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Abstract We investigate the link between the warp function and the potential in
Dirac-Born-Infeld (DBI) power-law cosmologies. We give a prescription to take
advantage of the fact that there is always a choice of potential resulting in a con-
stant ratio between pressure and energy density for a given a warp factor. We illus-
trate the method with several examples, and complete the investigation by showing
how symmetries can be used to generate new DBI solutions from existing ones.
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1 Introduction

The idea that the inflaton might be an excitation of a D-brane1 [1] in the form of
an open string has attracted quite a few researchers (see [2; 3; 4; 5; 6; 7; 8; 9; 10;
11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22] and references therein for regular
papers and [23] for a review). Specifically, the inflaton could be a mode describing
the position of a D3-brane wandering (radially) in a ten-dimensional space–time
with a warped metric. Part of the interest of this interpretation of inflation is due to
the fact that in these scenarios, inflation can proceed with much steeper potentials
than in the standard weakly coupled slow roll inflation model.

The motion of the brane seems to admit an effective good description in terms
of a Dirac-Born-Infeld action coupled to gravity [10], and it results in a scalar field
theory with non-canonical kinetic terms. The usual assumption is that the metric
on the brane is a flat Friedman-Robertson-Walker (FRW) one, and it is usual to
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1 An extended object to which the end points of open strings are attached, and which repre-
sents a
non-perturbative feature of some string theory flavors.
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take advantage of the perfect fluid interpretation of the energy-momentum tensor.
The modifications with respect to canonical scalar field models are related to the
speed of the wandering brane, and investigations using inflationary parameters
have been carried out to estimate how this non-canonical features in the kinetic
terms of the model affect the cosmological observables [8; 9; 10; 11; 12; 13; 14;
15; 16; 17; 18; 19; 20; 24; 25; 26; 27].

Power-law solutions for the background evolution of the Universe have physi-
cal motivation; on the one hand, the perturbation equations get considerably sim-
plified, and on the other hand, such evolutions play a preminent role as asymptotic
equilibrium states [28]. In brane inflation scenarios, there is one more ingredient
of interest, as brane anhiliation seems to provide a natural end to power-law in-
flation [29; 30; 31; 32]. In the context of DBI inflation they have received some
interest [8; 21; 22] and it has been shown that they can give rise to a significant
(and thus distinctive) degree of non-gaussianity in the initial conditions of pri-
mordial perturbations [19; 21]. Additionally, the equation of state parameter in
the corresponding fluid picture of power-law inflation in DBI models may provide
hints about high energy features, for instance, in the scenario of [8], it is associated
with the mass of the inflaton.

Constructions of DBI power-law models exploit the possibilities offered by the
two degrees of freedom available: one is the warp factor of the metric, which is de-
noted as f (φ), whereas the other is the inflaton potential V (φ). One could fix the
two available degrees of freedom so as to result in the constant equation of state
parameter (pressure to energy density ratio) characterizing power-law cosmolog-
ical models [22]. In this paper, we provide an algorithm to exploit such corre-
spondence towards generation of DBI solutions. The novelty and relevance of our
method is that, as far as we are concerned, no exact (genuinely) DBI solutions ex-
ist in the literature, not even power-law ones. Nevertheless, some approximations
and a certain degree of compromise will perhaps be required [8; 10; 16; 21; 22]
if one is to enforce power-law solutions corresponding to a particular choice of
either the warp factor or the potential.

Specifically, we present expressions leading to a constructive recipe for DBI
power-law cosmologies which allows accommodating that sort of solutions in,
for instance, exponential potential models with adequate warp factors. We then
consider other cases, which lead in asymptotic regimes to the AdS throat warp
factor [33], or to a generalization of the inverse power-law potential studied in
connection with tachyon cosmologies [34].

In the course of the discussion we briefly comment on the conditions for the
warp function f to be positive (the opposite case is not consistent from the string
theory point of view, but it is admissible in the field theory spirit). Finally, we also
discuss about the possibility of generating further solutions from existing ones un-
der the use of symmetries, and how phantom DBI cosmologies could fit into this
picture.

