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Keywords:
Entropy (area) bound
Thermodynamic relations of multi-horizons
Charged and rotating black holes

We revisit the entropy product, entropy sum and other thermodynamic relations of charged and rotating 
black holes. Based on these relations, we derive the entropy (area) bound for both event horizon and 
Cauchy horizon. We establish these results for variant class of 4-dimensional charged and rotating black 
holes in Einstein(–Maxwell) gravity and higher derivative gravity. We also generalize the discussion to 
black holes with NUT charge. The validity of this formula, which seems to be universal for black holes 
with two horizons, gives further clue on the crucial role that the thermodynamic relations of multi-
horizons play in black hole thermodynamics and understanding the entropy at the microscopic level.
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1. Introduction

Recently, the entropy product of multi-horizons black holes 
were studied widely in a lot literatures [1–24]. They are always 
independent on the mass of black holes. The universal character 
of this relation holds for many charged and rotating black holes 
[1–13], even all known five-dimensional asymptotically flat black 
rings, and black strings [14]. This relation is expected to be helpful 
of understanding the black hole entropy at the microscopic level. 
Actually, the entropy product, in conjunction with Cauchy horizon 
thermodynamics, can be used to determine whether the corre-
sponding Bekenstein–Hawking entropy can be written as a Cardy 
formula, hence providing some evidence for a CFT description of 
the corresponding microstates [14,15]. This also makes it impor-
tant to study the thermodynamics of Cauchy horizon.

On the other hand, the mass-independence of entropy product 
fails for some multi-horizons black holes [15–19]. Then the en-
tropy sum [12,13,16,20,23] and other thermodynamic relations [16,
17,20–22,24] are introduced, which also have mass-independence 
for some cases and seem to be universal as well. Especially for the 
relation T+ S+ = T− S− , which was linked closely with the mass-
independence of entropy product, was also understood well and 
physically by the holographic description, i.e. the thermodynamic 
method of black hole/CFT (BH/CFT) correspondence [7,30–35]. This 
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relation T+ S+ = T− S− may be taken as the criterion whether 
there is a 2-dimensional CFT dual for the black holes in the Ein-
stein gravity and other diffeomorphism invariant gravity theories 
[7,30–35]. Besides, It was found that the thermodynamic relation 
T+ S+ = T− S− is equivalent to the central charge being the same 
(i.e. cR = cL ) for some two-horizons black holes. For the whole per-
spective of black hole thermodynamics, the first law and Smarr 
relation are also derived which are consistence with known results 
in previous literature.

However, it is still unclear how other thermodynamic relations 
of multi-horizons work for constructing the holographic descrip-
tion of black hole, in the general background spacetime. The aim 
of this paper is trying to give some clues. We link thermody-
namic relations of multi-horizons with black hole thermodynamics, 
including the entropy (area) bound, the first law of thermodynam-
ics and Smarr relation, for event horizon and Cauchy horizon of 
charged and rotating black holes. In this way, one can also ob-
serve that thermodynamics of Cauchy horizon is closely related to 
thermodynamics of event horizon. In this work, we first revisit the 
entropy product, entropy sum and other thermodynamic relations 
of charged and rotating black holes. Based on entropy product and 
entropy sum, we obtain entropy (area) bound for event horizon 
and Cauchy horizon. Especially for the upper area bound of event 
horizon, it is actually the Penrose-like inequality. Totally, it is found 
that the electric charge Q diminishes the physical bound of en-
tropy (area) for event horizon, while it enlarges that for Cauchy 
horizon; the angular momentum J enlarges them for Cauchy hori-
zon, while it does nothing with that for event horizon; the NUT 
charge n always enlarges them for both event horizon and Cauchy 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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horizon. Besides, consider the first derivative of entropy product 
and entropy sum together, we derive the first law of thermody-
namics for event horizon and Cauchy horizon. Moreover, using the 
scaling discussion and thermodynamic relations, we also obtain 
Smarr relation of horizons. We establish this result for a large class 
of charged and rotating black holes, in Einstein gravity and higher 
derivative gravity. We also generalize the discussion to black holes 
with NUT charge. The validity of this formula, which seems to be 
universal for two-horizons black holes, gives further clue on the 
crucial role that the thermodynamic relations of multi-horizons 
play in black hole thermodynamics and understanding the entropy 
at the microscopic level.

