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1. Introduction

The study of the black hole has been the subject of great inter-
est from the fundamental physics in the last decades. Black holes
constitute an important class of exact solutions of Einstein’s equa-
tions which are characterized by mass (M), electric charge (Q)
and angular momentum (J) [1] and play a central role in both
classical and quantum gravitational physics. In particular a regu-
lar static black hole metric, known as loop black hole (LBH) or
self-dual black hole, with quantum gravity corrections inspired by
loop quantum gravity was derived in [2]. Loop quantum gravity is
based on a canonical quantization of the Einstein equations writ-
ten in terms of the Ashtekar variables [3], that is in terms of an
SU(2) 3-dimensional connection A and a triad E. The self-dual
black hole has an event horizon and a Cauchy horizon — see for
instance [4-6] to the study of black hole which possesses more
than one horizon in order to understand the origin of black hole
entropy in microscopic level.

A characteristic of self-dual black hole is self-duality property
that removes the singularities and replaces it with another asymp-
totically flat region. We should mention that in supernormalizable
gravity theories (an alternative to reconcile general relativity and
quantum mechanics) there also appear spherically symmetric so-
lutions as regular black hole solutions. For suitable choice of pa-
rameters, curvature tensors at the origin are finite. On the other
hand, multi-horizon black holes can be also found depending on
their masses [7,8]. The study of self-dual black hole and its ther-
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modynamic property was analyzed in [9-11], and the dynamical
aspects of the collapse and evaporation were studied in [12].

A semiclassical approach considering the Hawking radiation as
a tunneling phenomenon across the horizon has been proposed in
recent years [13-15]. In this approach the positive energy particle
created just inside the horizon can tunnel through the geometric
barrier quantum mechanically, and it is observed as the Hawk-
ing flux at infinity. There are several approaches to obtain the
Hawking radiation and the entropy of black holes. One of them is
the Hamilton-Jacobi method which is based on the work of Pad-
manabhan and collaborators [16] and also the effects of the self-
gravitation of the particle are discarded. In this way, the method
uses the WKB approximation in the tunneling formalism for the
computation of the imaginary part of the action. The authors
Parikh and Wilczek [17] using the method of radial null geodesics
determined the Hawking temperature and in [18] this method was
used by the authors for calculating the Hawking temperature for
different spacetimes. In Ref. [19] the Hawking radiation has been
analyzed considering self-gravitation and back reaction effects in
tunneling formalism. It has also been investigated in [20] the back
reaction effects for self-dual black hole using the tunneling for-
malism by Hamilton-Jacobi method. In [21] the effects of the GUP
have been studied in the tunneling formalism for Hawking ra-
diation to evaluate the quantum-corrected Hawking temperature
and entropy of a Schwarzschild black hole. Moreover, the authors
in [22] have discussed the Hawking radiation for acoustic black
hole using tunneling formalism.

In the literature there are several works on the statistical ori-
gin of black hole entropy — see for instance [23-25]. In Ref. [26],
Kaul and Majumdar computed the lowest order corrections to the
Bekenstein—-Hawking entropy. They found that the leading correc-
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tion is logarithmic, and is of the type, In{A/4) where A :47rrﬁ

is the area of the black hole. On the other hand, in Ref. [27] it
was shown that there is an additional logarithmic corrections that
depend on conserved charges, i.e., In[F(Q)] where F(Q) is some
function of angular momentum and other conserved charges. In
addition, for an understanding of the origin of black hole entropy,
the brick-wall method proposed by G. 't Hooft has been used for
calculations on black holes. Thus, according to G. 't Hooft, black
hole entropy is just the entropy of quantum fields outside the
black hole horizon. However, when one calculates the black hole
statistical entropy by this method, to avoid the divergence of states
density near black hole horizon, an ultraviolet cut-off must be in-
troduced. In Ref. [28] the (1 + 1)-dimensional acoustic black hole
entropy was investigated by the brick-wall method. The other re-
lated idea in order to cure the divergences is to consider models in
which the Heisenberg uncertainty relation is modified, for example
in one-dimensional space, we have

AXAp > g (1 +O{2(Ap)2) s

which shows that there exists a minimal length Ax > ha, where
Ax and Ap are uncertainties for positon and momentum, respec-
tively, and « is a positive constant which is independent of Ax and
Ap. A commutation relation for the generalized uncertainty princi-
ple (GUP) can be written as [x, plgup = ii(1 + a®p?), where x and
p are the positon and the momentum operators, respectively. Thus,
using the modified Heisenberg uncertainty relation the divergence
in the brick-wall model is eliminated as discussed in [29]. The sta-
tistical entropy of various black holes has also been calculated via
corrected state density of the GUP [30]. Thus, the results show that
near the horizon quantum state density and its statistical entropy
are finite. In [31] a relation for the corrected states density by
GUP has been proposed. The authors in [32] using a new equa-
tion of state density due to GUP [33], the statistical entropy of a
(2+1)-dimensional rotating acoustic black hole has been analyzed.
It was shown that considering the effect due to GUP on the equa-
tion of state density, no cut-off is needed [34] and the divergence
in the brick-wall model disappears.