2 DBI setting

As mentioned in the Introduction, string theory provides a theoretical framework
in which inflation can proceed without having to meet the tight requirement of the
potential being rather flat as in conventional inflation models. According to this
proposal, cosmic accelerated expansion (or inflation) can be the manifestation of
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the motion of an extended object (a D3-brane) through a ten-dimensional space–
time with a warped metric (see for e.g. [13]):

ds2
10 =

1√
f (φ)

gµν dxµ dxν +
√

f (φ)gmndymdyn. (1)

Here φ is a single radial combination of the internal coordinates ym.
Effectively, our scenario is that of a four-dimensional spatially flat FRW space-

time filled with a non-canonical scalar field. Using the customary perfect fluid
interpretation we set

ρ =
γ2

1+ γ
φ̇

2 +V (φ), (2)

p =
γ

1+ γ
φ̇

2−V (φ), (3)

with

γ =
1√

1− f (φ)φ̇ 2
, (4)

where, in principle, f and V are arbitrary functions. Usage of the symbol γ was
originally motivated by its analogy to the Lorentz factor of Special Relativity,
given that

√
f (φ)φ̇ is interpreted as the proper velocity of the brane [8]. Accord-

ing to this, the scalar field cannot roll down arbitrarily fast as the speed threshold
leading to nonanalytic behavior of γ would be trespassed. The slow roll limit of
the model corresponds to f (φ)φ̇ 2 � 1, and in this nonrelativistic motion regime
the familiar expressions for the energy the energy density and pressure of the
canonical scalar field are recovered.

Assuming for the above fluid a barotropic equation of state of the form p =
(Γ −1)ρ , we get

Γ =− 2Ḣ
3H2 =

γφ̇ 2

ρ
, (5)

and the Einstein equations read

3H2 =
γφ̇ 2

Γ
, (6)

−2Ḣ = ρ + p≡ γφ̇
2. (7)

The last two equations provide all the basic information needed to elaborate our
very general description of the realization of power-law inflation in this theoretical
framework.
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3 Power-law solutions

Using Eqs. (5)–(7), the energy conservation equation can be written as(
γφ̇ 2

Γ

).

+3Hγφ̇
2 = 0. (8)

For Γ = Γ0, upon integration we will obtain from Eq. (5) the power-law scale
factor a ∝ t2/3Γ0 . This means in this case the conservation equation gets readily
integrated resulting in γφ̇ 2 = c/a3Γ0 , where c is an integration constant which gets
fixed upon replacement into the Friedmann equation, so that finally

a = t2/3Γ0 , γφ̇
2 =

4
3Γ0 t2 . (9)

The idea behind the procedure for reconstructing the warp factor f and the
potential V is giving the scalar field as an invertible function of time, φ = φ(t),
so that t = t(φ) can be obtained. Obviously, one can also compute the derivative
of the field with respect to time and then reexpress it in terms of the field, φ̇(t) =
φ̇(t(φ)). This means that, if we are able to express both f and V in terms of time
and the derivative of the field, then we will have solved the problem of finding f
and V as functions of φ .

From Eq. (4) one can calculate the function f

f =
1

φ̇ 2

[
1−

9Γ 2
0

16
t4

φ̇
4
]
, (10)

whereas, in the case Γ = Γ0, and from Eqs. (2), (5) and (10), one can easily solve
for the potential:

V =
4

3Γ0 t2

[
1
Γ0
− 4

4+3Γ0 t2φ̇ 2

]
. (11)

Once again, the known result that for any throat geometry there is a potential
which leads to power-law inflation for some range of parameters has become man-
ifest. This may be viewed as a generalization to the well-known facts that for f = 0
(canonical scalar field models) power-law inflation is possible if the potential is
exponential [35] or the analogous result for the case f = 1 (tachyon cosmolo-
gies) in which such kind of inflation is obtained with inverse square potentials
[36; 37; 38].

