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Abstract: Topological susceptibility of the SU(3) gluon plasma is calculated by accounting for both

factorized and non-factorized contributions to the two-point correlation function of topological-

charge densities. It turns out that, while the factorized contribution keeps this correlation function

non-positive away from the origin, the non-factorized contribution makes it positive at the origin,

in accordance with the reflection positivity condition. Matching the obtained result for topological

susceptibility to its lattice value at the deconfinement critical temperature, we fix the parameters of

the quartic cumulant of gluonic field strengths, and calculate the contribution of that cumulant to the

string tension. This contribution reduces the otherwise too large value of the string tension, which

stems from the quadratic cumulant, making it much closer to the standard phenomenological value.

Keywords: Yang–Mills vacuum; topological susceptibility; Stochastic Vacuum Model; string tension;

Wilson loop; finite-temperature effects in quantum field theory

1. Introduction

As is known, QCD is plagued with the problem of CP-violation, whose essence is that the
Yang–Mills Langrangian can be extended by the term which violates P- and CP-symmetries.
In Minkowski space (for simplicity), that term has the form ∆LYM = αs

8π · θ0 · Fa
µν F̃a

µν, where

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν is the non-Abelian field-strength tensor, F̃a

µν = 1
2 εµνλρFa

λρ

is a tensor dual to Fa
µν, θ0 is an arbitrary dimensionless parameter, and αs = g2/(4π) is the

strong coupling constant. The term ∆LYM can be represented as the following divergence
of a vector, which is built up from the gluon fields: ∆LYM = αs

4π · θ0 · ∂µKµ, where

Kµ = εµνλρ

(

Aa
ν∂λ Aa

ρ +
1

3
f abc Aa

ν Ab
λ Ac

ρ

)

.

This fact means that the contribution produced by ∆LYM to the Yang–Mills action, van-
ishes for perturbative configurations of gluon fields, while it does not vanish for the
non-perturbative configurations, such as instantons. Hence, the CP-symmetry of QCD
is broken at the non-perturbative level. Furthermore, by means of the axial anomaly,
quarks yield an additional contribution, which has the same functional form as ∆LYM,
being proportional to the phase of the determinant of the quark mass matrix, Mq. The full
term, thus, has the form ∆Lθ = αs

8π · θ · Fa
µν F̃a

µν, where θ = θ0 + Arg (det Mq). The θ-term
∆Lθ gives rise to a non-vanishing electric dipole moment of the neutron. Although the
latter is not yet experimentally discovered, the existing data provide an upper limit for
its possible values, which, in turn, yields the following upper limit for the absolute value
of θ: |θ| ≲ 0.3 · 10−9. The necessity of explaining this smallness of θ is the essence of the
CP-problem of strong interactions.

Had the quark Lagrangian, at the classical level, been invariant under the so-called
Peccei–Quinn axial U(1)PQ symmetry [1,2], qL → eiβqL, qR → e−iβqR, the θ-term could be
nullified by means of phase rotations of the quark fields. However, this symmetry is broken
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by the quark mass terms, which yields a massless (at the classical level) Goldstone field
a(x), called an axion. Under the U(1)PQ-transformations, this field is being transformed as
a → a + β · fPQ, where the parameter fPQ, of the dimensionality of mass, characterizes the
scale of the U(1)PQ symmetry breaking. The aforementioned transformation laws, for qL, qR,

and a, yield the following quark mass term modified by the axion field: mq q̄Re−2ia/ fPQ qL +
H.c. Accordingly, at the quantum level, Arg (det Mq) yields the low-energy Lagrangian
C · αs

8π · a
fPQ

· Fa
µν F̃a

µν, where the constant C = O(1) is determined by the charges of quarks

with respect to the U(1)PQ group. Hence, at the quantum level, the U(1)PQ symmetry
is explicitly broken, with the axion being the corresponding pseudo-Goldstone boson,
and the θ-parameter becomes a field as θ → θ(x) = θ + Ca(x)/ fPQ. The CP-invariance
in QCD would be restored once the v.e.v. ⟨a(x)⟩ were such as to make ⟨θ(x)⟩ vanishing.
Fortunately, this is indeed happening, owing to the chiral symmetry breaking, which leads
to the effective potential ≃ m2