In this paper, inspired by all of these previous works we shall
focus on the Hamilton-Jacobi method to determine the entropy of
a self-dual black hole using the GUP and considering the WKB ap-
proximation in the tunneling formalism to calculate the imaginary
part of the action in order to determine the Hawking temperature
and entropy for self-dual black holes. We anticipate that we have
obtained the Bekenstein-Hawking entropy of self-dual black holes
and its quantum corrections that are logarithm and also of several
other types.

2. Tunneling formalism for self-dual black holes

The quantum gravitationally corrected Schwarzschild metric of
the LBH is the self-dual black hole metric given by
ds? = —F(r)dt*> + N(r)~'dr? + H(r)(d6? + sin® 6¢?), 1)
with the metric functions as follows:

r—r ) —r)T+r1,)?

F(r) =
() r4+a%

; (2)

r=r—rort
a2
Hr=r"+ 3, (4)

N(r)

where r; = 2m is an event horizon, r_ = 2mP? is a Cauchy horizon
and r, = \/rir— =2mP, with P (P < 1) the polymeric function
given by

P_v1+62—1 (5)
ViteZ+1

and ag = Anpin/87m, with Api, being the minimal value of area in
loop quantum gravity. Note that from the metric (1) the suitable
radial coordinate which is obtained from the function H(r) is

a2
R=,/r2+ 2. (6)
T
Moreover, the value of R associated with the event horizon is given
by

2
Ry =+/H(ry) = /ri+f—2°. ™
+

In this section, we will use the tunneling formalism to derive
the Hawking temperature for a black hole described by the metric
(1). In our calculations we assume that the classical action satisfies
the relativistic Hamilton-Jacobi equation to leading order in the
energy. Near the black hole horizon the theory is dimensionally
reduced to a 2-dimensional theory [35,36] whose metric is just
the (t —r) sector of the original metric while the angular part is
red-shifted away. Therefore, the near-horizon metric has the form

ds? = —F(r)dt> + N(r) " dr?. (8)
Now, we consider the Klein-Gordon equations

g’V Vy¢ —m>¢ =0, 9
under the metric given by (8)

—83¢+A83¢+%A’8r¢— ’;—zzwzo, (10)

where A = F(r)N(r). In this way, using the WKB approximation,
we can write

i
@(r,t) =exp [—EI(r, t)]. (11)
Then, to the lowest order in h, we have

D) — A T)? —m* =0. (12)

Now due to the symmetries of the metric, we can suppose a solu-
tion of the form

I, t)=—wt+ W(), (13)
where for W (r) we have

dr
— _ 2 _m2
w_/ F(r)N(r)\/w m2F. (14)

In this point, by taking the near horizon approximation

FOr)=F@r )+ FT)r—ro+... (15)
N() = N@) + N ()@ —14) + ... (16)
we find that the spatial part of the action function reads
W :/ dr Vo —m2F (rp)(r—ry)
[F/(r)N' (r)]172 (r—rp) ’
2wiw
T IFrON GO ()
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Moreover, the tunneling probability for a particle with energy
w is given by

4 2
Tw[(2m) +a0]} (18)

T ~ exp[—2ImZ] = exp { ~ AP

Thus, comparing (18) with the Boltzmann factor (e=®/T), we ob-
tain the Hawing temperature for the self-dual black hole

o (2m)*(1-P?)
Tsaph = 7= = arl@my 1 ] (19)

Now, using the laws of black hole thermodynamics the entropy for
a self-dual black hole is given by [9-11]

2 4 _ 2
dm 4w (1+P) [16m ao] (20)

Ssabh = (1+ P)? =
sabh = (1 + )/Tsdbh 1= p?) Tom2

We can also write the entropy in terms of the area, of the event
horizon area of the self-dual black hole (Asgpn = 471R%H =A+
{‘\zm,.n/(32A) where A = 4712 = 167m? and Apin = 87ag) as fol-
ows:

(1+P)%rA n’zag (1+ P) 1 Asdbn Azmin
Ssdbh = [ - ] - [ a

1-prla  A/al”a-pPlL 4 8A

Therefore, we derive the self-dual black hole temperature and en-
tropy using the Hamilton-Jacobi version of the tunneling formal-
ism. In particular, we have obtained for the entropy a quantum
correction for the area law. Note that taking the limits ag — 0 and
P — 0 we have the entropy of a black hole S = A/4.