This paper is organized as follows. In next section, we firstly 
take Kerr black hole as a detailed example, to derive the en-
tropy (area) bound. In Section 3, the discussion is generalized 
to the Kerr family, including the Kerr–Newman black hole, Kerr–
Newman black hole in Gauss–Bonnet and Kerr–Taub–NUT black 
hole. Section 4 is devoted to the conclusions and discussions. In 
Appendix A, we also derive the first law of black hole thermody-
namics and Smarr relation using the thermodynamic relations of 
multi-horizons.

2. Kerr black hole

The metric of Kerr black hole is

ds2 = −�

�
[dt − χdφ]2 + sin2 θ

�

[
(r2 + a2)dφ − adt

]2

+ �

[
dr2

�
+ dθ2

]
, (2.1)

� = r2 + a2 cos2 θ, χ = a sin2 θ, a = J

M
,

� = r2 − 2Mr + a2, (2.2)

where M and J are the mass and angular momentum, respectively. 
The roots of metric function � correspond to event horizon rE and 
Cauchy horizon rC

rE = M +
√

M2 − a2, rC = M −
√

M2 − a2. (2.3)

The Hawking temperature of event horizon is

T E = rE − rC

4π(r2
E + a2)

, (2.4)

while the Hawking temperature of Cauchy horizon meets the fol-
lowing relation [7]

TC = −T E |rE ↔ rC = rE − rC

4π(r2
C + a2)

. (2.5)

The entropy of horizons are

Si = Ai

4
= π(r2

i + a2) (i = E, C) (2.6)

and the angular velocity of corresponding horizons are

�i = a

r2
i + a2

= π J

M Si
(i = E, C). (2.7)

Based on these thermodynamic quantities, some mass-indepen-
dent and mass-dependent thermodynamic relations are intro-
duced [24], including the entropy product

S E SC = 4π2 J 2, (2.8)

the entropy sum
S E + SC = 4π M2, (2.9)

the entropy minus

S E − SC = 8π MT E S E = 8π MTC SC , (2.10)

and the sum of entropy inverse

1

S E
+ 1

SC
= M2

π J 2
. (2.11)

Other useful thermodynamic relations, the sum of angular velocity 
and relation of temperature and entropy are

�E + �C = M

J
, (2.12)

T E S E = TC SC (2.13)

respectively.
Actually, this relation (2.13) and entropy product are really use-

ful of providing some evidence for a CFT description of the corre-
sponding microstates. (See [14,15] and [7,30–35], respectively.) In 
what follows, we present the further application of other thermo-
dynamic relations of multi-horizons in black hole thermodynamics.

We consider the entropy (area) bound. However, in order to 
avoid naked singularity, one must introduce the famous Kerr 
bound M ≥ a, i.e. M2 ≥ J . As rE ≥ rC , one can find S E ≥ SC ≥ 0. 
Then the entropy product (2.8) leads to

S E ≥ √
S E SC = 2π J ≥ SC ,

and the entropy sum (2.9) results in

4π M2 = (S E + SC ) ≥ S E ≥ (S E + SC )

2
= 2π M2 ≥ SC .

Totally, we get the entropy bound for event horizon and Cauchy 
horizon

S E ∈ [2π M2,4π M2], SC ∈ [0,2π J ], (2.14)

where the Kerr bound is used. Besides, the area entropy (2.6) leads 
to the area bound√

AE

16π
∈

[
M√

2
, M

]
,

√
AC

16π
∈

[
0,

√
J

2

]
, (2.15)

where the upper bound of area for event horizon is actually the 
exact Penrose inequality which is the first geometrical inequality 
of black hole [36].

We have derived the entropy (area) bound for Kerr black hole. 
Straightforwardly this procedure could be extended to the Kerr-
family black holes due to the similar solution structure.