π f 2
πθ2(x)/8, where mπ is the pion mass and fπ is the pion

decay constant. Accordingly, the axion obtains the following mass: ma ≃ Cmπ fπ/(2 fPQ).
The breaking of the U(1)PQ symmetry leads to the non-conservation of the corresponding

U(1)PQ current, ∂µ JPQ
µ = aPQq, where q(x) is the local density of topological charge, and aPQ

is a constant. As was further shown in [3–6], the following expression for ma, analogous to

the Veneziano–Witten formula for mη′ , takes place: m2
a ≃ a2

PQ

f 2
PQ

χ. Here, χ =
∫

d4x⟨q(x)q(0)⟩
is the topological susceptibility of the Yang–Mills vacuum, and we henceforth work in the
Euclidean space-time. In this paper, we address the temperature dependence of χ, so that
∫

d4x →
∫

d3x
∫ 1/T

0 dx4, in the deconfinement phase, i.e., at T > Tc. To this end, we model
the aforementioned non-perturbative field configurations by the stochastic background
Yang–Mills fields, which are characterized by the finite vacuum correlation length and the
vacuum condensates within the Stochastic Vacuum Model [7,8]. Lattice data [9] indicate
that, at T = Tc, the chromo-electric condensate ⟨(gEa

i )
2⟩ vanishes, which leads to the

deconfinement phase transition, while the chromo-magnetic condensate ⟨(gBa
i )

2⟩ does not
vanish, which leads to the so-called spatial confinement, quantified by the area law of large
spatial Wilson loops, in the deconfinement phase [10].

Note that the topological susceptibility of the high-temperature instanton-based Yang–
Mills vacuum, which is missing spatial confinement, is given by the following integral over
instanton sizes ρ (cf. Ref. [11]):

χ ∼
∫

dρ

ρ5
e
− 2N

3 (πρT)2− 8π2

g2(ρ) , (1)

where

e
− 8π2

g2(ρ) = (ρΛ)b. (2)

(In this expression, b = 11
3 N is the absolute value of the leading coefficient of the Yang–

Mills β-finction, and Λ is the UV cutoff.) In particular, for N = 3, the square root of the
variance of the Gaussian distribution in Equation (1), yields ρ ≲ 1

2πT , so that, already for
T = Tc ≃ 270 MeV [10], one has ρ ≲ 0.12 fm. As these values of ρ are significantly smaller
than the typical instanton size of 0.33 fm in the instanton-liquid model of the Yang–Mills
vacuum [12], the Boltzmann factor (2) indicates that instantons’ contribution to χ, given by
Equation (1), is suppressed at T > Tc. Consequently, instead of the O(1/T7)-behavior of χ,
suggested by Equations (1) and (2) for N = 3 (cf. the corresponding lattice data [13]), one
can expect the O(T4)-behavior, suggested by Equation (1) on purely dimensional grounds.
In what follows, we will obtain the O(T4)-behavior of χ, along with the corresponding
proportionality coefficient, in the aforementioned Stochastic Model of the Yang–Mills
vacuum [7,8].
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2. Calculation of χ(T)

Let us consider the expression εµνλρFµνFλρ, where one of the indices can be equal to 4,
and Fµν is some antisymmetric tensor. One can readily see that this expression is equal to
4ε4ijkF4iFjk. Further, by using the reduction of the product ε4ijkε4lmn to the determinant of
the 3 × 3 matrix of Kronecker deltas, one has

ε4ijkε4lmnF4i(x)Fjk(x)F4l(0)Fmn(0) = 2F4i(x)Fjk(x)
[

F4i(0)Fjk(0) + 2F4k(0)Fij(0)
]

.

