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1

INTRODUCTION

String theory originated in the 1960’s as a model for strong interactions.
Only after it was replaced by a much more successful theory in this respect,

by the name of quantum chromodynamics (QCD), was it reinvented as a theory
of quantum gravity. Up to that time, twentieth century physics had borne two
extremely successful theories. These are quantum mechanics, which describes
physics at the very small scale, and Einstein’s theory of general relativity, a
theory of gravity providing a description of physics at the largest of scales.

Quantum mechanics or, more precisely, quantum field theory provides a
unified description of all but one of the forces known in nature. In the form
of the Standard Model it brings together the electromagnetic force with the
strong and weak nuclear forces. Moreover, this framework also includes all
known elementary particles. The force missing is the gravitational force. The
Standard Model is exceptionally successful at describing physics at the energy
scales nowadays accessible in particle accelerators. In fact, there exists no ex-
perimental data in violation thereof. Nonetheless, the Standard Model will not
be the final theory of particle interactions. Besides the absence of interaction
with gravity, it exhibits a certain degree of arbitrariness, or at least inelegance,
due to the large number of free parameters. This has led to many attempts at
formulating a more fundamental theory.

General relativity is the theory of space, time and gravity. It has drastically
changed our thinking about each of these concepts. On large scales, where
gravity dominates, the theory provides an accurate description of the observed
physics. It predicts such remarkable things as the expansion of the universe and
the bending of light. Because gravity is such a weak force, it is very difficult
to test the theory on small scales. This leaves open the possibility of new
gravitational physics appearing at relatively low energy scales.

The two theoretical frameworks of quantum mechanics and general rela-
tivity have almost no overlap. There is, as mentioned above, no interaction
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2 1. Introduction

with gravity in the Standard Model. In laboratory particle experiments this is
not so much of a problem, since gravity is too weak to play a significant role.
There are, however, situations in which the gravitational interaction becomes
of comparable strength to the particle interactions described by the Standard
Model. These include black holes, or spacetime singularities in general, as
well as the early universe. For a complete description of these situations, it
is then necessary to construct a quantized theory of gravity, combining quan-
tum mechanics with general relativity. However, general relativity is – in the
language of quantum field theory – a non renormalizable theory. This means
that it becomes useless when covariantly quantized because irremovable infini-
ties appear at high energies, indicating that new physics is likely to play a role
there. Hence arises the need for a full-fledged theory of quantum gravity. This
new theory must replicate the predictions of quantum mechanics and general
relativity in their respective regimes, but in the extreme situations where the
two meet it must deviate and provide a natural connection between them. This
is where string theory enters the arena.

String theory offers a radical new point of view. The fundamental con-
stituents of the theory are one-dimensional objects rather than point particles.
When being considered as a theory of the strong interactions, these so called
strings arose as flux tubes between quarks. One of the problems it had as
a theory of hadrons was the appearance of a massless spin-2 particle in the
string spectrum. After being replaced by QCD, this massless spin-2 particle
was reinterpreted as the graviton: the quantum of gravity. In this way, string
theory naturally provides a theory of quantum gravity. It also encompasses the
Standard Model, reproducing all known particle interactions found in nature.
Moreover, it does so in a strongly unified way since all interactions are differ-
ent manifestations of the same object. The mediators of the forces as well as all
elementary particles are simply different vibrational modes of the fundamental
string.

String theory contains both open strings, with the topology of a line, and
closed strings, which are loops. While matter fields and their Standard Model
interactions are described by open strings, closed strings describe the gravita-
tional interactions. The closed string spectrum consists of an infinite tower of
states, starting from the massless graviton and ever increasing in mass from
there. It is the addition of these massive string modes that softens the diver-
gences encountered at high energies in the covariant quantization of general
relativity. String theory in this way provides a consistent perturbative descrip-
tion of the gravitational interaction.

The development of string theory as a theory of quantum gravity is charac-
terized by two important developments known as string revolutions. The first
revolution came in the 1980’s when spacetime supersymmetry was brought into
the theory. Supersymmetry relates bosonic and fermionic degrees of freedom.
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Until that time, only the bosonic string had been considered. This theory was
troubled by the appearance of a tachyonic state in the string spectrum and by
the fact that it could only be formulated consistently in twenty-six spacetime
dimensions. The introduction of supersymmetry not only allowed the descrip-
tion to be extended to fermions, it simultaneously rid the theory of the tachyon
in a natural way. These superstrings live in ten spacetime dimensions, which
is, alas, not as bad as twenty-six. Supersymmetry has not yet been observed
in nature. It is, however, most relevant to high energy phenomena and one can
imagine that while it is broken at currently accessible energies, it gets restored
at higher energies. The questions that remain are how exactly it gets broken
and at which energy.

As for the dimensionality of spacetime, it is an everyday fact that we only
experience three spatial and one time dimension. There are several proposals
as to what happens with the six extra spatial dimensions required for a consis-
tent formulation of superstring theory. The oldest and most generally accepted
resolution is that the extra dimensions are compactified on circles with such
small radii as to be undetectable in current high energy experiments. More
recently, a competing idea has been put forward. It utilizes the difference in
energy scales up to which the Standard Model and the gravitational interac-
tions have been experimentally checked. The proposal states that the Standard
Model fields are confined to a 3+1-dimensional hypersurface in ten dimensio-
nal spacetime. The gravitational interaction, on the other hand, is free to probe
all spacetime dimensions, as it should since it describes the dynamics of space-
time itself. These extra dimensions then only need to be curled up so much as
to be consistent with high energy checks of gravity, which as mentioned are
much less restrictive then those of the Standard Model. These models, called
brane worlds, can naturally be embedded into string theory. The hypersurface
is then represented as a D-brane, which is a topological defect to which the
endpoints of open strings are confined. Gravity, being represented by closed
strings, is not confined to the brane. The interaction of the Standard Model
fields on the brane with gravity is described by closed strings breaking open
and turning into open strings on the brane. The qualification as a topological
defect derives from this process in which the topology of the string changes.

In the years ensuing the first string revolution, several superstring theories
were discovered. In total there appeared to be five different theories, which
were all defined perturbatively. These are the type IIA, type IIB, type I and
two heterotic theories. This situation was unsatisfactory as it caused a certain
ambiguity. With five different theories, which is the one that describes nature?
During the 1990’s relations between these different theories were discovered.
These relations are known as dualities and they showed that in fact all five
theories are different manifestations of one underlying theory. This important
step in the development of superstring theory is referred to as the second string
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revolution. Lacking a fundamental coupling constant, the underlying theory is
intrinsically non-perturbative. Because of this the theory, known as M-theory,
is notoriously difficult to describe. The five superstring theories correspond to
perturbative vacua of M-theory.

Through these and more recent developments, such as the discovery by
Polchinski [100] of the relevance of D-branes in a non perturbative description
of the theory, string theory has evolved into a more mature theory. It is fair to
say that string theory is the leading candidate for a theory of quantum gravity.
That is not to say that it is the only candidate. Certainly, based on the way
string theory was unveiled as a theory of quantum gravity, there is no reason to
believe that there would be no other theories waiting to be discovered. The only
way of determining the full merit of string theory is then by testing it. While it
has already withstood many tests, with many more awaiting, these are without
exception of a theoretical nature; largely confirming only the theory’s internal
– mathematical – consistency. The ultimate test of any theory that strives to
describe nature, is to withstand experimentation. The extreme smallness of
the corrections predicted by string theory to the theories it replaces makes this
very difficult. The natural energy scale of the theory, the Planck scale at which
stringy effects become relevant, is many orders of magnitude larger than those
attained in modern particle accelerators. To directly test whether the funda-
mental building blocks of nature look like tiny rubber bands will therefore not
be possible any time soon. That said, there is one laboratory where the required
energies are realized: the universe itself.

This brings us to the subject of cosmology. Cosmology studies the evo-
lution of the universe, from the putative beginning in a big bang to the vast
universe we observe today and onward into the future. Although cosmology
has been phenomenally successful in some respects, it fails to answer funda-
mental questions regarding,e.g., the nature of the initial singularity and the
origin of inflation. The formulation of an underlying theory is necessary to
approach these basic questions and it seems natural to consider string theory in
this respect. This line of research has not proven very successful. String the-
ory, as currently formulated, is not background independent. Each background
thus requires its own consistent formulation of the theory and, so far, these
have not been found for realistic cosmological backgrounds. Conversely, due
to the high energies involved, some of these questions provide the best avail-
able testing ground for string theory. The rather limited interaction between the
two subjects is therefore surprising. One observation that has recently sparked
a change in this is that the current cosmological constant may be nonzero and
positive. From a cosmological point of view, this means that the universe is
entering a de Sitter phase. On the other hand, it has so far proven impossible to
find a de Sitter solution to string theory. This forms an important challenge for
string theory and perhaps comes closest to a comparison with nature in any test
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so far, although it must be noted that the observation of a positive cosmological
constant is still tentative. The issue of finding a de Sitter string solution plays
a major role in the second half of this thesis.

The single most important formula around which this thesis revolves is the
Bekenstein-Hawking area law

S = A

4GN
.

This formula expresses the entropy hidden by an event horizon in terms of the
area of that horizon in Planck units. The most amazing feature of this formula is
its universality. Not only does it apply to black hole and cosmological horizons
alike, but also to the black strings and branes found in string theory. From
the Bekenstein-Hawking formula derives a fundamental entropy bound. The
maximal entropy contained in a certain volume is given by the area of that
volume in Planck units. This is known as the holographic principle, originally
proposed by ’t Hooft [131]. It implies a radical departure from the intuitive
notion that the entropy would be proportional to the volume. Moreover, the
holographic principle introduces a degree of non locality into any theory of
quantum gravity. That it is expected to be a generic feature of any theory of
quantum gravity is based on the fact that it derives directly from black hole
formation, which limits the amount of mass a region of spacetime can support.
It remains to be seen, however, whether this will appear as an effective property
or as a manifest underlying principle.

As for string theory, it is not yet clear whether the holographic principle
is manifest. In the perturbative picture of string theory we have today, it is
only partly realized. As shown by Susskind [125], the perturbative expansion
breaks down before the entropy bound of one bit per Planck area is violated.
However, one would expect it to be completely explicit only in a fully non per-
turbative formulation of the theory. Recently, such formulations have become
available in certain special cases. Most notably, Maldacena [90] has proposed
the AdS/CFT correspondence, relating full, non perturbative string theory on
anti-de Sitter backgrounds to conformal field theories living on the boundary
of the AdS space. The number of degrees of freedom in this context manifestly
obeys the holographic principle, as we will review in this thesis.

Studying the holographic principle in string theory may guide us towards
answering important open questions. It has, for example, not been possible so
far to find a string description of most realistic black holes and singularities of
general relativity. More generally, while string theory is relatively well under-
stood at small coupling, our knowledge of the strongly coupled regime is much
more limited. The holographic principle may prove to be a valuable guide in
that respect as it becomes more stringent in regions of spacetime that are highly
dynamical and strongly gravitating.
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The approach that will be taken in this thesis is to consider the compatibil-
ity of the holographic principle with cosmological models. This approach may
help in the construction of realistic cosmological models within string theory.
Since cosmology lacks a fundamental underlying theory, the solutions it of-
fers may seem rather ad hoc. Inflation, for example, clearly offers a solution
to the horizon and flatness problems, but different solutions to the same prob-
lems are certainly imaginable. How then must we choose between different
cosmological models? Assuming that the holographic principle turns out to
be of a fundamental nature, one would expect it to be a manifest feature of a
cosmological model. This provides a possible way of determining the feasibil-
ity of specific cosmological models. Lacking a fundamental theory, one cannot
look for an explicit manifestation of the holographic principle as a fundamental
principle. Instead, one can consider whether a certain model obeys the entropy
bounds that derive from it. These entropy bounds have culminated in a covari-
ant entropy bound as formulated by Bousso [23,24]. This proposal has been
tested to be consistent with many situations that are expected to occur in the
universe, such as gravitational collapse and inflation.

This thesis is organised as follows. In Chapter 2, a general overview of the
concept of holography is given. Its origin in black hole physics is reviewed
as well as its most concrete realization in the form of the celebrated AdS/CFT
correspondence. In between, several entropy bounds that derive from it are
considered.

Chapter 3, largely based on [112], applies those entropy bounds to cosmo-
logical models. A striking relation between entropy and energy formulas on
the one hand and the equations that govern the cosmological evolution of a ra-
diation dominated FRW universe is reviewed. Subsequently, this is applied to
a specific brane world model from which it derives a natural explanation.

In Chapter 4, we return to the subject of holography but now in the specific
context of a spacetime with positive curvature, or de Sitter space. Although
much less well established than the AdS/CFT correspondence, we review the
recent proposal of an analogous dS/CFT correspondence.

Finally, Chapter 5, based on [96,111], provides a new point of view towards
quantum gravity in de Sitter space. The problems that plague a formulation
thereof are reconsidered within the proposed model.

For a thorough introduction to superstring theory, the reader is referred to
the standard textbooks [55,101].
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HOLOGRAPHY

At first sight, quantum field theories and gravity seem to have little to do
with each other. Indeed, it has proven impossible to quantize gravity fol-

lowing the usual perturbative techniques of field theory. On the other hand,
string theory naturally provides a quantum theory of gravity. It turns out that
these different kinds of theories are intimately related.

In the nineteen seventies, ’t Hooft [128] showed that in the limit of large
gauge group the diagrammatic expansion of gauge theories looks like that of
a free string theory. Although a description in terms of a worldsheet action
was not found, this provides a direct connection between gauge theories and
string theories. More recently, it was realized that the strings arising from
certain conformal gauge theories are exactly the type IIB strings, moving on
a curved background which has a boundary at spatial infinity. In a different
approach, it was conjectured by ’t Hooft [131] and Susskind [125] that any
theory of quantum gravity should be dual to a quantum field theory living on
the boundary of spacetime. This is called the holographic principle.

A major step forward came in 1995 with the discovery of D-branes by
Polchinski [100]. Dp-branes arep+1-dimensional hypersurfaces on which
open strings can end. The low energy theory of open strings ending on a Dp-
brane is U(1) gauge theory inp+1 dimensions. If one putsN Dp-branes on
top of each other, this generalizes to U(N ) gauge theory. On the other hand, by
worldsheet duality, the Dp-brane also acts as a source for closed strings, which
contain gravitons in their massless spectrum. This dual nature of the D-branes
is depicted in Figure 2.6 on page 22.

All of this finally led Maldacena [90] in 1997 to conjecture the celebrated
AdS/CFT correspondence, providing an explicit example of a gravity theory
on a curved background and its dual field theory. These are type IIB string
theory on Anti-de Sitter (AdS) space times a sphere andN = 4 SU(N ) super
Yang-Mills (SYM) theory. This last theory is a conformal field theory (CFT)
which lives on the boundary of the AdS space.

7



8 2. Holography

We begin in Section 2.1 by discussing the holographic principle and the
entropy bounds that can be inferred from it. In Section 2.2 we consider an
explicit realization of the holographic principle: the AdS/CFT correspondence.
This correspondence is then used to derive a holographic entropy formula for
the dual CFT.

2.1 THE HOLOGRAPHIC PRINCIPLE

In a quantum theory of gravity there exists a natural upper limit on the amount
of energy that a region of space can contain. Consider, for simplicity, a spher-
ical region. The maximal energy content is then given by the mass of a black
hole that fills the region. The important point is that the mass of a black hole
in four dimensions is proportional to its horizon radius,

MBH = rH

2
, (2.1)

and not to its volume. Since the ratio volume over radius,V/r ∝ r2, grows
rapidly with r , the bound becomes more stringent as one considers larger vol-
umes. This bound on the mass translates to a bound on the number of de-
grees of freedom that a region can support. Based on this, ’t Hooft [131] and
Susskind [125] proposed the holographic principle, which asserts that the num-
ber of accessible degrees of freedom in a specified region of space is propor-
tional to the area of its boundary measured in Plank units. This is a radical
step away from local field theory, which has degrees of freedom at every scale.
Indeed, even when a finite number of degrees of freedom per unit volume is
obtained by imposing infra-red (IR) and ultra-violet (UV) cutoffs, the total
number is proportional to the volume. This discrepancy lies at the heart of the
problems in unifying quantum field theory and gravity.

From the holographic principle, bounds on the entropy in a specified region
can be derived. We will discuss these ‘holographic entropy bounds’ in the
remainder of this section. For an extensive review of the holographic principle
and the resulting entropy bounds see [21,27].

2.1.1 BLACK HOLE THERMODYNAMICS

Consider the Schwarzschild black hole solution inD = n+1 dimensions. The
metric takes the form

ds2 = −
(

1− ωn M

rn−2

)
dt2+

(
1− ωn M

rn−2

)−1

dr2+ r2d�2
n−1 , (2.2)
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where

ωn ≡ 16πGN

(n − 1)Vol(Sn−1)
, (2.3)

GN is the D-dimensional Newton constant,M denotes the mass of the black
hole andd�n−1 is shorthand for the metric on then−1-dimensional unit sphere.
Focusing on the caseD = 4 and settingGN = 1, the metric reduces to

ds2 = −V (r) dt2+ V (r)−1dr2+ r2d�2
2 , (2.4)

where

V (r) = 1− 2M

r
. (2.5)

The black hole horizon is atrH = 2M and the area of the horizon is

AH = 16π M2 . (2.6)

Hawking’s area theorem [64] states that the area of a black hole event horizon
never decreases with time:d AH � 0. For example, if something drops into a
black hole this increases its mass and consequently its horizon area increases
as well. The area theorem bears resemblance to the second law of thermody-
namics, which states that entropy never decreases with time:d S � 0. However
superficial the similarity between the two laws may seem, it turns out to be of
a fundamental nature.

There is also the ‘no hair theorem’ [32,76], which states that a black hole
is completely characterized by three quantities: its mass, charge and angular
momentum. Since this allows for only a single quantum state, it implies that
black holes have zero entropy. Throwing an entropy carrying thermodynamical
system into a black hole would then cause entropy to be lost; in violation of
the second law of thermodynamics.

As a resolution, Bekenstein [15–17] suggested to associate an entropy to a
black hole proportional to its horizon area,

SBH = ηA , (2.7)

whereη is the constant of proportionality. Bekenstein then generalized the
second law of thermodynamics to include black hole entropy,

d Smatter+ d SBH � 0 . (2.8)

Any loss of matter entropy from objects falling into a black hole is compen-
sated for by an increase of the black hole entropy. If the Bekenstein entropy of
a black hole is to be interpreted as a thermodynamical entropy, the first law of
thermodynamics,

d M = T d S , (2.9)
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implies that black holes must have a temperature. Classically this is not pos-
sible, since a black hole cannot radiate by definition. Hawking [65] showed
that black holes do in fact radiate through a quantum process and found that
they emit a black body spectrum at a temperature which is a function of the
black hole mass. This result establishes the analogy between the laws of ther-
modynamics and those of black hole dynamics as a true physical principle.
It gives an indication that a statistical system perhaps underlies the theory of
gravitation.

To calculate the Hawking temperature for a 4-dimensional Schwarzschild
black hole, consider the Euclidean version of the metric (2.4),

ds2
E = V (r) dτ2+ V (r)−1dr2+ r2d�2

2 , (2.10)

V (r) = 1− 2M

r
. (2.11)

Demanding that the metric be non singular at the horizon gives a periodicity
condition for the Euclidean time coordinateτ . The Hawking temperature is
then given by the inverse period. In terms of a coordinater� given by

r� = r + rH ln(r − rH) , (2.12)

the metric becomes

ds2 = V (r)(dτ2+ dr2
� )+ r2d�2

2 . (2.13)

Introduce coordinatesu± defined by

u± = e
2π
β

(r�±iτ)
, (2.14)

whereβ is the periodicity ofτ . In terms of these coordinates, the metric takes
the form

ds2 = β2

4π2
V (r) e−

4πr�
β du+du− . (2.15)

ExpandingV (r) aroundr = rH,

V (r) ≈ (r − rH) · V ′(rH) (r ≈ rH) , (2.16)

we see that the metric is regular aroundr = rH if

e
4πr�

β ∝ (r − rH) , (2.17)

or, equivalently, if

r� ∝ β

4π
ln(r − rH) . (2.18)



2.1 The holographic principle 11

Comparing with (2.12), we see that this requires

β = 4πrH = 8π M . (2.19)

We conclude that the Hawking temperature equals

TH = 1

8π M
. (2.20)

By the first law of thermodynamics, this fixes the proportionality constantη in
the Bekenstein entropy (2.7). The so called Bekenstein-Hawking entropy of a
Schwarzschild black hole in four dimensions is given in Planck units by

SBH = A

4
. (2.21)

Reinstating all dimensionfull parameters, this formula takes the form

SBH = kB AHc3

4GNh̄
, (2.22)

wherekB is the Boltzmann constant,c denotes the speed of light andh̄ is the
Planck constant.

The laws of black hole thermodynamics are by now well established and
it is expected that a quantum theory of gravity will associateN = eA/4 mi-
crostates with a black hole, as suggested by (2.21). In fact, for a special class
of black holes, string theory has succeeded in doing just that [38,92,123]. We
will see in Chapter 4 that the Bekenstein-Hawking formula (2.21) applies just
as well to the cosmological horizon that is present in the context of de Sitter
space. This is exemplary of the universality of this formula, as advocated in
the Introduction.

2.1.2 ENTROPY BOUNDS FROM BLACK HOLES

For a system that includes gravity, an entropy bound can be deduced from the
Bekenstein-Hawking formula (2.21) together with the generalized second law
(2.8). Consider a spherical region of spaceV . The area of the boundary of
V equalsA. Start with a thermodynamical systemQ, with entropyS, that
is completely contained withinV . The total energy of the systemQ cannot
exceed that of a black hole of areaA, since it would then not fit withinV .

By collapsing a spherical shell of matter with precisely the right energy
onto the systemQ, this system can be converted into a black hole that fills the
volume V . This process of converting the system into a black hole is called
the Susskind process [125]. The entropy of the resulting system is simply that
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of a black hole with horizon areaA, as given by (2.21). From the generalized
second law it follows that the entropy of the original system is bounded by this
entropy,

S � SBH . (2.23)

This is called the spherical entropy bound, and it is an example of a holographic
entropy bound. The most stringent form of this bound is obtained by choosing
V to be the smallest spherical volume that contains the systemQ.

Because of the limited validity of the spherical entropy bound,e.g., it only
applies to spherical regions, one would like to try and generalize it. The most
natural extension is simply to drop the assumptions under which it is derived.
The resulting entropy bound, called the spacelike entropy bound, states that
the entropy within any spatial region cannot exceed the area of that region’s
boundary,

S(V ) � A(V )

4
. (2.24)

Besides the fact that many counterexamples to this bound have been found,
a crucial difficulty with any entropy bound on a spacelike volume is that the
concept of a region and its boundary is not covariant. This makes it impossible
to say exactly what the region is on which the entropy is bounded by a given
boundary surface. Since a natural covariant notion is that of a lightlike volume,
one might try to formulate holographic entropy bounds on such volumes [125].
This leads to covariant ‘lightlike entropy bounds’. Before discussing lightlike
bounds, in the next section we first discuss an interesting relation between the
Einstein equation and the first law of thermodynamics. The derivation of this
relation by Jacobson [77] involves an early formulation of the idea to imple-
ment the holographic principle via entropy flow through light-sheets.

2.1.3 THERMODYNAMICS AND THE EINSTEIN EQUATION

The laws of black hole mechanics can be derived from the classical Einstein
equation [14]. The discovery of Hawking radiation established the link be-
tween these laws and those of thermodynamics. How then did classical general
relativity know that horizon area is a sort of entropy?

Jacobson [77] answers this question by deriving the Einstein equation from
the proportionality of entropy and horizon area together with the fundamental
relation

δQ = T d S (2.25)

connecting heat, entropy and temperature. To illustrate the idea, consider a
thermodynamical system. Assume that the entropyS(E, V ) of the system is
given as a function of energy and volume. The first law of thermodynamics,
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together with the relation (2.25), yields

δQ = d E + p dV , (2.26)

wherep is the pressure within the system. Differentiating the entropy gives

d S = ∂S

∂ E
d E + ∂S

∂V
dV . (2.27)

From combining these relations, we infer the equation of state

p = T
∂S

∂V
. (2.28)

The approach of [77] is to start from the holographic entropy relation and then
derive an equation of statefor spacetime along these lines. This equation takes
the form of the Einstein equation.

In order to apply the relation (2.25) to spacetime dynamics, we need ap-
propriate definitions of the appearing quantities. Heat will be defined as en-
ergy that flows across a causal horizon. A causal horizon is not necessarily a
black hole horizon, it can be simply the boundary of the past of any set. The
entropy of the system hidden by the horizon is assumed to be proportional to
that horizon’s area. The final quantity that has to be identified is the tempera-
ture of the system into which the heat is flowing. Jacobson defines this to be
the Unruh temperature [134] that is associated with an uniformly accelerated
observer hovering just inside the horizon.

For equilibrium thermodynamics to be applicable, construct a system that
is instantaneously stationary in the following way. Through any spacetime
point p, there exists a spacelike, 2-dimensional surface elementP whose past
directed null normal congruence to one side has vanishing expansion and shear
in a first order neighbourhood ofp. Call the past horizon of such aP the ‘local
Rindler horizon ofP ’. The part of spacetime beyond the Rindler horizon is in
local equilibrium atp.

Following [77], we now demonstrate that from the relation (2.25), inter-
preted in terms of energy flux and area of local Rindler horizons, it follows that
gravitational lensing by matter energy affects the causal structure of spacetime
in just the right way so that the Einstein equation holds.

We need to make the definitions of heat and temperature more precise. In
a neighbourhood ofP spacetime is approximately flat and exhibits the usual
Poincaŕe symmetries. In particular, there exists an approximate Killing field
χa generating boosts orthogonal toP and vanishing atP itself. Like in the
familiar Rindler case, the vacuum state is a thermal state with respect to the
boost Hamiltonian at temperature

T = h̄κ

2π
. (2.29)
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P

H

χa δQ

FIGURE 2.1: Theheat flowδQ across the local Rindler horizonH
of a two-surface elementP , generated by the approximate boost
Killing vector χa . Every point represents a 2-dimensional space-
like surface. Figure adapted from [77].

whereκ is the acceleration of the Killing orbit on whichχa has unit norm. As-
suming that all the energy passing through the horizon is carried by matter, the
local heat flow is defined byTab χa , whereTab is the matter energy-momentum
tensor.

Referring to Figure 2.1, consider a local Rindler horizonH through a
spacetime pointp. The horizon is generated by the approximate local boost
Killing field χa . The heat flux through the horizon is given by [77]

δQ =
∫

H
Tab χad�b . (2.30)

We can writeχa = −κλka , whereka is the tangent vector to the horizon
generators for an affine parameterλ that vanishes atP and is negative to the
past ofP . Then alsod�a = kadλdA, wheredA is the area element on a
cross section of the horizon. Inserting these relations into (2.30) puts it in the
form

δQ = −κ

∫
H

λTabkakbdλdA . (2.31)

As mentioned above, it is assumed that the entropy is proportional to the
horizon area. The entropy variation associated with a piece of the horizon is
then proportional to the variationδA of the cross sectional area of neighbouring
horizon generators,

d S = ηδA , (2.32)

whereη is the constant of proportionality and the area variation is given by

δA =
∫

H
θdλdA . (2.33)
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Here,θ denotes the expansion of the horizon generators defined by

θ ≡ 1

A

dA

dλ
. (2.34)

The relationδQ = T d S relates the energy flux to a change in the horizon
area,i.e., to a focusing of the horizon generators. By definition, atP the local
Rindler horizon has vanishing expansion. It follows that the focusing to the past
of P must cause the expansion to vanish there. Moreover, the rate of focusing
must be so that the increase of a portion of the horizon will be proportional
to the energy flux across it. This translates to a condition on the curvature of
spacetime in the following way.

The Raychaudhuri equation

dθ

dλ
= −1

2
θ2− σabσ

ab + ωabω
ab −Rabkakb (2.35)

relates the change in expansion along the generators parametrized byλ to the
shearσab, the twistωab and, through the Ricci tensorRab, the curvature of
spacetime. By stationarity of the horizon,θ , σ and ω vanish atP . When
integrating (2.35) to findθ nearP , the first three terms on the right hand side
can thus be neglected as they are are higher order contributions. For sufficiently
smallλ, this integration yieldsθ = −λRabkakb and by substituting this into
(2.33) one obtains

δA = −
∫

H
λRabkakbdλdA . (2.36)

From (2.31) and (2.36) we see that

δQ = T d S = h̄κ

2π
ηδA (2.37)

can only hold if

Tabkakb = h̄η

2π
Rabkakb (2.38)

for all null vectorska . This condition implies that

2π

h̄η
Tab = Rab + f gab (2.39)

for some functionf . The stress-energy tensorTab is divergence free by local
conservation of energy and momentum. It follows by the contracted Bianchi
identity that f = −R/2+� for some constant�. This leads to the conclusion
that the Einstein equations,

Rab − 1

2
Rgab +�gab = 2π

h̄η
Tab , (2.40)

hold automatically [77].
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SCREEN

LIGHT RAY
p

FIGURE 2.2: Thespacetime pointp is mapped to a holographic
screen through a light ray. Figure adapted from [125].

2.1.4 COVARIANT ENTROPY BOUNDS

The most important aspect in which covariant entropy bounds differ from the
spherical and spacelike bounds discussed before is that they bound the entropy
not in a spatial volume but on a null hypersurface; a so called light-sheet. This
formulation via light-sheets is what provides the covariance of the prescrip-
tion. The most general formulation of a covariant entropy bound is given by
Bousso [23,24]. Bousso provides a detailed discussion of the notion of a light-
sheet, and how they can be constructed.

To illustrate the idea, we will discuss an early example of a covariant en-
tropy bound, as constructed by Susskind [125]. Consider a 4-dimensional,
asymptotically flat spacetime. Asymptotically, we can define Minkowski light
cone coordinatesX+, X−, xi (i = 1, 2), whereX+ is the light cone time co-
ordinate. Define a light-sheet to be the set of light rays which, in the limit
X− → ∞, have equalX+. These light rays fill a 3-dimensional lightlike
volume and are asymptotically parallel. The complete set of light-sheets, for
all X+ values, fills the entire spacetime (except for points inside black hole
horizons).

Assign to a spacetime pointp ‘holographic coordinates’X+, xi , according
to theasymptotic coordinate values of the light ray that passes throughp. In
this way, all the points along a light ray are assigned the same holographic
coordinates. The value ofX− is thus projected out and for every value of
the time coordinateX+, thexi parameterize a 2-dimensional surface called a
holographic screen. In this way the 3+1-dimensional theory is mapped onto
2+1-dimensional screens, as depicted in Figure 2.2.

