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Abstract: Topological susceptibility of the SU(3) gluon plasma is calculated by accounting for both
factorized and non-factorized contributions to the two-point correlation function of topological-
charge densities. It turns out that, while the factorized contribution keeps this correlation function
non-positive away from the origin, the non-factorized contribution makes it positive at the origin,
in accordance with the reflection positivity condition. Matching the obtained result for topological
susceptibility to its lattice value at the deconfinement critical temperature, we fix the parameters of
the quartic cumulant of gluonic field strengths, and calculate the contribution of that cumulant to the
string tension. This contribution reduces the otherwise too large value of the string tension, which
stems from the quadratic cumulant, making it much closer to the standard phenomenological value.

Keywords: Yang-Mills vacuum; topological susceptibility; Stochastic Vacuum Model; string tension;
Wilson loop; finite-temperature effects in quantum field theory

1. Introduction

Asis known, QCD is plagued with the problem of CP-violation, whose essence is that the
Yang-Mills Langrangian can be extended by the term which violates P- and CP-symmetries.

In Minkowski space (for simplicity), that term has the form ALyy = g= - 6p - F;}Vf-"ﬁ,,, where
Fi, = 0uAj — 0y Aj, + ¢ f”bCAzAﬁ is the non-Abelian field-strength tensor, fﬁv = %s;ﬂ, 2oF} 0
is a tensor dual to Fj,, 6 is an arbitrary dimensionless parameter, and a5 = g%/ (4m) is the
strong coupling constant. The term ALy can be represented as the following divergence

of a vector, which is built up from the gluon fields: ALyy = Z‘—;T - 8o - 94Ky, where
1
Ky = €np (AﬁaAAz +3 fﬂ’”AgAgA;).

This fact means that the contribution produced by ALy to the Yang-Mills action, van-
ishes for perturbative configurations of gluon fields, while it does not vanish for the
non-perturbative configurations, such as instantons. Hence, the CP-symmetry of QCD
is broken at the non-perturbative level. Furthermore, by means of the axial anomaly,
quarks yield an additional contribution, which has the same functional form as ALy,
being proportional to the phase of the determinant of the quark mass matrix, M. The full
term, thus, has the form ALy = g= -6 - F]‘jvﬁﬁv, where 6 = 6y + Arg (det M;). The 6-term
ALy gives rise to a non-vanishing electric dipole moment of the neutron. Although the
latter is not yet experimentally discovered, the existing data provide an upper limit for
its possible values, which, in turn, yields the following upper limit for the absolute value
of 0: |0] < 0.3-10°. The necessity of explaining this smallness of 6 is the essence of the
CP-problem of strong interactions.

Had the quark Lagrangian, at the classical level, been invariant under the so-called
Peccei-Quinn axial U(1)pg symmetry [1,2], g1, — eiﬁqL, qr — e_iﬁq R, the 6-term could be
nullified by means of phase rotations of the quark fields. However, this symmetry is broken
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by the quark mass terms, which yields a massless (at the classical level) Goldstone field
a(x), called an axion. Under the U(1)pg-transformations, this field is being transformed as
a — a+ B - fpq, where the parameter fpg, of the dimensionality of mass, characterizes the
scale of the U(1)pq symmetry breaking. The aforementioned transformation laws, for g1, qr,
and g, yield the following quark mass term modified by the axion field: m,g re 20/ frag; 4
H.c. Accordingly, at the quantum level, Arg (det M;) yields the low-energy Lagrangian
C-g=- f FﬁvFﬁV, where the constant C = O(1) is determined by the charges of quarks
with respect to the U(1)pg group. Hence, at the quantum level, the U(1)pg symmetry
is explicitly broken, with the axion being the corresponding pseudo-Goldstone boson,
and the f-parameter becomes a field as 6 — 6(x) = 6 + Ca(x)/ fpq. The CP-invariance
in QCD would be restored once the v.e.v. (a(x)) were such as to make ((x)) vanishing.
Fortunately, this is indeed happening, owing to the chiral symmetry breaking, which leads
to the effective potential ~ m2 f26%(x) /8, where m, is the pion mass and f; is the pion
decay constant. Accordingly, the axion obtains the following mass: 1, ~ Cn, fr/(2fpq).
The breaking of the U(1)pg symmetry leads to the non-conservation of the corresponding
U(1)pq current, 9, ];I?Q = apqq, where g(x) is the local density of topological charge, and apg
is a constant. As was further shown in [3-6], the following expression for my, analogous to

