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In this paper we focus on the Hamilton–Jacobi method to determine the entropy of a self-dual black 
hole by using linear and quadratic GUPs (generalized uncertainty principles). We have obtained the 
Bekenstein–Hawking entropy of self-dual black holes and its quantum corrections that are logarithm 
and also of several other types.
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1. Introduction

The study of the black hole has been the subject of great inter-
est from the fundamental physics in the last decades. Black holes 
constitute an important class of exact solutions of Einstein’s equa-
tions which are characterized by mass (M), electric charge (Q ) 
and angular momentum (�J ) [1] and play a central role in both 
classical and quantum gravitational physics. In particular a regu-
lar static black hole metric, known as loop black hole (LBH) or 
self-dual black hole, with quantum gravity corrections inspired by 
loop quantum gravity was derived in [2]. Loop quantum gravity is 
based on a canonical quantization of the Einstein equations writ-
ten in terms of the Ashtekar variables [3], that is in terms of an
SU(2) 3-dimensional connection A and a triad E . The self-dual 
black hole has an event horizon and a Cauchy horizon — see for 
instance [4–6] to the study of black hole which possesses more 
than one horizon in order to understand the origin of black hole 
entropy in microscopic level.

A characteristic of self-dual black hole is self-duality property 
that removes the singularities and replaces it with another asymp-
totically flat region. We should mention that in supernormalizable 
gravity theories (an alternative to reconcile general relativity and 
quantum mechanics) there also appear spherically symmetric so-
lutions as regular black hole solutions. For suitable choice of pa-
rameters, curvature tensors at the origin are finite. On the other 
hand, multi-horizon black holes can be also found depending on 
their masses [7,8]. The study of self-dual black hole and its ther-
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modynamic property was analyzed in [9–11], and the dynamical 
aspects of the collapse and evaporation were studied in [12].

A semiclassical approach considering the Hawking radiation as 
a tunneling phenomenon across the horizon has been proposed in 
recent years [13–15]. In this approach the positive energy particle 
created just inside the horizon can tunnel through the geometric 
barrier quantum mechanically, and it is observed as the Hawk-
ing flux at infinity. There are several approaches to obtain the 
Hawking radiation and the entropy of black holes. One of them is 
the Hamilton–Jacobi method which is based on the work of Pad-
manabhan and collaborators [16] and also the effects of the self-
gravitation of the particle are discarded. In this way, the method 
uses the WKB approximation in the tunneling formalism for the 
computation of the imaginary part of the action. The authors 
Parikh and Wilczek [17] using the method of radial null geodesics
determined the Hawking temperature and in [18] this method was 
used by the authors for calculating the Hawking temperature for 
different spacetimes. In Ref. [19] the Hawking radiation has been 
analyzed considering self-gravitation and back reaction effects in 
tunneling formalism. It has also been investigated in [20] the back 
reaction effects for self-dual black hole using the tunneling for-
malism by Hamilton–Jacobi method. In [21] the effects of the GUP 
have been studied in the tunneling formalism for Hawking ra-
diation to evaluate the quantum-corrected Hawking temperature 
and entropy of a Schwarzschild black hole. Moreover, the authors 
in [22] have discussed the Hawking radiation for acoustic black 
hole using tunneling formalism.

In the literature there are several works on the statistical ori-
gin of black hole entropy — see for instance [23–25]. In Ref. [26], 
Kaul and Majumdar computed the lowest order corrections to the 
Bekenstein–Hawking entropy. They found that the leading correc-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tion is logarithmic, and is of the type, ln
(

A/4
)

where A = 4πr2
h

is the area of the black hole. On the other hand, in Ref. [27] it 
was shown that there is an additional logarithmic corrections that 
depend on conserved charges, i.e., ln[F (Q )] where F (Q ) is some 
function of angular momentum and other conserved charges. In 
addition, for an understanding of the origin of black hole entropy, 
the brick-wall method proposed by G. ’t Hooft has been used for 
calculations on black holes. Thus, according to G. ’t Hooft, black 
hole entropy is just the entropy of quantum fields outside the 
black hole horizon. However, when one calculates the black hole 
statistical entropy by this method, to avoid the divergence of states 
density near black hole horizon, an ultraviolet cut-off must be in-
troduced. In Ref. [28] the (1 + 1)-dimensional acoustic black hole 
entropy was investigated by the brick-wall method. The other re-
lated idea in order to cure the divergences is to consider models in 
which the Heisenberg uncertainty relation is modified, for example 
in one-dimensional space, we have

