atomic systems

in anisotropic laser traps [139, 140]. We restrict ourselves here to the case of a U(1) symmetry

breaking but our work can be easily generalized to non-Abelian cases.

At early time, the size of the expanding system undergoing Bjorken flow is su�ciently

small so that fluctuations are significant. Therefore we should study the evolution of the sys-

tem with generic initial conditions for the energy-momentum tensor, conserved currents and the

condensate. Remarkably, we find that as long as we start above the critical temperature, Tc, the

condensate decays exponentially while the phase evolves over a similar timescale to satisfy the

Josephson condition. Then the full system gets trapped very close to a conventional hydrody-

namic attractor over a very long period of time during which the system approaches a perfect

fluid expansion with unbroken symmetries.

However, the long time physics is somewhat surprising. It turns out that the superfluid

system has an even number of symmetry breaking non-dissipative fixed points in which the

full system undergoes expansion at a constant temperature (determined by the equation of state

and the potential) and with a constant value of the condensate. These fixed points are possible

because the condensate lowers the energy with respect to the vacuum, allowing the expanding

system to maintain a self-consistent constant temperature (with a non-trivial velocity profile).

We find that with inital T > Tc and otherwise generic initial conditions, the superfluid system

switches rapidly to one of these symmetry breaking fixed points after spending a time in very

close proximity to the conventional hydrodynamic attractor. The basin of attraction of these

fixed points has complicated interlacing and possibly fractal boundaries. If T < Tc initially,

then the superfluid system generically evolves to one of the fixed points without getting trapped

near the hydrodynamic attractor (unless the initial condition is close to the boundary between
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the basins of attraction of the fixed points).

Summary of results

Our work demonstrates that the evolution of superfluid matter out of equilibrium is governed by

the conventional hydrodynamic attractor with unbroken symmetry (which is rather like a saddle

curve in the extended phase space) and non-trivial symmetry breaking fixed points which are

determined by the potential of the condensate and the equation of state. The hydrodynamic

attractor governs physics at intermediate time scales if the initial temperatures are above Tc,

while the fixed points govern the physics at much longer time scales with a (typically) rapid

crossover.

We observe that the symmetry breaking fixed points are independent of the relaxation

mechanism, and are determined only by the equation of state and the potential of the conden-

sate. Furthermore, the hydrodynamic attractor is a feature in any phenomenological framework

incorporating relaxation as mentioned above. Therefore, the dynamical features of superfluid

flow, especially with respect to the role of the hydrodynamic attractor and the fixed point should

be universal.

However, if there is competition between various types of symmetry breaking as in

neutron stars and some strongly correlated systems, we will need to incorporate a more general

framework discussed in [141–143] that can couple multiple (super)fluids. This is beyond the

scope of our present work. We also postpone a discussion regarding the relevance of our results

for the quark-gluon plasma until the concluding section.

We also analyze the linearized perturbations around thermal equilibrium and show that

the fixed points are unstable against inhomogeneous perturbations that should lead to spinodal

decomposition. This can be studied using our MIS framework, which we postpone to future

work.

The organization of the chapter is as follows. In section 3.1, we discuss the construc-
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tion of the MIS theory of superfluids. In section 3.2, we derive the equations for Bjorken flow

and then present our results in section 3.3. We further analyze the system by considering lin-

earized perturbations in section 3.4.

3.1 The MIS formulation of superfluid e↵ective theory

3.1.1 E↵ective action

The MIS formalism [2, 42] enables a causal description of a relativistic hydrodynamic system.

In order to generalize this approach to a relativistic superfluid, we utilize aspects of the e↵ective

theory of superfluids due to Son and Nicolis [14, 15] at finite temperature. Furthermore, we

include the order parameter as a dynamical variable to incorporate the possibility of out-of-

equilibrium phase transition.

For simplicity, consider a complex field ⌃ ⌘ ⇢ei charged under U(1) global symmetry

which is broken spontaneously below a critical temperature Tc due to the potential V(⇢, . . . )

where . . . denote other variables of the e↵ective theory. Crucially, the velocity uµ and tempera-

ture T of the local thermal frame appear together as a new fundamental variable �µ. Note that

in this approach (local) thermodynamics emerge from the e↵ective action and is not imposed

separately. We first succinctly show how this works.

Due to Lorentz invariance, the e↵ective action in a background metric gµ⌫ and gauge

field Aµ (introduced to allow us to compute the energy-momentum tensor and conserved current

e�ciently) can depend on �µ only via the temperarture T and chemical potential µ defined by

the relations T := (��µgµ⌫�⌫)�1/2 and µ/T := Aµ�µ, respectively, at leading order in derivatives.

Similarly, due to U(1) gauge and Lorentz invariance, the dependence on ⌃ can be via the scalars

X := (Dµ⌃)†(Dµ⌃) and Y := ((� · D)⌃)†((� · D)⌃), where

Dµ⌃ = (rµ + iAµ)⌃ = (@µ⇢ + i⇢Dµ )ei (3.1)
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with Dµ := rµ + Aµ and rµ is the covariant derivative constructed from the background

metric. It will turn out (from absence of entropy production) that (u · D) = 0, i.e. (u · r) = µ

(a.k.a. the Josephson condition) must be satisfied in equilibrium while ⇢ = ⇢⇤, a constant, so

that Y must vanish. On the other hand, we will find that X can assume an arbitrary non-trivial

profile in equilibrium due to non-vanishing of derivatives of  in directions orthogonal to the

four-velocity uµ ⌘ T�µ. Since Y must vanish at equilibrium, we will drop it and retain X, T

and µ as fundamental variables. Additionally we incorporate the gauge-invariant variable ⇢ to

implement spontaneous symmetry breaking. Since derivatives of ⇢ (and  ) appear in X, we

must think of X and ⇢ as independent variables.2

We therefore consider an e↵ective action of the form:

S =
Z

d4x
p
�g

⇥
F(X,T, µ) � V(⇢,T, µ)

⇤
(3.2)

where F is the kinetic piece of the action and V is the symmetry breaking potential. Simple

instances of F and V are

F = �
1
2

X + p(T, µ), V(⇢,T, µ) =
�(T � Tc)

2
⇢2 +

�

4
⇢4 (3.3)

in which �, � > 0 and are both independent of T and µ. In Son’s approach where only the

dynamics of the Goldstone mode are considered [15], the condensate is set to its equilibrium

value. The dependence of the generalized pressure F on the chemical potential µ then also

determines its X dependence. In our case, the condensate is an independent variable and we

truncate our theory to two-derivatives. To relate to Son’s approach, we can simply expand the

generalized pressure F in derivatives of the condensate and normalize the latter to get a standard

two-derivative kinetic term. This leads to our simple ansatz (3.3). In what follows for the rest

of this section, we consider a general F(X,T, µ).
2Note that as in a classical scalar field theory, ⇢ and its conjugate field momentum should also be thought of

as independent variables since we need to set their initial conditions independently to specify an evolution. This
implies that X and ⇢ should be thought of as independent variables.
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3.1.2 Ideal hydrodynamics and thermodynamics

The ideal superfluid energy-momentum tensor and conserved U(1) current can be readily obtain

by varying the action (3.2) w.r.t. gµ⌫ and Aµ respectively:

T µ⌫ideal ⌘
2
p
�g

�S
�gµ⌫

= �2
@F
@X

⇣
r
µ⇢r⌫⇢ + ⇢2Dµ D⌫ 

⌘

+ (F � V)�µ⌫ + uµu⌫
 
T
@

@T
+ µ

@

@µ
� 1

!
(F � V), (3.4)

jµideal ⌘
1
p
�g

�S
�Aµ
=
@(F � V)

@µ
uµ + ⇢2Dµ , (3.5)

respectively with �µ⌫ = gµ⌫ + uµu⌫. Each of these can be rewritten as sum of a normal and a

coherent superfluid component. Explicitly,

T µ⌫ideal = T µ⌫n � 2
@F
@X

⇣
r
µ⇢r⌫⇢ + ⇢2Dµ D⌫ 

⌘
, T µ⌫n := Euµu⌫ + P�µ⌫, jµideal = jµn + jµ , jµn := Nuµ

(3.6)

where jµ := ⇢2Dµ and

P := F � V, E :=
 
T
@

@T
+ µ

@

@µ
� 1

!
(F � V), N :=

@(F � V)
@µ

=
@P
@µ
. (3.7)

With the entropy density S defined as

S :=
@P
@T

����
µ fixed
, (3.8)

the relations (3.7) imply the standard thermodynamic identity

P = �E + TS + µN . (3.9)

Note that P is distinct from p which appears in (3.3) as it is the generalized pressure which gov-

erns the normal fluid component. The coherent part in (3.4) which is proportional to Dµ D⌫ 
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can be reinterpreted as a second fluid with a velocity field proportional to Dµ and with an

independent free energy. We refer the reader to [123, 141, 142] for more details. Note in our

case we will also need a third fluid component with velocity field proportional to rµ⇢ as evident

from (3.4). However, such reinterpretations will not be necessary in what follows.

Varying the e↵ective action (3.2) w.r.t. ⌃, we obtain the equations of motion for ⇢ and

 which are

2rµ
 
@F
@X
r
µ⇢

!
+
@V
@⇢
� 2⇢

@F
@X

Dµ Dµ = 0, and rµ jµ = 0. (3.10)

The above equations of motion, in conjunction with rµT
µ⌫
ideal = 0 and rµ jµideal = 0, imply the

Euler equations

rµ(Suµ) = 0, rµ(Nuµ) = 0, (TS + µN)(u · r)uµ = �
�
Sr

µ
?

T +Nr?µµ
�

(3.11)

where rµ
?
⌘ �µ⌫r⌫.

3.1.3 Adding dissipation

In order to further extend the e↵ective theory, we need to add dissipation. This is achieved

by adding additional terms to the energy-momentum tensor and the conserved current, which

we denote as ⇡µ⌫ and qµ respectively, and which can be expanded in the form of derivatives

of the Goldstone, velocity and temperature fields. The latter are called constitutive relations

which should be determined/constrained by enforcing the existence of an entropy current with

non-negative divergence. We therefore begin by writing

T µ⌫n = Euµu⌫+Pgµ⌫+⇡µ⌫, T µ⌫ = T µ⌫n �2
@F
@X

⇣
r
µ⇢r⌫⇢ + ⇢2Dµ D⌫ 

⌘
, jµn = Nuµ+qµ, jµ = jµn+ jµ 

(3.12)

with E, P and N as defined in (3.7). We choose a generalization of the Landau frame to define

uµ in the non-ideal case, so that ⇡µ⌫u⌫ = 0. Furthermore, we modify (3.10) by adding dissipative
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sources ✓1 and ✓2 to the equations of motion of ⇢ and  respectively, so that

2rµ
 
@F
@X
r
µ⇢

!
+
@V
@⇢
� 2⇢

@F
@X

Dµ Dµ = ✓1, rµ jµ = ✓2. (3.13)

The above in conjunction with rµT µ⌫ = 0 and rµ jµ = 0 imply

Trµ (Suµ) = �✓1(u · r)⇢ � (µ + (u · D) )✓2 � ⇡
µ⌫(rµu⌫) + µ(r · q), (3.14)

(ST +Nµ)(u · r)uµ = �Sr?µT �Nr?µµ � r?⌫⇡µ⌫ + ✓1r?
µ⇢ + ✓2D?µ (3.15)

where D?µ = �µ⌫D⌫. As a consequence, we obtain a candidate entropy current jµs = Suµ �

(µ/T )(qµ + jµ ) whose divergence turns out to be

rµ jµs = �
1
T

(rµu⌫)⇡µ⌫ � ((q + j ) · r)
µ

T
�

1
T
✓1(u · r)⇢ �

1
T
✓2(u · D) . (3.16)

The appropriate constitutive relations that lead to the positive definite divergence of the entropy

current is then

⇡µ⌫ = �2⌘�µ⌫ � ⇣�µ⌫(r · u), qµ + jµ = �r
µ
✓ µ
T

◆
, ✓1 = �1(u · r)⇢, ✓2 = �2(u · D) 

(3.17)

with , ⌘, ⇣, 1 and 2 positive definite functions of T and µ (and in principle of ⇢ too). Also

�µ⌫ :=
1
2
�µ↵�⌫�(r↵u� + r�u↵) �

1
3
�µ⌫r↵u↵

is the shear-stress tensor. We note that the constitutive relation for qµ implies that the conserved

U(1) current is

jµ = nuµ � rµ
✓ µ
T

◆
. (3.18)

We readily validate our earlier claim from (3.16) and (3.17) that in equilibrium where entropy

production is absent, we should satisfy the Josephson condition (u · D) = 0, i. e. (u · r) = µ.
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Furthermore, (3.13) implies that at equilibrium ⇢ should be in the (thermal) vacuum so that

@V/@⇢ = 0 in absence of spatial gradients of  . Note when r?µ r?µ , 0, e. g. a constant, we

can have ⇢ taking values away from the minima of V in equilibrium at any T and µ.

Finally in order to develop a MIS-type formulation, we simply replace the constitutive

relations for ⇡µ⌫ and jµ in (3.17) by the dynamical equations

(u · r)(qµ + jµ ) +
1
⌧q

(qµ + jµ ) = �
1
⌧q
rµ

✓ µ
T

◆
,

(u · r)⇡µ⌫ +
1
⌧⇡
⇡µ⌫ = �

1
⌧⇡

(2⌘�µ⌫ + ⇣�µ⌫r · u) , (3.19)

with ⌧⇡ and ⌧q being additional parameters that depend on T and µ (and in principle also on ⇢).

Clearly after the timescale of the respective relaxation times, ⇡µ⌫ and qµ + jµ will relax to their

respective constitutive relations (3.17). This completes the construction of the MIS formalism

for e↵ective description of a relativistic superfluid. Finally we note that our construction is

not quite reliable at very low temperatures where higher derivative terms can contribute also to

the relaxation processes. In this context, one may use the formalism discussed in [144]. We

can choose parameters such that for generic initial conditions with supercritical temperature

(and also with a range of subcritical temperatures), the system never reaches su�ciently small

temperatures while undergoing Bjorken flow.

3.2 Bjorken flow

In order to study Bjorken flow we need to consider the Milne background

ds2 = �d⌧2 + dx2 + dy2 + ⌧2d⇠2 (3.20)

and set uµ = (1,~0). Furthermore, we should consider all other variables T , µ, ⇢,  , ⇡µ⌫ and qµ to

be dependent only on the proper time ⌧.
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For a concrete example, let us consider F and V to be of the form given in (3.3). We

further set µ = 0 and p = T 4 as in a conformal equation of state. Conformality implies that

⌘ =
4
3

C⌘T 3, ⌧⇡ =
C⌧⇡

T
, 1 = C1T, 2 = C2T 3 (3.21)

where C⌘, etc are constants and we set ⇣ = 0. Note that C⌘ = ⌘/s. Alternatively, we can

parameterize3 1 = C1Tc and 2 = C2T 3
c . None of the qualitative features that will feature in

our discussion will depend on the details of such parametrizations. Denoting ⌧�derivatives via

a prime, the equations of motion (3.10) now take the form

⇢00 +
⇢0

⌧
+ �⇢3 + �(T � Tc)⇢ � ⇢ 02 = �C1T⇢0, (3.22)

(⇢2⌧ 0)0 = �C2T 3⌧ 0. (3.23)

Furthermore, we consider a diagonal form of ⇡µ⌫:

⇡µ⌫ = diag
 
0,
⇧

2
,
⇧

2
,�
⇧

⌧2

!
. (3.24)

It is convenient to use the dimensionless pressure anisotropy � := 3⇧/4T 4. The conservation of

the energy-momentum tensor T µ⌫ given in (3.12) provides the equation for the evolution of the

temperature

⌧T 0

T
=

1
3

(� � 1) + �
⇢2 + 2⌧⇢⇢0

8T 3 +
⌧

4T 3

⇣
C1⇢

02 +C2T 2 02
⌘
. (3.25)

Assuming p to be conformal, it is natural to modify the MIS equation (3.19) by replacing u · r

on the LHS with a Weyl-covariant derivative as in BRSSS formalism [1] so that the evolution
3In general ⌘/s will be a complicated function of �/T and Tc/T . The first parametrization (3.21) of ⌘ etc. is

relevant at high temperatures when there is asymptotic freedom. At lower temperatures, the second parametrisation
is relevant if � << Tc.
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of ⇧ in terms of � is given by

⌧�0 +
4
3

 
� �

C⌘

C⌧⇡

!
+ 4�

⌧T 0

T
+

⌧

C⌧⇡
�T = 0. (3.26)

As such, we have a five-dimensional phase space given by T , �,  0, ⇢ and ⇢0 when we set µ = 0

(for simplicity).

3.3 Results

Superfluid Bjorken flow has formidable complexity, but the results are best understood by con-

sidering possible attractor or saddle surfaces/curves/points first. It is easy to note from our

equations that we can always consistently set ⌃ = 0. The evolution of T and � are then exactly

same as the case of ordinary Bjorken flow discussed in [25]. It is well known that the system

flows to a unique hydrodynamic attractor curve given by �att(⌧T ). However, we find this curve is

actually a meta-stable curve near the ⌃ = 0 surface: typical solutions will approach this surface

before departing at late times.

In addition, we find that the system has two fixed points! To see this we set for the

moment T = t⇤Tc, � = 0 (since any fixed point cannot have dissipation) and note that the

equations of motion have solutions with  0 = 0 and

⇢ = ±⇢⇤ = ±

r
�Tc(1 � t⇤)

�
(3.27)

since @V/@⇢ = 0 at ⇢ = ±⇢⇤. Note setting  constant implies that we are moving on a line in the

complex ⌃ plane, so ⇢ can assume any sign4. The equation for T given by (3.25) determines t⇤

via
1 � t⇤

t3
⇤

=
8�T 2

c

3�2 (3.28)

4The situation is similar to motion to pure radial motion in a central potential with vanishing angular momen-
tum. The constant radial coordinate � = �0 jumps by ⇡ once the particle crosses the origin. If we want to keep �
continuous, then we can simply allow the radial coordinate to assume both signs.
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in which we take 0  t⇤ < 1.
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Figure 3.1: There is always a solution to (3.28) with 0  t⇤ < 1.

In Fig. 3.1, we see that irrespective of our choice of constants (�, �,Tc), we are always

able to find a real solution within this range. Choosing Tc = � = � = 1, we find that t⇤ ⇡

0.551847 and ⇢⇤ ⇡ 0.669442.

The reader may readily note that (3.28) orginates from a specific choice of the equation

of state i.e. p(T ). Also the fixed point is determined only by the quantum e↵ective action (the

ideal component) and is independent of the relaxation terms. The existence of such fixed points

should therefore be generic in the Bjorken flow equations of the superfluid. The reason that such

fixed points with constant temperature can exist in this expanding superfluid droplet is simply

because the energy gained by non-reduction of temperature is compensated by the lower energy

of the expanding vacuum with broken symmetry. Generally, of course the system will have

even number of such fixed points since the symmetry breaking vacuua are doubly degenerate

for fixed  and for any acceptable solution of t⇤. At these symmetry breaking fixed points there

is no entropy production because ⇢0 =  0 = ⇡µ⌫ = qµ = 0. Since these are fixed points of an

expanding system (with non-trivial velocity profile), these are not thermal.

We are now ready to report our results. The system of equations for the simple case

(3.3) which give the evolution of (T , �, ⇢,  ) under Bjorken flow with vanishing µ are (3.22),

(3.23), (3.25) and (3.26). We recall that the phase space is five-dimensional when µ = 0 with

coordinates T , �, ⇢, ⇢0 and  0. The characteristics of the evolution of the system, however,
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Figure 3.2: Evolution of the condensate and temperature for initial T > Tc (left) and T < Tc

(right) for two di↵erent initial values of ⇢, distinguished by solid and dashed lines. In the left
panel with initial values of ⇢ as 1.947 and 1.954 (corresponding to the solid and dashed lines,
respectively), at early times, the temperature (red lines) quickly goes to perfect-fluid type expan-
sion T ⇡ ⌧�1/3 (shown as a gray dashed line) before switching to one of the symmetry breaking
points at late time. This switching time corresponds to the rapid growth of the condensate, ⇢,
shown in black. At late times, both T and ⇢ asymptote to their respective final values, t? and
±⇢?, which we denote in both plots as blue and orange lines, respectively. In the right panel
corresponding to initial values of ⇢ as 2 and 1 (solid and dashed lines, respectively), with initial
T < Tc, the condensate rapidly approaches its asymptotic value. The evolution of the tempera-
ture is non-monotonic even at early times. In these plots t⇤ ⇡ 0.551847 and ⇢⇤ ⇡ 0.669442 and
we start with ⇢0 =  0 = 0 and � = 1.

depend only on whether we initialize with T > Tc or T < Tc.

For the purpose of generating plots, we choose C⌘ = 1/(4⇡) and C⌧⇡ = (2 � ln 2)/(2⇡)

as obtained by matching MIS with the holographic description ofN = 4 SYM theory at infinite

’t Hooft coupling and for infinite number of colors [25]. Also we choose C1 = C2 = 1, and

� = � = 1 in units Tc = 1. Likewise, we will count our proper time, ⌧, in units of Tc = 1.

Case 1 – initially T > Tc: In this case, the typical evolution of the system is as shown in the

left panel of Fig. 3.2. Early on, both ⇢ and  0 vanish very rapidly, particularly ⇢ ⇡ ⌧�1/2e�
p
�Tc⌧.

The system approaches the ⌃ = 0 surface (with ⇢ = ⇢0 =  0 = 0) where the evolution is purely

hydrodynamic. As a result, the system gets trapped near the hydrodynamic attractor curve

�att(⌧T ) where there is no symmetry breaking (⇢ remains exponentially small). The entrapment

occurs for a long time during which the system approaches a perfect fluid type expansion (T ⇡

⌧�1/3) due to its evolution close to the attractor curve. However, at late time the system suddenly
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reheats quickly and switches to one of the symmetry breaking fixed points with T = t⇤Tc and

⇢ = ±⇢⇤ (with  0 = 0 and � = 0). Note that during the entire evolution of the system, the

temperature remains above t⇤Tc, including during the switching between the hydrodynamic

attractor behavior and the final approach to its asymptotic value.

In Fig. 3.3, we further illustrate the above by fixing the initial temperature to 2Tc and

initializing with (⇢0, 0, �) = (0, 0, 1), but varying the initial value of ⇢. As mentioned above,

the qualitative features do not change if we choose initial values of T , ⇢0,  0 and � di↵erently

as long as T > Tc initially. For any initial value of ⇢, the system gets trapped close to the

vertical ⇢ = 0 line, representing the hydrodynamic attractor curve where we have perfect-fluid

like expansion T ⇡ ⌧�1/3 for a considerable time (see the inset) until it switches to one of the

symmetry breaking fixed points marked with red and cyan colors. Varying initial values of ⇢,

we find alternating intervals in which the system chooses one of these fixed points at late times.

The switching time depends on the initial condition and increases with the inital value of T very

rapidly.

To study the basin of attraction of the fixed points, we fix the initial values (⇢0, 0, �) =

(0, 0, 1) and vary initial values of T and ⇢. We readily observe from Fig. 3.4 that for initial

values of T and |⇢| greater than about 5Tc and 7Tc, respectively, the basin of attraction of these

two fixed points (marked with yellow and blue for ⇢⇤ and �⇢⇤, respectively) are interlaced in a

complex manner, making long term prediction di�cult. It is likely that the basin boundaries are

fractal in these regimes.

We emphasize that even if the system is initialized with non-vanishing ⇢0 and  0, it

rapidly approaches the hydrodynamic attractor curve with vanishing ⌃ and lingers there for a

long duration of time before rapidly switching to one of the fixed points. The basin of attraction

of the fixed points has similar features.

If we start from the boundary of the basin of attraction of the two fixed points initially,

then the system should get trapped by the hydrodynamic attractor curve on the vanishing ⌃

surface (with ⇢ = ⇢0 =  0 = 0) and would asymptotically approach it without switching to any
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of the fixed points.

Case 2 – starting with T  Tc: The evolution is qualitatively di↵erent to the previous case,

although the system settles to one of the fixed points for a generic initial condition. As shown

in Fig. 3.2, the temperature behaves non-monotonically at initial time even if we start with

T ⇡ t⇤Tc. The condensate ⇢ approaches ±⇢⇤ while  0 and � vanishes over the same timescale.

Thus, the system approaches one of the fixed points without getting trapped near ⌃ = 0, unless

the initial condition is close to the boundary of the basin of attraction as demonstrated in Fig.

3.3. In the latter case, the system evolves close to the hydrodynamic attractor for a certain period

of time. This is expected because if we start from the boundary of the basins of attraction, then

the system should approach the hydrodynamic attractor curve in the long run instead of evolving

to one of the fixed points. We readily observe from Fig. 3.4 that the projections of the basin of

attraction on T � ⇢ plane separates into two simply connected regions.

In the following section, we analyze the MIS theory about thermal equilibrium and

argue that the fixed points are actually unstable against inhomogeneous perturbations. The fate

of this instability can be studied using our MIS framework.

3.4 Linearized fluctuations

Here, we compute the linearized fluctuations around thermal equilibrium at zero chemical po-

tential. Note that in this section we are not considering an expanding fluid and we use the

standard Minkowski coordinates. We show that the broken phases with T  t⇤Tc < Tc (with

t⇤Tc corresponding to the value of the temperature at the fixed point of the Bjorken flow) are

unstable in our MIS theory. While the non-hydrodynamic relaxation poles remain on the lower

half-plane of complexified frequency, the speed of sound, the di↵usion constant and the sound

attenuation coe�cient change sign at T = t⇤Tc and thus are negative for T < t⇤Tc. This hydro-

dynamic instability should lead to spinodal decomposition [145, 146].
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Figure 3.3: The evolution of the system is shown on the T � ⇢ plane, a two-dimensional pro-
jection of the phase space. The initial values of T and ⇢ are marked by green dots and for all
cases initial values of ⇢0,  0 and � are 0, 0 and 1, respectively. At late times, the system chooses
one of the two fixed points marked in red and cyan. When T = 2Tc initially, we find that the
system quickly evolves to the vertical ⇢ = 0 line and gets trapped there for intermediate times.
The inset plot shows that during this time T ⇡ ⌧�1/3 indicating that the system evolves close to
the hydrodynamic attractor curve on ⌃ = 0 surface (with ⇢ = ⇢0 =  0 = 0). If we start with
T = 0.8Tc, then the system does not get trapped by the hydrodynamic attractor curve but merely
passes through the vertical ⇢ = 0 line (except if we start close to the border separating the basin
of attraction of the two fixed points, as shown by the magenta line in the inset).

Figure 3.4: The projection of the basin of attractions of the two fixed points on the T � ⇢ plane
are shown here. The color coding is yellow for +⇢? and blue for �⇢?. Note that below a
certain value of temperature, there is a clear separation between a choice of initial conditions
determining which ⇢? the system will evolve to. This is not the case for higher temperatures
and higher |⇢|, where predictability from the initial conditions becomes di�cult. The boundary
of the basins of attraction is possibly a fractal at higher tempertures.
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Without loss of generality, we take the momentum of the fluctuation in the z-direction.

After recasting the equations of motion, (3.22) and (3.23), energy momentum tensor conserva-

tion (3.25) and MIS equation (3.26) in Minkowski coordinates and linearizing, we see that these

equations are linear in V ⌘ (�T, �⇢, � , �u, �⇡) in Fourier space. We can recast the equations

in matrix form Q(!, k) · V = 0, where Q is a 5 ⇥ 5 matrix. We find the dispersion relations by

setting the determinant of Q to zero. The perturbations of the hydrodynamic variables are given

by

shear: ⇡zx
⇠ �⇡zxe�i!t+ikz and ux

⇠ �uxe�i!t+ikz, (3.29)

sound: T ⇠ T0 + �Te�i!t+ikz, ⇡zz
⇠ �⇡zze�i!t+ikz and uz

⇠ �uze�i!t+ikz. (3.30)

The fluctuations in the scalar sector are

⇢ ⇠ ⇢0 + �⇢e�i!t+ikz and  ⇠  0 + � e�i!t+ikz. (3.31)

We distinguish between the broken and unbroken phase by the equilibrium value of the conden-

sate.

