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Abstract

Machine learning has emerged as a promising method for predicting breast cancer using
quantum computation techniques. Quantum machine learning algorithms, such as
quantum support vector machines (QSVMs), are demonstrating superior efficiency and
economy in tackling complex problems compared to traditional machine learning
methods. When compared with classical support vector machine, the quantum machine
produces remarkably accurate results. The suggested quantum SVM model in this study
effectively resolved the binary classification problem for diagnosing malignant breast
cancer. This work introduces an enhanced approach to breast cancer diagnosis by inte-
grating QSVM with elitist non-dominated sorting genetic optimization (ENSGA),
leveraging the strengths of both techniques to achieve more accurate and efficient clas-
sification results. ENSGA plays a crucial role in optimising QSVM parameters, ensuring
that the model attains the best possible classification accuracy while considering multiple
objectives simultaneously. Moreover, the quantum kernel estimation method demon-
strated exceptional performance by achieving high accuracy within an impressive
execution time of 0.14 in the IBM QSVM simulator. The seamless integration of
quantum computation techniques with optimisation strategies such as ENSGA highlights
the potential of quantum machine learning in revolutionising the field of healthcare,
particularly in the domain of breast cancer diagnosis.
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learning (artificial intelligence), quantum computing, quantum computing techniques

algorithms are used and present a numerical experiment. In
addition, during classification, the algorithm's superiority over

Quantum machine learning (QML) is a rapidly expanding and
captivating domain that has the potential to revolutionise
various realms of science and technology. With the advent of
quantum computing, artificial intelligence, natural language
processing, material science, and machine learning applications
have become even more promising, as quantum algorithms
hold the promise of delivering exponential enhancements
compared to classical algorithms [1, 2]. Many proposals have
been made to use variational quantum algorithms to handle
important but computationally difficult intermediate-size
quantum devices that are Variational

noisy. quantum

previous approaches is evident through the utilisation of very
few qubits, shorter circuits, and very simple measurement
requirements.

Numerous  quantum-kernel-based machine learning
methods will soon be appropriate for quantum applications.
Some of the popular ones include quantum kernel estimators
(QKE), quantum support vector regression (QSVR), and
quantum neural network (QNN). These algorithms can be
used in noisy intermediate scale quantum (NISQ) as they do
not require expensive operations. Still, the training complexity

of the time is even higher than that of classical SVM and
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Quantum-boosted Support Vector Machine (SVM). The two
prevailing and interconnected methods for addressing classi-
fication tasks using quantum computers are variational quan-
tum classification (VQC).

The kernel function plays a pivotal role in support vector
machines (SVMs), which are widely used for classification
tasks. It functions as a metric to determine the degree of
similarity between two data points in a high-dimensional
feature space. The data is converted into a feature space
where a linear classifier may successfully distinguish between
several classes by using the kernel function. This method works
with a range of kernel functions, such as the radial basis
function (RBF) and the linear kernel. In the context of quan-
tum computing, the quantum kernel is computed using a
quantum circuit. The suggested strategy offers numerous
benefits. Initially, it combines the benefits of both methods to
enhance QSVM performance [3]. The proposed method for
quantum SVM combines the angle-embedding kernel with the
variational circuit to improve QSVM performance.

Due to quantum parallelism and entanglement, QSVMs
can handle high-dimensional data more quickly and accurately,
possibly providing greater computational speed and accuracy.
This makes them especially useful for applications such as
financial modelling and medical diagnostics that need intricate
pattern detection and optimisation. In certain tasks, QSVMs
can perform better than regular SVMs by utilising the special
qualities of quantum mechanics, yielding faster and more ac-
curate results.

Wortldwide, the majotity of women's cancet-related deaths
occur from breast cancer; approximately one in eight women
suffer from breast cancer. There are a lot of chances to address
this issue at an early stage by analysing the report with QSVM.
Quantum machines can enhance the computational perfor-
mance of the support vector machine (SVM).Noisy
intermediate-scale quantum computing (NISQ) have hardware
limitations and some major error problems. As a result, this
paper presents a quantum kernel estimation technique that
mitigates measurement error and tests it on IBM quantum
processors with the Wisconsin Breast Cancer database.

By utilising quantum parallelism, quantum machine
learning (QML) offers several benefits over classical tech-
niques, such as improved optimisation, faster processing, and
superior handling of high-dimensional data. It enhances
pattern recognition by utilising quantum concepts such as
entanglement and interference. With potential applications in
healthcare, finance, and cybersecurity, the developing discipline
of QML investigates new quantum algorithms and hybrid
quantum-classical techniques.

The remaining research is conducted as follows: The
background of QSVM and multi-objective optimisation us-
ing genetic algorithms in the context of reviewed papers is
covered in Section 2, the research methodology is described
in Section 3, the computational result in cancer prediction
and detection using the proposed methodology are covered
in Section 4, the paper is concluded in Section 5, and po-
tential directions for future research are highlighted in Sec-
tion 0.