]. 1)

3. Logarithmic correction to the entropy

In this section we consider the generalized uncertainty prin-
ciple (GUP) in the tunneling formalism and apply the Hamilton-
Jacobi method to determine the quantum-corrected Hawking tem-
perature and entropy for a self-dual black hole. Thus, let us start
with the GUP [37,38]

I o2
AxApzh(l—%Ap—i—h—zp(Apﬂ), (22)

where « is a dimensionless positive parameter, I, = \/fiG/c3 =
MpG/c? ~ 10735 m is the Planck length, M, = /Aic/G is the Planck
mass and c is the velocity of light. Since G is the Newtonian cou-
pling constant, the correction terms in the uncertainty relation (22)
are due to the effects of gravity.

Now the equation (22) can be written as follows:

40212
1— 1—- =P . (23)
(Ax+ aly)?

where we have chosen the negative sign. Since I,/Ax is relatively
small compared to unity, we can expand in Taylor series the equa-
tion above

_ (AX+alp)
20215

Ap > o e (24)
P=oax|' " 2ax T 2(ax2 '

As we have chosen G =c =k =1, so we also choose i =1, and
we have [, = 1. In these units the generalized uncertainty principle
becomes

AxAp > 1. (25)

Now using the saturated form of the uncertainty principle

wAx > 1, (26)

which follows from the saturated form of the Heisenberg uncer-
tainty principle, AxAp > 1, where o is the energy of a quantum
particle, then equation (24) becomes

2
* 42 +} 27)

@6 = [1 T20Ax T 2ax2

So if we consider the tunneling formalism via Hamilton-Jacobi
method the tunneling probability for a particle with energy cor-
rected w¢ reads

27 wg ] (28)

I' ~ exp[—2ImZ] = exp [ —

Now comparing with the Boltzmann factor (e~®/T), we obtain self-
dual black hole temperature

a? -
+ m +-- :| . (29)

Here we will choose Ax =2Rj. Thus, we have the corrected tem-
perature due to the GUP

-1
]GH ]Sdbh 1Rh SR}%

_ @emPa-P?

Ten=T 1———
GH sdbh|: 2(A%)

Ar[2m)4 +ad)
-1
2 2 2,2
o aga o ago
- — |, 0
x [ 8m ' 256m> | 32m2  512mb | } (30)

in powers of @ and ap.
Then, by using the law of black hole thermodynamics we get
the entropy

5 [ dm
ScA=(1+P)?* | —
Tcy
41 (14 P)?2 [aa? 8d?
:& —0_ "0 128m?
128(1 — p?)| 3m3 m?
+ 8a? In(m) — 32am + O(ag)], (31)
that in terms of A = 16wm?2, we have
Aar(1+P)2 [ 160 )
S¢=S —— " 2 14¢”In(S) — — /S — 4a® In(41
G sdbh+128(1_p2) a”In(S) N a”In(47)
471)3/2
()—0 , (32)
353/2
where
1+P)2rA mid? 14 P)2 w2a?
ssdbh=(+ )[__ o]=(+ )[S_ 0] (33)
(1-P2)L4 A/4 (1—=P?) S

is the entropy of a self-dual black hole and S = A/4. Note that
the coefficient of In(S) =1n(A/4) is also positive and we also get
the additional terms /S = «/A/4 and S—3/2 = (A/4)~3/2 for the
entropy.

The black hole energy density can be computed as follows [39]:

8w , A\—2
?pz—n/S (A)(Z) dA, (34)

where S'(A) = %. Thus, for the self-dual black hole we have
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_(a+P)?| 3 N 872a3
Psdbh = aA—p2 | 2A A3
_(+Py 64m2al
(1-p? 27 '

Now the modified energy density for the self-dual black hole due
to the GUP is

(35)

B +471(1+P)2 160 , 24420 ¥
PG = Psdbh 1280 —-pH| 3 Y \/ﬁp 0
3/2 2
_ (3072)v2m @ \//_)]. (36)
18943

The correction of the specific heat capacity at constant volume C,
reads

CV(; = 127TT(;H

=127 Teapn [1 +mal —1287°a3a T

8m)2a?
- LTZ + 512n6a%o¢2T6
16
Cy ayC; , [4C%  aict
=C 1 d| — — — — ,
v(sdbh) [ + (12 1944 9 5832
(37)
where T = (8rm)~! is related to
(1—-PHT
Tsaph = (38)

(1+27(8m)3a3T)’

which is the Hawing temperature for the self-dual black hole and
then

(12m)*(1 = P,
(127)4 4 27 (87)3a3Cy

Cy(sdbhy = (39)
is the specific heat capacity for the self-dual black hole.