Let us now consider the local density of topological charge,

q(x) =
g2

32π2
εµνλρ tr(Fµν(x)Fλρ(x)),

where, henceforth, Fµν = Fa
µνTa, with Ta’s being the SU(N)-generators in the fundamen-

tal representation, a = 1, . . . , N2 − 1. By using the standard normalization condition,
tr TaTb = δab/2, and the formulae above, one has

⟨q(x)q(0)⟩ = g4

128π4

[

⟨Fa
4i(x)Fa

jk(x)Fb
4i(0)Fb

jk(0)⟩+ 2⟨Fa
4i(x)Fa

jk(x)Fb
4k(0)Fb

ij(0)⟩
]

. (3)

Let us start with the factorized part of Equation (3), which amounts to considering six
pairwise products of the two-point correlation functions of the field strengths (cf. Ref. [14]).
Noticing that ⟨Fa

4i(x)Fb
4j(y)⟩ = 0 in the stochastic Yang–Mills vacuum at T > Tc, one has

⟨q(x)q(0)⟩factorized =
1

128π4

[

⟨g2Fa
4i(0)Fa

jk(0)⟩2 + ⟨g2Fa
4i(x)Fb

jk(0)⟩2+

2⟨g2Fa
4i(0)Fa

jk(0)⟩⟨g2Fb
4k(0)Fb

ij(0)⟩+ 2⟨g2Fa
4i(x)Fb

ij(0)⟩⟨g2Fa
4k(x)Fb

jk(0)⟩
]

. (4)

We see that ⟨q(x)q(0)⟩factorized is fully expressed in terms of the correlation function
⟨g2Ea

i (x)Bb
k(0)⟩, which can be parameterized through some function f (x) as

⟨g2Ea
i (x)Bb

k(0)⟩ = δabεiknxn f (x). (5)

Multiplying this equation by TaTb and taking the trace, one has

tr ⟨g2Ea
i (x)TaBb

k(0)T
b⟩ = N2 − 1

2
εiknxn f (x).

On the other hand, the same quantity can be expressed by means of Equation (2.9) from
Ref. [9]:

tr ⟨g2Ea
i (x)TaBb

k(0)T
b⟩ = −1

2
εiknxn

∂DBE
1

∂x4
.

That yields the following expression for the function f (x) in terms of the function DBE
1 (x),

which was measured on the lattice:

f (x) = − 1

N2 − 1

∂DBE
1

∂x4
. (6)

Noticing further that Ea
i = Fa

i4 and Ba
k = 1

2 εkijF
a
ij, we readily obtain

⟨g2Fa
4i(x)Fb

jk(0)⟩ = δab
(

δijδkn − δikδjn

)

xn f (x). (7)

Equations (4) and (7) yield

⟨q(x)q(0)⟩factorized =
1

128π4

[

⟨g2Fa
4i(x)Fb

jk(0)⟩2 + 2⟨g2Fa
4i(x)Fb

ij(0)⟩⟨g2Fa
4k(x)Fb

jk(0)⟩
]

=
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−N2 − 1

32π4
x2 f 2. (8)

For the non-perturbative ansatz used in Ref. [9], DBE
1 (x) = A e−m|x|, Equation (6) thus yields

⟨q(x)q(0)⟩factorized, non−pert. = − (Am)2

32π4

1

N2 − 1

x2x2
4

|x|2 e−2m|x|. (9)

Note that this expression is negative, and vanishes at the origin. Here, A = A(T) is
the amplitude of the function DBE

1 (x), and m = m(T) is the inverse correlation length of
the chromo-magnetic vacuum. The temperature dependence of these quantities will be
discussed below, in Equation (24).

In a similar way, one can calculate the perturbative contribution, ⟨q(x)q(0)⟩factorized, pert..
To this end, we use the perturbative part of the field-strength tensor, f a

µν = ∂µ Aa
ν − ∂ν Aa

µ,
to write

⟨g2Ea
i (x)Bb

k(y)⟩pert =
1

2
εklm⟨g2 f a

i4(x) f b
lm(y)⟩ = εklm∂x

4∂
y
m⟨g2 Aa

i (x)Ab
l (y)⟩,

where ⟨g2 Aa
i (x)Ab

l (y)⟩ =
g2

4π2
δabδil
(x−y)2 is the gluon propagator in the Feynman gauge. Hence,

⟨g2Ea
i (x)Bb

k(0)⟩pert = g2δabεikn∂4∂n
1

4π2x2
. (10)

At finite temperature T ≡ 1/β, the Euclidean propagator 1
4π2x2 takes the form

∫ ∞

0

ds

(4πs)2

+∞

∑
n=−∞

exp

[

−x2 + (x4 + βn)2

4s

]

