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Abstract

Several machine learning (ML) projects on anomaly detec-
tion and optimization were recently started at the Advanced
Photon Source (APS). To improve training data quality, and
accommodate the upcoming APS Upgrade changes, a large
increase in the number and size of log files is expected. Re-
cent studies found performance bottlenecks in the current log
analysis architecture, especially for large ML analytics tasks.
We explored several approaches to improve both data den-
sity and throughput. First, we swapped lzma compression
algorithm for modern alternatives like zstd and lz4, scanning
presets to find an optimal one that increased decompression
throughput by 10x for a 20% file size increase. Several lossy
compression schemes were attempted to take advantage of
limited device resolution and ML quantization, yielding fur-
ther size decreases with reasonable fidelity losses. Finally,
we tested several analytics and time-series databases, finding
them faster for both linear and random-access reads while
maintaining good compression ratios. They also enabled
offloading analytics computations to server nodes, reducing
network load. Our results indicate that with some effort, it is
possible to increase the amount of logged data significantly
while improving ML analytics performance.

INTRODUCTION

Particle accelerators demand tight tolerances on accuracy
and stability of beam parameters, which increases the time
and cost of conventional expert-driven tuning, troubleshoot-
ing, and fault analysis. Efficiently automating these pro-
cesses has motivated recent work on a variety of ML-aided
methods for optimization and anomaly detection, which
requires historical logs and/or real-time data for both pre-
training the algorithm and for the immediate functionality.
For example, an anomaly detection routine is trained on
labelled historical malfunctions and then analyzes incom-
ing data for similar signals. So far, all project at APS have
relied on the standard logging infrastructure with reason-
able results. However, several areas of improvement have
been identified. In this paper we prototype solutions to in-
crease the amount of stored data and its analysis speed, with
the goal of smoothly integrating ML-specific tools into the
upcoming APS-U logging infrastructure.
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CURRENT APS LOGGING SYSTEM
The APS accelerator complex is comprised of a large va-

riety of physical devices with various interfaces and control
protocols. These devices read and write through the EPICS
control system, which presents a unified I/O interface to the
users. A portion of the read data is stored in ‘logs’. This
enables debugging, fault analysis, and many other business-
critical processes.

Conceptually, logs are time-series objects containing val-
ues (floats, ints, arrays, etc.) collection timestamps (floats,
ints). Storing every read result in logs is not feasible due to
storage requirements, and thus a manually configured subset
is retained. APS logging system uses a collection of tools
internally developed and maintained by the AOP group [1–
3]. It is comprised of several stages:

• Configuration files are created with PV name, storage
location, and acquisition parameters;

• PVs are read [4] using a server cluster, storing data into
uncompressed SDDS files;

• Monthly, data is merged into compressed SDDS files;

• On schedule, old data is data subsampled or pruned.

ML-related limitations
Preliminary work on using logger data for anomaly detec-

tion and to initialize optimizers has recently been recently
performed [5–7]. Several challenges have been identified
in terms of read and search performance. Primary causes
were determined to be the slow lzma decompression com-
bined with overly broad queries (many devices) and lack
of temporal indexing (beyond monthly chunking). Given
small average file size of 0.1-10MB, and network file system
latency, there are fundamental limits to how much improve-
ment can be obtained without a new architecture.

Planned APS-U Apgrades
After extensive use of the current logging system over pre-

vious decades, it is quite robust to various breakdowns and
has no fundamental issues that prevent its continued usage
in APS-U, which is the current plan. In addition to standard
devices, APS-U will introduce new high-speed data sources
through ‘DAQ’ system for working with BPMs, power sup-
plies, and other fast data sources [8]. Subsampled DAQ data
will be exposed though DAQ plugins to the control system,
and thus logged similarly to standard EPICS devices [9].
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Figure 1: Performance of lossless algorithms applied to 2022 APS logger data. Numbers indicate preset (level). Latest
library version as of April 2023 were used with default parameters, except lgwin=24 for brotli.

STORAGE DENSITY IMPROVEMENTS
The need for a new ML data architecture is at odds with

maintaining interoperability. We decided to approach this in
two ways, first of which was improving standard logging by
increasing storage density and decompression performance
through use of new lossless and lossy formats.

Lossless Compression
Compression algorithms have seen significant progress in

the last decade, driven by data streaming and processing re-
quirements. One such advance is the asymmetric numerical
systems (ANS) entropy encoding [10], upon which formats
like ZStandard (zstd) [11] rely for their performance gains.

Currently, APS logs are compressed with the lzma algo-
rithm (.xz container) that is implemented by directly inte-
grating liblzma sources into SDDSlib at a hardcoded com-
pression level of 2 [12]. We reviewed various compression
formats for those with high performance and good project
activity, with final candidates being gzip, lzma, lz4, zstd, and
brotli. We also considered using FLAC (used in lossless au-
dio and for generic time series), but found 32-bit depth limit
too small. Data containers like HDF5 and Parquet, which
are quite popular in scientific applications, rely on above for-
mats for compression (along with some data shuffling/delta
encoding) and so were not tested explicitly. Results for a
selection of 80,000 (∼ 41GB compressed) randomly selected
2022 APS log files are shown in Fig. 1.