The novelty here is that we find analytical correspondences between the warp
factor and the potential for power-law cases, without needing to resort to the ultra-
relativistic regime simplification. Once a given time dependence of φ is chosen,
the geometry of the warped metric can be recovered, the existence of inflation
depends on the value of Γ0 entering f as a free parameter, and only values of Γ0
giving a large enough f will lead to inflationary behavior.

On the other hand, if one is to stick to an interpretation based on a string theory
setting, there will be a restriction in the sign of the warp factor f , as it could be non
strictly positive for arbitrary choices of φ . This would be problematic because the
warped metric depends on f through its square root, so in the case of a negative
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warp factor the entries of the metric would become imaginary and one would need
to consider some sort of analytic continuation, but we are not aware of results
showing how one can proceed in this direction.

There is however, the possibility to consider DBI actions from a field theory
point of view, in which case a negative f does not represent a problem. This is
perfectly consistent and work along these lines has been carried out in [39], but one
could argue the interest of providing a string theory interpretation of this negative
f models.

Having made these remarks, let us return to the main line we pursue here. In
the next section we are going to exploit the above presented algorithm to elaborate
on three examples.

3.1 Example 1

Let us begin with the simple choice leading to the exponential (or Liouville) po-
tential. It stems from the input

φ =
2
A

ln |t|. (12)

with A a constant. Incidentally, it also leads to an f expressed in terms of a single
exponential. We find it also convenient to rearrange the parameters so that the
relation with the canonical scalar field becomes clearer. From the second bit of
Eq. (9) we find the relation A2 = 3Γ0γ0, with γ0 a constant. Then, combining Eqs.
(10), (11) and (12) we get f and V ; explicitly:

f =
A2

4

[
1− 1

γ2
0

]
eAφ , (13)

V =
4γ2

0
A2

[
3

A2 −
1

1+ γ0

]
e−Aφ . (14)

Finally, the scale factor gets reexpressed in the following fashion:

a = t2γ0/A2
. (15)

This way of formulating the solution is very interesting, as in the γ0 = 1 limit, that
is, for f = 0, the expressions just above go over to their simplified form for the
canonical scalar field. This is concordant with the novel way of writing the energy
density and pressure of the DBI fluid we have put forward: the new parametriza-
tions (2, 3) recover their conventional scalar field form for γ = γ0 = 1. Note that,
as in the f = 0 limit a blow-up of the warped metric occurs, the aboved discussed
string theory inspired interpretation is not admitted in such case; but the field the-
ory interpretation remains of course valid.



6 L. P. Chimento, R. Lazkoz

3.2 Example 2

This example we consider now corresponds to

φ = φ0 tn, φ0 = cons, (16)

and it follows that

γ =
4

3Γ0n2φ 2 . (17)

Once more, on using the latter one gets,

f =
φ 2/n−2

n2φ
2/n
0

[
1−

9Γ 2
0 n4

16
φ

4
]
, (18)

and

V =
4φ

2/n
0

3Γ0φ 2/n

[
1
Γ0
− 4

4+3Γ0n2φ 2

]
. (19)

In the large φ regime f goes like a negative power of φ for −1 < n < 0. Actually,
the large φ regime for this example is subject to the interpretational restrictions
mentioned above as it characterized by f < 0, and so the scheme is only valid
in the field theory interpretation. In contrast, in the small φ regime f goes like a
negative power of φ for n > 1. Interestingly, the AdS throat often explored in the
literature, i.e. f ∼ φ−4, can be realized in our model either in a large φ regime if
n =−1/3, or in a small φ regime if we rather consider n =−1.

The asymptotic behavior of the potential with respect to the scalar field φ is
simpler, as both in the large and small φ regimes we have V ∼ φ−2/n.