This mapping defines an entropy densityσ(xi ) on the screen. The entropy
of systems that are swept out by a light-sheet is mapped to part of the screen.



2.1 The holographic principle 17

SCREEN

FIGURE 2.3: A black hole horizon is projected through light rays
onto a holographic screen. Only lightrays in the plane of the paper
are shown. Figure adapted from [125].

In the following we will show that no distribution of energy will ever lead to
an entropy density on the screen that exceeds the bound [125]

σ(xi ) � 1

4
. (2.41)

To start with, consider a black hole. The entropy of a black hole is given
in terms of its horizon area by (2.21). We can thus assign an entropy density
of 1/4 to the black hole horizon. By the mapping defined above, the horizon is
projected onto a certain area on the holographic screen, as shown in Figure 2.3.
To show that the proposed bound (2.41) holds in this case, we must proof that
the horizon area is smaller than its image area on the screen. This can be done
by applying the Raychaudhuri equation (2.35) in the following way. For a null
vectorka , we have from the Einstein equations that

Rabkakb = 8πTabkakb (gabkakb = 0) . (2.42)

The Raychaudhuri equation (2.35) for the expansionθ of the cross sectional
area of neighbouring light rays can then be written as

dθ

dλ
= −1

2
θ2− σabσ

ab + ωabω
ab − 8πTabkakb , (2.43)

whereλ is an affine parameter along the light rays. For a surface-orthogonal
family of light rays, such as a light-sheet, the twistω vanishes. Moreover,
by the null energy condition, the final term is non positive [67]. We thus see
that the right hand side of (2.43) is manifestly non positive. It follows that the
expansionθ never increases along the light rays that constitute a light-sheet,

dθ

dλ
� 0 . (2.44)
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FIGURE 2.4: Projection of a two black hole configuration onto a
holographic screen. Figure adapted from [125].

The physical content of this focusing theorem is to say that light is always
focused by matter, never diverged.

Since asymptotically, in the flat region, the light rays are parallel, the ex-
pansion approaches zero there,

θ ∼ 0 (λ→∞) . (2.45)

Hence,θ must be positive along the light rays that map the horizon onto the
screen. This implies that the area on the holographic screen to which the hori-
zon is mapped, is larger than the horizon area. The bound (2.41) on the entropy
density follows.

One can try to increase the entropy density on the screen by adding matter
to the light-sheet between the black hole and the screen. For example, we can
add another black hole. However, as depicted in Figure 2.4, the bending of light
by matter, together with the focusing theorem (2.44), ensures that the entropy
density on the screen does not exceed the bound. These considerations lead
to the conjecture [125] that for any entropy carrying system, when mapped to
the screen, the entropy density obeys the bound (2.41). This conjecture was
generalized by Fischler and Susskind [45] to include more general spacetimes.
We will consider this generalization in detail when we discuss cosmological
entropy bounds in Section 3.2.

2.2 ADS/CFT

If the holographic principle turns out to be of a fundamental nature, one would
expect it to be manifest in a quantum theory of gravity. It is not yet clear
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whether this is true for string theory, but backgrounds that provide explicit re-
alizations of holography have recently been found. In this section we consider
the most prominent example to date: the AdS/CFT correspondence. The con-
jecture is that type IIB string theory on backgrounds of the form AdSn×X10−n

(whereX is a compact manifold) is dual to a superconformal field theory that
lives on the boundary of the Anti-de Sitter space. We will focus our attention
on the case AdS5 × S5, where the dual field theory isN = 4 SU(N ) super
Yang-Mills.

The correspondence considered in this section is a realization of the idea
that gauge theories might have a dual description in terms of a string theory.
This idea originates from ’t Hoofts largeN limit, which we will review below.
The particular relation we consider was motivated by studies of D-branes and
black holes in string theory. Before presenting the exact formulation of the
correspondence, we will discuss these objects in some detail. We also consider
the way the correspondence implements holography. Finally, a holographic
entropy formula for the dual CFT is derived in Section 2.2.8.

The correspondence was conjectured by Maldacena [90] and subsequently
made precise by Gubser, Klebanov and Polyakov [61] and independently by
Witten [144]. For a review, please refer to [2,82].

2.2.1 CLASSICAL GEOMETRY OFADS

For easy reference in the remainder of the text, let us begin by discussing a few
geometrical aspects of Anti-de Sitter space and gathering some useful met-
rics. For a detailed account of the classical properties of this space please refer
to [67].

AdS is the unique vacuum solution to the Einstein equations with maximal
symmetry and constant negative curvature. InD spacetime dimensions, it is
locally characterized by

Rµν = −D − 1

L2
gµν , (2.46)

whereL is the radius of curvature of AdS, and by the vanishing of the Weyl
tensor. The cosmological constant,�, is given as a function ofL by

� = − (D − 1)(D − 2)

2L2
. (2.47)

The whole space is covered by global coordinates, for which the metric be-
comes

ds2 = L2
(
− cosh2 r dt2+ dr2+ sinh2 r d�2

D−2

)
. (2.48)
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A different coordinate system is defined by the so called Poincaré coordinates.
In terms of these coordinates the metric takes the form

ds2 = L2

r2
dr2+ r2

L2
ηµνdxµdxν . (2.49)

A third form of the metric that we will encounter is

ds2 = L2ηµνdxµdxν + dz2

z2
, (2.50)

where the boundary of the space is atz = 0.

2.2.2 ’T HOOFT LARGE N LIMIT

Gauge theories in four dimensions have no dimensionless parameters which
can be used as perturbation parameters. SU(N ) Yang-Mills theories have, how-
ever, an extra parameter: the rankN of the gauge group. It was suggested by
’t Hooft [128] that these theories might simplify at largeN and have a perturba-
tion expansion in terms of1/N . We need to specify how the gauge couplinggYM

scales as we takeN large. Of particular interest is the limit whereλ ≡ g2
YM N

is kept fixed while one takesN → ∞. This is called the ’t Hooft largeN
limit. The observation made by ’t Hooft is that, identifying1/N with the string
coupling constant, the Feynman diagram expansion in this limit takes a form
similar to that of perturbative closed string theory. Associated with a field
theory diagram withV vertices,P propagators andL loops is a coefficient
proportional to

g2(P−V )
YM N L = (g2

YM N )P−V Nχ = λP−V Nχ , (2.51)

whereχ = L − P + V is the Euler character of the surface corresponding to
the diagram. The perturbative expansion of a diagram in the field theory can
thus be written as∑

χ,P,V

cχ,P,V NχλP−V =
∑
χ

Nχ fχ (λ) , (2.52)

where fχ is some polynomial inλ. In terms of the genusg of a closed oriented
surface,χ = 2− 2g. Thus, each diagram is weighted by a factorN2−2g. In
the largeN limit, the first order diagrams in this expansion are those of lowest
genus. When written in the ’t Hooft double line notation, these are the dia-
grams with the topology of a plane, called planar diagrams, see Figure 2.5.
These planar diagrams are in one-to-one correspondence with the lowest order
string diagrams and similarly for higher orders. Notice that while the gauge
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N 2 N 0

FIGURE 2.5: A planar diagram (left) and a non-planar diagram
(right) with the corresponding factors in largeN gauge theory.

theory may be strongly coupled,gYM � 1, the string theory will be weakly cou-
pled whenN is large. ’t Hooft first suggested the largeN limit in the context
of QCD, which is a very successful SU(3) gauge theory for the strong interac-
tions. Being asymptotically free, the gauge theory is useful in describing the
high energy regime. On the other hand, at low energies, where interesting phe-
nomena like confinement occur, the theory is strongly coupled and it is difficult
to extract information. Since the dual string theory will be weakly coupled (the
coupling constant is1/N , or 1/3 for QCD), the hope was that that theory would
give a usable description of the low energy regime. However, formulation of
the string theory dual to QCD in terms of a 2-dimensional worldsheet action
remains an open problem.

For two dimensional gauge theories dual string theories have been con-
structed [57,58,95]. The case of four dimensional gauge theories is more com-
plicated. Recently, however, there has been progress and, for a certain class of
gauge theories, dual string theories have been constructed. These are largeN
superconformal gauge theories. QCD on the other hand is neither conformal
nor supersymmetric and it is unclear how to break these symmetries.

2.2.3 D-BRANES

Dp-branes are solitonic solutions to string theory. They are defined asp+1-
dimensional hypersurfaces on which open strings can end. String theory on
a background with D-branes has two types of perturbative excitations: closed
and open strings. Closed strings, propagating in the bulk, describe perturba-
tions around the background metric, as they include a graviton mode in their
massless spectrum. Open strings, which have their endpoints confined to the
branes, describe excitations of the branes. The D-branes are topological de-
fects in the sense that a closed string, when it hits a D-brane, can open up and
become an open string living on the brane. Reversely, they must act as a closed



22 2. Holography

FIGURE 2.6: D-brane as open string boundary condition (left) and
as closed string source (right).

string source, as depicted in Figure 2.6. Through the open strings, the D-branes
realize gauge theories on their worldvolume. Indeed, the massless spectrum of
open strings living on a Dp-brane is that of a maximal supersymmetric U(1)
gauge theory inp+1 dimensions. The spectrum contains 9−p massless scalars,
which are associated with the transverse oscillations of the brane. PuttingN
Dp-branes on top of each other, the gauge theory generalizes to a U(N ) theory.
There are thenN2 different kinds of open strings, since the strings can begin
and end on any of the branes; see Figure 2.7. The expectation values of the
scalars determine the relative separations of the branes in the 9− p transverse
directions. Turning on all of these expectation values breaks the gauge group to
U(1)N . In the current context, we are interested in the case of many coincident
D-branes.

Before the discovery of D-branes by Polchinski [100], their low energy de-
scription in terms of blackp-branes was already known. Thep-branes are clas-
sical solutions to type IIsupergravity, which is the low energy limit of string the-
ory. Thep-brane description provides a second, dual description of D-branes,
besides the gauge theoretical description discussed above. The comparison of
these two descriptions led to the discovery of the AdS/CFT correspondence.

A stack ofN p-branes is a heavy macroscopic object that curves spacetime.
It can be described by a classical metric and other background fields, such as
the Ramond-Ramondp+1 form potential. In the following we will focus on
the 3-brane. In this case, the metric takes the form [71]

ds2 =
(

1+ L4

r4

)−1/2 (
−dt2+ dx2

1 + dx2
2 + dx2

3

)

+
(

1+ L4

r4

)1/2 (
dr2+ r2d�2

5

)
, (2.53)
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FIGURE 2.7: N D-branes on top of each other. Open strings can
begin and end on any of the branes.

whereL4 = 4πgsl4
s with ls the characteristic string length and the dilaton is

constant. Notice that this metric is everywhere non-singular. The horizon is at
r = 0. The metric forN 3-branes on top of each other only differs in that

L4 = 4πgsl
4
s N . (2.54)

For the classical supergravity description to be valid, the curvature of the geom-
etry of thep-brane has to be small compared to the string scale. This ensures
that string corrections are negligible. To suppress string loop corrections, the
effective string coupling also needs to be kept small. These requirements can
be expressed as

1	 gsN < N . (2.55)

On the other hand, the D-brane description uses the string worldsheet and is
thus a good description in string perturbation theory. In the case where there
areN D-branes on top of each other, every open string boundary loop ending
on the D-branes comes with a factorN times the string coupling. The D-brane
description is thus valid in exactly the regime complementary to (2.55), namely
when

gsN 	 1 . (2.56)

2.2.4 LOW ENERGY LIMIT

The system of string theory on a background of D3-branes can be described by
an action of the form

S = Sbulk+ Sbrane+ Sint . (2.57)

Here Sbulk describes the 10-dimensional type IIB string theory in the bulk,
Sbrane the 3+1-dimensional open string gauge theory on the branes andSint
the interactions between these two theories. If we consider the system at low
energies,i.e., at energies below the string scale1/ls, only the massless modes
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FIGURE 2.8: D3-brane geometry as interpolation between flat 10-
dimensional Minkowski space and AdS5× S5.

can be excited. In this limit the theory on the branes reduces to the low energy
effective theory, which is pureN =4 U(N ) SYM [143] and the bulk theory be-
comes free supergravity on a Minkowski background. Moreover,Sint vanishes
and the theory on the branes decouples from the theory in the bulk.

We can also consider the low energy limit in the dual supergravityp-brane
description. From the perspective of an observer at infinity, there are two types
of low energy excitations. There are the massless modes propagating in the
bulk region. Since the metric (2.53) becomes flat at larger , these describe
supergravity in flat space. On the other hand, sincegtt in (2.53) depends onr ,
objects close to the horizon appear red-shifted by a factor

(
1+ L4

r4

)−1/4

∼ r

L
(r → 0) (2.58)

to an observer at infinity. Thus,any excitation becomes a low energy excitation
as it is brought close to the horizon. The metric in the near-horizon regime
takes the form

ds2 = r2

L2

(
−dt2+ dx2

1 + dx2
2 + dx2

3

)
+ L2 dr2

r2
+ L2d�2

5 . (2.59)

Comparing to (2.49) we see that this is the metric of AdS5 × S5, where both
components have equal radiusL. The metric (2.53) thus interpolates between
flat space and AdS5 × S5. Figure 2.8 illustrates this separation into two re-
gions. It depicts how the radius of the 5-sphere becomes constant asr be-
comes small. Both geometries, which are thought to be exact string theory
vacua, are separated by an infinitely long ‘throat’. The two types of excitations
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r

FIGURE 2.9: Open string stretched between a stack of D-branes and
a probe brane.

decouple, because the low energy absorption cross section is proportional to
ω3L8 [62,81], whereω is the energy. More intuitively, this happens because
the wavelength of low energy bulk excitations becomes much larger than the
typical size of the brane and, reversely, because it becomes increasingly diffi-
cult for the excitations nearr = 0 to escape the gravitational well and propa-
gate into the asymptotic region. We conclude that the low energy theory from
the p-brane perspective consists of two decoupled regimes: free supergrav-
ity in 10-dimensional Minkowski space and string theory on the near horizon
geometry of AdS5× S5.

2.2.5 MALDACENA’ S CONJECTURE

In this section we formulate the precise AdS/CFT conjecture, as proposed by
Maldacena, and present some initial motivation for it. In both dual descriptions
discussed above, the theory far from the branes is string theory (or supergrav-
ity) on Minkowski space. The theory near the branes is, however, not the same
in both cases: it is a gauge theory in one case, string theory on AdS5 × S5 in
the other. This led Maldacena [90] to conjecture thatN =4 U(N ) SYM is dual
to type IIB superstring theory on AdS5× S5.

As motivation for the conjecture, note that the near horizon limit is equiva-
lent to the low energy limit. Indeed, in taking the low energy limit,ls→ 0, it is
natural to keep fixed the energy of an open string stretched between a stack of
D-branes and a probe brane, as in Figure 2.9. The energy of such a string isr/l2

s.
In order to keep this fixed, one needs to taker → 0, which is the near horizon
limit. Additionally, consider a massless particle incident from the asymptotic
region. In the D-brane description, this will be absorbed by the D-branes and
cause an excitation of the gauge theory. In the geometric description, it will
tunnel into to throat region and cause an excitation there. The fact that the ab-
sorption cross sections for these dual processes are equal [81] provides strong
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motivation for the conjecture.
As final motivation, consider the symmetry groups. The YM theory is

conformal. Its symmetry group is the conformal group in four dimensions,
SO(2, 4), times the R-symmetry group SU(4). This group is isomorphic to the
symmetry group of AdS5 × S5, which is SO(2, 4) for AdS5 and SO(6) forS5.
Taking into account the supersymmetry, the isometry group of AdS5 × S5 is
SU(2, 2|4), which is exactly the superconformal group in four dimensions.

It is important to note that, because of the redshift (2.58), the entire spec-
trum of string excitations becomes low energy in the near horizon region. In-
deed, we have taken the low energy limit in such a way, keepingr/l2

s fixed,
that the energies of objects in the throat remain fixed in string units. The near
horizon low energy spectrum is thus that of the full type IIB string theory.

2.2.6 THE CORRESPONDENCE BETWEEN FIELDS AND OPER-
ATORS

Shortly after the AdS/CFT conjecture was made, a precise correspondence
between gauge theory observables and those of supergravity was proposed
in [61,144]. The basic idea is to identify the correlation functions in the confor-
mal field theory with the dependence of the supergravity action on the asymp-
totic behaviour near the boundary of AdS.

Because of scale invariance, there is no notion of asymptotic states or of
an S-matrix in conformal field theory. The natural objects to consider are then
operators. Consider an operatorO in N =4 super Yang-Mills which changes
the value of the coupling constantgYM . Since the gauge coupling is related to
the string coupling by [42,100]

4πgs = g2
YM , (2.60)

this causes the string coupling to change. In turn, the string coupling is related
to the expectation value of the dilatonφ. This expectation value depends on
the boundary value for the dilaton. We see that changing the gauge coupling
is related to changing the boundary value of the dilaton. By adding a term∫

d4x φ0(
x)O(
x) to the Lagrangian, we can change the boundary condition on
the dilaton toφ(
x, z)|z=0 = φ0(
x), in the coordinates (2.50). It then seems
natural to identify [61,144]〈

e
∫

d4x φ0(
x)O(
x)
〉
CFT
= ZS

[
φ(
x, z)|z=0 = φ0(
x)

]
. (2.61)

The left hand side of this equation denotes the generating functional of corre-
lation functions in the CFT and the right hand side the supergravity (or string)
partition function with the boundary condition that the fieldφ approaches the
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valueφ0 on the boundary. In this way, the operators of the CFT are in one to
one correspondence with the string theory fields. This is true not only for the
scalar fields but for any field, including tensor and fermion fields. For example,
the stress tensor of the boundary field theory corresponds to the graviton in the
bulk.

The AdS/CFT correspondence is a strong/weak coupling duality in that it
relates the strong coupling regime of one theory to the weak coupling regime
of the dual theory. This complicates direct tests of the conjecture in which
a certain quantity is calculated in both theories and compared. Nevertheless
the correspondence has been tested extensively,e.g., through comparison of
certain correlation functions that do not depend on the coupling [34,49,70].
Based on these tests, it is fair to say that the AdS/CFT conjecture is by now
well established and is beyond being a mere conjecture.

2.2.7 ADS/CFTAND HOLOGRAPHY

The AdS/CFT correspondence provides an explicit realization of holography.
It allows one to describe the 5-dimensional bulk physics in terms of a 4-di-
mensional conformal field theory, which can be thought of as living on the
boundary∗ of the AdS space. There is, however, an important aspect of the
holographic principle that we have not yet addressed. Namely, the holographic
theory should contain a finite number of degrees of freedom per Planck area. In
the case at hand, the holographic theory, being a conformal theory, in fact has
degrees of freedom at arbitrarily small scales. Also, the area of the boundary
of AdS space is infinite. In order to perform a sensible counting of degrees of
freedom, we need to regulate both the boundary area and the UV degrees of
freedom of the gauge theory. In the following we will see that we can do both
with a single regulator.

The number of degrees of freedom can be regulated by imposing an ultra-
violet, or short distance cutoffδ. Let us consider the bulk interpretation of
such a cutoff. Close to the boundary of AdS we can use the metric (2.50), in
which the boundary is atz = 0. The AdS isometry (in Euclidean coordinates)
corresponding to a rescaling of the boundary is then given by

xi → λxi ,

z→ λz .
(2.62)

∗It may seem that the boundary of AdS5× S5 is not 4-dimensional, but 9-dimensional instead.
However, from the metric (2.59) on this space, we see that in approaching the boundary (atr = ∞)
four of the dimensions blow up, while theS5 remains constant. In order to obtain a finite metric
on the boundary we will need to multiply by a factor that goes to zero at the boundary. Effectively,
we are then left with a 4-dimensional boundary.
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The scale size of objects in the boundary CFT thus corresponds to the radial
coordinate,z, of AdS. This can also be seen directly in the AdS space. Consider
a volumeV near the center of AdS. Using an AdS isometry, map the volume
to a coordinate distanceε from the boundary. The volume will have scaled to
a coordinate sizeεV. In this way, the scale size becomes a spatial dimension.
This implies that a UV cutoff in the boundary at a length scaleδ corresponds
in the bulk theory to a IR cutoff at

z ↔ δ . (2.63)

This relation between the bulk and boundary theories is called the UV/IR con-
nection [127]. In Chapter 4 we will see that it is not a peculiarity of the
AdS/CFT correspondence and also appears in a conjectured holographic du-
ality of de Sitter space.

We can now proceed and calculate the entropy of the boundary theory.
Assume that each independent quantum field has one degree of freedom per
cutoff volumeδ3. Write the metric of AdS as

ds2 = L2


−

(
1+ r2

1− r2

)2

dt2+ 4

(1− r2)2
(dr2+ r2d�2

3)


 . (2.64)

In these coordinates the radial coordinate is denoted byr and the boundary is at
r = 1. The regulated boundary is atr = 1− δ, whereδ 	 1. ConsiderN =4
SYM on a three-sphere with unit radius. The number of degrees of freedom of
a U(N ) theory is of orderN2. Since the volume of the three-sphere in terms of
the cutoffδ is of orderδ−3, the total number of degrees of freedom is

Nd.o.f. = N 2

δ3
. (2.65)

The area of the regulated sphere isA ≈ L3/δ3. Using (2.54), we can write

Nd.o.f. = AL5

l8
s g2

s
. (2.66)

In terms of the 5-dimensional Newton constant,G5 = l8
s g2

s L−5, this takes the
form [127]

Nd.o.f. = A

G5
. (2.67)

We see that, after suitable regularization, the SYM boundary theory provides a
holographic theory including the information density bound.
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Since in AdS space the volume and area of any region scale in the same
way,†

A

V
∼ 1

L
(V →∞) , (2.68)

one might ask how strong a statement it is to say that gravity in AdS is holo-
graphic. Indeed, for any field theory in AdS it holds true that the number of
degrees of freedom is proportional to the boundary area. Compare this to the
case of flat space where

A

V
∼ 0 (V →∞) . (2.69)

However, in the case at hand there is another parameter: the AdS length scale
L. In the boundary theory it corresponds to the rank of the gauge group,N .
We can then consider AdS spaces with different radii and observe whether
the number of degrees of freedom goes like the volume or the area. This is
relevant, since the volume and area depend differently onL. Combining (2.66)
and (2.68), which for AdS5× S5 takes the formV = AL6, gives [127]

Nd.o.f.

V
= 1

Ll8
s g2

s
. (2.70)

From this we see that, asL becomes large, the number of degrees of freedom
per unit volume goes to zero. In this sense, then, the holographic bound is
similarly restrictive as in flat space.

2.2.8 THE CARDY-VERLINDE FORMULA

The AdS/CFT correspondence can be applied to the situation where there is a
black hole present in Anti-de Sitter space. Like black holes in asymptotically
flat space, these solutions have thermodynamic properties including a charac-
teristic temperature and an entropy equal to one quarter of the area of the event
horizon in Planck units [68]. It was argued by Witten [145] that this temper-
ature and entropy, as well as the mass of the black hole can be identified with
the temperature, entropy and energy of a CFT at high temperatures.

Consider an Anti-de Sitter Schwarzschild black hole inD+1 dimensions,
the metric is given by

ds2 = −
(

1+ r2

L2
− ωD M

r D−2

)
dt2+

(
1+ r2

L2
− ωD M

r D−2

)−1

dr2+ r2d�2
D−1 ,

(2.71)

†Note thatL, the curvature radius of the AdS space, is a constant.
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where

ωD = 16πGN

(D − 1)Vol(SD−1)
, (2.72)

cf. (2.2). Here,GN denotes theD+1-dimensional Newton constant andL is the
radius of curvature of the AdS spacetime. The radius of the black hole horizon
is rH, with rH the largest solution of the equation

1+ r2

L2
− ωD M

r D−2
= 0 . (2.73)

The dual CFT lives on theD = n+ 1 dimensional boundary of the AdS
Schwarzschild spacetime, with topologyR× Sn .

As shown in [145], the energy and entropy of the black hole (2.71) are
given by

E = M = (D − 1)(rH L−2+ r−1
H )V

16πGN
(2.74)

and

S = V

4GN
, (2.75)

whereV is the horizon volume,

V = r D−1
H Vol(SD−1) . (2.76)

For future purpose, rescale these formulas so that the CFT lives on a sphere
with radius equal to that of the black hole horizon. Moreover, eliminate the
D+1-dimensional Newton constant using its relation with the central charge,
c, of the CFT,

1

4GN
= c

12

1

Ln
. (2.77)

Since the entropy is dimensionless it does not scale. Using the substitution for
GN we can write it as

S = c

12

V

Ln
. (2.78)

The energy does scale and this introduces a factorL/rH as compared to (2.74),
which can then be written as

E = c

12

n

4π L

(
1+ L2

r2
H

)
V

Ln
. (2.79)

The temperature of the black hole can be deduced from the metric (2.71) in the
same way as for the asymptotically flat case,cf. (2.10)-(2.20). The temperature
of the CFT living on a sphere of radiusrH then follows after the appropriate
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rescaling. Alternatively, it follows from the first law of thermodynamics and is
given by

T = 1

4π L

[
(n + 1)+ (n − 1)

L2

r2
H

]
. (2.80)

Based on the above formulas for the entropy and energy of the dual CFT,
Verlinde [137] constructed a formula for the entropy reminiscent of the Cardy
formula for the entropy of a 1+1-dimensional CFT. Note that the energy (2.79)
exhibits an extensive, but also a sub-extensive term,

E = EE+ 1

2
EC , (2.81)

whereEE andEC denote the extensive part and the sub-extensive part, respec-
tively. The factor1/2 is introduced for later convenience. As we will derive in
more detail in the next chapter, the sub-extensive term is given by [137]

EC = c

12

n

2πrH

V

Ln−1rH

(2.82)

and is called the Casimir energy. Although the Casimir effect is usually dis-
cussed at zero temperature [33], a similar effect occurs at finite temperature. It
results from finite size effects in the quantum fluctuations of the CFT and dis-
appears in the infinite volume limit. Substituting forc andL leads to a unique
expression for the entropy [137],

S = 2πrH

n

√
EC(2E − EC) . (2.83)

This formula has become known as the Cardy-Verlinde formula. Indeed, sub-
stituting

E rH = L0 ,

EC rH = c

12
,

(2.84)

the formula (2.83) reduces to the Cardy formula. It is rather surprising that
the Cardy formula can so easily be generalized to higher dimensions, since the
standard derivation, based on modular invariance, only works in 1+1 dimen-
sions. These formulas will play an important role in Chapter 3 and the required
substitutions (2.84) will be clarified there. In the derivation above it is assumed
thatrH 
 L. For future purpose we note that within this parameter range the
Casimir energyEC is smaller than the total energyE .





3

ENERGY AND ENTROPY IN A RADIATION

DOMINATED FRW UNIVERSE

In this chapter, we study the holographic principle in the context of a radiation
dominated FRW universe. The radiation is represented by a strongly coupled

CFT with an AdS-dual description. A surprising merger between the applicable
entropy and energy formulas and the equations that govern the cosmological
evolution will be discussed. Subsequently, we introduce a Randall-Sundrum
type brane world model in the background of an AdS-Schwarzschild geometry.
The merger derives a natural explanation from this model, as it occurs exactly
when the brane crosses the black hole horizon. The treatise is based on [112].

3.1 INTRODUCTION

In the previous chapter the foundations of the holographic principle were dis-
cussed. To further elucidate the holographic principle and the entropy bounds
that are derived from it, we now study a closed, radiation dominated standard
Friedmann-Robertson-Walker (FRW) cosmology. Keeping the spacetime di-
mensionD = n+1 general, the metric takes the form

ds2 = −dt2+ a2(t)d�2
n , (3.1)

wherea(t) represents the radius of the universe at timet . The spatial sections
of this closed metric aren-spheres with finite volume

V = Vol(Sn) an . (3.2)

The radiation can be described by an interacting CFT. More usually, radiation
is described by free, or weakly interacting, massless particles. The number of
species of such particles corresponds to the central chargec of this CFT. The

33
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case of interest to us is of a CFT with a very large central charge. As was
shown in Section 2.2.8, the entropy of such a CFT, at least for CFT’s that have
an AdS dual, is given by the Cardy-Verlinde formula (2.83).

In Section 3.3, we discuss a relation between the entropy formulas for the
CFT and the FRW equations which was first considered by Verlinde [137].
This relation provides a deep and fundamental connection between the holo-
graphic principle, the CFT entropy formulas and the gravitational evolution of
the radiation dominated FRW universe. Setting the cosmological constant to
zero, the FRW equations take the form

H2 = 16πGN

n(n − 1)

E

V
− 1

a2
, (3.3)

Ḣ = −8πGN

n − 1

(
E

V
+ p

)
+ 1

a2
, (3.4)

whereH ≡ ȧ/a is the Hubble constant and the dot denotes differentiation with
respect to the timet . For convenience, we write the FRW equations in terms of
the total energyE and entropyS, instead of their respective densities,ρ = E/V

ands = S/V , as is more usual.
The first law of thermodynamics states that

d(ρan) = −pd(an) . (3.5)

Dividing by dt and evaluating, we obtain

ρ̇ = −n(ρ + p)H . (3.6)

Together with the equation of state for radiation,p = ρ/n, this implies that
ρ and p drop off in the usual fashion asa−(n+1). It follows that the cosmo-
logical evolution will be that of a standard closed radiation dominated FRW
universe. Starting from a big bang, the universe expands until it reaches its
maximal size. Subsequently, it re-collapses to end in a big crunch. In this
respect nothing special happens. However, as observed by Verlinde [137], an
interesting merger occurs when one compares the holographic entropy bound
with the entropy formulas for the CFT. At the point where the bound is sat-
urated, the FRW equations merge together with the entropy formulas for the
CFT to give one set of equations. The role of the entropy bounds is illustrated
by the substitutions [137]

2π L0⇒ 2π

n
Ea , (3.7)

2π
c

12
⇒ (n − 1)

V

4GNa
(3.8)
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and

S ⇒ (n − 1)
H V

4GN
, (3.9)

which, as one easily checks, turn the Cardy-Verlinde formula (2.83) into the
Friedmann equation (3.3). As we will discuss in detail below, each of these
substitutions correspond to a cosmological entropy bound. In this way the
merger becomes a natural consequence of the holographic principle.