the Veneziano-Witten formula for m,, takes place: m2 ~ f2 2 x. Here, x = [ d*x(q(x)q(0))

is the topological susceptibility of the Yang—-Mills vacuum, and we henceforth work in the
Euclidean space-time. In this paper, we address the temperature dependence of yx, so that

[dix — [d3x fol /T dxy, in the deconfinement phase, i.e., at T > T,. To this end, we model
the aforementioned non-perturbative field configurations by the stochastic background
Yang-Mills fields, which are characterized by the finite vacuum correlation length and the
vacuum condensates within the Stochastic Vacuum Model [7,8]. Lattice data [9] indicate
that, at T = T, the chromo-electric condensate ((¢E?)?) vanishes, which leads to the
deconfinement phase transition, while the chromo-magnetic condensate ((gB?)?) does not
vanish, which leads to the so-called spatial confinement, quantified by the area law of large
spatial Wilson loops, in the deconfinement phase [10].

Note that the topological susceptibility of the high-temperature instanton-based Yang-
Mills vacuum, which is missing spatial confinement, is given by the following integral over
instanton sizes p (cf. Ref. [11]):

2

N/ dp 5 w35 (1)
where
87'(2
e €0 = (pA)". 2)

(In this expression, b = %N is the absolute value of the leading coefficient of the Yang—
Mills B-finction, and A is the UV cutoff.) In particular, for N = 3, the square root of the
variance of the Gaussian distribution in Equation (1), yields p < ﬁ, so that, already for
T = T, ~ 270MeV [10], one has p < 0.12 fm. As these values of p are significantly smaller
than the typical instanton size of 0.33 fm in the instanton-liquid model of the Yang-Mills
vacuum [12], the Boltzmann factor (2) indicates that instantons’ contribution to ), given by
Equation (1), is suppressed at T > T.. Consequently, instead of the O(1/T7)-behavior of x,
suggested by Equations (1) and (2) for N = 3 (cf. the corresponding lattice data [13]), one
can expect the O(T*)-behavior, suggested by Equation (1) on purely dimensional grounds.
In what follows, we will obtain the O(T*)-behavior of x, along with the corresponding
proportionality coefficient, in the aforementioned Stochastic Model of the Yang-Mills
vacuum [7,8].
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2. Calculation of x(T)

Let us consider the expression €,,1,FuvFyp, where one of the indices can be equal to 4,
and F,, is some antisymmetric tensor. One can readily see that this expression is equal to
4e4ijx Fyi Fjy.. Further, by using the reduction of the product eg;jx€4/m, to the determinant of
the 3 x 3 matrix of Kronecker deltas, one has

€4ijk€41mn Fai (X) Fjic (%) Fyy (0) Fyn (0) = 2Fyi (x) i (x) [F4i(O)ij(O) + 2F4k(0)Fij(0)} :

Let us now consider the local density of topological charge,

2
1(%) = 35— epurp tr(Fu(0)Fry (x),

where, henceforth, F,, = FH”V T?, with T%s being the SU(N)-generators in the fundamen-

tal representation, a = 1,..., N2 —1. By using the standard normalization condition,
tr T°T? = 5% /2, and the formulae above, one has

4
(1()q(0)) = T [(F () FR (X E{ O FR(0)) + 2(Ff (0 FR(x)E O F}(0))]. @)
Let us start with the factorized part of Equation (3), which amounts to considering six
pairwise products of the two-point correlation functions of the field strengths (cf. Ref. [14]).
Noticing that <Pfi(x)Ff]. (y)) = 01in the stochastic Yang-Mills vacuum at T > T, one has