Several interesting trends are observed. It is clear that
lzma is still the best available option in terms of compres-
sion ratio. Consistent with design expectations, lzma de-
compression speed is not affected by preset. This suggest a
trivial change - use compression level 4+ instead of 2 within

SDDSlib for logged data only, improving compression ratio
from 8x to 10x with no impact on read performance.

As for other algorithms, a wide distribution is observed
with different performance to compression tradeoffs. Over-
all, several codecs end up Pareto-optimal (lzma - brotli - zstd
- lz4) as one exchanges compression ratio for decompression
speed. Recalling the performance limitations outlined pre-
viously, for read-dominated operations zstd at compression
levels 0-3 strikes the best balance, with ∼500MB/s of uncom-
pressed data at 6x ratio corresponding nicely to ∼120MB/s
network throughput of 1Gb/s connection.

Lossy compression
Above methods tried to preserve the full float64 preci-

sion of both the value and the timestamp. However, this
format is a result of software conversion during logging
and does not represent the (significantly lower) underlying
device precision. Moreover, for many analyses float64 pre-
cision is either excessive or will get lost anyways during
neural network processing. Thus, lossy compression can
be harmless if fidelity loss can be limited. We first tried
downsampling to float32 format, reducing storage require-
ments for both raw and compressed forms. However, issues
were encountered with timestamps - the machine precision
of float32 (relative spacing between two closest numbers)
is 𝜖=1e-7, corresponding to a step of ∼ 100s at the current
UNIX timestamp of ∼1.6B, an unacceptable error. Thus, we
only converted value columns. A better way to deal with
large offsets is to use specialized scientific lossy compres-
sion codecs, like FZP (later discarded as authors recommend
against 1D use) and SZ [13]. Lossy compression results on
2022 data are shown in Fig. 2, and indicate that there is little
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to be gained from float32 conversion. SZ however is promis-
ing, with 50% size reduction at quite reasonable 1e-5/1e-7
relative/absolute tolerance thresholds. By tuning the exact
parameters based on device type, further improvements can
likely be achieved.

Figure 2: Lossy compression results. Relative and absolute
tolerances (rt/at) were used in ABS_OR_REL mode, mean-
ing one but not both had to be satisfied.

ANALYTICS AND DATA PROCESSING
Our second approach was to mirror logger data into a

standalone analytics database where it can be analyzed inter-
nally. We considered using Archiver Appliance [14], but its’
architecture is also not optimized for ML tasks and would
put extra load on the IOCs.

With the explosion of ‘big data’, last decades saw devel-
opment of specialized analytics databases, both open-source
ones like ClickHouse (CH), InfluxDB, and TimescaleDB,
as well as commercial ones like kdb+. These databases
combine column-oriented storage with compression and ad-
vanced query languages. Their use in particle physics was
evaluated in 2020 [15], but given our data format and new
software features, we did an independent evaluation.

For the 3 open-source databases, we inserted 2022 APS
logs while following the suggested format for data lay-
out. InfluxDB demonstrated poor compression efficiency
(>500 GB per 10000 devices), and thus was quickly excluded.
TimescaleDB insertion performance was unacceptably slow
with multiple concurrent writes, and it was also excluded.
ClickHouse performed well, and uniquely had per-column
storage tuning [16]. We scanned compression parameters
on a set of 8000 devices, with results shown in Fig. 3.

Based on the above benchmark, overall configuration was
selected as ZSTD(3) for all columns, with DoubleDelta en-
coding applied for time column. With these settings, all 2022
data was inserted at a total size of 400 GB. Several realis-
tic benchmarks were implemented, mimicking previously
discussed ML workloads. Results for a set of 50 random
devices are summarized in Table 1. In both cases, execution
time included any parsing required to get data into NumPy
arrays, and caching was left on.

Figure 3: CH relative compression ratio (higher=better) of
a representative APS log dataset. Abbreviations: D=Delta,
DD=DoubleDelta, rest as defined in CH manual.

Table 1: Benchmark Results for Typical ML Tasks

Task Direct read CH read

Read a year of data 91.9s 75.3s
Read specific timestamp 7.0s 9.4s
Yearly average 90.8s 9.3s
Mean absolute deviation 91.7s 9.2s
Overall median (all devices) 26.8s 0.2s

Overall, CH achieves comparable linear and random read
performance but wins on tasks where indices/statistics can
be leveraged, making it highly suited for analytics.

CONCLUSION
Efficient collection, storage, and analysis of logs is im-

portant for both standard and ML-aided accelerator tools.
We prototyped potential improvements to the APS logging
architecture that enable more data collection and faster anal-
ysis. For existing logging, compression ratio could either be
increased from 8x to 10x at same speed, or decompression
speed increased by 10x for a 20% increase in file size. For
standalone tools, by using a modern analytics database Click-
House we were able to offload and speed up data processing
for a number of typical queries. Overall, we believe there
is a clear path forward to collect and process an order of
magnitude more data in the APS-U era.
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