In Section 3.2 we introduce several cosmological entropy bounds, includ-
ing three corresponding to each of the equations (3.7)-(3.9). In Section 3.3
we introduce the cosmological Casimir bound and show that the FRW equa-
tions and the entropy formulas are exactly matched when the bound is sat-
urated. After a general discussion of brane world scenarios in Section 3.4,
we consider the merger from the viewpoint of a brane world scenario in Sec-
tion 3.5. A brane of constant tension is considered in the background of an
AdS-Schwarzschild black hole. The idea is to use the AdS/CFT correspon-
dence where the brane takes the place of the boundary. The Hawking temper-
ature of the AdS-Schwarzschild geometry, measured with respect to time on
the brane, can be interpreted as the temperature of the CFT to which the bulk
is dual through the AdS/CFT correspondence. The induced geometry on the
brane is shown to be that of a radiation dominated FRW universe. The entropy
and energy formulas derived in the preceding sections can then be applied to
this spacetime. It is shown that the moments at which the merger between the
different sets of equations occurs play a special role in this scenario: they are
the moments at which the brane crosses the horizon of the bulk black hole. That
one obtains a radiation dominated universe in this way can be understood from
the CFT perspective. All CFT’s have the same equation of state up to numeri-
cal factors, so the FRW equations take the same form as they do in the radiation
dominated era of our universe. We conclude and summarize in Section 3.6.

3.2 COSMOLOGICAL ENTROPY BOUNDS

The holographic entropy bound in the form (2.23) cannot directly be applied to
closed cosmological models. This is because a closed universe does not have a
boundary. Furthermore, the argumentation leading to (2.23) assumes that it is
possible to form a black hole that fills the entire volume. This is not true in a
cosmological setting, because the expansion rateH of the universe as well as
the given value of the total energyE restrict the maximal size a black hole can
have. Moreover, in standard cosmology, it is usually assumed that in the late
universe the entropy density is constant in comoving coordinates. This implies
that one can violate the bound (2.23) by choosing a large enough volume, since
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in this case the entropy clearly grows like the volume. In this section, we
discuss modifications of the holographic bound designed to circumvent these
difficulties.

3.2.1 THE FISCHLER-SUSSKIND BOUND

The first cosmological entropy bound we consider is a generalization, by Fis-
chler and Susskind [45], to more general spacetimes of the covariant bound
discussed in Section 2.1.4. Consider a flatn+1-dimensional Robertson-Walker
cosmology; the metric has the form

ds2 = −dt2+ a2(t) dxi dxi (i = 1, . . . , n) . (3.10)

The usual cosmological assumptions of homogeneity, isotropy and, in the late
universe, constant entropy density in comoving coordinates are made. Con-
sider a spherical spatial regionV with coordinate radius� and boundaryA.
The lightlike surfaceL is formed by past lightrays fromA towards the center
of V . There are three situations, depending on whether� is larger, smaller or
equal to the cosmological horizonaC. When� < aC, the surfaceL forms a light
cone with its tip in the future of the singularity att = 0. For� = aC, L is a
light cone with its tip att = 0. Finally, in the case� > aC, the surface is a trun-
cated cone. These situations are indicated in Figure 3.1. Consider the entropy
that passes throughL. For the first two cases this entropy is the same as the
entropy in the interior ofV (or less, as entropy increases after it crossesL). In
the last case it is less than the entropy inV . The Fischler-Susskind holographic
entropy bound states that the entropy passing throughL never exceeds the area
of the boundary surfaceA,

S(L) � A

4
. (3.11)

For the homogeneous case, this corresponds to the following condition: the
entropy contained within a volume of coordinate sizeaC should not exceed the
area of the horizon in Planck units. In terms of the constant comoving entropy
densityσ , this condition takes the form

σan
C � (a · aC)

n−1 , (3.12)

with everything measured in Planck units. Comparing to the bound discussed
in Section 2.1.4, we see thatA now plays the role of holographic screen.

Both aC and a depend on time and the bound (3.12) should hold at all
times. At the current time, the entropy of the observable universe is of order
1086, while the horizon size is of order 1060. By substituting these numbers
andn = 3 in (3.12), one easily checks that the bound holds for the observable
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�

t = 0

t = t1

t = t2

t = t3

S

L

V

A

r = 0 r →

a C
(t)

FIGURE 3.1: Spherical spatial volumes with coordinate radius� are
shown at timest = t1, t2, t3. The big bang is att = 0. For the vol-
umeV at t = t2, the construction is shown in boldface. The arrow
S denotes the entropy flow through the lightsheetL correspond-
ing to the volumeV with boundaryA. The cosmological horizon
a C(t) is indicated by the dotted lines fort > t2. The lightsheetL
coincides with the cosmological horizon fort � t2.

universe at this moment. Indeed, the entropy to area ratio,ρ = S/A, is of order

ρ(t0) ≈ 10−34 , (3.13)

wheret0 is now. It is interesting to consider whether the bound will continue
to hold in the future. Assuming thata(t) ∝ t p, the horizon size is given by

aC(t) =
∫ t

0

dt

a(t)
∝ t1−p . (3.14)

From this we deduce that (3.12) will continue to hold if

p >
1

n
, (3.15)

setting a lower bound for the expansion rate.
Looking backwards in time, standard estimates give an entropy to area ratio

at the time of decoupling,t = td, which is about 106 times larger than the
current ratio,

ρ(td) ≈ 10−28 . (3.16)

During the preceding, radiation dominated era, the time dependence ofρ is
given by

ρ(t) ∝ 10−28

√
td
t
≈ 1√

t
, (3.17)
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where in the last step we used thattd ≈ 1056 in Planck units. We see that the
entropy in the universe is as large as it can be with (3.12) holding all the way
back to the Planck time.

The above construction makes clear the advantage of bounding entropy on
lightsheets instead of spatial volumes in a cosmological setting. Since the spa-
tial entropy densityσ is constant and uniform, if we chooseV big enough the
entropy inV will exceed its areaA, as noted above. However, the lightsheet as-
sociated withV does not grow proportional toV . If V becomes larger than the
cosmological horizon, the lightsheet is truncated by the big bang. This means
that part of the entropy inV never passed throughL. Taking into account only
the entropy that did pass throughL, this does scale like the areaA.

The Fischler-Susskind bound applies to flat and open universes, but fails for
closed and recollapsing universes. Bousso [23,24] has proposed a refinement of
the bound that applies in arbitrary spacetimes. To any surfaceA, with arbitrary
shape, topology and location, are associated at least two (and at most four)
well defined lightsheets. The bound (3.11) is then argued to apply to each
lightsheet independently. With certain assumptions on the relation between
entropy density and energy density, this bound was proven to hold [46]. We
will refer to this bound as the Fischler-Susskind-Bousso or FSB bound and say
a bit more about how it is defined in Section 4.4.3, where we use it to define
the apparent horizon.

3.2.2 THE BEKENSTEIN BOUND

Bekenstein [18–20] was the first to propose a bound on the entropy of a macro-
scopic system. Assuming that the system has limited self-gravity, Bekenstein
argued that its entropy must be bounded by (a multiple of) the energy and the
linear dimension of the system. The assumption of limited self-energy means
that the gravitational self-energy of the system is small compared to the total
energyE . Applying this bound in the present context of a closed radiation
dominated FRW universe with radiusa, it takes the form [137]

S � SB , (3.18)

where the Bekenstein entropySB is defined by

SB ≡ 2π

n
Ea . (3.19)

The assumption of limited self-gravity requires that the Hubble radiusH−1 is
larger than the radiusa of the universe,

Ha � 1 . (3.20)
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As noted in the introduction to this chapter,ρ ∝ a−(n+1) for a radiation domi-
nated universe. Hence, the energy behaves asE ∝ a−1. Comparing to (3.19),
we see that this means that the Bekenstein entropy is constant during the evo-
lution, providing the entropyS does not change.

3.2.3 THE COSMOLOGICALBEKENSTEIN-HAWKING BOUND

In a strongly self-gravitating universe,i.e. for

Ha � 1 , (3.21)

the possibility of black hole formation has to be taken into account. One can
try to generalize the idea of a space filling black hole to a cosmological context,
despite the difficulties mentioned at the beginning of this section. For a closed
universe, the closest one can come to the expression (2.21) is perhaps [137]

Sc
BH ≡ (n − 1)

V

4a
. (3.22)

This expression grows like an area, as appropriate for a black hole, motivat-
ing the identification ofSc

BH as the Bekenstein-Hawking entropy of a universe
filling black hole. The corresponding entropy bound takes the form

S � Sc
BH . (3.23)

From the Friedmann equation (3.3) one derives that

Ha �
> 1 ⇔ SB

�
> Sc

BH . (3.24)

Therefore, the appropriate bound is also the most stringent in its respective
regime of validity. However the cosmological Bekenstein-Hawking bound
breaks down, as expected, since it assumes the existence of arbitrarily large
black holes and is irreconcilable with a finite homogeneous entropy density.
In the next section, we will use the cosmological Bekenstein-Hawking entropy
rather as a bound on the sub-extensive component of the entropy. This sub-
extensive contribution is associated with a corresponding sub-extensive term
EC in the energy,cf. (2.81).

3.2.4 THE HUBBLE BOUND

Since arbitrarily large black holes are not possible, one can instead use black
holes of maximal size to obtain an entropy bound for the universe. This idea of
filling the universe with black holes the size of the Hubble horizon is pursued
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in [79,135] and leads to the Hubble bound. A black hole filling a Hubble
volumeVH has entropy approximately equal to

S ≈ H VH

4
. (3.25)

The number of such black holes that will fit in the universe is given by

NH = V

VH
, (3.26)

whereV is the volume of the universe. Multiplying these expressions leads to
an upper bound on the total entropyS given by a multiple ofH V/4. The precise
prefactor was determined in [137], using a local formulation of the FSB bound.
The Hubble bound then takes the form

S � SH , (3.27)

where the Hubble entropySH is defined by

SH ≡ (n − 1)
H V

4
. (3.28)

The Hubble bound is only valid for strongly self-gravitating systems,i.e. for
Ha � 1.

3.3 THE COSMOLOGICALCASIMIR BOUND

We consider a new cosmological entropy bound that was first proposed by
Verlinde in [137]. This bound is equivalent to the Hubble bound in the strongly
gravitating phase, but unlike the Hubble bound remains valid in the phase of
weak self-gravity. A surprising merger between the FRW equations that govern
the gravitational evolution and the CFT formulas for the entropy and Casimir
energy occurs when the bound is saturated.

3.3.1 ENERGY AND ENTROPY FORMULAS FOR THECFT

We begin by discussing the entropy of the CFT that describes the radiation in
the FRW universe. In cosmology it is usually assumed that the total entropy
S and energyE are purely extensive quantities. This means for the energy, as
a function of entropy and volume, thatE(λS, λV ) = λE(S, V ). From this
relation one can derive the Euler relation in the following way. Differentiate
with respect toλ and putλ = 1. This gives

E = V

(
∂ E

∂V

)
S
+ S

(
∂ E

∂S

)
V

. (3.29)



3.3 The cosmological Casimir bound 41

Using the first law of thermodynamics,d E = T d S − pdV , one can express
the derivatives as (

∂ E

∂V

)
S
= −p ,

(
∂ E

∂S

)
V
= T . (3.30)

Substituting these in (3.29) gives the Euler relation,

T S = E + pV . (3.31)

As shown in Section 2.2.8 for a CFT with an AdS dual, the energy and entropy
of a CFT with a large central charge are in fact not purely extensive. In a finite
volume there is a non-extensive Casimir contribution to the energy proportional
to c, the central charge. The Casimir energy can be defined as the violation of
the Euler relation (3.31),

EC ≡ n(E + pV − T S) , (3.32)

where the factorn is inserted for later convenience. The Casimir energy is
again a function of the entropy and volume, but it will scale sub-extensively.
From general considerations, the first correction to the extensive part of the
energy should scale like

EC(λS, λV ) = λ1− 2
n EC(S, V ) . (3.33)

The total energy can again be written as a sum of an extensive and a sub-
extensive term,cf. (2.81),

E(S, V ) = EE(S, V )+ 1

2
EC(S, V ) . (3.34)

The productEa is independent of the volumeV by conformal invariance,
thus depending only on the entropyS. This holds for both terms in the energy
expression (3.34). From the known (sub-)extensive behaviour ofEE and EC,
we derive the general expressions [137],

EE = c1

4πa
S1+ 1

n , EC = c2

2πa
S1− 1

n , (3.35)

where the positive constantsc1 andc2 are independent ofa andS. The factors
of 2π and 4π are put in for later convenience. Using these expressions, the
entropy can be written as

S = 2πa√
c1c2

√
EC(2E − EC) . (3.36)
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This is almost the same as the Cardy-Verlinde formula (2.83) we derived be-
fore for a CFT which has an AdS dual. Comparing the two, we conclude that√

c1c2 = n for such a CFT. From now on we will simply assume that
√

c1c2 = n
for the CFT we consider.

Given the energyE , the entropy formula (2.83) has a maximal value,

S � 2π

n
Ea . (3.37)

This is exactly the Bekenstein bound (3.18). The bound is saturated when the
Casimir energyEC is equal to the total energyE . In principle EC could also
become larger thanE , with the entropyS again decreasing. However, as noted
in Section 2.2.8, this does not happen in the parameter range for which (2.83)
is valid. This leads us to assume that

EC � E . (3.38)

3.3.2 A BOUND ON THE CASIMIR ENERGY

As expressed in (3.24), at the transition point where the universe goes from
the strongly to the weakly self-gravitating phase, the Bekenstein entropySB is
equal to the cosmological Bekenstein-Hawking entropySc

BH. Given the radius
a, define the cosmological Bekenstein-Hawking energy,Ec

BH, to be the value
of the energy at which this transition occurs,

2π

n
Ec

BHa ≡ (n − 1)
V

4a
. (3.39)

Similar to the interpretation of the cosmological Bekenstein-Hawking entropy
as the entropy of a universe filling black hole, the energyEc

BH can be inter-
preted as the energy required to form such a black hole. It is easy to check
that

Ha �
> 1 ⇔ E �

> Ec
BH , (3.40)

providing a new criterium for distinguishing between a weakly or strongly self-
gravitating universe.

The physical content of the new cosmological bound proposed in [137] is
that the sub-extensive Casimir contributionEC to the total energy by itself does
not suffice to form a universe filling black hole. This corresponds to a bound

EC � Ec
BH . (3.41)

This bound is universally valid, both in the strongly and the weakly self-gravi-
tating phases of the evolution. As we will show next, in a strongly gravitating
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universe it is equivalent to the Hubble bound, while in a weakly gravitating uni-
verse it is equivalent to the Bekenstein bound. Since it is formulated in terms of
the cosmological Bekenstein-Hawking entropy, which can be interpreted as the
energy of a universe-filling black hole, it is a purely holographic bound. More-
over, as we will see, when the bound is saturated the laws of general relativity
and quantum field theory merge in a miraculous way, giving a strong indication
that they have a common origin in a more fundamental unified theory. We will
refer to this bound as the cosmological Casimir entropy bound.

3.3.3 A COSMOLOGICAL CARDY FORMULA

In order to prove that the cosmological Casimir bound is equivalent to the
Hubble bound and the Bekenstein bound in the strongly and weakly gravitat-
ing phases respectively, write the Friedmann equation as an expression for the
Hubble entropySH in terms of the energyE , the radiusa and the cosmological
Bekenstein-Hawking energyEc

BH. This leads to the unique expression

SH = 2π

n
a
√

Ec
BH(2E − Ec

BH) . (3.42)

This looks suspiciously like the Cardy-Verlinde entropy formula for a CFT,
(2.83), except the entropy is replaced by the Hubble entropy and the Casimir
energy by the cosmological Bekenstein-Hawking energy. It seems as if, some-
how, the Friedmann equation knows about the Cardy-Verlinde formula.

From (3.40) we have that in the strongly gravitating phase,Ha � 1, the
energy satisfiesE � Ec

BH. Furthermore, we always assume thatEC � E ,
cf. (3.38). The Cardy-Verlinde entropy is a monotonically increasing function
of EC in this range. Therefore, while the cosmological Casimir bound (3.41)
is satisfied, or more specifically in the range

EC � Ec
BH � E , (3.43)

it reaches its maximum whenEC = Ec
BH. This is exactly when the Cardy-

Verlinde formula turns into the cosmological Cardy formula (3.42) forSH.
Therefore, we conclude thatSH is the maximal entropy that can be reached
when Ha � 1, so that the Casimir bound is indeed equivalent to the Hubble
bound in this regime. In the weakly self-gravitating phase, whenE � Ec

BH,
the maximum is reached earlier, namely forEC = E . Comparing (2.83) and
(3.19), we conclude that the maximal entropy is in that case given by the
Bekenstein entropySB, proving the equivalence to the Bekenstein bound in
this regime.
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3.3.4 A LIMITING TEMPERATURE

We have seen that the Friedmann equation becomes identical to the Cardy-
Verlinde formula when the cosmological Casimir bound (3.41) is saturated.
We will now show that also the second FRW equation has a counterpart in the
CFT. This leads to a constraint on the temperatureT .

The second FRW equation can be written as a relation betweenEc
BH and

SH. This relation takes the form

Ec
BH = n(E + pV − THSH) , (3.44)

where

TH ≡ − Ḣ

2π H
. (3.45)

Assume that the universe is in the strongly self-gravitating phase,Ha � 1,
so thatH �= 0 andTH is well defined. Note thatTH > 0 since in a radiation
dominated universe the expansion is always slowing down, so thatḢ < 0.
We have seen that in the strong gravity regime the Casimir entropy bound is
equivalent to the Hubble bound,

EC � Ec
BH ⇔ S � SH (Ha � 1) . (3.46)

From comparing (3.44) and (3.32), the defining relation for the Casimir energy
EC, we see that the temperatureT is bounded from below byTH,

T � TH (Ha � 1) . (3.47)

When the Casimir bound is saturated all inequalities turn into equalities. The
Cardy-Verlinde formula and the defining Euler relation for the Casimir energy
in that case exactly match the Friedmann equation for the Hubble constant and
the second FRW equation for the cosmological Bekenstein-Hawking energy.
This matching is summarized in Table 3.2 on page 61.

3.3.5 TIME DEPENDENCE OF THE ENTROPY BOUNDS

In order to elucidate the time dependence of the cosmological entropy bounds
discussed in Section 3.2, write the Friedmann equation in terms of the Hubble-,
Bekenstein- and cosmological Bekenstein-Hawking entropies. This leads to
the expression [137]

S2
H + (SB − Sc

BH)2 = S2
B . (3.48)

This is the same as the square of (3.42), where we have replaced the energies
by entropies through the defining relations (3.19) and (3.39). By representing
each entropy appearing in this equation by a line with length proportional to
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τ

SB

Sc
BH

SH τ = 0

τ1

H R < 1
H R > 1

FIGURE 3.2: Diagram depicting the time dependence of the en-
tropy bounds discussed in the text. The diagram represents one
cosmological cycle of the standard FRW model. Time runs clock-
wise along the circle once. The evolution starts atτ = 0 with
a big bang and eventually ends, after one revolution, with a big
crunch. In between, the universe reaches its largest size at the mo-
ment diagonally across fromτ = 0. The values ofSBH and SH
at τ = τ1 are indicated as well as the time independent value of
SB. The dashed line divides the eras when the universe is strongly
(Ha > 1) or weakly (Ha < 1) self-gravitating. Figure adapted
from [137].

its value, this relation allows all three to fit nicely together as in Figure 3.2.
The circular form of the diagram reflects the fact thatSB is constant during the
cosmological evolution.

In the same way as for the Bekenstein and the cosmological Bekenstein-
Hawking energies, one can associate an entropy to the Casimir energyEC.
This entropy, defined as

SC ≡ 2π

n
ECa , (3.49)

represents the non-extensive part of the total entropy. As a function of energy
and volume it scales like

SC(λE, λV ) = λ1− 1
n SC , (3.50)

i.e. like an area, suggesting that it may have a holographic interpretation. The
cosmological Casimir bound, (3.38), can now be reformulated as an entropy
bound,

SC � Sc
BH . (3.51)
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τ

SB

Sc
BH

SH τ = 0

τ1

H R < 1
H R > 1

SC

S
τH

τ ′H

τ̂H τ̂ ′H

FIGURE 3.3: TheentropyS and Casimir entropySC fill part of the
cosmological entropy diagram. If the Bekenstein boundS � SB
holds at one moment, it will continue to hold as long as the total
entropyS does not change. The Hubble boundS � SH restricts
the range ofτ in the regimeHa > 1 to τH � τ � τH′ and is
violated in the regimeHa < 1 for τ̂H � τ � τ̂ ′H. The Casimir
boundSC � Sc

BH is equivalent to the Hubble bound forHa > 1
and remains valid forHa < 1. Figure adapted from [137].

The total entropyS and the Casimir entropySC can be naturally incorpo-
rated into Figure 3.2. Rewrite the Cardy-Verlinde formula (2.83) as a relation
between the entropyS and its super- and sub-extensive counterpartsSB andSC.
One easily checks that it takes the form

S2+ (SB − SC)2 = S2
B . (3.52)

This relation has exactly the same form as (3.48). The only difference is that
the role of the Hubble entropy and the cosmological Bekenstein-Hawking en-
tropy are taken over by the total entropy and the Casimir entropy. The diagram
incorporatingS andSC is depicted in Figure 3.3. From this diagram one easily
determines the relation between the Casimir bound and the Hubble bound. It is
clear that whenHa > 1, that is in the strongly self-gravitating phase, the two
bounds are equivalent. When the Casimir bound is saturated,SC = Sc

BH, the
Hubble bound is also saturated,S = SH. The converse statement is not true, as
can also easily be seen from Figure 3.3. Indeed, there are two moments in the
weakly self-gravitating phase,Ha < 1, whereS = SH, but SC �= Sc

BH, namely
τ = τ̂H, τ̂

′
H. This can be seen as an indication that the cosmological Casimir

bound may well be a truly fundamental bound [137]. In preparation for the
model that we will introduce in Section 3.5, we now introduce the concept of
‘brane worlds’.
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3.4 BRANE WORLDS

An interesting new perspective on the merger between the energy and entropy
formulas and the equations that govern the cosmological evolution of the above
described FRW universe can be obtained from a brane world model. Before
discussing the specific model we consider in the next section, we first introduce
the general concept of brane worlds.

The accuracy to which the standard model interactions have been tested
seems to rule out the possibility of large extra dimensions∗ beyond the familiar
3+1 that we observe in everyday life. The standard model has been tested to
almost the weak scale, or at least the theoretically predicted value of the weak
scale, 10−19 m. Gravity, on the other hand, has only been tested up to scales of
about 10−4 m [72]. This allows for the intriguing possibility that our universe
is realized as a D3-brane in a higher dimensional spacetime. The standard
model gauge group would be realized on the D-brane worldvolume [22,37,
124] and thus be confined to 3+1 dimensions, while gravity propagates in all
dimensions as it is the dynamics of spacetime itself. Such scenarios are called
brane worlds [3,78,108].

In this section, we begin by discussing some technical points regarding the
Einstein equations in the context of stress-energy that is localized on a hyper-
surface, or brane. We then discuss the two brane world models due to Randall
and Sundrum [103,104]; in the next section we will use a similar model. Brane
worlds have received a lot of attention recently, for a review see [41,47].

3.4.1 ISRAEL MATCHING CONDITIONS

Consider ad = n+1-dimensional hypersurface located at coordinatex D = 0 in
a D =d+1-dimensional bulk spacetime. We assume that the energy content is
confined to the codimension one hypersurface, so that the stress-energy tensor
takes the form

TM N = gµ
M gν

N T̂µνδ(x D) , (3.53)

wheregMN is the bulk metric andM, N take values 1, . . ., D while µ, ν take
values 1, . . ., d. One can solve the Einstein equations,

RM N − 1

2
RgMN +�gMN = 8πTM N , (3.54)

with this ansatz forTM N . For the bulk spacetime the solution is an Einstein
space, where

RM N = 2�

(d − 1)
gMN . (3.55)

∗In fact, we define ‘large’ in this way: too large to agree with current experimental data in the
conventional framework.
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In addition, one finds conditions on the extrinsic curvatureKµν of the hyper-
surface, defined by

Kµν ≡ ∇µnν , (3.56)

where nµ is the outward pointing unit normal to the hypersurface. These
matching conditions were derived by Israel [75] and take the form

lim
ε↓0
[
Kµν

]x D=ε

x D=−ε
=
(

T̂µν − 1

d − 1
gµνgαβ T̂αβ

)∣∣∣∣
x D=0

. (3.57)

The physical content of this equation is that the extrinsic curvature jumps dis-
continuously across an energy-momentum carrying codimension one hyper-
surface. If the spacetime ends at the hypersurface,i.e., when the hypersurface
is an energy-momentum carrying boundary, the corresponding extrinsic curva-
ture term disappears and (3.57) becomes a boundary condition on the normal
derivative of the metric.

3.4.2 GIBBONS-HAWKING BOUNDARY TERM

The Einstein equations (3.54) follow by variation from the Einstein-Hilbert
action,

SEH =
∫

d Dx
√

g (R − 2�) , (3.58)

whereg is the absolute value of the determinant of the metricgMN. One might
expect then that (3.55) and (3.57) could be directly derived from stationarity of
the sum of the bulk Einstein-Hilbert and the brane actions,

SEH+ Sbrane=
∫

d Dx
√

g (R − 2�)+
∫

M
ddx Lb , (3.59)

whereM denotes the hypersurface and the brane LagrangianLb contains only
the matter degrees of freedom and intrinsic curvature terms of the brane. How-
ever, this is not the case. Every action that differs from the Einstein-Hilbert ac-
tion (3.58) by a complete divergence yields the Einstein equations (3.54). But
once the brane action is added, as in (3.59), the difference in surface terms be-
tween different bulk actions becomes relevant, because the presence of energy-
momentum on the brane may spoil the continuity of the surface terms across
the brane, implying a numerical difference between the different bulk actions.
Therefore, not every bulk action that yields the Einstein equations will yield
(3.55) and (3.57) whenSbraneis added to it. In particular, the Einstein-Hilbert
action does not. This can be remedied by adding a Gibbons-Hawking boundary
term [52] to (3.59). The appropriate boundary term is given by

SGH = −
∫

M
ddx

√
ĝK , (3.60)
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whereK ≡K
µ
µ is the trace of the extrinsic curvature andĝ denotes the deter-

minant of the induced metriĉgµν on the brane. Adding this term leads to a well
defined variational problem that indeed yields the Einstein condition (3.55) in
the bulk and the matching condition (3.57) on the brane.

3.4.3 RANDALL -SUNDRUM MODELS

Randall and Sundrum (RS) [103,104] have proposed two interesting brane
world models. Both contain D3-branes in a 5-dimensional background,i.e.
with one extra dimension. The background geometry of the first scenario
(RS1), with two branes, is given by

ds2 = e−2krc|φ|ηµνdxµdxν + r2
c dφ2 . (3.61)

As we will show below, this is a slice of AdS5. The extra dimension, parame-
terized byφ with range−π � φ � π , has the form of an orbifolded circle of
radiusrc. The two branes are located at the orbifold fixed pointsφ = 0, π . The
5-dimensional Planck massM5 and cosmological constant� enter through the
constantk,

k =
√
−�

24M3
5

. (3.62)

The geometry (3.61) belongs to the class of warped compactifications, in which
the higher dimensional geometry is sensitive to the position of the branes. This
backreaction on the geometry is caused by the non vanishing of the vacuum
energies on the branes, generated by quantum fluctuations in the absence of
supersymmetry. The lack of supersymmetry makes it difficult to embed the
RS-scenarios into string theory. As was shown by Randall and Sundrum, the
effective 4-dimensional mass scales depend on the 5-dimensional mass scales
through the warp-factore−2krc|φ|. The relation between them thus will depend
on the location in the extra dimension. This allows for large 4-dimensional
mass hierarchies to arise from from a fundamental 5-dimensional theory with-
out large hierarchies. The mass parameters of the 5-dimensional theory are
taken to be of order the observed Planck scale,MPlanck≈ 1019 GeV. A gen-
eral analysis shows that for every massive field the effective mass receives a
rescaling

meff = e−krcπ m0 . (3.63)

Whenkrc ∼ 10, the exponential factor in (3.63) becomes such that Planck scale
masses effectively become of order a TeV. This provides a possible explanation
for the large hierarchy between the observed Planck and weak scales, referred
to as the gauge hierarchy problem. However, it is replaced by a finetuning of
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the compactification radiusrc. Several scenarios for how this radius can be
naturally stabilized have been proposed, see for example [54].

The second Randall-Sundrum scenario (RS2) is a single brane modification
of the first scenario. The brane located atφ = π is removed from the setup by
sending it off to infinity through the decompactification limitrc → ∞. One
is then left with a semi-infinite fifth dimension, now parametrized byz. The
metric takes the form

ds2 = e−2k|z|ηµνdxµdxν + dz2 , (3.64)

where we have setrc = 1 through a rescaling ofz. At first sight, one might
expect the usual problems of large extra dimensions to reappear. In particular, it
seems likely that gravity would now be five dimensional. However, calculating
the 4-dimensional Planck mass in the RS1 scenario gives

M2
Planck= M3

5rc

∫ π

−π

dφ e−2krc|φ| = M3
5

k
(1− e−2krcπ ) . (3.65)

The important observation is that, in the decompactification limitrc→∞, the
effective Planck mass remains finite. This means that the graviton zero mode is
normalizable and yields a four dimensional Newton’s law on the brane located
at z = 0. Gravity is thus effectively localized on the brane, despite the large
extra dimension.

To finish this section, we consider the relation between the holographic
principle and the Randall-Sundrum scenarios. There is a particularly concrete
connection with the AdS/CFT correspondence, see for example [97,105]. To
make this connection explicit, note from (3.62) that the RS solution only makes
sense when the bulk cosmological constant� is smaller than zero. This sug-
gests that the geometry might look like that of AdS5. To see that this is indeed
the case, write the metric (3.64) in terms of the coordinate

u ≡ sgn(z)

k
(ek|z| − 1) , (3.66)

putting it in the form

ds2 = 1

(1+ k|u|)2
ηµνdxµdxν + du2 . (3.67)

On the other hand, recall the AdS5 metric in Poincaŕe coordinates,

ds2 = L2

r2
dr2+ r2

L2
ηµνdxµdxν . (2.49)

In terms of a coordinateU , defined trough

r ≡ L2

U + L
, (−L < r <∞) , (3.68)
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this can be written as

ds2 = 1

(1+ U
L )2

ηµνdxµdxν + dU2 . (3.69)

Comparing this with (3.67), we see that the Randall-Sundrum geometry is in-
deed (part of) an AdS5 space. The curvature radius of this AdS5 space is given
by 1/k and it is only a slice of the full space, since it is cut off atu = 0. From
(3.68) we see that this cutoff corresponds tor = L. Sincer →∞ corresponds
to the boundary of AdS, the brane cuts away the region betweenr = L and the
boundary. The brane can thus be interpreted as a IR gravity cutoff. In terms of
the AdS/CFT correspondence and in particular the UV/IR connection encoun-
tered in Section 2.2.7, this means that the field theory dual to the RS2 scenario
is a CFT with a UV cutoff given byk. Note that the cutoff breaks conformal
invariance. The conformal anomaly then induces a coupling, through the en-
ergy momentum tensor, of the field theory to gravity. In the dual picture, it is
these interactions that cause corrections to the 4-dimensional Newton law. The
generality of the appearance of gravitational degrees of freedom in the bound-
ary theory, when the radial AdS coordinate is compactified (or semi infinite as
in this case), is addressed in [139].