�x�p ≥ h̄

2

(
1 + α2(�p)2

)
,

which shows that there exists a minimal length �x ≥ h̄α, where 
�x and �p are uncertainties for positon and momentum, respec-
tively, and α is a positive constant which is independent of �x and 
�p. A commutation relation for the generalized uncertainty princi-
ple (GUP) can be written as [x, p]GUP = ih̄(1 + α2 p2), where x and 
p are the positon and the momentum operators, respectively. Thus, 
using the modified Heisenberg uncertainty relation the divergence 
in the brick-wall model is eliminated as discussed in [29]. The sta-
tistical entropy of various black holes has also been calculated via 
corrected state density of the GUP [30]. Thus, the results show that 
near the horizon quantum state density and its statistical entropy 
are finite. In [31] a relation for the corrected states density by 
GUP has been proposed. The authors in [32] using a new equa-
tion of state density due to GUP [33], the statistical entropy of a 
(2 +1)-dimensional rotating acoustic black hole has been analyzed. 
It was shown that considering the effect due to GUP on the equa-
tion of state density, no cut-off is needed [34] and the divergence 
in the brick-wall model disappears.

In this paper, inspired by all of these previous works we shall 
focus on the Hamilton–Jacobi method to determine the entropy of 
a self-dual black hole using the GUP and considering the WKB ap-
proximation in the tunneling formalism to calculate the imaginary 
part of the action in order to determine the Hawking temperature 
and entropy for self-dual black holes. We anticipate that we have 
obtained the Bekenstein–Hawking entropy of self-dual black holes 
and its quantum corrections that are logarithm and also of several 
other types.

2. Tunneling formalism for self-dual black holes

The quantum gravitationally corrected Schwarzschild metric of 
the LBH is the self-dual black hole metric given by

ds2 = −F (r)dt2 + N(r)−1dr2 + H(r)(dθ2 + sin2 θφ2), (1)

with the metric functions as follows:

F (r) = (r − r+)(r − r−)(r + r∗)2

r4 + a2
0

, (2)

N(r) = (r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
0)

, (3)

H(r) = r2 + a2
0
2
, (4)
r

where r+ = 2m is an event horizon, r− = 2mP 2 is a Cauchy horizon 
and r∗ = √

r+r− = 2mP , with P (P � 1) the polymeric function 
given by

P =
√

1 + ε2 − 1√
1 + ε2 + 1

, (5)

and a0 = Amin/8π , with Amin being the minimal value of area in 
loop quantum gravity. Note that from the metric (1) the suitable 
radial coordinate which is obtained from the function H(r) is

R =
√

r2 + a2
0

r2
. (6)

Moreover, the value of R associated with the event horizon is given 
by

Rh = √
H(r+) =

√
r2+ + a2

0

r2+
. (7)

In this section, we will use the tunneling formalism to derive 
the Hawking temperature for a black hole described by the metric 
(1). In our calculations we assume that the classical action satisfies 
the relativistic Hamilton–Jacobi equation to leading order in the 
energy. Near the black hole horizon the theory is dimensionally 
reduced to a 2-dimensional theory [35,36] whose metric is just 
the (t − r) sector of the original metric while the angular part is 
red-shifted away. Therefore, the near-horizon metric has the form

ds2 = −F (r)dt2 + N(r)−1dr2. (8)

Now, we consider the Klein–Gordon equations

h̄2 gμν∇μ∇νφ − m2φ = 0, (9)

under the metric given by (8)

−∂2
t φ + 
∂2

r φ + 1

2

′∂rφ − m2

h̄2
Fφ = 0, (10)

where 
 = F (r)N(r). In this way, using the WKB approximation, 
we can write

φ(r, t) = exp

[
− i

h̄
I(r, t)