<q(x)q(0)>factorized = 128% [<82FZi(0)Fﬁ<(O)>2 + <g2F4’11i(x)Fjl;<(0)>2+
2(g2Fi(0) F&(0)) (Fh (0)F5(0)) + 2(PFi () FE(0)) (PR () FL(0))]. @)

We see that (7(x)g(0))actorized 1S fully expressed in terms of the correlation function
(g2Ef(x)BY(0)), which can be parameterized through some function f(x) as

(@Ef (x)B{(0)) = 0" eiunf (). )
Multiplying this equation by T*T? and taking the trace, one has

2ra apb b Nz_l
tr (¢°E] (x)T"By(0)T") = > EiknXn f(X).

On the other hand, the same quantity can be expressed by means of Equation (2.9) from
Ref. [9]:

1 oDBE
tr (§°Ef (x)T*BY(0)T") = _Esiknanxz

That yields the following expression for the function f(x) in terms of the function DY (x),
which was measured on the lattice:

1 oDPE
f(x) = TN ony (6)
Noticing further that Ef = F;; and B} = %e king-r we readily obtain
(& (x)F}(0)) = 6 (830 — 0ix6ju) X f (x). ?)

Equations (4) and (7) yield

1

ot | (@ E () ER(0)) 4+ 2(2Efy () (0) (Ef () ER(0)) ] =

<‘7 (x)q(O) >factorized =
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NZ -1
A < @®

For the non-perturbative ansatz used in Ref. [9], DYE(x) = A e i, Equation (6) thus yields

Am)? 1 xX%x%
<‘7(x)q(0)>factorized,non—pert. = - (3271")1 N2 1 |x|24 e zmM. 9)

Note that this expression is negative, and vanishes at the origin. Here, A = A(T) is
the amplitude of the function DPE(x), and m = m(T) is the inverse correlation length of
the chromo-magnetic vacuum. The temperature dependence of these quantities will be
discussed below, in Equation (24).

In a similar way, one can calculate the perturbative contribution, (q(x)q(0))actorized, pert.-
To thi's end, we use the perturbative part of the field-strength tensor, f, = 9, A7 — 9, Aj,
to write

(S (B9 et = eian (82FA00) Fo (1) = ¥ (8 AL () AL(w)),

where (g2A%(x) Al (y)) £ i the gluon propagator in the Feynman gauge. Hence,

~ e (xy)?
1
(2Ef (x)B{(0))pert = §76"€itn949n - (10)

At finite temperature T = 1/, the Euclidean propagator ﬁ takes the form

© +o0 2 2
/O (471_55)2 Z exp |:_X +(X:S+ ,3;/1) ) (11)

n=—oo

The Poisson resummation yields

+2°° exp {_WW} N f exp(—w?s + iwgxy), (12)

n=-—00 4s k=—o0

where wy = 27Tk is the k-th Matsubara frequency. As wy = 0, it does not contribute to
Equation (10) upon the differentiation over x4, so that one can approximate the sum by
the terms with k = £1. That yields the following approximation for the finite-temperature
counterpart of d40; ﬁ:

T%x, [ ds

—(27'(T)2s—z—2 : (2
e s sin(27tTxy).
4/ Jo /2

Performing the s-integration in this expression, and recalling Equation (5), we have

2g?T? 1 o Tl s
fpert(x) =~ 2 (1+ 271T|x|>e T sin(271Txy).