3.5 CFTAND ENTROPY ON THE BRANE

The relation between the entropy, Casimir energy and temperature of the CFT
and their cosmological counterparts discussed in Section 3.3 has a very natu-
ral explanation from a RS2-type brane world scenario along the lines of [60].
In this section, we will study a brane with fixed tension in the background of
an Anti-de Sitter black hole. In this description, the radius of the universe is
identified with the distance of the brane to the center of the black hole. At the
big bang, the brane originates from the past singularity. At some finite radius,
determined by the energy of the black hole, the brane crosses the horizon. It
keeps moving away from the black hole, until it reaches a maximum distance
and then it falls back into the AdS-black hole. The special moment when the
brane crosses the horizon precisely corresponds to the moment when the cos-
mological entropy bounds are saturated.

We begin by presenting the brane description of a CFT-dominated cosmol-
ogy in Section 3.5.1. The dimensiond = n+1 of the brane-universe will be
taken to be arbitrary, but its relation with the dimensionD = d+1 of the AdS
space is of course fixed. In Section 3.5.2 we argue that the radiation on the
brane can be identified with the CFT dual to the AdS-space and use this fact
to fix the normalization of Newton’s constant and derive the FRW equations.
The entropy density and temperature of the CFT at the moment that the brane
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crosses the horizon are calculated in Section 3.5.3. We find that these quan-
tities have a simple expression in terms of the Hubble constant and its time-
derivative. In Section 3.5.4 we derive the entropy formulas for the CFT and
show the correspondence with the FRW equations. Finally, in Section 3.5.5,
we discuss the setup in a Euclidean context.

3.5.1 BRANE COSMOLOGY

We consider ad = n + 1 dimensional brane with a constant tension in the
background of anD = d + 1 dimensional AdS-Schwarzschild black hole.
Following the AdS/CFT prescription we regard the brane as the boundary of
the AdS-geometry. An important difference is, however, that now the location
and the metric on the boundary are, at least partly, dynamical. The movement
of the brane is described by the boundary action

Lb = κ

8πG D
N

∫
M
ddx

√
ĝ − 1

8πG D
N

∫
M
ddx

√
ĝ K . (3.70)

Hereκ is a parameter related to the tension of the brane,ĝ is the determinant of
the induced metric,M denotes the surface of the brane and we have reinstated
the D-dimensional bulk Newton’s constant,G D

N . The matter Lagrangian for
the brane thus consists of only a constant tension term. The appearance of
the last term in (3.70), the Gibbons-Hawking boundary term, is explained in
Section 3.4.2. Varying the action corresponding to (3.70) gives an equation of
motion for the brane that takes the form

Kµν −K ĝµν = −κ ĝµν , (3.71)

whereK denotes the trace ofKµν , the extrinsic curvature defined in (3.56).
Taking the trace of this equation leads to

Kµν = κ

n
ĝµν , (3.72)

implying thatM is a surface of constant extrinsic curvature.
The bulk action is given by theD-dimensional Einstein action with cosmo-

logical term. The AdS-Schwarzschild metric provides a solution of the bulk
equations of motion and can be written in the form

ds2
D =

1

h(a)
da2− h(a)dt2+ a2d�2

n , (3.73)

where

h(a) = a2

R2
+ 1− ωn+1M

an−1
(3.74)
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andR denotes the curvature radius of AdS. The constant

ωn+1 = 16πG D
N

nVol(Sn)
(3.75)

is chosen such thatM is the mass of the black hole as measured by an observer
who usest as his time coordinate,cf. (2.2).

Our aim is to find the spherically symmetric solutions corresponding to a
homogeneous and isotropic induced metric on the brane. Let us parameterize
the location of the brane by givinga as a function of the AdS-timet . Equiva-
lently, we may introduce a new time parameterτ and specify the functions

a = a(τ ), t = t (τ ) . (3.76)

We will choose the time parameterτ such that the following relation is satis-
fied,

1

h(a)

(
da

dτ

)2

− h(a)

(
dt

dτ

)2

= −1. (3.77)

This condition ensures that the induced metric on the brane takes the standard
Robertson-Walker form,

ds2
d = −dτ2+ a2(τ )d�2

n . (3.78)

We note that the size of then+1-dimensional universe is determined by the
radial distance,a, from the center of the black hole.

The extrinsic curvature,Kµν , of the brane can be straightforwardly calcu-
lated and expressed in term of the functionsa(τ ) andt (τ ). One then finds that
the equation of motion (3.72) translates into

dt

dτ
= κa

h(a)
. (3.79)

In the following we will tune then+1-dimensional cosmological constant to
zero by settingκ = 1/L. Combining (3.79) with (3.77) leads to an equation
that looks suspiciously like the Friedmann equation for a radiation dominated
universe,

H2 = − 1

a2
+ ωn+1M

an+1
. (3.80)

In this equationH ≡ ȧ/a is the Hubble constant and the dot denotes differenti-
ation with respect to the cosmological timeτ . For future purpose, we also give
the equation for the time derivative ofH ,

Ḣ = 1

a2
− (n + 1)

2

ωn+1M

an+1
, (3.81)

which is obtained by differentiating (3.80).
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3.5.2 CFTON THE BRANE

We now want to identify the equation of motion (3.80) with thed-dimensional
Friedmann equation. In particular, we will argue that the radiation can be iden-
tified with the finite temperature CFT that is dual to the AdS-geometry. To do
so, we interpret the last term on the r.h.s. as the contribution of the energy den-
sity ρ of the CFT times thed-dimensional Newton constantGd

N. In the brane
world scenario the relation between the Newton constantG D

N in the bulk and
the Newton constantGd

N on the brane is given by

G D
N =

Gd
N R

(n − 1)
. (3.82)

One possible way to derive this fact is to add a small amount of stress energy
on the brane and determine how it effects the equation of motion. This same
relation is, as we will discuss, also consistent with the identification of the
radiation with the dual CFT.

In [145] it was argued that the energy, entropy and temperature of a CFT
at high temperatures can be identified with the mass, entropy and Hawking
temperature of the AdS black hole [68]. The CFT lives on a spacetime which,
after Euclidean continuation, has the topology ofS1× Sn and whose geometry
is identified with the asymptotic boundary of the Euclidean AdS-black hole.
We remind the reader that the standard GKPW prescription [61,144] of the
AdS/CFT correspondence [90] only fixes the conformal class of the CFT met-
ric. It thus specifies only the ratio of the radius of then-sphere to the Hawking
temperature but does not fix the overall scale of the boundary metric. One is
therefore free to re-scale the metric as one wishes. It is important to note, how-
ever, that such a rescaling does also affect the energy and temperature of the
CFT.

To make this more precise, let us consider the asymptotic form of the AdS-
Schwarzschild metric (3.73). We have

lim
a→∞

(
L2

a2
ds2

D

)
= −dt2+ L2d�2

n , (3.83)

from which we see that the CFT time is equal to the AdS timet only when the
radius of the spatial sphere is set equal toR. Therefore, if we want the sphere
to have a radius equal to saya, the CFT time will be equal toat/L. The same
factora/L then appears in the relation between the energyE and the black hole
massM . One thus finds that the energy for a CFT on a sphere with radiusa,
of volume

V = anVol(Sn) , (3.84)
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is given by

E = M
L

a
. (3.85)

Note that the total energyE is not constant during the cosmological expansion,
but decreases likea−1. This is consistent with the fact that for a CFT the energy
density,

ρ = E

V
, (3.86)

scales likea−(n+1). Inserting the relation (3.85) combined with (3.82) into the
equation of motion (3.80) leads to

H2 = − 1

a2
+ 16πGd

N

n(n − 1)
ρ . (3.87)

This is the standard Friedmann equation with the appropriate normalization
for both terms. By differentiating once with respect toτ and using the fact that
ρ̇ = nH(ρ + p), one derives the second FRW equation,

Ḣ = 1

a2
− 8πGd

N

(n − 1)
(ρ + p) , (3.88)

which is equivalent to (3.81). An observer on the brane, who knows nothing
about the AdS-bulk gravity, just notices the normal cosmological expansion.
The brane description contains more information, since it also knows about the
size of the AdS-black hole.

The movement of the brane in the AdS-black hole background is depicted
in a Penrose diagram of the spacetime in Figure 3.4. The diagram represents
the full geodesically complete black hole geometry including the asymptotic
regiona →∞. If one wants to take the brane as the real boundary, one has to
cut away the part to the right of the brane. We see that the brane indeed starts
inside the black hole at the past singularity and then, as it expands, moves
away froma = 0. At late times the opposite happens. The points where the
brane crosses the black hole horizon will play a central role in the following
discussion and have been marked in the figure. These moments are clearly
distinguished from the AdS-perspective, even though nothing special happens
from the viewpoint of the induced geometry on the brane. So what do these
moments mean for an observer on the brane?

3.5.3 ENTROPY AND TEMPERATURE AT THE HORIZON

Let us now consider the points at which the brane crosses the horizon. The
horizon of the AdS-black hole is located at radiusa = aH, whereaH is the
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Brane worldline

Future singularity

Past singularity

Horizon

FIGURE 3.4: Penrose diagram of an AdSn+2-Schwarzschild black
hole with the trajectory of the brane. The brane originates in the
past singularity, expands to a certain size and subsequently falls
into the future singularity as it re-collapses. The dots indicate the
moments when the brane crosses the black hole horizon.

largest solution to the equationh(a) = 0, i.e.

a2
H

L2
+ 1− ωn+1M

an−1
H

= 0 . (3.89)

From this equation and the equation of motion (3.80), one immediately con-
cludes that the Hubble constant at the horizon obeys

H2 = 1

L2
, (3.90)

and henceH = ±1/L depending on whether the brane is expanding or con-
tracting.

Next, let us consider the entropy density. According to [145], the entropy
of the CFT is equal to the Bekenstein-Hawking entropy of the AdS-black hole,
which is given by the area of the horizon measured in bulk Planckian units.
The total entropy may thus be expressed as

S = VH

4G D
N

, (3.91)

whereVH is the area of the horizon,

VH = an
H Vol(Sn) . (3.92)
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Note that the area of ann-sphere in AdS equals the volume of the correspond-
ing spatial section for an observer on the brane. The total entropyS is constant
during the cosmological evolution but the entropy density,

s = S

V
, (3.93)

of course varies with time. It equals

s = (n − 1)
an

H

4Gd
NLan

, (3.94)

where we made use of the relation (3.82). What makes the moments that the
brane crosses the horizon special is that the entropy density is given by a simple
multiple of the Hubble constantH . At the horizonV = VH and hence the
entropy density on the brane iss = 1/4G D

N . Now, using the relation (3.82) and
the fact thatH = 1/L one finds that the entropy density equals

s = (n − 1)
H

4Gd
N

(a = aH) . (3.95)

The significance of this relation will be further discussed below.
Also the temperature turns out to have a special value at the horizon. The

Hawking temperature measured by an observer who usest as his time coordi-
nate is [60,145]

TH = h′(aH)

4π
, (3.96)

where the prime denotes differentiation with respect toa. Since the CFT time
differs fromt by a factora/L the CFT-temperatureT will differ from the Hawk-
ing temperatureTH by the samea-dependent factor,

T = TH
L

a
. (3.97)

Using the explicit form ofh′(aH) and using the fact thath(aH) = 0, we eventu-
ally find

T = 1

4πa

[
(n + 1)

aH

L
+ (n − 1)

L

aH

]
. (3.98)

Now, from the derivation of the brane equation of motion, it follows that the
quantitiesH2 and−h(a)/a2 only differ by a constant and therefore, at the hori-
zon whereh(aH) = 0, we have thatḢ = −h′(aH)/2aH. This can be used to show
that the temperature at the horizon may be expressed in the Hubble constantH
and its time derivativeḢ as

T = − Ḣ

2π H
(a = aH) , (3.99)

cf. (3.45).
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3.5.4 ENTROPY FORMULAS ANDFRW EQUATIONS

The above relations between the entropy density and temperature on the one
hand, and the Hubble constant, its time derivative and Newton’s constant on
the other are valid only when the brane crosses the horizon. However, since
the entropy density, temperature and energy density all vary in a precisely pre-
scribed manner as a function of the radiusa, these relations imply a set of
entropy formulas that remain valid at all times.

Before making this point clear, let us first briefly discuss some basic ther-
modynamics. The first law of thermodynamics,

T d S = d E + pdV , (3.100)

can after some straightforward manipulations be rewritten in terms of the en-
tropy and energy densitiess andρ as

T ds = dρ + n(ρ + p − T s)
da

a
, (3.101)

where we used thatdV = nV da/a. The combination(ρ + p − T s) is in most
standard textbooks on cosmology [84,140] assumed to vanish, which is equiv-
alent to saying that the entropy and energy are purely extensive. But let us now
compute it for the CFT. The energy density is given by

ρ = M L

an+1Vol(Sn)
. (3.102)

For our purpose, it is convenient to rewriteρ in terms of the horizon radiusaH

usingh(aH) = 0. This gives

ρ = nan
H

16πG D
N an+1

(
L

aH

+ aH

L

)
. (3.103)

The pressure follows fromρ through the equation of statep = ρ/n. Combined
with (3.94) and (3.98), one gets

n

2
(ρ + p − T s) = γ

a2
, (3.104)

where the quantityγ is given by

γ = n(n − 1)an−1
H

16πGd
Nan−1

. (3.105)

Equation (3.104) may be regarded as the definition ofγ . Physically one can
think of γ as describing the response of the energy density under variations of
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the radiusa or, more precisely, the spatial curvature1/a2. It thus represents the
geometrical Casimir part of the energy density.

We are now ready to present the main entropy formula for CFT’s which
have an AdS dual. The Cardy-Verlinde formula was already derived in Sec-
tion 2.2.8 and expressed in terms of the total energy and entropy. Here we will
give the local version in terms of densities. From the given expressions for the
entropy densitys, energy densityρ andγ , one finds thats may be expressed
as

s2 =
(

4π

n

)2

γ
(
ρ − γ

a2

)
. (3.106)

As noted in Section 2.2.8, this formula resembles the Cardy formula for a CFT
in 1+1 dimensions, but is valid for all spatial dimensionsn.

The formulas (3.104) and (3.106) are valid at all times. It will be interest-
ing, however, to study these formulas at the special time when the brane crosses
the horizon. First we note that at that time the Casimir quantityγ equals

γ = n(n − 1)

16πGd
N

(a = aH) . (3.107)

Let us now consider the entropy formula (3.106). By making the identifications
(3.95) and (3.107) one sees that this formula exactly reproduces the Friedmann
equation! Similarly, one finds that equation (3.104) reduces to the second FRW
equation forḢ by making the same substitutions fors andγ and replacing the
temperatureT by the r.h.s. of (3.99). In fact, the equations (3.104) and (3.106)
are equations of state of the CFT and in principle have an interpretation that
is independent of gravity or cosmology. It seems therefore rather surprising
that the Friedmann equation knows about the thermodynamic properties of the
CFT.

3.5.5 EUCLIDEAN BRANE COSMOLOGY

In principle one can use the present setup to calculate the correlation functions
of operators in the CFT/FRW cosmology, in particular the stress energy ten-
sor, using the same methods as in the standard AdS/CFT setup. This would
for example give information about fluctuations in the energy density in the
early universe. As described above, the brane starts out as a point in the past
singularity of the black hole. The presence of this singularity may lead to
problems in performing these calculations in Minkowski signature. On the
gravity side a singularity is associated with the UV properties of the theory,i.e.
to very high energies. However, through the UV/IR-connection [127] known
from AdS/CFT, on the field theory side this in fact corresponds to the IR,i.e.
to very low energies. As it is the CFT that describes the matter in the universe,
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Brane worldline

FIGURE 3.5: Diagram of Euclidean AdSn+2-Schwarzschild with
the trajectory of the brane. The horizon is represented by the dot
in the middle of the diagram; only the regiona ≥ aH is drawn. The
brane originates at spatial infinity, collapses to a certain minimal
size and subsequently re-expands. It remains outside of the black
hole horizon during the entire evolution.

this seems strange since conventionally one associates the UV with the early
universe.

To calculate correlation functions one can circumvent this problem by an-
alytically continuing to the Euclidean setup. So let us briefly discuss how
to describe the Euclidean FRW universe as a brane in an Euclidean AdS-
Schwarzschild background. Going through the calculation in a similar way
as performed above, one arrives at the following Friedmann equation

H2
E =

1

a2
− 16πGd

N

n(n − 1)
ρ . (3.108)

From this one easily deduces that the universe, when regarded in Euclidean
time, undergoes a reverse evolution, starting out very big, collapsing to a min-
imal size and subsequently re-expanding. This is depicted in figure 3.5. From
the CFT point of view, this means that the universe starts in the far UV, then
cools down to a certain minimum temperature after which it re-heats. Note that
in this case, the brane does not cross the horizon at all.

3.6 SUMMARY AND CONCLUSION

The main purpose of this chapter has been to apply the holographic principle to
a study of the entropy bounds that hold in a radiation dominated universe. This
radiation was represented as an interacting CFT with large central charge. This
led to the appearance of a fundamental relation between the entropy formulas
for the CFT and the FRW equations that govern the cosmological evolution. It
is very surprising that the CFT appears to know about the holographic entropy
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bounds and the FRW equations appear to know about the entropy formulas for
the CFT. The bounds that hold in the early universe on the temperature, entropy
and Casimir energy are summarized in Table 3.1 [137].

CFT-bound FRW-definition

T � TH TH ≡ − Ḣ
2π H

S � SH SH ≡ (n − 1) H V
4

EC � Ec
BH Ec

BH ≡ n(n − 1) V
8πa2

TABLE 3.1: Summary of cosmological bounds.

The matching of the Cardy-Verlinde formula for the CFT and the Euler
relation for the Casimir energy with the Friedmann equations written in terms
of the quantities listed in Table 3.1, is summarized in Table 3.2 [137].

CFT-formula FRW-equation

S = 2πa
n

√
EC(2E − EC) SH = 2πa

n

√
EBH(2E − EBH)

EC ≡ n(E + pV − T S) Ec
BH = n(E + pV − THSH)

TABLE 3.2: Matching between the CFT-formulas and the FRW-
equations.

The presented relation between the FRW equations and the entropy for-
mulas precisely holds at the transition point, when the cosmological entropy
bounds are saturated. As discussed in Section 3.5, the moments at which the
merger occurs play a special role from a brane world perspective. Indeed, they
are precisely the moments when the brane crosses the black hole horizon. It
was suggested that the values fors andT on the horizon should be regarded as
bounds on these respective quantities. Although we still have no proof of this,
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note the following. At the moment when the brane crosses the horizon, the
quantityγ is essentially equal to the inverse Newton’s constant. This means
that the response of the energy density to a variation of the curvature is com-
parable to that of the Einstein action itself. Namely, from (3.104) and (3.107)
one finds

a

(
∂ρ

∂a

)
s
= −n(n − 1)

8πGd
Na2

(a = aH) . (3.109)

The right hand side also gives the contribution of the spatial curvature in the
equation of motion. Clearly, when this is the case one should reconsider the
validity of the usual formulation of gravity, since quantum effects (the Casimir
energy density) are of the same order as the spatial curvature. This suggests
that a classical description of the geometry of the universe may no longer be
well defined and one has to go over to a different, more fundamental formula-
tion of the theory. We have indeed noticed that, at the transition points, the laws
that govern the gravitational evolution and the entropy and energy expressions
for the CFT, that describes the radiation, merge in a surprising way. This indi-
cates that both sets of equations have a common origin in a single underlying
fundamental theory.

We have put the (effective) cosmological constant to zero, since only in that
case everything works so nicely. It should be possible to include a cosmological
constant, but this complicates the analysis. In particular, one needs to replace
H in Hubble entropy bound by√

H2− �

n
. (3.110)

We lack a complete understanding of the case� �= 0 at this time.
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HOLOGRAPHY IN DE SITTER SPACE

More or less satisfying formulations of holography and, more generally,
quantum gravity in Minkowski and Anti-de Sitter space have been ob-

tained. Having thus addressed flat and negatively curved spaces, a natural next
step would be to consider positively curved space, or de Sitter space. This
case, however, has proven to be particularly difficult and a full description of
quantum gravity in de Sitter space is still lacking. With recent observational
data [98,106,113] indicating that the universe may be entering a de Sitter phase,
this issue has taken on added significance.

Naturally, this has led to a lot of interest in the subject and in this chapter
we will review some recent developments, focusing on the formulation of the
holographic principle in de Sitter space. Of particular importance is the issue
of finding a de Sitter solution to string theory. This would be an important
step forward, but attempts in this direction have failed so far. Nonetheless,
analogous to the well established AdS/CFT correspondence discussed in Sec-
tion 2.2, progress has been made in formulating a similar correspondence in
the de Sitter case.

We begin this chapter, in Section 4.1, by discussing the classical geome-
try of de Sitter space. Next, in Section 4.2, we discuss the notions of energy
and entropy in a de Sitter context. In Section 4.3, we consider the recently
proposed dS/CFT correspondence. Finally, in Section 4.4, we consider an in-
teresting scenario in which the evolution of the universe corresponds to an RG-
flow in the dual CFT. We consider ac-theorem in this context and its relation
to the size of the apparent horizon in de Sitter space. Detailed accounts of the
classical properties of this space can be found in [67,118]; observational con-
straints and theoretical approaches to the cosmological constant are reviewed
in [31,141].

63
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X0

Xi , i = 1, . . . , D

FIGURE 4.1: De Sitter space realized as a hyperboloid in flat
Minkowski space.

4.1 CLASSICAL GEOMETRY OF DESITTER SPACE

Pure de Sitter space is the unique vacuum solution to the Einstein equations
with maximal symmetry and constant positive curvature. InD = n+1 space-
time dimensions, it is locally characterized by

Rµν = D − 1

R2
gµν , (4.1)

whereR is the radius of curvature of de Sitter space, and by the vanishing of
the Weyl tensor. The cosmological constant,�, is given as a function ofR by

� = (D − 1)(D − 2)

2R2
. (4.2)

It is convenient to think of de Sitter space as a hypersurface embedded in
D+1-dimensional flat Minkowski space. The embedding equation is

−X2
0 + X2

1 + . . .+ X2
D = R2 (4.3)

and the resulting timelike hyperboloid is depicted in Figure 4.1. The embed-
ding equation (4.3) makes manifest theO(1, D) isometry group of de Sitter
space. The de Sitter metric is the induced metric from the flat Minkowski met-
ric on the embedding space. In this way several coordinate systems can be
obtained.

Frequently used are the so called global coordinates, in terms of which the
metric takes the form

ds2 = −dT 2+ R2 cosh2 T/R d�2
n . (4.4)
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The time coordinateT takes values−∞ < T < ∞. In these coordinates,
which cover all of the hyperboloid shown in Figure 4.1, de Sitter space starts
out as an infinitely largen-sphere atT = −∞. Subsequently, it shrinks and
reaches its minimal radiusR at T = 0, after which it re-expands. Note that the
global time coordinateT does not define a Killing vector. The appearance of
a cosmological horizon is not manifest in these coordinates. Before discussing
other useful coordinate systems for de Sitter space, we first consider its Penrose
diagram.

4.1.1 PENROSE DIAGRAM OF DESITTER SPACE

To elucidate the causal structure of de Sitter space, it is useful to construct the
corresponding Penrose diagram. Through the coordinate transformation

coshT/R = 1

cosτ/R
, (4.5)

put the metric (4.4) in the form

ds2 = 1

cos2 τ/R
(−dτ2+ R2d�2

n) . (4.6)

The range of the new time coordinateτ is−π/2 < τ/R < π/2. Without affecting
the causal structure, we can perform a conformal transformation, bringing the
metric to the from

dŝ2 = cos2 τ/R ds2 = −dτ2+ R2d�2
n . (4.7)

This can also be written as

dŝ2 = −dτ2+ R2
(

dθ2+ sin2 θ d�2
n−1

)
, (4.8)

whereθ is a polar angle with range 0� θ � π . This leads to the square Pen-
rose diagram depicted in Figure 4.2, where every point is an−1-dimensional
sphere with radiusR sinθ . The equal time slices in global coordinates corre-
spond simply to horizontal lines in the Penrose diagram. From the diagram it
is clear that no observer can ever see all of de Sitter space. An observer on the
south pole can see, as he approachesI+, all events that happened in regions
I and III. Similarly, he can send signals to events in regions I and IV. In the
intersection of these,i.e. in region I, he can send signals to as well as receive
signals from all events; this we call his causal diamond, or static patch. Region
II, the causal diamond of an observer on the north pole, remains completely
inaccessible to the observer on the south pole.
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FIGURE 4.2: Penrose diagram of de Sitter space. Every point repre-
sents anSD−2, except the north and south poles which are points.
A horizontal slice forms anSD−1. The dashed lines indicate the
past and future horizons of an observer on the south pole. The
asymptotic past and future, indicated byI− andI+ respectively,
correspond toτ = ±π/2. The diagram is divided into four regions,
as explained in the text.

Another way to see that the Penrose diagram must be square is the follow-
ing. Consider where a light ray that originates from the south pole atI− ends
up onI+. Choosing the ray such that it only moves in theθ -direction selected
in (4.8), we have from (4.4) that

dT 2 = R2 cosh2 T/R dθ2 . (4.9)

The distance the light ray will travel in theθ -direction before it reachesI+ is
therefore given by

�θ ≡
∫ ∞
−∞

dT
dθ

dT
=
∫ ∞
−∞

dT
1

R coshT/R
= π . (4.10)

We see that it will exactly reach the north pole, independent of the value ofR,
i.e., independent of the cosmological constant�. It is interesting to consider
what happens when one perturbs de Sitter space by adding some energy density
to it. Like in Chapter 3, let us consider a radiation dominated FRW cosmology
with radiation densityρ, but now with a positive cosmological constant. The
Friedmann equation (3.3) becomes

H2 = 16πGN

n(n − 1)
ρ − 1

a2
+ 2�

n(n − 1)
, (4.11)

while the second Friedmann equation (3.4) remains unchanged. The metric
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takes the general form

ds2 = −dt2+ a2(t) d�2
n . (4.12)

For the spacetime to be of the de Sitter form (4.4) at late times,ρ cannot be
larger than a certain critical value. For larger values ofρ the spacetime will
collapse to form a black hole instead of re-expanding. We will give a general
definition of the notion ‘asymptotically de Sitter’ in Section 4.3.1. Precisely
at the critical radiation density, the space will asymptote to its smallest radius
and subsequently remain static instead of re-expanding. This final state is of
course unstable as small perturbations will cause the space to either collapse
to a black hole or to start expanding. The critical value forρ and the minimal
radiusac are given by

ρc = 2�

8πGN

(
Rc

a

)n+1

, (4.13)

ac =
√

n(n − 1)2

2�(n + 1)
. (4.14)

Now take the radiation density to be a fraction of this critical density,

ρ = αρc , (4.15)

where 0� α � 1. Solving (4.11) fora(t) gives (henceforth settingn = 3)

a2(t) = R2

2

(
1+√1− α cosh2t/R

)
. (4.16)

Using the identity cosh 2x = 2 cosh2 x − 1, we see that forα = 0 this reduces
to the pure de Sitter case (4.4), as expected. On the other hand, the critical case
α = 1 does not behave as described above. Instead, that behaviour corresponds
to the particular solution

a2(t) = R2

2

(
1+ 1

3
e−

2t
R

)
. (4.17)

For completeness, we also note the general solution, valid for any value ofα,

a2(t ′) = R2

2

[
1+ 1

3
e−

2t ′
R + 3

4
(1− α)e

2t ′
R

]
, (4.18)

where the new time coordinatet ′ is defined by

t ′ = t + R

4
ln

[
9

4
(1− α)

]
. (4.19)
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FIGURE 4.3: Rectangular Penrose diagram corresponding to per-
turbed de Sitter space. The past horizon of an observer on the
south pole is indicated. The amount by which the diagram devi-
ates from being square, the extra vertical length�θ , is propor-
tional to the perturbation,i.e., to the radiation densityρ in the case
considered.

Using the solution (4.16), we can now repeat the calculation (4.10) for�θ .
Since again the result is independent of�, we put R ≡ 1. This leads to the
expression

�θ =
∫ ∞
−∞

dt

(
2

1+√1− α cosh 2t

) 1
2

. (4.20)

Expanding for smallα gives

lim
α→0

�θ =
∫ ∞
−∞

dt

[
1

cosht
+ α

cosh 2t

8 cosh3 t
+O(α2)

]
, (4.21)

= π + α
3π

16
+O(α2) . (4.22)

We thus find that in this case the light ray overshoots the antipodal point by
some amount proportional to the energy density. This causes the Penrose di-
agram to become rectangular in shape, as shown in Figure 4.3. It was shown
by Gao and Wald [50] that the same thing happens for general perturbations
of de Sitter space. These ‘tall’ de Sitter spaces were considered in [87]. It
is important to realize that this elongation of the Penrose diagram has drastic
consequences for the causal structure of the spacetime. For example, an ob-
server can now receive information from everywhere onI− at a finite time,
i.e., before he reachesI+. These changes in the causal structure present a se-
vere challenge to the antipodal identification considered in the next chapter.
We will comment on this in Section 5.7.
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4.1.2 COORDINATE SYSTEMS

FIGURE 4.4: Equal time
slices in static coordinates.

A coordinate set that is especially well adapted
to describe a specific observer are the static coor-
dinates. In these coordinates, the metric takes the
form

ds2 = −
(

1− r2

R2

)
dt2+ dr2

1− r2

R2

+ r2d�2
n−1 .