2 | RELATED WORKS

Support vector machines (SVMs) are remarkable and highly
supervised learning algorithm used for clinical data classifica-
tion and regression analysis. When SVMs were first created in
the early 1960s, Vladimir Vapnik and associates took a fresh
theoretical and applied approach to pattern identification.
However, it was not until the 1990s that SVMs gained wide-
spread recognition within the machine learning community.
This was primarily made possible by Corinna Cortes’ and
Vladimir Vapnik's extremely hard and innovative research at
AT&T Bell Laboratories, which produced the fascinating
concept of maximum-margin hyperplanes. Through the max-
imising of the margin between those data points, these
maximum-margin decision boundaries extremely successfully
segregate data points belonging to binary classes [4].

The eatly works in QSVM proposed an algorithm for
classification that offers an exponential acceleration compared
to traditional algorithms [5]. Another crucial feature of QSVM
is its resilience to noise QML handwriting algorithm on the
quad-qubit test bench. The quantum speedup is immensely
beneficial in addressing data challenges [6]. Supervised QML,
such as QSVM [7, 8], can exhibit resilience to noise, thereby
enhancing their applicability in real-world application and their
consequences. Since then, numerous investigations have been
carried out to enhance the efficiency of QSVM, with one such
approach being the utilisation of kernel-based quantum feature
maps approach [9]. An additional captivating study delves into
the possible application of quantum state encoding as a non-
linear characteristic mapping, facilitating effective computa-
tions in a vast Hilbert space with utmost efficiency. It puts
forward two methodologies for constructing a quantum-based
model for classification, exemplified by many benchmark
datasets [10].

Schuld et al. conducted a study to examine how different
strategies for encoding quantum data affect the effectiveness of
quantum circuits in approximating functions and their pa-
rameters [11]. The capacity of the quantum models describe all
conceivable necessary sets of Fourier coefficients. Conse-
quently, these models can work as universal function approx-
imators provided that the accessible frequency has a suitable
wide spectrum. This finding holds great significance in the
development of QML algorithms for addressing intricate data
challenges [12]. The link between the principles of quantum
computing and kernel approaches helps to replace several
fault-tolerant models with a general support vector machine
(SVM), that makes use of a kernel for calculating separation
between quantum states that encode data. This approach
significantly improves the performance and potential to
considerably simplify QML algorithms.

Quantum optimisation algorithm aiming to enhance the
efficiency of QSVM on extensive real-world applications [13].
These scalability advancements associated with QSVM posi-
tioned it as an appropriate solution for tackling intricate use
case utilised in domains, such as clinical informatics, e-
commerce, face recognition, and material physics. These
contribution [14] demonstrate that quantum machine learning
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models implemented on quantum computers outperform their
classical counterparts. These findings demonstrate that quan-
tum machine learning models implemented on quantum
computers outperform their classical counterparts. The goal of
QSVM is to surpass this constraint by utilising the funda-
mentals of quantum computing. The field of QSVM has un-
dergone extensive research over time, delving into different
theoretical and practical facets of the algorithm [15].
Numerous techniques have been devised by researchers to
improve the efficiency of QSVM, such as the creation of
several qubits, quantum kernels, measurement quantum feature
mapping principles, quantum estimation circuits, and quantum
optimisation techniques.

A class of evolutionary algorithms known as genetic sort-
ing algorithms (GAs) was based on the theory of adaptive
systems [16]. The emphasis on natural selection and evolution
forms the foundation of these algorithms' operation. They are
probability-based search techniques intended to operate in
spaces where states are represented by strings [17]. Typically,
they are employed to identify superior solutions for issues such
as choosing crucial features or ideal parameters. The execution
of genetic algorithms is commonly understood to involve five
primary functions [18]: creating the initial population, assessing
the population's "fitness," choosing the best solution, crossing
over between the solutions, and potentially altering the popu-
lation. The numerous recent advancements in genetic algo-
rithms and potential future research directions were
expounded [19, 20]. According to the research, GAs that used
binary encoding had extraordinarily high computational
complexity, but GAs that used real-world encodings frequently
experienced premature convergence. To ensure that no fitness
function can improve at the expense of the others, multi-
objective GAs, or MOGAs, rely on several fitness functions,
frequently through an optimal Pareto front [21, 22].

This work presents an enhanced quantum-inspired grey
wolf optimization (QIGWO) algorithm-optimised support
vector machine (SVM) breast cancer detection approach.
When compared to conventional techniques, the optimised
SVM model exhibits better accuracy, sensitivity, and specificity.
The results demonstrate its potential for clinical use in the
diagnosis of breast cancer [29]. In order to enhance quantum
support vector machines (QSVM) using the combination of
classical and quantum computing methods, this research study
investigates hybrid quantum technologies. The hybrid
approach uses both classical optimisation and quantum paral-
lelism to improve computational accuracy and efficiency [30].

A quantum support vector machine (QSVM) for multi-
class classification issues is presented in this study. The au-
thors show that when compared to conventional techniques,
QSVM offers considerable gains in classification accuracy and
processing efficiency. This research study offers a theoretical
framework and useful implementation tips for applying QSVM
in challenging multi-class situations [31]. The NSGA-II-DL
framework, which combines deep learning and the NSGA-II
metaheuristic algorithm for optimal feature selection in
HER2 breast cancer classification, is presented in this paper.
The suggested approach chooses the most essential elements

to increase classification efficiency and accuracy. The results
show that the hybrid technique has tremendous potential in
medical diagnostics, as evidenced by the large improvements in
HER?2 classification performance [32].