]
. (11)

Then, to the lowest order in h̄, we have

(∂tI)2 − 
(∂rI)2 − m2 = 0. (12)

Now due to the symmetries of the metric, we can suppose a solu-
tion of the form

I(r, t) = −ωt + W (r), (13)

where for W (r) we have

W =
∫

dr√
F (r)N(r)

√
ω2 − m2 F . (14)

In this point, by taking the near horizon approximation

F (r) = F (r+) + F ′(r+)(r − r+) + . . . (15)

N(r) = N(r+) + N ′(r+)(r − r+) + . . . , (16)

we find that the spatial part of the action function reads

W =
∫

dr

[F ′(r+)N ′(r+)]1/2

√
ω2 − m2 F ′(r+)(r − r+)

(r − r+)
,

= 2π iω
′ ′ 1/2

. (17)
[F (r+)N (r+)]
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Moreover, the tunneling probability for a particle with energy 
ω is given by

� 	 exp[−2ImI] = exp
{

− πω[(2m)4 + a2
0]

m3(1 − P 2)

}
. (18)

Thus, comparing (18) with the Boltzmann factor (e−ω/T ), we ob-
tain the Hawing temperature for the self-dual black hole

Tsdbh = ω

ImI
= (2m)3(1 − P 2)

4π [(2m)4 + a2
0]

. (19)

Now, using the laws of black hole thermodynamics the entropy for 
a self-dual black hole is given by [9–11]

Ssdbh = (1 + P )2
∫

dm

Tsdbh
= 4π(1 + P )2

(1 − P 2)

[16m4 − a2
0

16m2

]
. (20)

We can also write the entropy in terms of the area, of the event 
horizon area of the self-dual black hole (Asdbh = 4π R2

EH = A +
A2

min/(32A) where A = 4πr2+ = 16πm2 and Amin = 8πa0) as fol-
lows:

Ssdbh = (1 + P )2

(1 − P 2)

[ A

4
− π2a2

0

A/4

]
= (1 + P )

(1 − P )

[ Asdbh

4
− A2

min

8A

]
. (21)

Therefore, we derive the self-dual black hole temperature and en-
tropy using the Hamilton–Jacobi version of the tunneling formal-
ism. In particular, we have obtained for the entropy a quantum 
correction for the area law. Note that taking the limits a0 → 0 and 
P → 0 we have the entropy of a black hole S = A/4.

3. Logarithmic correction to the entropy

In this section we consider the generalized uncertainty prin-
ciple (GUP) in the tunneling formalism and apply the Hamilton–
Jacobi method to determine the quantum-corrected Hawking tem-
perature and entropy for a self-dual black hole. Thus, let us start 
with the GUP [37,38]

�x�p ≥ h̄

(
1 − αlp

h̄
�p + α2l2p

h̄2
(�p)2

)
, (22)

where α is a dimensionless positive parameter, lp = √
h̄G/c3 =

Mp G/c2 ≈ 10−35m is the Planck length, Mp = √
h̄c/G is the Planck 

mass and c is the velocity of light. Since G is the Newtonian cou-
pling constant, the correction terms in the uncertainty relation (22)
are due to the effects of gravity.

Now the equation (22) can be written as follows:

�p ≥ h̄(�x + αlp)

2α2l2p

⎛
⎝1 −

√
1 − 4α2l2p

(�x + αlp)2

⎞
⎠ , (23)

where we have chosen the negative sign. Since lp/�x is relatively 
small compared to unity, we can expand in Taylor series the equa-
tion above

�p ≥ 1

2�x

[
1 − α

2�x
+ α2

2(�x)2
+ · · ·

]
. (24)

As we have chosen G = c = kB = 1, so we also choose h̄ = 1, and 
we have lp = 1. In these units the generalized uncertainty principle 
becomes

�x�p ≥ 1. (25)

Now using the saturated form of the uncertainty principle
ω�x ≥ 1, (26)

which follows from the saturated form of the Heisenberg uncer-
tainty principle, �x�p ≥ 1, where ω is the energy of a quantum 
particle, then equation (24) becomes