3.3 Example 3

We now start off from the choice

φ =
2
A

ln |B+ tn|. (20)

with A a constant. Some straightforward steps involving use of Eqs. (10,11) allow
obtaining f and V as functions of φ . Our field choice leads to

f =
A2eAφ

4n2
(

e
Aφ

2 −B
)2− 2

n

(
1−

9n4Γ 2
0

A4e2Aφ

(
e

Aφ

2 −B
)4

)
(21)

and

V =
4

3Γ0

 1
Γ0
− A2eAφ

eAφ A2 +3
(

B− e
Aφ

2

)2
n2Γ0

×(
e

Aφ

2 −B
)− 2

n
(22)

If φ is non-negative, then strict positiveness of the warp factor is guaranteed if
3n2Γ0
max(1,B2) < A2.
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3.3.1 Case B = 1

For this particular case, and in the regime 1� tn, one approximately has

f ∼ φ
−2+2/n. (23)

V ∼ φ
−2/n, (24)

which on the other hand are the same asymptotic expressions one has for the above
example in its small field regime; this is consistent, as the φ(t) expressions of the
last two examples coincide at first order in the low field (1� tn) regime.

If we make in this regime the extra restriction that n ≥ 1 in either Example 2
or 3, then the form of the potential becomes approximately of inverse square type.
It can, thus, be viewed as a generalization of the 1/φ 2 for k-essence and tachyon
cosmologies (Figs. 1, 2).

3.3.2 Case B 6= 1

For an arbitrary model the speed limit φ̇ 2≤ f−1(φ) applies. In the B = 1 cases with
n > 1, this restriction makes it impossible for the scalar field to reach the origin
in finite time. This problem is absent, however, from their B 6= 1 counterparts.
This is advantageous in connection with reheating, as provided the potential has
a minimum at the origin, then the field will be able to oscillate around it and
and reheating will proceed. One can check that the necessary condition for the
potentials discussed in this example to have a minimum at that location is

Γ =
2A2

A
(

A±
√

12(B−1)2Bn3 +A2
)
−6(B−1)2n2

(25)

Of course, the power-law solutions one can obtain with the warp factor and poten-
tial presented in this example are not a representation of this oscillatory behavior,
we just want to bring about some nice properties of this model which make it inter-
esting beyond its mere ability to accommodate power-law expansionary behavior.

4 Duality

The interest of form-invariance transformations as a method to obtain new exact
solutions to the Einstein equations from already existing ones has been shown
before [40; 41; 42; 43]. In the context of spatially flat perfect fluid FRW cosmolo-
gies, such transformations can be viewed as a prescription relating the quantities a,
H, ρ and p in a given initial scenario to quantities ā, H̄, ρ̄ and p̄ corresponding to a
new cosmological model. As our investigation of power-law DBI cosmologies are
concerned, there is a class of form-invariance transformations which stands out, it
is the one

Fig. 1 Warp factor corresponding to Example 3 with Γ0 = 0.1, A = 3, and respectively n = 3
and B = 0.2 (upper figure) and n = 4 and B = 0.7 and n = 4 (lower figure)
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Fig. 2 Warp factor corresponding to Example 3 with Γ0 = 0.9, A = 3, and respectively n =−1
and B = 1

given by H → H̄ = ηH, ρ → ρ̄ = η2ρ , p + ρ → p̄ + ρ̄ = η(p + ρ) for an ar-
bitrary real constant η . As will be shown below it allows generating new power-
law DBI cosmologies from existing ones, and if we particularize it further to the
case η = −1 we can consider it as a duality transformation, which provides a
method for phantomization (the process of transforming a conventional cosmolog-
ical model into a phantom one by performing a form-invariance transformation).
Back to the general constant η case, we would like to stress that our method pro-
vides the means to generate inflationary power-law DBI cosmologies from non-
inflationary ones.