The improved fast non-dominated solution sorting genetic
algorithm proposed in this research may effectively address
multi-objective optimisation problems. The approach is
appropriate for challenging optimisation jobs since it increases
sorting speed and solution quality [33]. A refined NSGA-II-
based feature selection technique designed for high-
dimensional classification applications is presented in this
work. By efficiently choosing pertinent features from huge
datasets, the technique enhances classification performance
[34]. In order to improve the accuracy of breast cancer
detection, this work investigates multi-objective hyper param-
eter optimisation for gradient-boosting algorithms. The
enhanced model has enhanced capability in detecting breast
cancer, indicating the efficacy of this methodology [35].

3 | PROPOSED METHODOLOGY

To work with supervised learning, it is necessary to handle
large volumes of labelled data. Subsequently, extensive memory
resources are required to train our algorithms. To address this
challenge, hardware capable of simultaneously managing mul-
tiple sets of information is required. The most promising so-
lution to this issue appears to lie in quantum mechanical
systems [23], as they exist in high-dimensional Hilbert spaces.
Quantum computing and its advancements in contrast to
classical computers shall commence by elucidating the core
concepts of qubits, which serve as the foundational compo-
nents of quantum computers. Figure 1 shows the proposed
methodology framework.

3.1 | Objectives

1. The ZZ feature map, known for its flexibility and expres-
siveness, adeptly encodes complex relationships among
clinical and genetic features into quantum states. Leveraging
its capabilities within the quantum kernel method enhances
the detection of subtle patterns crucial for accurate breast
cancer classification.

2. PCA reduction can mitigate the curse of dimensionality,
enhancing the efficiency of classification algorithms in
analysing complex datasets.

3. Utilising quantum properties superposition and entangle-
ment, the ZZ feature map represents breast cancer data in
quantum states, enabling simultaneous exploration of mul-
tiple data representations. This quantum parallelism offers
potential advantages over classical methods in specific
classification tasks, harnessing the power of quantum
computing for enhanced analysis.

4. Integration of enhanced QSVMe-elitist non-dominated
sorting genetic optimization algorithm enhances the quan-
tum kernel method, potentially outperforming classical
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methods in breast cancer classification accuracy. Quantum
algorithms' capacity to unveil non-linear data patterns and
correlations offers a promising avenue for achieving more
precise classification outcomes compared to classical
approaches.

Support vector machine (SVM) [27] is commonly used for
data classification, dividing it into two distinct sets. By utilising
a training set of data, it becomes possible to identify a line or
hyperplane that effectively separates these data sets. The
QVSM [24] algorithm revolves around two crucial compo-
nents: feature map and kernel. Unitary transformation opera-
tions on input qubit sets and the encoding of classical quantum
data in quantum space are common components of quantum
algorithms and ultimately the measurement of the qubit(s) state
to derive a classical output. Numerous researchers have
showcased utilising qubits in both experimental and theoretical
implementations to solve machine learning problems [36].

3.2 | Data collection

The Wisconsin Breast Cancer dataset, which was obtained
from the UCI repository, was utilised for this project [28],
which comprises measurements of breast tissue obtained

through medical imaging techniques and includes various
metrics. The main objective is to differentiate between benign
(non-cancerous) and malignant (cancerous and hazardous)
tumours by determining the nature of a tumour. The dataset
from sci-kit-learn consists of 569 samples, with 30 real,
positive features, including attributes related to cancer masses
such as mean radius, mean texture, mean perimeter, and more
shown in Figure 2. Out of these samples, 212 instances are
labelled as “malignant,” while 357 instances are labelled as

"benign”. Table 1 shows the breast cancer dataset
characteristics.

3.3 | Data pre-processing

Before QSVM classification, the data undergoes pre-

processing which includes scaling and normalisation principal
component analysis (PCA). Numerous machine learning al-
gorithms are highly influenced by the scale of the input fea-
tures. By normalising the data, these algorithms can yield
improved results. In this min-max method of data normal-
isation, the original data undergoes a linear transformation.
The data is first analysed to determine the minimum and
maximum values, and then each value is substituted using the
formula provided.
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in(4) handling high dimensional data with fewer principal
1 (Z}L (newmax(A)—newmin(A)) components.
max (4)-min(A) This will create a visually appealing curve chart comparing
+ newmin(A) (1) classical SVM and quantum SVM accuracy across different
numbers of principal components in Figure 3.
Where:

Attribute data —> A,

Min(A) Minimum absolute values of A.

Max(A) Maximum absolute values of A.

v = old data value

v' = new data value

newmax (A) and newmin (A) =The maximum and mini-
mum values of the range, or the boundary values.

It should be emphasised that the Wisconsin breast cancer
dataset is quite complex, with more than 30 features, which
poses a challenge for processing and analysis on a quantum
computer with a limited number of qubits. To address this
issue, will initially employ PCA to reduce the dataset's
dimensionality to only four variables for the simulator and two
for the quantum computer, making the task more feasible. To
standardise features by removing the mean and scaling to unit
vatiance, PCA can be utilised to decrease the dimensionality of
features. Machine learning algorithms have evolved due to
increased computational complexity yielding remarkable out-
comes. Scaling, normalisation, and PCA in quantum compu-
tation are able to mathematically speedup QML.