. (11)

The Poisson resummation yields

+∞

∑
n=−∞

exp

[

− (x4 + βn)2

4s

]

= 2T
√

πs
+∞

∑
k=−∞

exp(−ω2
k s + iωkx4), (12)

where ωk = 2πTk is the k-th Matsubara frequency. As ω0 = 0, it does not contribute to
Equation (10) upon the differentiation over x4, so that one can approximate the sum by
the terms with k = ±1. That yields the following approximation for the finite-temperature
counterpart of ∂4∂n

1
4π2x2 :

T2xn

4
√

π

∫ ∞

0

ds

s5/2
e−(2πT)2s− x2

4s sin(2πTx4).

Performing the s-integration in this expression, and recalling Equation (5), we have

fpert(x) ≃ 2πg2T3

x2

(

1 +
1

2πT|x|

)

e−2πT|x| sin(2πTx4).

Thus, by using Equation (8), we obtain

⟨q(x)q(0)⟩factorized, pert. ≃ −N2 − 1

8π2

(g2T3)2

x2

(

1 +
1

2πT|x|

)2

e−4πT|x| sin2(2πTx4). (13)

Let us further evaluate ⟨q(x)q(0)⟩non−factorized, non−pert.. To this end, we consider the
non-perturbative contribution to the quartic cumulant in the form of the two following
tensor structures [15]:

⟨g4F
a1
µ1ν1

(x1)Fa2
µ2ν2

(x2)Fa3
µ3ν3

(x3)F
a4
µ4ν4

(x4)⟩non−factorized, non−pert. =
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⟨g4Fa
αβ(0)Fa

αβ(0)Fb
λρ(0)Fb

λρ(0)⟩×
{[

δa1a2 δa3a4(δµ1µ2 δν1ν2 − δµ1ν2 δµ2ν1
)(δµ3µ4

δν3ν4
− δµ3ν4

δµ4ν3)+

δa1a3 δa2a4(δµ1µ3 δν1ν3 − δµ1ν3 δµ3ν1
)(δµ2µ4

δν2ν4
− δµ2ν4

δµ4ν2)+

δa1a4 δa2a3(δµ1µ4
δν1ν4

− δµ1ν4
δµ4ν1

)(δµ2µ3 δν2ν3 − δµ2ν3 δµ3ν2)
]

G(z1, . . . , z6)+

[

f a1a2c f a3a4c(εµ1ν1µ3ν3 εµ2ν2µ4ν4
− εµ1ν1µ4ν4

εµ2ν2µ3ν3)+

f a1a3c f a2a4c(εµ1ν1µ2ν2 εµ3ν3µ4ν4
− εµ1ν1µ4ν4

εµ3ν3µ2ν2)+

f a1a4c f a2a3c(εµ1ν1µ2ν2 εµ4ν4µ3ν3 − εµ1ν1µ3ν3 εµ4ν4µ2ν2)
]

G1(z1, . . . , z6)
}

. (14)

The structure with Kronecker deltas in this formula contributes to the effective action of
the quark–antiquark string, and it can even provide a fully quantum quark–antiquark
string in 4D [16], while the structure with Levi-Civita symbols does not contribute to the
string effective action. Also, z1 = x1 − x2, . . . , z6 = x3 − x4, and the notations G and
G1 were invented by analogy with the notations for functions D(x) and D1(x), which
were used for the parameterization of the confining and the non-confining contributions
to the correlation function ⟨g2Fa

µν(x)Fb
λρ(0)⟩ [7,8]. Furthermore, setting in Equation (14)

x1 = · · · = x4, µ1 = µ2, ν1 = ν2, µ3 = µ4, ν3 = ν4, a1 = a2, a3 = a4, and noticing
that f abc f abc = N(N2 − 1) and εµνλρεµνλρ = D!, one obtains the following normalization
condition (cf. Refs. [15,16]):

(N2 − 1){(D2 − D)[(N2 − 1)(D2 − D) + 4] G(0, ..., 0)− 2ND! G1(0, ..., 0)} = 1. (15)

Henceforth, we set D = 4. Finally, we use the approximation

⟨g4Fa
αβ(0)Fa

αβ(0)Fb
λρ(0)Fb

λρ(0)⟩ ≃ ⟨(gFa
αβ)

2⟩2, (16)

known as the Vacuum Dominance Hypothesis, which states that the dominant contribution
to even-order condensates is the factorized one [17].