Let us review the method from the very general perspective of a flat FRW
spacetime filled with a perfect fluid. The Einstein equations read

3H2 = ρ, (26)
ρ̇ +3H(ρ + p) = 0, (27)

where ρ is the energy density, p the pressure and H = ȧ/a are invariant form under
the symmetry transformations

ρ̄ = ρ̄(ρ) (28)

H̄ =
(

ρ̄

ρ

)1/2

H (29)

p̄ =−ρ̄ +
(

ρ

ρ̄

)1/2

(ρ + p)
dρ̄

dρ
. (30)

Here ρ̄ = ρ̄(ρ) is assumed to be an invertible function. The above result allows to
conclude the FRW equations for a perfect fluid have a form-invariance symmetry.
The symmetry transformations (28)–(30) define a continuous Lie group which can
be used to solve the FRW equations and get accelerated expansion scenarios, as
will be seen below.

The symmetries we will exploit are of three different kinds: those with |η |> 1
make the energy density of the universe bigger, those with η = ±1 do not alter
it, and those with |η |< 1 do decrease. According with this taxonomy, and assum-
ing the seed cosmological model is an expanding one (H > 0), the cosmological
model produced by the transformation will also be an expanding one if η > 0,
but on the contrary will be a contracting one for η < 0. We call dual symmetry
to the special transformation obtained with η = −1, and it ensures the existence
of a duality between a contracting universe filled with an ordinary fluid and an
expanding universe driven by phantom energy.

Now, it is interesting to investigate the transformation properties of the relevant
physical parameters under the symmetry transformations (28)–(30). For instance,
the deceleration parameter q(t) =−H−2(ä/a), transforms as

q̄+1 =
(

ρ

ρ̄

)3/2 dρ̄

dρ
(q+1). (31)
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In addition, if we consider perfect fluids with equations of state p = (Γ −1)ρ

and p̄ =
(
Γ̄ −1

)
ρ̄ respectively, then the barotropic indices Γ and Γ̄ transform as
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Γ̄ =
(

ρ

ρ̄

)3/2 dρ̄

dρ
Γ . (32)

Besides, using (31) and (32) we get a form invariant relation (q̄ + 1)/Γ̄ = (q +
1)/Γ between the deceleration parameter and the barotropic index. As these re-
sults are readily applicable to any flat FRW power-law cosmological model (re-
gardless of the theoretical framework it fits in), they can be indeed exploited in
connection with the DBI cosmologies considered in the previous sections.

In general, inflationary solutions occur when ä > 0; this means that the
expansion is dominated by a gravitationally repulsive stress that violates the strong
energy condition, so that ρ + 3p < 0. Imposing this condition on (31) we obtain
dρ̄(−1/2)/dρ−1/2 < 1/(q + 1), which for a non-accelerated cosmological model
with q≈ const > 0, gives ρ̄ > (q+1)2ρ . Such model, with q̄ < 0, is accelerated.
This can be understood in terms of assisted inflation, as one achieves inflation by
enhancing the energy density of the field. Recall we are considering the possi-
bility of having DBI cosmologies displaying inflation, it should be clear that our
transformations can be used to generate new combination of geometry (throat)
and potential with inflation starting perhaps from others without that sort of ex-
pansionary behavior, so the solution generation ability gets significantly enlarged.

So far we have progressed in a formal and rather general way, but it is con-
venient to provide further insight into the details of the transformation in the case
we are concerned with. In order to avoid that the energy density and pressure turn
into complex quantities we are going to impose the condition that the function
γ remains invariant a given duality transformation; this implies the product f φ̇ 2

must transform into itself. It turns out that the form of the corresponding Einstein
equations does not change under the application of the following transformation:

˙̄
φ

2
= ηφ̇

2 (33)

f̄ = η f (34)

V̄ = (η2−η)ρ +V = (η2−η)
γ2

1+ γ
φ̇

2 +η
2V (35)

Consistently, it follows that the form-invariance of Eqs. (7) and (26) under the
latter transformation requires Γ = Γ /η , so one goes from one power-law model
into another.