Table 2 using several principal components 2, and 4, the
classical SVM achieved an accuracy rate of approximately 92%
and 95% respectively. Using 2, and 4 number of principal
components, the QSVM achieved an accuracy rate of
approximately 96% and 98% respectively.

Quantum computing allows parallel computations; paral-
lelism can lead to faster QSVM classification. Especially

radius_mean texture_mean

Number Number

6.981

2811 | 971 39.28

symmetry_mean

34 | QSVM
The QSVM algorithm is suitable for classification problems
that necessitate a feature map that cannot be efficiently
computed using classical methods. Consequently, the compu-
tational resources required for such problems are anticipated to

TABLE 1 Breast cancer dataset description.

Number Number
of of Class

instances attributes Features distribution
569 30 Radius Benign-357
Malignant-

Texture 212

Perimeter area smoothness
compactness concavity concave
points symmetry fractal dimension

TABLE 2 Accuracy compatison for PCA.

Number of principal Classical SVM Quantum SVM

components (PCA) accuracy accuracy

2 92 96

4 95 98
perimeter_mean area_mean

Number Number

43.79 188.5 143.5 2501.

fractal_dimension_mean

Number Number

0.106 0.304 0.04996

FIGURE 2 Breast Cancer Dataset mean values.

0.09744
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FIGURE 3 Comparison of classical SVM and
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exponentially increase with the problem size. QSVM addresses
this challenge by utilising a quantum processor [25, 26]. This
approach belongs to the supervised learning category, which
involves following 2 phases:

1. Training phase: The computation of quantum kernel
function.

2. Test or classification phase: To classify the correct label
from unlabelled data.

The classical computation considers a bit 0 or 1 but in
quantum computing quantum bit exist in a superposition state,
this process effectively parallelising computations, quantum
entanglement particles become exploits the correlations be-
tween qubits. This leads to a potentially exponential compu-
tational speedup. To improve the separability of data points
through this mapping, which is usually non-linear and facili-
tates classification tasks.

Using this approach, support vectors and the kernel are
computed during the training phase. The quantum computer
handles kernel evaluation, the feature space is encoded using
qubits quantum state, and the attribute mapping makes it
possible to calculate the kernel matrix quickly.

3.5 | Feature mapping

It is important to note that linear hyperplane classification is
only effective when the data is already linearly separable in its
original space. However, not all data sets meet this require-
ment. In such cases, a feature map can be used to transform
the location from a 2D plane into a higher dimension K,
allowing for the computation of an optimal hyperplane sepa-
rating the two classes. This process involves calculating the
distances between data points within the higher dimensional

Number of Principal Components (PCA)

space. When data is mapped from its input dimension into the
Hilbert space in a quantum computet, it is cast into a higher
dimensional space. The linear classification data can be effec-
tively achieved through the utilisation of a kernel-based
quantum classifier. Variational quantum circuit finds the cost
function for a given set of parameters; it is used as building
blocks for quantum machine learning models.

® state preparation stage

® model circuit

® measurement stage

® designing parametric state

The input data has been encoded. A quantum-classical
optimisation procedure outputs the eigen states of the spe-
cific Hamiltonian encoding the computational task. According
to quantum mechanics, a vector in a complex vector space with
an inner product called a Hilbert space represents the state of a
physical system. A complete or closed infinite-dimensional
inner product space is commonly referred to as a "Hilbert
space." Finite-dimensional spaces, which by definition meet the
completeness condition, are included in the term's current
usage. Feature mapping to a high-dimensional quantum feature
space, especially for quantum classifiers such as QSVM. It is
intended to improve the separability of data points in the
quantum feature space through this mapping, which is usually
nonlinear and facilitates classification tasks.

The constraint is associated with the linear progression of
traditional computing, which lacks the capability to execute
simultaneous tasks. Given that quantum mechanical systems
comprising N qubits exist within 2N dimensional Hilbert
spaces and possess finite linear operators, the most intuitive
approach to address this issue appears to be computing within
this quantum space. In QSVM, the classical data is mapped
into a Hilbert space using data-dependent parametric gates.
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The classification result is produced by processing the input
data onto a quantum state, which is then processed through a
quantum circuit of QSVM. This circuit is made up of a series
of quantum gates that manipulate the quantum data and
execute the QSVM algorithm. By measuring the circuit's
output, the classification model generated the output.

Feature Mapping Quantum function ¢(x) based on, Input
data X = (x0,%.. .,xN_l)TE R, dimensional input mapped
to quantum states as follows:

o (x)e() @

VN X if $=1{i}
v { (m—x;) (m—=x;) if S = {i,j} (3)

§ — Qubit pairs, set of & elements from ‘n’.

Qubit data points k=1,2...n Zi

The entanglement rotation operation was constructed
based on:

1/1 = exp( Z ®S sz> (4)

scCln KES

Rz—Rotation operations.
The encoding qubits used Hadamard H; Unitary Operation
produces the quantum circuit U, () resulting in feature

mapping on:

x = (xmxl, ...,xN—l)T
Ua(=) = Va(=1™" o
K(5.7) = o (=)po(5)f
=) Yagyy ™ ©

where U;E is the conjugate transpose of U, and 7 is the n x n
identity matrix.

3.6 | Quantum kernel estimations for QSVM
classification

Quantum kernel estimation techniques rely on feature map-
ping, with the primary concept being the creation of a kernel
matrix through the mapping of classical data to quantum states.