(4.23)
The cosmological horizon is atrC = R and ∂/∂t

now is a Killing vector, although not globally time-
like. Constructing these coordinates for an ob-
server at the south pole,r = 0 corresponds to the
south pole and the corresponding causal diamond (region I in Figure 4.2) has
0 � r � R. The Killing vector∂/∂t is timelike in region I, making it a suitable
generator of time evolution for this observer. But in regions III and IV, this vec-
tor becomes spacelike. In region II, it is again timelike, but it is directed in the
opposite direction from region I,i.e. towards the past. The lack of a globally
timelike Killing vector in de Sitter space affects the notions of entropy and en-
ergy as well as complicates the quantization of fields on this background. The
equal time slices in the northern and southern causal diamonds are shown in
Figure 4.4, where also the direction of the Killing field∂/∂t is indicated.

FIGURE 4.5: Equal time
slices in planar coordinates.

Another coordinate set, which we will encoun-
ter often, covers only half of de Sitter space. These
are the planar coordinates appropriate for a big
bang (or big crunch) de Sitter model. The metric
takes the form

ds2 = −dt2+ e±
2t
R dxi dxi , (4.24)

and, when applied to the south pole and depend-
ing on the sign in the exponential, covers either
regions I and III or I and IV. These coordinates de-
rive their name from the fact that the equal time slices, as depicted in Figure 4.5
for the combined regions I and III, are flatn-planes.

For future purpose, we introduce the Schwarzschild-de Sitter solution. In
D = n+1 dimensions, the line element in static coordinates takes the form

ds2 = −F(r) dt2+ F−1(r) dr2+ r2d�2
n−1 , (4.25)

F(r) = 1− 2M

rd−2
− r2

R2
. (4.26)
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De Sitter space cannot support arbitrarily large black holes. In fact, the size of
any object in de Sitter space is limited by the cosmological horizon. Putting
a black hole in de Sitter space gives rise to a second horizon, namely a black
hole horizon besides the cosmological horizon. Their locations, denoted re-
spectively byrBH andrC, are the positive roots of the equationF(r) = 0. The
bound on the size of the black hole can then be expressed asrC � rBH. This
limits the mass of the black hole to be within the range 0� M � Mmax, where

Mmax= 1

D − 1

(
(D − 3)(D − 2)

2�

) D−3
2

. (4.27)

When M = Mmax, the black hole horizon coincides with the cosmological
horizon.

4.2 ENERGY AND ENTROPY

In a gravitational background there is no local notion of energy. However, the
total energy can generally be defined, using an asymptotically timelike Killing
vector. Since there exists no globally timelike Killing vector in de Sitter space,
one cannot define a Hamiltonian in this way. Due to the spatial compactness, de
Sitter space cannot support conserved Noether charges like mass and angular
momentum. The only asymptotic regions within de Sitter space are temporal
past and future infinity. An alternative definition of mass, using the Brown-
York stress tensor, is given in [8].

In the absence of a Hamiltonian, there is no global notion of time-evolution.
Indeed, we have seen above that the most natural timelike Killing vector to
define the evolution of an observer, points towards the past in part of de Sitter
space. Thus, a particle moving forward in time with respect to one observer,
would be conceived as moving backwards in time by a second observer; that
is, if he were able to see it. Note, however, that these different regions are
causally disconnected. These considerations will play an important role in the
next chapter.

4.2.1 ENTROPY

One of the most enigmatic features of de Sitter space is its entropy [10]. That
de Sitter space has a finite entropy may be expected, based on the appearance
of a horizon in pure de Sitter. This horizon is, however, qualitatively different
from a black hole horizon. The position of the horizon is observer dependent
and, because of this, it is not entirely clear which concepts about black holes
carry over to de Sitter space. In fact, the de Sitter cosmological horizon looks
in many ways like the Rindler horizon in Minkowksi space.
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It was, however, shown by Gibbons and Hawking [53] that entropy and
temperature can be ascribed to the cosmological horizon just as in the black
hole case. Indeed, an observer in de Sitter space will observe a background of
thermal radiation coming from the cosmological horizon that surrounds him.∗
The area of the horizon is then a measure of the information hidden by it from
the observer. By absorbing this thermal radiation, the observer can presumably
gain knowledge on what lies beyond the horizon; thus causing the horizon to
shrink. Indeed, in pure – or empty – de Sitter space the horizon size is maximal.

The radius of the cosmological horizon inD-dimensional de Sitter space,
as described by the metric (4.23), is given by

rC = R =
√

(D − 1)(D − 2)

2�

(D=4)=
√

3

�
. (4.28)

The horizon area then becomes

AC = 2π
n
2

�( n
2)

(
(D − 1)(D − 2)

2�

) D−2
2 (D=4)= 12π

�
, (4.29)

where� denotes the Euler Gamma function. The corresponding Bekenstein-
Hawking entropy equals

SdS= AC

4GN
, (4.30)

as usual. From the metric one can also deduce the Hawking temperature of the
black hole by demanding it to be regular across the horizon. This leads to

TH = 1

4π

√
8�

(D − 1)(D − 2)

(D=4)= 1

π

√
�

12
. (4.31)

The values for the 4-dimensional case agree with those given in [53].
It is natural to interpret the Bekenstein-Hawking entropy for de Sitter space

as the logarithm of the number of quantum states necessary to describe such a
universe [12]. This is similar to the interpretation of the Bekenstein-Hawking
entropy for a black hole, as discussed in Section 2.1.1, and extends the analogy
between the two cases. More precisely, the Hilbert space of quantum gravity
in asymptotically de Sitter space has finite dimensionN , in terms of which the
entropy is given by

SdS= ln N , (4.32)

cf. (4.30). Since in the presence of gravity the metric fluctuates, we need to
speak ofasymptotically de Sitter space. Keep in mind, however, that the only
asymptopia are in the past and future; there is no spatial infinity.

∗Note the necessity of an observer dependent notion of particles.
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It is the finiteness of the entropy (4.30), and hence of the dimensionality of
the Hilbert space, that leads to conceptual problems. It appears to be irrecon-
cilable, for example, with the fact that at early times de Sitter space has very
large volume. One can impose boundary conditions that have entropy larger
than (4.32), whereN is fixed by the value of the cosmological constant. How-
ever, these initial conditions will not evolve into a spacetime that is again de
Sitter in the future. Said differently, the Einstein equations ensure that the FSB
bound, the generalized Fischler-Susskind bound discussed in Section 3.2.1, is
not violated.

Another important implication of a finite dimensional Hilbert space is that
the de Sitter symmetry group,O(D, 1), cannot act on it [142]. Indeed,O(D, 1)

is non compact and does not have (nontrivial) finite-dimensional unitary rep-
resentations. In fact, one should not expect the full de Sitter group to act on
the Hilbert space. The symmetry generators can be expressed as surface terms
at infinity and, as we have seen before, de Sitter space cannot support such
conserved charges. Hence, the de Sitter generators are zero. Any quantum
gravity theory on de Sitter space will thus not have the full de Sitter isometry
group that is the symmetry group of classical de Sitter space. The elliptical
modification of de Sitter space that is the subject of Chapter 5 suggests that the
relevant group is actually the compact subgroup SO(D−1) of the full isometry
group. This allows for unitary representations related to the de Sitter entropy,
as discussed in Section 5.5.4.

4.2.2 BOUNDS FROM THE COSMOLOGICAL HORIZON

As noted above, the cosmological horizon in de Sitter space attains its maxi-
mal size for pure de Sitter. Thus, pure de Sitter constitutes a state of maximal
entropy for universes with a positive cosmological constant that tend towards
pure de Sitter in the future, as can be understood in the following way. The
exponential expansion of space will cause anything present within a cosmo-
logical horizon to be swept out of it, eventually leaving pure de Sitter. From
the second law of thermodynamics we infer that entropy must have increased
in the process. The generic final stage of such evolution being pure de Sitter,
this must constitute a state of maximal entropy. By Bousso’s [25] proof of the
so calledN -bound this is generalized to includeany universe with positive cos-
mological constant, not necessarily asymptoting to pure de Sitter in the future;
see also [8,89].

In Section 2.1.2, we derived entropy bounds from studying the dynamics
of black hole horizons. Similarly, entropy bounds can be derived from the
cosmological horizon in de Sitter space. Consider a matter system, including
possibly black holes, with entropySm in asymptotically de Sitter space. By
above arguments, the system is surrounded by a cosmological horizon with
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area
A′C < AC , (4.33)

whereAC is the horizon area in pure de Sitter given by (4.29). The total entropy
then equals

Stotal = Sm+ A′C
4

. (4.34)

From the point of view of an observer, the entire matter system will at some
point pass through the horizon, as the final state is pure de Sitter space. In this
process, the matter entropySm is lost, while the Bekenstein-Hawking entropy
of the cosmological horizon increases by an amount

�SdS= 1

4
(AC− A′C) . (4.35)

The generalized second law (2.8), with black hole entropy generalized to cos-
mological horizons, implies that the total entropy must not decrease,i.e.

�SdS � Sm . (4.36)

This gives a bound on the matter entropy,

Sm � 1

4
(AC− A′C) , (4.37)

called the D-bound [25] on matter systems in asymptotically de Sitter space.
Its relation to the Bekenstein bound is considered in [26].

As an example, let us check the D-bound for a black hole in de Sitter, as
described by the Schwarzschild-de Sitter solution (4.25). For concreteness, we
takeD = 4, so that the metric reduces to

ds2 = −F(r) dt2+ F−1(r) dr2+ r2d�2
2 , (4.38)

F(r) = 1− 2M

r
− r2

R2
, (4.39)

andMmax = 1/3
√

�. For M < Mmax, there are two horizons, whose locations
are given by the positive roots ofF(r) and depend on the mass. These are the
cosmological horizon,rC, and the black hole horizon,rBH, whererC < rBH. For
M = 0, corresponding to pure de Sitter, there is only a cosmological horizon,
no black hole horizon. ForM = Mmax, the two horizons coincide. It is easy to
see that in between these two values of the mass, the black hole radiusincreases
monotonically, while the cosmological radiusdecreases monotonically. This
confirms the relation (4.33) for the case of a black hole in de Sitter space. More
precisely, the entropy of Schwarzschild-de Sitter is given by

SSdS= π(r2
BH + r2

C ) (4.40)
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and the D-bound, (4.37), states that

SSdS� π R2 . (4.41)

Note, that the cosmological horizon for pure de Sitter equals the radius of cur-
vature,rC = R. Solving the cubic equationF(r) = 0 for its positive roots,
gives for smallM [26]

SSdS= π R2
(

1− 2M

R

)
+O(M2) . (4.42)

This is a monotonically decreasing function ofM , as expected. For the maxi-
mum value of the mass,M = Mmax, one findsSSdS= 2

3π R2 showing that the
D-bound, in the form (4.41), holds.

4.2.3 DE SITTER SPACE IN STRING THEORY

A logical step towards deriving the entropy and thermodynamic properties of
de Sitter space from a microscopic description, would be to embed the space
as a solution of string theory. As mentioned in Section 2.1.1, this approach has
been successfully employed in deriving a microscopic description of a certain
class of black holes. So far, various attempts at finding a de Sitter solution
of string theory have failed. One of the main conclusions of this chapter and
the next, will be that, in searching for a string theory embedding, the global
perspective on de Sitter space may not be the correct one to take. In Chapter 5,
we will consider a partial view which may be more appropriate. We will now
discuss several of the obstacles encountered.

First of all, there is the issue of the finiteness of the de Sitter entropy, (4.30).
In four dimensions, the entropy equalsSdS= 3π/�. The number of degrees of
freedom necessary to describe such a universe is

N = e
3π
� , (4.43)

which for the currently observed value of the cosmological constant is very
large, but finite. Conversely, this means that a quantum theory of gravity with
finite dimensional Hilbert space of dimensionN , for consistency requires a
cosmological constant� = 3π/ln N . As argued by Banks [12], this means
that the cosmological constant,�, should not be viewed as a derived quantity,
but instead as a fundamental input parameter. This leads to the proposal that
universes with positive cosmological constant are described by a fundamental
theory with a finite number of degrees of freedom. A consequence of the finite-
ness ofN is that string theory, having an infinite dimensional Hilbert space,
does not seem appropriate to describe de Sitter space. Banks [12] also connects
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the finiteness ofN with the breaking of supersymmetry; an issue that we will
discuss next.

It is easy to see that there cannot be unbroken supersymmetry in de Sitter
space. This is simply because there exist no superalgebra extensions of the
de Sitter symmetry algebra. In [99] a de Sitter superalgebra was constructed,
but it results in a Lagrangian that leads to a gauge field with the wrong sign
kinetic term. The absence of a superalgebra is related to the fact that there is
no positive conserved energy in de Sitter space. If there were to be nonzero
superchargesQ, which we can assume to be Hermitian, then these would anti-
commute to give the Hamiltonian [142],∑

{Q,Q∗} = H . (4.44)

Lacking a Hamiltonian, this is clearly impossible. Instead, the supercharges
of the de Sitter superalgebra constructed in [99] square to zero. Since super-
string theory is naturally supersymmetric, the lack of supersymmetry in de
Sitter space complicates the issue of finding a de Sitter string solution. In-
deed, a ‘no go’ theorem was proven in [91], stating that de Sitter space cannot
arise from a conventional compactification of string theory. Attempts to find
de Sitter solutions in a non-standard way include [35,74,116].

Finally, consider the issue of observables [44,69] and that of the construc-
tion of an S-matrix in de Sitter space. In quantum field theory, asymptotic in-
coming and outgoing states are properly defined only in the asymptotic regions
of spacetime. But for de Sitter space these regions are spacelike and there is no
single observer who can determine the states both at past infinity as well as at
future infinity. Consequently, the matrix elements of S-like matrices in de Sit-
ter space are not measurable quantities; they are mere meta-observables, rather
than observables. When one considers quantum gravity in asymptotically de
Sitter space, the situation becomes even more serious. As has been pointed out
by Witten, the only available pairing between in-states and out-states, CPT, is
used to obtain an inner product for the Hilbert space [142]. There then does
not seem to be an additional pairing between in- and out-states that could be
used to arrive at an S-matrix. As the conventional formulation of string theory
is based on the existence of an S-matrix, the lack of an analogue in de Sitter
space heightens the difficulty of finding a relevant string solution.

An approach analogous to that which was successfully employed in the
AdS/CFT [7,102] case is taken in [119]. Employing the only available asymp-
totic regions, the infinite past and future, standard S-matrix elements are con-
structed despite their unobservable character. These are then used to relate
correlation functions on de Sitter space to those of a proposed dual CFT; this
is the subject of the next section. After re-addressing the issue of defining an
S-matrix for de Sitter space in Section 5.5.2, we come back to that of finding a
string realization in Section 5.6.
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4.3 THE DS/CFTCORRESPONDENCE

In line with the AdS/CFT correspondence, it is natural to look for a similar
duality in the case of quantum gravity in de Sitter space. Indeed, one might
expect such a relation to exist, since de Sitter space can be obtained from Anti-
de Sitter by analytic continuation. However, unlike the AdS case, there is no
known realization of quantum gravity in de Sitter space. Nonetheless, fol-
lowing the approach of Brown and Henneaux [29] in the AdS3/CFT2 case,
Strominger [121] formulated a tentative holographic duality relating quantum
gravity in de Sitter space to a Euclidean CFT on a sphere of one lower dimen-
sion. This approach requires no input from string theory.

The duality thus constructed for de Sitter space exhibits many similarities,
but also many differences with the AdS/CFT correspondence [93]. An impor-
tant difference is that the boundary of de Sitter space not only is spatial, it also
consists of two disconnected parts. This complicates the question as to where
the dual CFT would live. Strominger employs the fact that, at least for pure de
Sitter, the two boundary parts are causally connected, to arrive at a single CFT
on a single sphere.

In this section, we consider the proposed dS/CFT correspondence in three
spacetime dimensions. Although the correspondence should apply in general
dimension, the 3-dimensional case is especially rich because of the infinite
dimensionality of the 2-dimensional conformal group. In a sense this makes
the 3-dimensional case the most restrictive regarding the properties of the dual
theory; allowing for the most definite statements. In this section we set the
radius of curvature of de Sitter space equal to one,R ≡ 1.

4.3.1 ASYMPTOTIC SYMMETRIES

The asymptotic symmetry group of de Sitter constitutes those nontrivial† dif-
feomorphisms that preserve the boundary conditions on the asymptotic metric,
i.e., the metric atI±. So, we need to specify the appropriate boundary condi-
tions for what we would call ‘asymptotically de Sitter space’. An elegant way
to do this is by using the Brown-York stress tensor [30], defined as

Ti j ≡ 2√−γ

δScl

δγ i j
, (4.45)

whereγi j is the induced metric on the boundary andScl denotes the action eval-
uated at a classical solution. Though similar in definition to the usual stress-
energy tensor,Ti j characterizes the entire system, including contributions from

†Nontrivial in the sense that the transformation does not annihilate physical states.
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both the gravitational field and, if present, matter fields. The bulk diffeomor-
phisms are generated by appropriate moments of this tensor, which lives on the
boundary of the spacetime. We can then take as definition of an asymptotically
de Sitter spacetime one for which the Brown-York stress tensor, and hence all
symmetry generators, is finite.

The Brown-York tensor, (4.45), evaluated for the boundaryI− of de Sitter
space in general dimension, takes the form [83]

Ti j = 1

4GN

[
Ki j −Kγi j − (D − 2)γi j − Gi j

(D − 3)

]
, (4.46)

whereKi j is the extrinsic curvature, as defined in (3.56), andGi j denotes the
boundary Einstein tensor. ForD = 3 this reduces to

Ti j = 1

4GN
[Ki j − (K + 1)γi j ] , (4.47)

which is identically equal to zero in planar coordinates (4.24). However, cal-
culating (4.47) for perturbed de Sitter, with metric

ds2 = gµν + hµν , (4.48)

gives [118]

Tzz = 1

4GN

(
hzz − ∂zhtz + 1

2
∂t hzz

)
+O(h2) , (4.49)

Tzz̄ = 1

4GN

[
1

4
e−2t htt − hzz̄ + 1

2
(∂z̄htz + ∂zht z̄ − ∂t hzz̄)

]
+O(h2) .

(4.50)

Imposing the condition that the Brown-York tensor remains finite, one obtains
the boundary conditions

gzz̄ = e−2t

2
+O(1) , (4.51)

gtt = −1+O(e2t ) , (4.52)

gzz = O(1) , (4.53)

gtz = O(1) . (4.54)

These boundary conditions define what is meant by ‘asymptotic de Sitter’. The
asymptotic symmetry group hence consists of those diffeomorphisms that leave
(4.51)-(4.54) invariant. The most general form of a diffeomorphism that does
so, is given by [118]

ζ = U∂z + 1

2
U ′∂t +O(e2t )+ complex conjugate, (4.55)
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whereU (z) is holomorphic inz. We can identify what these transformations
are and, at the same time, find the central charge of the boundary theory, by
acting with the diffeomorphism (4.55) on the Brown-York tensor,

δζ Tzz = −U∂Tzz − 2U ′Tzz − 1

8GN
U ′′′ . (4.56)

The first two terms are those one expects for a conformal field of weight two
under a conformal transformation. The third term, identified as the anomalous
Schwarzian derivative term, corresponds to a central charge (restoring R) [121]

c2 = 3R

2GN
. (4.57)

Here the subscript 2 refers to the dimensionality of the boundary theory, but
note that bothGN and R apply to the 3-dimensional bulk. We thus identify
(4.55) as a conformal transformation in two dimensions and, sinceU (z) is
general, the asymptotic symmetry group of dS3 as the conformal group of the
Euclidean plane. It is important to note that is not possible to construct a dif-
feomorphism analogous to (4.55) for the case of global coordinates. This is
because evolution in the global timeT is not part of any of the de Sitter isome-
tries. Hence, it is impossible to associate evolution in the global time coordi-
nate with conformal transformations of the boundary. This strongly suggests
that the global perspective is not the relevant one when considering holography
– and thus quantum gravity – in de Sitter space.

4.3.2 THE CORRESPONDENCE

Having found that the symmetry group of the boundaryI− is the Euclidean
conformal group, it is to be expected that gravity correlators restricted to the
boundary transform as in a 2-dimensional Euclidean CFT. Indeed, this is what
one finds for massive scalar fields with massm. The solutions to the wave
equation these fields obey, which near the boundary takes the form

m2φ = ∇2φ ∼ −∂2
t φ + 2∂tφ (t →−∞) , (4.58)

asymptotically behave as

φ ∼ eh±t (t →−∞) , (4.59)

where
h± = 1±

√
1− m2 . (4.60)

For masses in the range
0 � m2 � 1 , (4.61)
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h± are real and positive, whileh− � h+. Picking the minus sign in (4.59),‡

the imposed boundary condition has the form

lim
t→−∞φ(z, z̄, t) = eh−tφ−(z, z̄) . (4.62)

Analogous to the AdS/CFT correspondence, the proposed dS/CFT correspon-
dence associates toφ− a dual operator in the boundary CFT,Oφ , of dimension
h+. The two point function of this dual operator has the form [121]

〈Oφ(z, z̄)Oφ(v, v̄)〉 ∝ 1

|z − v|2h+ . (4.63)

Outside of the range (4.61),i.e. for m2 > 1, the conformal weightsh± are no
longer real, signalling that the dual CFT is not unitary. Albeit there are no a
priori reasons that the CFT needs to be unitary, this might mean that consistent
theories of quantum gravity on de Sitter space have no (stable) scalars with
masses greater than one.

So far, we have only considered the combined regions I and III of Fig-
ure 4.2 on page 66, with a single boundaryI−. When taking into account
the full space, one might expect two separate CFT’s, living on disconnected
spaces, to be necessary to describe the complete bulk dynamics. However, the
two boundaries are causally connected. As we showed in Section 4.1, a light
ray that originates from a certain point onI−, will arrive at the antipodal point
on the sphere atI+. A singularity of a correlator between a point onI− and
a point onI+ can only occur if the two points are null separated. Through the
singularity structure of the Green’s function on de Sitter space, such a corre-
lation is related to one between the point onI− and the antipode of the point
on I+, also onI−. The insertion of a gravity operator onI+ then effectively
corresponds to inserting the dual CFT operator at the antipodal point onI−.
We are thus left with a single CFT on a single sphere. The antipodal relation
in de Sitter space will be the main theme of Chapter 5 and we will consider the
singularity structure of the Green’s function in more detail in Section 5.2.1.

Everything in this section generalizes to higher dimensions. The proposed
correspondence can then be summarized in terms of bulk and boundary corre-
lation functions as

〈φ(x−1 ) · · ·φ(x−i )φ(y+1 ) · · ·φ(y+j )〉d SD

↔ 〈Oφ(x1) · · ·Oφ(xi )Oφ(ȳ1) · · ·Oφ(ȳj )〉SD−1 . (4.64)

Here, x−i and y+i are points onI− andI+, respectively. On the right hand
side, all points are on the sphere on which the dual CFT lives, denoted by

‡We only consider the leading behaviour, ignoring the subleading term proportional toeh+t .
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SD−1, and the bar denotes the antipode on that sphere. Note that the fieldsφ

with argument onI− in (4.64) obey the boundary condition (4.62), while those
with argument onI+ obey the corresponding boundary condition appropriate
in thet →∞ limit.

4.4 RGFLOW

Recall how the conformal transformations of the boundary arise from bulk dif-
feomorphisms. Looking at the diffeomorphismζ , (4.55), we see that the first
term generates a holomorphic diffeomorphism of the plane. In terms of the
metric in planar coordinates, (4.24), this can be compensated for by a shift in
t , as generated by the second term of (4.55). On the plane, this shift corre-
sponds to a Weyl transformation. Together these transformations constitute the
conformal transformations on the plane and, hence, on the boundary. A spe-
cial class of these are the simple time shifts corresponding to scalings of the
boundary. This is reminiscent of the AdS case where radial shifts correspond
to scalings in the boundary metric, as is clear from the metric (2.49). In that
case, renormalization group (RG) flow corresponds to radial flow of the bulk
solutions [6,11,39]. For de Sitter, one might then expect RG flow of the puta-
tive dual theory to correspond – perhaps more naturally – to time evolution in
the bulk [8,87,122].

4.4.1 INFLATION

An interesting RG scenario in de Sitter space was recently suggested by Stro-
minger [122]. As opposed to Section 4.3, where we considered three spacetime
dimensions because it was the most explicit case, we now focus on four dimen-
sions since the current model is aimed at describing the real world. RG flows
similar to the one we will discuss here were considered in [8].

As we have mentioned, recent astronomical observations suggest that the
universe is currently entering a de Sitter phase. It is a much older idea that
there has also been a temporary de Sitter phase in the early universe, referred
to as ‘inflation’ [4,63,88]. Such a period of rapid expansion solves important
cosmological issues like the flatness and horizon problems; see [84] for a re-
view of early universe physics. Following Strominger [122], we assume that
the metric is well-approximated by the flat Robertson-Walker big bang form

ds2 = −dt2+ a2(t) dxi dxi , (4.65)

wherea(t) is the scale factor of the universe. In the early and late universe, the



4.4 RG flow 81

scale factor behaves as

ȧ

a
→ H± (t →±∞) , (4.66)

so that the metric takes the 4-dimensional planar de Sitter form

ds2 = −dt2+ e2H±t dxi dxi (t →±∞) . (4.67)

Here,H± denotes the Hubble constant during the de Sitter phase either in the
early or late universe. Comparing to (4.24), note that

H± = 1

R
(4.68)

in terms of the curvature radius of the appropriate de Sitter space. During the
inflationary period, the cosmological constant is conjectured to have been about
one hundred orders of magnitude larger than that currently observed. In terms
of the Hubble constant, we haveH− ≈ 1024 cm−1 versusH+ ≈ 10−28 cm−1.

As noted at the beginning of this section, the de Sitter metric (4.67) is
invariant under a time translation accompanied by an appropriate scaling of the
plane; namely under the transformation

t → t + λ , xi → e−λH±xi . (4.69)

This expresses that time evolution in the bulk generates scale transformations
in the boundary theory. Moreover, we conclude from the behaviour (4.69) that
early times in the bulk correspond to the IR regime of the boundary theory,
while late times correspond to the UV regime. This is the de Sitter variant
of the UV/IR correspondence discussed in Section 2.2.7. Note that a similar
relation is not to be expected when taking the global perspective on de Sitter
space. In that case, there is no monotonic relation between time and evolution
from UV to IR in the bulk. Indeed, both early and late times would correspond
to IR, while intermediate times would correspond to UV. This gives yet another
indication that the global perspective is not the correct one when considering
quantum gravity on de Sitter space.

In between the two de Sitter phases, the universe as described by (4.65)
will have looked very different from (4.67) and likely will not have exhibited
invariance under (4.69). There is thus no reason to expect the bulk gravity
theory to be dual to a conformal theory on the boundary during that stage.
An elegant interpretation is suggested by a similar situation encountered in
AdS [48,59]. Radial§ translations in the bulk of AdS correspond to RG flow
in the boundary theory. Viewing the universe as a perturbed de Sitter space,

§Keep in mind that the radial and time directions are interchanged when going from AdS to dS.
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the conformal invariance of the boundary theory is broken by insertion of the
operators dual to the bulk perturbations. This way, the boundary theory is
perturbed away from its UV conformal fixed point and ends up, by the RG
flow, in an IR fixed point. Note that in this interpretation the RG flow runs
opposite to the bulk time, since the universe actually starts out in the IR.

The above model has been applied in [86] to cosmic microwave back-
ground anisotropies. A simple dictionary between the holographic approach
of the model just discussed and the standard inflationary model is constructed.
Despite the very different inputs the two models give similar predictions.

4.4.2 c-FUNCTION

Let us consider the boundary theory in the RG flow model discussed above in
a bit more detail. On dimensional grounds, the generalization of the central
charge (4.57) to higher dimensions takes the form

cD-1 ∝ 1

GN H D−2
(D=4)= 1

GN H2
, (4.70)

where we have used (4.68). Of course, the expression (4.70) only makes sense
for the de Sitter phases of the evolution. From the relative sizes of the Hubble
constantsH± we have that

c+3 
 c−3 . (4.71)

Since the central charge is a measure of the number of degrees of freedom
of the theory, this indicates that there are overwhelmingly more degrees of
freedom in the late universe than in the early universe. Such an increase of the
number of degrees of freedom seems to be at odds with unitary evolution.¶ In
the current context, this can be understood in the following way, again inspired
by the AdS analogy [48,59].

For a generic unitary (non-conformal) field theory in two dimensions, Za-
molodchikov [146] has proven that there exists a functionc2 that decreases
from the UV to the IR along RG flows; this is called the ‘c-theorem’. So far, at-
tempts have failed to generalize this theorem to higher dimensions. Moreover,
while the dual boundary theory may not be unitary for de Sitter, unitarity was
crucial in the proof given by Zamolodchikov. Nevertheless, by using the bulk
theory, Strominger proves thatc3, as defined by (4.70), is an increasing function
of time and hence a decreasing function along the RG flow. Indeed, through
Einstein’s equations, the time derivative of Hubble’s constant in asymptotically

¶Note that it is only the dual boundary theory that is possibly non-unitary; the bulk theory is
unitary. It is important to realize that this is true even though the bulk theory can be reconstructed
– at least in principle – from the boundary theory.
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de Sitter space in four dimensions can be written as

Ḣ = −4πGN(p + ρ) . (4.72)

Imposing the null energy condition, which requires(p + ρ) � 0 whileρ > 0,
ensures that the right hand side is non-positive. Hence,H decreases with time
andc3 increases with time. This is an example of how the bulk/boundary dual-
ity can be put to use. We will come back to this below.

With time evolution corresponding to inverse RG flow, this suggests the
following interpretation [122]. As the universe expands, more and more de-
grees of freedom become available; they are ‘integrated in’ in the language
of RG flows. Only in the asymptotic future does the universe come into full
existence.

The c-function as discussed in [8,122] and reviewed here only applies to
spatially flat slicings of de Sitter space. It has been generalized in [87] to
include spherical and hyperbolic slicings. Using (4.2), (4.70) can be re-written
in terms of the cosmological constant. In [87], this is subsequently generalized
by replacing� by an effective�e, appropriate for the different slicings, defined
by

�e ≡ Gµνnµnν . (4.73)

Here, Gµν denotes the Einstein tensor andnµ is the unit normal to the re-
spective slices. Evaluated for flat (k = 0), spherical (k = 1) and hyperbolic
(k = −1) slicings, this becomes [87]

�e = (D − 1)(D − 2)

2

[(
ȧ

a

)2

+ k

a2

]
. (4.74)

The generalizedc-function has the form

cD-1 ∝ 1

GN�
D−2

2
e

(4.75)

and ac-theorem is subsequently proven in [87].