3.4.1 Unbroken phase

When ⇢0 = 0, we are in the unbroken phase, T > Tc. In this case, the determinant of Q

factors neatly into the phase, condensate and hydrodynamic dispersions. Since ⇢0 vanishes, the

dispersion of the phase is trivial. We find the expected sound and shear modes of a conformal

system (with ⌘ = C⌘T 3
0 )

!sound = ±
k
p

3
�

i⌘k2

2T 4
0
+ O

⇣
k3

⌘
, and !shear = �

3i⌘k2

2T 4
0
+ O(k3), (3.32)
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as well as the non-hydrodynamic modes: one from the MIS equation and two from the scalar

field

!relaxation = �
i
⌧⇡
+ O(k2), (3.33)

!scalar = �
1
2

✓
i1 ±

q
4�(T0 � Tc) � 2

1

◆
+ O

⇣
k2

⌘
, (3.34)

respectively. Note that the superfluid mode is overdamped when 1 >
p

2�(T0 � Tc).

3.4.2 Broken phase

Next, we turn our attention to the broken phase, T < Tc , and ⇢0 = ±
q

�(Tc�T0)
� . The dispersion

relation of the phase is now no longer trivial, indicating the presence of a Goldstone mode

⇢2
0(!2
� k2) + i2! = 0. (3.35)

Clearly we get two modes which at low k take the form

!di f f usion = �i
⇢2

0

2
k2 + O(k4), !relaxation = �i

2

⇢2
0
+ O(k2). (3.36)

Thus one behaves as a di↵usion mode (which has also been found in a hybrid system of a scalar

field and holography in semihologaphic framework [16]) and the other as a relaxation mode in

both sound and shear channels.

The shear sector in the broken phase with perturbations (3.29) has the following deter-

minant

0 =
⇣
w2
� k2
� m2

� + i1!
⌘ ⇣

T0!(⌧⇡! + i)
⇣
8T 3

0 � 3⇢2
0�

⌘
� 6⌘k2

⌘
, (3.37)

where we introduced the mass of the condensate, m2
� := 3�⇢2

0 + �(Tc � T0) = 4�(Tc � T0). The

determinant factorizes into the condensate and hydrodynamic modes. For small k, we see that
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the shear modes are

!QNM =
1
2

✓
�i1 ±

q
4m2

� � 
2
1

◆
+ O(k2), (3.38)

!shear = �
6i�⌘k2

8�T 4
0 � 3�2(Tc � T0)T0

+ O(k3), (3.39)

as well as the MIS mode (3.33). We call the first mode quasi-normal mode (QNM) simply be-

cause it has both real and imaginary parts at zero momentum (no analogy with black hole QNMs

are implied here). We note that the di↵usion constant has a pole in T0 precisely when T0 = t⇤Tc

and its sign changes as we further lower T0. A negative di↵usion constant leads to what is

known as uphill di↵usion (against the concentration gradient) enhancing inhomogeneities and

thus spinodal decomposition. As a side remark, the two scalar (condensate) modes become one

di↵usive mode in the limit m2
� ! 0 (see the Goldstone sector discussed above), which in the

context of the chiral phase transition can be thought of as the transition from pion propagating

modes to the di↵usive quark mode [147]. Of course, in the present context, we are working

with a complex scalar field and not attempting to capture the O(4) dynamics relevant for the

chiral phase transition.

Finally, in the sound channel with perturbations (3.30), the dispersion takes the follow-

ing form

0 = 48⌘k2�T0!
⇣
4k2�T 2

0 � 8��T 3
0 � 4�T 2

0

⇣
�2�Tc + w2 + i1w

⌘
� �3T0 + �

3Tc

⌘

� (⌧⇡w + i)
⇣
8�T 3

0 + 3�2T0 � 3�2Tc

⌘ h
� k

⇣
8k�T 4

0 + 3k�2T0(T0 � Tc)
⌘ ⇣

k2 + 2�(Tc � T0) � w2
� i1w

⌘

� 6T 2
0 w2

⇣
�4k2�T 2

0 + 8��T 3
0 + 4�T 2

0

⇣
�2�Tc + w2 + i1w

⌘
+ �3T0 � �

3Tc

⌘ i
(3.40)
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Figure 3.5: Left: the square of the speed of sound as a function of equilibrium temperature.
As T0 ! t⇤, the speed of sound vanishes, while as T0 approaches the critical temperature Tc,
it grows and monotonically reaches the conformal value, 1/3. Right: the sound attenuation
coe�cient as a function of equilibrium temperature, which grows negative and large as T0

approaches t⇤Tc.

We see that in the small k limit, we have the following modes

!sound = ±csk � i�k2 + O(k3), c2
s :=

8�T 3
0 � 3�2(Tc � T0)

24�T 3
0 + 3�2T0

,

� :=
4⌘�

8�T 4
0 � 3�2(Tc � T0)T0

+
1�

⇣
8�T 3

0 � 3�2(Tc � T0)
⌘

12T0(Tc � T0)
⇣
�2 + 8�T 2

0

⌘2 , (3.41)

!QNM =
1
2

0
BBBBBB@�i1 ±

s

�2
1 + 8�(Tc � T0) +

�3(Tc � T0)
�T 2

0

1
CCCCCCA + O(k2). (3.42)

Above, the first mode is clearly the sound mode but the square of the speed of sound c2
s becomes

negative for T0 < t⇤Tc triggering spinodal decomposition. In Fig. 3.5, we plot c2
s and the sound

attenuation coe�cient � which behaves similarly as the di↵usion coe�cient in the shear sector,

diverging at T0 = t⇤Tc and becoming negative as we further lower T0.

We note that the instabilities occur only in the hydrodynamic sound and shear modes

only for T0  t⇤Tc. This indicates that the fixed points of the Bjorken flow could be unstable

against inhomogeneous perturbations. However, when we start with supercritical temperatures

(and a range of subcritical temperatures), the temperature remains above t⇤Tc for its entire evolu-

tion for a large class of initial conditions. We would like to investigate the fate of the instabilities

of the fixed points using an appropriately modified MIS framework in the future.
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Chapter 4

Schwinger Keldysh correlation function of

Bjorken flow

One of the outstanding issues in the holographic duality, that maps strongly interacting quan-

tum systems to semi-classical gravity in one higher dimension, is to understand the dictionary

in real-time. The applications of the holographic approach to many-body physics are especially

limited without explicit and implementable prescriptions for computing out-of-equilibrium cor-

relation functions. Even in the weak-coupling limit, these correlation functions are funda-

mental tools for studying decoherence and thermalization, e.g. to understand how the com-

mutator and the anti-commutator evolve to satisfy the fluctuation-dissipation relation lead-

ing to the emergence of the Kubo-Martin-Schwinger periodicity at an appropriate tempera-

ture, and how the occupation numbers of quasi-particles equilibrate or evolve to new fixed

points [29, 116, 148, 149]. These correlation functions are actually indispensable for under-

standing dynamics far away from equilibrium in the strong coupling limit where the system

cannot be described by quasi-particles. Although one can compute the one-point functions such

as the energy-momentum tensor in real time using the correspondence between time-dependent

geometries with regular horizons and states in the dual theory, with the remarkable fluid-gravity

correspondence [1,18,38,83] providing a primary example, and numerical relativity [112] pro-

98



viding a powerful tool, an explicit computation of a generating functional for hydrodynamic

Schwinger-Keldysh correlation functions, as for instance, has not been achieved yet.1

As discussed in section 2.3, the object of interest is the generating functional

exp(iW[J1, J2]) = Tr
 
⇢̂0 Tc exp

 
�i

I
dt

Z
dd�1x J(t, x)Ô(t, x)

!!
(4.1)

in the dual field theory, where ⇢̂0 denotes the initial density matrix,
H

the closed time Schwinger-

Keldysh contour composed of the forward and backward arms —
H
=

R
1

�1
+

R
�1

1
, where the

source J(t, x) is specified such that it is J1(t, x) and J2(t, x) on the forward and backward arms

of the contour, respectively, and Tc denotes contour ordering. Formally, we can rewrite the

density-matrix as

⇢̂0 =

Z
[D�1][D�2] ⇢0(�1, �2) |�1ih�2| (4.2)

in terms of a basis |�i of field configurations, and construct the kernel

K(�1, �2; J1, J2) = h�2|Tc exp
 
�i

I
dt

Z
dd�1x J(t, x)Ô(t, x)

!
|�1i. (4.3)

Then the functional W[J1, J1] can be obtained from

exp(iW[J1, J2]) =
Z

[D�1][D�2] ⇢0(�1, �2)K(�1, �2; J1, J2). (4.4)

When ⇢̂0 is the thermal density matrix, this computation simplifies drastically. One needs

to just add an appendage of length T�1 at the end of the closed real time contour parallel to

the negative imaginary axis, and impose periodic boundary conditions on the full contour

implementing KMS periodicity [152].

1A limited number of observables can still be computed analytically or numerically. The equal time two-point
functions can be computed via the geodesic approximation when the operator has a large scaling dimension, even
out of equilibrium. The out-of-equilibrium retarded correlation function can also be computed by implementing
linear causal response appropriately – see [150] for a general prescription. Furthermore, equal-time Green’s func-
tion can be computed for operators with large anomalous scaling dimensions in the geodesic approximation and
has been used to understand thermalization [151].
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Figure 4.1: Left: The general Schwinger-Keldysh contour for an arbitrary initial density matrix
⇢̂0. Field configurations need to be specified at the two ends of the closed time contour which
are represented in bold. Right: In thermal equilibrium this simplifies. One needs an appendage
to the contour extending along negative imaginary axis by � = T�1 and then impose periodic
boundary conditions for the full contour.

One can also expect a similar simplification for the Bjorken flow which provides the

simplest example for evolution of an expanding system on the forward light cone (see Sec 2.1.4

for details). The state is assumed to have boost invariance, and also translational and rotational

invariance along the transverse plane so that the energy-momentum tensor can be expressed

only in terms of the energy density T⌧⌧ = ✏(⌧) via Ward identities, where ⌧ =
p

t2 � z2 is the

proper time of an observer co-moving with the flow and z being the longitudinal coordinate

along which the expansion happens. At late time, ✏(⌧) is described by hydrodynamics and thus

it reaches a perfect fluid expansion, so that

✏(⌧) ⇡ ✏0

✓⌧0

⌧

◆ d
d�1
. (4.5)

In the hydrodynamic regime, it can be described by a single constant parameter, namely

µ := ✏0⌧
d

d�1
0 . (4.6)

The full hydrodynamic series for ✏(⌧) in powers of ⌧� d�2
d�1 (essentially a derivative expansion)

is given in terms of µ (which is determined by initial conditions) and the transport coe�cients

which are determined by the fundamental microscopic theory. In this case, it is natural to ask

whether there can be a simpler computation of the Schwinger-Keldysh partition function of

W[J1, J2] in the hydrodynamic limit, since just like the thermal case, the state can be essentially

captured by a single parameter.
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More generally, we would expect that general methods for computing W[J1, J2] would

exist in the hydrodynamic regime where the energy-momentum tensor and conserved currents

are described only by the hydrodynamic variables, namely the four velocity uµ(t, x), the en-

ergy density ✏(t, x) (or equivalently the temperature T (t, x)), etc., and we would not require the

knowledge of the detailed (o↵-diagonal) matrix elements ⇢(�1, �2) of the state or the kernel

K(�1, �2; J1, J2) explicitly. In fact, W[J1, J2] is related to the generalization of the thermody-

namic free energy to hydrodynamics via Legendre transform, and the latter especially in the

context of macroscopic spacetime configurations of conserved currents is also known as the

large deviation functional [153] which can be computed in many models studied in classical

non-equilibrium statistical mechanics.2

The primary aim of this chapter is to show how the explicit computation of W[J1, J2]

can be achieved by holographic methods in the hydrodynamic limit of the Bjorken flow. We

will also present concrete steps for understanding how to go beyond the hydrodynamic limit

and recover the initial state.

4.0.1 A brief historical review and summary of results

The first major advance in understanding thermal real-time correlation functions in holography

was the Son-Starinets prescription for computing the retarded correlation function, according

to which the ingoing boundary condition at the horizon implements the causal linear response

in the classical gravity (large N and infinite strong coupling) approximation [155]. Using the

Chesler and Ya↵e method for causal time evolution in the bulk [112], this approach was suit-

ably generalized to compute the out-of-equilibirum retarded correlation function in hologra-

phy [150]. The first concrete implementation of the Schwinger-Keldysh contour in holography

is due to Son and Herzog utilizing the eternal black hole geometry [59]. The two boundaries of
2The large deviation functional gives the probability for a macroscopic spacetime profile of a conserved charge

or current density which does not necessarily satisfy the hydrodynamic equations. In a quantum system, the o↵-
diagonal matrix elements in the basis of macroscopic field configurations for the conserved charges and currents
eventually decohere, but the decoherence would be of interest. See [154] for a recent discussion on possibility of
a quantum generalization of large deviation functional methods.
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the eternal black hole were shown to provide the forward and backward arms of the Schwinger-

Keldysh closed time contour with the backward arm displaced by �i�/2 (note � = T�1) along

the imaginary axis.

The most concrete prescription for real time gauge-gravity duality for general initial

states is due to Skenderis and van Rees [31,61]. This, however, requires detailed understanding

of the state in terms of semiclassical field configurations of dual gravity, and is best defined for

states which can be constructed using Euclidean path integrals. In this prescription, one explic-

itly constructs the bulk geometry corresponding to the boundary Schwinger-Keldysh contour

with specified sources, and extends data on the field theory contour into the bulk in an appropri-

ate manner. It is however, not easy to apply this approach to realistic computations for generic

initial states. Furthermore, as mentioned above, we would expect a simpler approach in the

hydrodynamic regime. We will compare this approach with ours in sec 4.5.

Our method is based on generalizing the recently proposed horizon cap prescription

due to Crossley, Glorioso and Liu (CGL) [17] for the static black brane dual to the thermal

state. Here the Schwinger-Keldysh contour is realized by a horizon cap, in which the ingoing

Eddington-Finkelstein radial coordinate goes around the horizon in the complex plane in a little

circle of radius ✏ (not to be confused with the energy density) before going back to the real

axis and reaching the second boundary. Thus the two arms of the Schwinger-Keldysh contour

at the two boundaries are connected continuously in the bulk through the bulk radial contour.

The horizon cap implements the appropriate analytic continuation of bulk fields from one arm

of the bulk geometry to the other with the sources J1 and J2 are specified independently at the

two boundaries.

We provide a novel, elegant and simple proof that the CGL horizon cap prescription re-

produces the KMS periodicity which relates the di↵erent Schwinger-Keldysh correlation func-

tions, and furthermore also reproduces the Son-Starinets prescription for the retarded correlation

function at arbitrary frequency and momenta. These were earlier verified only to the quadratic

order in frequency [17]. Our proof relies on a simple and novel matrix factorization of ther-
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mal correlation functions. This matrix factorization is crucial for the extension of the CGL

method to the out-of-equilibrium hydrodynamic Bjorken flow and also for performing crucial

consistency checks of the prescription as mentioned below.

The primary tool for extending the CGL prescription into the hydrodynamic regime is

the existence of a Weyl rescaling of the Bjorken flow such that the temperature along with the

energy and entropy densities becomes a constant at late time. Thus the late time perfect fluid

expansion is mapped to a constant temperature. However, there is no time-reversal symmetry

because the longitudinal direction expands and the transverse directions contract with proper

time evolution in a way such that the total spatial volume density is a constant. This Weyl

transformation can be lifted to a bulk di↵eomorphism. At late proper time, the dual black hole’s

event horizon (and also the apparent horizon which coincides with it at late time) reaches a

fixed location. The area and surface gravity of the event horizon (and therefore the entropy

density and the the temperature of the dual state) remain constant at late time, but the event

horizon shrinks in the directions transverse to the flow while expanding in the longitudinal

direction. The latter necessitates the viscous and higher order corrections in hydrodynamics (in

this Weyl rescaled version) so that the horizon is smooth (these corrections are rather obvious

for the original Bjorken flow). The computation of viscous and higher order corrections is just

a special case of the fluid/gravity correspondence [18] and has been worked out up to very high

orders for the Bjorken flow [26]. The correlation functions for the Bjorken flow can be obtained

simply by undoing the Weyl transformation. The Weyl anomaly could contribute to contact

terms, which are diagonal in the Schwinger-Keldysh basis and state independent.

Crucially at late proper time, the Schwinger-Keldysh correlation functions can be

mapped to the thermal correlation function after spacetime reparametrizations. This follows

from the result that at leading order, the Klein-Gordon equation for the massive scalar field dual

to the operator can be mapped to that in the static black brane, thus generalizing the result of

Janik and Peschanski [156] for the homogeneous case after adequate spacetime reparametriza-

tions manifested via the Weyl rescaling mentioned above. Furthermore the corrections due to
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viscous and higher order derivative e↵ects in the background can be incorporated systemati-

cally, however this requires a further non-trivial log correction to the time-reparametrization.

Let us present the crucial result for the limit of the perfect fluid expansion in some

details. The d-dimensional background metric for the Bjorken flow is written in the Milne

coordinates: ⌧, the rapidity ⇣ = arctanh(z/t) and the transverse coordinates ~x?, in which the

Minkowski metric takes the form

ds2 = �d⌧2 + ⌧2d⇣2 + ds2
?

(4.7)

It is convenient to define

� = ⌧
d�2
d�1⌧

1
d�1
0 , ⇣̂ = ⇣⌧0. (4.8)

Then the Milne metric above is Weyl equivalent to

ds2 = �
(d � 1)2

(d � 2)2 d�2 +
�2

⌧2
0

d⇣̂2 +

 
�

⌧0

!� 2
d�2

ds2
?
. (4.9)

Note that the spatial volume factor is unity although there is expansion and contraction along

longitudinal and transverse directions respectively. The above metric should be set as the bound-

ary metric of the dual AdS d+1 geometry (d > 2) which describes the Weyl rescaled Bjorken flow

in the field theory, to implement our horizon cap prescription. Although there is no time-like

Killing vector even at late time, the dual black hole’s event horizon eventually attains a constant

surface gravity and area, implying that the temperature, entropy and energy densities in the dual

field theory become a constant.

In order to find the scalar Schwinger-Keldysh correlation function

G(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|) (4.10)

(Note G is a 2 ⇥ 2 matrix in the Schwinger-Keldysh basis) at late time, it is useful to
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define

� =
1
2

(�1 + �2), �r = �1 � �2, e⇣r = (⇣̂1 � ⇣̂2)
�

⌧0
, fx?r = |~x?1 � ~x?2|

✓⌧0

�

◆ 1
d�2

(4.11)

and take the limit � ! 1 with other variables fixed. In this limit, the correlation function is

essentially governed by the Weyl-transformed perfect fluid expansion in which the temperature

and entropy density become constant although time-translation symmetry is not recovered as

mentioned above. (Note due to boost invariance, and the transverse translational and rotational

symmetries of the Bjorken flow, the correlation function should be functions of �1, �2, e⇣r and

fx?r only. ) One of our main results is that the Schwinger-Keldysh correlation functions in

this limit for holographic conformal field theories reduces to thermal correlation functions.3

Undoing the Weyl transformation, we obtain the following correlation functions of the perfect

fluid expansion in terms of those (denoted as G�) of a static black brane dual to a thermal state:

✓⌧0

�

◆ 2�O
d�2

G�

 
d � 1
d � 2

�r,

q
e⇣2

r +fx?2
r

!
. (4.12)

(Here �O is the scaling dimension of the scalar operator). Thus with the manifest spacetime

reparametrizations, the correlation functions are thermal at a fixed temperature given by the

constant surface gravity of the (Weyl-transformed) dual d + 1-dimensional black hole horizon

at late time when it reaches its final radial location "1/d
0 . Explicitly, this temperature (which is

equal to the static black brane temperature appearing in G�) is given by

� = T�1
0 =

4⇡"1/d
0

d
, "0 =

16⇡GN

d � 1
✏0, (4.13)

with ✏0 defined in (4.5). The d+1-dimensional gravitational constant is related to the rank of the

gauge group of the dual theory, as for instance in N = 4 super Yang-Mills theory with S U(N)

gauge group in 4 dimensions, G�1
N = 2N2/⇡. Remarkably, we obtain a thermal fluctuation-

3The factors (d � 1)/(d � 2), �/⌧0 and (�/⌧0)�1/(d�2) which appear with �r, ⇣̂1 � ⇣̂2 and ~x?1 � ~x?2 below
respecitively can be obtained readily from the Weyl rescaled metric (4.9) metric. These are

p
�g��, pg⇣̂⇣̂ and pgii

respectively with gii denoting the components of the diagonal metric in the transverse spatial directions.

105



dissipation relation after the necessary spacetime reparametrizations when the state approaches

perfect fluid expansion.

Since ⌧0 has been chosen arbitrarily, let’s consider a scaling ⌧0 ! ⇠⌧0 to see if

there is any ambiguity in the above result. Note that G� in (4.12) depends only on T0�r and

T0

q
e⇣2

r +fx?2
r as it is a thermal correlation matrix of a CFT. Under this scaling, it is evident from

(4.8) that � ! ⇠
1

d�1�, and therefore �r ! ⇠
1

d�1�r, � ! ⇠
1

d�1�, e⇣r ! ⇠
1

d�1e⇣r and fx?r ! ⇠
1

d�1 fx?r.

Also (4.5) and (4.13) give ✏0 ! ⇠�
d

d�1 ✏0 and T0 ! ⇠�
1

d�1 T0. Together these imply that G� is

invariant under ⌧0 ! ⇠⌧0 since T0�r and T0e⇣r and T0fx?r are invariant this scaling. However, the

Weyl factor in (4.12) scales as ⇠
2�O
d�1 implying that the dimensionless correlation function ��2�0G

is invariant under the scaling of ⌧0. This holds to all orders.

It is worthwhile to emphasize that the correlation functions do not actually thermalize

at late proper time, but assume a thermal form (4.12) only after spacetime reparametrizations.

The latter is possible because the state itself loses memory of the initial conditions and reaches

boost-invariant perfect fluid flow characterized only by a time-dependent temperature. Never-

theless, there is no time-like Killing vector, and therefore a thermal form is possible only after

time-reparametrization and time-dependent rescaling of the spatial coordinates.

We can systematically include viscous and higher order corrections to the correlation

functions. The correlation functions for the hydrodynamic Bjorken flow can be systematically

obtained in an expansion of the form

G(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|) =
✓⌧0

�

◆ 2�O
d�2

1X

n=0

1
�n"n/d

0

Gn

⇣
T0�r,T0e⇣r,T0fx?r

⌘
(4.14)

where G0 coincides with the thermal correlation function G� given by (4.12). Remarkably, the

full series (for the hydrodynamic background) can be written as a bi-local generalization of the

thermal form in the language of the matrix factorization mentioned above for the static black

brane. The key points are

1. At each order in the late proper time expansion in ��1, the behaviour of the bulk scalar
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field at the horizon cap must be same as at the zeroth order with the latter in turn mapped

to that in case of thermal equilibrium. This is required for consistency with field-theoretic

identities.

2. The above is possible only when the horizon cap is pinned to the non-equilibrium event

horizon.4

Our proposal passes many consistency tests. Firstly, using the general identity

GR(x1, x2) = G11(x1, x2) �G12(x1, x2) ,

we can show that even out of equilibrium the retarded response is obtained only from the ingoing

mode which is analytic at the horizon cap in consistency with the general prescription of [150].

Secondly, the ansatz naturally reproduces the homogeneous transients (a non-trivial extension

of the result of Janik and Peschanski [156] to higher orders). Also, our prescription ensures that

the advanced response is always given by the outgoing mode which is regular (it has the same

kind of branch cut at all orders as in thermal equilibrium, after Weyl rescaling of the Bjorken

flow). We will show that this is needed for consistency in the gravitational setup also. The

quadratic on-shell action and thus W[J1, J2] originates only from the cross-terms between the

in-going and out-going modes to all orders. This ensures a bi-local generalization of the thermal

structure of the correlation functions in terms of the matrix factorization mentioned above, to all

orders. Finally, our result that the horizon cap for the hydrodynamic Bjorken flow is pinned to

the non-equilibrium event horizon captures the causal nature of the Schwinger-Dyson equations

for the real-time (out-of-equilibrium) correlation functions in the dual field theory.5

4Note that the event horizon and the apparent horizon do not coincide when we consider second and higher
orders in the proper time expansion for the Bjorken flow. In practice, we put the horizon cap at a fixed radial
location and determine a proper residual gauge transformation at each order such that we satisfy the first condition
mentioned above. We also find that this residual gauge fixing puts the event horizon at the same fixed location
implying (in a gauge invariant way) that the horizon cap is pinned at the non-equilibrium event horizon.
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The series (4.14) is not expected to be convergent, and therefore requires a trans-series

completion with appropriate Stokes data which should be actually functions of �r, e⇣r and fx?r.

We discuss their physical role in deciphering the information of the initial state which is lost in

hydrodynamization, and also how they can be used to decode the interior of the event horizon.

The chapter is organized as follows. In section 4.1, we introduce the Crossley-

Glorioiso-Liu (CGL) horizon cap prescription for the thermal Schwinger-Keldysh correlation

functions in holography. We prove that the prescription indeed reproduces the KMS periodic-

ity so that they are given just in terms of the retarded correlation function, and that the latter

is exactly what we obtain from the Son-Starinets prescription. As mentioned, we use a new

matrix factorization of thermal correlation functions. In section 4.2, based on the discussion of

Bjorken flow and its Weyl rescaling in section 2.1.4 and holographic dual of Bjorken flow in

section 2.2.4, we construct the holographic dual of Weyl rescaled Bjorken flow. As mentioned,

this leads to a constant surface gravity and area at late time, although the event horizon stretches

and expands in the directions longitudinal and transverse to the flow respectively. Additionally,

we also discuss the proper residual gauge transformation corresponding to radial reparametriza-

tion.

In section 4.3, we study the probe bulk scalar field in the gravitational background dual

to the hydrodynamic Bjorken flow and show how we can preserve the analytic structure of the

horizon cap to all orders in the proper time expansion. Crucially, we find that it requires the

horizon cap to be pinned to the non-equilibrium event horizon. In section 4.4, we use these

results to extract the real-time correlation functions of the hydrodynamic Bjorken flow. After

presenting the result for the perfect fluid limit in terms of a thermal propagator with spacetime

reparametrizations, we show how we systematically obtain the corrections in a proper time

expansion. We also discuss many non-trivial consistency checks of our results. In section 4.5,

we present a discussion on how a trans-series completion of this expansion can lead to seeing

the quantum fluctuations behind the non-equilibrium event horizon, and matching with initial
5The latter is manifest when written in terms of the coupled evolution of the statistical and spectral functions

[29].
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data lost during hydrodynamization.

4.1 The CGL horizon cap of the thermal black brane

The Crossley-Glorioso-Liu (CGL) horizon cap prescription is a simple proposal for the holo-

graphic realization of the Schwinger-Keldysh contour at thermal equilibrium [17]. The thermal

nature of the correlation functions obtained from this prescription, including their consistency

with the Kubo-Martin-Schwinger (KMS) periodicity, has been explicitly verified up to quadratic

order in the small frequency expansion in [17]. In [17], it has also been verified that the re-

tarded correlation function is implied by the ingoing boundary condition, as demanded by the

Son-Starinets prescription [155] up to the quadratic order in frequency. These were su�cient to

obtain a rudimentary e↵ective theory of di↵usion and dissipative hydrodynamics from hologra-

phy [17, 157–167]. Here, we will present a novel and elegant proof that the CGL horizon cap

indeed gives thermal correlation functions satisfying KMS periodicity, and that it also implies

the Son-Starinets prescription for the retarded correlation function, at any arbitrary frequency

and momenta.6

The generating functional for the thermal Schwinger-Keldysh correlation functions in

a quantum field theory is7

eW[J1,J2] = Tr
h
⇢̂�Tcei

R
dt

R
dd�1 x (Ô1(x,t)J1(x,t)�Ô2(x,t)J2(x,t))

i
(4.15)

with ⇢� denoting the thermal density matrix, 1 and 2 denoting the forward and backward arms

of the contour, and Tc denoting (time) contour ordering. The contour ordering implies that (with
6The real-time prescription [61, 122] of van Rees and Skenderis leads to the ingoing boundary condition as

shown in [31] in thermal equilibrium. Our methods discussed here discuss a natural generalization away from
equilibrium for out-of-equilibrium, especially hydrodynamic states. For other approaches, see [166].