In this matrix, the entries represent the fidelity between various
feature vectors. When dealing with finite data, the inner
product of the feature vectors can be estimated by directly
considering the leap amplitudes, as the states in the feature
space are connected to the input data.

1. Encoding of classical data (dimensional data) to quantum
state data (2-dimensional Hilbert space) using a trans-
formation function based on the feature mapping circuit,
can create the quantum kernel function circuit Keo(x,y) []. By
utilising two consecutive feature mapping circuits, to
establish the kernel estimation of the quantum circuit for
the quantum initial states |On. []. Ultimately, to perform S
measurements on the circuit and document the number of
statistics Sx that yield all zeros in the obtained results.

Uo ) = exp<2@s(?) HP),Pie{Z,XX} (7)

sC[n] Kes

2. The ZZ feature map data encoding circuit from the
Qiskit circuit library is utilised to define the feature map
with feature dimension and the reps. Then, the feature
map is fed into the quantum support vector machine
along with the training data and the test data that require
classification.

Figure 4 This circuit seems to consist of two qubits, q_0
and g_1, undergoing a series of quantum operations.

1. Hadamard gate (H) applied to both qubits:
o 'This puts both qubits into a superposition of |0) and |
1) states.
2. U1 gate applied to q_0:
o This gate performs a phase rotation based on the
parameter 2.0%x[0].
3. Controlled-X (CNOT) gate with q_0 as the control and q_1
as the target:
o This gate flips the state of q_1 if q_0 is in state |1).
4. U1 gate applied to q_1:
o This gate performs a phase rotation based on the
parameter 2.0%x[1].
5. Controlled-X (CNOT) gate with q_1 as the control and q_0
as the target:
o This gate flips the state of q_0 if q_1 is in state |1).
6. Ul gate applied to q_0:
o This gate performs a phase rotation based on the
parameter 2.0%(pi - x[0])*(pi - x[1]).
7. Controlled-X (CNOT) gate with q_0 as the control and q_1
as the target:

qe: {H H vi(2.0*x[e]) |-=
L

mTarget qubit
|

[

I
>
|

g 1: { H H uvi(2.e*x[1])

U1(2.0*(pi - x[e])*(pi - x[1]))

I

X | Control qubit

FIGURE 4 ZZ feature map circuit.
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o This gate flips the state of q_1 if q_0 is in state |1).
8. Ul gate applied to q_1:

o This gate performs a phase rotation based on the
parameter 2.0%x[1].

9. Controlled-X (CNOT) gate with q_1 as the control and q_0
as the target:

o This gate flips the state of q_0 if q_1 is in state |1).

o CNOT (Controlled-NOT) gate, is a fundamental two-
qubit quantum gate in quantum computing. It's a
controlled gate, that is, its action depends on the state of
one qubit, called the control qubit, and it performs a
specific operation on another qubit, called the target
qubit, based on that control qubit's state

The sequence of operations entangles the qubits q_0 and
q_1 and applies phase rotations based on the parameters x [0]
and x [1]. The specific values of x [0] and x [1] would detet-
mine the precise effects of these gates on the quantum states.

® If the control qubit is in the state |0), the target qubit's state
remains unchanged.

e If the control qubit is in the state | 1), the target qubit's state
is flipped (i.e., |0) becomes |1) and vice versa).

77, feature map is a feature map used to encode classical
data into quantum states. It's parameterised by the feature
dimension, which likely denotes the number of features in the
dataset, and reps, which specifies the number of times the
circuit should be repeated. In this case, the feature map is
initialised with feature dimension and representations as 2, and
used linear entanglement.

3. Assess the accuracy of our QSVM in predicting the input
data for classification. Our test data contains known ground
truth values for classifying as A or B, and our trained
prediction from the training data has effectively determined
the classification of our testing data. Next, the kernel matrix
is produced and the kernel for a fresh batch of quantum
data points (test data) for QSVM classification is estimated,
it shown in Figure 5.

QSVMs have the advantage of faster training times
compared to classical SVMs, to enhanced computational

capabilities of quantum computers. This attribute proves
particularly valuable when dealing with extensive machine
learning tasks, where reducing training time is crucial, and it's
tuned by Algorithm 1. Quantum machine learning algorithms
can process large amounts of data much more efficiently than
traditional machine learning algorithms by utilising the power of
quantum computing; this leads to faster and more accurate re-
sults. Moreover, by recognising more subtle patterns in the data,
quantum machine learning algorithms can improve the accuracy
of health care tasks, potentially solving the medical image seg-
mentation and classification to identify and predict cancers.

3.7 | Enhanced QSVM-elitist non-
dominated sorting genetic optimisation
algorithm (QSVM-NDSGOA)

To solve multi-objective optimisation problems, such as the
dual problem in QSVM classification, the elitist non-
dominated sorting genetic algorithm (NSGA-II) is an effec-
tive optimisation technique. By optimising kernel functions and
fine-tuning parameters, NSGA-II can help improve the per-
formance of QSVM classifiers by effectively exploring the
solution space and capturing trade-offs between competing
objectives.

