

Energy of the excited degenerate doublet ($3^+/2$, $5^+/2$) of $^{13}_{\Lambda}\text{C}$

Mohammad Shoeb* and Sonika

Department of Physics, Aligarh Muslim University, Aligarh-202002, INDIA

Introduction

Alpha cluster model [1–7] has been successfully used in explaining the ground and excited states of p -shell hypernuclei. In our previous work [6] we have calculated the energies of the ground and 2^+ states of ^{12}C in α -cluster model. In Table I we have given experimental values and listed the ground and excited state energies from earlier work [3–7].

In the recent past, Shoeb and Sonika [3] have analysed the energy of the ground state of $^{13}_{\Lambda}\text{C}$ in the α cluster model using $\alpha\alpha\alpha$ [3] and phenomenological dispersive [1] three-body $\Lambda\alpha\alpha$ forces along with two-body cluster forces.

The attractive three-body $\alpha\alpha\alpha$ Gaussian shape potential has the form:

$$V_{\alpha\alpha\alpha} = W_3 \exp\left(-\left(r_{23}^2 + r_{24}^2 + r_{34}^2\right)/\alpha^2\right), \quad (1)$$

with the strength W_3 ($= -16.0$ MeV) and the range parameter α ($= 7.7$ fm).

$V_{\Lambda\alpha\alpha}$, the phenomenological dispersive three-body $\Lambda\alpha\alpha$ potential, has a simple form

$$V_{\Lambda\alpha\alpha} = W_0 f(r_{\Lambda\alpha_1}) f(r_{\Lambda\alpha_2}), \quad (2)$$

where the strength $W_0 > 0$ gives repulsion. The radial factor $f(r)$ is of Yukawa form: $f(r) = \exp(-ar)/ar$, where a is the range parameter. The $V_{\Lambda\alpha\alpha}$ ($W_0 = 17.0$ MeV and $a = 0.5$ fm $^{-1}$ for the case of two-body $\Lambda\alpha$ Isle potential) is constrained to fit the B_{Λ} , Λ -binding energy [1] of the $^9_{\Lambda}\text{Be}$ in the three-body $\Lambda\alpha\alpha$ model. The inclusion of the dispersive $\Lambda\alpha\alpha$ force [1, 2] gives a good account of the ground and excited states of $^9_{\Lambda}\text{Be}$ and $^{10}_{\Lambda}\text{Be}$. Further, two-body $\alpha\alpha$ potential

of Ali and Bodmer [4] and $\Lambda\alpha$ potential Isle type [1] were constrained by the experimental data on the two-body cluster. The calculated ground state energy of $^{13}_{\Lambda}\text{C}$ is given in Table II. The satisfactory explanation [3] of the ground state energy of $^{13}_{\Lambda}\text{C}$ in the $\Lambda\alpha\alpha\alpha$ model using variational Monte Carlo (VMC) method has motivated us to apply α -cluster model to predict the energy of the excited degenerate doublet ($3^+/2$, $5^+/2$) of $^{13}_{\Lambda}\text{C}$.

Hamiltonian, wavefunction and energy calculation

The excited ($3^+/2$, $5^+/2$) state of $^{13}_{\Lambda}\text{C}$ is a coupled state of $s_{\Lambda}=1/2$ and 2^+ of ^{12}C . The Hamiltonian in the $\Lambda\alpha\alpha\alpha$ model ignoring small Λ spin-orbit force has the form:

$$\begin{aligned} H_{\Lambda} = & K_{\Lambda}(1) + \sum_{i=2}^4 K_{\alpha}(i) + \sum_{i=2}^4 V_{\Lambda\alpha}(r_{1i}) \\ & + \sum_{i < j} V_{\alpha\alpha}^l(r_{ij}) \\ & + \sum_{i < j} V_{\Lambda\alpha\alpha}(r_{1i}, r_{1j}) \\ & + V_{\alpha\alpha\alpha}(r_{23}, r_{24}, r_{34}), \end{aligned} \quad (3)$$

where indices (1), (2, 3, 4) label Λ , and α s particles, respectively, K_Y is the kinetic energy operator for the particle Y ($=\Lambda, \alpha$), V_{hh} denotes the potential for the pair of particles hh ($= \Lambda\alpha, \alpha\alpha$), r_{ij} is the inter-particle separation for the pair having indices i and j . The two-body $V_{\alpha\alpha}^l$ potential in the relative angular momentum d -state for the $\alpha\alpha$ pair (34) and in s -state for the remaining pairs have been given in our earlier paper [6].