7Unless specified, we will always put the backward arm of the Schwinger-Keldysh time contour infinitesimally
below the real axis. Also, we will often omit explicit mention of the appendage of the contour along the imaginary
axis which creates the thermal state in the infinite past.
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h·i ⌘ Tr(⇢̂�·))

G11(t � t0, x � x0) = �2W
�J1(t, x)�J1(t0, x0)

= �ihT (Ô(t, x)Ô(t0, x0))i, (4.16)

�G12(t � t0, x � x0) = �2W
�J1(t, x)�J2(t0, x0)

= ihÔ(t0, x0)Ô(t, x))i,

�G21(t � t0, x � x0) = �2W
�J2(t, x)�J1(t0, x0)

= ihÔ(t, x)Ô(t0, x0))i,

G22(t � t0, x � x0) = �2W
�J2(t, x)�J2(t0, x0)

= �ihT (Ô(t, x)Ô(t0, x0))i.

Succinctly we can write the above as

Gi j(x1, x2) =
�2W

�Ji(x1)�J j(x2)
(�)i+ j (4.17)

with (i, j) = (1, 2). The above holds even out of equilibrium with ⇢� in (4.15) replaced by an

arbitrary initial state ⇢0.

It can readily be shown that the KMS periodicity (arising from the Tr in (4.15) after

extending the contour along the negative imaginary axis by � as shown in Fig. 4.1) implies that

the thermal correlation functions in Fourier space (with i and j standing for the 1 (forward) or

2 (backwards) arms of the contour) defined as

Gi j(!,k) =
Z

dt dd�1x ei!(t�t0)e�ik·(x�x0)Gi j(t � t0, x � x0) (4.18)

assume the form

Gi j =

0
BBBBBBBBB@
GR(!,k)(1 + n(!)) �GA(!,k)n(!) �(GR(!,k) �GA(!,k)n(!)

�(GR(!,k) �GA(!,k)(1 + n(!)) GR(!,k)n(!) �GA(!,k)(1 + n(!))

1
CCCCCCCCCA

(4.19)

where

GR(t � t0, x � x0) = �i✓(t � t0)h[Ô(t, x), Ô(t0, x0)]i (4.20)
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is the retarded propagator,

GA(t � t0, x � x0) = �i✓(t0 � t)h[Ô(t0, x0), Ô(t, x)]i (4.21)

is the advanced propagator, and n(!) = 1/(e�! � 1) is the Bose-Einstein distribution function. It

is easy to see from these definitions that

G⇤A(!,k) = GR(!,k) . (4.22)

The crucial element of the proof of why the CGL prescription works is a simple and

general factorization property of thermal correlation functions in field theory (irrespective of

whether the theory is holographic or not). The Schwinger-Keldysh thermal correlation functions

(4.19) obtained by di↵erentiating the real-time partition function at a temperature T = ��1 can

be factorized as shown below

Gi j(!,k) = �3 ·

0
BBBBBBBBB@
A(!,k) B(!,k)

A(!,k) B(!,k)e�!

1
CCCCCCCCCA
·

0
BBBBBBBBB@
a(!,k) b(!,k)

a(!,k) b(!,k)e�!

1
CCCCCCCCCA

�1

, (4.23)

in which �3 = diag(1,�1) is the third Pauli matrix, and

GR(!,k) =
A(!,k)
a(!,k)

=
B⇤(!,k)
b⇤(!,k)

= G⇤A(!,k). (4.24)

Clearly A ! �A, B ! �̃B, a ! �a and b ! �̃b gives the same thermal matrix, so the

factorization is unique up to the multiplicative complex functions �(!,k) and �̃(!,k).

The CGL horizon cap glues two copies of the black brane geometry, whose boundaries

represent the forward and backward arms of the Schwinger-Keldysh time contour respectively,

at the horizon as shown in Fig. 4.2. For reasons to become clear later, this prescription is

easily implemented in the in-going Eddington-Finkelstein (EF) coordinates. The in-going EF

radial coordinates of the two geometries, representing the forward (1) and backward (2) arms
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of the time contour respectively, are displaced along the imaginary axis by ⌥✏ (i.e. r1 ! r1 � i✏

and r2 ! r2 + i✏). The smooth gluing is achieved by the encircling of the complexified radial

coordinate around the horizon r = rh clockwise along a circle of radius O(✏) as it is analytically

continued from the (first) copy dual to the forward contour to the (second) copy dual to the

backward contour. The direction of time in the second copy has to be reversed so that full

complexified bulk geometry has a single orientation. Therefore, the analytic continuation of the

radial coordinate automatically necessitates the closed Schwinger-Keldysh time contour.

Figure 4.2: Top: The radial contour in the complexified two-sheeted black brane geometry
on a constant time hypersurface. The radial coordinate goes around the horizon r = rh in the
complex plane forming the horizon cap, and connects the two arms of the Schwinger-Keldysh
contour at the two boundaries at a constant Lorentzian time. The analytic continuation along
the horizon cap gives a well-defined Dirichlet value problem for the bulk fields in terms of their
sources specified at the two boundaries. Bottom: Shows the time evolution of the radial contour
(shown in blue lines) in the full complexified spacetime ending at the two Lorentzian arms at
the two boundaries. The reversal of the direction of time in the second copy implies that the full
complexified spacetime has a single orientation after the two copies are smoothly glued with
the horizon cap.

Explicitly, the AdS d+1 static black brane geometry in the ingoing Eddington-
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Finkelstein coordinates is

ds2 = �
2
r2 drdt �

1
r2

⇣
1 � rd"0

⌘
dt2 +

1
r2 (dx2

1 + · · · + dx2
d�1) (4.25)

where r is the bulk radial coordinate, t is the Eddington-Finkelstein time and the horizon is

at r = rh = "�1/d
0 . The on-shell action for bulk fields in this geometry is identified with the

generating functional of connected real-time correlation functions of the dual operators at the

boundary. A bulk scalar field configuration can be written in the form

�(r, t, x) =
Z

d!
2⇡

dd�1k
(2⇡)d�1 e�i!teik·x�(r,!,k). (4.26)

On-shell, �(r,!,k) is a sum of two linearly independent solutions �in(r,!,k) and �out(r,!,k)

which are in-going and out-going at the horizon respectively. Therefore,

�(r,!,k) = �in(r,!,k)p(!,k) + �out(r,!,k)q(!,k) (4.27)

generally with p(!,k) and q(!,k) representing the arbitrary Fourier coe�cients of the solutions

which are in-going and out-going at the horizon respectively. The latter thus provide a basis of

solutions for given ! and k, and can be uniquely defined via the following conditions

�in(rh,!,k) = 1, lim
r!rh

�out(r,!,k)(rh � r)�
i�!
2⇡ = 1 (4.28)

where

� = T�1 =
4⇡rh

d
(4.29)

is the inverse Hawking temperature of the black brane, and rh = "
�1/d
0 is the radial location of

the horizon. Indeed, near the horizon (r ⇡ rh),

�(r,!,k) ⇡ p(!,k) + (rh � r)
i�!
2⇡ q(!,k), (4.30)

113



as should follow from the universal validity of the geometrical optics approximation at the

horizon. The CGL horizon cap prescription for the analytic continuation of the radial coordinate

from one copy of the bulk spacetime to another then implies that the Fourier coe�cients of the

on-shell solutions in the two copies are related by

p2(!,k) = p1(!,k), q2(!,k) = e�!q1(!,k), (4.31)

with 1 and 2 denoting the copies ending on the forward and backward arms of the time contour

respectively at their boundaries. The on-shell solution in the full geometry can therefore be

written in the following matrix form:

0
BBBBBBBBB@
�1(r, t, x)

�2(r, t, x)

1
CCCCCCCCCA
=

Z
d!
2⇡

dd�1k
(2⇡)d�1 e�i!teik·x

M(r,!,k) ·

0
BBBBBBBBB@
p(!,k)

q(!,k)

1
CCCCCCCCCA

(4.32)

with the matrix

M(r,!,k) =

0
BBBBBBBBB@
�in(r,!,k) �out(r,!,k)

�in(r,!,k) e�!�out(r,!,k)

1
CCCCCCCCCA

(4.33)

providing a basis of solutions for the entire complexified spacetime comprising of the two copies

smoothly glued at the horizon. The sources J1(!,k) and J2(!,k) specified at the two boundaries

(see below) implement the Dirichlet boundary conditions that determine p(!,k) and q(!,k)

uniquely for real frequencies and momenta, and thus yielding a unique bulk field configuration

in the full complexified spacetime.

According to the holographic dictionary, the generating functional for the connected

correlation functions is identified with the on-shell action for the scalar field dual to the operator

Ô, on the full complexified spacetime, i.e.

W[J1, J2] = iS on�shell. (4.34)

Assuming minimal coupling to gravity, the on-shell quadratic action for the bulk scalar field �
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dual to a scalar operator takes the form

S on�shell = S in�in + S in�out + S out�out. (4.35)

The first piece S in�in is quadratic in the ingoing mode. Since the ingoing mode is analytic

at the horizon, the contributions from the two arms cancel each other out (as the solutions

are the same on the two arms) while the circle around the horizon does not contribute as well.

Therefore, S in�in = 0. Note if we keep the in-going mode alone, then J1 = J2. In the field theory,

W[J1 = J2] = 0 because the partition function eW with the same unitary evolution forward and

backward in time, equals unity. Therefore, S in�in = 0 is consistent with field theory.

The second piece S in�out, which is the sum of cross-terms between the in and out-going

modes, has a branch point at the horizon. Integrating over the two arms amounts to integrating

around a branch cut, and results in the two boundary terms on-shell, i.e.

S in�out = S bdy1 + S bdy2. (4.36)

The third piece S out�out has a possibility of a pole at the horizon, i.e. (rh � r)�1 terms

in the Lagrangian density arising from the radial derivative acting on the non-analytic piece

(rh � r)
i�!
2⇡ , which we denote collectively as S ✏ . Essentially S ✏ gets contributions from the

following two terms:

S ✏ /

Z
d!

Z
ddk

I

✏

dr
p
�G

 
Grr@r�

⇤

out@r�out +Grt �@r�
⇤

out@t�out + @r�out@t�
⇤

out
�
!
. (4.37)

Remarkably, the poles originating from these two terms cancel each other out (note � is given

by (4.29)) resulting in S ✏ = 0. The remaining terms quadratic in the outgoing mode are analytic,

so that S out�out is also the sum of two boundary terms. These two boundary terms cancel each

other out as in the in-going case. On the gravitational side, the easy way to see this is by first

writing the contributions from the forward and backward arms of the contour separately. The
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boundary contributions from one arm in the integrand would be proportional to

�b(�!, k)(@r�)b(!, k) + · · ·

with �b and (@r�)b denoting the boundary values of � and its radial derivative respectively, and

· · · include counter-terms too. The contributions from the forward and backward parts of the

contour come with opposite signs. If we consider the terms quadratic in the out-going mode,

then �b(!, k) picks up a factor of e�! while �b(�!, k) picks up a factor of e��! via analytic

continuation through the horizon cap, and the product of these factors is unity. Therefore, the

contributions from the forward and backward contours cancel out leading to S out�out = 0.

It is useful to see this also from the field theory perspective. If we keep the outgoing

modes only, then J2(!,k) = J1(!,k)e�!. In any field theory [162]

W[J1(t, x), J2(t, x)] = WT [J2(t � i�, x), J1(t, x)],

i.e. W[J1(t, x), J2(t + i�, x)] = WT [J2(t, x), J1(t, x)] (4.38)

where WT stands for the time-reversed process in which we specify with the same density matrix

in the future instead of the initial time.8 For J1(t, x) = J2(t, x) = J(!,k), this amounts to

WT [J(!,k), J(!,k))] = W[J(!,k), J(!,k)e�!].

The LHS of the above equation vanishes because once again the forward and backward evolu-

tion with the same source are inverses of each other (there is no operator insertion in the past

now although the state is specified in the future). Therefore, the RHS of the above equation

should vanish too, implying that

W[J2(!,k) = J1(!,k)e�!] = 0. (4.39)
8Succinctly, W[J1, J2] = Tr(⇢0Ũ[J2]U[J1]) where U[J1] is forward evolution with source J1 and Ũ[J2] is

backward evolution with source J2. Similarly, WT [J1, J2] = Tr(Ũ[J2]⇢0U[J1]) = Tr(⇢0U[J1]Ũ[J2]).
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Thus, S out�out = 0 is consistent with field theory. See also footnote 12 for a more straightforward

verification that the thermal correlators in the dual theory originate from S in�out alone.

The upshot is that we obtain only two boundary contributions from the cross-term

between the in-going and out-going modes, so that

S on�shell ⌘ S in�out = S bdy1 + S bdy2 (4.40)

where S bdy1 and S bdy2 are the contributions from the two boundaries after taking into account

counter-terms necessary for holographic renormalization [60]. This implies that

S on�shell[J1, J2] =
Z

dt
Z

dd�1x (hO1(t, x)iJ1(t, x) � hO2(t, x)iJ2(t, x)) (4.41)

with

0
BBBBBBBBB@
J1(!,k)

J2(!,k)

1
CCCCCCCCCA
= S(!,k) ·

0
BBBBBBBBB@
p(!,k)

q(!,k)

1
CCCCCCCCCA
,

0
BBBBBBBBB@
hO1(!,k)i

hO2(!,k)i

1
CCCCCCCCCA
= R(!,k) ·

0
BBBBBBBBB@
p(!,k)

q(!,k)

1
CCCCCCCCCA

= (R · S�1)(!,k) ·

0
BBBBBBBBB@
J1(!,k)

J2(!,k)

1
CCCCCCCCCA
. (4.42)

The matrices R and S are defined as follows. Let the asymptotic (r ⇡ 0) expansions of the

in-going and out-going modes be9

�in(r,!,k) = rd��(a0(!,k) + · · · ) + r�(A0(!,k) + · · · ),

�out(r,!,k) = rd��(b0(!,k) + · · · ) + r�(B0(!,k) + · · · ). (4.43)

9The scaling dimension � is related to the mass via � = d
2 +

q
d2

4 + m2L2 with L being the AdS radius.
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Then

S(!,k) =

0
BBBBBBBBB@

a0(!,k) b0(!,k)

a0(!,k) e�!b0(!,k)

1
CCCCCCCCCA
= lim

r!0
r��d
M(r,!,k) (4.44)

and10

R(!,k) = (2� � d)

0
BBBBBBBBB@

A0(!,k) B0(!,k)

A0(!,k) e�!B0(!,k)

1
CCCCCCCCCA
+ · · · . (4.45)

The · · · above stands for (state-independent) contact terms which we ignore. Denoting

bG(!,k) = (�3 · R · S
�1)(!,k), (4.46)

(with �3 = diag(1,�1)) we find from (4.41), (4.42), (4.44), (4.45) and (4.46) that11

S on�shell[J1, J2] =
Z

d!
2⇡

dd�1k
(2⇡)d�1 (J1(�!,�k)hO1(!,k)i � J2(�!,�k)hO2(!,k)i)

=

Z
d!
2⇡

dd�1k
(2⇡)d�1 (J1(�!,�k) J2(�!,�k)) · bG(!,k) ·

0
BBBBBBBBB@
J1(!,k)

J2(!,k)

1
CCCCCCCCCA
. (4.47)

Therefore, the identification (4.34) together with (4.16) implies that,12

Gi j(!,k) =
@2S on�shell

@Ji(�!,�k)@J j(!,k)
(2⇡)d = bG(!,k), (4.48)

From the matrix factorization of thermal correlation functions given by (4.23), we readily find

from (4.44), (4.45) and (4.46) that the correlation functions obtained by di↵erentiating the on-

shell gravitational action are thermal, i.e. assume the form (4.19) provided13

GR(!,k) = (2� � d)
A0(!,k)
a0(!,k)

, GA(!,k) = (2� � d)
B0(!,k)
b0(!,k)

. (4.49)

10Note that, asymptotically,M(r,!,k) = rd��(S(!,k) + · · · ) + r�(R(!,k) + · · · ).
11Ji(!,k) =

R
dt dd�1x ei!te�ik·xJi(t, x).

12The reader can check that substituting p(!,k) + q(!,k) = J1(!,k) and p(!,k) + q(!,k)e�! = J2(!,k) in the
on-shell action (4.47), and using the thermal form of the propagators below, that indeed only cross-terms between
p and q, i.e. the in and out-going modes appear. There are no contributions from terms quadratic in p or in q,
implying that S in�in = S out�out = 0 as claimed above, and also S on�shell = S in�out.

13It is obvious that to map to the factorization in (4.23), we have to set A = (2� � d)A0, B = (2� � d)B0, a = a0
and b = b0.
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Remarkably, the above are exactly the Son-Starinets prescriptions [155] for the retarded and

advanced propagators according to which they are obtained from the in-going and out-going

boundary conditions at the horizon respectively. Furthermore, since the out-going mode is time

reverse of the in-going mode (which is not manifest in the Eddington-Finkelstein gauge but can

be evident from transforming to Schwarzchild-like coordinates),14 we should have

B⇤0(!,k)
b⇤0(!,k)

=
A0(!,k)
a0(!,k)

, i.e. G⇤A(!,k) = GR(!,k) holds. (4.50)

We therefore conclude that the CGL horizon cap prescription reproduces the Son-

Starinets prescription for the retarded propagator together with KMS periodicity and the thermal

structure of the correlation functions at any frequency and momentum. A similar approach was

adopted earlier by Son and Herzog by identifying the two sides of the eternal black hole with

the forward and backward arms of the Schwinger-Keldysh contour [168]. However, in this case,

the backward part of the time contour needs to be shifted by �/2 along the negative imaginary

axis. The main advantage of the CGL prescription is that we do not need an eternal black hole

geometry for its implementation suggesting that its non-equilibrium generalization would be

generically more feasible. Furthermore, it is also not clear if out-of-equilibrium correlation

functions can be analytically continued in their time arguments as required by the Son and Her-

zog implementation of the Schwinger-Keldysh contour. Also it should be possible to define

integration over bulk vertices and bulk quantum loops in the CGL prescription as well via the

analytic structure of the complexified spacetime with the horizon cap. However, this is outside

the scope of the present work, and therefore we do not further discuss about this issue. Finally,

we note that the arguments presented here are simpler compared to [17] since we do not em-

ploy an expansion about ! = 0 which obscures the analytic continuation at the horizon cap by

producing (log!)n terms.
14Note that the notion of in/outgoing modes are gauge-invariant up to overall multiplicative factors, but these

cancel out in the ratio of the normalizable to the non-normalizable modes. This is why the Son-Starinets prescrip-
tion is also gauge-invariant.
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4.2 Gravitational setup of Weyl rescaled Bjorken flow

The implementation of the CGL prescription to dynamical asymptotically AdS d+1 (anti-de Sit-

ter) bulk geometry dual to the Bjorken flow in the field theory, is achieved by Weyl rescaling

the Bjorken flow at the boundary. The Weyl rescaled Bjorken flow as shown in 2.1.4, at late

time maps the perfect fluid to a flow with a constant temperature. Though there is no time

translational symmetry, at late time due to contraction and expansion in the longitudinal and

transverse direction, the temperature along with the energy density and entropy density maps to

a constant.

In the bulk it is implemented by an appropriate di↵eomorphism. As a result of this

transformation, the state reaches a constant temperature and entropy density at late proper time

instead of attaining perfect fluid expansion. The dual black hole also attains a horizon with con-

stant surface gravity and area. However, even at late proper time there is no time-like Killing

vector – the directions longitudinal and transverse to the flow expand and contract respectively

such that the horizon area remains constant at late proper time. Along with the Weyl trans-

formation of the metric and the energy-momentum tensor described in 2.1.4, the holographic

dual also produces the Weyl anomaly. The Weyl transformation will be an important tool in

implementing the horizon cap prescription out of equilibrium.

Additionally, we will focus on the residual gauge freedom which allows us to fix the

non-equilibrium event or apparent horizon at a fixed radial location. We will see that it is

crucial to pin the horizon cap at the non-equilibrium event horizon for regularity, and therefore

this gauge freedom will play an important role. This gauge freedom as shown in chapter 2,

does not a↵ect the dual metric or the dual energy-momentum tensor (and is thus a proper gauge

transformation) of the dual Bjorken flow. Similarly, the boundary metric or the dual energy-

momentum tensor remains invariant in the case of Weyl scaled Bjorken flow.

The holographic dual of the Weyl scaled Bjorken flow in a d-dimensional conformal

theory is a (d+1)-dimensional geometry which satisfies the Einstein’s equations with a negative
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cosmological constant:

RMN �
1
2

RGMN �
d(d � 1)

2L2 GMN = 0. (4.51)

In what follows, we will set L = 1 for convenience. In addition to the field theory coordinates,

we need an extra radial coordinate to describe the dual geometry. The state of the conformal

theory dual to a specific solution of (4.51), lives at the boundary (⇢ = 0) in the boundary metric,

which is defined as

gb
µ⌫ = lim

⇢!0
⇢2Gµ⌫ (4.52)

where a and b stand for the field theory indices. Since we are considering the Weyl rescaled

version of the Bjorken flow, the boundary metric should coincide with (2.63).

Before considering the Weyl rescaled Bjorken flow, it is useful to first understand the

vacuum solution, which is pure (maximally symmetric) AdS d+1 spacetime with the desired

boundary metric. In the ingoing Eddington-Finkelstein gauge, the vacuum state in the Weyl

scaled metric (2.63) is dual to

ds2 = �
2
v2

d � 1
d � 2

dvd� �
1
v2

 
(d � 1)2

(d � 2)2 +
2(d � 1)v
(d � 2)2�

!
d�2 +

1
⌧2

0

✓
1 +

�

v

◆2
d⇣̂2

+
1
v2

 
�

⌧0

!� 2
d�2

ds2
?
, (4.53)

where v is the radial coordinate. These bulk metrics (2.99) and (4.53) are related by the di↵eo-

morphism

⌧ = ⌧
�

1
d�2

0 �
d�1
d�2 , r = v

 
�

⌧0

! 1
d�2

. (4.54)

For both cases, (2.99) and (4.53), we obtain the boundary metrics (2.52) and (2.63) from (4.52),

after replacing ⇢ with r and v, respectively. Any Weyl transformation at the boundary is dual

to a bulk di↵eomorphism. Since the boundary metrics (2.52) and (2.63) are related by a Weyl

transformation, (4.54) is simply a specific instance of this general feature of holographic duality.
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Note that ⌧ and � are related exactly by the time reparametrization (2.61) at the boundary.15

Holographic renormalization discussed in 2.2.2 provides the framework for extracting the hTµ⌫i

corresponding to the state in the field theory dual to a specific asymptotically AdS d+1 bulk

geometry. For the bulk geometry (2.99), hTµ⌫i = 0 in the dual vacuum state living in the flat

Milne metric (2.52) at the boundary. On the other hand, for the vacuum state living on the Weyl

transformed Milne metric (2.63) which is dual to the bulk geometry (4.53), hTµ⌫i = 0 only if d

is odd. For even d, holographic renormalization reproduces the Weyl anomaly of the dual field

theory. In the case of d = 4, we obtain (using minimal subtraction scheme)

heTµ⌫i =
1

8⇡GN
Aµ⌫ (4.55)

with

Aµ⌫ =
1

16

 
4
3
eRµ⌫eR � 2eRµ⇢eR⇢

⌫ � g̃µ⌫
 
1
2
eR2
� eR⇢�

eR⇢�

!!
,

= diag
 
�

1
32�4 ,�

11
648�2⌧2

0
,

25⌧0

648�5 ,
25⌧0

648�5

!
(4.56)

where g̃ denotes the Weyl rescaled background metric (2.63), eRµ⌫ is the Ricci tensor built out

of it, etc. It is easy to verify that

erµeT µ⌫ = 0, (4.57)

i.e. energy and momentum is conserved in the Weyl rescaled background metric (2.63) (with er

being the covariant derivative built out of it), and

eT µµ = �
1

8⇡GN

 
1

24
eR2
�

1
8
eR⇢�

eR⇢�

!
=

1
8⇡GN

2
27�4 . (4.58)

15Di↵eomorphisms such as (4.54) which implement global transformations on the dual state are called improper
di↵eomorphisms which are always part of residual gauge freedom after gauge fixing in the bulk. The latter can
also have additional proper di↵eomorphisms which do not a↵ect the dual physical quantities.
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Using
1

GN
=

2N2

⇡
, (4.59)

we can readily find that (4.58) reproduces the Weyl anomaly of S U(N)N = 4 super-symmetric

Yang-Mills theory [104, 105].

In order to construct a regular horizon cap, it is useful to change coordinates from r

and ⌧ to v and � following (4.54) as in the case of the spacetime dual to the vacuum state. Note,

it follows from (2.100) that v and s are the same. In these new coordinates, the metric (2.97)

takes the form:

ds2 = �
2
v2

d � 1
d � 2

dvd� �
1
v2

 
(d � 1)2

(d � 2)2 A(v,�) +
2(d � 1)v
(d � 2)2�

!
d�2

+
1
⌧2

0

✓
1 +

�

v

◆2
eL(v,�)d⇣̂2 +

1
v2

 
�

⌧0

!� 2
d�2

eK(v,�)ds2
?
, (4.60)

and is dual to Bjorken flow on the Weyl rescaled background metric (2.63) at the boundary.

Holographic renormalization and the constraints of the Einstein’s equations (4.51) imply that

the energy-momentum tensor of the dual Bjorken flow takes the form

heTµ⌫i = T W
µ⌫ +

1
8⇡GN

Aµ⌫ (4.61)

where T W
µ⌫ takes the general Bjorken form with non-vanishing components given by (2.64) in

which

✏̃(�) = �
d � 1

16⇡GN

(d � 1)2

(d � 2)2 ad(�), (4.62)

and Aµ⌫ is the Weyl anomaly appearing for even d. Comparing with (2.116), we indeed

verify that the bulk di↵eomorphism (4.54) implements the Weyl transformation and time

reparametrization in the dual theory (with the Weyl factor given by (2.62)) and also repro-

duces its Weyl anomaly. Particularly, for d = 4, we recall that Aµ⌫ is simply given by (4.56).

The anomalous term is state-independent (and is always the same as in the Weyl transformed

vacuum state). We again note that heTµ⌫i is invariant under the residual gauge symmetry since it
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is independent of a1(⌧) after we implement the gravitational constraints following the previous

discussion.