Algorithm 1. QSVM-Elitist non-dominated sorting
genetic optimisation algorithm

Input data: Breast cancer training, label
data points (Malignant, Benign), Qubits
The input data can be encoded as a quantum
state by utilising a quantum feature map.
Mapping the data into a distinct hyperspace
Apply a quantum gate to execute sentiment
classification on the provided input data.
Determine the quantum gate's output
measurement.

Computation of Quantum kernel estimation
using equation (a)

Optimisation of the dual problem

t t
Lp(a) = 21 o3 .Zlyi Vi Qi Qg K(?i?j)
i= ij=
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kernel K(?i?j) of QSVM is determined by

allocating certain values to the parametric
quantum programme and analysing the counts
obtained after execution.

Computation of kernel Matrix of new data
points concerning the support vectors

t
(?) = sign< M yia] K(?l?) +b>
iz

S = Predicted label

kernel matrix contains the fidelities
between various feature vectors.
Computation of multi-objective
optimisation methodology

Elitist Non-Dominated sorting genetic
algorithm

Merge parent Pt and offspring population Qt
R, =P, UQ,

Pt = Parent

Ot = offspring Population

Rt = non-dominated shorting

Generate new population

Piy1 = @andseti =1

Until|Peys| + |F;l <N,

Compute non-dominated sorting, merge new
parent population and fronts Fi

Piy1=P: 1 UF; and increase 1

Compute crowding distance sorting
(N=|Peyq |) of Fiy in Peyq

Generate offspring population

Qeq1 from Pryy

Crowded distance selection, crossover,
mutation operators

Find the maximum generation

Selection of suitable individuals to forma
new parent

Optimal feature selection

Calculate the Accuracy of QSVM

Output the predicted Accuracy

a. Quantum Approach:

The input data can be encoded as a quantum state by
utilising a quantum feature map.

® Mapping the data into a distinct hyperspace

® Apply a Hadamard gate to execute classification on the
provided input data

® Determine the quantum gate's output measutement. Then
Computation of Quantum kernel estimation using
equation (8)

(b) Optimisation process across quantum
* Computation of kernel Matrix of new data points with
respect to the support vectors

* kernel matrix contains the fidelities between wvarious
feature vectors.

(c) Elitist non-dominated sorting genetic algorithm

* Merge parent and offspring population

* Crowded distance selection, ctrossover, mutation
operators

* Find the maximum generation Selection of suitable in-
dividuals to form new parent Optimal feature selection

* Calculate the Accuracy of QSVM Output the predicted
Accuracy

Algorithm 1 is described as follows: encode input breast
cancer training data and labels into a quantum state using a
quantum feature map, enabling classification in a distinct hy-
perspace. Then apply a quantum gate for sentiment classifi-
cation, measure its output, and compute the quantum kernel
estimation using specified equations. Utilise elitist non-
dominated sorting genetic algorithm for multi-objective opti-
misation, optimising the dual problem by analysing quantum
gate outputs. Iteratively generate and evolve populations,
merging parent and offspring populations, computing non-
dominated sorting and crowding distance, selecting in-
dividuals, and optimising feature selection until reaching
maximum generations. Finally, evaluate QSVM accuracy and
output predicted accuracy.

4 | PERFORMANCE EVALUATION

Quantum support vector machines (QSVMs) have the po-
tential to attain enhanced accuracy levels since they can employ
quantum feature maps to map data into more expansive feature
spaces. Classical SVM: Due to restrictions in classical feature
space mapping, classical SVMs may not be as accurate as they
could be, particularly when working with high-dimensional and
complicated datasets.

Evaluation measures that have been previously defined,
such as recall, F1 scores, classification accuracy, and precision,
can be used to gauge how effective the proposed method is.
True positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) are all included in the "confusion
matrix" that forms the basis of these measures. Next, the
kernel matrix is produced and the kernel for a fresh batch of
quantum data points (test data) for QSVM classification is
estimated.

Classification accuracy calculates the percentage of prop-
erly predicted examples in the dataset relative to all instances to
assess the overall accuracy of a classification model.

Accuracy: It is a statistical measure used to assess a clas-
sification model's overall accuracy. The correctly predicted
instances relative to the total number of instances in the dataset
is quantified.

) B TP+ TN -
U = TP L TN + FP+ FN
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.. A . . TABLE 3 Accuracy comparison of prediction model.

Precision: It is a measure of how accurately a classification
model produces positive forecasts. In comparison to the total Prediction model Qubits 2 4 6 8 10
number of instances projected as positive, it assesses the per- Classical SVM SVM (linear) 0.85 091 093 095 095
centage of correctly predicted positive cases.

SVM (Poly) 0.85 0.92 093 094 0.95
. TP SVM (RBF) 0.85 091 093 0.94 0.95
Precision = ————— 9)
TP+ FP SVM (Sigmoid) 0.80 0.84 0.87 0.88 090

Recall: It calculates the percentage of accurately antici-
pated positive cases compared to the total number of positive
cases that occurred.