On the other hand, one can generalize the GUP by considering
(Ax)2 and (Ap)? in the uncertainty relation. Thus, the symmetric
generalized uncertainty principle (SGUP) becomes [40,41]

2
(f;? +a2(Ap>2). (40)

AxAp > (1 +

Now we solve the equation above for the momentum uncertainty
in terms of the position uncertainty
402 4o

B2 (Ax)? (1)

aps 211 )
p_Zch

Thus, we can expand the equation (41) in Taylor series as follows:

apz g [1s 02
p_ZAx_ B2
2 2AXx)?2 1
+a2(ﬁ+—( ﬁ;) +—(2AX)2>+--~]. (42)

Therefore, for equation (42) we can write

(2Ax)? 2(3 (2Ax)? 1

61)5(;20)[14- 52 ﬁ2+7+m>+”-:|.

Using the tunneling formalism via Hamilton-Jacobi method, we
obtain the corrected temperature due to the SGUP

-1
Tsgn=T 1+16Rﬁ+ 2 (2 +16Rﬁ+ L
— o J—

64m?  4a} o2 64m?  4ad
= Tsaon| 1+ == T p T\ 2+ gz T o
1 a? -
_ _ . 44
* Sam? 1024m6> * ] (44)

We are now able to obtain the entropy of self-dual black hole

d
5562(1+P)2/—m
TsH

202 47 (14 P)>?
= (1 + ?> Ssdbh + ———5—

(1-P?)

a? ag N 8a2 In(m
y _ %
2048m*  8p2m4 B2
47 (1 + P)> *pag
M 16384(1 + O(Z)m4 _ %
51282(1 — P2) 4m?
+ 16(256a3(1 +a?) +oz2ﬂ2) ln(m)}, (45)

for which in terms of horizon area of the self-dual black hole we
have

202
Ssg=(1+ ra Ssdbh +

arlo’al

-—g + %(256(1(2)(1 +a?) +a2ﬂ2) In(S)

47 (1+ P)? [1024(1 +a2)52
512(1 — P2) m2p2

- %(256a%(1 +a?)+ a2ﬁ2) ln(4n)]

4q2
0
12852 p2s2 + ra

47 (1+ P)2[ d3n?  2a}
7(1+P) |: 0 0 In(S)

(1-P?%)
4a?
+ ? ln(471)]. (46)

Note that in the limit &« — 0 of the equation (46), we obtain

Ar(A+ PP 2 5 am®  2ag
Ssc=S$ S -
SG = Ssdbh + (1-Pp2) | 7282 12852 p252
8a2 8a3
+ ra In(S) — ya In(4rm) |. “47)

On the other hand, in the limit 8 — oo of the equation (46), we
have

A7 (1+ P)? [4n2a:  4m’a’al
SsG = Ssabh + 0 — L

512(1— P2)| 2 s2
+ 8a?In(S) — 8ar? 1n(47r)]. (48)

Therefore, considering both limits we have obtained logarithmic
corrections to the entropy of the self-dual black hole. On the other
hand, if ag = 0, only equation (48) contains the term In(S). Thus,
the correction In(S) in equation (47) is obtained only if ap is not
zero.
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4. Conclusions

In summary, by considering the GUP, we derive the self-dual
black hole temperature and entropy using the Hamilton-Jacobi ver-
sion of the tunneling formalism. Moreover, in our calculations the
Hamilton-Jacobi method was applied to calculate the imaginary
part of the action and the GUP was introduced by the correction
to the energy of a particle due to gravity near the horizon. The GUP
allows us to find quantum corrections to the area law. Thus, in our
model by considering linear and quadratic GUPs we have obtained
logarithmic corrections and also the additional terms +/S = \/A/4
and S3/2 = (A/4)73/2 for the entropy. The unusual positivity of
the coefficients of the logarithm terms gives a stronger contribu-
tion to the entropy.
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