Obviously, the late proper time expansion (2.102) takes the form

A(v,�) = 1 � "0vd +

1X

i=1

⇣
"1/d

0 �
⌘�i

a(i)("1/d
0 v),

L(v,�) =
1X

i=1

⇣
"1/d

0 �
⌘�i

l(i)("1/d
0 v),

K(v,�) =
1X

i=1

⇣
"1/d

0 �
⌘�i

k(i)("1/d
0 v). (4.63)

Explicitly, for d = 4 as mentioned in section 2.2.4 the first order equations takes the similar

form ,

a(1)(x) = ↵1
x(1 + x4)

3
+

2x4(1 + x)
3

,

k(1)(x) = ↵1
x
3
+

1
2

g(x),

l(1)(x) = ↵1
x
3
� g(x), (4.64)

with

g(x) =
4
3

x �
1
3

ln(x2 + 1) �
2
3

ln(x + 1) �
2
3

arctan x. (4.65)

Above ↵1 is the dimensionless parameter associated with the residual gauge freedom as men-

tioned earlier. At any order in the late proper time expansion, the terms multiplying ↵1 in (4.64)

remain the same, however we should replace ↵1 by ↵n at the n-th order. It is also easy to see

that g(x) is finite at x = 1 implying that the metric is regular (with no naked singularity) at the

perturbative horizon

vh = "
�1/d
0 + O(��1). (4.66)

At late proper time the dual black brane has a constant surface gravity and area although the

directions longitudinal to the flow keep expanding and those transvere to the flow keep con-

tracting.
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The above metric reproduces the late proper time expansion of e✏(�) which takes the

form (2.65) with ✏0 given by (2.116) and �n taking specific values for a given d. Particularly, for

any d, we obtain

�1 = �
1

(d � 1) d�1
d (16⇡GN)1/d

. (4.67)

It is easy to verify from (2.58) and the equation of state (see (2.117))

T = ��1 =
d
4⇡
"1/d

0 , ✏ =
d � 1

16⇡GN
"0 =

d � 1
16⇡GN

 
4⇡T

d

!d

(4.68)

that (4.67) implies via (2.58) that
⌘

s
=

1
4⇡
, (4.69)

for any d > 2. For details of d=2 see Appendix B

4.3 The bulk scalar field and the horizon cap of the Bjorken

flow

The key to obtaining the real time correlation functions is solving the dynamics of the scalar

field in the gravitational background dual to the Bjorken flow. The starting point, however, is

to construct the analogue of the bulk Schwinger-Keldysh contour with the horizon cap for the

gravitational background itself. This is straightforward. The metric dual to the Weyl scaled

Bjorken flow (given by Eqs. (4.60) and (4.63)) reaches a constant horizon temperature at late

time although the boundary metric has time-dependent spatial components. Since we would

be working perturbatively in the late proper time expansion, we will fix the horizon cap at the

constant late-time value v = "�1/d
0 to all orders in the perturbative late proper time expansion

while keeping the residual gauge freedom of radial reparametrization unfixed as mentioned

above. The metric is analytic to all orders at the horizon cap. Therefore, there is no modification

to the metric on the other arm of the bulk spacetime as it is reached via the complexified v

contour encircling the horizon as shown in Fig. 4.2 (as emphasized earlier, there is no analytic
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continuation in � and other coordinates). Exactly the same gravitational background is valid

on both arms of the complex v contour. It is also easy to see that the on-shell Einstein-Hilbert

action on the two arms cancel each other out implying that the dual (non-)equilibrium partition

function in absence of additional sources (and with the same boundary metric on the two arms)

is exactly zero, as should be the case.16

There is a crucial subtlety to this rather simple construction. We should worry about

the residual gauge symmetries at first and higher orders in the late proper time expansion. In

what follows, we will show that the analytic behavior of the sourced scalar field retains its

equilibrium nature to all orders in the late proper time expansion at the horizon cap, provided

the residual gauge symmetry is fixed in a unique way at each order. This addresses an issue

which would have arisen if we had fixed the residual gauge symmetries to keep the apparent

or the event horizon at v = "�1/d
0 to all orders in the late proper time expansion. However the

location of these two horizons di↵er at second and higher orders in the proper time expansion.

We find that the gauge fixing which implements the regularity of the horizon cap is exactly the

same which fixes the event (but not the apparent) horizon at vh = "
1/d
0 up to third order in the

proper time expansion in the case of AdS 4 and AdS 5. Although we do not have an analytic

proof that this feature will continue to hold at higher orders, we expect it to be the case as we

explicitly find that the gauge fixing is independent of the mass of the bulk scalar field, and it

should also hold for fermion, vector and higher rank tensor fields.

To see the main advantage of working in the v and � coordinates, note that the explicit

form of the leading order metric (as evident from Eqs. (4.60) and (4.63)) is:

ds2 = �
2
v2

d � 1
d � 2

dvd� �
1
v2

 
(d � 1)2

(d � 2)2 (1 � vd"0 + O(��1)) +
2(d � 1)v
(d � 2)2�

!
d�2

+
1
⌧2

0

✓
1 +

�

v

◆2
(1 + O(��1))d⇣̂2 +

1
v2

 
�

⌧0

!� 2
d�2

(1 + O(��1))ds2
?
. (4.70)

16In the field theory, this is equivalent to the statement that W[J1 = J2 = 0] = 0.
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It is useful to define the comoving momenta which depend on �

L = kL
⌧0

�
, ~T = ~kT

✓⌧0

�

◆� 1
d�2
. (4.71)

such that it takes care of the longitudinal expansion and transverse contraction of the boundary

metric. A natural ansatz for the scalar field consistent with boost invariance of the background

geometry is:

�(v,�, ⇣̂, ~x?) ⇡ ei
⇣
�

d�1
d�2!�+kL ⇣̂+~kT ·~x?

⌘
f (v,!, L,~T ). (4.72)

where remarkably there is no explicit � dependence in f (only implicitly through L and ~T )

while in the phase we have the usual fixed conjugate momenta kL and~kT . This is exact at leading

order and can be further corrected to obtain a systematic expansion of the equations of motion

in powers of ��1 as shown below. Particularly, the Klein Gordon equation (2 � m2)� = 0 for

the bulk scalar field at the leading order �0 is then17

D f = O(��1) (4.73)

where

D = v2(1 � vd"0)@2
v � v(d � 1 � 2iv! + vd"0)@v � (m2 + v(v(2

L + 
2
T ) + i(d � 1)!)). (4.74)

Remarkably, the left hand side of (4.73) is just the Klein Gordon equation for the massive bulk

scalar in the AdS d+1 static black brane geometry (4.25) at temprature ��1 given by (4.68), with

v substituting for r, and !, L and ~T identified with the canonical frequency and momenta.

The implication is that f will have exactly the same solutions at the leading order as in the

static black brane geometry and therefore the same analytic structure at the horizon cap at the

leading order. For the homogeneous (kL = ~kT = 0) and massless case, this result reduces to the

observation made by Janik and Peschanski [156] in the context of the transients of the Bjorken

17To obtain this we should substitute kL and ~kT in (4.72) by the redefined momenta (4.71) and remember to
di↵erentiate f w.r.t. � as the redefined momenta (4.71) depend on �.
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flow.

Note that the dependence of f in (4.72) on the co-moving momenta imply that we do

not have separation of variables, but this should not be expected as the background at late time

corresponds to an expanding boost-invariant perfect fluid, which has no time-like Killing vector.

Nevertheless, the map to the Laplacian of a static black hole geometry is possible at leading

order because the boost invariant perfect fluid is given only by a time-dependent temperature.

The ansatz (4.72) can be corrected to incorporate the viscous and all higher order

corrections to the gravitational Bjorken flow background systematically while ensuring the reg-

ularity of the horizon cap after fixing the residual gauge freedom perturbatively in late proper

time expansion. This modified ansatz involves an expansion in ��1 with coe�cients which

are functions of v, ! and the co-moving momenta, such that the equations of motion can be

solved systematically in ��1 expansion as well. Obviously, this implies that we also take into

account the implicit dependence of the co-moving momenta on � while obtaining the equations

of motion order by order in ��1.

Explicitly, the ansatz for the bulk scalar field in the full complexified spacetime with

1 and 2 labelling the sheets of the bulk spacetime ending at the forward and backward arms of

the Schwinger-Keldysh contour respectively at their boundaries is

0
BBBBBBBBB@
�1(v,�, ⇣̂, ~x?)

�2(v,�, ⇣̂, ~x?)

1
CCCCCCCCCA
=

Z
d!dkLdd�2kT ei

⇣
kL ⇣̂+~kT ·~x?

⌘
e�i d�1

d�2!�

 
�

⌧0

!i�0(!/"1/d
0 )

1X

n=0

⇣
"1/d

0 �
⌘�n
Mn(v,!, L,~T ) ·

0
BBBBBBBBB@
p(!, kL, kT )

q(!, kL, kT )

1
CCCCCCCCCA

(4.75)

where

Mn(v,!, L,~T ) =

0
BBBBBBBBB@
�n,in(v,!, L,~T ) �n,out(v,!, L,~T )

�n,in(v,!, L,~T ) e�!�n,out(v,!, L,~T )

1
CCCCCCCCCA
. (4.76)

Above, in (4.75), a non-analytic term proportional to �i�0 has been introduced with �0 being a

new dimensionless function of only !/"1/d
0 . This non-analytic factor is crucial to have a regular
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horizon cap as shown below. However, it does not a↵ect the zeroth order equation of motion

which takes the form of the Laplacian on a static black brane as discussed above. For any !,

(4.75) has the appearance of a trans-series in ��1 with ! characterizing the continuous instanton

exponent. Note p and q are functions of !, kL and kT (and not the redefined momenta L and~T ),

since we are integrating over !, kL and kT , and utilizing the superposition principle to obtain

the general solution with right behaviour at the horizon cap. However Mn depend on L and

~T , and therefore they have non-trivial derivatives w.r.t. �. The coe�cients p and q, which

are functions of the ordinary momenta (kL and ~kT ), and coe�cients of the in-going and out-

going modes respectively (see more below), are determined by imposing Dirichlet boundary

conditions at the two boundaries.

The structure ofMn in (4.76) is determined as follows. Note that at the zeroth order,

i.e. at n = 0, we obtain exactly the solutions of the static black brane as noted above. We can

choose the basis of solutions which are in-going and out-going at the horizon, and satisfying

the normalization conditions given by (4.28). Explicitly, near the perturbative horizon v = "1/d
0

where the horizon cap is located, they take the forms18

�0,in = 1 +
1X

k=1

p0,k

⇣
"�1/d

0 � v
⌘k
,

�0,out =
⇣
"�1/d

0 � v
⌘i 2!

d"1/d
0

0
BBBBB@1 +

1X

k=1

q0,k

⇣
"�1/d

0 � v
⌘k
1
CCCCCA , (4.77)

respectively. Note we have used (4.68) to set �!/(2⇡) = 2!/(d"1/d
0 ). For n � 1, �n,in and

�n,out represent corrections to these zeroth order solutions as discussed below. In (4.76), we

have assumed that �n,in and �n,out have the same behavior at the horizon cap v = vh = "
�1/d
0 for

n � 1as in the case of the equilibrium (or equivalently at the zeroth order). This indeed turns out

to be the case with appropriate residual gauge fixing as mentioned before and explicitly shown

below.19

18�0,in ! 1 and
⇣
"�1/d

0 � v
⌘�i 2!

d"1/d
0 �0,out ! 1 as v! "�1/d

0 are just normalizations.
19In the following section, we show that preserving the near-horizon behavior to all orders is required for sat-

isfying many consistency conditions, such as ensuring that the retarded correlation function is given by causal
response.
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At higher orders, the equations determining �n,in and �n,out can be obtained from ex-

panding (2�m2)� = 0 in the late proper time expansion after substituting kL and~kT in (4.75) by

the redefined momenta (4.71), and isolating the ��n term. We obtain that �n,in and �n,out satisfies

the linear inhomogeneous ordinary di↵erential equations

D�n,in = Sn,in, D�n,out = Sn,out, (4.78)

withD being the same operator (4.74), which is simply that corresponding to the Klein-Gordon

equation for the static black brane at temperature ��1 given by (4.68), at all orders. The sources

Sn,in and Sn,out are functions of v, !, L and ~T , and depend on �m,in and �m,out respectively for

m < n. Both of these sources also depend on the functions a(i), k(i) and l(i), which appear in the

late proper time expansion (4.63) of the background metric, with i  n. Note that the source

is linear in the bulk field �, and therefore splits into Sn,in and Sn,out at each order in the ��1

expansion for n � 1. Since �n,in for n � 1 corrects �0,in, we include the particular solution with

only �m,in (and m < n) appearing in the source term Sn,in in it. The particular solutions sourced

by �m,out with 0  m < n which appear in Sn,out are added by definition to �n,out similarly.

The regularity of the horizon cap implies that at first and higher orders in the proper

time expansion, we should have

lim
v!"�1/d

0

⇣
"�1/d

0 � v
⌘�i 2!

d"1/d
0 �n,out(v,!, L,~T ) = �i�n,out(!, L,~T ),

lim
v!"�1/d

0

�n,in(v,!, L,~T ) = �i�n,in(!, L,~T ), (4.79)

with �n,outs and �n,ins as new functions of !, L and ~T for n � 1. This will ensure that the

analytical dependence of the field on v at the horizon cap v = vh = "
�1/d
0 is the same to all orders

in the proper time expansion. Note that at the zeroth order, the analogous conditions for �0,in

and �0,out are simply given by 1 on the RHS in both cases by choice (see (4.77)). We will show

that the �n,outs and �n,ins can be determined uniquely for n � 1 via horizon cap regularity and

field theory identities.
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Firstly, note that (4.79) implies that �n,in and �n,out can be written in the form

�n,in = �n(p),in � i�n,in �0,in, �n,out = �n(p),out � i�n,out �0,out (4.80)

for n � 1 such that �n(p),in and �n(p),out are the particular solutions of the inhomogeneous ordinary

di↵erential equations (4.78). Both �n(p),in and �n(p),out are determined by the sources Sn,in and

Sn,out, and are proportional to the coe�cients p and q, respectively (i.e. they vanish when

p = q = 0). Near the horizon cap v ⇡ "1/d
0 , we explicitly find that �n(p),in and �n(p),out behave as

lim
v!"�1/d

0

⇣
"�1/d

0 � v
⌘�i 2!

d"1/d
0 �n(p),out = O

⇣
"�1/d

0 � v
⌘
,

lim
v!"�1/d

0

�n(p),in = O
⇣
"�1/d

0 � v
⌘
, (4.81)

respectively. Equivalently,

�n(p),out =
⇣
"�1/d

0 � v
⌘i 2!

d"1/d
0

1X

k=1

qn,k

⇣
"�1/d

0 � v
⌘k
,

�n(p),in =

1X

k=1

pn,k

⇣
"�1/d

0 � v
⌘k

(4.82)

where the coe�cients should be determined by the equations of motion. For the outgoing solu-

tion, we find that this behavior is possible only when the residual gauge parameter ↵n appearing

in the background metric and �n,out are chosen appropriately to cancel double and single poles

appearing in the equation of motion (4.78) at the horizon cap for each n � 1. Furthermore, ↵ns

are simply numerical constants (as they are defined to be), and �n,outs are linear functions of

!/"1/d
0 only. Thus the outgoing solutions appearing inMn in our ansatz (4.75) are determined

uniquely. As discussed before, and will be explicitly shown again in the next section this com-

pletely determines the advanced propagator of the Bjorken flow. The non-equilibrium retarded

propagator then is also determined uniquely, since even out of equilibrium, the advanced and

retarded propagators are related by the exchange of the spatial and temporal arguments. Utiliz-

ing this, we can determine �n,ins uniquely as well for n � 1 as will be shown in the next section.

131



In this section, we will focus mainly on the outgoing mode.

It is easy to see that (4.81) (equivalently (4.82)) implies that �n,in and �n,out are simply

the coe�cients of the homogeneous solutions of the equations of motion (4.78) for n � 1.

Therefore �n,in and �n,out appear in Sm,in and Sm,out respectively for m > n. We will illustrate

by example how requiring the regularity condition (4.81) (equivalently (4.82)) at the n-th order

determines �n�1,out along with the gauge parameter ↵n (which is a constant) recursively.

Unlike the case of the outgoing mode, the ingoing mode is always analytic at the

horizon cap. Therefore, we need to use consistency conditions for the Schwinger-Keldysh

correlation functions to determine �n,ins for n � 1. However, �0 in the ansatz (4.75) appears in

both the in-going and out-going modes. Our construction passes a significant consistency test

that the same function �0(!/"1/d
0 ) determines the homogeneous transients (sourceless solutions

which are ingoing at the horizon) with the argument !/"1/d
0 taking values corresponding to

the appropriately rescaled quasi-normal mode frequencies of the static black hole, as will be

discussed in section 4.4.5. This is remarkable as we determine the function �0 analytically by

imposing the regularity condition (4.82) on the outgoing mode at the horizon cap.

In what follows, we illustrate how we determine the outgoing mode and the residual

gauge fixing uniquely in the case of AdS 5. Let us first see how we determine �0 and ↵1 at the first

order in the proper time expansion. This requires the first order correction to the background

metric given by (4.64) and (4.65). We find that the equation of motion (4.78) for �1,out explicitly

takes the following form near the horizon cap v ⇡ "1/4
0 up to overall proportionality factors:

1
("1/4

0 v � 1)2

!

4"1/4
0

(↵1 + 3)(!"�1/4
0 + 2i)

+
1

("1/4
0 v � 1)

i!
"1/4

0

 22
L + 22

T � m2
� 3!2 + 240!"1/4

0

24"1/2
0

(↵1 + 3)

+
(16 + 5↵1)!2

� 4�0!"
1/4
0

"1/2
0

!
+ · · · , (4.83)

with · · · denoting terms which are regular at v = "1/4
0 if �1,out is of the form (4.82). See Appendix
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D for more details. We readily see that in order to have a solution of the desired form (4.81) we

must impose

↵1 = �3, �0 =
!

4"1/4
0

(4.84)

so that the double and single pole terms of the equation of motion appearing at the horizon cap

vanish. The double pole term determines ↵1 and the single pole term determines �0. As claimed

before, we find that �0 is indeed a simple linear function of !/"1/4
0 (rather just proportional to

it) while the gauge parameter ↵1 is a numerical constant as it should be.

At the second order in the proper time expansion, similarly ↵2 and �1 are determined by

the vanishing of the double and single pole terms in the equation of motion for �2,out respectively.

Here we have to utilize the explicit second order correction to the background metric given in

Appendix B. Explicitly,

↵2 =
1

72
(20 + 9⇡ � 12 ln 2) , �1 =

1
16

0
BBBBB@4i �

9⇡ + 4 � 24 ln 2
9

!

"1/4
0

1
CCCCCA . (4.85)

We find once again ↵2 is just a numerical constant as it should be and �1 is a linear function of

!/"1/4
0 .

It is indeed crucial that the �n,outs for n � 0 are functions of ! only and are independent

of L and ~T which depend on �. Otherwise, the central assumption (4.79) (and thus (4.82))

are not valid for the outgoing mode at the horizon cap, and should be corrected by log terms.

The latter would have implied that the behavior near the horizon cap at first and higher orders

is di↵erent from the zeroth order which is the same as in thermal equilibrium. Note that the

ansatz for the ingoing mode in (4.82) remains valid to all orders even if �n,ins depend on L and

~T . The coe�cients pn,k in (4.82) also involve derivatives of �m,ins w.r.t. L and ~T with m < n.

See Appendix D for more details.

Finally, we have explicitly verified that the values of the residual gauge parameters

↵1 and ↵2 are such that the event horizon is pinned to the horizon cap v = vh = "�1/d
0 at the

first and second orders respectively for both AdS 4 and AdS 5. Note that the apparent horizon
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di↵ers from the event horizon from second order onwards, so the evolving apparent horizon

is behind the horizon cap. See Appendix C for details. We expect that this feature persists to

all orders so that although the interior of the event horizon is excised, the full double sheeted

geometry with the horizon cap still covers the entire bulk regions which can send signals to the

boundary.20 This feature mirrors the causal nature [29] of the Schwinger-Dyson equations for

the correlation functions in the field theory. We will discuss more about the consistency of this

result in Sec 4.4.5.

The quadratic on-shell action for the bulk scalar field is the sum of three pieces, namely

S in�in and S out�out which are quadratic in the in-going and out-going modes respectively, and the

cross-term S in�out. As in the thermal case discussed in section 4.1, S in�in = 0. The in-going

mode is analytic at the horizon and the contributions from the forward and backward arms of

the radial contour cancel out. Once again this is required for consistency, as if we keep only

the in-going mode by setting q = 0 in (4.75), then J1 = J2 and W[J1 = J2] = 0 for an arbitrary

initial (non-thermal) state. (Recall W is identified with iS on�shell.) The cross term S in�out has

a branch point at the horizon cap and the integration over the radial contour results in the two

boundary terms like in the thermal case discussed in section 4.1. S out�out potentially has a single

pole (vh � v)�1 divergence which we denote as S ✏ . Explicitly,

S ✏ /

Z
d!

Z
dkL

Z
dd�2kT

I

✏

dv
p
�G

 
Gvv@v�

⇤

n,out@v�n,out

+Gv�
⇣
@v�

⇤

n,out@��n,out + @v�n,out@��
⇤

n,out

⌘
+ · · ·

!
(4.86)

at the n-th order in the late proper time expansion. We have verified that S ✏ = 0 for the solution

with the regular behaviour at the horizon cap given by (4.79), obtained for the appropriate

choices of ↵n and �n�1,out as discussed above. One can also check that terms like �⇤k,out �l,out with

k + l  2n also do not contribute to S ✏ . However, our arguments for S out�out = 0 for the thermal

case in section 4.1 do not go through here since they rely on the KMS boundary condition.
20Although we do not have a rigorous proof to all orders, we believe that this follows from the general result

that the event horizon is generated by null geodesics which also determine the singularities arising in the equation
of motion at the horizon cap.
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Nevertheless, since the pole at the horizon vanishes, S out�out is the sum of two boundary terms

as well.

Since we preserve the horizon cap regularity at each order, the analytic continuation

of the out-going mode across the horizon cap at each order works exactly in the same way as

in the case of thermal equilibrium, i.e. �n,out(!, v, L, T ) picks up a factor of e�! as evident

from (4.80) and (4.82). Repeating the argument in section 4.1, each boundary term in S out�out

involves one �b(!, L, T ) and another �b(�!, L, T ) (with b standing for the boundary value)

or the corresponding boundary values of the radial derivatives. Also the contribution from the

forward and backward arms come with opposite signs. While �b(!, L, T ) picks up a e�! factor

via analytic continuation across the horizon cap, �b(�!, L, T ) picks up a e��! factor, and these

multiply to unity. Therefore, the boundary term contributions from the two arms cancel out

resulting in S out�out = 0.

Finally, as in the thermal case the on-shell action is simply the sum of two boundary

terms (including the counter-terms for holographic renormalization) obtained from S in�out. We

can then readily di↵erentiate this on-shell action to obtain the Schwinger-Keldysh correlation

functions of the Bjorken flow.

As shown in the following section, the boundary correlation functions obtained solely

from S in�out ensure that the (non-equilibrium) retarded correlation function is given always by

linear causal response. Furthermore, a major consistency check is that we reproduce the homo-

geneous transients as poles of the retarded Green’s function in complexified ! not only at the

leading order as computed in [156], but also at the subleading orders as shown in Appendix F

and discussed further below. We will discuss more consistency tests in section 4.4.5.
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4.4 The real time out-of-equilibrium correlation functions

4.4.1 Some useful relations and their consequences

Some crucial identities are valid for the Schwinger-Keldysh correlation functions even in out-

of-equilibrium states. The first such identity of interest is

GR(x1, x2) = �i✓(x0
1 � x0

2)Tr(⇢[Ô(x1), Ô(x2)])

= �i
⇣
Tr(⇢T(Ô(x1)Ô(x2))) � Tr(⇢Ô(x2)Ô(x1))

⌘

= G11(x1, x2) �G12(x1, x2). (4.87)

Similarly, we can arrive at the identity

GA(x1, x2) = i✓(x0
2 � x0

1)Tr(⇢[Ô(x1), Ô(x2)])

= �i
⇣
Tr(⇢T(Ô(x1)Ô(x2))) � Tr(⇢Ô(x1)Ô(x2))

⌘

= G11(x1, x2) �G21(x1, x2). (4.88)

These identities give the retarded and advanced correlation functions in the usual Schwinger-

Keldysh basis. The definitions of the correlation functions also imply that in any arbitrary state

G11(x1, x2) = G11(x2, x1), G12(x1, x2) = G21(x2, x1), G22(x1, x2) = G22(x2, x1). (4.89)

Finally, it is obvious also that in any arbitrary (non-equilibrium) state

GR(x1, x2) = GA(x2, x1). (4.90)

We will show that these identities imply the following for the horizon cap of the Bjorken flow.

Firstly, will use (4.87) to show that the retarded correlation function is always obtained from

the ingoing mode, and (4.88) to show that the advanced correlation function is always obtained
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from the outgoing mode. Secondly, due to (4.90), we can uniquely determine �n,in for n � 1.

These coe�cients cannot be determined by the regularity condition (4.79) of the horizon cap

unlike �n,out as discussed previously, but together with �n,out they provide unique solution of the

bulk scalar field for specified sources at the two boundaries via our ansatz (4.75). We will also

see that by satisfying (4.90) we can also ensure the validity of (4.89).

Another important issue is the Weyl transformation. Consider a background metric gµ⌫

and its Weyl rescaled version⌦2(x)gµ⌫ such that⌦(x) is a non-vanishing function. Disregarding

Weyl anomaly, the correlations functions of a scalar primary operator Ô of conformal dimension

�O in a conformal field theory living in these two background metrics would be related by

Tr(⇢̃Ô(x1) · · · Ô(xn))⌦2gµ⌫ = ⌦
��O(x1) · · ·⌦��O(xn)Tr(⇢Ô(x1) · · · Ô(xn))gµ⌫ (4.91)

where ⇢̃ = U†⇢U with U denoting the unitary operator implementing the Weyl transformation.

In the context of the holographic Bjorken flow, the states ⇢ and ⇢̃ would be described by the

holographic geometries whose boundary metrics are the Milne metric and its Weyl rescaled

version respectively, and the respective energy-momentum tensors are also appropriately Weyl

transformed including the correct holographic Weyl anomaly. This has been described in detail

already in section 4.2.

We have seen that it is easier to implement the out-of-equilibrium horizon cap prescrip-

tion in the Weyl transformed geometry (state) in which the temperature and entropy density

become a constant at late proper time, and the Klein-Gordon equation in the bulk assumes the

form of that in a static black brane at the leading order. It is convenient to compute the correla-

tion functions in this background first, and then go back to the usual Bjorken flow background

by Weyl transformation. In this case, we should use

⌦�O(⌧1)⌦�O(⌧2)eG(x1, x2)

with eG(x1, x2) being the correlation functions computed after Weyl rescaling to obtain the cor-
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relation functions in the usual Bjorken flow background with ⌦ given by (2.61) and (2.62). We

disregard Weyl anomalies since they are not state-dependent (same as in vacuum).

Note that the full correlation functions to all orders in the late proper time expansion

should depend on ⇣̂1 and ⇣̂2 only through the relative separation ⇣̂1 � ⇣̂2 in rapidity due to the

boost invariance of the background, and similarly only on |~x?1 � ~x?2| due to translation and

rotation symmetries of the background in the transverse spatial plane.

We note that we can practically use the Weyl transformation to compute the correla-

tion functions is because we are in the boost invariant hydrodynamic regime where the state is

characterized only by a proper time dependent temperature. A Weyl rescaling makes the tem-

perature constant at late time leading us to set-up a perturbative derivative expansion controlled

by a fixed dimensionful parameter. However, there will contributions to the correlation func-

tions in the form of a generalized trans-series which depends on the initial conditions, and are

not constructed from hydrodynamic data. Such contributions which represent transients lead-

ing to hydrodynamization of correlation functions are discussed in section 4.5. In this section,

we discuss the Schwinger-Keldysh correlation functions in the hydrodynamic regime using a

well-defined late proper time expansion.

4.4.2 General structure of the hydrodynamic correlation functions

It is useful to define a new variable

s(�) =
d � 1
d � 2

� � �̃0"
�1/d
0 ln (�/⌧0) (4.92)

with �̃0 = �0"
1/d
0 /! being a numerical constant (independent of !). We have already seen that

the smoothness of the horizon cap requires that in the case of AdS 5, �̃0 = 1/4 (see (4.84)).21

In terms of this variable, we can readily see from (4.75) that the non-normalizable mode of the
21In the case of AdS 4, �̃0 = 2/3.
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scalar field in the gravitational background dual to the Bjorken flow takes the form:

0
BBBBBBBBB@
J1(�, ⇣̂, ~x?)

J2(�, ⇣̂, ~x?)

1
CCCCCCCCCA
=

Z
d!dkLdd�2kT e�i!s(�)ei

⇣
kL ⇣̂+~kT ·~x?