P

Recall = ———
T TPLFN

(10)

F1 score: The F1 score is a measure that uses the hat-
monic mean to combine recall and precision. It provides a
comprehensive assessment of a model's efficacy by accounting
for both false positives and erroneous negatives.

s - Precision*Recall (11)
re = —
core Precision + Recall

Use the IBM-quantum platform's quantum simulators and
the sci-kit-learn library's classical models to set up our expeti-
ments in this study. In total, ten testing rounds were carried out
using the breast cancer diagnosis dataset. 50 samples were cho-
sen at random as the test set and 300 samples as the training set
for each cycle. Quantum simulators and the IBM quantum
processor were used in the trials, both with and without a noise
suppression plan. On the same datasets, we also ran trials using a
classical SVM model. Because QSVMs can forecast fresh data
more precisely than standard SVMs, they perform better in
generalisation. This is because QSVMs use higher-dimensional
feature spaces to capture complex patterns in the data, made
possible by the use of quantum kernel functions.

When it comes to handling non-linear data, QSVMs are
more capable than standard SVMs. This is due to their use of
quantum kernel functions, which allow data to be mapped onto a
higher-dimensional space, making it linearly separable. On the
other hand, the limitations of conventional support vector ma-
chines stem from their dependence on linear kernel functions,
which prevents them from efficiently processing non-linear data.

To show how QC affects classification time and perfor-
mance, the final step applies quantum computing to the breast
cancer data classification approach and feature representation.
This involves classifying data using a quantum method, which
may lead to quicker classification times and better results than a
conventional machine learning algorithm. To ascertain whether
the method is more successful for accurate diagnosis of breast
cancer dataset, the performance of both the SVM model and
QSVM with optimization algorithm is evaluated. Table 3 de-
scribes the accuracy comparison of the prediction model with
qubits 2,4,6,8, and10, which produces the result as 0.87, 0.94,
0.96, and 0.97, 0.97, respectively.

Figure 6 illustrates the performance of classical SVM and
quantum SVM across varying numbers of qubits and SVM

Quantum SVM SVM quantum kernel 0.87 0.94 0.96 0.97 0.97

kernels. Classical SVM with linear, polynomial, and radial basis
function (RBF) kernels shows steady accuracy improvements
with increased qubits. Meanwhile, quantum SVM consistently
outperforms classical SVM, achieving higher accuracy across
all qubit configurations.

With higher qubit counts, the accuracy of the traditional
SVM with different kernels increases, as is especially clear with
the RBF kernel. But in every qubit configuration, the quantum
SVM with a quantum kernel performs better than the classical
SVM, demonstrating greater predictive potential. This in-
dicates that machine learning activities, particularly those
involving complex data environments, may benefit from the
application of quantum computing,

Table 4 optimisation significantly enhances performance
in both classical and quantum SVM models, achieving perfect
precision, recall, Fl-score, and accuracy in the quantum
model. The classical SVM, while achieving high metrics, still
demonstrates some discrepancy between malignant and
benign class performance without optimisation. Quantum
SVM, especially with optimisation, showcases remarkable
consistency and supetiority across all evaluation metrics,
suggesting its potential for robust and precise classification
tasks.

Figure 7 shows, with optimisation, the classical SVM ach-
ieves slightly lower precision and recall for malignant cases but
higher precision, recall, Fl-score, and accuracy for benign
cases. Optimisation significantly improves the overall perfor-
mance of the Classical SVM, leading to higher accuracy and
better balance between precision and recall for both classes.

4.1 | Classical SVM with optimisation

® Precision: The precision of the model in predicting ma-
lignant cases is 0.97, while for benign cases it's 0.89.
Recall: The recall (sensitivity) of the model for malignant
cases is 0.84, while for benign cases it's 0.97.

F1-Score: The harmonic mean of precision and recall for
malignant cases is 0.89, while for benign cases, it's 0.95.
® Accuracy: The overall accuracy of the model is 94%.

4.2 | Classical SVM with optimisation

o Precision: The precision of the model in predicting ma-
lignant cases is 0.90, while for begin cases it's 0.92.
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Comparison of Classical SVM and Quantum SVM
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FIGURE 6 Comparison of classical SVM and quantum SVM accuracy.

TABLE 4 Performance evaluation

SVM model Optimisation strategy  Label Precision  Recall Fl-score Accuracy comparison results.
Classical Without optimisation Malignant ~ 0.97 0.84 0.89 0.94
Benign 0.89 0.97 0.95 0.94
With optimisation Malignant ~ 0.97 0.97 0.97 0.97
Benign 0.97 0.97 0.97 0.97
Quantum Without optimisation Malignant  1.00 0.86 0.92 0.95
Benign 0.93 1.00 0.96 0.95
With optimisation Malignant ~ 1.00 1.00 1.00 1.00
Benign 1.00 1.00 1.00 1.00

o Recall: The recall of the model for malignant cases is 0.92, 4.4 | Quantum SVM with optimisation

while for benign cases it's 0.94.

o F1-Score: The Fl-score for malignant cases is 0.94, while
for benign cases it's 0.964.

o Accuracy: The overall accuracy of the model is 97%

4.3 | Quantum SVM with optimisation

® Precision: The model
dicting malignant cases is 1.00, while for benign cases
it's 0.93.

Recall: The recall of the model for malignant cases is 0.86,
while for benign cases it's 1.00.

F1-Score: The Fl-score for malignant cases is 0.92, while

precision of the in pre-

for benign cases it's 0.96.
® Accuracy: The overall accuracy of the model is 95%.

o Precision: The precision of the model in predicting ma-
lignant cases is 1.00, while for benign cases, it's also 1.00.

o Recall: The recall of the model for both malignant and
benign cases is 1.00.

o F1-Score: The Fl-score for both malignant and benign
cases is 1.00.

o Accuracy: The overall accuracy of the model is 100%.