As mentioned in the Introduction, the chromo-electric condensate ⟨(gEa
i )

2⟩ vanishes
at T = Tc, so that, at T > Tc, ⟨(gFa

αβ)
2⟩ goes over to 2⟨(gBa

i )
2⟩. Accordingly, we obtain

⟨g4Fa
4i(x)Fa

jk(x)Fb
4i(0)Fb

jk(0)⟩ = 24(N2 − 1)⟨(gBa
i )

2⟩2 (3G + NG1),

⟨g4Fa
4i(x)Fa

jk(x)Fb
4k(0)Fb

ij(0)⟩ = 24(N2 − 1)⟨(gBa
i )

2⟩2 (−G + 2NG1),

where G ≡ G(0, x, x, x, x, 0), G1 ≡ G1(0, x, x, x, x, 0), and we have used the fact that
ε4ijkε4ijk = 6. Plugging these two expressions into Equation (3), we obtain

⟨q(x)q(0)⟩non−factorized, non−pert. =
3(N2 − 1)

16π4
⟨(gBa

i )
2⟩2 (G + 5NG1). (17)

Let us now proceed to the calculation of various contributions to the topological

susceptibility, χ =
∫

d3x
∫ β

0 dx4⟨q(x)q(0)⟩. Such a calculation is mostly simple in the case
of χnon−factorized, non−pert., which corresponds to Equation (17) and amounts to calculating

the integral I ≡
∫

d3x
∫ β

0 dx4 e−M
√

x2+x2
4 . Here, M = 4m, due to the four arguments “x”

in G and G1, and we henceforth restrict ourselves to the zeroth winding mode on the
left-hand side of Equation (12), as the contribution of other winding modes is exponen-
tially smaller than that one. The integral I can be calculated by using the representa-

tion e−M
√

x2+x2
4 =

∫ ∞

0
dλ√
πλ

e−λ− M2(x2+x2
4)

4λ and first performing the so-emerging Gaussian

x-integration, which yields I = 8π
M3

∫ ∞

0 dλλ e−λ
∫ β

0 dx4 e−
M2x2

4
4λ . Performing further the
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λ-integration, we have I = 4π
M

∫ β
0 dx4 x2

4K2(Mx4), where Kν(x) henceforth stands for the

Macdonald functions. We use now the parametrization m = cg2T, where c ≃ 1 [18], as
well as the approximation g ≃ 1, which is known to be valid throughout the range of

temperatures Tc < T ≲ 10Tc of interest (cf. e.g., Ref. [10]). That yields I ≃ 4π
M4

∫ 4
0 dyy2K2(y),

where the numerical value of the latter integral is 4.35, being quite close to the value of
∫ ∞

0 dyy2K2(y) =
3π
2 ≃ 4.71. Thus,

χnon−factorized, non−pert. ≃

3 · 4.35 · (N2 − 1)

45π3

⟨(gBa
i )

2⟩2

m4
[G(0, . . . , 0) + 5NG1(0, . . . , 0)]. (18)

In particular, by using Equation (15) with N = 3, which reads

9600 G(0, . . . , 0)− 1152 G1(0, . . . , 0) = 1, (19)

we have

G(0, . . . , 0) + 5NG1(0, . . . , 0)
∣

∣

∣

N=3
= 126 G(0, . . . , 0)− 5

384
. (20)

In a similar way, one can calculate χfactorized, non−pert.. With reference to Equation (9),

let us start with the function J ≡ e
−M

√
x2+x2

4

x2+x2
4

, where now M = 2m, and differentiate it over

the parameter M, which yields

− ∂J

∂M
=

e−M
√

x2+x2
4

√

x2 + x2
4

=
M

2
√

π

∫ ∞

0

dλ

λ3/2
e−λ− M2(x2+x2

4)

4λ .

By using this representation, we can again perform the emerging Gaussian x-integration,
and obtain

−
∫

d3x x2 ∂J

∂M
=

24π

M4

∫ ∞

0
dλλ e−λ− M2x2

4
4λ =

12πx2
4

M2
K2(Mx4).