ωG ≥ ω

[
1 − α

2(�x)
+ α2

2(�x)2
+ · · ·

]
. (27)

So if we consider the tunneling formalism via Hamilton–Jacobi 
method the tunneling probability for a particle with energy cor-
rected ωG reads

� 	 exp[−2ImI] = exp
[
− 2πωG

a

]
. (28)

Now comparing with the Boltzmann factor (e−ω/T ), we obtain self-
dual black hole temperature

TGH = Tsdbh

[
1 − α

2(�x)
+ α2

2(�x)2
+ · · ·

]−1

. (29)

Here we will choose �x = 2Rh . Thus, we have the corrected tem-
perature due to the GUP

TGH = Tsdbh

[
1 − α

4Rh
+ α2

8R2
h

+ · · ·
]−1

= (2m)3(1 − P 2)

4π [(2m)4 + a2
0]

×
[

1 − α

8m
+ a2

0α

256m5
+ α2

32m2
− a2

0α
2

512m6
+ · · ·

]−1

, (30)

in powers of α and a0.
Then, by using the law of black hole thermodynamics we get 

the entropy

SG A = (1 + P )2
∫

dm

TGH

= 4π(1 + P )2

128(1 − p2)

[
αa2

0

3m3
− 8a2

0

m2
+ 128m2

+ 8α2 ln(m) − 32αm + O (a4
0)

]
, (31)

that in terms of A = 16πm2, we have

SG = Ssdbh + 4π(1 + P )2

128(1 − p2)

[
4α2 ln (S) − 16α√

π

√
S − 4α2 ln(4π)

+ (4π)3/2αa2
0

3S3/2

]
, (32)

where

Ssdbh = (1 + P )2

(1 − P 2)

[ A

4
− π2a2

0

A/4

]
= (1 + P )2

(1 − P 2)

[
S − π2a2

0

S

]
(33)

is the entropy of a self-dual black hole and S = A/4. Note that 
the coefficient of ln(S) = ln(A/4) is also positive and we also get 
the additional terms 

√
S = √

A/4 and S−3/2 = (A/4)−3/2 for the 
entropy.

The black hole energy density can be computed as follows [39]:

8π

3
ρ = −π

∫
S ′(A)

( A

4

)−2
dA, (34)

where S ′(A) = dS(A) . Thus, for the self-dual black hole we have
dA
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ρsdbh = (1 + P )2

(1 − p2)

[
3

2A
+ 8π2a2

0

A3

]

= (1 + P )2

(1 − p2)

[
ρ + 64π2a2

0

27
ρ3

]
. (35)

Now the modified energy density for the self-dual black hole due 
to the GUP is

ρG = ρsdbh + 4π(1 + P )2

128(1 − p2)

[
16α2

3
ρ2 − 24

√
2α√

3π
ρ
√

ρ

− (3072)
√

2π3/2αa2
0

189
√

3
ρ3√ρ

]
. (36)

The correction of the specific heat capacity at constant volume C v

reads

C vG = 12π TGH

= 12π Tsdbh

[
1 + παT − 128π5a2

0αT 5

− (8π)2α2

16
T 2 + 512π6a2

0α
2T 6

]

= C v(sdbh)

[
1 + α

(
C v

12
− a2

0C5
v

1944

)
− α2

(
4C2

v

9
− a2

0C6
v

5832

)]
,

(37)

where T = (8πm)−1 is related to

Tsdbh = (1 − P 2)T

(1 + 2π(8π)3a2
0T 4)

, (38)

which is the Hawing temperature for the self-dual black hole and 
then

C v(sdbh) = (12π)4(1 − P 2)C v

(12π)4 + 2π(8π)3a2
0C4

v
(39)

is the specific heat capacity for the self-dual black hole.
On the other hand, one can generalize the GUP by considering 

(�x)2 and (�p)2 in the uncertainty relation. Thus, the symmetric 
generalized uncertainty principle (SGUP) becomes [40,41]

�x�p ≥
(

1 + (�x)2

β2
+ α2(�p)2

)
. (40)

Now we solve the equation above for the momentum uncertainty 
in terms of the position uncertainty

�p ≥ �x

2α2

⎡
⎣1 ±

√
1 − 4α2

β2
− 4α2

(�x)2

⎤
⎦ . (41)

Thus, we can expand the equation (41) in Taylor series as follows:

�p ≥ 1

2�x

[
1 + (2�x)2

β2

+ α2
(

2

β2
+ (2�x)2

β2
+ 1

(2�x)2

)
+ · · ·

]
. (42)

Therefore, for equation (42) we can write

ωSG ≥ ω

[
1 + (2�x)2

β2
+ α2

(
2

β2
+ (2�x)2

β2
+ 1

(2�x)2

)
+ · · ·

]
.