The trial wavefunction for the excited $^{13}_{\Lambda}\text{C}$ is the product of two-body correlation functions f_{hh} for the pair of particles, hh and the appropriately coupled spin and angular function

*Electronic address: mshoeb202002@gmail.com

TABLE I: The calculated energies of ground and excited 2^+ states of ^{12}C are listed in column four for the states given in third column. Energies in bold face are from analyzes [4, 5, 7] (Experimental energy ^{12}C (g.s.) $E_B = -7.26$ MeV, ^{12}C (2^+) = -2.84 MeV.

	System	States	$-E_B$ (MeV)
Our work Ref. [3]	^{12}C	0^+	7.17
Ref. [4]			6.81
Ref. [5]			7.26
Ref. [6]		2^+	4.29
Ref. [7]			4.99

TABLE II: The calculated energies of ground and excited degenerate ($3^+/2$, $5^+/2$) states of ^{13}C are listed in column four for the states given in third column. Energy in bold face is from analysis [7].

	System	States	$-E_B$ (MeV)
Our work Ref. [3]	^{13}C	0^+	18.81
Present work Ref. [7]		$(3^+/2, 5^+/2)$	14.98 17.00

$(\zeta = s_\Lambda \otimes y_{2m}(\Omega_{34}))$ and has the form:

$$\Psi_\Lambda = \left[\prod_{i=2}^4 f_{\Lambda\alpha}(r_{1i}) \right] \times \left[\prod_{i < j, i=2,3, j=3,4} f_{\alpha\alpha}^l(r_{ij}) \right] \zeta. \quad (4)$$

The correlation functions $f_{hh}(r)$ are obtained from a procedure developed by Urbana group.

The total energy E_B for the system ^{13}C in the cluster model for the trial wavefunction Eq. (4) is evaluated using the following relation:

$$E_B(^{13}\text{C}) = \frac{\langle \Psi_\Lambda | H_\Lambda | \Psi_\Lambda \rangle}{\langle \Psi_\Lambda | \Psi_\Lambda \rangle}. \quad (5)$$

The VMC estimates of the energy were made for 100 000 points and the energy was opti-

mized with respect to variational parameters using standard computer code.

Results and Discussion

The predicted energy (Table II) of excited ($3^+/2$, $5^+/2$) state of ^{13}C in the VMC framework is -14.98 MeV which is higher by 2.0 MeV than the one predicted by Hiyama *et. al.* [7]. In the absence of experimentally measured energy, it is not possible to comment on whether our VMC or Correlated Gaussian basis function method [7] is appropriate for the excited state of ^{13}C .

The root mean square (RMS) radii for various $\alpha\alpha$ pairs: $\mathbf{R}_{\alpha_2\alpha_3} = 3.82$ fm, $\mathbf{R}_{\alpha_2\alpha_4} = 3.82$ fm, $\mathbf{R}_{\alpha_3\alpha_4} = 3.43$ fm. RMS distance between center of mass (CM) of 3-alpha and Λ , $\mathbf{R}_{(3\alpha)\Lambda} = 2.44$ fm; between CM of 3-alpha and $\alpha\alpha$, $\mathbf{R}_{(3\alpha)\alpha_2} = 2.28$ fm, $\mathbf{R}_{(3\alpha)\alpha_3} = 2.06$ fm, and $\mathbf{R}_{(3\alpha)\alpha_4} = 2.06$ fm.

Acknowledgments

We are grateful to the Chairman, Department of Physics, Aligarh Muslim University, for providing necessary facilities for carrying out the work presented in this manuscript.

References

- [1] Mohammad Shoeb, Alemiye Mamo and Amanuel Fessahatsion, *Pramana* **68**, 943 (2007) and references therein.
- [2] Mohammad Shoeb, *Phys. Rev. C* **74**, 064316 (2006).
- [3] Mohammad Shoeb and Sonika, *J. Phys. G: Nucl. Part. Phys.* **36**, 045104 (2009).
- [4] S. Ali and A. R. Bodmer, *Nucl. Phys.* **80**, 99 (1966); D. V. Fedorov and A. S. Jensen, *Phys. Lett. B* **389**, 631 (1996).
- [5] I. N. Filikhin, *Phys. At. Nucl.* **63**, 760 (2000).
- [6] Mohammad Shoeb and Sonika, *DAE Symp. on Nucl. Phys.* **54**, 232 (2009).
- [7] E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, *Prog. Theor. Phys.* **97**, 881 (1997).