4.4.3 APPARENT HORIZON

A nice geometric interpretation of thec-functions defined above is given in
[85]. The boundaryc-function is identified in the bulk as the area of the ap-
parent horizon, which is a naturally increasing function of time. First, we
need to define the apparent horizon. At the end of Section 3.2.1, we briefly
mentioned Bousso’s [23,24] generalization of the Fischler-Susskind bound to
general spacetimes. It associates to a general surface at least two light sheets.



84 4. Holography in de Sitter Space

Consider,e.g., a D−2-dimensional spherical surface surrounding an observer
in de Sitter space. There are four families of radial null rays orthogonal to this
surface; corresponding to future/past directed outgoing/ingoing. Letλ be an
appropriately chosen affine parameter on one of the four families of null rays.
A family is then referred to as a light sheet of the corresponding spherical sur-
face if it has non-positive expansion,θ(λ) � 0. Recall the definition ofθ as
the expansion of the cross sectional area,A, of neighbouring light rays,

θ ≡ 1

A

dA

dλ
. (2.34)

There are at least two such light sheets, which extend until they reach a caustic
where the expansion becomes positive. Bousso then identifies three situations.
A surface which has both a future directed and a past directed ingoing (out-
going) lightsheet is called normal. Similarly, a surface with two future (past)
directed lightsheets, but no past (future) directed ones, is called (anti-)trapped.
Spherical surfaces outside the cosmological horizon of an observer in de Sitter
space are anti-trapped.

We are now ready to define the apparent horizon as the boundary between
normal and (anti-)trapped regions. It is characterized by the fact that at least
two light sheets have vanishing expansion,θ = 0, there. For pure de Sitter
space, the apparent horizon coincides with the cosmological horizon, but this
is no longer the case for general asymptotically de Sitter spaces. However,
in a de Sitter phase, the apparent horizon will tend towards the cosmological
horizon.

For the class of models with positive� considered in [85], including big
bang models that tend to de Sitter in the future ,the area of the apparent horizon
is

Aah(t) =
(

2�

(D − 1)(D − 2)

) D−2
2
[(

ȧ

a

)2

+ k

a2

]− D−2
2

AC . (4.76)

The time independent area of the cosmological horizon,AC, is given in (4.29).
Note thatAah � AC for physical values of the scale factora and, applying the
limit (4.66), we see that

Aah∼ AC (t →∞) , (4.77)

as expected for such models.
Based on the observation that the central charge (4.70) is proportional to

the area of the cosmological horizon (4.29), the authors of [85] propose the
area of the apparent horizon (4.76) in Planck units asc-function,

cD-1 ∝ Aah

GN
. (4.78)
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This function can be evaluated from local data on any constant time slice. As
a first check, we have already shown that it tends to the cosmological horizon
in a de Sitter phase. Actually, as observed in [85], the function (4.78) defines
the samec-function as (4.75). Indeed, substituting (4.74) into (4.75) and (4.76)
into (4.78) one easily sees that both are of the form

cD-1 ∝ 1

GN

[( ȧ
a

)2+ k
a2

] D−2
2

. (4.79)

This provides a geometric interpretation of the boundary theoryc-function in
terms of the increase in area of the apparent horizon in a future de Sitter uni-
verse.





5

THE ELLIPTIC INTERPRETATION: DS/Z2

We propose that for every event in de Sitter space, there is a CPT-conjugate
event at its antipode. Such aZ2 identification of de Sitter space provides

a concrete realization of observer complementarity: every observer has com-
plete information. It is possible to define the analogue of an S-matrix for quan-
tum gravity in elliptic de Sitter space that is measurable by all observers. In a
holographic description, S-matrix elements may be represented by correlation
functions of a dual (conformal field) theory that lives on the single boundary
sphere. S-matrix elements are de Sitter-invariant, but have different interpre-
tations for different observers. We argue that Hilbert states do not necessarily
form representations of the full de Sitter group, but just of the subgroup of ro-
tations. As a result, the Hilbert space can be finite dimensional and still have
positive norm. We also discuss this ‘elliptic interpretation’ of de Sitter space
in the context of type IIB* string theory. The discussion is based on [96,111].

5.1 INTRODUCTION

The exponential expansion of space in a de Sitter universe separates spacetime
into causally inaccessible regions. This is not just unaesthetic, but conceptually
problematic. It suggests, for instance, that pure states could evolve into mixed
states, as degrees of freedom disappear across the horizon. For an observer in
de Sitter space this would manifest itself as quantum decoherence and a loss of
information. Similar issues arose in the study of the information loss problem
for black holes. Gedankenexperiments in that context essentially led to the
conclusion that unitarity could be preserved for all observers if one allowed
for a duplication of information on either side of the horizon. According to
this ‘principle of black hole complementarity’ [80,120,126], the freely-falling
observer and the external observer would both be able to perform quantum

87
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mechanics experiments without any loss of coherence, but their interpretation
of the physics would be very different.

The arguments that led to black hole complementarity can also be applied
to other types of event horizons, in particular to cosmological event horizons.
A better name therefore would be ‘observer complementarity’. In its strongest
form observer complementarity postulates that each observer has complete in-
formation and can in principle describe everything that happens within his cos-
mological horizon using pure states. This information may appear to differ-
ent observers in different – complementary – guises: one observer may pass
smoothly through the horizon, whereas another observer may see there a source
of hot radiation. Although these drastically different realities may seem to be
inconsistent, it is important to recognize that paradoxes arise only when one
takes the unphysical perspective of a global super-observer.

The question is whether observer complementarity can be implemented in
de Sitter space. That this is indeed possible was already noticed by Schrödinger
[114]. In his ‘elliptic interpretation’∗ of de Sitter space, Schrödinger proposed
a simpleZ2 identification of spacetime by declaring antipodes to represent the
same event. Schrödinger’s motivation was indeed to give every observer com-
plete information about all events and thus in a way he argued already in 1956
in favor of observer complementarity. The current treatise adds charge conju-
gation, completing the antipodal map to CPT. This ensures that whichever ver-
sion of an event an observer witnesses, it always has the same probability. We
find that elliptic de Sitter space has some rather remarkable properties. Indeed,
not only does it lead to a concrete realization of observer complementarity, it
also improves the nature of many of the severe theoretical challenges that de
Sitter space presents. The main aim of this chapter therefore is to re-discuss,
in the context of this elliptic interpretation, the conceptual issues discussed in
Chapter 4.

This chapter is organized as follows. In Section 5.2 we motivate the pro-
posedZ2 identification by discussing several properties of de Sitter space that
support it. In Section 5.3, we define Schrödinger’s antipodal identification and
refine it to include CPT. We then discuss its classical properties and show that
elliptic de Sitter space does not suffer from any obvious problems, such as
closed timelike curves. Next, in Section 5.4, we consider quantum fields prop-
agating in this space. In particular, we discuss the vacuum state in the Fock
space of a free scalar field. As an illustrative example we consider the case of
1+1-dimensional de Sitter space. In Section 5.5, we consider holography and
the S-matrix. It is here that the advantages of the elliptic interpretation are per-
haps most evident; conceptually, the holographic theory seems to have a more

∗The term ‘elliptic’ refers to the fact that identified points are related by elliptic,i.e., spacelike
generators, as distinct from hyperbolic (timelike) or parabolic (null) generators.
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natural interpretation with theZ2 identification than without. In Section 5.6,
we discuss how elliptic de Sitter space might be realized in string theory. We
conclude in Section 5.7.

5.2 MIRROR IMAGES IN DE SITTER SPACE

The characterization of de Sitter space, given in Section 4.1, as the unique so-
lution to the Einstein equations with maximal symmetry and constant positive
curvature, leaves free the choice of a global topology. We will use this freedom
to impose the proposed identification.

For a given point on de Sitter space at embedding coordinateX , defined
in (4.3), we define the ‘antipodal point’ to be the point obtained by reflection
through the origin of Minkowski space,i.e., the point with embedding coordi-
nate−X . We then define ‘elliptic de Sitter space’ to be the spacetime in which
for every physical event at any point on de Sitter space there is a CPT-conjugate
event at the antipodal point. Hence we are using our freedom of topology to
impose aZ2 identification of de Sitter space. Note that the connected part of
the isometry group remains unchanged after the identification; theZ2 identifi-
cation mods out by a center of the de Sitter group. The preservation of all local
isometries justifies the appellation ‘de Sitter space’.

In the remainder of this section we consider various properties of global de
Sitter space that suggest that information on one side of the horizon is naturally
mirrored on the other side. We do not claim that de Sitter spacemust be antipo-
dally identified; rather, the examples should be seen as circumstantial evidence
that elliptic de Sitter space may be more natural than global de Sitter space. In
this light, it is interesting that de Sitter himself states [40]:

“The elliptical space is, however, really the simpler case, and it is
preferable to adopt this for the physical world.”

5.2.1 MIRROR SINGULARITIES

The great circles, or geodesics, of a sphere are determined by the intersec-
tion of the sphere with planes that pass through the origin. Similarly, the spa-
tial geodesics of de Sitter space can be obtained by intersecting its embed-
ding in Minkowski space (depicted in Figure 4.1 on page 64) with spacelike
planes through the origin of Minkowski space. It is clear then thatevery spatial
geodesic that passes through a point must also pass through its antipode, be-
cause if the embedding coordinateX lies in a plane through the origin then so
does−X . These geodesics form ellipses which are related to each other by de
Sitter transformations. If we think of null rays as degenerate spatial geodesics
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and we allow them to ‘bounce off’ null infinity, then all light rays leaving a
point converge on the antipodal point. This last fact affects the singularity
structure of Green’s functions of quantum fields in de Sitter space.

Consider a scalar field in de Sitter space. It is convenient to express de
Sitter-invariant equations in terms of a dimensionless de Sitter-invariant vari-
ableZ . We can define such a variable by

Z(X, Y ) ≡ 1

R2
X · Y , (5.1)

where the dot product is given by the Minkowski metric. Obviously,Z is
Lorentz-invariant inD+1 dimensions and therefore de Sitter-invariant inD
dimensions. For points that are connected by geodesics, the geodesic distance
is given byR arccosZ . In particular, for any givenX , if Y is on the light cone
of X , thenY = X + N with N2 = 0. SinceX andY must both lie on the same
de Sitter hypersurface,X2 = Y 2 = R2 and thereforeZ = +1. On the other
hand, ifY is on the light cone of the antipodal point,Y = −X + N and so here
Z takes the value−1.

The wave equation for a massive scalar field, written in terms ofZ , is[
(1− Z2)

d2

d Z2
− DZ

d

d Z
− m2

R2

]
φ(Z) = 0 . (5.2)

The Wightman functions obey this equation. The precise form of the solution, a
hypergeometric function, is not relevant for our discussion; the key point is that
it is singular atZ = 1. This is analogous to the usual short-distance singularity
at σ = 0 that one has in Minkowski space along the light cones. But now the
wave equation is symmetric underZ → −Z . Therefore, in de Sitter space,
there is a second solution to (5.2) with a singularity atZ = −1, i.e. on the
light cones of the antipode. Hence, we see that in contrast to Minkowski space,
singularities of Green’s functions in de Sitter space come in pairs. The mirror
singularity along the antipodal light cones is our first example of duplication in
de Sitter space.

5.2.2 SHOCKWAVES

Following work by Dray and ’t Hooft [43], Sfetsos [115] discusses how shock
waves can be introduced in de Sitter space. De Sitter space in 4 dimensions,
written in terms of Kruskal coordinates, takes the form [118]

ds2 = − 4

(1− uv)2
dudv + r2(dθ2+ sin2 θ dφ2) , (5.3)
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where

r = 1+ uv

1− uv
. (5.4)

Consider a massless particle located atu = 0 and moving with the speed of
light in the v-direction. The question is what happens to the geometry. Fol-
lowing [43], as an ansatz is taken that foru < 0 the spacetime is described by
(5.3) and foru > 0 also by (5.3) but withv shifted asv → v + f (θ), where
f (θ) is a function to be determined. In the case of de Sitter space, the function
f (θ) is determined in [115] to be of the form (up to constant factors)

f (θ) =
[
1− 1

2
cosθ ln

(
cot2 θ/2

)]
. (5.5)

This function has poles atθ = 0, π , indicating the presence of particles there.
Since no particle is a priori placed at the south pole,θ = π , the second singu-
larity is considered unphysical in [115]. In order to have a solution that blows
up only once, the solution is modified by a heaviside stepfunction,�(θ), that
essentially restricts the solution to the northern hemisphere,

f̂ (θ) =
[
1− 1

2
cosθ ln

(
cot2 θ/2

)]
�
(π

2
− θ
)

. (5.6)

Here, we would like to take a different viewpoint and regard the appearance
of the second pole as necessary. Indeed, we take the appearance of a second,
antipodal singularity in the general solution (5.5) as motivation for our proposal
to antipodally identify de Sitter space.

A shockwave configuration can be obtained by boosting a corresponding
black hole configuration, in the limit where the kinetic energy of the black
holes dominates over their rest energy. It is well known in 2+1-dimensional de
Sitter space that black holes appear in antipodal pairs, see for example [118].
This corroborates our suggestion that shockwaves also necessarily appear in
pairs, at least in 2+1 dimensions. In the following section we will show that
the fact that black holes appear in antipodal pairs holds in general dimension.

5.2.3 MIRROR BLACK HOLES

We will show that, when the Schwarzschild-de Sitter black hole solution is
analytically extended beyond the cosmological horizon, there is a mirror black
hole on the antipodal hemisphere of de Sitter space. Recall the Schwarzschild-
de Sitter metric,

ds2 = −F(r) dt2+ F−1(r) dr2+ r2d�2
n−1 , (4.25)
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F(r) = 1− 2M

rd−2
− r2

R2
. (4.26)

Let us introduce Kruskal-Szekeres type coordinates and analytically continue
the metric beyond the cosmological horizon. Note that, a priori, the coordinates
in (4.25) are only valid forrbh < r < rc.

In terms of its roots, the functionF(r) can be written as

F(r) = − 1

R2rd−2
(r − rc)(r − rbh)

d∏
n=3

(r − rn) , (5.7)

whererc andrbh are the only real and positive roots. Hence

F−1(r) = c1

r − rc
+ c2

r − rbh
+

d∑
n=3

cn

r − rn
, (5.8)

for certain constantscn . Define Eddington-Finkelstein coordinates through

dx± = dt ± dr

F(r)
, (5.9)

which, using (5.8), is easily integrated to give

x± = t ±
[

c1 ln (r − rc)+ c2 ln (r − rbh)+
d∑

n=3

cn ln (r − rn)

]
. (5.10)

In terms of these coordinates, the metric takes the form

ds2 = −F(r)dx+dx− + r2d�2
d−1 . (5.11)

Finally, introduce Kruskal-Szekeres coordinates through

U = e−
x−
2c1 ,

V = −e
x+
2c1 ,

(5.12)

where it is clear thatU > 0 andV < 0. The metric becomes

ds2 = 4c2
1

F(r)

U V
dUdV + r2(U, V )d�2

d−1 . (5.13)

In terms of these coordinates the metric is regular atr = rc and we can ana-
lytically continue (5.13)to the full range−∞ < U, V <∞. Note from (5.10)
and (5.12) thatr(U, V ) = r(U V ) and thusF(r) = F(U V ). Hence, ifF(U V )
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is zero for certain nonzero values ofU andV , e.g. at the black hole horizon,
then it will also be zero at−U and−V . This second horizon is antipodal from
the first and thus we find that black holes in de Sitter space come in antipodal
pairs. Actually, this is a choice: instead of extending the metric analytically
entirely to the other side, we could have replaced the antipodal black hole by a
static, spherically symmetric mass distribution with the same total mass.

Now consider adding charge to the de Sitter black hole [107]. De Sitter
space cannot support Noether charges because its spatial sections are compact.
The total charge has to add up to zero; the antipodal black hole therefore nec-
essarily carries equal, but opposite charge. Moreover, for the same reason there
cannot be any net angular momentum. This leads us to propose that the antipo-
dal map must be combined with charge conjugation, C.

5.3 THE ELLIPTIC INTERPRETATION

The elliptic interpretation of de Sitter space consists of identifying points that
are antipodally related under charge conjugation, C. The antipodal map is most
easily expressed in terms of embedding coordinates, defined in (4.3). It takes
the form

X I →−X I , (5.14)

with I = 0, 1, . . . , D, cf. (4.3). Together with charge conjugation, we will see
that this means that particles and events atX I and−X I are related by CPT.
We thus have an involution, aZ2 map. The fixed point of the map,X I = 0,
is not itself in de Sitter space, so this is a freely-acting symmetry. The quo-
tient spacedS/Z2 is therefore a homogeneous space with no special points. The
embedding equation (4.3) makes manifest that the de Sitter isometry group is
the Lorentz group inD+1 dimensions, O(1, D). Note that this group has four
disconnected components. These are the proper orthochronous Lorentz group
and its composition with the discrete symmetries of P and T,i.e., with parity
and time-reversal. By parity we will always mean a reflection in a hyperplane
of one spatial codimension rather than spatial inversion through the origin of
Minkowski space; the discussion is therefore unaffected by whether the space-
time is odd or even dimensional. Note that the antipodal map also inverts the
direction of time; see Figure 5.1. For example, recall global coordinates (4.4).
The line element can be written

ds2 = −dT 2+ R2 cosh2 T/R

(
dθ2+ sin2 θ d�2

D−2

)
. (5.15)

In these coordinates the antipodal map is given by

T →−T , θ → π − θ , �→ �A , (5.16)
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FIGURE 5.1: A star moving forward with respect to the local arrow
of time, as well as its antipodal image, are shown. The antipodal
map reverses the local arrow of time.

where�A are the angular coordinates of the point antipodal on theD−2-
dimensional sphere to the point labeled by� and time is reversed,T → −T .
In the rest of this section, we show that elliptic de Sitter space is nevertheless
classically consistent, with no problems of causality or closed timelike curves.
We will also demonstrate that the map between a particle and its antipodal
image is CPT.

5.3.1 CAUSALITY

The antipodal map identifies points at positiveT with points at negativeT .
Thus, one may wonder whether there are problems with causality or closed
timelike curves. That such problems do not arise was explained by Schrödinger
[114]. We just give here our version of the argument.

First, let us go to the embedding space. It is easily seen that two antipo-
dal points atX and−X are always spacelike separated, sinceX2 = R2 > 0.
Moreover, the intersection of the two light cones that start at antipodal points
never intersect the de Sitter hypersurface, because ifY is the embedding co-
ordinate of a common point on the light cones emanating fromX and−X ,
then

(Y + X)2 = (Y − X)2 = 0⇒ Y 2 = −R2 , (5.17)

soY does not lie on the de Sitter hypersurface. This means that the light cones
of two antipodal points within de Sitter space do not intersect. Therefore a pair
of events that take place at antipodal points cannot both influence the same
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event in their past and future. In particular, there are no closed timelike curves
afterZ2 identification.

What about closed null curves? A point onI− is connected by a lightlike
trajectory to its antipodal image onI+. So at first this appears to give rise
to an infinity of closed lightlike trajectories. However, these light rays do not
constitute closed trajectories in de Sitter space for three important reasons.
First of all, ‘points’ atI+ and I− are not really points in de Sitter space.
They have to be added as points at infinity, and so they are only part of a
formal compactification of de Sitter space. De Sitter space itself is non compact
and does not include these points. A second, related reason is that the affine
parameter along the seemingly closed lightlike trajectory is actually infinite,
essentially because the points are atI±. Finally, a third reason that the lightlike
trajectory is not really closed, is that one cannot continue along the trajectory a
second time, third time, etc. without reversing direction each time one is at the
endpoints onI+ or I−. This is not what happens on a usual closed trajectory,
such as on a timelikeS1.

It is also useful to analyse the antipodal identification from the point of
view of inertial observers. All points inside the causal diamond of an observer
have antipodal points outside the causal diamond. The antipodal points belong
to the causal diamond of the antipodal observer and are inaccessible to the
first since they lie behind his horizon. Therefore, exactly one of every pair of
antipodal events is observable. Which event of each pair is observed depends
on the location of the observer; see Figure 5.2. For example, the observer
living at the south pole will see precisely all antipodal images of the events
that his colleague at the north pole sees. Other observers will see something
in between, namely for some part ‘northern’ events and for the rest ‘southern’
events, but every event is observed once and no more than once. Identifying
antipodal points, we see that all observers will obtain complete information
about the spacetime as they approachI+. Thus observer complementarity is
realized by the elliptic interpretation.

What about events that take place outside the causal diamonds of the ob-
server at the south and the north poles? These are the events that take place at
the upper and lower parts of the Penrose diagram near past and future infinity.
In the elliptic interpretation of de Sitter space these upper and lower regions are
identified. The usual square Penrose diagram for de Sitter space is somewhat
misleading in the sense that it seems to indicate that all points in the upper
region are in the causal future of points of the lower region. But one has to re-
member that every point represents aD−2-dimensional sphere and points that
are identified by the antipodal map are on opposite sides of these spheres. A
clearer way to see the causal structure of elliptic de Sitter space is to represent
the D−2-dimensional spheres as two points, each of which is a real projective
sphere, as in Figure 5.2. Now one can see that a geodesic that connects two
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(a) (b)
i− i−

i+ i+′

p

p̄

p

p̄

FIGURE 5.2: These Penrose diagrams of de Sitter space have been
opened up to make all antipodal points distinct. The left and right
edges of a diagram are identified and every point in the interior
(except on the central vertical line) now signifies anRP D−2, in-
stead of aSD−2. The antipode of a given point is reached by re-
flecting about the dashed horizontal line (which corresponds to
T = 0) and moving horizontally by half the width of the diagram.
Two antipodes, markedp and p̄, are shown. In (a) an observer
traveling fromi− to i+ hasp but not p̄ in his causal past (shaded),
while in (b) an observer with a different worldline can seep̄ but
not p. The antipodal image of a shaded region is the unshaded
region, giving every observer complete information after theZ2
identification.

identified points in the upper and lower regions has to travel forward in time,
but also has to go around the sphere. Since all antipodal points are spacelike
separated, the resulting geodesic is indeed spacelike.

Next consider the horizon itself. Without loss of generality we may con-
sider an observer at the north pole,θ = 0, of the spatialD−1-dimensional
sphereSD−1. His past and future event horizons are given by

θ = 2 arg
(

i + e±
T
R

)
(5.18)

and intersect atT = 0 at the equator of hisD−1-dimensional sphere, described
by theD−2-dimensional sphere atθ = π/2. The intersection takes place at the
midpoint of the square Penrose diagram. Therefore only by sending a signal at
T = −∞ can he contact the equator in time for a signal to come back to him.
In fact, such a signal will reach him precisely atT = ∞. Hence, if we exclude
the points at infinity, there is no way that the observer can communicate (send
a question and get a reply) with points on the equator. The antipodes of events
that happen right on the equator also lie on the equator. But an observer at the
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north (or south) pole only sees these events atT = ∞. We conclude that at
no finite time can any observer ever directly detect the duplication of events in
elliptic de Sitter space.

Finally, note that the asymptotic geometry of elliptic de Sitter space con-
sists of a singleSD−1, since theZ2 identification mapsI+ andI− to each
other. This property will be useful when we consider the holographic theory.

5.3.2 CPT

Any two antipodal points can be mapped to the north and south poles corre-
sponding toX D = ±R, Xk = 0 for k = 0, 1, . . . , D−1. Without loss of
generality, consider a particle with trajectoryX I (τ ), I = 0, 1, . . . , D in the
embedding space passing through the north pole atτ = 0. Its antipodal image
is−X I (τ ) and passes through the south pole. Let us apply time-reversal to the
antipodal image:

T : −X I (τ )→−X I (−τ) . (5.19)

The relativistic momentum of the particle at the north pole ispI = Ẋ I . Note
that pD = 0 at τ = 0. At the south pole the momentum is also given by
pI since it is−X I (−τ) differentiated with respect toτ at τ = 0. So in the
embedding space the momentum is pointing in the same direction. However,
in order to compare this to the momentum at the north pole, we have to parallel
transport the vector from the south pole to the north pole. There are many ways
of doing this because there are an infinite number of spatial geodesics passing
through both the north and the south poles. Let us pick one of them, say the one
that appears when we intersect de Sitter space with the two-dimensional plane
Xm = 0 for m = 0, 1, . . . , D−2. This gives as a geodesicX D−1 = R sinθ ,
X D = R cosθ . At θ = 0 we are at the north pole, atθ = π at the south pole.
Parallel transport of the momentumpI along this trajectory gives a momentum
(p′)I which satisfies

(p′)m = pm , m = 0, . . . , D−2

(p′)D−1 = −pD−1 .
(5.20)

We see that one of the spatial components of the momentum has changed sign.
That is the result of a reflection in aD−2 spatial dimensional hyperplane. Thus
it corresponds to parity, even though in the embedding spaceX I → −X I

corresponds to an inversion. The plane of reflection in this case is the plane
X D−1 = 0. Had we chosen a different geodesic it would have been another
plane. Note that this is consistent, because parallel transport along two different
geodesics differs by a rotation, equal to the integrated curvature between the
geodesics. This is precisely what one finds if one composes the two reflections
in the planes associated with those geodesics.
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Therefore, going around from a point in de Sitter space to its antipodal
point has the effect of acting on the tangent space by PT. Since ourZ2 map
also requires that we act with charge-conjugation, C, the cumulative effect is
to relate antipodal points by CPT.

5.3.3 THE ARROW OF TIME

The antipodal map,X I →−X I , changes the sign of the time coordinate of the
embedding space and also that of the direction of time in de Sitter space. The
resulting quotient spacedS/Z2 is as a consequence not time-orientable: although
one can locally distinguish past and future, there is no global direction of time.
This fact clearly changes many standard notions about space and time that we
are accustomed to. For instance, it is impossible to choose a Cauchy surface
for elliptic de Sitter space that divides spacetime into a future and a past region.

Since the microscopic laws of physics are generally time-reversible, that is
CPT-invariant, there is no problem with time unorientability at a microscopic
level. It is more subtle, however, to formulate macroscopic laws of physics on a
time unorientable spacetime. For example, the evolution of stars clearly shows
a direction of time; one never observes a neutron star turning into a massive
star through the enormous implosion of a stellar envelope, yet this is what the
antipodal image of a type II supernova would look like.

For sufficiently simple situations, a single observer can always choose a
preferred direction of time in the observable part of the universe, consistent
with the second law of thermodynamics. Consider an isolated thermodynamic
system in configurationA, with antipodal imageA′, which evolves into system
B, with antipodal imageB′. If the entropies are such thatS(B) 
 S(A), an
observer who observed bothA and B would say thatA precededB. Since
the primed and unprimed systems have the same entropy, this would mean
that an observer who observed bothA′ and B ′ would say thatA′ precededB′
and would therefore have time flowing in the opposite direction. Finally, an
observer who saw, say,A and B′ would see them as two distant, spacelike-
separated systems, rather than one system evolving into another. For this ob-
server the choice of the arrow of time is independent of the relative entropies
of the two systems. In this simple scenario, no problems arise for any observer.

However, now consider a second thermodynamic system in statesC and
D. For example,A, B andC, D could describe the configurations before and
after two supernova explosions. It is easy to check that if bothC and D are
outside the past light cone ofB, then there is always at least one observer who
witnesses a dramatic violation of the second law, irrespective of his choice of
time arrow. This is not fatal because, after all, the underlying dynamics do ex-
hibit a CPT symmetry. Rather, the issue is what the allowable initial conditions
are. One consistent treatment is to say that there are simply no highly-ordered
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systems present. (This would, unfortunately, include realistic observers.) In-
deed, there are reasons to believe that our observed macroscopic arrow of time
may be related to boundary conditions at cosmological singularities. It would
be very interesting to see if there are cosmological scenarios [1] that can be
built out of elliptic de Sitter space.

An alternate and quite different viewpoint is to argue that before one can
even assign events in spacetime, one should first choose an observer. Indeed,
even classically, different observers can have rather different interpretations of
local physics, as happens in the membrane paradigm for black holes [126,133].
Then for a given observer one can always arrange events to be consistent with
his preferred arrow of time. One only runs into trouble if one tries to consider
many observers, who all choose a preferred time direction. But such con-
siderations are against the notion of observer complementarity, which forbids
simultaneous consideration of observers on opposite sides of an event horizon.

5.3.4 THE �→ 0 LIMIT

An interesting limit of de Sitter space is the limit in which the cosmological
constant is sent to zero, so that spacetime locally becomes Minkowski space.
This limit has to be treated with care; the quantities of interest should vary
smoothly as� → 0. For elliptic de Sitter space, the� → 0 limit seems
sensible. The causal properties of theZ2 quotient space for any finite� are
similar to those of Minkowski space, in the sense that every observer who
waits long enough has the chance to observe (and emit signals to) any event
in spacetime, just as in Minkowski space. The main difference is that elliptic
de Sitter space is not time-orientable. However, as the cosmological constant
goes to zero this difference disappears to the null boundaries.

Now, if elliptic de Sitter space goes to Minkowski space in this limit, it
seems to imply that global de Sitter, being its two-fold cover, in fact goes to
two copies of Minkowski space, where the second copy is the CPT-conjugate of
the first. The significance of these remarks will be more clear once we discuss
the de Sitter analogue of an S-matrix, which as we will argue exists in elliptic
de Sitter space but does not appear to exist in global de Sitter space.

5.4 QUANTUM FIELD THEORY

In this section, we study the quantization properties of a scalar field propa-
gating in elliptic de Sitter space. Some aspects of the quantum field theory
of a free scalar field in elliptic de Sitter space have previously been discussed
in [51,109,110]. More recently it was discussed, independent of the current
work, in [13].
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Elliptic de Sitter space is not simply connected; there are closed space-
like curves going from a point to the antipodal point that are noncontractible.
Therefore, tensor fields on elliptic de Sitter space can be sections of a twisted
bundle over spacetime. Since the first homotopy group isπ1(dSn/Z2) = Z2, we
can essentially choose a sign for the phase of a tensor field as the field is car-
ried around a noncontractible loop. Consider then a complex scalar field. We
can choose either periodic or antiperiodic boundary conditions. If we choose
periodic conditions, the constraint a complex field must satisfy takes the form

�±(x̄) = ±�∗±(x) , (5.21)

wherex̄ denotes the antipodal point tox and the subscript± indicates whether
we have chosen periodic or anti-periodic boundary conditions. If we write
�±(x) = �1(x) + i�2(x), then the real and imaginary parts have periodic
(antiperiodic) and antiperiodic (periodic) boundary conditions respectively for
the plus (minus) subscript.