(43)
Using the tunneling formalism via Hamilton–Jacobi method, we 
obtain the corrected temperature due to the SGUP

TSGH = Tsdbh

[
1 + 16R2

h

β2
+ α2

(
2

β2
+ 16R2

h

β2
+ 1

16R2
h

)
+ · · ·

]−1

= Tsdbh

[
1 + 64m2

β2
+ 4a2

0

β2m2
+ α2

(
2

β2
+ 64m2

β2
+ 4a2

0

β2m2

+ 1

64m2
− a2

0

1024m6

)
+ · · ·

]−1

. (44)

We are now able to obtain the entropy of self-dual black hole

SSG = (1 + P )2
∫

dm

TSGH

=
(

1 + 2α2

β2

)
Ssdbh + 4π(1 + P )2

(1 − P 2)

×
[

a2
0

2048m4
− a4

0

8β2m4
+ 8a2

0

β2
ln(m)

]

+ 4π(1 + P )2

512β2(1 − P 2)

[
16384(1 + α2)m4 − α2β2a2

0

4m4

+ 16
(

256a2
0(1 + α2) + α2β2

)
ln(m)

]
, (45)

for which in terms of horizon area of the self-dual black hole we 
have

SSG =
(

1 + 2α2

β2

)
Ssdbh + 4π(1 + P )2

512(1 − P 2)

[
1024(1 + α2)

π2β2
S2

− 4π2α2a2
0

S2
+ 8

β2

(
256a2

0(1 + α2) + α2β2
)

ln(S)

− 8

β2

(
256a2

0(1 + α2) + α2β2
)

ln(4π)

]

+ 4π(1 + P )2

(1 − P 2)

[
a2

0π
2

128S2
− 2a4

0

β2 S2
+ 4a2

0

β2
ln(S)

+ 4a2
0

β2
ln(4π)

]
. (46)

Note that in the limit α → 0 of the equation (46), we obtain

SSG = Ssdbh + 4π(1 + P )2

(1 − P 2)

[
2

π2β2
S2 + a2

0π
2

128S2
− 2a4

0

β2 S2

+ 8a2
0

β2
ln(S) − 8a2

0

β2
ln(4π)

]
. (47)

On the other hand, in the limit β → ∞ of the equation (46), we 
have

SSG = Ssdbh + 4π(1 + P )2

512(1 − P 2)

[
4π2a2

0

S2
− 4π2α2a2

0

S2

+ 8α2 ln(S) − 8α2 ln(4π)

]
. (48)

Therefore, considering both limits we have obtained logarithmic 
corrections to the entropy of the self-dual black hole. On the other 
hand, if a0 = 0, only equation (48) contains the term ln(S). Thus, 
the correction ln(S) in equation (47) is obtained only if a0 is not 
zero.
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4. Conclusions

In summary, by considering the GUP, we derive the self-dual 
black hole temperature and entropy using the Hamilton–Jacobi ver-
sion of the tunneling formalism. Moreover, in our calculations the 
Hamilton–Jacobi method was applied to calculate the imaginary 
part of the action and the GUP was introduced by the correction 
to the energy of a particle due to gravity near the horizon. The GUP 
allows us to find quantum corrections to the area law. Thus, in our 
model by considering linear and quadratic GUPs we have obtained 
logarithmic corrections and also the additional terms 

√
S = √

A/4
and S−3/2 = (A/4)−3/2 for the entropy. The unusual positivity of 
the coefficients of the logarithm terms gives a stronger contribu-
tion to the entropy.
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