⌘

1X

n=0

⇣
"1/d

0 �
⌘�n
Sn(!, L,~T ) ·

0
BBBBBBBBB@
p(!, kL, kT )

q(!, kL, kT )

1
CCCCCCCCCA

(4.93)

and similarly, the expectation value of the dual operator (up to state-independent contact terms)

is

0
BBBBBBBBB@
hO1(�, ⇣̂, ~x?)i

hO2i(�, ⇣̂, ~x?)

1
CCCCCCCCCA
= (2�O � d)

Z
d!dkLdd�2kT e�i!s(�)ei

⇣
kL ⇣̂+~kT ·~x?

⌘

1X

n=0

⇣
"1/d

0 �
⌘�n
Rn(!, L,~T ) ·

0
BBBBBBBBB@
p(!, kL, kT )

q(!, kL, kT )

1
CCCCCCCCCA

(4.94)

where Sn and Rn can be defined from the asymptotic expansion ofMn:

Mn(v,!, L,~T ) = vd��O
�
Sn(!, L,~T ) + · · ·

�
+ v�O

�
Rn(!, L,~T ) + · · ·

�
, (4.95)

and the labels 1 and 2 stand for the sheets of the bulk spacetime ending on the forward and

backward arms of the Schwinger-Keldysh contour respectively.

It is also useful to define

R(�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n
Rn(!, L,~T ),

S(�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n
Sn(!, L,~T ). (4.96)
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Clearly (4.76) leads to

S(�,!, L,~T ) =

0
BBBBBBBBB@
a(�,!, L,~T ) b(�,!, L,~T )

a(�,!, L,~T ) e�!b(�,!, L,~T )

1
CCCCCCCCCA
,

R(�,!, L,~T ) =

0
BBBBBBBBB@
A(�,!, L,~T ) B(�,!, L,~T )

A(�,!, L,~T ) e�!B(�,!, L,~T )

1
CCCCCCCCCA

(4.97)

where

�in(v,�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n

�n,in(v,!, L,~T ),

�out(v,�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n

�n,out(v,!, L,~T ), (4.98)

gives us a(�,!, L,~T ), A(�,!, L,~T ), b(�,!, L,~T ) and B(�,!, L,~T ) from their following

near boundary expansions

�in(v,�,!, L,~T ) = vd��O
�
a(�,!, L,~T ) + · · ·

�
+ v�O

�
A(�,!, L,~T ) + · · ·

�
,

�out(v,�,!, L,~T ) = vd��O
�
b(�,!, L,~T ) + · · ·

�
+ v�O

�
B(�,!, L,~T ) + · · ·

�
. (4.99)

It should also be obvious that if we define an, An, bn and Bn via

�n,in(v,!, L,~T ) = vd��O
�
an(!, L,~T ) + · · ·

�
+ v�O

�
An(!, L,~T ) + · · ·

�
,

�n,out(v,�,!, L,~T ) = vd��O
�
bn(!, L,~T ) + · · ·

�
+ v�O

�
Bn(!, L,~T ) + · · ·

�
. (4.100)
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then

a(�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n

an(!, L,~T ),

A(�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n

An(!, L,~T ),

b(�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n

bn(!, L,~T ),

B(�,!, L,~T ) =
1X

n=0

⇣
"1/d

0 �
⌘�n

Bn(!, L,~T ). (4.101)

The correlation function can be extracted simply from the on-shell action, which as shown in the

previous section, is the sum of the two boundary terms obtained from S in�out. The computations

are similar to the case of the thermal equilibrium discussed before. The general structure of

the correlation function with {a, b} = {1, 2} standing for the forward and backward arms of the

Schwinger-Keldysh contour (using (2.66)) is (see Appendix E for more details)

eGab(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|) =
1

p
�eg1

p
�eg2

�2S on�shell[J1, J2]
�Ja(�1, ⇣̂1, ~x?1)�Jb(�2, ⇣̂2, ~x?2)

(�)a+b

=
(d � 2)2

(d � 1)2

Z
d!dkLdd�2kT e�i!(s(�1)�s(�2))

eikL(⇣̂1�⇣̂2)+i~kT ·(~x?1�~x?2) bGab(�1,�2,!, kL,~kT ), (4.102)

where (compare with the thermal case (4.46) – recall �3 is the Pauli matrix)

bG(�1,�2,!, kL,~kT ) =
2�O � d

2

 
s0(�2)�3 · R

�
�1,!, L1,~T1

�
· S

�1 �
�2,!, L2,~T2

�

+(transpose, �1 $ �2,!! �!, L1 $ �L2,~T1 $ �~T2)
!

(4.103)

with

L1 = kL
⌧0

�1
, L2 = kL

⌧0

�2
, ~T1 = ~kT

 
⌧0

�1

!�1/(d�2)

, ~T2 = ~kT

 
⌧0

�2

!�1/(d�2)

. (4.104)
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The transpose above denotes matrix transposition, $ denotes exchange operation and ! re-

placement. The second term in (4.103) is produced by the symmetrization due to the di↵erenti-

ation in (4.102).

Explicitly, (compare with the thermal case given by Eq (4.47))

bG11(�1,�2,!, kL,~kT ) ⌘ bGR(�1,�2,!, kL,~kT )(1 + n(!)) � bGA(�1,�2,!, kL,~kT )n(!),

bG12(�1,�2,!, kL,~kT ) ⌘
⇣
bGR(�1,�2,!, kL,~kT ) � bGA(�1,�2,!, kL,~kT )

⌘
n(!), (4.105)

bG21(�1,�2,!, kL,~kT ) ⌘
⇣
bGR(�1,�2,!, kL,~kT ) � bGA(�1,�2,!, kL,~kT )

⌘
(1 + n(!)),

bG22(�1,�2,!, kL,~kT ) ⌘ bGR(�1,�2,!, kL,~kT )n(!) � bGA(�1,�2,!, kL,~kT )(1 + n(!)),

with n(!) = 1/(e�! � 1) is the Bose-Einstein distribution and

bGR(�1,�2,!, kL,~kT ) ⌘
(d � 2)2

(d � 1)2 (2�O � d)
s0(�1) + s0(�2)

2
A

�
�1,!, L1,~T1

�

a
�
�2,!, L2,~T2

� ,

bGA(�1,�2,!, kL,~kT ) ⌘
(d � 2)2

(d � 1)2 (2�O � d)
s0(�1) + s0(�2)

2
B

�
�1,!, L1,~T1

�

b
�
�2,!, L2,~T2

� . (4.106)

Above ⌘ denotes equality up to terms which vanish after the frequency and momentum integra-

tion in (4.102) and � is given by (4.68).

In order that (4.105) and (4.106) follow from (4.103), and also for the general identities

(4.90) and (4.89) to be satisfied, we should have

A
�
�1,!, L1,~T1

�

a
�
�2,!, L2,~T2

� ⌘
B

�
�2,�!,�L1,�~T1

�

b
�
�1,�!,�L2,�~T2

� , (4.107)

i.e.

bGR
�
�1,�2,!, L1,~T1

�
⌘ bGA

�
�2,�1,�!,�L2,�~T2

�
. (4.108)

As mentioned, we will show in section 4.4.4 that the above can be satisfied by appropriate
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choices of �n,ins at each order in the late proper time expansion where we go to large values of

the average reparametrized proper time � = (�1 + �2)/2 with fixed di↵erence �r = �1 � �2.

Thus we see that the correlation functions of the hydrodynamic Bjorken flow has a hidden and

simple bi-local thermal structure to all orders in the late proper time expansion. We will show

this satisfies crucial consistency tests.

Using (4.105) and (4.106), and the identities (4.87) and (4.88) which are valid out-

of-equilibrium, we readily see that the actual retarded and advanced propagators of the Weyl

transformed Bjorken flow is

eGR(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|) =
(d � 2)2

(d � 1)2 (2�O � d)
s0(�1) + s0(�2)

2Z
d!dkLdd�2kT e�i!(s(�1)�s(�2))

eikL(⇣̂1�⇣̂2)+i~kT ·(~x?1�~x?2) A
�
�1,!, L1,~T1

�

a
�
�2,!, L2,~T2

� ,

eGA(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|) =
(d � 2)2

(d � 1)2 (2�O � d)
s0(�1) + s0(�2)

2Z
d!dkLdd�2kT e�i!(s(�1)�s(�2))

eikL(⇣̂1�⇣̂2)+i~kT ·(~x?1�~x?2) B
�
�1,!, L1,~T1

�

b
�
�2,!, L2,~T2

� . (4.109)

Therefore, it follows from (4.106) that indeed the retarded propagator is obtained

purely from the out-of-equilibrium ingoing mode and the advanced propagator is also obtained

from the out-of-equilibrium outgoing mode as claimed before. Note that at the zeroth order

these results are automatic as it reduces to the thermal case described earlier.22

Finally, to obtain the Schwinger-Keldysh correlation function of the Bjorken flow, we

should implement the Weyl transformation. Using (2.62), the Weyl transformation finally yields
22The bi-local thermal structure of hydrodynamic correlation functions in holography was argued earlier in

[169] via Wigner transform. However the arguments here were less rigorous and relied on the possibility of
obtaining correlation functions utilizing only one copy of the non-equilibrium background where the interior of
the perturbative horizon could be removed.
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the correlation function of the Bjorken flow:

G(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|) =
 
⌧0

�1

! �O
d�2

 
⌧0

�2

! �O
d�2

eG(�1,�2, ⇣̂1 � ⇣̂2, |~x?1 � ~x?2|). (4.110)

4.4.3 In the limit of the perfect fluid expansion

At very late proper time, the Bjorken flow is simply a perfect fluid expansion. For the Weyl

transformed Bjorken flow which reaches a specific final temperature, the scalar field in the dual

gravitational geometry can be mapped to that in the static thermal black brane spacetime at

the leading order in the late proper time expansion. This naturally implies that the Schwinger-

Keldysh correlation functions at late proper time should be related to the corresponding thermal

correlation functions via appropriate spacetime-reparametrizations. After undoing the Weyl

transformation, we should obtain the Schwinger-Keldysh correlation functions of the perfect

fluid expansion.

To obtain the correlation function in the perfect fluid expansion, we first take the limit

in eG given by Eqs. (4.102)-(4.106), where we take the average reparametrized proper time coor-

dinate � = (1/2)(�1+�2) to infinity keeping the relative reparametrized proper time coordinate

�r = �1 � �2 fixed, and also ⇣̂1 � ⇣̂2 and ~x?1 � ~x?2 fixed. In this limit,

L1, L2 ! L, ~T1, ~T2 ! ~T (4.111)

where

L = kL
⌧0

�
, ~T = ~kT

✓⌧0

�

◆�1/(d�2)
. (4.112)

As shown in the previous section, both �in and �out assume the form in the static black brane

geometry, and therefore

bGR !
A0(!, L,~T )

a0(!, L,~T )
, bGA !

B0(!, L,~T )

b0(!, L,~T )
, (4.113)
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given by the corresponding static black brane results and therefore all Schwinger-Keldysh cor-

relation functions after the momentum integrals shown in (4.102) should assume the thermal

form, i.e.

eG ! G�

 
�1 � �2, (⇣̂1 � ⇣̂2)

�

⌧0
, |~x?1 � ~x?2|

✓⌧0

�

◆ 1
d�2

!
(4.114)

with G� denoting the thermal correlation functions. In order to obtain the above form, we

change variables in the momentum integrals from kL and ~kT to L and ~T . Note the Jacobian

of this transformation is identity. We also need to change the integration variable ! to ! =

!(d � 1)/(d � 2) which yields a Jacobian (d � 2)/(d � 1). Furthermore, we have used

s0(�1), s0(�2)!
d � 1
d � 2

. (4.115)

The factor (d � 2)2/(d � 1)2 in (4.102) is cancelled by one factor of (d � 1)/(d � 2) each from

the Jacobian and s0.

Finally, the Weyl transformation in the late proper time limit gives

G !
✓⌧0

�

◆ 2�O
d�2

G�

 
d � 1
d � 2

(�1 � �2), (⇣̂1 � ⇣̂2)
�

⌧0
, |~x?1 � ~x?2|

✓⌧0

�

◆ 1
d�2

!
(4.116)

the Schwinger-Keldysh correlation functions of the perfect fluid expansion. Since the static

black brane has full rotational invariance in terms of the reparametrized spacetime coordinates,

we may also write

G !
✓⌧0

�

◆ 2�O
d�2

G�

0
BBBBBBB@
d � 1
d � 2

(�1 � �2),

s

(⇣̂1 � ⇣̂2)2�
2

⌧2
0
+ |~x?1 � ~x?2|

2
✓⌧0

�

◆ 2
d�2

1
CCCCCCCA (4.117)

for the correlation functions in the limit of the late time perfect fluid expansion. The explicit

analytic forms of the thermal holographic propagators is known, see [166, 170] as for instance.

It is obvious that we are actually resumming over the associated � factors in the spatial

factors ⇣̂1� ⇣̂2 and ~x?1�~x?2. For brevity we will denote the variables as �r = �1��2 (as defined
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before) and

e⇣r = (⇣̂1 � ⇣̂2)
�

⌧0
, fx?r = |~x?1 � ~x?2|

✓⌧0

�

◆ 1
d�2
. (4.118)

The late proper time expansion of the Schwinger-Keldysh correlation function then amounts to

the following series

G(x1, x2) =
✓⌧0

�

◆ 2�O
d�2

1X

n=0

1
�n"n/d

0

Gn

⇣
�r,e⇣r,fx?r

⌘
+ · · · (4.119)

with · · · denoting trans-series type completion about which we will discuss more below.

Since the choice of ⌧0 determines the e↵ective final temperature T = ��1 via (4.68),

let’s consider a scaling ⌧0 ! ⇠⌧0 to see if there is any ambiguity in the above result. Note that

G� in (4.117) depends only on T�r and T
q
e⇣2

r +fx?2
r as it is a thermal correlation matrix of a

CFT. Under this scaling, it is evident from (4.8) that � ! ⇠
1

d�1�, and therefore �r ! ⇠
1

d�1�r,

� ! ⇠
1

d�1�, e⇣r ! ⇠
1

d�1e⇣r and fx?r ! ⇠
1

d�1 fx?r. Also ✏0 ! ⇠�
d

d�1 ✏0 and T ! ⇠�
1

d�1 T as discussed

earlier in section 2.1.4. Together these imply that G� and also Gn in (4.119) are invariant under

⌧0 ! ⇠⌧0 since T�r and Te⇣r and Tfx?r are invariant this scaling. However, the Weyl factor in

(4.12) scales as ⇠
2�O
d�1 implying that the dimensionless correlation function ��2�0G is invariant

under the scaling of ⌧0.

4.4.4 First and higher orders in the late proper time expansion

From the form of the Schwinger-Keldysh correlation functions given by Eqs. (4.102)-(4.106)

which are valid to all orders, we can readily go beyond the perfect fluid limit systematically and

construct the late proper time expansion (4.119). The contribution to the first order correction

comes from the following terms:

1. The phase factor,

e�i!(s(�1)�s(�2))
! e�i!�r

d�1
d�2

✓
1 + i!�̃0"

�1/d
0

�r

�
+ O

⇣
��2

⌘◆
. (4.120)
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2. The Jacobian

s0(�1) and s0(�2)!
d � 1
d � 2

�
�̃0

�"1/d
0

+ O
⇣
��2

⌘
. (4.121)

3. Late-time expansion of the matrices R and S given by (4.97) in ��1. This also includes

the L and ~T dependence. For instance, consider any generic function f (L1) and f (~T1),

f (L1) = f (L) � @L f (L)
�rL

2�
,

f (~T1) = f
⇣
~T

⌘
+ @~T

f
⇣
~T

⌘ �r~T

2(d � 2)�
, (4.122)

and similarly for f (L2) and f (~T2).

From (4.103), we obtain

bG1 =
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⌘
. (4.123)

An easier way to read o↵ the first order correction is to use (4.105) and (4.106), and consider

similar ��1 expansion of bGR and bGA. Collecting first order terms from (4.106), as for instance,

we obtain

bGR,1 =
(2�0 � d)

2
d � 2
d � 1

"
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�
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0
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and

bGA,1 =
(2�0 � d)
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This allows us to finally determine �1,in and similarly �n,in for n > 1 as follows. After integrating

over the frequency and momentum integrals (i.e. doing integrals over!, kL and~kT ) as in (4.109),

we obtain the first order correction in the series expansion of the type (4.119):

GR(x1, x2) =
1X

n=0

1
�n"n/d

0

GR,n

⇣
�r,e⇣r, fx?r

⌘
, (4.126)

and similarly for GA(x1, x2). For the identities (4.87) and (4.88) to be satisfied, we therefore

need (note that fx?r is invariant under x1 $ x2)

GR,n

⇣
��r,�e⇣r, fx?r

⌘
= GA,n

⇣
�r,e⇣r, fx?r

⌘
(4.127)

at each n, which can be ensured by appropriate choices of �n,in(!, L,~T ) at each order for n � 1,

since they determine both An and an. In turn, this justifies the bi-local thermal structure (4.105)

and (4.106) which implies via (4.87) and (4.88) that the retarded correlation originates purely

from the ingoing mode and the advanced correlation function purely from the outgoing mode at

all orders. We emphasize that although �n,outs are only functions of the frequency !, �n,ins are

functions of both frequency and momenta.

With �n,in determined we know the RHS of (4.124) completely. Doing the frequency

and momenta integrals shown in (4.102), we can obtain the first and similarly higher order

corrections to all Schwinger-Keldysh propagators.

4.4.5 Consistency checks

The general result for the hidden bi-local thermal structure of the hydrodynamic correlation

functions given by Eqs. (4.102)-(4.106) to all orders satisfies a simple consistency check. When

J1 = J2, i.e. when the sources are the same at the two boundaries, we have only the in-going
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solution which is analytic. The on-shell solution also vanishes. When J1 = J2, we have

hO1(x1)i =
Z

x2

(G11(x1, x2)J1(x2) �G12(x1, x2)J2(x2)) =
Z

x2

GR(x1, x2)J1(x2),

on the forward arm, and thus we see that the response in the forward arm is indeed given by

the retarded correlation function, and this also follows from the bi-local thermal structure of

the hydrodynamic correlation functions resulting in (4.109) as shown above. We can also see

that the analytic in-going mode is indeed always related to causal response from the full non-

linear evolution (we just consider the forward arm here). There is a unique regular solution to

Einstein’s gravity minimally coupled to a scalar field corresponding to an initial condition for

the bulk scalar field �(v, ⇣, ~x?) at a constant Eddington-Finkelstein time hypersurface when the

boundary source J(�, ⇣, ~x?) is specified for all time in the future. This solution can be obtained

via a Chebyshev grid in the radial direction [112] which implies analyticity at the horizon, and

thus the causal evolution is built out of analytic ingoing modes. Our result then should follow

in the linearized limit. The way to implement this explicitly was shown earlier in [150] which

is thus reproduced by the horizon cap prescription.23

A more non-trivial consistency check involves the outgoing mode. Consider an outgo-

ing mode with frequency ! and momenta kL and ~kT in the Bjorken flow background. Evidently,

from the discussion before, to all orders in the late proper time expansion, we have

J2(!, kL,~kT ) = e�!J1(!, kL,~kT )

with � defined by "0 as in (4.68). Therefore, on the forward arm (where we choose to do the kL

23See [171] for the non-equilibrium retarded correlation function in a hydrodynamic expansion, and [172, 173]
for AdS-Vaidya and states corresponding to quenches, etc. The latter uses the prescription of [150].
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and ~kT integrations first)

hO1(x1)i =
Z

d!
Z

dd x2e�i!(s(�1)�s(�2))(bG11(!, x1, x2)J1(!, ~x2) � bG12(!, x1, x2)J2(!, ~x2))

=

Z
d!

Z
dd x2e�i!(s(�1)�s(�2))(bG11(!, x1, x2) � bG12(!, x1, x2)e�!)J1(!, ~x2)

=

Z
d!

Z
dd x2e�i!(s(�1)�s(�2))(bG11(!, x1, x2) � bG21(!, x1, x2))J1(!, ~x2)

=

Z
d!

Z
ddx2e�i!(s(�1)�s(�2)) bGA(!, x1, x2)J1(!, ~x2)

=

Z
dd x2GA(x1, x2)J1(x2).

Above, we have used the result from (4.105) that bG12e�! = bG21 and also the identity (4.88).

Thus indeed we see that the outgoing mode gives advanced response. Note for both J2 = e�!J1

and bG12e�! = bG21 (used above) to hold, we need absence of log terms at the horizon, which

follows if �n,outs are functions of ! only. The out-going solution which satisfies the regularity

condition (4.82) at the horizon cap indeed has this property with �n,out determined from the

cancellation of the double and single poles of the equation of motion being a linear function of

! and independent of L and ~T .

Furthermore, let us consider transients which are ingoing solutions with vanishing

sources at the boundary. To be simplistic, let us consider the homogeneous transients first.

Since we can map the leading order solution to the static black brane background, we should

have

! = !Q ,

where !Q corresponds to the homogeneous quasinormal mode frequencies of the static black

brane, as noted by Janik and Peschanski. A non-trivial consistency test of our ansatz for the

bulk scalar field is that the condition for the sources to vanish at the first subleading order is

�0 = �0(!Q),
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i.e. for AdS 5 we should have

�0(!) =
!Q

4"1/4
0

.

The details of the numerical verification are shown in Appendix F. These transients can be

added to the solution with specific sources since the equation of the scalar field is linear and

are needed for matching with arbitrary initial conditions for the bulk scalar field, as discussed

below. The case of the inhomogeneous transients is complicated since the e↵ective momenta L

and ~T also depend on the proper time, and will be examined in a later work.

Our key result that the horizon cap is pinned to the non-equilibrium event horizon is

consistent with the feature in non-equilibrium quantum field theory that the evolution of the

Schwinger-Keldysh correlation functions, which can be written in the form of the Schwinger-

Dyson equations for the commutator and anti-commutator via functional derivatives of the two-

particle irreducible e↵ective action, is causal and uniquely determined once we give the initial

conditions for these in the initial state [29]. The bulk analogue is that the evolution of the field

configuration on the full complexified geometry with the horizon cap should be uniquely and

causally determined for given initial conditions. For this to hold, the horizon cap should cover

the spacetime outside the event horizon, which is indeed the case.

4.5 On initial conditions and seeing behind the event horizon

The discussion on initial conditions is subtle.24 We only discuss this briefly here and hope to

address it fully in the future. For the full complexified geometry, in order to obtain a unique

solution for the bulk scalar field on both arms, we need to specify �1(v, ⇣, ~x?) and �2(v, ⇣, ~x?)

at an initial time �0 on both arms, and also the sources J1(�, ⇣, ~x?) and J2(�, ⇣, ~x?) at the two

boundaries for all times in the future. Our horizon cap prescription leads to unique solutions for

the in-going and out-going modes corresponding to J1(�, ⇣, ~x?) and J2(�, ⇣, ~x?) in a large proper

time expansion, however it is not guaranteed we can match with arbitrary initial conditions
24We thank Kostas Skenderis for discussions on these issues.
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�1(v, ⇣, ~x?) and �2(v, ⇣, ~x?) at � = �0. This is a conceptual problem although the matching

with data for the initial density matrix is a separate issue from obtaining the correlation functions

in the limit where the state hydrodynamizes and forgets most details of the initial conditions;

we have concerned ourselves with the latter here. The two arms of the Schwinger-Keldysh

contour specify the two in-states which have overlap, in principle, with arbitrary bulk field

configurations at initial time, corresponding to �1(v, ⇣, ~x?) and �2(v, ⇣, ~x?) respectively. The

full on-shell gravitational action beyond the hydrodynamic limit should yield the matrix element

h�1|Tc

 
exp

 
�i

I
J(x)Ô(x)

!!
|�2i (4.128)

with Tc denotes time-ordering in the closed time contour, and h�1| and h�2| denoting states in

the dual field theory corresponding to the semi-classical bulk field configurations.25

This issue can be partly addressed by allowing for the ingoing transients discussed

above. These do not change the sources at the two boundaries but they modify the initial condi-

tions at the two slices. However, this is not enough because we have a pair of initial conditions,

one each for each arm. The transients are analytic at the horizon cap and do not a↵ect the

initial conditions on the two arms independently. Although this needs to be investigated fur-

ther, presently we may conclude that one may not be able to obtain semi-classical solutions

corresponding to arbitrary in-in states meaning that decoherence, which suppresses some o↵-

diagonal matrix elements, is built in the semi-classical gravity approximation. This issue is also

relevant for the general approach of Skenderis and Balt van Rees [61]. We also note that there

is possibility of adding other semi-classical complex saddles of the gravitational action which

do not have a natural hydrodynamic limit.

There is another independent route for matching with initial conditions. The late proper

time expansion of the correlation functions (4.119) is divergent, and would require a trans-series
25In the approach of Skenderis and van Rees [61], the in-in states are defined using Euclidean path integrals.

Even in this approach it is unclear if one can glue arbitrary in-in states by bulk geometries. See [174,175] for some
discussions on this issue.
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completion which would naively be of the form (like multi-instanton series)

G(x1, x2) =
1Y

↵=1

0
BBBBBB@
1X

n↵=0

✓
C↵(�r,e⇣r,fx?r)�

�↵(�r ,e⇣r ,fx?r)e�⇠↵(�r ,e⇣r ,fx?r)�
◆n↵

1
CCCCCCA

�n1,n2,···(�,�r,e⇣r,fx?r) with

�n1,n2,···(�,�r,e⇣r,fx?r) =
1X

k=0

�k;n1,n2,···(�r,e⇣r,fx?r)�
�k. (4.129)

This is a generalization of the trans-series for ✏(�) for the Bjorken flow which completes the

divergent asymptotic hydrodynamic series at large proper time [25, 26, 91]. Above �n↵=0 coin-

cides with the matrix hydrodynamic power series (4.119) which we have explicitly computed

here; while generally �n1,n2,··· is a similar matrix power series in ��1 whose coe�cients are re-

lated to those of (4.119) for each fixed �r, e⇣r and fx?r. Physically, the functions ⇠↵(�r,e⇣r,fx?r)

and �↵(�r,e⇣r,fx?r) govern the hydrodynamic relaxation of the Green’s function for fixed sepa-

rations of the reparametrized spacetime arguments x1 and x2. It is possible that these functions

are approximately constants. Crucially the Stokes data C↵(�r,e⇣r,fx?r) are determined by initial

conditions. Instead of being constants as in the case of ✏(⌧), the Stokes data are now functions.

The mathematical formulation of the trans-series is required to formulate a precise way

to capture information about the initial state via Stokes data, and therefore the quantum fluctu-

ations behind the event horizon. In order to match with the initial conditions, we should add

the transients and therefore the Stokes data to hydrodynamic gravitational background as well.

Furthermore, additional Stokes data for the evolving event horizon which can be captured by

the time-dependent residual gauge transformation is needed too (recall that the residual gauge

transformation itself is expressed in the large proper time expansion for which a trans-series

completion is necessary like for ✏(�)). One could interpret the latter feature as the horizon hair

(more precisely a proper residual gauge transformation) playing a crucial role in decoding the

interior of the event horizon.26

26See [176, 177] for recent reviews on current progress in resolving black hole information paradoxes with
substantial discussion on the role played by hair degrees of freedom at the horizon.
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Chapter 5

Thermalisation in Semi-holography

One of the salient features of the theory of strong interactions is its asymptotic freedom, which is

the feature that the interactions of the quarks and gluons are asymptotically weaker with the in-

crease in their energies. The discovery of this feature by Gross, Politzer and Wilczek [178,179]

holds both physical as well as computational significance in understanding QCD matter formed

in heavy ion collisions. Physically, it means that in a range of temperatures where we find a

crossover between the confined state of quarks and gluons at low energies and a deconfined state

at high energies, one needs to combine both non-perturbative and perturbative computational

approaches for interpreting various phenomena. Such a combined approach should also be rel-

evant for understanding the evolution of matter formed in heavy ion collisions. The behaviour

of high transverse momentum quarks and gluons-like partons called jets, particularly the mech-

anism via which they lose their energy as they plough through QGP can be qualitatively and

quantitatively explained by perturbative QCD [180, 181]. However, various evidences such as

elliptic flow and rapid thermalisation in QGP suggest strong interaction with perfect fluid like

behaviour.