3. Generalize to Kerr black hole family

In this section, we generalize the discussion about entropy 
bound to Kerr black hole family, including the Kerr–Newman black 
hole, Kerr–Newman black hole in Gauss–Bonnet gravity and Kerr–
Taub–NUT black hole. One can expect that this formula always 
works well for the black holes with two horizons. We also derive 
the first law of black hole thermodynamics and Smarr relation us-
ing the thermodynamic relations of multi-horizons in Appendix A, 
which is consistence with known results in previous literature.
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3.1. Kerr–Newman black hole

Adding the electric charge to the discussion, we can consider 
the Kerr–Newman black hole, which has the metric (2.1) with dif-
ferent metric function

�(r) = r2 − 2Mr + a2 + Q 2. (3.1)

The event horizon rE and Cauchy horizon rC locate at the zeros 
of �(r)

rE = M +
√

M2 − a2 − Q 2, rC = M −
√

M2 − a2 − Q 2. (3.2)

Where the electric potential for event horizon and Cauchy horizon 
are simplified as

	E = Q rE

r2
E + a2

, 	C = Q rC

r2
C + a2

. (3.3)

The Hawking temperature of event horizon and Cauchy horizon 
still behave as Eq. (2.4) and Eq. (2.5), while the corresponding 
entropy and angular velocity of horizons are also the same with 
Eq. (2.6) and Eq. (2.7), respectively. For this case, thermodynamic 
relations are modified by the electric charge [18,22]. For example, 
the mass-independent entropy product becomes S E SC = π2(4 J 2 +
Q 4); and the entropy sum turns to S E + SC = 2π(2M2 − Q 2). 
Other relations still keep the same form with that for Kerr black 
hole, including the entropy minus Eq. (2.10) and thermodynamic 
relation of temperature and entropy (2.13).

The existence of black hole horizons leads to the Kerr-like 
bound M2 − Q 2 − a2 ≥ 0, or working in terms of J as it is bet-
ter to rephrase this as M4 − M2 Q 2 − J 2 ≥ 0. This results in the 
relation M2 ≥ Q 2+√

Q 4+4 J 2

2 . Similarly, the entropy product leads to

S E ≥ π

√
Q 4 + 4 J 2 ≥ SC ,

and the entropy sum gives

2π(2M2 − Q 2) ≥ S E ≥ π(2M2 − Q 2) ≥ SC .

Consider the above bound and Kerr-like bound together, we get the 
entropy bound for event horizon and Cauchy horizon

S E ∈
[

2π M2,4π M2
]

×
(

1 − Q 2

2M2

)
,

SC ∈
[

0,2π J

]
×

√
1 + Q 4

4 J 2
(3.4)

and the corresponding area bound√
AE

16π
∈

[
M√

2
, M

]
×

√
1 − Q 2

2M2
,

√
AC

16π
∈

[
0,

√
J

2

]
×

(
1 + Q 4

4 J 2

)1/4

. (3.5)

Part of which are consistent with that in [6]. Hence, for gravity 
with Maxwell source, one can find that the electric charge Q di-
minishes the physical bound of entropy (area) for event horizon, 
while it enlarges that for Cauchy horizon. When one consider the 
pure gravity, i.e. the electric charge is vanishing, the upper bound 
of area for event horizon degenerates to the exact Penrose inequal-
ity of black hole [36].

One can focus on the degenerated case a = 0 of the Kerr–
Newman black hole, i.e. the Reissner–Nordström black hole. Thus 
we can find the entropy product reduces to S E SC = π2 Q 4, and 
the entropy sum becomes S E + SC = 2π(2M2 − Q 2). The Kerr-like 
bound is M ≥ Q . The entropy (area) bound for event horizon and 
Cauchy horizon are simplified as

S E ∈
[

2π M2,4π M2
]

×
(

1 − Q 2

2M2

)
, SC ∈

[
0,π Q 2

]
,

(3.6)

and√
AE

16π
∈

[
M√

2
, M

]
×

√
1 − Q 2

2M2
,

√
AC

16π
∈

[
0,

Q

2

]
, (3.7)

respectively. Comparing with that in Kerr–Newman black hole, 
one can find that the angular momentum J enlarges the physical 
bound of entropy (area) for Cauchy horizon, while it does noth-
ing with that for event horizon. The upper bound of area for event 
horizon can be seen as Penrose-like inequality.

3.2. Kerr–Newman black hole in Gauss–Bonnet theory

Consider Kerr–Newman black hole in Gauss–Bonnet theory 
[25–29], which the Gauss–Bonnet term appears in the Lagrangian, 
i.e.