Thus, by using Equation (8), we obtain

NZ -1 2T3 2 1 2 B )
<q(x>q(0)>factorized,pert. = - 87'[2 (g X2 ) (1 + 27TT|X) e 47TT‘X| sm2(27rTx4). (13)

Let us further evaluate (q(x)q(0))non factorized, non—pert.- 10 this end, we consider the
non-perturbative contribution to the quartic cumulant in the form of the two following
tensor structures [15]:

<g4Ffl}V1 (X] )F;ngz (XZ)FZ§V3 (X3 ) F;alim <x4>>nonffact0rized, non—pert. —
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(8*Fag(0)Fag(0)FY, (0)F},(0)) x
{ {5111“25”3”4 (5#1H25V1V2 - 5%11/2‘51421/1 ) (5#3H45V3V4 - 5%31/4‘51441/3)"_
g1 512 (5%#351/11/3 - 5#11/35#31/1 ) (5H2#45V2V4 - §H2V4§H4V2)+

g1 512 (5}41H45V1V4 - 5#11/45#41/1)(5}42%351/21/3 - 5#21/35#31/2)} G(Zlf' : "Z6)+

A1Aa2C £A304C

{f 172 f 3 (€V1V1H3V3€V2V2H4V4 - 81411/1P’4’L’481421/2P13V3)+
A1Aa3C £Ara4C

frme frat (£H1V1M2V2€V3V3M4V4 - £V1V1V4V4€H3V3H2V2)+

fa1u4cfa2ﬂ3c (SV1V1M2V28P14V4V3V3 - 81411/1#31/381441/4#21/2)} G (Zlf sy 26) } (14)

The structure with Kronecker deltas in this formula contributes to the effective action of
the quark—antiquark string, and it can even provide a fully quantum quark-antiquark
string in 4D [16], while the structure with Levi-Civita symbols does not contribute to the
string effective action. Also, z; = x1 — x2,...,2¢ = X3 — x4, and the notations G and
G; were invented by analogy with the notations for functions D(x) and D;(x), which
were used for the parameterization of the confining and the non-confining contributions
to the correlation function ( ngﬁV(x)F/’{ P(0)> [7,8]. Furthermore, setting in Equation (14)
X1 = " = X4 Y1 = HU2, V1 = V2, U3 = U4, V3 = V4, A1 = 043, A3 = 04, and noticing
that feb¢fabc — N(N? — 1) and €uvrp€uvrp = D!, one obtains the following normalization
condition (cf. Refs. [15,16]):

(N2 —1){(D* — D)[(N* —1)(D? — D) 4+ 4] G(0,...,,0) —2ND! G;(0,..,0)} = 1.  (15)
Henceforth, we set D = 4. Finally, we use the approximation

(g*Fig(0) Eig (0) 3, (0)F},(0)) = ((gFp)*)?, (16)

known as the Vacuum Dominance Hypothesis, which states that the dominant contribution
to even-order condensates is the factorized one [17].

As mentioned in the Introduction, the chromo-electric condensate ((gE?)?) vanishes
atT = T, so that,at T > T, <(3F£ﬁ)2> goes over to 2((gB?)?). Accordingly, we obtain

(§*Fg () Ef (x) F§;(0) F (0)) = 24(N* — 1)((gBf)*)* (3G + NGy),

(§*Ffi (x) Fi(x) F (0)F}}(0)) = 24(N* — 1){(gB{)*)* (=G +2NGy),

where G = G(0,x,x,x,x,0), G = G1(0,x,x,x,x,0), and we have used the fact that
egijk€qijk = 6. Plugging these two expressions into Equation (3), we obtain

3(N% —1)

e ((8B)%)? (G +5NGy). (17)

<q (x)q (0) >nonffactorized, non—pert. —
p
Let us now proceed to the calculation of various contributions to the topological

susceptibility, x = [ d3x f dx4(q(x)q(0)). Such a calculation is mostly simple in the case
Of Xnon—factorized, non—pert., Which corresponds to Equation (17) and amounts to calculating

the integral I = [ d3x [} P dxy, e MV**2 Here, M = 4m, due to the four arguments “x”
in G and Gy, and we henceforth restrict ourselves to the zeroth winding mode on the
left-hand side of Equation (12), as the contribution of other winding modes is exponen-
tially smaller than that one. The integral I can be calculated by using the representa-

M (x2+x2)
. M2 A M) . . . .
tion e "MV Hx — f . dA A o and first performing the so-emerging Gaussian