A particular case of the latter transformation on which we are going to concen-
trate now is η = −1, i.e. the phantomization of the model, but before giving fur-
ther details the remark is in order that the new solution of the dynamical equations
corresponds to an imaginary field φ̄ = iφ driven by a real potential V̄ = 2ρ −V
[41; 42]

The phantomization process leads to a universe with ρ̇ > 0 so the weak energy
condition (ρ + p) < 0 is violated. It follows that two cases can be distinguished:
(a) ρ has a constant asintote for t →∞ or (b) ρ grows unboundedly. In the (a) case
the scale factor ends up becoming that of the de Sitter solution; whereas in the (b)
case, if we admit the asymptotic energy density is ρ → ρ0aη with η > 0, then the
asymptotic solution to the Friedman equation is
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a−→
[

2
η
√

ρ0 (t0− t)

]2/η

, t < t0, (36)

a+ →
[

2
η
√

ρ0 (t− t0)

]2/n

, t > t0. (37)

Clearly the expanding solution a− is defined for t < t0 and displays a big rip at
t = t0 because the scale factor diverges at the finite time t0 and a future singularity
occurs. On the other hand the contracting solution a+ begins at a past singularity
at t = t0. Summarizing, the solution a− arises by phantomization of the solution
1/a− which ends with a big crunch at t = t0. In terms of form-invariance trans-
formations the phantomization is originated by the 1/a− → a− duality existing
between those two solutions to the Einstein equations.

In order to get a phantomization with a real potential and a real field [43] one
must introduce a DBI− model with a sign reversal in the kinetic term entering the
energy density and pressure (2) and (3), so that

ρ
− = − γ2

1+ γ
φ̇

2 +V (φ) (38)

p− = − γ

1+ γ
φ̇

2−V (φ) (39)

This allows enlarging the form invariance symmetry group, because now we can
exchange not only solutions to the original equations (6), (7) among them, but
also solutions to both equation sets among them. In order to investigate this new
enlarged symmetry group, let us rewrite Einstein equations in two form-invariant
scenarios:

3H2 = s
γφ̇ 2

Γ
, −2Ḣ = sγφ̇

2, (40)

3H̄2 = s̄
γ̄

˙̄
φ

2

Γ̄
, −2 ˙̄H = s̄γ̄

˙̄
φ

2
, (41)

where s =±1 y s̄ =±1. In this case the transformations (33)–(35) become

˙̄
φ

2
= −s

s̄
φ̇

2 (42)

f̄ = − s̄
s

f (43)

V̄ = 2ρ−V (44)

This way it is possible now to achieve a phantomization with a real scalar field if
we admit the existence of the theory DBI−.

5 Conclusions

The so called DBI cosmologies are scalar field models with one additional func-
tional degree of freedom as compared to conventional scalar field configurations.
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This extra function has a geometrical meaning when DBI actions are interpreted
as describing the motion of a brane in a warped space time, the warp factor being
indeed the additional input required to specify the model. In this setup inflation is
interpreted as the consequence of the motion of the brane in a background with
extra dimensions, the compactification of which gives rise to a potential for the
scalar field.

These scenarios have been profusely studied, and particular attention has been
paid to the possibility they admit power-law solutions, as they seem to be favored
to play the role of equilibrium asymptotic states. In this paper we have shown that
it is possible to find such solutions in an exact way. The method relies on providing
parametrizations of the scalar field in terms of time which can be used to recon-
struct the warp factor and the potential upon the sole requirement that the equation
of state parameter be constant (in the fluid interpretation of the model). Our main
result is illustrated by resorting to some examples with interesting asymptotic lim-
its coinciding with some models studied in the literature: the AdS throat, cut-off
throats, and the inverse square potential.

Finally, in the last section, we show how to obtain new solutions from exist-
ing ones using symmetries, specifically we give transformation rules for the scalar
field, warp factor and potential. This method has interesting applications as it of-
fers the possibility of realizing assisted inflation in a DBI context, but also permits
playing with the idea of phantom DBI cosmologies (to be generated from non
phantom ones).
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