Globally, one can expand a scalar field in terms of so called Euclidean
modes. These are field configurations that satisfy the wave equation, with
boundary conditions such that the modes can be analytically continued from
the spherical harmonics on a sphere. A property of the Euclidean modes is that
they can be chosen to obey

φE
n(x̄) = φE

n
∗
(x) (5.22)

and we will assume that our modes satisfy this condition. Normally, one ex-
pands the field in terms of its modes as

�±(x) =
∑

n

[an,± φE
n(x)+ a†

n,± φE
n
∗
(x)] . (5.23)

In elliptic de Sitter space, however, the field must additionally obey the period-
icity condition (5.21). This implies that

a†
n,± = ±an,± , (5.24)

indicating that the global quantization scheme breaks down. As a result, a
global Fock space no longer exists; any creation operator acting on a vacuum
state would annihilate it. Intuitively, this happens because the identified space-
time is not time-orientable. Creation and annihilation operators create and de-
stroy quanta of positive energy, but if the spacetime is not time-orientable pos-
itive energy cannot be defined globally. For essentially the same reason, the
inner product of modes over a spatial slice� through elliptic de Sitter space
always gives zero. This is because the Klein-Gordon inner product

(φm, φn) = −i
∫

�

(φm∂tφ
∗
n − φ∗n∂tφm) (5.25)
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FIGURE 5.3: Penrose diagram of de Sitter space, in which region
I (II) corresponds to the static patch of an observer on the south
(north) pole. The solid lines indicate equal time slices in the static
time; they are Cauchy surfaces for region I. The dotted lines are
their antipodal images‡ and constitute Cauchy surfaces for region
II. When a solid line is continued through the horizon, onto its an-
tipodal image, it constitutes a Cauchy surface for the whole space.

vanishes as a consequence of the flipping of the direction of time.
The vanishing of the norm and the lack of a nontrivial Fock space may seem

like serious afflictions, but actually in elliptic de Sitter space it is more natural
to build a Fock space with oscillators defined on a static patch. To see this,
note that under the antipodal identification Cauchy surfaces for the static patch
constitute Cauchy surfaces for the whole space, as shown in Figure 5.3. Con-
sider the static patch associated with an observer at the south pole, region I in
Figure 5.3. In this region there is a well-defined direction of time, as indicated
in Figure 4.4 on page 69, and Fock space operatorsa(†)I

ω can consequently be
defined. The vacuum is then constructed in the usual way,

aI
ω|vac〉 = 0 ∀ω > 0 , (5.26)

and a Fock space can be constructed. The antipodal map identifies

aI(II)
ω ↔ a†II(I)

ω , (5.27)

i.e., creation (annihilation) operators in region I are identified with annihilation
(creation) operators in region II,cf. (5.24). It would be interesting to work

‡Note that, comparing to Figure 4.4, these coincide with the equal time slices in region II. This
is, at least from the current viewpoint, coincidence; they simply denote the antipodal images of the
time slices in region I.
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out the behavior of higher-spin fields and, in particular, fermions in elliptic de
Sitter space.

Different observers are related by Bogolubov transformations. These are
invertible, mapping pure states onto pure states. We expect no de Sitter-invari-
ant pure states; in particular the vacuum state is not invariant, as is obvious by
considering observers that are antipodal to each other. There are nevertheless
de Sitter-invariant mixed states. These states correspond to de Sitter-invariant
pure states in the global Fock space, traced over the modes behind the horizon.
In particular, there is a state that is observed as a thermal state by any observer
moving along a timelike geodesicx(τ ). To see this, consider a real scalar field
on the identified spacetime, given in terms of a scalar field on the unidentified
space as

�±(x) = 1√
2
[�(x)±�(x̄)] . (5.28)

This field satisfies the condition (5.21) for a real field. The Wightman function
takes the form [109]

G0±[x(τ ), x(τ ′)] = G0[x(τ ), x(τ ′)] ± G0[x(τ ), x(τ ′)] , (5.29)

whereG0(x, x ′) is the Euclidean Green’s function on the unidentified de Sit-
ter space. In obtaining this we have used the fact thatG(x, x ′) = G(x̄, x̄ ′),
which holds because underx → x̄ andx ′ → x̄ ′, the de Sitter-invariant quan-
tity Z remains unchanged andG0(x, x ′) is a function only ofZ(x, x ′) since
the Wightman functions are de Sitter-invariant; see Section 5.2.1. Assuming,
without loss of generality, that the observer remains static on the south pole,
Z(x(τ ), x(τ ′)) is given in terms of static coordinates by coshτ−τ ′/R whenτ is
the proper time. The Green’s function thus takes the form

G±[x(τ ), x(τ ′)] = G0 (coshτ−τ ′/R
)± G0 (− coshτ−τ ′/R

)
. (5.30)

This is a thermal Green’s function at a temperature1/2π R. So even though
every observer in elliptic de Sitter space has complete information, one still
has thermal states at the de Sitter temperature. Unlike the unidentified case,
however, there is no frame for which this Green’s function corresponds to a
pure vacuum state.

As discussed in [28,36,119,132], there is a one-parameter family of de
Sitter-invariant Green’s functions in unidentified de Sitter space. This fam-
ily is parametrized byα, with the Euclidean Green function corresponding to
α = 0.§ The existence of such a family stems from the fact that on de Sit-
ter space one can add an antipodal source, as we saw in Section 5.2.1. The

§We adhere to the conventions of [5].
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corresponding modes are related by Bogolubov transformations:

φα
n (x) = coshα φE

n(x)+ sinhα φE
n(x̄) . (5.31)

By (5.22), the new modes mix the old positive and negative energy modes
and therefore define a new, inequivalent vacuum. Theα-vacua, denoted by
|α〉 and called Mottola-Allen states [5,94], form a one-parameter family of de
Sitter-invariant vacua. Presumably, they correspond to (nonthermal) de Sitter-
invariant states on the elliptically identified space. Theα-vacua have Green’s
functions given by

Gα(x, x ′) = 〈α|�(x)�(x ′)|α〉 . (5.32)

Substituting the mode expansion and the Bogolubov transformation for a field
satisfying (5.21), theα-Wightman function on the identified space takes the
form [109]

Gα±(x, x ′) = e±2αG0±(x, x ′) , (5.33)

whereG0±(x, x ′) is given by (5.29), which corresponds toα = 0. In elliptic de
Sitter space the Green’s functions for the differentα-vacua differ by an overall
normalization (ignoring subtleties involvingiε prescriptions). We regard the
Mottola-Allen states forα �= 0 as unphysical, since their Green’s functions
do not have the short-distance singularities that we expect from Minkowski
space. The Green’s function on elliptic de Sitter space has singularities on the
light cone as well as on the light cone of the antipode, even forα = 0. The
singularities have equal strength but can have a relative plus or minus sign due
to the double-valuedness of the phase.

5.4.1 1+1-DIMENSIONAL DE SITTER SPACE

As an illustrative example, consider the case of 1+1-dimensional de Sitter
space. This simple space allows for definite statements to be made. In the ellip-
tic interpretation every observer has access to all information. Their comple-
mentary representations should thus be in one-to-one correspondence. Since
two observers in de Sitter space generically accelerate with respect to each
other, one expects the transformation between the two perspectives to be a non-
trivial Bogolubov transformation. In the following we will explicitly construct
this transformation in the case of 1+1-dimensional de Sitter spacetime.

The 1+1-dimensional de Sitter metric in global coordinates reads

ds2 = −dT 2+ cosh2 T dθ2 , (5.34)
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cf. (4.4). This metric has three Killing vectors,

∂1 = cosθ ∂T − tanhT sinθ ∂θ ,

∂2 = sinθ ∂T + tanhT cosθ ∂θ , (5.35)

∂3 = ∂θ .

Of these,∂1 is the generalized generator of time translations for an observer
at the south pole (θ = 0). Let us construct its eigenmodes. First, recall from
Section 4.1.1 that the metric (5.34) is conformal to flat space,

ds2 = cosh2 T
(
−dτ2+ dθ2

)
, (5.36)

where tanτ(T )/2 = tanhT/2. The wave equation thus takes the same form as
in flat space and has right- and left-moving solutions. In the following we
will only consider the right-movers. We are looking for positive frequency
eigenmodes,i.e. modes that obey

∂1φω(τ − θ) = −iω φω(τ − θ) . (5.37)

We have
∂1φω(τ − θ) = φ′ω(τ − θ) cos(τ − θ) . (5.38)

From (5.37) and (5.38) we find that the modes take the form

φω(τ − θ) =
(

1− tanτ−θ/2

1+ tanτ−θ/2

)iω

, (5.39)

≡ xiω . (5.40)

Concentrating on the sliceτ = 0, we see that these modes have branch cuts at
x = 0 andx = ∞, corresponding toθ = ±π/2. Using the condition (5.21),
which in this case takes the form

φ(θ + π) = φ∗(θ) (τ = 0) , (5.41)

these modes are extended to the regionπ/2 < θ < 3π/2. We can define new
modes that are well defined for the full range 0< θ � 2π , through

φ̃ω = 1√
ω
|x |−iω . (5.42)

Note that these modes are still singular atθ = ±π/2, but they do implement the
constraint (5.41). These modes are normalized according to∫ ∞

0
dx |x |−iω ∂

∂x
|x |iω′ = δ(ω − ω′) . (5.43)
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After a rotation over an angleϕ, they take the form

φ̃ϕ
ω =

1√
ω

∣∣∣∣ x + tanϕ/2

1− x tanϕ/2

∣∣∣∣
−iω

. (5.44)

And the Bogolubov coefficients take the form

A0ϕ =
√

ω

ω′

∫ ∞
0

dx

x
x−iω

∣∣∣∣ x + tanϕ/2

1− x tanϕ/2

∣∣∣∣
iω′

, (5.45)

where the integral is defined through the principal value.

5.5 HOLOGRAPHY IN ELLIPTIC DE SITTER SPACE

Now we turn to the theory on the boundary and consider the proposed dS/CFT
correspondence, discussed in Section 4.3, from the perspective of elliptic de
Sitter space. An immediate consequence of taking aZ2 quotient is that every
observer now has access to all of elliptic de Sitter space. Moreover, the antipo-
dal identification implies that the spacetime now has only a single spacelike
boundary. Hence the holographic dual theory is a Euclidean conformal field
theory on asingle sphere. In the spirit of the dS/CFT correspondence we shall
consider first the general features of the holographic CFT, independent of the
details of the theory. The discussion does not need the corresponding bulk
fields to be free; indeed, it applies also to gravity. We find that the holographic
properties of elliptic de Sitter space are very good, with satisfying implica-
tions for observer complementarity, the existence of an S-matrix and a possible
explanation of the finiteness of the de Sitter entropy.

5.5.1 HOLOGRAPHIC TIME EVOLUTION

Even though we do not know what the interior of quantum de Sitter space looks
like, we can still say the following. Classically, the past and future light cones
of an observer intersect theD−1-dimensional spheres at asymptotic infinity on
D−2-dimensional spheres. In fact, after identification both light cones intersect
thesame sphere. The polar angle at which the light cones emanating from time
T (at the north pole) intersect theSD−2 atI± is given by

θ(T ) = 2 arctan(tanhT/2)+ π

2
. (5.46)

At T = −∞ this is zero, atT = 0, θ = π/2 and atT = ∞ it is π . So by
choosing anSD−2 at a certain radius onI± we are basically taking the point
of view of an observer who is in the middle of de Sitter space at a certain
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FIGURE 5.4: In the farpast, an observer at the south pole might
describe the state of the world by an initial state|i〉 on I−. The
observer evolves in time until he reaches his final state〈 f | onI+.
The antipodal map relates this again to a state onI−. In- and
out-states are therefore associated with a single surface, as in a
conventional CFT.

time T . This is holography at work: we do not need to go to the interior of de
Sitter space to describe time evolution, we do it at the boundary. Even in the
quantum theory, since the metric near the boundary still looks like classical de
Sitter space and we have the SO(1, D) de Sitter group acting, we can use the
global timeT to measure the distance from the scris to the poles.

Now, time translations increase the distance with respect to the north pole
and decrease the distance to the south pole. In fact, this is precisely what scale
transformations do. To see this, map the north pole patch to flat Euclidean
space and similarly for a neighborhood of the south pole. Then the transition
function that glues the two together is inversion,
x → 
y = 
x/|
x |2, which is a
conformal transformation. But now note that scaling up inx is equivalent to
scaling down iny, exactly like time translations in the bulk.

That time evolution in the bulk leads to scale transformations in the bound-
ary was already emphasized by Strominger [121]. In planar coordinates cover-
ing, say, the causal past, the line element reads

ds2 = −dt2+ e−
2t
R dx2 (5.47)

and it follows that
t → t + λ , x → e

λ
R x (5.48)

is an isometry of the metric. Alternatively, one can use static coordinates in the
upper or lower region of the Penrose diagram. The line element is

ds2 =
(

r2

R2
− 1

)
dt2

s −
dr2

r2

R2 − 1
+ r2d�2

D−2 (5.49)

and the ‘Hamiltonian’∂/∂ts manifestly constitutes a Killing vector. In fact,
it generates the same isometry as (5.48), as can be seen by transforming to
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|i〉〈 f |

t

FIGURE 5.5: Radial quantization on anSD−1. In-states and out-
states are at antipodal points. The Hamiltonian is the dilation oper-
ator. Each surface corresponding to constant time for the observer
in the bulk is anSD−2.

r = |
x |exp(−t/R) andts = t + 1
2 R ln (r2/R2 − 1). From the metric it is clear

that this is a spacelike vector, as indeed it should be since it now corresponds to
dilations of the boundary sphere. We note that there is, however, an important
difference between the patches covered by these coordinates and elliptic de
Sitter space: the boundary of the inflationary patch has the topologyR

D−1,
while elliptic de Sitter space has anSD−1, which contains an extra point.

This leads to a nice picture of how an observer would view the CFT. Con-
sider an observer in elliptic de Sitter space. By means of de Sitter transforma-
tions, the worldline of any inertial observer can be mapped to the time axis,
say at the south pole. In the far past, such an observer would characterize the
world by an in-state,|i〉. As in conventional CFT with radial quantization, we
would like to assign incoming states to the origin. Here we choose the origin
as the point where the observer’s worldline intersectsI−. Correspondingly,
we insert the in-state at the south pole of the boundary sphere. As time passes,
the observer moves vertically up the Penrose diagram. As we have seen this
corresponds to a dilation on the sphere. Finally, in the far future, the observer
describes the world by an out-state,〈 f |. This is where the elliptic interpre-
tation comes in: the out-state is mapped to the antipodal point on the same
SD−1 as the in-state; see Figure 5.4. For an inertial observer, the out-state is
inserted precisely at the extra point (the north pole) thatSD−1 has compared
with R

D−1. In a stereographic projection of the sphere to flat Euclidean space,
the outgoing state would be at infinity. The corresponding situation on the
boundary is depicted in Figure 5.5.

In conclusion, theZ2 identification implies that the holographic CFT is
simply a theory with conventional radial quantization on an ordinary sphere.
We will see, however, that the Hermiticity conditions of the theory are some-
what unusual.
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5.5.2 THE EXISTENCE OF ANS-MATRIX AND HOLOGRAPHY

Defining an S-matrix for quantum gravity in global de Sitter space is tricky.
The problem is that, having defined in- and out-states on two disconnected
surfaces (I− andI+), the only available pairing between them, CPT, is used
merely to define an inner product [142]. Since in quantum gravity the space-
time between these two boundaries fluctuates, there does not seem to be an-
other way to map states onI− to I+. Hence it is not obvious how to define an
S-matrix. If we consider only the quantum field theory of matter (and neglect
back-reaction) with the geometry fixed, then we are able to define an S-matrix,
but even then its matrix elements are not physically measurable, since no ob-
server can determine the state at bothI− andI+, not even in the far future.

In elliptic de Sitter space the situation is different. The past and future
asymptotic regions have been identified, so initial and final states can be de-
fined in the same asymptotic region, where the fluctuations of the metric are
set to zero. It is useful to think about the initial and final states in terms of the
asymptotic boundary conditions of various fields, including the metric, in this
single asymptotic region. As discussed in Section 5.5.1, an observer positioned
at the south pole will use the asymptotic data on the southern hemisphere to
define the in-state and the data on the northern hemisphere to define the out-
state. First, to define an inner product one can use the canonical map from the
south to the north pole which associates to a state|�i 〉 its CPT conjugate state
〈�i |. Next, to define the S-matrix one uses the combined asymptotic data pro-
vided in the in- and out-states,|�i 〉 and〈� f |, as boundary conditions for the
‘functional integral’ over all fields in the bulk of the quantum de Sitter space.
This produces a number that can then be identified with the S-matrix element
〈� f |�i 〉.

We will now discuss how these S-matrix elements would possibly be de-
scribed in a holographic description of de Sitter space. So let us suppose that
elliptic de Sitter space allows a holographic description in terms of a dual the-
ory, which for concreteness we assume to be a conformal field theory. Since
there is only one asymptotic region one is dealing with a single Euclidean CFT
living on a D−1-sphere, which one can think of as theSD−1 atI+ or I−. In
a CFT, states can be defined using radial quantization. They are created by the
action of some (local) operator at the origin:

| j〉 = Oj (0)|vac〉 , (5.50)

where we have used the operator-state correspondence. The state|vac〉 is the
‘vacuum’, by which we mean not necessarily a state of lowest energy (since
energy is difficult to define in de Sitter space), but rather a de Sitter-invariant
state. Similarly, we can define a final state as

〈 j | = 〈vac|O∗j (∞) . (5.51)
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Notice that this also involves complex conjugation, since ourZ2 map includes
charge conjugation, C. Now we can define an inner product via

〈O∗i (∞)Oj (0)〉SD−1 ≡ δi j . (5.52)

This pairing of an operator with its CPT conjugate provides an inner product
in the sense of being a mapH ×H → C that is linear in one argument and
anti-linear in the other.

If indeed there is a CFT dual of (elliptic) de Sitter space, then intuitively
one expects that interactions (and hence S-matrix elements) are encoded in
the correlation functions and the operator product expansion. It is important
to note that a CFT by itself does not have an S-matrix. Therefore, instead
of studying just the asymptotic states, let us consider operator insertions at
points other than the origin and infinity. There are an infinite number of such
operators since we can associate an operator with every point on the sphere. So
in principle one could define an infinite set of in-states by considering strings
of operators acting on the in-vacuum,

|�i 〉 = Oj1(x1) . . . Ojn (xn)|vac〉 , (5.53)

and similarly for the out-states. S-matrix elements are then expressed as corre-
lation functions where part of the operators, those on the northern hemisphere,
represent the in-state, while the operators on the southern hemisphere represent
the out-state. Note, however, that not all of these states are independent, be-
cause there are operator product relations. For example, two operatorsOi and
Oj inserted at different points have an operator product relation of the form

Oi (xi )Oj (xj ) =
∑

k

ck
i j

|xi − xj |�i+�j−�k
Ok(xj ) . (5.54)

Here, the sum on the right hand side includes (quasi-)primary operators as well
as their descendants. If one allows descendants of arbitrary conformal dimen-
sion, then all operators can be moved to one preferred point by simply using the
Taylor expansion. One natural way to reduce the redundancy in the states is to
consider only quasi-primary operators. Note that since the conformal dimen-
sion of an operator corresponds to the energy as seen by an observer in de Sitter
space, it is physically reasonable to consider only operators with conformal di-
mensions that are below a certain threshold. The number of (quasi-)primary
fields below a certain conformal dimension is finite. It is natural to conjec-
ture that this fact is related to the finiteness of the de Sitter entropy. However,
note that when one allows the operators to be inserted at arbitrary points on
the sphere, this still would give an infinite number of states. It may very well
be that there are additional requirements that one has to impose, but without
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a more definite and concrete theoretical foundation one can only guess what
these requirements could be.

The most specific proposal that we have for the de Sitter ‘S-matrix’ is that
it is given by the overlap of the initial and final states:

Sf i = 〈� f |�i 〉 , (5.55)

where both|�i 〉 and 〈� f | are expressed, as in (5.53), in terms of (quasi-
)primary operators with restricted conformal dimensions. Hence the S-matrix
elements are simply given by the correlation functions of the boundary con-
formal field theory. This proposal is truly holographic, since the correlation
function are computed in terms of the CFT at the boundary.

5.5.3 OBSERVER COMPLEMENTARITY

How do different observer interpret these S-matrix elements? In fact, the same
operator insertions at the boundary are interpreted differently by different ob-
servers in the bulk. This is because the physical states defined above depend
on the choice of origin. For any observer, the incoming states are those that
correspond to insertions made on the hemisphere of which his origin forms the
pole, while outgoing states are created by operator insertions on the opposite
hemisphere. Different observers have different origins so this leads to different
interpretations of a given set of operator insertions,i.e., they divide them up
differently into incoming and outgoing; this is observer complementarity.

Consider, for example, the situation indicated in Figure 5.6. A south pole
observer would describe this as pair annihilation: an electron and a positron
come in and annihilate to give a photon. On the other hand, a north pole ob-
server, being antipodal to the south pole observer, would see the same events
happening in a CPT mirror. In this case, it would describe the CPT-conjugate
process of pair creation: an incoming photon decays into an electron and a
positron. A third observer in between these two poles would see yet another
situation, for example an incoming electron emitting a photon. It is important
to realize that all these processes have the same amplitude.

5.5.4 A LITTLE GROUP THEORY

A striking consequence of the preceding discussion is that, although the S-
matrix is de Sitter-invariant, the in-states are not. De Sitter transformations
that take one observer into another generically transform in-states into out-
states and vice versa. Hence the asymptotic Hilbert space does not decom-
pose into irreducible representations of the de Sitter group. This is important
because there is a well-known theorem which states that (nontrivial) unitary
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a) Pair annihilation

γ

e− e+

γ
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b) Pair creation
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c) Photon emissionγ
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γ
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FIGURE 5.6: Complementarity in action: the same correlation func-
tion as interpreted by an observer (a) at the south pole, (b) at the
north pole and (c) at an intermediate point. The circle denotes the
sphere on which the dual theory lives, the dots are operator inser-
tions, the arrow indicates the observer’s direction of time and the
equator divides the in-states from the out-states. On the right are
the corresponding processes in spacetime.

representations of non compact groups must be infinite-dimensional. This the-
orem is in tension with the finiteness of the de Sitter entropy. If the de Sitter
entropy enumerates the microscopic degrees of freedom underlying a quantum
description of de Sitter space, then we would expect it to form a (possibly re-
ducible) representation of some group. Were that group to be the non compact
de Sitter group,O(1, D), then the holographic theory could not be unitary. For
elliptic de Sitter space, the entropy is presumably also given by the Bekenstein-
Hawking formula:

S = A

4
= π

D−1
2 RD−2

4�
(

D−1
2

) , (5.56)

where the ‘area’,A, is the volume of the horizon, which is now aD−2-dimen-
sional real projective sphere,RP D−2. The important point is that this is again
finite. But as we saw, the states in elliptic de Sitter space do not transform under
representations of the full de Sitter group. Instead, they only transform under
the subgroup that preserves the asymptotic position of an observer. Since in the
asymptotic past an observer defines a point on aD−1-dimensional sphere and
in the future a possibly different point on the same sphere, the relevant group
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is actually SO(D−1). We propose that the entropy of de Sitter space is related
to representations of this compact group.

Another way to make the same point is the following. The Bekenstein-
Hawking entropy refers to the area of a holographic screen bounding a given
region of spacetime. For de Sitter space, a horizon is actually the holographic
screen of a particular observer in the far future. But the screen accessible to any
single observer must furnish a representation of thelittle group of that observer.
This is precisely the rotation group SO(D − 1).

A given physical state is therefore labeled by its conformal weight, its an-
gular momenta and the quantum numbers of any internal symmetries. Nev-
ertheless it is still a great challenge to show that the number of such states is
precisely expA/4. In principle, the conformal weights and angular momenta
could be arbitrarily high, leading to representations that would be too big. One
possibility might be to restrict the maximum scaling dimension

�i � �max (5.57)

of any state|i〉. Here the idea is that the scaling weight is the eigenvalue of
the CFT Hamiltonian, but we know that energy in de Sitter space is bounded
by the mass of the largest black hole that can fit within the de Sitter horizon.
This suggests that we should only consider those states which have scaling
dimension below some maximum.

5.6 ON A STRING REALIZATION

Our discussion of the elliptic interpretation of de Sitter space and its holo-
graphic implementation has been rather intuitive. Clearly, to make things more
precise one needs a concrete realization of these ideas in a working theory of
quantum gravity, such as string theory (or perhaps loop gravity [117]). It has
been surprisingly hard to find a realization of de Sitter space in string theory.
One obstacle to a satisfactory string-theoretic description of de Sitter space is
the lack of supersymmetry. Intuitively, de Sitter space cannot be supersym-
metric because it is thermal; at finite temperature bosons and fermions have
different statistics. More formally, there is no superalgebra that contains the
de Sitter isometry group and is represented by Hermitian supercharges. The
known super-extensions of the de Sitter isometry group [99] involve nonpos-
itive quadratic forms and have no unitary representations. This difficulty can
be traced back to the fact that there is no globally-defined timelike Killing
vector in de Sitter space and hence there is no positive-definite Hamiltonian,
H . This same non-positive-definite nature shows up in attempts to construct
de Sitter space using timelike T-duality and compactifications on non compact
Euclidean manifolds [73,74]. The resulting gauged supergravity theories allow
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de Sitter space as a solution but have ghosts,i.e., fields with kinetic terms of
the wrong sign.

The nature of these problems changes in elliptic de Sitter space, mainly
because it is not a time-orientable space. In fact, we would like to believe that
the only possible realization of de Sitter space in string theory is in its elliptic
form. The cause of the failure to find a de Sitter solution in string theory, at
least so far, may well be that one should perhaps have been looking at string
backgrounds that are not time-orientable. Clearly, time-unorientability poses
new challenges for string theory and it is not immediately obvious how it can
be defined consistently [9]. In this respect, it is interesting that de Sitter space
arises in type IIB* string theory [73,74], obtained from the usual IIB theory by
a timelike T-duality, which can be thought of as a change of sign of the left- (or
right-) moving part of the worldsheet scalarX0, corresponding to time. Hence,
after a T-duality it is as if the right- (or left-) movers go forward in time, while
the left- (or right-) movers go backward in time. Perhaps this means that type
IIB* string theory has to be quantized in a different way so that worldsheets
and the spacetime background have to be time-unorientable. This may change
the problem of ghost-like fields and perhaps solve it.

Now let us make some observations on the candidate conformal field theory
dual of five-dimensional elliptic de Sitter space as suggested by its realization
in IIB* string theory. The low-energy limit of IIB* theory is IIB* supergravity
which has Dirichlet brane solutions that have purely spatial extent; they are
called Ep-branes when their worldvolume isp-dimensional. Following Hull,
we consider the near-horizon geometry of a stack ofN E4-branes, which are
the Euclidean analogues of the D3-branes of type IIB theory. The metric re-
sembles that of the D3-brane,

ds2 = H−
1
2 (ρ)dx2‖ + H

1
2 (ρ)dx2⊥ , (5.58)

whereH(ρ) is the usual harmonic function,

H(ρ) = 1+ 4πα′2gN

ρ4
, (5.59)

except that, because the branes are Euclidean, the transverse ‘radius’ also in-
cludes time:

ρ2 = x2⊥ = 
x2− t2 . (5.60)

The horizon is atρ = 0. Now we would like to take the near-horizon limit.
Sinceρ depends on time, there are two ways we can approach the horizon,
whereρ is timelike and whereρ is spacelike. For spacelikeρ the transverse
geometry is

dx2⊥ = −dt2+ d 
x2 = dρ2+ ρ2ds2
dS5

, (5.61)
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whereds2
dS5

is the line element of five-dimensional de Sitter space. For timelike
ρ we get instead

dx2⊥ = −dρ2+ ρ2ds2
H5 , (5.62)

where H5 is the five-dimensional hyperbolic Lobachevsky plane (Euclidean
anti-de Sitter space). In the near-horizon limit we drop the 1 inH(ρ) to obtain,
for spacelikeρ,

ds2 =

√4πα′2gN

dρ2

ρ2
+ ρ2√

4πα′2gN
dx2‖


+√4πα′2gN ds2

dS5
. (5.63)

The geometry is therefore locally that ofH5× dS5. For timelikeρ we obtain

ds2 =

√4πα′2gN

−dρ2

ρ2
+ ρ2√

4πα′2gN
dx2‖


+√4πα′2gN ds2

H5 .

(5.64)
This too is dS5 × H5. So again we get the same local geometry. However,
there are some important differences between the two. For spacelikeρ, the
branes are part ofH5 and de Sitter space is part of the transverse space; that
is not what we want. For timelikeρ, the branes are part of de Sitter space and
H5 is transverse. So we should chooseρ to be timelike. The E4-branes are
now on the boundary of de Sitter space, atI±. But note that there are two
disconnected branches because in foliating Minkowski space into spacelike
slices (which corresponds to timelikeρ) one can havet > 0 or t < 0. In order
to have a connected geometry, we should really identify these two branches
by making aZ2 identification. In that case the metric that we just described
must be modded out by aZ2 that mapst → −t . Since the line element on de
Sitter space in (5.64) covers one inflationary patch, an identification oft and
−t suggests that the near-horizon geometry becomes edS5 × H5, elliptic de
Sitter space times a hyperbolic five-plane. AZ2 identification of the transverse
geometry implies that the E4-branes are on aT -orientifold, the purely spatial
counterpart of a conventional orientifold. Indeed, elliptic de Sitter space is the
analytic continuation of theRP5 that arises (instead of anS5) in the transverse
geometry of D3-branes on an orientifold plane.

The theory on the worldvolume of the E4-brane is EuclideanN = 4 SYM.
This theory is obtained fromN = 1 SYM in D = 9+1 by dimensional
reduction, where one of the compactification directions is time. So one of the
six scalars in the E4 worldvolume theory comes from the timelike component
of the 9+1-dimensional gauge field. This becomes a scalar with the wrong
sign kinetic operator and therefore we are dealing with a conformal field theory
with a ghost. In fact, there are several reasons to expect such ghost fields to
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be present in a CFT dual to de Sitter space. First, the six scalars form a vector
(φ0, 
φ) of the SO(1, 5) R-symmetry of the Euclidean theory; invariance under
the R-symmetry already implies that one scalar has the wrong sign kinetic term.
A second reason is the following.