Figure 8 shows, with optimisation, the quantum SVM ach-
ieves perfect precision, recall, F1-score, and accuracy for both
malignant and benign cases. Without optimisation, the model
still performs very well but has slightly lower precision and recall
for malignant cases and slightly lower accuracy. Optimisation
significantly improves the performance of the quantum SVM,
leading to perfect classification results across all metrics.
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Comparison of Classical SVM with and without Optimization
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FIGURE 7 Classical SVM with and without optimisation.
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Comparison of Quantum SVM with and without Optimization
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FIGURE 8 Quantum SVM with and without optimisation.

The classification result of the cancer dataset is described
in Section 4. The performance evaluation comparison results
describe the precision, Recall, F1-Score, accuracy of the
classical SVM and quantum SVM training label Benign, Ma-
lignant. The quantum SVM, with optimization, obtained the
maximum accuracy, that is, 100%. According to time

N Without Optimization
BN With Optimization

F1-Score Accuracy

Metrics

complexity QSVM kernel IBMQX2, IBMQ_16_Melbourne,
and IBM QASM simulator attained the accuracies 98.6%,
99.4%, and 100%, respectively. In this computational envi-
ronment IBM QASM simulator execution time is 0.14.
Compared to other simulator the execution time reduced
drastically.
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The proposed QSVM optimisation models are evaluated
using metrics including precision, recall, F1 score, and accuracy
with breast cancer labels "Malignant" and "Benign". The ac-
curacy of QSVM with optimization performance results shows
a higher accuracy value compared to classical SVM. Table 5
focused on the use of QSVM with various computational
environments and the execution time of quantum simulators.
IBM QASM simulator’s execution time is 0.14 s, and it ach-
ieves 100% accuracy with an 8-vCore CPU and 32 GB of
RAM. The Penny Lane Python library, which includes built-in
techniques, was used to implement the Enhanced QSVM.
Figure 9 shows the performance comparison of classical SVM
versus QSVM kernel prediction accuracy over the execution
time.

Mammography and other data from breast cancer
screening can be analysed more precisely and effectively by
integrating this cutting-edge diagnostic equipment into hospital
diagnostic systems. This method can improve patient out-
comes and survival rates by increasing diagnostic accuracy,
decreasing false positives and negatives, and enabling earlier
diagnosis and more individualised treatment strategies for pa-
tients. It is also possible to employ it in high-volume screening
systems due to the faster processing times made possible by
the increased computing efficiency.

5 | CONCLUSION AND FUTURE WORK

This work provides more details on a methodological
approach that was performed to identify, assess, and analyse
quantum machine learning algorithms in the field of health-
care; this suggested methodology concentrated on using

TABLE 5 Experiment setup and execution time comparison.

QSVM for binary classification. Quantum support vector
machines and support vector machines (Linear, Poly, RBE,
Sigmoid) were compared and assessed. Additionally, a new
strategy that results in the development of QSVM has been
developed by integrating approaches, this suggests a feasible
method for binary classification problems in the quantum
machine learning domain of breast cancer diagnosis. The
proposed QSVM-elitist non-dominated sorting genetic opti-
mization algorithm performs admirably in terms of accuracy
and computational efficiency. These results have enormous
potential for developing quantum machine learning and all of
its various applications. Quantum machine learning algo-
rithms can process large amounts of data much more effi-
ciently than traditional machine learning algorithms by
utilising the power of quantum computing; this leads to faster
and more accurate results. Moreover, by recognising more
subtle patterns in the data, quantum machine learning algo-
rithms can improve the accuracy of healthcare tasks, poten-
tially solving the medical image segmentation and
classification to identify and predict cancers.

Further research is needed to assess the suggested tech-
nique's efficacy in solving complex problems on a variety of
datasets. By developing new quantum algorithms and applying
cutting-edge optimisation techniques, the method can be made
more scalable and efficient. By expanding the suggested
approach to additional machine learning principles such as
deep neural networks, transfer learning can be investigated.
These initiatives have the potential to advance quantum ma-
chine learning research and provide new approaches to solving
challenging real-world problems. This strategy has a huge po-
tential impact, which calls for more academic research. Due to
current limitations in quantum hardware, the QSVM algorithm

Algorithm Computational environment Time complexity Execution time (seconds) Accuracy (%)
Classical SVM Local CPU O (poly (NM) 228.60 97.0
QSVM kernel IBMQX2 O (log (NM) 72.60 98.6
IBMQ_16_Melbourne - 37.50 99.4
IBM QASM simulator - 0.14 100.0

Performance Comparison

250

. 4
200
150

100

Execution Time

50

96.5 97 T A 98 98.5 99

Prediction Accuracy

99.5 100

FIGURE 9 Prediction accuracy classical SVM
versus QSVM kernel.
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was designed for small-scale problems. There is limited
comparative analysis and experimental validation.

Limitations of the NISQ device include a small qubit
count, errors due to de-coherence, and limited qubit connec-
tivity. Creating quantum circuits, converting classical data into
quantum states, and combining classical and quantum com-
ponents also result in training complexity overhead. Algo-
rithmic constraints like circuit depth and expressivity also make
practical implementations more difficult.
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