Recalling Equation (9), we further obtain

−
∫

d3x x2
∫ β

0
dx4x2

4
∂J

∂M
≃ 12π

M7

∫ 2

0
dyy4K2(y) ≡

B

M7
, (21)

where
∫ 2

0 dyy4K2(y) ≃ 3.50 is significantly smaller than
∫ ∞

0 dyy4K2(y) = 15π
2 ≃ 23.56.

Integrating Equation (21) over M and noticing that
∫

d3x x2
∫ β

0 dx4x2
4 J → 0 at M → ∞, we

obtain
∫

d3x x2
∫ β

0 dx4x2
4 J = B

6M6 . Thus,

χfactorized, non−pert. ≃ − 3.5

322π3(N2 − 1)
· A2

m4
, (22)

where the amplitude parameter A was discussed after Equation (9).
Finally, by using Equation (13), we calculate χfactorized, pert., given by

∫

d3x
∫ β

0
dx4⟨q(x)q(0)⟩factorized, pert. =

−N2 − 1

8π2
(g2T3)2 1

2T
· 4π

∫ ∞

1/Λ
dx

(

1 +
1

2πTx

)2

e−4πTx,
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where the prefactor of 1
2T stems from

∫ β
0 dx4 sin2(2πTx4). Within the same approximation

under which Equation (13) was obtained, we set the UV cut-off Λ equal to ω1 = 2πT.
This yields

χfactorized, pert. ≃ − N2 − 1

16π2e2
(gT)4. (23)

Note also that the perturbative × non-perturbative factorized contribution to χ, which
could stem from the terms

⟨g2Fa
4i(x)Fb

jk(0)⟩pert⟨g2Fa
4i(x)Fb

jk(0)⟩non−pert and ⟨g2Fa
4i(x)Fb

ij(0)⟩pert⟨g2Fa
4k(x)Fb

jk(0)⟩non−pert

in Equation (4), vanishes, since
∫ β

0 dx4 sin(2πTx4) = 0.
Let us further discuss the important sign property (called reflection positivity condi-

tion), which should be respected by the full ⟨q(x)q(0)⟩: it should be non-positive for all
x ̸= 0, while yielding a positive χ at the same time [19]. Comparing Equations (9) and (13)
with each other, we see that Equation (9) is parametrically larger, as its exponential suppres-
sion is weaker and its pre-exponent is increasing with the increase of |x|. For this reason,
Equation (13) can be neglected in comparison to Equation (9). Now, comparing Equation (9)
with Equation (17), we first notice that Equation (17) stays constant at the origin, whereas
Equation (9) vanishes, due to its pre-exponential factor. Rather, at x ̸= 0, Equation (9) is
parametrically larger than Equation (17), not only due to the same pre-exponential factor,
but foremost due to the stronger exponential suppression of Equation (17), with M = 4m.
Thus, parametrically, the desired sign property of the full ⟨q(x)q(0)⟩ is respected.

The full topological susceptibility is given by the sum of the three calculated contri-
butions, given by Equations (18), (22) and (23). To evaluate it numerically, we notice that,
already at T ≳ 1.3 Tc, the temperature dependence of dimensionful quantities entering
these equations can be parameterized as follows [14]:

A(T) = Ac ·
(

g2T

g2
c Tc

)4

, m(T) = mc ·
g2T

g2
c Tc

, ⟨(gBa
i )

2⟩ = ⟨(gBa
i )

2⟩c ·
(

g2T

g2
c Tc

)4

, (24)

where the subscript “c” means “at T = Tc”. We further adopt approximation (cf. Ref. [9])

Ac ≃ ⟨(gBa
i )

2⟩c, (25)

as well as approximations mc ≃ g2
c Tc (cf. c ≃ 1 above) and g ≃ gc ≃ 1. Using Equation (20)

along with parameterizations (24) and (25), we obtain

χ ≃

1

1024 π3

[

104.4

(

126 G(0, . . . , 0)− 5

384

)

− 0.5

] ⟨(gBa
i )

2⟩2
c

m4
c

(

T

Tc

)4

at T ≳ 1.3 Tc. (26)