Just as in the AdS/CFT correspondence, one expects the holographic di-
rection to correspond to the RG-scale of the dual field theory. But unlike in
AdS/CFT, the holographic direction is timelike in de Sitter space, as discussed
in Section 4.4. This timelike nature of the RG-scale is directly related to the
presence of the ghost scalar. Namely, the energy scaleµ of the theory can be
defined in terms of the values of the scalar fields as

〈 
φ2− φ2
0〉 = ±µ2 . (5.65)

Let us now fix the energy scaleµ. The scalar fields are then restricted to a
five-dimensional scalar manifold. Here we have a choice: for the− sign the
resulting scalar manifold is the Lobachevsky plane, while for the+ sign it is
de Sitter space. If we take the+ sign theφ0 field still has fluctuations with the
wrong sign. However, if we take the− sign, all the fluctuations of the scalar
field have the correct sign in their kinetic terms.

The parameterµ becomes the renormalization group scale and in fact is the
same as the holographic time coordinateρ: together with the four Euclidean
coordinates on the E4-brane, it leads to de Sitter space. As we noted, the scalar
manifold has two disconnected branches, corresponding toφ0 > 0 andφ0 < 0.
Now here there is a difference betweenU (N ) and SO(N ) SYM. In the latter
case one can use the gauge symmetry to mapφ to−φ. This identifies the two
branches of the scalar manifold. An SO(N ) gauge group arises if we putN
coincident E4-branes on top of aT -orientifold plane. This is precisely what
we argued for earlier. In the near-horizon limit we get antipodally-identified
de Sitter space. So finally, we come to the following conjecture: the large-N
limit of SO(N ) SYM theory, with conformal group SO(1, 5) and R-symmetry
group SO(1, 5), in the phase described by the− sign in the scalar equation is
the holographic dual of edS5 × H5. There is now only one boundary, anS4,
and that is the boundary on which the CFT lives.

5.7 CONCLUSION

In this chapter we studied de Sitter space in its elliptic interpretation with an-
tipodal points identified. We discussed several conceptual issues in the context
of the elliptic interpretation, especially questions regarding holography and the
definition of an S-matrix. Our conclusions support the view that the antipodal
identification does make sense and in fact may even be required to arrive at a
consistent description of de Sitter quantum gravity. The arguments presented
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in favor of the antipodal identification range from suggestive to rather com-
pelling; they are not yet sufficient to claim that antipodal identification is the
only way to view quantum de Sitter space.

From our point of view, the two most convincing arguments supporting
the elliptic de Sitter space are the following. Firstly, the implementation of
observer complementarity: all observers have complete information, but have
different interpretations. And secondly, the realization of holography: for every
observer time-evolution and the S-matrix are naturally described in terms of a
dual theory on a single boundary. The most serious challenge elliptic de Sitter
space will have to withstand is the issue of possible closed timelike curves after
including backreaction. Once gravitational backreaction is taken into account,
the Penrose diagram of perturbed de Sitter space becomes a ‘tall’ rectangle;
see Section 4.1.1. This implies that certain antipodal points come into causal
contact. The resulting closed timelike curves are contained in the bulk of de
Sitter space and therefore it is not immediately obvious how it would affect
the theory on the boundary. One point of view is that the perturbation of de
Sitter space should be described by an appropriately perturbed CFT, for which
the holographic reconstruction breaks down at some point in the bulk. The
prescriptions for the time evolution of a single observer and for his observable
S-matrix are defined purely in terms of the boundary and could still make sense.
Clearly this issue needs further study.

Finally, the most pressing open issue is whether one can find a consistent
description of de Sitter space in string theory, or perhaps in some other work-
ing theory of quantum gravity. There are many reasons to believe that such a
description would be holographic and will incorporate a version of observer
complementarity. We are hopeful that the ideas presented here will then be
realized in some form.
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SAMENVATTING

(Summary in Dutch)

De specialisatie binnen theoretische natuurkunde waartoe het in dit proefschrift
beschreven onderzoek behoort is de hoge energie fysica. We beginnen deze sa-
menvatting met een uitleg van wat hoge energie fysica is en hoe zij verschilt
van de natuurkunde bij lagere energieën. Vervolgens gaan we in op het on-
derwerp dat momenteel de meeste aandacht trekt binnen de theoretische hoge
energie fysica en welk het kader vormt voor het in dit proefschrift beschreven
onderzoek, namelijk quantumgravitatie. De belangrijkste kandidaat voor een
theorie van quantumgravitatie is de snaartheorie; we zullen deze theorie kort
beschrijven. Tenslotte behandelen we het holografische principe en geven een
korte samenvatting van het onderzoek dat in dit proefschrift wordt gepresen-
teerd. Uitgebreide introducties voor een breed publiek tot hoge energie fysica,
en de snaartheorie in het bijzonder, worden gegeven in [56,66].

HOGE ENERGIE FYSICA

Zoals de naam al zegt houdt hoge energie fysica zich bezig met processen die
met hoge energiëen gepaard gaan. Dergelijke processen zijn onder te verdelen
in drie categoriëen. De eerste categorie wordt gevormd door processen tussen
deeltjes die heel snel bewegen. We spreken dan van deeltjes met een hoge
kinetische energie.

De tweede categorie omvat alle processen die op heel kleine afstandsschaal
plaatsvinden. De relatie tussen kleine afstanden en hoge energieën is niet zo
makkelijk uit te leggen. Om een idee te krijgen, kun je denken aan lichtdeeltjes,
de zogenaamde fotonen. Deze fotonen kun je beschouwen als een trilling,
waarbij de golflengte van de trilling korter wordt naarmate de kleur van het
licht meer naar blauw neigt. Dit is uitgebeeld in Figuur S.1. Daarbij is het
zo dat blauw licht een hogere energie heeft dan rood licht. We zien dus dat
trillingen op een kleine afstandsschaal corresponderen met hoge energieën.

De derde en laatste categorie wordt gevormd door processen waarbij gro-
te massa’s een rol spelen. De relatie tussen massa en energie is gelegd door
Einstein, middels zijn beroemde formule

E = M · c2 . (1)
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rood foton blauw foton

FIGUUR S.1: Links een rood foton en rechts een blauw foton. Het
blauwe foton heeft een hogere energie en corresponderende korte-
re golflengte.

Deze formule, waarinc staat voor de lichtsnelheid, geeft aan dat massa en
energie in feite hetzelfde zijn. Een grote massa correspondeert dus met hoge
energie.

Al in de zeventiende eeuw is door Newton een theorie opgesteld om de
beweging van objecten te beschrijven. Deze theorie is bijzonder nauwkeurig
in het beschrijven van dynamica zoals die zich in het dagelijks leven voordoet.
Hierbij kun je denken aan de beweging van een fiets of het opendoen van een
deur. We noemen deze theorie de Newtoniaanse mechanica. Lange tijd werd
aangenomen dat deze theorie ook geldig zou blijven bij heel hoge snelheden,
of in het algemeen bij hoge energieën. Dit blijkt echter niet zo te zijn. In
alle drie genoemde hoge energie regimes treden correcties op. Het feit dat de
natuurkundige wetten afhankelijk zijn van het energieniveau vormt een belang-
rijk thema binnen de hedendaagse natuurkunde. De correcties die optreden zijn
vaak tegen-intüıtief en dit maakt de moderne theorieën ingewikkeld.

Ter illustratie van de correcties die optreden bij hoge snelheden zullen we
een auto vergelijken met een zeer snel bewegende raket. Stel, iemand loopt met
een snelheidvvoetganger= 5km/uur in de richting van een tegemoetkomende
auto met een snelheidvauto = 60km/uur, zoals weergegeven in Figuur S.2.

5km/uur−−−−→ 60km/uur←−−−−

FIGUUR S.2: Voetganger en tegemoetkomende auto.

Als de voetganger de snelheid meet waarmee de auto op hem afkomt, wat we
noemen derelatieve snelheid, vindt hij

vrelatief = vvoetganger+ vauto (2)

= 5km/uur+ 60km/uur= 65km/uur. (3)

Deze uitkomst zal niemand verrassen. Beschouw nu eens het geval waar het
in plaats van een auto een raket betreft. En niet zomaar een raket, maar eentje
die met maar liefst 500.000.000km/uur beweegt, ongeveer de helft van de licht-
snelheid; deze situatie is weergegeven in Figuur S.3. Op basis van onze intuı̈tie
zouden we verwachten dat de relatieve snelheid in dit geval wederom simpel-
weg de som van de twee snelheden is. Dit is echter niet het geval. De juiste



Samenvatting 127

5km/uur−−−−→ 500.000.000km/uur←−−−−−−−−−−

FIGUUR S.3: Voetganger en tegemoetkomende raket.

formule is afgeleid door Einstein en heeft de vorm

vrelatief= vvoetganger+ vraket

1+ vvoetganger·vraket

c2

. (4)

Als we de waarde van de lichtsnelheid,c = 1.079.252.849km/uur, invullen,
vinden we

vrelatief = 500.000.003, 93km/uur (5)

= 500.000.005km/uur− 1, 07km/uur. (6)

Er is dus een kleine, maar daarom niet minder verrassende, correctie opgetre-
den waardoor het antwoord iets lager uitvalt dan verwacht. Nu is het helemaal
niet mogelijk om raketten dergelijke enorme snelheden te geven, maar met
bijvoorbeeld protonen is dit wel mogelijk. Het is belangrijk te benadrukken
dat effecten zoals deze experimenteel zijn waargenomen. Blijkbaar gelden er
bij hoge snelheden andere regels dan bij lage snelheden. Dit is een vaststelling
waar weinig aan valt te begrijpen; het is een experimenteel feit. Het doel van
de natuurkunde is om dit zo nauwkeuring mogelijk te beschrijven.

Einstein’s beschrijving van processen bij extreem hoge snelheden heet spe-
ciale relativiteitstheorie. Deze theorie is uitgebreid getest en telkens weer
blijken de uitkomsten die de theorie voorspelt, heel nauwkeurig overeen te ko-
men met experimentele waarnemingen. De relatie van deze theorie met de
Newtoniaanse mechanica wordt duidelijk als we het sommetje van de voet-
ganger en de auto nogmaals uitvoeren, maar nu met de optelformule (4). De
uitkomst die we vinden,

vrelatief= 65km/uur− 0, 000000000000017km/uur, (7)

wijkt zo weinig af van het Newtoniaanse resultaat (3) dat het verschil experi-
menteel niet vast te stellen is. Bij lage snelheden geeft speciale relativiteits-
theorie dus dezelfde antwoorden als de Newtoniaanse mechanica. In deze zin
is speciale relativiteitstheorie eenuitbreiding van de Newtoniaanse mechanica
die geldig blijft bij hoge snelheden. In het algemeen duiden we theorieën die
geldig blijven bij hoge snelheden aan als ‘relativistische’ theorieën.

We hebben nu gezien dat er correcties optreden bij hoge snelheden. Dit ge-
beurt ook als we kijken naar heel korte afstanden. Er is bijvoorbeeld een groot
verschil tussen hoe een elektron om een atoomkern draait en hoe de aarde om
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de zon draait. De theorie die processen op de allerkleinste afstandsschalen
beschrijft heet quantummechanica. De parameter van deze theorie die een ver-
gelijkbare rol speelt als de lichtsnelheid,c, in relativiteitstheorie is de constante
van Planck, die wordt aangegeven meth̄.∗

Bij grote massa’s, tenslotte, treden correcties op doordat de zwaartekracht
belangrijk wordt. De zwaartekracht is een relatief zwakke kracht, vergeleken
met de andere natuurkrachten. Vergelijk bijvoorbeeld hoe moeilijk het kan zijn
om twee magneetjes, die bijeen worden gehouden door de elektromagnetische
kracht, uit elkaar te trekken met hoe makkelijk het is om die magneten op te
tillen. En dat terwijl de hele aarde aan de magneten trekt via de zwaartekracht.
Doordat de zwaartekracht zo zwak is kun je bij het beschrijven van een elek-
tron dat rond een atoomkern draait de zwaartekracht buiten beschouwing laten.
Natuurlijk trekken het elektron en de kern wel aan elkaar middels de zwaarte-
kracht, maar deze kracht is zoveel kleiner dan de andere krachten die een rol
spelen dat de invloed ervan te verwaarlozen is. Bij heel grote massa’s, zoals
die van de aarde en de zon, wordt de zwaartekracht wel belangrijk.† Newton
heeft zijn theorie van de mechanica zelf gecombineerd met de zwaartekracht,
resulterend in de zogeheten Newtoniaanse zwaartekrachtstheorie. De parame-
ter die we met zwaartekracht associëren, de zogeheten constante van Newton,
wordt aangegeven metGN.

Nadat er aldus theorieën waren opgesteld die elk inéén van de drie extreme
regimes geldig blijven, probeerde men deze theorieën te combineren en zo te
komen tot theoriëen die in twee of zelfs alle drie regimes geldig blijven. Dit
heeft geleid tot een totaal van acht theorieën. De relaties tussen deze theorie-
en kunnen handig worden weergegeven in een diagram met de vorm van een
kubus, zoals in Figuur S.4. Op elke hoek van de kubus staat een theorie en langs
de assen van de kubus wordt het geldigheidsbereik van de theorieën uitgebreid
danwel beperkt.

Zoals gezegd, worden theorieën die geldig blijven bij hoge snelheden aan-
geduid met het woord ‘relativiteit’, het zijn zogenaamde relativistische theorie-
en. Theoriëen die tot op de kleinste afstandsschalen werken duiden we aan met
het woord ‘quantum’. Beginnend bij de Newtoniaanse mechanica in Figuur S.4
kunnen we naar voren bewegen. Dec geeft aan dat we dan belanden bij een re-
lativistische theorie, namelijk de speciale relativiteitstheorie. Vervolgens naar
rechts bewegen, brengt ons bij de algemene relativiteitstheorie, een theorie die
niet alleen relativistisch is, maar ook de zwaartekracht beschrijft, aangegeven
met GN. Als we tenslotte naar boven bewegen, geeft deh̄ aan dat we terecht
komen bij een theorie die bovendien tot op de kleinste afstandsschalen geldig

∗Spreek uit: h-streep.
†Hierbij speelt mee dat de aarde en de zon heel ver van elkaar verwijderd zijn. De zwaartekracht

valt namelijk veel minder snel in kracht af bij grotere afstand tussen de objecten dan de overige
krachten.



Samenvatting 129

Newtoniaanse
mechanica

Speciale
relativiteitstheorie Algemene
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FIGUUR S.4: Aangegeven zijn de relaties tussen de verschillen-
de natuurkundige theorieën. Naar voren bewegen in het diagram
leidt naar een relativistische theorie die ook bij hoge snelheden
nog correct blijft. Naar rechts bewegen voegt gravitatie, ofwel
zwaartekracht, toe aan de theorie. Naar boven bewegen, tenslotte,
leidt naar een quantum theorie die tot op zeer kleine afstandscha-
len geldig blijft.

blijft. Deze theorie, die alle drie de extreme regimes combineert, noemen we
snaartheorie. Op deze theorie gaan we in het vervolg uitgebreider in.

QUANTUMGRAVITATIE

De snaartheorie verschilt op een aantal punten fundamenteel van de overige
theoriëen in Figuur S.4. Voordat we bespreken op welke manier de snaartheorie
precies verschilt, bekijken we eerst de reden waarom het nodig was een geheel
nieuwe theorie op te stellen.

Toen in de jaren twintig van de vorige eeuw de quantummechanica en de
algemene relativiteitstheorie voldoende ontwikkeld waren, ging men op zoek
naar een theorie van relativistische quantumgravitatie die op de plek zou moe-
ten komen waar nu de snaartheorie staat in Figuur S.4. Hiertoe probeerde men
de quantummechanica en de algemene relativiteitstheorie met elkaar te combi-
neren. Bij deze pogingen stuitte men op fundamentele problemen, die we met
een voorbeeld zullen proberen te illustreren.
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FIGUUR S.5: Tweeelektronen stoten elkaar af door uitwisseling
vanéén of meer fotonen.

Beschouw twee elektronen, deeltjes met een minieme massa en een ne-
gatieve elektrische lading. Als de elektronen dicht bij elkaar komen, stoten
ze elkaar af via de elektromagnetische kracht. Volgens de quantummechani-
ca kan deze interactie worden beschreven in termen van het quantum van de
elektromagnetische kracht: het lichtdeeltje ofwel foton. Dit is de kleinst mo-
gelijke drager van de elektromagnetische kracht. De elektronen kunnenéén
foton uitwisselen, maar ook meerdere, zoals aangegeven in Figuur S.5. Om
uit te rekenen hoe de elektronen elkaar afstoten, schrijft de quantummechanica
voor dat de bijdragen van elk van deze processen bij elkaar worden opgeteld.
Nu kunnen de elektronen een of twee fotonen uitwisselen, maar ook tiendui-
zend of honderdduizend. Om al deze verschillende bijdragen bij elkaar op te
tellen is ondoenlijk. Gelukkig blijkt dat voor dit proces de bijdrage heel snel
afneemt als er meer fotonen worden uitgewisseld. Het neemt zelfs zo snel af
dat als je de eerste drie bijdragen bij elkaar optelt, je al heel dicht bij het wer-
kelijke antwoord komt. Om de afstoting tussen twee elektronen uit te rekenen,
is het daarom in de praktijk voldoende om slechts de uitwisseling van een paar
fotonen te beschouwen.

Om de quantummechanica en de zwaartekracht met elkaar te verenigen,
moeten we een nieuw quantumdeeltje invoeren: het graviton, het quantum van
de zwaartekracht. Zoals de twee elektronen elkaar afstoten via de elektro-
magnetische kracht, trekken twee neutronen (deeltjes met massa, maar zonder
elektrische lading) elkaar aan via de zwaartekracht. Dit proces kan op de-
zelfde manier worden beschreven als de afstoting van de elektronen, maar nu
is het uitgewisselde quantum een graviton; zie Figuur S.6. Wederom schrijft
de quantummechanica voor dat de bijdragen van de verschillende processen,
waarbij een of meerdere gravitonen worden uitgewisseld, bij elkaar worden
opgeteld. Tot zover lijkt er niets aan de hand. Het blijkt echter dat in dit geval
de bijdrage niet afneemt als er meerdere gravitonen worden uitgewisseld. Inte-
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FIGUUR S.6: Tweeneutronen trekken elkaar aan door uitwisseling
van een of meer gravitonen.

gendeel, de bijdrage neemt alleen maar toe. Als je alle bijdragen op zou tellen
krijg je oneindig. Het is duidelijk dat dit geen bruikbaar antwoord is. Dit is in
essentie de reden waarom de quantummechanica en de zwaartekracht niet met
elkaar te verenigen zijn.

Er bestaan dus twee theorieën, waarvan een (quantummechanica) proces-
sen op zeer kleine schaal beschrijft en de ander (algemene relativiteitstheorie)
processen op zeer grote schaal. Beide theorieën werken bijzonder goed op het
betreffende gebied. Pas als je probeert de ene theorie uit te breiden naar het ter-
rein van de ander gaat het mis. Is er dan wel een noodzaak om op zoek te gaan
naar een nieuwe theorie die beide verenigt? Dat die noodzaak wel degelijk
bestaat komt doordat er situaties bestaan waar beide theorieën op natuurlijke
wijze bij elkaar komen. Dit is met name het geval bij zwarte gaten. Zwarte ga-
ten zijn zeer massieve objecten die ontstaan als de massadichtheid een bepaalde
kritische grens overscheid; we komen hier later op terug. Door de enorme mas-
sa van zwarte gaten is de zwaartekracht heel sterk. Materie in de buurt van een
zwart gat wordt daardoor sterk aangetrokken en zal naar het zwarte gat toe val-
len. Zwarte gaten zijn zo zwaar dat zelfs licht er naartoe valt. Een zwart gat kan
dan ook geen licht uitstralen; het zou terugvallen naar het zwarte gat. Vergelijk
dit met een voetbal die, nadat je hem omhoog hebt geschoten, terugvalt naar de
aarde. Dit alles tezamen leidt tot de naam ‘zwart gat’.‡ Een gevolg van de ster-
ke zwaartekracht is dat het zwarte gat zelf sterk wordt samengeperst, waardoor
het heel kleine objecten zijn. Deze combinatie van een heel sterke zwaarte-
kracht en een heel klein object zorgt ervoor dat zowel de quantummechanica

‡Hoewel een volledige, quantummechanische beschrijving van zwarte gaten nog niet gevonden
is, hebben de pogingen daartoe al verrassende resultaten opgeleverd. Zo is gebleken dat het voor
zwarte gaten quantummechanisch wel degelijk mogelijk is om straling uit te zenden. Deze, naar de
ontdekker ervan vernoemde, Hawking straling zorgt ervoor dat een zwart gat niet helemaal zwart
is; er wordt wel gesproken van ‘grijs-factoren’.
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FIGUUR S.7: Eenpuntdeeltje tekent een lijn uit in een ruimte-tijd
diagram, zoals bij (a). Een gesloten snaar tekent een cylinder uit,
zoals bij (b).

als de zwaartekracht beiden een rol spelen. Maar, zoals we gezien hebben, gaat
dit niet. Voor een goede beschrijving van zwarte gaten is daarom een theorie
nodig die de quantummechanica en de zwaartekracht met elkaar verenigt. Zo’n
theorie wordt een theorie van quantumgravitatie genoemd.

SNAARTHEORIE

De meest veelbelovende kandidaat voor een theorie van quantumgravitatie is de
snaartheorie. Deze theorie is in de jaren zestig van de vorige eeuw ontwikkeld
en verschilt fundamenteel van de andere theorieën. Het grote verschil ligt in
de fundamentele bouwstenen van de theorie. Bij conventionele theorieën zijn
dit 0-dimensionale puntdeeltjes, bij de snaartheorie 1-dimensionale objecten:
de snaren waaraan de theorie zijn naam ontleent. Deze snaren kunnen zowel
‘open’ zijn, als korte touwtjes, of ‘gesloten’, als lusjes. We zullen ons hier
beperken tot gesloten snaren. Het pad van een puntdeeltje en van een snaar
in de ruimte-tijd zijn aangegeven in Figuur S.7. De theorie van deze snaren
verenigt op een natuurlijke manier de zwaartekracht met de quantummechani-
ca. Bovendien is het ook een relativistische theorie, die geldig blijft bij hoge
snelheden. De snaartheorie geeft dus een beschrijving van de natuurwetten in
alle drie extreme regimes, het wordt daarom wel een ‘theorie van alles’ ge-
noemd. De correcties die door de snaartheorie voorspeld worden zijn klein en
treden alleen op in extreme situaties, zodat het erg moeilijk is de theorie expe-
rimenteel te toetsen. Wiskundig vormt de snaartheorie echter een zó ingenieus
bouwwerk, dat veel mensen die aan de theorie werken, ondanks het gebrek aan
experimentele verificatie, geloven op de juiste weg te zijn.

De snaartheorie kent slechtséén fundamentele bouwsteen: de snaar. Dit
in tegenstelling tot de quantumveldentheorie, waar gebruik gemaakt wordt van
een hele verzameling elementaire deeltjes, zoals elektronen, protonen en ga zo
maar door. De rol van al deze deeltjes wordt binnen de snaartheorie gespeeld
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door verschillende trillingstoestanden van de snaar. Hoe sneller de snaar trilt,
des te zwaarder het corresponderende deeltje.

FIGUUR S.8:
Splitsende snaar.

Dit leidt tot een sterk gëunificeerde beschrijving van de
natuur, waarbij er niet alleen slechtséén fundamentele bouw-
steen bestaat, maar tevens slechtséén fundamentele interac-
tie. Deze interactie behelst het opsplitsen vanéén snaar in
twee snaren (of het omgekeerde proces, waarbij twee sna-
ren samensmelten), zoals weergegeven in Figuur S.8. Zo re-
duceren de verschillende interacties tussen elektronen, neu-
tronen, fotonen en gravitonen, weergegeven in Figuren S.5
en S.6, allemaal tot snaarinteracties. De geünificeerde be-
schrijving van interacties is een van de redenen dat de snaar-
theorie wiskundig heel mooi te beschrijven is. Het cruciale
punt is dat het bij een snaarinteractie, zoals in Figuur S.8, niet mogelijk is exact
aan te geven waar de interactie heeft plaatsgevonden. Eerst is eréén snaar en
tenslotte zijn er twee, maar deze overgang vindt niet plaats opéén punt, zoals
bij de interacties tussen fotonen en elektronen, of tussen gravitonen en neutro-
nen. Dit ‘uitsmeren’ van de interactie zorgt er voor dat de uitkomsten van de
snaartheorie niet oneindig worden, zoals we eerder zagen bij een theorie van
quantumgravitatie die met puntdeeltjes werkt.

HET HOLOGRAFISCHE PRINCIPE

Een belangrijk concept binnen de snaartheorie is het holografische principe.
Dit principe, dat oorspronkelijk een idee is van Gerard ’t Hooft, speelt een
hoofdrol binnen het in dit proefschrift beschreven onderzoek. Het beperkt zich
niet tot de snaartheorie maar is noodzakelijkerwijs een onderdeel van elke the-
orie van quantumgravitatie.

Het holografische principe stelt dat er een limiet is op de hoeveelheid ma-
terie die past in een bepaald volume. De oorsprong hiervan is alsvolgt te be-
grijpen. Stel je een bolvormig volume voor, zoals de inhoud van een voetbal.
Nu kun je proberen zoveel mogelijk materie in dit volume te stoppen. Op een
gegeven moment, als je steeds maar meer materie toevoegt, zal zich een zwart
gat vormen dat precies zo groot is als de voetbal. Als je vervolgens materie
toevoegt aan dit zwarte gat, zal het groeien en daarmee groter worden dan de
voetbal. Er past dus maar een bepaalde hoeveelheid materie in de voetbal. Dit
betekent dat je materie niet onbeperkt samen kunt persen: er is een grens op
de maximale materiedichtheid. Hiermee is er ook een grens op de hoeveelheid
‘informatie’ die de voetbal kan bevatten. Of, omgekeerd, er is maar een be-
paalde, eindige hoeveelheid informatie nodig om de toestand van de voetbal te
beschrijven.
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Stel nu dat we de straal van de voetbal verdubbelen. Het volume van de
voetbal neemt dan acht maal toe (23= 8), terwijl het oppervlak van de voetbal
vier keer zo groot wordt (22= 4). Het bijzondere is dat de maximale hoeveel-
heid materie die in de grotere voetbal past vier keer zo groot is en dus groeit als
het oppervlak en niet als het volume, zoals wel het geval is bij lage dichtheden.
Dit is een voorbeeld van een correctie die optreedt bij grote massa. Een gevolg
is dat alle informatie die nodig is om de toestand van de materie in de voetbal
te beschrijven ook groeit als het oppervlak van de voetbal. In zekere zin kun je
dan stellen dat je de toestand van de materie in de voetbal kunt beschrijvenop
het oppervlak van de voetbal. Dit is vergelijkbaar met een hologram waarbij op
een 2-dimensionaal plaatje, 3-dimensionale informatie staat. Je kunt namelijk,
door het hologram te draaien, zien welke objecten op de voorgrond staan en
welke op de achtergrond.

Het doel van het in dit proefschrift beschreven onderzoek is om het ho-
lografische principe te gebruiken als toets voor kosmologische modellen. Er
bestaan veel verschillende kosmologische modellen, die elk pogen de evolutie
van het heelal te beschrijven. Op dit moment weten we niet welk model het
beste is. Omdat het holografische principe een eigenschap is van iedere theorie
van quantumgravitatie, zal het kosmologische model dat uiteindelijk het juiste
blijkt te zijn, ermee verenigbaar moeten zijn. Door de huidige modellen hierop
te toetsen kunnen we wellicht bepaalde modellen uitsluiten en aanwijzingen
vinden in de richting van het juiste model.

Het proefschrift is alsvolgt opgebouwd. In Hoofdstuk 2 introduceren we
het holografische principe in detail. Vervolgens passen we het in Hoofdstuk 3
toe op een specifiek geval van wat het standaard model van de kosmologie
wordt genoemd. Dit is het Friendmann-Robertson-Walker (FRW) model. In
het geval dat we beschouwen wordt de dynamica van het model uitsluitend
gedreven door de aanwezige straling. Andere vormen van materie en energie
worden buiten beschouwing gelaten, om het model zo simpel mogelijk te hou-
den. Er treedt een verrassende unificatie op tussen enerzijds de formules die
de energie beschrijven, in dit geval straling, en anderzijds de formules die de
kosmologische evolutie beschrijven. We bestuderen deze unificatie nader bin-
nen een zogeheten wereldbraan-model, waarin het universum wordt beschre-
ven als een 4-dimensionaal oppervlak in een 5-dimensionale ruimte. In dit
geval bevindt zich een zwart gat in de 5-dimensionale ruimte waarbinnen de
wereldbraan beweegt. De unificatie blijkt een natuurlijke interpretatie te heb-
ben in dit model. Hoewel de momenten waarop de unificatie plaatsvindt niet
bijzonder lijken te zijn in de 4-dimensionale ruimte, zijn ze wel bijzonder in
de 5-dimensionale ruimte. Het zijn namelijk precies de momenten waarop de
wereldbraan het 5-dimensionale zwarte gat raakt.

In Hoofdstuk 4 richten we ons op een geheel ander kosmologisch model,
namelijk het zogeheten de Sitter model. We richten ons met name op de vraag
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hoe het holografische principe in dit model tot uiting komt. Er is de laatste
tijd veel aandacht voor het de Sitter model omdat recente waarnemingen door
astronomen erop duiden dat het heelal zich momenteel ontwikkelt in de richting
van een de Sitter universum. Een groot probleem is dat het vooralsnog niet
gelukt is om dit model binnen de snaartheorie te construeren.

In Hoofdstuk 5 presenteren we een voorstel voor een andere kijk op het de
Sitter model binnen de snaartheorie. Het voorstel behelst om niet de gehele de
Sitter ruimte te beschouwen maar slechts een deel, het zogeheten elliptische
de Sitter. We tonen aan dat dit model zelf-consistent is. Daarbij is het voor-
al belangrijk te laten zien dat dingen die later gebeuren geen invloed kunnen
hebben op gebeurtenissen eerder, het zogeheten causaliteitsprincipe. Binnen
de elliptische de Sitter ruimte beschouwen we opnieuw de formulering van
het holografische principe. Tevens beschouwen we de mogelijkheden om dit
gereduceerde model te construeren binnen de snaartheorie. De belangrijkste
conclusies van dit hoofdstuk zijn dat het holografische principe op een meer
natuurlijke manier tot uiting komt in de elliptische de Sitter en dat veel van
de problemen die zich voordoen bij het construeren van een de Sitter model
binnen de snaartheorie verzacht worden. Het vinden van een complete snaar-
beschrijving van de de Sitter ruimte blijft een openstaand probleem.
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