The mechanism of thermalization of the quark-gluon plasma has been intensely in-

vestigated [36, 182, 183], but the most significant questions like what are the main processes

contributing to rapid thermalisation and how can they be inferred from experimental data still
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require better understanding. To capture the essence of thermalisation and other phenomena

in such a complex many-body system with (emergent) quantum gauge fields, it is necessary

to combine perturbative and non-perturbative approaches, especially when the system is e↵ec-

tively in the range of temperatures Tc � 3Tc, where Tc is the deconfinement temperature. One

such approach is the semi-holographic formalism which provides such a unified and consis-

tent framework. In this framework, one considers two subsectors described by perturbative and

holographic approaches respectively. These two sectors are coupled by a democratic coupling

scheme (reviewed below), which is consistent with the Wilsonian renormalization group and

furthermore allows the dynamics of both subsystems to be solved in a self-consistent manner.

In this chapter, we begin with review of semi-holographic formalism with the exam-

ple of e↵ective metric coupling and then study how the perturbative and non-perturbative sec-

tors thermalize together. At the outset, there is a puzzle. In the large N limit, the full semi-

holographic system has two entropy currents, and can be stuck in pseudo-equilibrium states

where the entropy production is zero while the perturbative and non-perturbative sectors can

reach two di↵erent physical temperatures. We first prove that only the global equilibrium state,

where the two subsectors have the same physical temperatures, has maximum entropy in a

micro-canonical ensemble with a fixed total energy. We further show that if we consider a

generic state in which simple observables like the full energy-momentum tensor is like in a

pseudo-equilibrium state, the total entropy of this non-equilibrium state is that of global equi-

librium. The latter implies that for a generic (typical) state, thermalization occurs isentropically

in the large N limit with no von-Neumann entropy production. The relaxation to global equi-

librium is irreversible.

We explicitly study thermalization in semi-holography in the approximation where the

dynamics of each subsystem can be described by BRSSS theory (2.50). We construct non-

equilibrium states that have total entropy commensurate with that of the global equilibrium

state. We show that the full (isolated) system relaxes to the global equilibrium state (within

numerical approximation) so that the final and initial entropies are the same. In BRSSS theory,
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the entropy current takes the form of suµ, where uµ is defined by the energy current and s is a

(non-)equilibrium entropy density (2.49). The entropy current has positive definite divergence

implying entropy production is always positive. However, this does not necessarily imply that

the entropy density s itself is monotonic. We find that the relaxation process does produce

entropy but it is small. Generically transfer of entropy between the subsectors occurs although

the total initial and final entropies are the same.

Finally, we interpret this result in terms of the full quantum dynamics where we ar-

gue that the von-Neumann and Renyi entropies of the subsystems and the full system should

remain invariant during thermalization in the large N limit. Nevertheless, the information of

the basis in which the subsystem density matrices are diagonal is lost although the eigenvalues

do not change along time evolution. This irreversibility can be captured by di↵erent notions of

entropies as borne out in e↵ective semi-holographic dynamics.

5.1 Semi-holography

Semi-holography has been proposed as an e↵ective framework which incorporates both the

perturbative and non-perturbative degrees of freedom consistently in a wide range of energy

scales. The term “Semi-holography” was coined by Faulker and Polchinski [10] in the context

of holographic non-Fermi liquid models, in which they coupled a dynamical boundary field to

IR-CFT. Later, this formulation was implemented in heavy ion collisions by Mukhopadhyay

and Iancu [12] where a classical Yang-Mill field defining the weakly coupled gluon modes is

coupled to the strongly coupled conformal field theories having a gravity dual.

The semi-holographic framework proposes democratic formulation [62] in which at

any energy scale, the full theory is defined by both the weakly coupled perturbative sectors as

well the strongly coupled non-perturbative sector having a classical gravity dual in the large N

limit. The two sectors otherwise isolated from each other, are allowed to interact by deforming

the marginal and relevant couplings of each sector and promoting them as local algebraic func-
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tions of the operators of the other sector. This sort of deformation ensures renormalisability of

the e↵ective action of the full system. The democratic coupling determined from this action

principle allows to construct low energy dynamics of the full system from the e↵ective low en-

ergy description of the individual sector. The two sectors living in their respective e↵ective met-

ric background are assumed to share same topological space such that we can describe the full

system including these sectors using same coordinate. Moreover, the energy-momentum tensor

of the full system is conserved in the physical background while the subsectors are closed in

their respective background metric and are allowed to exchange energy and momentum defined

with respect to the physical background metric.

The dynamics of the full system is solved by solving the dynamics of the individual

sectors iteratively in a self-consistent manner [12]. The iterative method specifies the initial

conditions for the dynamical variables of each sector including the boundary condition of the

bulk field. At each iteration, the initial conditions are kept fixed and the individual sectors are

solved independently with their e↵ective metrics and couplings determined self-consistently.

When the iteration converges, the energy-momentum tensor of the full system becomes con-

served in the physical background metric. Convergence of the dynamics of the full system has

been confirmed in various numerical investigations where it has been shown that the conver-

gence is highly non-trivial [184, 185]. This iterative method with proper initial conditions for

heavy-ion collisions has been described in [12].

As previously stated, the democratic formulation allows for the coarse-grained de-

scription of the entire system from the e↵ective coarse-grained dynamics of individual sectors.

This allows phenomenological construction, in which the stress tensor of the entire system is

a polynomial of the stress tensors of the subsectors, and thus a hydrodynamic description of

the individual sector is su�cient to develop the physical system. However, this property is

unique to democratic coupling in a semi-holographic framework; otherwise, in systems such

as water-oil mixtures, we must know the nature of intermolecular interactions in addition to

the hydrodynamic descriptions of water and oil to define the mixture using hydrodynamic the-
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ory. To better understand the preceding discussion, we consider the example of metric coupling

(rank-2 tensor) [20] which is relevant for the following chapter.

E↵ective Metric coupling

Consider a dynamical system F in a fixed metric background g(B)
µ⌫ . The physical system is com-

posed of two sub-sectorsU and Ũ which corresponds to the perturbative and non-perturbative

degrees of freedom. The two sub-sectors live on their respective metric background gµ⌫ and

g̃µ⌫. The e↵ective action of the system that captures the deformation of the marginal/relevant

coupling of the individual sectors and their interaction is defined as,

S tot[�, �̃, gµ⌫, g̃µ⌫, g(B)
µ⌫ ] = S [�, gµ⌫] + S̃ [�̃, g̃µ⌫] +

Z
dDx

h 1
2�

p
�g(B) tr[(g � g(B)).(g̃ � g(B))]

�
�0

2�

p
�g(B) (tr[g.g(B)] � D)(tr[g̃.g(B)] � D)

� + �0D

i
. (5.1)

D = d + 1 is the dimension of the spacetime and . denotes trace operation. S and S̃ is the e↵ec-

tive action of the respective sectors, U and Ũ. � and �̃ denotes all the matter fields in the two

sub-sectors. � and �0 are the dimensionful semi-holographic coupling of mass dimension �D

whose ratio gives the dimensionless coupling r, r := ��
0

� . g, g̃ and g(B) are the determinant of

the e↵ective metrics of the sub-sectors and the background physical metric. The e↵ective met-

rics gµ⌫ and g̃µ⌫ act as an auxiliary field and captures the marginal deformation of the respective

sectors. As mentioned earlier, the deformation is taken care of by promoting the e↵ective met-

rics as a local algebraic function of the operator of the complementary system. The algebraic

equations of the e↵ective metric are obtained by varying the action (5.1) with respect to the in-

dividual e↵ective metrics. The lowest-order metric coupling equations that dictate the coupling

between the sub-sectors are,

gµ⌫ = g(B)
µ⌫ +

p
�g̃

p
�g(B)

h
� t̃ ↵�g(B)

↵µ g(B)
�⌫ + �

0 tr(t̃.g(B))g(B)
µ⌫

i
, (5.2)

g̃µ⌫ = g(B)
µ⌫ +

p
�g

p
�g(B)

h
� t↵�g(B)

↵µ g(B)
�⌫ + �

0 tr(t.g(B))g(B)
µ⌫

i
, (5.3)
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t̃↵�, and t↵� are the energy-momentum tensor of the respective subsectors,

t↵� = �
2
p
�g

@S
@g↵�
, t̃↵� = �

2
p
�g̃

@S̃
@g̃↵�
. (5.4)

These energy-momentum tensors of the sub-sectors are conserved with respect to their e↵ective

metric background i.e., they satisfy the ward identities,

r↵t↵� = 0, r̃↵t̃↵� = 0 (5.5)

where r and r̃ are the covariant derivatives with respect to the e↵ective metrics. Further, the

energy-momentum tensor of the full system F can be obtained as a polynomial of the energy-

momentum of the individual sectors by varying the action (5.1) with respect to the background

metric g(B)
µ⌫ ,

T µ⌫ := �
2

p
�g(B)

@S tot

@g(B)
µ⌫

, (5.6)

T µ⌫ =
1
2

 
(tµ⌫ + t⌫µ)

p
�g

p
�g(B)

+ (t̃µ⌫ + t̃⌫µ)
p
�g̃

p
�g(B)

!
+ �K�⌫µ (5.7)

where

�K = �
�

2

 
t⇢↵
p
�g

p
�g(B)

!
g(B)
↵�

 
t̃ ��

p
�g̃

p
�g(B)

!
g(B)
�⇢

�
�0

2

 
t↵�
p
�g

p
�g(B)

!
g(B)
↵�

 
t̃ �⇢

p
�g̃

p
�g(B)

!
g(B)
�⇢ . (5.8)

The full energy-momentum tensor T µ⌫ is conserved in the physical background g(B)
µ⌫ provided

that the coupling equations and the sub-sector Ward identities are satisfied,

r
(B)
µ T µ⌫ = 0. (5.9)

159



5.2 Thermodynamic and statistical consistencies

A crucial test of this democratic coupling scheme of the semi-holographic framework is its

thermodynamic consistency. We note that once we specify the equations of states of the sub-

system at the same physical temperature, we not only define the global temperature but also

the energy-momentum tensor of the full system, and thus the total energy and total pressure.

On the other hand, from the total energy and total pressure, we can also derive the global tem-

perature via thermodynamic identities. Do these two global temperatures agree? Precisely,

thermodynamic consistency implies that for any democratic e↵ective metric coupling rule with

a total conserved energy-momentum tensor (5.9), the global temperature T given by the (same)

physical temperature of the subsystems will satisfy the thermodynamic identities

E + P = ST , dE = T dS (5.10)

where E is the total energy density, P is the total pressure of the full system, and S is the

appropriate total entropy.

Here we review the proof of thermodynamic consistency, following the generic discus-

sion in [20]. Suppose we consider a full system F living in a d�dimensional spacetime whose

metric characterised by static gravitational potential �(x) (not a function of time) reads as,

g(B)
µ⌫ = diag(�e�2�(x), 1, · · · , 1|   {z   }

d�1

). (5.11)

The two sub-sectors U and Ũ interacting via their e↵ective metric are assumed to equilibrate

to individual temperature T1 and T2. This parameterizes the e↵ective metrics of the sub-sectors

in a static, homogeneous and isotropic form,

gµ⌫ = diag
⇣
� a(x)2, b(x)2, · · · , b(x)2

|              {z              }
d�1

⌘
, g̃µ⌫ = diag

⇣
� ã(x)2, b̃(x)2, · · · , b̃(x)2

|              {z              }
d�1

⌘
, (5.12)
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which leads to the following form of the energy-momentum tensor of the subsystems,

tµ⌫ = diag
 
"(T1(x))

a(x)2 ,
P(T1(x))

b(x)2 , · · · ,
P(T1(x))

b(x)2
|                         {z                         }

d�1

!
, (5.13)

t̃µ⌫ = diag
 
"̃(T2(x))

ã(x)2 ,
P̃(T2(x))

b̃(x)2
, · · · ,

P̃(T2(x))
b̃(x)2

|                         {z                         }
d�1

!
(5.14)

where "("̃) and P(P̃) are the energy density and pressure of the respective subsystem. With this

form of the energy-momentum tensor of the individual sectors, the e↵ective metric coupling

equations will still be a polynomial which in the lowest order (5.2) read as,

e�2�(x)
� a(x)2 =

 
e��(x)(d � 1)P̃(T2(x)) r �

b̃(x)2
+

(1 � r) e�3�(x)� "̃(T2(x))
ã(x)2

!
ã(x)b̃(x)d�1,

b(x)2
� 1 =

 
(1 � (d � 1)r) e�(x) P̃(T2(x))

b̃(x)2
+

e��(x) r � "(T2(x))
ã(x)2

!
ã(x)b̃(x)d�1,

e�2�(x)
� ã(x)2 =

 
e��(x)(d � 1)P(T1(x)) r �

b(x)2 +
(1 � r)e�3�(x) � "(T1(x))

a(x)2

!
a(x)b(x)d�1,

b̃(x)2
� 1 =

 
(1 � (d � 1)r) e�(x) P(T1(x))

b(x)2 +
e��(x)r � "(T1(x))

a(x)2

!
a(x)b(x)d�1 (5.15)

where for �(x)! 0 we smoothly recovers the flat-space solution.

To define global equilibrium in a system one needs to ensure that the full-system tem-

perature T as well as the subsystem temperatures T1 and T2 are related to each other. The

temperatures of the system can be specified by the inverse of the Euclidean time circle which is

a constant at global equilibrium,

T
�1 =

Z �

0

q
�g(B)

00 d⌧, (5.16)

T�1
1 =

Z �

0

p
�g00d⌧ = a� = aT �1, (5.17)

T�1
2 =

Z �

0

p
�g̃00d⌧ = ã� = ãT �1. (5.18)
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This gives

e��(x)
T (x) = a(x)T1(x) = ã(x)T2(x) = T0. (5.19)

Therefore the space of equilibrium solutions is parameterized by the single parameter T0 and

this defines the global equilibrium condition. Following this one needs to verify the compat-

ibility of the condition with the energy-momentum tensor of the subsystem and the full sys-

tem. Using the Ward identity (5.5), one can show that the conservation of the thermal energy-

momentum tensor of the individual sectors with respect to their e↵ective metric implies,

@iP
" + P

+
@ia
a
= 0,

@iP̃
"̃ + P̃

+
@iã
ã
= 0 (5.20)

where @i is space derivative. Then using the thermodynamic identities,

" + P = T1s1, "̃ + P̃ = T2s2, (5.21)

we can write the conservation equation as,

@i

⇣
ln(T1a)

⌘
= 0, @i

⇣
ln(T2ã)

⌘
= 0 (5.22)

which is consistent with the global equilibrium condition (5.19). Here s1 and s2 are the entropy

densities of the respective systems.

The energy-momentum tensor of the full system following the construction of the ef-

fective metric coupling can be parameterised as,

T µ⌫ =
⇣
e�2�(x)

E(T (x)),P(T (x)), · · · ,P(T (x))|                      {z                      }
d�1

⌘
(5.23)
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which is conserved in the background metric (5.11). The conservation equation (5.9) gives,

@iP

E + P
� @i� = 0. (5.24)

Also from (5.19) and (5.22) we get,

@iT

T
� @i� = 0, (5.25)

and therefore,

@iT

T
�

@iP

E + P
= 0 (5.26)

which along with the thermodynamic identity E + P = TS gives,

@iP = S@iT . (5.27)

This relation holds for arbitrary smooth �(x) i.e.,

dP = SdT (5.28)

which together with E + P = TS becomes,

dE = T dS (5.29)

where the variation is taken by changing the parameter T0. Note that we can give the desired

proof in the flat space by considering �(x)! 0.

Furthermore, consistency with statistical mechanics implies a specific form of the total

entropy S. Since the two subsystems are e↵ectively isolated in their self-consistent e↵ective

metrics (although exchanging energy and momentum when viewed from the actual physical

metric background), the total entropy should be just a sum of the entropy densities after ac-

163



counting for the respective self-consistent e↵ective spatial volume densities.

It is easy to show that S obtained from the thermodynamic identities satisfies statisti-

cal consistency for any democratic e↵ective metric coupling. The form of energy-momentum

tensor of the full system (5.9) with one contravariant and one covariant index indicates that the

explicit interaction terms in �K is always diagonal and appears with opposite signs for E and

P. This leads to,

(" + P)abd�1 + ("̃ + P̃)ãb̃d�1 = (E + P)e��(x). (5.30)

Then from the thermodynamic identities we get,

T1s1abd�1 + T2ãs2b̃d�1 = TSe��(x). (5.31)

The global equilibrium condition (5.19) implies the total entropy S is a sum of the individual

entropy of the sub-sectors with some spatial volume factor correction,

S = s1bd�1 + s2b̃d�1. (5.32)

More generally, total entropy current Sµ can be defined as

S
µ :=

p
�g

p
�g(B)

sµ1 +
p
�g̃

p
�g(B)

sµ2 (5.33)

where sµ1 and sµ2 are respective subsystem entropy currents (which in equilibrium take the forms

sµ1 = s1uµ and sµ2 = s2ũµ). It is easy to see that rµs
µ
1 � 0 & r̃µs

µ
2 � 0 implying

r
(B)
µ S

µ
� 0. (5.34)

In equilibrium, Sµ = SUµ with Uµ being the thermal frame of the full system. Note the defini-

tion of entropy current (5.33) holds generally even out of equilibrium.
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5.3 Global equilibrium has maximum total entropy

In the preceding section, it has been shown that global equilibrium satisfies both thermodynamic

as well as statistical consistencies. However, the interaction of the individual sectors via their

e↵ective metric allows the subsystems to equilibrate to a state with di↵erent temperatures T1 and

T2. This makes it less obvious that at global equilibrium the total entropy of the full system is

maximum. For our coupling scheme to be valid, one needs to ensure that the global equilibrium

must have maximum entropy in a micro-canonical ensemble with constant total energy. In what

follows, we prove that this is indeed the case.

In a micro-canonical ensemble, the isolation of the full system implies that the total

energy E = E0 is a constant while the individual sectors interact via their e↵ective metric and

equilibrate with temperatures T1 and T2, leading the full system to a pseudo-equilibrium state.

The condition that the total energy E is a constant relates the temperatures T1 and T2 of the two

subsectors, and hence in a microcanonical ensemble, the space of pseudo-equilibrium solutions

is characterised by one parameter, say, �. We observe that the extremization of total entropy

on a manifold of pseudo-equilibrium solutions with constant energy E0, parameterised by �,

implies global equilibrium.

We demonstrate this for an isolated system F with two subsectorsU and Ũ defined by

arbitrary equations of states (EoS), P(") and P̃("̃). The full system lives in Minkowski spacetime

defined by the metric

g(B)
µ⌫ = ⌘µ⌫ = diag(�1, 1, · · · , 1|   {z   }

d�1

). (5.35)

The two sectors live in their individual e↵ective metrics gµ⌫ and g̃µ⌫ given by

gµ⌫ =diag

0
BBBBBBB@�a(�)2, b(�)2, · · · , b(�)2

|              {z              }
d�1

1
CCCCCCCA , g̃µ⌫ = diag

0
BBBBBBB@�ã(�)2, b̃(�)2, · · · , b̃(�)2

|              {z              }
d�1

1
CCCCCCCA . (5.36)

These two sectors interact via the metric coupling (5.15) and equilibrate to a pseudo-equilibrium
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state with temperatures T1 and T2. The full system is characterised by six equations. The four

equations are derivative of metric coupling equations (5.15) and the other two equations are

@E/@� = 0 and @S/@� = 0. S is given by the thermodynamic identity, TS = P + E where E

and P (from (5.6) using (5.13)) is defined as,

E = ✏(T1)abd�1 + ✏̃(T2)ãb̃d�1

+
�

2

 
✏(T1)✏̃(T2)

a2ã2 +
(d � 1)P(T1)P̃(T1)

b2b̃2

!
abd�1ãb̃d�1

+
�0

2

 
�
✏(T1)

a2 +
(d � 1)P(T1)

b2

! 
�
✏̃(T2)

ã2 +
(d � 1)P̃(T2)

b̃2

!
abd�1ãb̃d�1, (5.37)

P = P(T1)abd�1 + P̃(T2)ãb̃d�1

+
�

2

 
✏(T1)✏̃(T2)

a2ã2 +
(d � 1)P(T1)P̃(T1)

b2b̃2

!
abd�1ãb̃d�1

+
�0

2

 
�
✏(T1)

a2 +
(d � 1)P(T1)

b2

! 
�
✏̃(T2)

ã2 +
(d � 1)P̃(T2)

b̃2

!
abd�1ãb̃d�1. (5.38)

Here all the variables are functions of a single parameter �. Now using the the thermodynamic

identities (5.21) and the thermodynamic relation dP = s1dT1 (dP̃ = s2dT2), we get

d"
d�
=

1
cs(�)2

dP
d�
,

d"̃
d�
=

1
c̃s(�)2

dP̃
d�
, (5.39)

and

dP
d�
=

P(�) + "(�)
T1(�)

dT1

d�
,

dP̃
d�
=

P̃(�) + "̃(�)
T2(�)

dT2

d�
, (5.40)

where

s1(�) =
P(�) + "(�)

T1(�)
, s2(�) =

P̃(�) + "̃(�)
T2(�)

, (5.41)

and c2
s =

dP
d"

⇣
c̃2

s =
dP̃
d"̃

⌘
is the speed of sound of the two sectors. This expresses the equations

(5.39) and (5.40) in terms of dT1
d�

⇣
dT2
d�

⌘
which in turn gives the six equations in terms of dT1

d�
⇣

dT2
d�

⌘
. Then these six equations can be written in matrix form with coe�cient vector A =
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(T 01(�),T 02(�), a0(�), b0(�), ã0(�), b̃0(�)) as

Q.A = 0, (5.42)

with Q being a 6 ⇥ 6 matrix and prime denotes derivative wrt �. This set of equations admits a

non-trivial solution when det(Q) = 0. We find that this det(Q) = 0 condition (explicit equation

is given in (5.43)) implies the global equilibrium relation (5.19) i.e, T1(�)a(�) = T2(�)ã(�).

det(Q) =
⇣
a(�)T1(�) � ã(�)T2(�)

⌘⇣
· · ·

⌘
. (5.43)

The complete expression of the second term is large and can be found in appendix G. Note

that one of the multiplicative factors in the equation (5.43) is (T1a � T2ã), which means that

equation (5.43) ensures that the global equilibrium condition is always satisfied (unless the

second multiplicative in (5.43) vanishes identically).

Therefore the condition E = E0 gives a one-parameter family of curves (parameterized

by the parameter E0 or equivalently by �) in the 2-dimensional space of T1(�) and T2(�). The

second condition det(Q) = 0 (5.43) gives another curve in the 2-dimensional space of T1(�)

and T2(�). The intersection of these two curves is the global equilibrium of the full system at

constant total energy E0.

5.4 Numerical study of thermalization

We numerically illustrate the above proof of thermalization by considering two conformal equa-

tions of state with constant total energy E0 of the full system. The corresponding plot is shown

in Fig. 5.1 where we have considered a d = 3 dimensional system whose sub-sectors are de-

fined by the conformal equations of states, " = 2P = 2n1T 3
1 and "̃ = 2P̃ = 2n2T 3

2 . The Fig. 5.1

corresponds to unequal n1 and n2.

We observe in Fig. 5.1 that the global thermalization measure (T1a � T2ã) indeed van-
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ishes with the maximum entropy of the full system. Thus ensuring that the global equilibrium

is accompanied by the maximum total entropy. We also find that the entropy of one subsystem

always increases while that of the other subsystem decreases at any point on the equilibrium

phase diagram. However, the second law of thermodynamics states that the entropy current has

positive divergence, which implies that there exists non-decreasing entropy current for each of

the subsectors along with the full system. Then the question arises, how will the dynamics of

the full system evolve towards global equilibrium from an arbitrary pseudo-equilibrium state?
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Figure 5.1: The left plot shows full system entropy in red and global equilibrium measure
(aT1 � ãT2) in blue as function of T1. The entropy becomes maximum when the measure of
global equilibrium vanishes. On the right, the plot shows the subsystem entropies and the full
system entropy as function of T1. The lower plot shows (pseudo-)equilibrium phase space,
T2(T1). Here n1 = 10, n2 = 1, E0 = 1, r = 2, � = 1.

5.4.1 Resolution

The above question is addressed in terms of perturbations added to some pseudo-equilibrium

state. On adding perturbation to any arbitrary pseudo-equilibrium state, the entropy of one of

the subsystems can decrease while that of the other can increase owing to the interaction be-

tween the two sectors. The dynamics will eventually increase the entropies of both subsystems,
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resulting in another pseudo-equilibrium state. However, if the initial decrease in one of the sub-

system entropy is more than the subsequent increase in its entropy, then there will be an overall

decrease in the entropy, which is consistent with the second law of thermodynamics.

Moreover, it has been observed that the fluctuations in total entropy become negative

once the system reaches global thermal equilibrium, Fig. 5.2. This means that these fluctuations

are exponentially suppressed because the probability of macroscopic fluctuation in a micro-

canonical ensemble is proportional to Exp(�S ).
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Figure 5.2: The plot show the nature of �S, and global equilibrium measure as function of T1.

5.5 Isentropic thermalization

Following the generic proof of thermalization in a hybrid system constructed via the metric cou-

pling technique in semi-holographic framework, we study thermalization, preferably isentropic

thermalization in a dynamical system. The proposal of isentropic thermalization as discussed

below,

Consider an arbitrary pseudo-equilibrium state given by subsystem temperatures T1

and T2 in which the energy-momentum tensor of the full system is diagonal with total energy

E and total pressure P. We perturb this pseudo-equilibrium state by demanding the following

four conditions: the total energy E of the full system should remain constant, the total isotropic

pressure P should remain unchanged, the total anisotropic diagonal pressure and the total (spa-
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tial) o↵-diagonal component of non-equilibrium stress-tensor should vanish. Together these

four conditions imply that the full energy-momentum tensor of the perturbed state remains the

same as that of the pseudo-equilibrium state. In addition, we also put a fifth maximal entropy

condition which means the total entropy of the full system S is equal to that in global thermal

equilibrium. Therefore with these five conditions, we assume to obtain a one-parameter family

of generically non-equilibrium states, which are macroscopically in pseudo-equilibrium (since

the total energy-momentum tensor is the same) but are more extreme non-equilibrium and have

maximal entropy as that of global equilibrium. Then any of these one-parameter families of

fluctuations will relax to global equilibrium such that the total entropy remains constant in time.

This leads to isentropic thermalization.

Further, the question of thermalization, not only isentropically but also without entropy

transfer between subsystems, i.e. isentropically within each subsystem also introduces one

more condition. This condition can simply ensure that the subsystem entropy is also the same

as in global equilibrium (the other one automatically sets to the global equilibrium value) i.e.,

isentropic within each subsystem. Although isentropic thermalisation is generic, the isentropic

within each subsystem is not – typically there is isentropic thermalization with entropy transfer.