Thus, for

G(0, . . . , 0) ≳
0.5

104.4 + 5
384

126
≃ 1.4 · 10−4, (27)

the obtained χ appears to be positive. The inequality (27) can be viewed as a lower
bound for the possible values of G(0, . . . , 0). Let us extrapolate Equation (26) down to
T = Tc, and approximate the gluon condensate and the vacuum correlation length by their
zero-temperature values in the SU(3) Yang–Mills theory [20],

⟨(gBa
i )

2⟩c ≃
1

2
⟨(gFa

µν)
2⟩T=0 ≃ 2.84 GeV4 and

1

mc
≃ 1.1 GeV−1. (28)

Using then for χ its zero-temperature lattice value [21], χ ≃ (193 MeV)4, we obtain from
Equation (26):

GT=0(0, . . . , 0) ≃ 4.2 · 10−4, (29)
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which respects inequality (27).
With this value of GT=0(0, . . . , 0) at hand, we can readily calculate the correction to

the zero-temperature string tension, which is produced by the quartic cumulant. To this
end, we make use of the cumulant expansion for the Wilson loop, which yields

⟨W(C)⟩ ≃

1

N
tr exp

[

− 1

22 2!

∫

Smin

dσµ1ν1
(x1)

∫

Smin

dσµ2ν2(x2) ⟨g2Fµ1ν1
(x1)Fµ2ν2(x2)⟩non−pert.+

1

24 4!

∫

Smin

dσµ1ν1
(x1)

∫

Smin

dσµ2ν2(x2)
∫

Smin

dσµ3ν3(x3)
∫

Smin

dσµ4ν4
(x4)×

⟨g4Fµ1ν1
(x1)Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4

(x4)⟩non−factorized, non−pert.

]

. (30)

Using further Equations (14) and (16), we have the following contribution to the non-local
string action, produced by the quartic cumulant:

Aquartic = −
⟨(gFa

αβ)
2⟩2

24 4!
GT=0(0, ..., 0)×

1

N
tr

∫

Smin

dσµ1ν1
(x1)

∫

Smin

dσµ2ν2(x2)
∫

Smin

dσµ3ν3(x3)
∫

Smin

dσµ4ν4
(x4) Ta1 Ta2 Ta3 Ta4×

[

δa1a2 δa3a4(δµ1µ2 δν1ν2 − δµ1ν2 δµ2ν1
)(δµ3µ4

δν3ν4
− δµ3ν4

δµ4ν3)+

δa1a3 δa2a4(δµ1µ3 δν1ν3 − δµ1ν3 δµ3ν1
)(δµ2µ4

δν2ν4
− δµ2ν4

δµ4ν2)+

δa1a4 δa2a3(δµ1µ4
δν1ν4

− δµ1ν4
δµ4ν1

)(δµ2µ3 δν2ν3 − δµ2ν3 δµ3ν2)
]

e−m(|z1|+···+|z6|).

Contracting the indices, we obtain

Aquartic = −
3 ⟨(gFa

αβ)
2⟩2

4 · 4!
GT=0(0, ..., 0) (TaTa)2×

∫

Smin

dσµν(x1)
∫

Smin

dσµν(x2) e−m|x1−x2|
∫

Smin

dσλρ(x3)
∫

Smin

dσλρ(x4) e−m|x3−x4|×

e−m(|x1−x3|+|x1−x4|+|x2−x3|+|x2−x4|). (31)

The leading terms in the derivative expansion of the latter integrals read [8] (for a review,
see [22])

∫

Smin

dσµν(x1)
∫

Smin

dσµν(x2) e−m|x1−x2| ≃ 2

m2

∫

d2z e−|z|
∫

d2x1

√

g(x1) =

4π

m2

∫

d2x1

√

g(x1) (32)

and
∫

Smin

dσλρ(x3)
∫

Smin

dσλρ(x4) e−m|x3−x4| ≃ 4π

m2

∫

d2x3

√

g(x3). (33)

Here, g = det gab is the determinant of the induced-metric tensor gab = ∂axµ · ∂bxµ cor-
responding to the vector-function xµ = xµ(ξ), which parameterizes the surface Smin.
Furthermore, indices a and b take the values 1 and 2, and ξ = (ξ1, ξ2) is a 2D-vector,
for which we adopt the Gauss’ map [23,24], i.e., ξ = (x1, x2), so that the differentials in
Equations (32) and (33) read d2x1 = dx1