M2x2
x-integration, which yields I = CdAre ﬁ dxy e A, Performing further the

M30
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A-integration, we have I = % 0/5 dixy x3K(Mxy), where Ky (x) henceforth stands for the
Macdonald functions. We use now the parametrization m = cg?T, where ¢ ~ 1 [18], as
well as the approximation g ~ 1, which is known to be valid throughout the range of
temperatures T, < T < 10T of interest (cf. e.g., Ref. [10]). That yields I ~ M4 0 dyy2K2 (v),
where the numerical Value of the latter integral is 4.35, being quite close to the value of
Jo” dyy?Ka(y) = 3+ ~ 4.71. Thus,

Xnon—factorized, non—pert. =

3435 (N>~ 1) ((gBF))
45773 m4

In particular, by using Equation (15) with N = 3, which reads

[G(0,...,0) +5NG(0,...,0)]. (18)

9600 G(0,...,0) — 1152 G4(0,...,0) =1, (19)

we have 5
G(0,...,0) +5NG4(0,...,0) s 126 G(0,...,0) — 384" (20)
In a similar way, one can calculate Xfactorized, non—pert. With reference to Equation (9),

let us start with the function | = ¢ , where now M = 2m, and differentiate it over

x2+x3
the parameter M, which yields

o] e~ M x2+x2

oM /X2+xi Z\F/ /\3/2

By using this representation, we can again perform the emerging Gaussian x-integration,
and obtain

Mz(xz+xi)

0 247 ,,j 127tx2
—/d3 281{4 M4/ dite Tt = ST (May).

Recalling Equation (9), we further obtain

127t B
- faee [Lard = 57 [Tt = ey

where foz dyy*K»(y) ~ 3.50 is significantly smaller than [;° dyy*Kx(y) = 3% ~ 23.56.
Integrating Equation (21) over M and noticing that [ d3x x? foﬁ dxgx3 ] — 0at M — oo, we
obtain [ d3x x? foﬁ dxgx3 ] = #. Thus,

35 A?

AXfactorized, non—pert. =~ _m . W’ (22)

where the amplitude parameter A was discussed after Equation (9).
Finally, by using Equation (13), we calculate Xfactorized, pert., glven by

B
/dsx/o dx4<q(x)q(0)>factorized,pert. =

N2—1 5 3,1 °° 1 \° 4
e (gT)ﬁAn/l/Adx 1+7271Tx e ,
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where the prefactor of % stems from foﬁ duxy sin?(27tTx4). Within the same approximation
under which Equation (13) was obtained, we set the UV cut-off A equal to w; = 27T.
This yields
2
Xfactorized, pert. = _% (8 T)4- (23)
Note also that the perturbative X non-perturbative factorized contribution to ), which
could stem from the terms

<82F4Hi(x)Fjl;<(0)>pert <82szi(x)1:ﬁ<(0)>non—pert and <g2Ffi(x)Fi’;’(0)>pert <82Pilk(x)1:ﬁc(0)>non—1oert

in Equation (4), vanishes, since foﬁ dxgsin(2Txy) = 0.

Let us further discuss the important sign property (called reflection positivity condi-
tion), which should be respected by the full (4(x)q(0)): it should be non-positive for all
x # 0, while yielding a positive yx at the same time [19]. Comparing Equations (9) and (13)
with each other, we see that Equation (9) is parametrically larger, as its exponential suppres-
sion is weaker and its pre-exponent is increasing with the increase of |x|. For this reason,
Equation (13) can be neglected in comparison to Equation (9). Now, comparing Equation (9)
with Equation (17), we first notice that Equation (17) stays constant at the origin, whereas
Equation (9) vanishes, due to its pre-exponential factor. Rather, at x # 0, Equation (9) is
parametrically larger than Equation (17), not only due to the same pre-exponential factor,
but foremost due to the stronger exponential suppression of Equation (17), with M = 4m.
Thus, parametrically, the desired sign property of the full (4(x)g(0)) is respected.