5.5.1 Dynamical system: BRSSS theory

We investigate isentropic thermalization in semi-holography in the approximation where the

dynamics of each subsystem can be described by the first-order BRSSS formalism1, similar to

the modified MIS (2.50). We study the system in a d = 3� dimensional spacetime where the

full system lives on the flat spacetime given by the Minkowski metric,

g(B)
µ⌫ ⌘ ⌘µ⌫ = diag(�1, 1, 1) (5.44)

1Here we consider the system to be in flat space and have linear velocity. Hence, the BRSSS expansion is
truncated at first order following the discussion in section 2.1.3.
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and the two subsystems defined by the conformal equation of state, live on the e↵ective metrics

of the form,

gµ⌫ =

0
BBBBBBBBBBBBBBBBBB@

�a11(t)2 0 0

0 a22(t)2 a23(t)

0 a23(t) a33(t)2

1
CCCCCCCCCCCCCCCCCCA

and g̃µ⌫ =

0
BBBBBBBBBBBBBBBBBB@

�ã11(t)2 0 0

0 ã22(t)2 ã23(t)

0 ã23(t) ã33(t)2

1
CCCCCCCCCCCCCCCCCCA

. (5.45)

The full system along with the subsystems are conserved in their respective background met-

ric i.e. the full system energy-momentum tensor, T µ⌫ , satisfies the ward identity (5.9) and the

individual system energy momentum tensor tµ⌫ and t̃µ⌫ satisfies the ward identity (5.5). The

energy-momentum tensors of the subsystems are defined as,

tµ⌫ = (" + P)uµu⌫ + Pgµ⌫ + ⇡µ⌫ and t̃µ⌫ = ("̃ + P̃)ũµũ⌫ + P̃g̃µ⌫ + ⇡̃µ⌫, (5.46)

where the time-like fluid velocity uµ(ũµ) of each subsystem is given by,

uµ = diag(1/a11(t), 0, 0) and ũµ = diag(1/ã11(t), 0, 0), (5.47)

and the shear stress tensor which is the first order dissipative term of (5.46) is considered to be,

⇡µ↵.g↵⌫ ⌘ ⇡µ⌫ =

0
BBBBBBBBBBBBBBBBBB@

0 0 0

0 �
⇡d(t)

2 ⇡od(t)

0 ⇡d(t)
a33(t) +

a22(t)2⇡od(t)
a33(t)2

⇡d(t)
2

1
CCCCCCCCCCCCCCCCCCA

, (5.48)

⇡̃µ↵.g̃↵⌫ ⌘ ⇡̃µ⌫ =

0
BBBBBBBBBBBBBBBBBB@

0 0 0

0 �
⇡̃d(t)

2 ⇡̃od(t)

0 ⇡̃d(t)
ã33(t) +

ã22(t)2⇡̃od(t)
ã33(t)2

⇡̃d(t)
2

1
CCCCCCCCCCCCCCCCCCA

. (5.49)

Here we have used the Landau frame convention (refer to chapter 2 for details) and traceless
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condition due to conformality to get the above form of ⇡µ⌫ and ⇡̃µ⌫, i.e.,

Orthogonality: u⌫⇡µ⌫ = 0 and ũ⌫⇡̃µ⌫ = 0. (5.50)

Traceless: ⇡µµ = 0 and ⇡̃µµ = 0. (5.51)

Above ⇡d(⇡̃d) is the diagonal anisotropy and ⇡od(⇡̃od) is the o↵ diagonal anisotropy of the sub-

system. Further, following the relaxation type equation (2.50), the shear stress tensor can be

promoted to a dynamical variable as,

h
⇡µ⌫ + ⌧⇡D⇡µ⌫

i
+

3
2
⌧⇡⇡

µ⌫
r↵u↵ = �⌘�µ⌫ (5.52)

h
⇡̃µ⌫ + ⌧̃⇡D̃⇡̃µ⌫

i
+

3
2
⌧̃⇡⇡̃

µ⌫
r̃↵ũ↵ = �⌘̃�̃µ⌫ (5.53)

where ⌧⇡(⌧̃⇡) and ⌘(⌘̃) are the transport coe�cients known as relaxation time and shear viscosity

and �µ⌫ and �̃µ⌫ are defined as,

�µ⌫ :=
1
2

(r↵u� + r�u↵)�↵��µ⌫ �
1
2
r�u��µ⌫,

�̃µ⌫ :=
1
2

(r̃↵ũ� + r̃�ũ↵)�̃↵��̃µ⌫ �
1
2
r̃�ũ��̃µ⌫

where �µ⌫ and �̃µ⌫ are the spatial projections defined before. The full system is governed by

fourteen equations, seven for each subsystem: one ward identity, two equations from MIS and

four coupling equations and hence seven variables: ", ⇡d, ⇡od, a11, a22, a33 and a23 of each sub-

system. The equations are given in the appendix H. Note in this system the entropy densities

s1, s2 and S are defined as in (2.49),

s1 =
" + P

T1
�

⌧⇡
4⌘T1

⇡µ⌫⇡µ⌫, (5.54)

s2 =
"̃ + P̃

T2
�

⌧̃⇡
4⌘̃T2

⇡̃µ⌫⇡̃µ⌫, (5.55)

S =

p
�g

p
�g(B)

s1 +

p
�g̃

p
�g(B)

s2. (5.56)
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This ensures positive divergence of entropy current in the system.

We numerically investigate the system to study isentropic thermalisation. We set the

following specification (5.57) to the sub-systems such that one of the sub-systems behaves as

weakly coupled and the other as strongly coupled. We also set the coupling strength � to unity

and r = 2.

⌘ =
1

4⇡
" + P

T1
, ⌘̃ =

100
4⇡

"̃ + P̃
T2
, ⌧⇡ =

2 � ln 2
2⇡T1

, ⌧̃⇡ =
5 ⇤ 100
4⇡T2

, n1 = n2 = 1. (5.57)

As mentioned earlier, we consider the system to be isolated and in micro-canonical ensemble

which fixes the total energy E to a constant E0. Initially the system is assumed to be in a global

equilibrium state with maximum entropy of the full system. The system is then driven to a

non-equilibrium state whose entropy is as large as that of global equilibrium by perturbing the

energy-momentum tensor of the sub-systems. Eventually, the dynamics take the full system

towards global equilibrium state as shown in Fig. 5.3. The entropy of one sub-system which

behaves as a hard sector remains constant while the other varies with time. This shows that

there exist non-equilibrium states whose entropy is as large as that of the global equilibrium

entropy and entropy production occurs only in the soft sector. Further, we hold the perturbation

constant and vary the full system temperature up to a large value. We observe (Fig. 5.4) that

the entropy production on the scale of perturbation vanishes in the limit of large temperature

and also the departure of the final state of the system from the global equilibrium in the scale

of perturbation decreases as we go to the higher temperature. This shows that equilibration

happens isentropically compare to the scale of perturbation in the infinite temperature limit.
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Figure 5.3: The plot shows the evolution of the entropy of the full system and the individual
system over time for constant full system energy E0 = 6�. Here the x-axis is the dimensionless
time Et scaled by a factor of 1/1000 to fit in the plot.
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Figure 5.4: The first plot shows that the ratio of entropy production to the scale of perturbation
vanishes at high temperatures. The second plot shows that in the large T limit, the departure of
the final state from the global equilibrium in the scale of perturbation vanishes.
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Figure 5.5: The plot shows the positive divergence of the entropy current of the full system and
individual systems.

5.6 Quantum formulation of large N dynamics and isen-

tropic thermalization

In order to see how thermalization can occur without producing entropy, it is useful to study the

quantum formulation of the semi-holographic dynamics in the large N limit.

To simplify the discussion, we consider scalar coupling between the two sectors. How-

ever, our formulation readily generalizes to the case of the e↵ective metric coupling we have

discussed above. The scalar coupling can be obtained from the action:

S = S 1[J1] + S 2[J2] +
1
↵

Z
(J1 � J0)(J2 � J0). (5.58)

Varying with respect to the e↵ective J1 and J2 in presence of an external source J0, we obtain
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the algebraic coupling equations:

J1 = J0 + ↵O2, J2 = J0 + ↵O1 (5.59)

where

O1 =
�S 1

�J1
, O2 =

�S 2

�J2
. (5.60)

In absence of the e↵ective metric coupling, the subsystems also live in flat spacetime e↵ectively.

Now consider a generic state ⇢12 of the full system which will be entangled typically

and the reduced density matrices of the subsectors are

⇢1 = Tr2(⇢12), ⇢2 = Tr1(⇢12). (5.61)

The expectation values of the operators in the subsystems are

hO1i = Tr(⇢1O1), hO2i = Tr(⇢2O2). (5.62)

In the large N limit, the full dynamics can be formulated in terms of the Hamiltonians

H1 and H2 of the two sectors:

Ĥ1 = Ĥ10 +

Z
J1Ô1, Ĥ2 = Ĥ20 +

Z
J2Ô2 (5.63)

where Ĥ10 and Ĥ20 are the undeformed Hamiltonians of the subsystems (with hats distinguishing

operators from c-numbers explicitly), and the e↵ective sources J1 and J2 are given by (5.59) but

with O1 and O2 replaced by the expectation values:

J1 = J0 + ↵hO2i, J2 = J0 + ↵hO1i. (5.64)
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In this limit, the time evolution is simply

⇢12 ! U1 ⌦ U2 ⇢12 U†1 ⌦ U†2 (5.65)

where U1 and U2 are the unitary time evolution operators obtained from H1 and H2, respectively.

It follows that the subsystem density matrices have the evolution,

⇢1 ! U1⇢1U†1 , ⇢2 ! U2⇢2U†2 . (5.66)

The iterative procedure to solve the dynamics of the full system is as follows. Let

the initial state ⇢12 be typical (and thus entangled). In the first step of the iteration, set J1 =

J2 = J0. Obtain hO1i and hO2i. Evolve the full system in time via (5.65). In the second

step, compute hO1i and hO2i, and evolve the full system again via (5.65) but now with the

deformed subsystem Hamiltonians. Subsequently, repeat this by evolving the full system with

the subsystem Hamiltonians in which hO1i and hO2i are obtained from the second iteration,

and keep on repeating until we find convergence. When convergence is achieved, the energy-

momentum tensor of the full system is conserved. It is to be noted that at each step of the

iteration, the subsystems undergo relevant/marginal deformations if the operators O1 and O2

have the required mass dimensions. Therefore, the full quantum evolution is well-defined at

each step of the iteration.

In [16, 184], the semi-holographic dynamics with a scalar coupling was solved in the

above iterative procedure, and convergence was achieved to an excellent approximation in just

four iterations. However, in these works, the boundary system was a scalar/gauge field and the

holographic system had a dual description in terms of a gravitational system coupled to a bulk

scalar. The full dynamics was solved in classical approximation both in the bulk and boundary.

Further, in [186], the full semi-holographic dynamics has been solved in this iterative procedure

in a lower dimensional example with the boundary system quantized. Specifically, a quantum

harmonic oscillator or a qubit is coupled to a SYK-type system dual to NAdS 2 holographic
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geometry with a bulk scalar field.

In the large N formulation of quantum dynamics, we readily note that since the sub-

systems are evolved unitarily, the subsystem entropies and also the full system von Neumann

entropies should remain invariant under time evolution. Nevertheless, the dynamics in this ap-

proximation is similar to a non-linear unitary mean field channel, where the non-linearity arises

from replacing the operators O1 and O2 by their expectation values. In [186], it has been found

that the boundary qubit reaches its lowest energy state while preserving the purity due to uni-

tary evolution – the eigenvalues of its density matrix do not change but the information of the

initial basis in which the density matrix becomes diagonal is lost since the final basis is that

in which the subsystem Hamiltonian is diagonal. As the qubit reaches its lowest energy state,

the holographic system approaches a thermal state dual to a black hole. In this case, since one

degree of freedom is interacting with a large N holographic system, we expect the former to

reach the lowest energy state due to equipartition of energy, as indeed observed. Therefore, the

self-consistent non-linear unitary evolution leads to thermalization. Although the von Neumann

entropy (and also Renyi entropies) of the boundary qubit does not change, it thermalizes by go-

ing to the lowest energy state which commutes with the Hamiltonian. The thermalization here

is aided by the inherent second law in gravitational dynamics with the dynamics of the time

reparametrization mode solved semi-classically and self-consistently.

The extrapolation to higher dimensions, and with a large quantum system with a com-

mensurate dimensional Hilbert space coupled to a holographic system is as follows. Generally,

if we consider a typical state ⇢12 of the full isolated system, which could be out of equilibrium,

and in which we specify simple observables such as the full system energy-momentum tensor

(to be, as for instance, same as in pseudo-equilibrium), then this state generically should have

maximum possible entropy, same as in global equilibrium. Furthermore, the full system will

relax to global equilibrium without any change in subsystem and full system entropies.

We have shown that when we approximate the dynamics of both systems by BRSSS

theories, we have non-equilibrium states with full system entropy close to global equilibrium,
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which is the maximal possible entropy. Even though the perturbations are large compared to

the di↵erence in entropy, the full system is thermalized with very little entropy production.

We expect that if we couple kinetic theory to a holographic system, and solve the

kinetic equations together with the gravitational dynamics, we can show that generically we

should have isentropic thermalization. Unlike BRSSS, one can turn on higher moments of the

distribution function and initial radial profiles of the bulk metric in a way in which a large

number of parameters specifying the initial state contribute to the entropies but not to the initial

energy-momentum tensors. (These parameters do not a↵ect the coupling equations which give

the e↵ective metrics.) Thus we hope to achieve isentropic thermalization typically in the large

N approximation consistently with the full quantum formulation described here. Particularly,

we want to check if random initial conditions with fixed total energy indeed thermalize with

small entropy perturbation compared with the scale of non-equilibrium perturbations

Finally, we note that the non-equilibrium entropy we obtain in e↵ective descriptions

like BRSSS, kinetic theory or dual gravity need not be the von Neumann entropy. A possible

non-equilibrium entropy can be obtained by first measuring the energies of the subsystems so

that the o↵-diagonal components of the respective density matrices in the energy basis are re-

moved, and then computing the von Neumann entropy. Note that the thermal entropy remains

the same with such a definition since the thermal density matrix is diagonal in the energy basis.

We propose to examine if such a non-equilibrium entropy can be more appropriate to mea-

sure the irreversibility of thermalization and also understand the transfer of entropies between

subsystems.
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Chapter 6

Discussion

6.1 Summary

The discovery of hydrodynamic attractors in the context of heavy ion collisions, as well as the

salient features of QCD such as chiral symmetry breaking and asymptotic freedom, motivates

the thesis’ investigation of far-away from equilibrium dynamics in the context of the Bjorken

model of QGP. In this thesis, we explore the interplay between continuous symmetry breaking

and hydrodynamization in a far-away from equilibrium system and also compute real-time hy-

drodynamic correlation functions of a system that hydrodynamizes at a late time. In addition,

we also explore thermalisation in semi-holography.

After reviewing the necessary theoretical background of relativistic hydrodynamic the-

ory, AdS/CFT correspondence and Schwinger-Keldysh correlation function in chapter 2, in

chapter 3 we develop the MIS formalism for superfluids, extending the quantum e↵ective ac-

tion approach and study the Bjorken flow. We find that the dynamics of the system is governed

by the existence of the conventional hydrodynamic attractor with unbroken symmetries and

new fixed points determined by the potential for the condensate and the equation of state of the

system. Particularly, if the initial temperature is above Tc, we find that the Josephson condition

is satisfied by the phase very rapidly while the condensate becomes exponentially small over a

180



similar timescale and undergoes slow-roll during which the system gets trapped in the vicinity

of the conventional hydrodynamic attractor. This persists for a long time until the system re-

heats and switches over to one of the symmetry-breaking fixed points. If the initial temperature

is below Tc, the system does not generically get trapped by the conventional hydrodynamic at-

tractor but rather evolves to one of the fixed points. In both cases, the hydrodynamic attractor

traps the system forever if we start with initial conditions at the border of the basin of attraction

of the fixed points.

As mentioned earlier, we expect that our key result that the superfluid Bjorken flow is

governed by a combination of hydrodynamic attractors and an even number of non-dissipative

fixed points should be a generic phenomenological feature. The fixed points are determined

by the ideal component of the dynamics obtained from the quantum e↵ective action with the

relaxation mechanism playing no role while the hydrodynamic attractor appears in any strong

coupling or weak coupling description of thermalization. Further, the analysis of fluctuations

in thermal equilibrium indicates that the system has superfluid modes as seen in other e↵ective

theories and also unstable hydrodynamic modes when the temperature corresponds to values

lower than that at the fixed points. This indicates that the fixed points are unstable against spin-

odal decomposition which needs further investigation in future by introducing inhomogeneities

in the initial conditions and using our MIS theory with necessary improvements.

Chapter 4 studies the computation of real-time correlation functions of the hydrody-

namic Bjorken flow by implementing CGL prescription of horizon cap to a dynamical, asymp-

totically AdS d+1 geometry whose boundary dual is Bjorken flow. We believe that our method for

computing this correlation function can be generalized to generic situations where the state hy-

drodynamizes, meaning that the dynamics of one-point functions can be captured by an asymp-

totic series expansion which is generated by the hydrodynamic evolution of the temperature

and velocity fields. The key would be to see if there exist Weyl transformations with non-trivial

spacetime dependence which can map the flow at late time to a configuration with constant

temperature and entropy density although time translation symmetry may not be present. In
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this case, as demonstrated here for the Bjorken flow, the dual black hole would attain a horizon

with constant surface gravity and area at late time, although a time-like Killing vector may be

eternally absent. The event horizon’s shape would fluctuate in space and time keeping the total

area fixed when entropy production ceases in this limit. Nevertheless, with appropriate space-

time reparametrizations, the horizon cap prescription can be made to work as in the case of the

Bjorken flow provided at the leading order in the large (suitably reparametrized) time expansion

the equation of motion of bulk fields can be mapped to that on a static black brane.

Chapter 5 discusses a part of the ongoing work on thermalisation in semi-holography.

In this chapter, we review semi-holographic formalism with the example of metric coupling and

then provide a generic proof of thermalisation in a hybrid system coupled democratically in this

formalism. Indeed, it has been observed that the entropy of a full system in a micro-canonical

ensemble maximises when the physical temperatures of the respective sectors coincide at any

fixed total energy. This claim has been further supported by studying a two-fluid model of

BRSSS formalism. Here we have shown that there exist generic non-equilibrium states whose

entropy is as large as that of the global equilibrium entropy. Moreover, we observe that equili-

bration happens isentropically compared to the scale of perturbations in the infinite temperature

limit. Finally, we have developed a quantum understanding of the thermalization of an isolated

hybrid system in the context of quantum theory in the large N limit.

6.2 Outlook

The e↵ective description of the superfluid in MIS formalism has been studied with U(1) sym-

metry breaking where we have coupled the expectation value of the order parameter to the fluid.

However, it will be more generic to couple the fluctuation of the order parameter to the fluid

rather than the expectation value of the order parameter. The expectation value will appear

dynamically. This can be achieved by using the mean-field approximation technique [187].

Further, in the context of chiral symmetry, one can study this boost-invariant expanding super-
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fluid formalism using O(4) pion physics and incorporate explicit symmetry breaking along with

the spontaneous one by adding a term likeM⌃† +M†⌃ [52], where ⌃ is the field invariant un-

der O(4) symmetry andM is a matrix that can be taken to unity and is responsible for explicit

symmetry breaking. The incorporation of pion physics with hydrodynamics can increase the

prediction power of hydrodynamics to understand the evolution of nuclear matter formed in a

heavy-ion collision.

It would be important to study the Bjorken expansion of the superfluid in a UV-

complete setup at strong coupling, particularly in a holographic model. Of particular interest

would be to understand if the approach to the hydrodynamic attractor and subsequent switching

to the symmetry-breaking fixed points occurs rapidly as in the MIS setup. Furthermore, to be

of relevance to the quark-gluon plasma we will need to consider interacting multi-component

systems as in [123]. Our model is essentially that of the quark sector. The gluonic degrees of

freedom should be introduced as a separate fluid. Furthermore, it may be necessary to include

both weakly coupled and strongly coupled degrees of freedom. Such hybrid fluid models with

a higher dimensional hydrodynamic attractor have been discussed in [20, 63]. In the case of a

multicomponent system, the reheating transition of the superfluid to the fixed point may not be

possible or may not occur irreversibly because of the transfer of energy to the other components

of the full system.

Bjorken flow captures the dynamics occurring along the direction of expansion. To

capture the dynamics of transverse direction for a better understanding of the evolution of far-

from-equilibrium systems such as QGP, it will be interesting to investigate the Gubser flow

[188]. Gubser flow attractor has been studied widely [189–193] due to its relevance to heavy

ion colliders. However, its holographic dual has been left unexplored. We pursue this direction

to formulate a holographic dual of Gubser flow such that it can be used to study holographic

attractors and also compute Schwingker Keldysh correlation functions as discussed in chapter

4.

Another important problem would be to understand the Borel resummation of the hy-
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drodynamic series (4.119) and compute the Schwinger-Keldysh correlation functions of the

holographic hydrodynamic attractor [26]. Furthermore, the late-time thermal nature of the cor-

relation functions in terms of the reparametrized spacetime arguments could be of phenomeno-

logical relevance in heavy ion collisions, especially regarding the dynamics of heavy quarks and

bound states, and jets in the expanding quark-gluon plasma [194].

Our prescription can be used to construct the quantum generalization of classical

stochastic hydrodynamics (see [9, 28] for reviews) in holographic theories by considering the

backreaction of the fluctuations on the background geometry systematically. In this direction,

one can incorporate the quantum e↵ect in correlation functions by computing the boundary

propagator using 2PI e↵ective action. This is especially important in the context of superfluid

fluctuations since quantum dynamics is important at coherence time and length scales which

are shorter than the scattering time and the mean free path respectively (see [154] for an excel-

lent related discussion)– non-linearities can potentially cause novel non-trivial e↵ects such as

quantum corrections to the long time tails.1

Thermalisation studied in the BRSSS theory could capture isentropic thermalisation

with a diagonal and isotropic form of the energy-momentum tensor of the full system. To get a

better understanding of isentropic thermalisation, one can study the hybrid system of two RTA

kinetic theories coupled via a democratic coupling or black hole dynamics coupled to a RTA

kinetic theory or BRSSS theory.

The methods developed in the thesis have been discussed from the perspective of QCD

matter formed in heavy ion collision. However, this can be generalised to other non-equilibrium

processes. In the context of the e↵ective description of dissipative superfluid, it would be in-

teresting to explore more general forms of expanding flows, particularly those with spherical

symmetry (see [195] for a relevant model). As the superfluid condensate is naturally driven to

slow roll on a hydrodynamic attractor with a natural mechanism of exit from the slow roll, while

reheating of the system upon switching to one of the fixed points, this raises the possibility that
1For recent work on the role of classical fluctuations of the superfluid order parameter in modifying transport

properties see [8].
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one can use such a superfluid as an inflaton in cosmology with a natural preheating mechanism

in place.

Further, a more general goal in the horizon prescription to compute the Schwinger

Keldysh correlation function is to develop a quantum generalization of the large deviation func-

tion in classical non-equilibrium statistical mechanics, which is essentially a generalization of

the equilibrium free energy to the hydrodynamic regime, assigning, for instance, the probability

to a microscopic hydrodynamic configuration which may not satisfy the hydrodynamic equa-

tions. The approach (of [166]) which constructs an e↵ective action at finite temperature from the

complexified bulk spacetime will be very relevant for such developments. More generally, the

horizon cap method can be used to study holographic (evaporating) black holes interacting with

heat baths or dynamical reservoirs, and understand the reconstruction of the islands [177, 196]

(which include the black hole interior) from Hawking quanta. In such cases, semi-holographic

formulations for open quantum systems (see [16, 197] and also [166] for instance) can provide

useful models.
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Appendix A

Weyl covariant derivative

The Weyl covariant derivative is a derivative operator which maps a Weyl covariant tensor to

another Weyl covariant tensor of one higher rank. The action of a Weyl covariant derivativeD↵

on a tensor Qµ···⌫··· of weight w as defined in [83, 86] is given by

D↵Qµ···⌫··· ⌘ r↵Qµ⌫ + wA↵Qµ···⌫··· + (g↵�Aµ � �µ↵A↵ � �
µ
↵A↵)Q�···

⌫··· + · · · � (g↵⌫A�
� �↵A⌫ � �

�
⌫A↵)Qµ···�··· � · · ·(A.1)

where Aµ is the connection one-form whose form in the context of fluid dynamicscan be deter-

mined from the condition that the Weyl covariant derivative of the fluid velocity uµ is required

to be transverse and traceless, i.e.

u↵D↵uµ = 0, Dµuµ = 0. (A.2)

This defines Aµ to be,

Aµ = u�r�uµ �
1

d � 1
uµr�u� (A.3)

186



where d is the dimension of the system. For a conformally invariant tensor Qµ···⌫··· , Qµ···⌫··· = e�w�Q̃µ···⌫···

the action of Weyl covariant derivative will be

D↵Qµ···⌫··· = e�w�D̃↵Q̃µ···⌫··· (A.4)

which means that the Weyl covariant derivative of a conformally invariant tensor transforms

homogeneously with the same weight w as the tensor itself. Further, the derivative D↵ defined

in terms of the Weyl connection rWeyl
↵ as D↵ = r

Weyl
↵ + wA↵ implies metric compatibility i.e.,

D↵gµ⌫ = 0 with w = �2 for gµ⌫.
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Appendix B

Detailed form of the particular equation of

the second order Einstein equation of the

five-dimensional metric dual to the

Bjorken flow

Here we write the particular solutions of the second-order expansion of Einstein’s equations

based on the ansatz (2.97) along with (2.102),

PI1,2 =
1
12

⇣
8x2 + 6 log

⇣
x2 + 1

⌘
� ↵2

1(x + 2)x � 4↵1(x + 2)x

+ 16x + 4 log(x + 1) + 2(2 � 6x) arctan (x) + 4
⌘
,

PI3,2 =
x

108

⇣
↵2

1

⇣
�9x5

� 6x4 + 3x + 6
⌘
� 4↵1

⇣
9x5 + 12x4

� 9x � 8
⌘

+ 4
⇣
� 9x5

� 9
⇣
x4 + 1

⌘
arctan (x) + x3 + 9x3 log

⇣
x2 + 1

⌘
+ 9x + 16

⌘⌘
,
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PI2,2 = Re
"

1
24

⇣
� 24x2

�
16x

x3 + x2 + x + 1
+ 16x + (4 + 4i) arctan (x)2

� (1 � i) log2(i � x)

+ 4 log2(x + 1) � 2 log2(�i + x) � (3 + i) log2(i + x) � 4 log2
⇣
x2 + 1

⌘
+ (2 + 8i) arctan

 
x + 1
1 � x

!

+ 2i⇡ arctan (x) � 8 arctan (x) + (2 � 8i) arctan
 

x � 1
x + 1

!
� ⇡ log(2) + 4⇡ log

⇣
1 + e�2i arctan (x)

⌘

� 16 arctan (x) log
⇣
1 + e2i arctan (x)

⌘
+ 8 arctan (x) log

⇣
1 � ie2i arctan (x)

⌘
+ 2⇡ log

⇣
1 � ie2i arctan (x)

⌘

+ 6 log(1 � x) � (4 + 4i) log
  

1
2
+

i
2

!
(ix + 1)

!
log(x + 1)

+ 2 log(x + 1) + 4 log(x � 1) log
  

1
2
+

i
2

!
(�i + x)

!
� (6 + 2i) log

 
1
2

(ix + 1)
!

log(i + x)

+ 4 log(x � 1) log
  

1
2
�

i
2

!
(i + x)

!
+ (4 + 4i) log(x + 1) log

  
�

1
2
�

i
2

!
(i + x)

!

� (2 � 2i) log(i � x) log
 
�

1
2

i(i + x)
!
� 4 log(�i + x) log

 
�

1
2

i(i + x)
!

+ (2 � 2i) log(i � x) log
⇣
x2 + 1

⌘
� 4 log(x � 1) log

⇣
x2 + 1

⌘

+ 4 log(�i + x) log
⇣
x2 + 1

⌘
+ (6 + 2i) log(i + x) log

⇣
x2 + 1

⌘

+ 2⇡ log
⇣
x2 + 1

⌘
� 4 log

⇣
x2 + 1

⌘
+ 8 log(x + 1) log

 
1 �

 
1
2
�

i
2

!
(x + 1)

!

� 4⇡ log
✓
sin

✓
arctan (x) +

⇡

4

◆◆
+ 2⇡ log

 
x + 1
p

x2 + 1

!
� (6 � 2i)Li2

 
ix
2
+

1
2

!

+ 8iLi2

⇣
�e2i arctan (x)

⌘
� 4iLi2

⇣
ie2i arctan (x)

⌘

+ 4Li2

  
�

1
2
+

i
2

!
(x � 1)

!
+ 4Li2

  
�

1
2
�

i
2

!
(x � 1)

!
+ (4 + 4i)Li2

  
1
2
+

i
2

!
(x + 1)

!