L = 1

16πG

∫
d4x

√−g

(
R + α(Rμνγ δ Rμνγ δ − 4Rμν Rμν + R2)

)

− 1

4

∫
d4x

√−g F μν Fμν,

where α is the Gauss–Bonnet constant. The metric (2.1) and metric 
function (3.1) do not change and the ADM charges are not modified 
in asymptotical flat spacetime [18]. The event horizon and Cauchy 
horizon locate as the same as Eq. (3.2). The angular momentum 
and electric potential behave as Eq. (2.7) and Eq. (3.3). However, 
there is a shift for the entropy of horizons

S E = π(r2
E + a2 + 4α) = S0

E + α′,
SC = π(r2

C + a2 + 4α) = S0
C + α′. (3.8)

Where S0
E and S0

C are the entropies of Kerr–Newman black hole re-
spectively and α′ = 4πα. Straightforward, we can get the entropy 
product and entropy sum accordingly

S E SC = S0
E S0

C + α′(S0
E + S0

C ) + α′2

= π2(4 J 2 + Q 4) + 2πα′(2M2 − Q 2) + α′2, (3.9)

S E + SC = (S0
E + S0

C ) + 2α′

= 2π(2M2 − Q 2) + 2α′. (3.10)

Kerr-like bound is also valid here for the existence of the black 
hole and gives 

√
4 J 2 + Q 4 ≤ 2M2 − Q 2. Then we find

π2(4 J 2 + Q 4) + 2πα′(2M2 − Q 2) + α′2 ≤ (π(2M2 − Q 2)

+ α′)2,

which is useful for considering entropy bound as follow. We have

SC ≤ √
S E SC =

√
π2(4 J 2 + Q 4) + 2πα′(2M2 − Q 2) + α′ 2

≤ S E ,

SC ≤ S E + SC

2
= π(2M2 − Q 2) + α′ ≤ S E ≤ SC + S E

= 2(π(2M2 − Q 2) + α′).
Thus, the entropy bound of event horizon and Cauchy horizon are 
also modified further by the parameter α following the same pro-
cedure
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SC ∈
[

0,

√
π2(4 J 2 + Q 4) + 2πα′(2M2 − Q 2) + α′ 2

]
,

S E ∈
[
π(2M2 − Q 2) + α′, 2(π(2M2 − Q 2) + α′)

]
. (3.11)

Since the Gauss–Bonnet term in Lagrange does not effect the met-
ric in 4-dimensional spacetime [18], the area of horizons is simi-
larly to Kerr–Newman black hole.

3.3. Kerr–Taub–NUT black hole

Black holes with NUT charge [40,41] is a vacuum solution of 
Einstein equation with the NUT parameter n. This NUT charge or 
dual mass has an intrinsic feature in General Relativity, which is 
the gravitational analogue to a magnetic monopole in Maxwell’s 
electrodynamics [42]. For this case, the metric is slightly modified 
as

ds2 = −�

�
[dt − χdφ]2 + sin2 θ

�

[
(r2 + a2 + n2)dφ − adt

]2

+ �

[
dr2

�
+ dθ2

]
,

� = r2 + (n + a cos θ)2, χ = a sin2 θ − 2n cos θ, a = J

M
,

� = r2 − 2Mr + a2 − n2,

where the horizons locate at rE = M + √
M2 + n2 − a2, rC = M −√

M2 + n2 − a2. The area entropy behaves as Si = π(r2
i + a2 + n2)

(i = E, C). The temperatures of horizons are T E = rE −rC

4π(r2
E +a2+n2)

and TC = rE −rC

4π(r2
C +a2+n2)

. Here we also choose the positive tempera-

ture for horizons. Thus the entropy product and entropy sum [21]
can be derived as S E SC = 4π2( J 2 + n2(M2 + n2)) and S E + SC =
4π(M2 + n2), respectively.

For Kerr–Taub–NUT black hole, the Kerr-like bound is M2 +n2 −
a2 ≥ 0, or in the form of angular momentum M4 + n2 M2 − J 2 ≥ 0, 
or equivalently M2 ≥ −n2+√

n4+4 J 2

2 . Using this bound together with 
entropy product and sum, we obtain the entropy bound of event 
horizon and Cauchy horizon for Kerr–Taub–NUT black hole

S E ∈
[

2π M2,4π M2
]

×
(

1 + n2

M2

)
,

SC ∈
[

0,2π J

]
×

√
1 + n2

J 2
(M2 + n2), (3.12)

and the area bound√
AE

16π
∈

[
M√

2
, M

]
×

√
1 + n2

M2
,

√
AC

16π
∈

[
0,

√
J

2

]
×

(
1 + n2

J 2
(M2 + n2)

)1/4

. (3.13)

Here the NUT charge always enlarges the physical bound of en-
tropy (area) for both event horizon and Cauchy horizon, comparing 
with that of Kerr black hole.