1 dx1
2 and d2x3 = dx3

1 dx3
2. Next, due to the

proximity of x2 to x1 and of x4 to x3, ensured by the factors e−m|x1−x2| and e−m|x3−x4| in
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Equation (31), we can approximate there e−m(|x1−x3|+|x1−x4|+|x2−x3|+|x2−x4|) ≃ e−4m|x1−x3|.
The so-emerging integral has the form

∫

d2x1

√

g(x1)
∫

d2x3

√

g(x3) e−4m|x1−x3|,

thereby differing from the integral of the form of Equation (32) by the absence of the

product tµν(x1)tµν(x3), where tµν = εab√
g ∂axµ · ∂bxν is the so-called extrinsic-curvature

tensor. Fortunately, the leading, Nambu–Goto, term in the derivative expansion (32) stems
from the local approximation, where both tµν’s are considered at the same point, so that
t2
µν = 2. Within the same approximation, we thus have

∫

d2x1

√

g(x1)
∫

d2x3

√

g(x3) e−4m|x1−x3| ≃ 1

(4m)2

∫

d2z e−|z|
∫

d2x1

√

g(x1) =

π

8m2

∫

d2x1

√

g(x1).

Bringing all of the factors together, and noticing that TaTa = N2−1
2N 1̂, we obtain, for N = 3,

the following correction to the string tension, stemming from the action (31):

∆σ = −π3

9
GT=0(0, ..., 0)

⟨(gFa
αβ)

2⟩2

m6
. (34)

It can be compared with the leading contribution to the string tension, which stems from
the quadratic-cumulant contribution to Equation (30),

⟨W(C)⟩ ≃

1

N
tr exp

[

− 1

22 2!

∫

Smin

dσµ1ν1
(x1)

∫

Smin

dσµ2ν2(x2) ⟨g2Fa
µ1ν1

(x1)Fb
µ2ν2

(x2)⟩ TaTb

]

=

exp

[

−
κ ⟨(gFa

µν)
2⟩

8N(D2 − D)

∫

Smin

dσµν(x1)
∫

Smin

dσµν(x2) e−m|x1−x2|
]

,

where we have used the parametrization

⟨g2Fa
µ1ν1

(x1)Fb
µ2ν2

(x2)⟩ = κ ⟨(gFa
µν)

2⟩ δab

(N2 − 1)(D2 − D)

(

δµ1µ2 δν1ν2 − δµ1ν2 δµ2ν1

)

e−m|x1−x2|

with κ ≃ 0.83 [20] being the parameter which determines the relative weight of confining
self-interactions of the stochastic background fields (cf. also Ref. [14]). Setting here D = 4
and N = 3, and using Equation (32), one obtains

σ =
π κ

72

⟨(gFa
µν)

2⟩
m2

≃ 0.25 GeV2 (35)

so that
|∆σ|

σ
=

8π2

κ
GT=0(0, ..., 0)

⟨(gFa
µν)

2⟩
m4

.

Numerically, by using Equations (28) and (29), we obtain |∆σ|
σ ≃ 0.34. Accordingly, the

decrease of σ, due to the quartic cumulant, reads σ + ∆σ ≃ 0.17 GeV2. This corrected value
of σ turns out to be closer to the standard phenomenological value of 0.19 GeV2 than the
value provided by Equation (35). This finding demonstrates the consistency of our analysis.
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3. Summary

In conclusion, we have used the Stochastic Model of the Yang–Mills vacuum to ex-
plicitly obtain the leading O(T4)-term (26) in the high-temperature expression for the
topological susceptibility of the SU(3) gluon plasma. This approach turns out to respect
the general reflection positivity condition [cf. the discussion in the paragraph between
Equations (23) and (24)]. Extrapolation of Equation (26) down to T = Tc yields the parame-
ter of the quartic cumulant, Equation (29). The total value of the string tension, accounting
for the negative correction (34) produced by the quartic cumulant, turns out to be much
closer to the standard phenomenological value than its counterpart (35) corresponding to
the quadratic cumulant alone.
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