+ (4 � 4i)Li2

  
1
2
�

i
2

!
(x + 1)

!
� (6 + 2i)Li2

 
�

1
2

i(i + x)
!
+

⇣
�

8x
x3 + x2 + x + 1

+ 8x

+ (2 + 4i) arctan
 

x + 1
1 � x

!
� 4 arctan (x) + (2 � 4i) arctan

 
x � 1
x + 1

!⌘
↵1 �

8
x3 + x2 + x + 1

⌘#
,

where Li2(x) is the polylogarithmic function of order 2. The expressions for the particular

solution get increasingly complicated at higher orders. However, the simple structure of the

homogeneous solutions remain the same at every order. The integration constants associated

with the homogeneous solutions can be fixed at every order as mentioned in the 2.2.4.
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Appendix C

The event horizon and the apparent

horizon of the Bjorken flow

This appendix is devoted to a comparative discussion between the event horizon and the appar-

ent horizon in the dynamical geometry dual to the Bjorken flow.

C.1 Event horizon:

Classically, the event horizon marks the null hypersurface from which no signal can come out,

i.e, the outgoing null rays become tangential to the hypersurface. To determine its location in

the geometry given by (4.60), consider radial null geodesics in this spacetime whose equation

is given by,

@v
@�
+

v2

2
d � 2
d � 1

g�� = 0 , with g�� =
1
v2

 
(d � 1)2

(d � 2)2 A(v,�) +
2(d � 1)v
(d � 2)2�

!
. (C.1)

For a static geometry, vE = cons. and the event horizon is simply given by the zero of g��.

However, in a dynamical geometry, the event horizon will depend on �. Consider the late-time
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expansion of the horizon of the form,

v(�) ⌘ vE(�) =
X

i=0

vEi �
�i (C.2)

Now to determine vEi, we use the equation (C.1) along with the known late-time expansion of

A(v,�),

A(v,�) = 1 � "0 vd +
1

"1/d
0 �

a1(v) +
1

"2/d
0 �2

a2(v) + · · · (C.3)

At leading order, we have

vE0 = 1/"1/d
0

in any spacetime dimensions d + 1. The sub-leading corrections to the event horizon depend

on the residual gauge parameters. For instance, the first and second sub-leading corrections in

d = 41 are,

vE1 =
(3 + ↵1)

6"1/2
0

,

vE2 =
72↵2 � 9⇡ � 20 + 12 log(2)

216"3/4
0

, (C.4)

where ↵1 and ↵2 are the residual gauge parameters associated with the late-time expansion

of A(v,�). Now the gauge parameters can be uniquely fixed by demanding regularity of the

horizon cap. In d = 4, this gives (recall (4.84) and (4.85))

↵1 = �3,

↵2 =
9⇡ + 20 � 12 log(2)

72
. (C.5)

These values, in turn fix the event horizon to 1/"1/d
0 upto the second subleading order. Thus,

regularization of the horizon cap leads to vanishing of the sub-leading corrections vEi (for i > 0)

to the static event horizon. We expect this feature to remain true to all orders in the late-time

1For d = 3, the first sub-leading correction is vE1 =
5(5+3↵1)

3"2/3
0
, which again depends on the residual parameter.

However, these corrections do not have a universal form like the leading order.
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expansion.

C.2 Apparent horizon:

The apparent horizon is a null hypersurface that acts as a boundary between the trapped and

un-trapped regions, whose location is given by the product of the expansion parameters ✓±, i.e.

⇥ = e f ✓+✓�, where the factor e f is defined below. The trapped region is characterized by ⇥ > 0,

where the light rays directed outward propagates inward, whereas in the un-trapped region the

light rays directed outward propagates outward and is characterized by ⇥ < 0. Therefore ⇥ = 0

gives the location of the apparent horizon.

Here we will adopt the dual-null formalism [198–201] to study location of the apparent

horizon, where one defines a pair of null hypersurfaces ⌃± parameterised by scalars ⇣±, with

associated one-forms n± = �d⇣±. The null normal vector associated with these hypersurfaces

are given by,

lµ± = e� f gµ⌫n⌥⌫ ,

where e f is the normalization factor given by,

e f = �gµ⌫n�µn
+
⌫ .

Next we define the expansion parameters ✓±,

✓± = L±Log(µ) ,

where µ is the spatial volume element of the geometry in which the hypersurfaces are defined

andL± is the lie derivative along the null normal vectors, l±. Finally we introduce the invariant2

2This parameter ⇥ is invariant under reparameterisation of the scalar ⇣± ! ⇠±(⇣±) or interchange of ⇣± ! ⇣⌥

as discussed in [199].
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quantity ⇥ = e f ✓+✓�, whose zero gives the location of the apparent horizon.

In case of our geometry (4.60), we consider a pair of null hypersurface defined by

constant values of the retarded and advanced radial null coordinates, whose normal one-forms

are given by,

n� = �N�d�, n+ = �N+
⇣  2v
�
+ (d � 1)A(v,�)

!
d� + 2(d � 2)dv

⌘
, (C.6)

and the null normal vectors lµ± along with the normalisation factor e f and the volume element µ

reads,

e f =
2(d � 2)2

d � 1
N
+
N
�v2 ,

lµ+ =
 

1
2(d � 2)N+

, 0, 0,~0
!
,

lµ� =
 
�
�(d � 1)A(v,�) + 2v

2(d � 2)N��
, 1/N�, 0,~0

!
,

µ =
� + v
v3�

p

e2K(v,�)+L(v,�) . (C.7)

where N+ and N� are the overall normalizability factor that can be determined by the integra-

bility condition d(dn±) = 0. This ensures that the one-forms (C.6) and (C.7) are exact. However

there is no need of computing them explicitly, as when we compute ⇥ the contribution of N+

and N� from e f will cancel with the ones coming from ✓� and ✓+.

Now since the apparent horizon depends on �, one can consider a late-time expansion of the

apparent horizon similar to the event horizon as,

vA(�) =
X

i=0

vAi �
�i.
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To determine the coe�cients vAi we solve ⇥ = 0 at every order. In case of any spacetime

dimensions d + 1, the leading order result is universal and turns out to be

vA0 = 1/"1/d
0 ,

which coincides with the event horizon. However, the sub-leading corrections are dimension

dependent. For d = 4, the first and second sub-leading corrections to the leading terms are

vA1 =
3 + ↵1

6"1/2
0

,

vA2 =
72↵2 � 9⇡ � 8 + 12 log(2)

216 "3/4
0

. (C.8)

Note that, for ↵1 = �3 the first order correction to the apparent horizon vanishes similar to the

case of the event horizon. However, at second order, the value of ↵2 (given by (4.85)) for which

the the correction to the event horizon vanishes, now renders vA2 > 0. So the apparent horizon

will lie inside the event horizon (see Figure C.1). Again, we expect this feature to remain true

at higher orders as well.

2 4 6 8 10

1.000

1.002

1.004

1.006

1.008

σ

v(
σ
)

vE(σ)

vA(σ)

Figure C.1: The figure shows the evolution of the event horizon(blue curve) and the apparent
horizon(yellow curve) in the dynamical geometry dual to the Bjorken flow, upto second order
in late-time expansion. Here "0 is set to 1 and the gauge parameters ↵1 and ↵2 are so chosen
that the event horizon is fixed to 1. The apparent horizon always lies inside the event horizon
(at greater v).
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Appendix D

More details of the bulk scalar field in the

AdS 5 Bjorken flow background

In this appendix, we will provide brief details of the solution of Klein-Gordon equation at

the leading (4.73) and first subleading order (4.78) (for n = 1) and validate the near-horizon

behaviours (4.77) and (4.81) for the same. To be specific, we will consider the example of

d = 4.

At leading order, the homogenous Klein-Gordon equation (4.73) simply takes the form

of that in a static black brane geometry. So we can expand the solution in the standard basis pro-

vided by the ingoing and outgoing modes. Near the horizon, these modes admit the following

expansions

�0,in(v,!, L,~T ) = p0

2
66666641 + ("�1/4

0 � v)

⇣
2

L + ~
2
T � m2"1/2

0 + 3i"�1/4
0 !

⌘

2
⇣
2"1/4

0 � i!
⌘ + O(("�1/4

0 � v)2) + · · ·

3
7777775

(D.1)
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("�1/4
0 � v)

�
i!

2"�1/4
0 �0,out(v,!, L,~T ) = q0

"
1 + ("�1/4

0 � v)

⇣
22

L + 2~2
T � 2m2"1/2

0 � 3i!
⌘

4
⇣
2"1/4

0 + i!
⌘

+O(("�1/4
0 � v)2) + · · ·

#
. (D.2)

Now, without loss of generality, we can set p0 = 1 and q0 = 1. Then, in the limit v ! "�1/4
0 we

reproduce the behaviours given in (4.77).

At the first subleading order (n = 1), the Klein-Gordon equation is given by (4.78)

with

S 1,in = S̃�0,in(v,!, L,~T )

S 1,out = S̃�0,out(v,!, L,~T ) (D.3)

where,

S̃ = �
v

6"1/4
0

 
↵1"

1/4
0 v

⇣
22

Lv + 2~2
T v + 3i!

⌘
+ 2v

⇣
22

L � ~
2
T

⌘
tan�1

⇣
"1/4

0 v
⌘
+ 4(2

L + ~
2
T )"1/4

0 v2

+ (22
L � ~

2
T )v

⇣
log

⇣
"1/2

0 v2 + 1
⌘
+ 2 log

⇣
"1/4

0 v + 1
⌘ ⌘
+ 12i�0"

1/4
0 + 6i"1/4

0 v!
!

�
1
6

v
 
(4"3/4

0 v5 + 2↵1"0v6 + 4"0v6 + 2↵1v2 + 4v2)@2
v + (2"0v5

� ↵1v � 8i�0v + 4"3/4
0 v4 + ↵1"0v5

� 2v)@v

� 12L@L + 6~T@~T � 4~T v@~T@v + 8Lv@L@v

!
. (D.4)

The action of S̃ on �0,out gives rise to singular terms having poles of order one and two at the

horizon, as mentioned in (4.83). Upon removing these poles by suitably fixing ↵1 and �0 as

in (4.84), the particular solution at the first subleading order for the outgoing mode admits the
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near-horizon expansion,

("�1/4
0 � v)

�
i!

2"�1/4
0 �1(p),out(!, v, L,~T ) =

("�1/4
0 � v)

48"1/4
0 + 24i!

 
� 22

L(⇡ � 7 + log(64)) + ~2
T (⇡ + 2 + log(64))

� 2m2"1/2
0 � 4i"1/4

0 ! � !
2
!
+ O(("�1/4

0 � v)2) + · · · (D.5)

However, for the ingoing mode no such divergent terms appear and we simply have the follow-

ing near horizon exapnsion

�1(p),in(!, v, L,~T ) =
 
2

L

⇣
�4"1/4

0 (⇡ � 7 + log(64)) + 2i!(⇡ � 3 + log(64))
⌘

+ ~2
T

⇣
2"1/4

0 (⇡ + 2 + log(64)) � i!(⇡ + 6 + log(64))
⌘

� 4m2"3/4
0 + 2im2"1/2

0 ! + 6"1/4
0 !

2 + 12i"1/2
0 !

! ("�1/4
0 � v)

24
⇣
2"1/4

0 � i!
⌘2

+ O(("�1/4
0 � v)2) + · · · (D.6)

Clearly, in the limit v ! "�1/4
0 , we reproduce (4.81) for d = 4 and n = 1. Similar behaviour

persists at higher orders as well.
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Appendix E

Derivation of Eqs. (4.102)

The source and vev of the dual operator at the boundary are given by

J(�2, ⇣̂2, ~x?2) =
Z

d!dkLdd�2kT e�i!s(�2)ei
⇣
kL ⇣̂2+~kT ·~x?2

⌘
S(�2,!, L,~T ) · Q(!, kL, kT ), (E.1)

hO(�1, ⇣̂1, ~x?1)i = (2�O � d)
Z

d!dkLdd�2kT e�i!s(�1)ei
⇣
kL ⇣̂1+~kT ·~x?1

⌘
R(�1,!, L,~T ) · Q(!, kL, kT ) ,

(E.2)

where

J(�, ⇣̂, ~x?) =

0
BBBBBBBBB@
J1(�, ⇣̂, ~x?)

J2(�, ⇣̂, ~x?)

1
CCCCCCCCCA
, hO(�, ⇣̂, ~x?)i =

0
BBBBBBBBB@
hO1(�, ⇣̂, ~x?)i

hO(�, ⇣̂, ~x?)i

1
CCCCCCCCCA
, Q(!, kL, kT ) =

0
BBBBBBBBB@
p(!, kL, kT )

q(!, kL, kT )

1
CCCCCCCCCA
.

To extract the SK Green’s function, we first invert (E.1) to get,

Q(!, kL, kT ) =
Z

d�2d⇣̂2dd�2x?2 s0(�2) ei!s(�2)e�i
⇣
kL ⇣̂2+~kT ·~x?2

⌘
S
�1(�2,!, L,~T ) · J(�2, ⇣̂2, ~x2?).

(E.3)

Finally, plugging it back to (E.2) and using linear response theory,

hO(�1, ⇣̂1, ~x?1)i =
Z

d�2d⇣̂2dd�2~x?2 eG(�1,�2, ⇣̂1, ⇣̂2, ~x?1, ~x?2) J(�2, ⇣̂2, ~x?2)
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we read o↵ the SK Green’s function

eG(�1,�2, ⇣̂1 � ⇣̂2, ~x?1 � ~x?2) =
Z

d!dkLdd�2kT e�i!(s(�1)�s(�2))

eikL(⇣̂1�⇣̂2)+i~kT ·(~x?1�~x?2) bG(�1,�2,!, kL,~kT ) (E.4)

where,

bG(�1,�2,!, kL,~kT ) =
1
2

 
s0(�2)�3 · R

�
�1,!, L1,~T1

�
· S

�1 �
�2,!, L2,~T2

�

+(transpose, �1 $ �2,!! �!, L1 $ �L2,~T1 $ �~T2)
!

(E.5)

with,

L1 = kL
⌧0

�1
, L2 = kL

⌧0

�2
, ~T1 = ~kT

 
⌧0

�1

!�1/(d�2)

, ~T2 = ~kT

 
⌧0

�2

!�1/(d�2)

.

Firstly, note that the variable conjugate to the momentum ! is the reparametrized time s(�)

whereas the boundary quantites depend on �. This gives rise to the factor s0(�2) in (E.3) as the

Jacobian of the transformation s(�2)! �2. Also note that, due to translational invariance along

the spatial directions, the matrices S and R are independent of ⇣̂ and ~x?. Hence, on carrying

out the momentum integrals in (E.4), we would get eG(�1,�2, ⇣̂1, ⇣̂2, ~x?1, ~x?2) ⌘ eG(�1,�2, ⇣̂1 �

⇣̂2, ~x?1 � ~x?2).
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Appendix F

Transients and �0

The quasinormal frequencies and transients capture the causal response of a black hole to small

perturbations. Typically, for a black hole these are determined using the spectral representation

method. However, here we adapt a simpler approach for the computation of the same.

For the homogeneous transients, consider the field ansatz (4.75) with only the ingoing

modes of a massless scalar, i.e.

�(v,�) =
Z

d! e�i d�1
d�2!�

 
�

⌧0

!i�0(!/"1/d
0 ) 1X

n=0

⇣
"1/d

0 �
⌘�n

�n,in(v,!)p(!) , (F.1)

where �n,in(v,!) obeys the same equations (4.73) and (4.78) (and hence admit the solutions

(4.77) and (4.80)) with L, ~T = 0. The residual gauge parameters ↵i appearing in the subleading

solutions are fixed such that at every order, the event horizon is pinned at vh = "�1/4
0 with

associated Hawking temperature T = "1/4
0 /⇡. For concreteness, we will again consider d = 4.

Recall that, at leading order, the ingoing mode(with zero spatial momentum) admits

the the near-horizon expansion

200



�0,in(v,!) = 1 +
3i"1/4

0 !

2
⇣
2"1/4

0 � i!
⌘ ("�1/4

0 � v) + O(("�1/4
0 � v)2) + · · · (F.2)

To compute the transients, we introduce the dimensionless decay rate � = !/⇡T and

also scale the horizon to set vh = 1. In terms of the dimensionless parameter, the solution (F.2)

when expanded near the boundary v = 0 reads,

�0,in(v = 0, �) ⌘ a0(�) = 1 �
3�

2 (2i + �)
+ · · · (F.3)

The QNM corresponds to a0(�qnm) = 0, implying that there is no contribution to the source from

the leading order field. The lowest QNM frequency obtained in this method turns out to be

�qnm = �2.7668i ± 3.11945 ,

which agrees with the one obtained from spectral representation method upto order 10�10.

Similarly at subleading orders n > 0, the sources can be made to vanish, i.e.

an>0(�qnm) = 0 by suitably fixing �0 (for n = 1) and �n,in (for n > 1) as functions of �qnm.

For example, corresponding to this lowest �qnm, �0(�qnm) obtained by setting a1(�qnm) = 0 at the

first subleading order is,

�0(�qnm) = �0.68669i ± 0.779863 , (F.4)

which turns out to be same as the one computed from the outgoing mode analysis (4.84),

�0 =
!Q

4"1/4
0

=
�qnm

4
= �0.68669i ± 0.779863 . (F.5)

These two results agree up to order 10�9.

See [202] for recent relevant work in the large D limit.
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Appendix G

Determinant Q

The form of the full determinant Q reads as,
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det(Q) =�5/3
⇣
a(�)T1(�) � ã(�)T2(�)

⌘4b(�)b̃(�)
⇣
P(�) + "(�)

⌘⇣
P̃(�) + "̃(�)

⌘

ã(�)cs(�)2c̃s(�)2T1(�)2T2(�)2
 
� 4a(�)3ã(�)3b(�)2b̃(�)2

+ �2
⇣
4a(�)2ã(�)2b(�)2b̃(�)2P(�)P̃(�)

+ 4a(�)4ã(�)4cs(�)2c̃s(�)2(P(�) + "(�))(P̃(�) + "̃(�)) + b(�)4b̃(�)4"(�)"̃(�)

+ r
⇣
4a(�)2b(�)2P(�)

⇣
�3ã(�)2b̃(�)2P̃(�) + 2ã(�)4c̃s(�)2(P̃(�) + "̃(�)) � b̃(�)4"̃(�)

⌘

+8a(�)4ã(�)2cs(�)2(P(�) + "(�))
⇣
b̃(�)2P̃(�) � 2ã(�)2c̃s(�)2(P̃(�) + "̃(�))

⌘

�2b(�)4b̃(�)2"(�)
⇣
2ã(�)2P̃(�) + b̃(�)2"̃(�)

⌘⌘

+ r2
⇣
�4a(�)2b(�)2P(�) + 4a(�)4cs(�)2(P(�) + "(�)) � b(�)4"(�)

⌘

⇣
�4ã(�)2b̃(�)2P̃(�) + 4ã(�)4c̃s(�)2(P̃(�) + "̃(�)) � b̃(�)4"̃(�)

⌘ ⌘

+ �4
⇣
� a(�)ã(�)b(�)2b̃(�)2

⇣
cs(�)2P(�)"(�) + cs(�)2"(�)2 + P(�)2

⌘

⇣
c̃s(�)2P̃(�)"̃(�) + c̃s(�)2"̃(�)2 + P̃(�)2

⌘

+ 6ra(�)ã(�)b(�)2b̃(�)2
⇣
cs(�)2P(�)"(�) + cs(�)2"(�)2 + P(�)2

⌘

⇣
c̃s(�)2P̃(�)"̃(�) + c̃s(�)2"̃(�)2 + P̃(�)2

⌘

� 9r2a(�)ã(�)b(�)2b̃(�)2
⇣
cs(�)2P(�)"(�) + cs(�)2"(�)2 + P(�)2

⌘

⇣
c̃s(�)2P̃(�)"̃(�) + c̃s(�)2"̃(�)2 + P̃(�)2

⌘ ⌘!
(G.1)
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Appendix H

Equations for isentropic thermalisation in

modified MIS

Here we give the explicit form of the ward identity and MIS equations of the subsystems and

the coupling equations.

• The Ward identity (5.5) reads as,

0 =6"0(t)a11(t)a33(t)
⇣
a22(t)2a33(t)2

� a23(t)2
⌘

+ "(t)a33(t)
⇣
a22(t)a33(t)

�
a22(t)

�
3a11(t)a033(t) � 8a33(t)a011(t)

�
+ 3a11(t)a33(t)a022(t)

�

+ 8a23(t)2a011(t) � 3a11(t)a23(t)a023(t)
⌘

+ ⇡d(t)a11(t)
⇣
� a22(t)a33(t)3a022(t) + a22(t)2a33(t)2a033(t) + a23(t)

�
a33(t)a023(t) � 2a23(t)a033(t)

� ⌘

� 2⇡od(t)a11(t)a22(t)
⇣
a23(t)

�
a33(t)a022(t) + a22(t)a033(t)

�
� a22(t)a33(t)a023(t)

⌘
(H.1)

• The two MIS equations (2.50) are
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0 =⇡0d(t)
⇣
⌧⇡a23(t)2a33(t)2

� ⌧⇡a22(t)2a33(t)4
⌘
+ ⇡0od(t)

⇣
2⌧⇡a23(t)3

� 2⌧⇡a22(t)2a23(t)a33(t)2
⌘

+ ⇡d(t)
⇣
a11(t)a33(t)2

⇣
a23(t)2

� a22(t)2a33(t)2
⌘ ⌘
+ 2⇡od(t)

⇣
a11(t)a23(t)

⇣
a23(t)2

� a22(t)2a33(t)2
⌘ ⌘

+ ⌘
⇣
2a22(t)a33(t)4a022(t) � 2a22(t)2a33(t)3a033(t) � 2a23(t)a33(t)2a023(t) + 4a23(t)2a33(t)a033(t)

⌘

(H.2)

0 =⇡0d(t)
⇣
⌧⇡a22(t)2a23(t)a33(t)3

� ⌧⇡a23(t)3a33(t)
⌘
+ ⇡0od(t)

⇣
2⌧⇡a22(t)4a33(t)3

� 2⌧⇡a22(t)2a23(t)2a33(t)
⌘

+ ⇡od(t)
⇣
2a11(t)a22(t)2a33(t)

⇣
a22(t)2a33(t)2

� a23(t)2
⌘
� 2⌧⇡a22(t)a23(t)2a33(t)a022(t)

+ 2⌧⇡a22(t)3a33(t)3a022(t) + 2⌧⇡a22(t)2a23(t)2a033(t) � 2⌧⇡a22(t)4a33(t)2a033(t)
⌘

+ ⇡d(t)
⇣
a11(t)a23(t)a33(t)

⇣
a22(t)2a33(t)2

� a23(t)2
⌘
+ ⌧⇡a22(t)2a33(t)3a023(t)

� 2⌧⇡a22(t)2a23(t)a33(t)2a033(t) � ⌧⇡a23(t)2a33(t)a023(t) + 2⌧⇡a23(t)3a033(t)
⌘

+ ⌘
⇣
� 2a22(t)a23(t)a33(t)3a022(t) + 2a22(t)2a33(t)3a023(t) � 2a22(t)2a23(t)a33(t)2a033(t)

⌘

(H.3)

• The coupling equations are:
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1 � a11(t)2 = ã11(t)
p

ã22(t)2ã33(t)2 � ã23(t)2
⇣
�
"̃(t)

ã11(t)2 + �r
⇣
�

"̃(t)
ã11(t)2

+
ã33(t)2((t) � ⇡̃d(t)) � 2ã23(t)⇡̃od(t)

2ã22(t)2ã33(t)2 � 2ã23(t)2

+
ã22(t)2

⇣
ã33(t)2(⇡̃d(t) + "̃(t)) � 2ã23(t)⇡̃od(t)

⌘
� 2ã23(t)2⇡̃d(t)

2ã22(t)2ã33(t)4 � 2ã23(t)2ã33(t)2

⌘⌘
(H.4)

a22(t)2
� 1 = ã11(t)

p
ã22(t)2ã33(t)2 � ã23(t)2

⇣
�

⇣
ã33(t)2("̃(t) � ⇡̃d(t)) � 2ã23(t)⇡̃od(t)

⌘

2ã22(t)2ã33(t)2 � 2ã23(t)2

� �r
⇣
�

"̃(t)
ã11(t)2 +

ã33(t)2("̃(t) � ⇡̃d(t)) � 2ã23(t)⇡̃od(t)
2ã22(t)2ã33(t)2 � 2ã23(t)2

+
ã22(t)2

⇣
ã33(t)2(⇡̃d(t) + "̃(t)) � 2ã23(t)⇡̃od(t)

⌘
� 2ã23(t)2⇡̃d(t)

2ã22(t)2ã33(t)4 � 2ã23(t)2ã33(t)2

⌘⌘
(H.5)

a33(t)2
� 1 = ã11(t)

p
ã22(t)2ã33(t)2 � ã23(t)2

⇣
�

(ã22(t)2(ã33(t)2(⇡̃d(t) + "̃(t))
2ã22(t)2ã33(t)4 � 2ã23(t)2ã33(t)2

+ �
�2ã23(t)⇡̃od(t)) � 2ã23(t)2⇡̃d(t))
2ã22(t)2ã33(t)4 � 2ã23(t)2ã33(t)2

� �r
⇣
�

"̃(t)
ã11(t)2 +

ã33(t)2("̃(t) � ⇡̃d(t)) � 2ã23(t)⇡̃od(t)
2ã22(t)2ã33(t)2 � 2ã23(t)2

+
ã22(t)2

⇣
ã33(t)2(⇡̃d(t) + "̃(t)) � 2ã23(t)⇡̃od(t)

⌘
� 2ã23(t)2⇡̃d(t)

2ã22(t)2ã33(t)4 � 2ã23(t)2ã33(t)2

⌘⌘
(H.6)

a23(t) = �
ã11(t)

p
ã22(t)2ã33(t)2 � ã23(t)2

⇣
2ã22(t)2⇡̃od(t) + ã23(t)(⇡̃d(t) � "̃(t))

⌘

2ã22(t)2ã33(t)2 � 2ã23(t)2 (H.7)

• Similarly the seven equations for the other subsystem can be written by replacing

a11(t)! ã11(t), a22(t)! ã22(t), a33(t)! ã33(t), a23(t)! ã23(t), "(t)! "̃(t), ⇡d(t)!

⇡̃d(t), ⇡od(t)! ⇡̃od(t) and vice versa.
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[80] Peter Kostädt and Mario Liu. Causality and stability of the relativistic di↵usion equation.

Phys. Rev. D, 62:023003, Jun 2000.

[81] Paul Romatschke. Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy.

Class. Quant. Grav., 27:025006, 2010.

[82] Sayantani Bhattacharyya, R. Loganayagam, Ipsita Mandal, Shiraz Minwalla, and Ankit

Sharma. Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions.

JHEP, 12:116, 2008.

[83] Mukund Rangamani. Gravity and Hydrodynamics: Lectures on the fluid-gravity corre-

spondence. Class. Quant. Grav., 26:224003, 2009.

[84] Amaresh Jaiswal. Relativistic third-order dissipative fluid dynamics from kinetic theory.

Phys. Rev. C, 88:021903, 2013.

[85] Michael Haack and Amos Yarom. Nonlinear viscous hydrodynamics in various dimen-

sions using AdS/CFT. JHEP, 10:063, 2008.

[86] R. Loganayagam. Entropy Current in Conformal Hydrodynamics. JHEP, 05:087, 2008.

[87] Sangyong Jeon and Ulrich Heinz. Introduction to Hydrodynamics. Int. J. Mod. Phys. E,

24(10):1530010, 2015.

[88] Inês Aniceto, Ricardo Schiappa, and Marcel Vonk. The resurgence of instantons in string

theory, 2011.

214



[89] Hiroaki S. Yamada and Kensuke S. Ikeda. A numerical test of pade approximation for

some functions with singularity, 2013.
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