4. Conclusions

In this paper, we have revisited the entropy product, entropy 
sum and other thermodynamic relations of multi-horizons of 
charged and rotating black holes. Based on the entropy product 
and entropy sum, we find entropy (area) bound of event horizon 
and Cauchy horizon. We have established this result for a large 
class of charged and rotating black holes, in Einstein gravity and 
higher derivative gravity. We also generalize the discussion to black 
holes with NUT charge. The validity of this formula, which seems 
to be universal for two-horizons black holes, gives further clue on 
the crucial role that the thermodynamic relations of multi-horizons 
play in black hole thermodynamics and understanding the entropy 
at the microscopic level. Especially for the upper bound of area 
for event horizon, it is actually the Penrose-like inequality of black 
holes. Totally, it is found that the electric charge Q diminishes the 
physical bound of entropy (area) for event horizon, while it en-
larges that for Cauchy horizon; the angular momentum J enlarges 
that for Cauchy horizon, while it does nothing with that for event 
horizon; the NUT charge always enlarges the physical region of 
both event horizon and Cauchy horizon.

It is also interesting to generalize this discussion to black holes 
with different topology of the horizons, e.g. black ring. One can 
also focus on black holes in (A)dS spacetime, for which the first 
law of black hole thermodynamics and Smarr relation are still open 
questions. An interesting idea is treating the cosmological constant 
as a dynamic variable (see, e.g. [39,43–49]). This may be possibly 
checked following the similar procedure in this paper. Besides, as 
the entropy sum of (A)dS black holes are always solely dependent 
on the cosmological constant [12,13,16,20,23], one can expect that 
the area bound will be solely related to the cosmological radius. 
Hence the area bound may be the geometrical inequality of black 
holes. These are all left to be the future tasks.
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Appendix A. The first law of black hole thermodynamics and 
Smarr relation

The thermodynamics laws are fundamental in black hole 
physics. Using the thermodynamical relations, here we consider 
the first derivative of entropy product and entropy sum together, 
we can get the first law of thermodynamics for event horizon and 
Cauchy horizon. Smarr relation of horizons could be also obtained 
by the scaling discussion and using thermodynamic relations.

A.1. Kerr–Newman black hole

We demonstrate a detail derivation of the first law and Smarr 
relation of Kerr black hole. Consider the first derivative of entropy 
product and entropy sum together again, we obtain

SC dS E + S E dSC = 4π2(2 Jd J + Q 3dQ ),

dS E + dSC = π(8 MdM − 4Q dQ ),

which lead to

dM = S E − SC

8π M S E
dS E + π J

M S E
d J +

(
Q

2M
+ π Q 3

2M S E

)
dQ ,

dM = − S E − SC dSC + π J
d J +

(
Q + π Q 3 )

dQ .

8π M SC M SC 2M 2M SC
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Using the entropy minus relation and angular velocity, we get the 
first law of thermodynamics for event horizon and Cauchy horizon 
of Kerr–Newman black hole [18]

dM = + T E dS E + �E d J + 	E dQ , (A.1)

dM = − TC dSC + �C d J + 	C dQ . (A.2)

We can introduce the sum of angular velocity and electric potential

�E + �C = 2 J

M

(2M2 − Q 2)

(4 J 2 + Q 4)
,

	E + 	C = Q

M
+ Q 3

M

(2M2 − Q 2)

(4 J 2 + Q 4)
. (A.3)

For Smarr relation of event horizon, we consider the scaling 
argument as well. As M scales as [length]1, S E scales as [length]2, 
J scales as [length]2 and Q scales as [length]1, we find [18]

M = 2(T E S E + �E J E) + 	E Q . (A.4)

Again assuming that

M = a TC SC + b�C J + c	C Q , (A.5)

where a, b and c are undetermined coefficients. Then inserting the 
relations (2.13), (A.3) successively, we can find