The full topological susceptibility is given by the sum of the three calculated contri-
butions, given by Equations (18), (22) and (23). To evaluate it numerically, we notice that,
already at T 2 1.3 T, the temperature dependence of dimensionful quantities entering
these equations can be parameterized as follows [14]:

2T 4 2T 2T 4
A = (51 ) mr) =me- ST, (B0 =m0 (57 ) @9

“"
C

where the subscript “c” means “at T = T.”. We further adopt approximation (cf. Ref. [9])

Ac =~ <(gB?)2>c/ (25)

as well as approximations m, >~ ¢2T. (cf. ¢ =~ 1 above) and ¢ ~ g, ~ 1. Using Equation (20)
along with parameterizations (24) and (25), we obtain

Xﬁ
5 ((gB)*)2 (T\*
—— - 1104.4( 12 0 ) 05| e 2 ) atT>13T. (2
1024n3[0 <6G(0, ,0) 384) 05] e ) atTZ 13T (26)
Thus, for
05 4 5
G(0,...,0) > W ~14-107%, (27)

the obtained x appears to be positive. The inequality (27) can be viewed as a lower
bound for the possible values of G(0,...,0). Let us extrapolate Equation (26) down to
T = T,, and approximate the gluon condensate and the vacuum correlation length by their
zero-temperature values in the SU(3) Yang-Mills theory [20],

1
((8F)*)T=0 ~ 2.84GeV*and — ~ 1.1GeV ™. (28)

c

N =

((§Bf)*)e =~

Using then for y its zero-temperature lattice value [21], x ~ (193 MeV)#, we obtain from
Equation (26):
Gr—0(0,...,0) ~42-107%, (29)
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which respects inequality (27).

With this value of Gr—¢(0,...,0) at hand, we can readily calculate the correction to
the zero-temperature string tension, which is produced by the quartic cumulant. To this
end, we make use of the cumulant expansion for the Wilson loop, which yields

(W(C)) ~

1 1
N frexp [m /5 . Aoy (x1) /S Aoy, (x2) <g2Fl41V1 (xl)FMVz (x2)>n0nfperf-+

min
1

24l Smmd%vl(xl)/s d%w(xz)/s d0u3V3(x3)/S doyv, (x4) X

min min min

<g4FIl1V1 (xl)Fllez (xZ)F}lal/s (xB)F]/l4V4 (x4) >n0n7factorized, nonpert.] . (30)

Using further Equations (14) and (16), we have the following contribution to the non-local
string action, produced by the quartic cumulant:

((gFis)*)?
-Aquartic = *240(72 GT:() (O, ey 0) X

1
N o /Smin do—‘ulw (xl) /Smin

[5‘11112 gnm (5H1H2 51/11/2 - 5}411/2 5#21/1 ) (5H3H4 51/31/4 - 5}431/4 5}441/3 ) +

G113 5720 (5F‘1V35V1V3 - 5#11/3 5#31/1 ) (5142}‘451/21/4 - 5#2‘/4‘5144V2)+

d”quz(XZ)/S _ daysl,3(x3)/s day4v4(x4) T T2T33T% %

min

5a1a45a2u3( e—m(\21\+"'+|26\)'

5#114451/11/4 - 5#11/45#41/1 ) (5%214351/21/3 - 5#21/35#31/2)}

Contracting the indices, we obtain

3((8Fp)%)?
Aquartic = —4'75 Gr=0(0,...,0) (TaTa)zx

/Smm dev(xl)/S

The leading terms in the derivative expansion of the latter integrals read [8] (for a review,
see [22])

[Smin dUFlV (x1> A

deU(xz) efmlxlfxz‘ /S

o~ m(|x1=x3]4x1 —x4|+x2 —x3|+[x2—x4]) (31)

dO'/\p(X3)/S da,\p(x4)e*m|x3*x4‘ X

min min min

il — 2 _
oy (xp) e "2l o W/dzze ‘Z|/d2x1 g(x1) =

[ () (2)

min

and
doy,(x3) doy, (xy) e el ~ an d?x (x3) (33)
s Ao 3.5- Ao\ X4 =2 34/8(X3)-
Here, ¢ = det g, is the determinant of the induced-metric tensor g,;, = X, - dpxy cor-
responding to the vector-function x;, = x,(&), which parameterizes the surface Sp;n.