2M = 2(+ T E S E + �E J ) + 	E Q + (a TC SC + b�C J + c	C Q )

= (2 + a) TC SC + (b − 2)�C J + (c − 1)	C Q + 2M

implying a = −2, b = 2, c = 1. Finally, we get Smarr relation for 
the Cauchy horizon of Kerr–Newman black hole [18]

M = 2(− TC SC + �C J ) + 	C Q . (A.6)

When the angular momentum parameter a = 0 the Kerr–Newman 
solution degenerate to Reissner–Nordström solution. The first law 
of black hole thermodynamics becomes

dM = + T E dS E + 	E dQ , dM = − TC dSC + 	C dQ , (A.7)

where the electric potential are Coulomb potential: 	E = Q
rE

, 	C =
Q
rC

. Furthermore, Smarr relation of Reissner–Nordström black hole 
behave as

M = 2T E S E + 	E Q , M = −2TC SC + 	C Q . (A.8)

A.2. Kerr–Newman black hole in Gauss–Bonnet theory

Note that α should be considered as a thermodynamic variable 
here. Hence, the similar first derivative of entropy product and en-
tropy sum lead to the first law of thermodynamics of event horizon 
and Cauchy horizon

dM = + T E dS E + �E d J + 	E dQ + �E dα, (A.9)

dM = − TC dSC + �C d J + 	C dQ + �C dα, (A.10)

where the thermodynamic potential conjugate to α is defined to 
be �E ≡ (

∂M
∂α

)
S E , J ,Q = −4π T E , �C ≡ (

∂M
∂α

)
SC , J ,Q = +4π TC .

Then consider Smarr relation of event horizon, we use the scal-
ing argument as well. Here M scales as [length]1, S E scales as 
[length]2, J scales as [length]2, Q scales as [length]1 and α scales 
as [length]2, we find

M = 2(T E S E + �E J E) + 	E Q + 2�Eα. (A.11)

For the one of Cauchy horizon, we assume that
M = a TC SC + b�C J + c	C Q + d�Cα,

where a, b, c and d are undetermined coefficients. Considering 
the relation of entropy and temperature T E S E = TC SC , the sum 
of angular velocity, the sum of electric potential and the sum of 
thermodynamic potential successively, we can find

2M = 2(+T E S E + �E J ) + 	E Q + 2�Eα

+ (aTC SC + b�C J + c	C Q ) + d�Cα

= (2 + a)TC SC + (b − 2)�C J + (c − 1)	C Q + (d − 2)�Cα

+ 2M,

implying a = −2, b = 2, c = 1, d = 2. Finally, we get Smarr rela-
tion for the Cauchy horizon of Kerr–Newman black hole in Gauss–
Bonnet theory

M = 2(− TC SC + �C J ) + 	C Q + 2�Cα. (A.12)

The above first law of thermodynamics (A.9), (A.10) and Smarr re-
lation (A.11), (A.12) for the event horizon and the Cauchy horizon 
of Kerr–Newman black hole in Gauss–Bonnet theory are consistent 
with that in [18,37–39].

A.3. Kerr–Taub–NUT black hole

Using the first derivative of entropy product and entropy sum 
together, we obtain the first law of thermodynamics of event hori-
zon and Cauchy horizon [21]

dM = + T E dS E + �E d J + 	n
E dn, (A.13)

dM = − TC dSC + �C d J + 	n
C dQ , (A.14)

where the angular velocity is �E = a
2MrE +2n2 , �C = a

2MrC +2n2 , and 
the Taub–NUT potential conjugate to NUT charge n is defined to be 
	n

E ≡ (
∂M
∂n

)
S E , J , 	n

C ≡ (
∂M
∂n

)
SC , J .

Besides, the scaling argument is as follows: M scales as 
[length]1, S E scales as [length]2, J scales as [length]2 and n scales 
as [length]1, which leads to

M = 2(T E S E + �E J E) + 	n
En. (A.15)

For the Cauchy horizon, one can get

M = 2(−TC SC + �C JC ) + 	n
C n. (A.16)

Note the discussion can be easily generalized to the case of Kerr–
Newman–Taub–NUT black hole and reduced to that for Taub–NUT 
black hole.
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