Furthermore, indices a and b take the values 1 and 2, and ¢ = ((;‘1,(;‘2) is a 2D-vector,
for which we adopt the Gauss” map [23,24], i.e., § = (xl, x2), so that the differentials in
Equations (32) and (33) read d%x; = dx;ldxg? and d%x;3 = dxs! dxs2. Next, due to the
proximity of xp to x; and of x4 to x3, ensured by the factors e mxi—x2| and e~ mlrs -l jn
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Equation (31), we can approximate there e " (I¥1—%s[+ 1 —xa|+Hxa—xs[+xo—x4]) ~ g—dmlx1—x3],
The so-emerging integral has the form

/dle \/g(Tl)/dsz \/@efhn\xlfxﬂ,

thereby differing from the integral of the form of Equation (32) by the absence of the
product t,,(x1)tu(x3), where t,, = %Buxy - dpxy is the so-called extrinsic-curvature
tensor. Fortunately, the leading, Nambu—-Goto, term in the derivative expansion (32) stems

from the local approximation, where both t,,,’s are considered at the same point, so that
tfw = 2. Within the same approximation, we thus have

/d2x1 \/g(xl)/dzxg \/g(xg)e_4m‘x1_x3| ~ (4;)2/dzze_z| /d2x1 g(x1) =
S—;/dle \/8(x1).

Bringing all of the factors together, and noticing that T*T* = % 1, we obtain, for N = 3,
the following correction to the string tension, stemming from the action (31):

s ((8Fzp)?)?

Ao = —? GT:()(O,...,O) (34)

mo

It can be compared with the leading contribution to the string tension, which stems from
the quadratic-cumulant contribution to Equation (30),

(W(C)) =~

1 1 2 b b
ﬁtr exp {_222 /Smir\ dgﬂlvl (xl) /Smin daﬂzvz (x2) <g Fslvl (xl)Fyzvz(xZ» T ] =

x ((8Fi)?)

where we have used the parametrization

min

do’yv(xz) e_mxl_x2|] ,

5ab B B
<32Pﬁlvl(xl)1:£zn(x2)> =K <(gpﬁv)2> (N2 =1)(D2 = D) (5V1H25V1V2 - 5;411/25;421/1)9 x|

with x o~ 0.83 [20] being the parameter which determines the relative weight of confining
self-interactions of the stochastic background fields (cf. also Ref. [14]). Setting here D = 4
and N = 3, and using Equation (32), one obtains

o ((8F8)?)

_ ~ 2
== s 0.25GeV (35)
so that ( 2y
[Ao| _ 87 8Ev
Numerically, by using Equations (28) and (29), we obtain @ =~ 0.34. Accordingly, the

decrease of o, due to the quartic cumulant, reads ¢ + Ac >~ 0.17 GeV?. This corrected value
of ¢ turns out to be closer to the standard phenomenological value of 0.19 GeV? than the
value provided by Equation (35). This finding demonstrates the consistency of our analysis.
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3. Summary

In conclusion, we have used the Stochastic Model of the Yang-Mills vacuum to ex-
plicitly obtain the leading O(T*)-term (26) in the high-temperature expression for the
topological susceptibility of the SU(3) gluon plasma. This approach turns out to respect
the general reflection positivity condition [cf. the discussion in the paragraph between
Equations (23) and (24)]. Extrapolation of Equation (26) down to T = T yields the parame-
ter of the quartic cumulant, Equation (29). The total value of the string tension, accounting
for the negative correction (34) produced by the quartic cumulant, turns out to be much
closer to the standard phenomenological value than its counterpart (35) corresponding to
the quadratic cumulant alone.
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